
Allen B. Downey & Chris Mayfield

Think
 Java
HOW TO THINK LIKE A COMPUTER SCIENTIST

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Allen B. Downey and Chris Mayfield

Think Java
How to Think Like a Computer Scientist

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-92956-8

[LSI]

Think Java
by Allen B. Downey and Chris Mayfield

Copyright © 2016 Allen B. Downey and Chris Mayfield. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Kristen Brown
Copyeditor: Charles Roumeliotis
Proofreader: Christina Edwards

Indexers: Allen B. Downey and Chris Mayfield
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2016: First Edition

Revision History for the First Edition
2016-05-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929568 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Think Java, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Think Java is available under the Creative Commons Attribution-NonCommercial 3.0 Unported License.
The author maintains an online version at http://greenteapress.com/wp/think-java/.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491929568
http://greenteapress.com/wp/think-java/
http://www.allitebooks.org

Table of Contents

Preface. ix

1. The Way of the Program. 1
What Is Programming? 1
What Is Computer Science? 2
Programming Languages 3
The Hello World Program 4
Displaying Strings 5
Escape Sequences 6
Formatting Code 7
Debugging Code 8
Vocabulary 8
Exercises 10

2. Variables and Operators. 13
Declaring Variables 13
Assignment 14
State Diagrams 15
Printing Variables 16
Arithmetic Operators 16
Floating-Point Numbers 17
Rounding Errors 19
Operators for Strings 19
Composition 21
Types of Errors 21
Vocabulary 24
Exercises 25

iii

www.allitebooks.com

http://www.allitebooks.org

3. Input and Output. 29
The System Class 29
The Scanner Class 30
Program Structure 31
Inches to Centimeters 32
Literals and Constants 33
Formatting Output 33
Centimeters to Inches 35
Modulus Operator 35
Putting It All Together 36
The Scanner Bug 37
Vocabulary 38
Exercises 39

4. Void Methods. 43
Math Methods 43
Composition Revisited 44
Adding New Methods 45
Flow of Execution 47
Parameters and Arguments 48
Multiple Parameters 49
Stack Diagrams 50
Reading Documentation 51
Writing Documentation 53
Vocabulary 54
Exercises 55

5. Conditionals and Logic. 57
Relational Operators 57
Logical Operators 58
Conditional Statements 59
Chaining and Nesting 60
Flag Variables 61
The return Statement 61
Validating Input 62
Recursive Methods 62
Recursive Stack Diagrams 64
Binary Numbers 65
Vocabulary 66
Exercises 67

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

6. Value Methods. 71
Return Values 71
Writing Methods 73
Method Composition 75
Overloading 76
Boolean Methods 77
Javadoc Tags 78
More Recursion 79
Leap of Faith 81
One More Example 82
Vocabulary 82
Exercises 83

7. Loops. 89
The while Statement 89
Generating Tables 90
Encapsulation and Generalization 92
More Generalization 94
The for Statement 96
The do-while Loop 97
break and continue 98
Vocabulary 99
Exercises 99

8. Arrays. 103
Creating Arrays 103
Accessing Elements 104
Displaying Arrays 105
Copying Arrays 106
Array Length 107
Array Traversal 107
Random Numbers 108
Traverse and Count 109
Building a Histogram 110
The Enhanced for Loop 111
Vocabulary 112
Exercises 113

9. Strings and Things. 117
Characters 117
Strings Are Immutable 118
String Traversal 119

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Substrings 120
The indexOf Method 121
String Comparison 121
String Formatting 122
Wrapper Classes 123
Command-Line Arguments 123
Vocabulary 125
Exercises 125

10. Objects. 131
Point Objects 131
Attributes 132
Objects as Parameters 133
Objects as Return Types 133
Mutable Objects 134
Aliasing 136
The null Keyword 137
Garbage Collection 137
Class Diagrams 138
Java Library Source 139
Vocabulary 140
Exercises 140

11. Classes. 145
The Time Class 145
Constructors 146
More Constructors 148
Getters and Setters 149
Displaying Objects 151
The toString Method 151
The equals Method 152
Adding Times 154
Pure Methods and Modifiers 155
Vocabulary 156
Exercises 157

12. Arrays of Objects. 161
Card Objects 161
Card toString 163
Class Variables 164
The compareTo Method 165
Cards Are Immutable 166

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Arrays of Cards 167
Sequential Search 169
Binary Search 169
Tracing the Code 170
Recursive Version 171
Vocabulary 172
Exercises 172

13. Objects of Arrays. 175
The Deck Class 175
Shuffling Decks 176
Selection Sort 177
Merge Sort 178
Subdecks 178
Merging Decks 179
Adding Recursion 180
Vocabulary 181
Exercises 181

14. Objects of Objects. 185
Decks and Hands 186
CardCollection 186
Inheritance 189
Dealing Cards 190
The Player Class 191
The Eights Class 194
Class Relationships 197
Vocabulary 198
Exercises 198

A. Development Tools. 201

B. Java 2D Graphics. 211

C. Debugging. 217

Index. 229

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Think Java is an introduction to computer science and programming intended for
readers with little or no experience. We start with the most basic concepts and are
careful to define all terms when they are first used. The book presents each new idea
in a logical progression. Larger topics, like recursion and object-oriented program‐
ming, are divided into smaller examples and introduced over the course of several
chapters.

This book is intentionally concise. Each chapter is 12–14 pages and covers the mate‐
rial for one week of a college course. It is not meant to be a comprehensive presenta‐
tion of Java, but rather, an initial exposure to programming constructs and
techniques. We begin with small problems and basic algorithms and work up to
object-oriented design. In the vocabulary of computer science pedagogy, this book
uses the “objects late” approach.

The Philosophy Behind the Book
Here are the guiding principles that make the book the way it is:

• One concept at a time. We break down topics that give beginners trouble into a
series of small steps, so that they can exercise each new concept in isolation
before continuing.

• Balance of Java and concepts. The book is not primarily about Java; it uses code
examples to demonstrate computer science. Most chapters start with language
features and end with concepts.

• Conciseness. An important goal of the book is to be small enough so that students
can read and understand the entire text in a one-semester college or AP course.

• Emphasis on vocabulary. We try to introduce the minimum number of terms and
define them carefully when they are first used. We also organize them in glossa‐
ries at the end of each chapter.

ix

• Program development. There are many strategies for writing programs, including
bottom-up, top-down, and others. We demonstrate multiple program develop‐
ment techniques, allowing readers to choose methods that work best for them.

• Multiple learning curves. To write a program, you have to understand the algo‐
rithm, know the programming language, and be able to debug errors. We discuss
these and other aspects throughout the book, and include an appendix that sum‐
marizes our advice.

Object-Oriented Programming
Some Java books introduce classes and objects immediately; others begin with proce‐
dural programming and transition to object-oriented more gradually.

Many of Java’s object-oriented features are motivated by problems with previous lan‐
guages, and their implementations are influenced by this history. Some of these fea‐
tures are hard to explain when people aren’t familiar with the problems they solve.

We get to object-oriented programming as quickly as possible, limited by the require‐
ment that we introduce concepts one at a time, as clearly as possible, in a way that
allows readers to practice each idea in isolation before moving on. So it takes some
time to get there.

But you can’t write Java programs (even hello world) without encountering object-
oriented features. In some cases we explain a feature briefly when it first appears, and
then explain it more deeply later on.

This book is well suited to prepare students for the AP Computer Science A exam,
which includes object-oriented design and implementation. (AP is a registered trade‐
mark of the College Board.) We introduce nearly every topic in the “AP Java subset”
with a few exceptions. A mapping of Think Java section numbers to the current AP
course description is available on our website: http://thinkjava.org.

Appendixes
The chapters of this book are meant to be read in order, because each one builds on
the previous one. We also include three appendixes with material that can be read at
any time:

Appendix A, Development Tools
The steps for compiling, running, and debugging Java code depend on the details
of the development environment and operating system. We avoided putting these
details in the main text, because they can be distracting. Instead, we provide this
appendix with a brief introduction to DrJava—an interactive development envi‐

x | Preface

http://thinkjava.org

ronment (IDE) that is helpful for beginners—and other development tools,
including Checkstyle for code quality and JUnit for testing.

Appendix B, Java 2D Graphics
Java provides libraries for working with graphics and animation, and these topics
can be engaging for students. The libraries require object-oriented features that
readers will not completely understand until after Chapter 11, but they can be
used much earlier.

Appendix C, Debugging
We provide debugging suggestions throughout the book, but we also collect our
debugging advice in an appendix. We recommend that readers review this appen‐
dix several times as they work through the book.

Using the Code Examples
Most of the code examples in this book are available from a Git repository at https://
github.com/AllenDowney/ThinkJavaCode. Git is a “version control system” that allows
you to keep track of the files that make up a project. A collection of files under Git’s
control is called a “repository”.

GitHub is a hosting service that provides storage for Git repositories and a conve‐
nient web interface. It provides several ways to work with the code:

• You can create a copy of the repository on GitHub by pressing the Fork button. If
you don’t already have a GitHub account, you’ll need to create one. After forking,
you’ll have your own repository on GitHub that you can use to keep track of code
you write. Then you can “clone” the repository, which downloads a copy of the
files to your computer.

• Alternatively, you could clone the repository without forking. If you choose this
option, you don’t need a GitHub account, but you won’t be able to save your
changes on GitHub.

• If you don’t want to use Git at all, you can download the code in a ZIP archive
using the Download ZIP button on the GitHub page, or this link: http://
tinyurl.com/ThinkJavaCodeZip.

After you clone the repository or unzip the ZIP file, you should have a directory
called ThinkJavaCode with a subdirectory for each chapter in the book.

All examples in this book were developed and tested using Java SE Development Kit
8. If you are using a more recent version, the examples in this book should still work.
If you are using an older version, some of them may not.

Preface | xi

https://github.com/AllenDowney/ThinkJavaCode
https://github.com/AllenDowney/ThinkJavaCode
http://tinyurl.com/ThinkJavaCodeZip
http://tinyurl.com/ThinkJavaCodeZip

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates emphasis, keystrokes, menu options, URLs, and email addresses.

Bold
Indicates terms defined in the Vocabulary section at the end of each chapter.

Constant width

Used for program listings, as well as within paragraphs to refer to filenames, file
extensions, and program elements such as variable and function names, data
types, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in tech‐
nology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

xii | Preface

http://safaribooksonline.com
http://www.safaribooksonline.com/explore/
http://www.safaribooksonline.com/pricing/
http://www.safaribooksonline.com/enterprise/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/academic-public-library/
http://www.safaribooksonline.com/our-library/
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/think-java-1e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have sent corrections and suggestions, and we appreciate their valuable
feedback!

• Ellen Hildreth used this book to teach Data Structures at Wellesley College and
submitted a whole stack of corrections, along with some great suggestions.

• Tania Passfield pointed out that some glossaries had leftover terms that no longer
appeared in the text.

• Elizabeth Wiethoff noticed that the series expansion of exp − x2 was wrong.
She has also worked on a Ruby version of the book.

• Matt Crawford sent in a whole patch file full of corrections.
• Chi-Yu Li pointed out a typo and an error in one of the code examples.
• Doan Thanh Nam corrected an example.
• Muhammad Saied translated the book into Arabic, and found several errors in

the process.

Preface | xiii

http://bit.ly/think-java-1e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

• Marius Margowski found an inconsistency in a code example.

• Leslie Klein discovered another error in the series expansion of exp − x2 , iden‐
tified typos in the card array figures, and gave helpful suggestions to clarify sev‐
eral exercises.

• Micah Lindstrom reported half a dozen typos and sent corrections.
• James Riely ported the textbook source from LaTeX to Sphinx: http://

fpl.cs.depaul.edu/jriely/thinkapjava/.
• Peter Knaggs ported the book to C#: http://www.rigwit.co.uk/think/sharp/.
• Heidi Gentry-Kolen recorded several video lectures that follow the book: https://

www.youtube.com/user/digipipeline.

We are especially grateful to our technical reviewers: Blythe Samuels, David Wisneski,
and Stephen Rose. They found errors, made many great suggestions, and helped
make the book much better.

Additional contributors who found one or more typos: Stijn Debrouwere, Guy Drie‐
sen, Andai Velican, Chris Kuszmaul, Daniel Kurikesu, Josh Donath, Rens Findham‐
mer, Elisa Abedrapo, Yousef BaAfif, Bruce Hill, Matt Underwood, Isaac Sultan, Dan
Rice, Robert Beard, and Daniel Pierce.

If you have additional comments or ideas about the text, please send them to:
feedback@greenteapress.com.

xiv | Preface

http://fpl.cs.depaul.edu/jriely/thinkapjava/
http://fpl.cs.depaul.edu/jriely/thinkapjava/
http://www.rigwit.co.uk/think/sharp/
https://www.youtube.com/user/digipipeline
https://www.youtube.com/user/digipipeline

CHAPTER 1

The Way of the Program

The goal of this book is to teach you to think like a computer scientist. This way of
thinking combines some of the best features of mathematics, engineering, and natural
science. Like mathematicians, computer scientists use formal languages to denote
ideas, specifically computations. Like engineers, they design things, assembling com‐
ponents into systems and evaluating trade-offs among alternatives. And like scien‐
tists, they observe the behavior of complex systems, form hypotheses, and test
predictions.

The single most important skill for a computer scientist is problem solving. It
involves the ability to formulate problems, think creatively about solutions, and
express solutions clearly and accurately. As it turns out, the process of learning to
program is an excellent opportunity to develop problem solving skills. That’s why this
chapter is called, “The way of the program”.

On one level you will be learning to program, a useful skill by itself. But on another
level you will use programming as a means to an end. As we go along, that end will
become clearer.

What Is Programming?
A program is a sequence of instructions that specifies how to perform a computation.
The computation might be something mathematical, like solving a system of equa‐
tions or finding the roots of a polynomial. It can also be a symbolic computation, like
searching and replacing text in a document or (strangely enough) compiling a pro‐
gram. The details look different in different languages, but a few basic instructions
appear in just about every language.

1

input:
Get data from the keyboard, a file, a sensor, or some other device.

output:
Display data on the screen, or send data to a file or other device.

math:
Perform basic mathematical operations like addition and division.

decisions:
Check for certain conditions and execute the appropriate code.

repetition:
Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of small instructions that look much like
these. So you can think of programming as the process of breaking down a large,
complex task into smaller and smaller subtasks. The process continues until the sub‐
tasks are simple enough to be performed with the basic instructions provided by the
computer.

What Is Computer Science?
One of the most interesting aspects of writing programs is deciding how to solve a
particular problem, especially when there are multiple solutions. For example, there
are numerous ways to sort a list of numbers, and each way has its advantages. In
order to determine which way is best for a given situation, we need techniques for
describing and analyzing solutions formally.

Computer science is the science of algorithms, including their discovery and analy‐
sis. An algorithm is a sequence of steps that specifies how to solve a problem. Some
algorithms are faster than others, and some use less space in computer memory. As
you learn to develop algorithms for problems you haven’t solved before, you also
learn to think like a computer scientist.

Designing algorithms and writing code is difficult and error-prone. For historical rea‐
sons, programming errors are called bugs, and the process of tracking them down
and correcting them is called debugging. As you learn to debug your programs, you
will develop new problem solving skills. You will need to think creatively when unex‐
pected errors happen.

Although it can be frustrating, debugging is an intellectually rich, challenging, and
interesting part of computer programming. In some ways, debugging is like detective
work. You are confronted with clues, and you have to infer the processes and events

2 | Chapter 1: The Way of the Program

that led to the results you see. Thinking about how to correct programs and improve
their performance sometimes even leads to the discovery of new algorithms.

Programming Languages
The programming language you will learn is Java, which is a high-level language.
Other high-level languages you may have heard of include Python, C and C++, Ruby,
and JavaScript.

Before they can run, programs in high-level languages have to be translated into a
low-level language, also called “machine language”. This translation takes some time,
which is a small disadvantage of high-level languages. But high-level languages have
two advantages:

• It is much easier to program in a high-level language. Programs take less time to
write, they are shorter and easier to read, and they are more likely to be correct.

• High-level languages are portable, meaning they can run on different kinds of
computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Two kinds of programs translate high-level languages into low-level languages: inter‐
preters and compilers. An interpreter reads a high-level program and executes it,
meaning that it does what the program says. It processes the program a little at a time,
alternately reading lines and performing computations. Figure 1-1 shows the struc‐
ture of an interpreter.

Figure 1-1. How interpreted languages are executed.

In contrast, a compiler reads the entire program and translates it completely before
the program starts running. In this context, the high-level program is called the
source code, and the translated program is called the object code or the executable.
Once a program is compiled, you can execute it repeatedly without further transla‐
tion. As a result, compiled programs often run faster than interpreted programs.

Java is both compiled and interpreted. Instead of translating programs directly into
machine language, the Java compiler generates byte code. Similar to machine lan‐
guage, byte code is easy and fast to interpret. But it is also portable, so it is possible to
compile a Java program on one machine, transfer the byte code to another machine,

Programming Languages | 3

and run the byte code on the other machine. The interpreter that runs byte code is
called a “Java Virtual Machine” (JVM).

Figure 1-2. The process of compiling and running a Java program.

Figure 1-2 shows the steps of this process. Although it might seem complicated, these
steps are automated for you in most program development environments. Usually
you only have to press a button or type a single command to compile and run your
program. On the other hand, it is important to know what steps are happening in the
background, so if something goes wrong you can figure out what it is.

The Hello World Program
Traditionally, the first program you write when learning a new programming lan‐
guage is called the hello world program. All it does is display the words “Hello,
World!” on the screen. In Java, it looks like this:

public class Hello {

 public static void main(String[] args) {
 // generate some simple output
 System.out.println("Hello, World!");
 }
}

When this program runs it displays:

Hello, World!

Notice that the output does not include the quotation marks.

Java programs are made up of class and method definitions, and methods are made up
of statements. A statement is a line of code that performs a basic operation. In the
hello world program, this line is a print statement that displays a message on the
screen:

System.out.println("Hello, World!");

System.out.println displays results on the screen; the name println stands for
“print line”. Confusingly, print can mean both “display on the screen” and “send to the
printer”. In this book, we’ll try to say “display” when we mean output to the screen.
Like most statements, the print statement ends with a semicolon (;).

4 | Chapter 1: The Way of the Program

Java is “case-sensitive”, which means that uppercase and lowercase are not the same.
In this example, System has to begin with an uppercase letter; system and SYSTEM
won’t work.

A method is a named sequence of statements. This program defines one method
named main:

public static void main(String[] args)

The name and format of main is special: when the program runs, it starts at the first
statement in main and ends when it finishes the last statement. Later, we will see pro‐
grams that define more than one method.

A class is a collection of methods. This program defines a class named Hello. You
can give a class any name you like, but it is conventional to start with a capital letter.
The name of the class has to match the name of the file it is in, so this class has to be
in a file named Hello.java.

Java uses squiggly braces ({ and }) to group things together. In Hello.java, the outer‐
most braces contain the class definition, and the inner braces contain the method
definition.

The line that begins with two slashes (//) is a comment, which is a bit of English text
that explains the code. When the compiler sees //, it ignores everything from there
until the end of the line. Comments have no effect on the execution of the program,
but they make it easier for other programmers (and your future self) to understand
what you meant to do.

Displaying Strings
You can put as many statements as you like in main. For example, to display more
than one line of output:

public class Hello {

 public static void main(String[] args) {
 // generate some simple output
 System.out.println("Hello, World!"); // first line
 System.out.println("How are you?"); // another line
 }
}

As this example shows, you can put comments at the end of a line as well as on lines
all by themselves.

Phrases that appear in quotation marks are called strings, because they contain a
sequence of “characters” strung together. Characters can be letters, numbers, punctu‐
ation marks, symbols, spaces, tabs, etc.

Displaying Strings | 5

System.out.println appends a special character, called a newline, that moves to the
beginning of the next line. If you don’t want a newline at the end, you can use print
instead of println:

public class Goodbye {

 public static void main(String[] args) {
 System.out.print("Goodbye, ");
 System.out.println("cruel world");
 }
}

In this example, the first statement does not add a newline, so the output appears on a
single line as Goodbye, cruel world. Notice that there is a space at the end of the
first string, which appears in the output.

Escape Sequences
It is possible to display multiple lines of output in just one line of code. You just have
to tell Java where to put the line breaks.

public class Hello {

 public static void main(String[] args) {
 System.out.print("Hello!\nHow are you doing?\n");
 }
}

The output is two lines, each ending with a newline character:

Hello!
How are you doing?

The \n is an escape sequence, which is a sequence of characters that represents a spe‐
cial character. The backslash allows you to “escape” the string’s literal interpretation.
Notice there is no space between \n and How. If you add a space there, there will be a
space at the beginning of the second line.

Another common use of escape sequences is to have quotation marks inside of
strings. Since double quotes indicate the beginning and end of strings, you need to
escape them with a backslash.

System.out.println("She said \"Hello!\" to me.");

The result is:

She said "Hello!" to me.

6 | Chapter 1: The Way of the Program

Table 1-1. Common escape sequences

\n newline

\t tab

\" double quote

\\ backslash

Formatting Code
In Java programs, some spaces are required. For example, you need at least one space
between words, so this program is not legal:

publicclassGoodbye{

 publicstaticvoidmain(String[] args) {
 System.out.print("Goodbye, ");
 System.out.println("cruel world");
 }
}

But most other spaces are optional. For example, this program is legal:

public class Goodbye {
public static void main(String[] args) {
System.out.print("Goodbye, ");
System.out.println("cruel world");
}
}

The newlines are optional, too. So we could just write:

public class Goodbye { public static void main(String[] args)
{ System.out.print("Goodbye, "); System.out.println
("cruel world");}}

It still works, but the program is getting harder and harder to read. Newlines and
spaces are important for organizing your program visually, making it easier to under‐
stand the program and find errors when they occur.

Many editors will automatically format source code with consistent indenting and
line breaks. For example, in DrJava (see Appendix A) you can indent the code by
selecting all text (Ctrl+A) and pressing the Tab key.

Organizations that do a lot of software development usually have strict guidelines on
how to format source code. For example, Google publishes its Java coding standards
for use in open-source projects: http://google.github.io/styleguide/javaguide.html.

Formatting Code | 7

http://google.github.io/styleguide/javaguide.html

You might not understand these guidelines now, because they refer to language fea‐
tures we haven’t yet seen. But you might want to refer back to them periodically as
you read this book.

Debugging Code
It is a good idea to read this book in front of a computer so you can try out the exam‐
ples as you go. You can run many of the examples directly in DrJava’s Interactions
Pane (see Appendix A). But if you put the code in a source file, it will be easier to try
out variations.

Whenever you are experimenting with a new feature, you should also try to make
mistakes. For example, in the hello world program, what happens if you leave out one
of the quotation marks? What if you leave out both? What if you spell println
wrong? These kinds of experiments help you remember what you read. They also
help with debugging, because you learn what the error messages mean. It is better to
make mistakes now and on purpose than later on and accidentally.

Debugging is like an experimental science: once you have an idea about what is going
wrong, you modify your program and try again. If your hypothesis was correct, then
you can predict the result of the modification, and you take a step closer to a working
program. If your hypothesis was wrong, you have to come up with a new one.

Programming and debugging should go hand in hand. Don’t just write a bunch of
code and then perform trial and error debugging until it all works. Instead, start with
a program that does something and make small modifications, debugging them as you
go, until the program does what you want. That way you will always have a working
program, and it will be easier to isolate errors.

A great example of this principle is the Linux operating system, which contains mil‐
lions of lines of code. It started out as a simple program Linus Torvalds used to
explore the Intel 80386 chip. According to Larry Greenfield in The Linux Users’ Guide,
“One of Linus’s earlier projects was a program that would switch between printing
AAAA and BBBB. This later evolved to Linux.”

Finally, programming sometimes brings out strong emotions. If you are struggling
with a difficult bug, you might feel angry, despondent, or embarrassed. Remember
that you are not alone, and most if not all programmers have had similar experiences.
Don’t hesitate to reach out to a friend and ask questions!

Vocabulary
Throughout the book, we try to define each term the first time we use it. At the end of
each chapter, we include the new terms and their definitions in order of appearance.

8 | Chapter 1: The Way of the Program

If you spend some time learning this vocabulary, you will have an easier time reading
the following chapters.

problem solving:
The process of formulating a problem, finding a solution, and expressing the sol‐
ution.

program:
A sequence of instructions that specifies how to perform tasks on a computer.

programming:
The application of problem solving to creating executable computer programs.

computer science:
The scientific and practical approach to computation and its applications.

algorithm:
A procedure or formula for solving a problem, with or without a computer.

bug:
An error in a program.

debugging:
The process of finding and removing errors.

high-level language:
A programming language that is designed to be easy for humans to read and
write.

low-level language:
A programming language that is designed to be easy for a computer to run. Also
called “machine language” or “assembly language”.

portable:
The ability of a program to run on more than one kind of computer.

interpret:
To run a program in a high-level language by translating it one line at a time and
immediately executing the corresponding instructions.

compile:
To translate a program in a high-level language into a low-level language, all at
once, in preparation for later execution.

source code:
A program in a high-level language, before being compiled.

Vocabulary | 9

object code:
The output of the compiler, after translating the program.

executable:
Another name for object code that is ready to run on specific hardware.

byte code:
A special kind of object code used for Java programs. Byte code is similar to a
low-level language, but it is portable like a high-level language.

statement:
Part of a program that specifies one step of an algorithm.

print statement:
A statement that causes output to be displayed on the screen.

method:
A named sequence of statements.

class:
For now, a collection of related methods. (We will see later that there is more to
it.)

comment:
A part of a program that contains information about the program but has no
effect when the program runs.

string:
A sequence of characters; the primary data type for text.

newline:
A special character signifying the end of a line of text. Also known as line ending,
end of line (EOL), or line break.

escape sequence:
A sequence of code that represents a special character when used inside a string.

Exercises
At the end of each chapter, we include exercises you can do with the things you’ve
learned. We encourage you to at least attempt every problem. You can’t learn to pro‐
gram only by reading about it; you have to practice.

Before you can compile and run Java programs, you might have to download and
install a few tools. There are many good options, but we recommend DrJava, which is
an “integrated development environment” (IDE) well suited for beginners. Instruc‐
tions for getting started are in “Installing DrJava” on page 201.

10 | Chapter 1: The Way of the Program

The code for this chapter is in the ch01 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 1-1.

Computer scientists have the annoying habit of using common English words to
mean something other than their common English meaning. For example, in English,
statements and comments are the same thing, but in programs they are different.

1. In computer jargon, what’s the difference between a statement and a comment?
2. What does it mean to say that a program is portable?
3. In common English, what does the word compile mean?
4. What is an executable? Why is that word used as a noun?

The glossary at the end of each chapter is intended to highlight words and phrases
that have special meanings in computer science. When you see familiar words, don’t
assume that you know what they mean!

Exercise 1-2.

Before you do anything else, find out how to compile and run a Java program. Some
environments provide sample programs similar to the example in “The Hello World
Program” on page 4.

1. Type in the hello world program, then compile and run it.
2. Add a print statement that displays a second message after the “Hello, World!”.

Say something witty like, “How are you?” Compile and run the program again.
3. Add a comment to the program (anywhere), recompile, and run it again. The

new comment should not affect the result.

This exercise may seem trivial, but it is the starting place for many of the programs
we will work with. To debug with confidence, you will need to have confidence in
your programming environment.

In some environments, it is easy to lose track of which program is executing. You
might find yourself trying to debug one program while you are accidentally running
another. Adding (and changing) print statements is a simple way to be sure that the
program you are looking at is the program you are running.

Exercises | 11

Exercise 1-3.

It is a good idea to commit as many errors as you can think of, so that you see what
error messages the compiler produces. Sometimes the compiler tells you exactly what
is wrong, and all you have to do is fix it. But sometimes the error messages are mis‐
leading. Over time you will develop a sense for when you can trust the compiler and
when you have to figure things out yourself.

Starting with the hello world program, try out each of the following errors. After you
make each change, compile the program, read the error message (if there is one), and
then fix the error.

1. Remove one of the open squiggly braces.
2. Remove one of the close squiggly braces.
3. Instead of main, write mian.
4. Remove the word static.
5. Remove the word public.
6. Remove the word System.
7. Replace println with Println.
8. Replace println with print.
9. Delete one of the parentheses. Add an extra one.

12 | Chapter 1: The Way of the Program

CHAPTER 2

Variables and Operators

This chapter describes how to write statements using variables, which store values
like numbers and words, and operators, which are symbols that perform a computa‐
tion. We also explain three kinds of programming errors and offer additional debug‐
ging advice.

Declaring Variables
One of the most powerful features of a programming language is the ability to define
and manipulate variables. A variable is a named location that stores a value. Values
may be numbers, text, images, sounds, and other types of data. To store a value, you
first have to declare a variable.

String message;

This statement is a declaration, because it declares that the variable named message
has the type String. Each variable has a type that determines what kind of values it
can store. For example, the int type can store integers, and the char type can store
characters.

Some types begin with a capital letter and some with lowercase. We will learn the sig‐
nificance of this distinction later, but for now you should take care to get it right.
There is no such type as Int or string.

To declare an integer variable, the syntax is:

int x;

Note that x is an arbitrary name for the variable. In general, you should use names
that indicate what the variables mean. For example, if you saw these declarations, you
could probably guess what values would be stored:

13

String firstName;
String lastName;
int hour, minute;

This example declares two variables with type String and two with type int. When a
variable name contains more than one word, like firstName, it is conventional to
capitalize the first letter of each word except the first. Variable names are case-
sensitive, so firstName is not the same as firstname or FirstName.

This example also demonstrates the syntax for declaring multiple variables with the
same type on one line: hour and minute are both integers. Note that each declaration
statement ends with a semicolon.

You can use any name you want for a variable. But there are about 50 reserved words,
called keywords, that you are not allowed to use as variable names. These words
include public, class, static, void, and int, which are used by the compiler to ana‐
lyze the structure of the program.

You can find the complete list of keywords at http://docs.oracle.com/javase/tutorial/
java/nutsandbolts/_keywords.html, but you don’t have to memorize them. Most pro‐
gramming editors provide “syntax highlighting”, which makes different parts of the
program appear in different colors.

Assignment
Now that we have declared variables, we want to use them to store values. We do that
with an assignment statement.

message = "Hello!"; // give message the value "Hello!"
hour = 11; // assign the value 11 to hour
minute = 59; // set minute to 59

This example shows three assignments, and the comments illustrate different ways
people sometimes talk about assignment statements. The vocabulary can be confus‐
ing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.
• When you make an assignment to a variable, you update its value.

As a general rule, a variable has to have the same type as the value you assign to it.
For example, you cannot store a string in minute or an integer in message. We will see
some examples that seem to break this rule, but we’ll get to that later.

A common source of confusion is that some strings look like integers, but they are
not. For example, message can contain the string "123", which is made up of the
characters '1', '2', and '3'. But that is not the same thing as the integer 123.

14 | Chapter 2: Variables and Operators

www.allitebooks.com

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://www.allitebooks.org

message = "123"; // legal
message = 123; // not legal

Variables must be initialized (assigned for the first time) before they can be used. You
can declare a variable and then assign a value later, as in the previous example. You
can also declare and initialize on the same line:

String message = "Hello!";
int hour = 11;
int minute = 59;

State Diagrams
Because Java uses the = symbol for assignment, it is tempting to interpret the state‐
ment a = b as a statement of equality. It is not!

Equality is commutative, and assignment is not. For example, in mathematics if a = 7
then 7 = a. In Java a = 7; is a legal assignment statement, but 7 = a; is not. The left
side of an assignment statement has to be a variable name (storage location).

Also, in mathematics, a statement of equality is true for all time. If a = b now, a is
always equal to b. In Java, an assignment statement can make two variables equal, but
they don’t have to stay that way.

int a = 5;
int b = a; // a and b are now equal
a = 3; // a and b are no longer equal

The third line changes the value of a, but it does not change the value of b, so they are
no longer equal.

Taken together, the variables in a program and their current values make up the pro‐
gram’s state. Figure 2-1 shows the state of the program after these assignment state‐
ments run.

Figure 2-1. State diagram of the variables a and b.

Diagrams like this one that show the state of the program are called state diagrams.
Each variable is represented with a box showing the name of the variable on the out‐
side and the value inside. As the program runs, the state changes, so you should think
of a state diagram as a snapshot of a particular point in the execution.

State Diagrams | 15

Printing Variables
You can display the value of a variable using print or println. The following state‐
ments declare a variable named firstLine, assign it the value "Hello, again!", and
display that value.

String firstLine = "Hello, again!";
System.out.println(firstLine);

When we talk about displaying a variable, we generally mean the value of the variable.
To display the name of a variable, you have to put it in quotes.

System.out.print("The value of firstLine is ");
System.out.println(firstLine);

For this example, the output is:

The value of firstLine is Hello, again!

Conveniently, the syntax for displaying a variable is the same regardless of its type.
For example:

int hour = 11;
int minute = 59;
System.out.print("The current time is ");
System.out.print(hour);
System.out.print(":");
System.out.print(minute);
System.out.println(".");

The output of this program is:

The current time is 11:59.

To output multiple values on the same line, it’s common to use several print state‐
ments followed by println at the end. But don’t forget the println! On many com‐
puters, the output from print is stored without being displayed until println is run;
then the entire line is displayed at once. If you omit the println, the program might
display the stored output at unexpected times or even terminate without displaying
anything.

Arithmetic Operators
Operators are symbols that represent simple computations. For example, the addi‐
tion operator is +, subtraction is -, multiplication is *, and division is /.

The following program converts a time of day to minutes:

int hour = 11;
int minute = 59;
System.out.print("Number of minutes since midnight: ");
System.out.println(hour * 60 + minute);

16 | Chapter 2: Variables and Operators

In this program, hour * 60 + minute is an expression, which represents a single
value to be computed. When the program runs, each variable is replaced by its cur‐
rent value, and then the operators are applied. The values operators work with are
called operands.

The result of the previous example is:

Number of minutes since midnight: 719

Expressions are generally a combination of numbers, variables, and operators. When
complied and executed, they become a single value.

For example, the expression 1 + 1 has the value 2. In the expression hour - 1, Java
replaces the variable with its value, yielding 11 - 1, which has the value 10. In the
expression hour * 60 + minute, both variables get replaced, yielding 11 * 60 + 59.
The multiplication happens first, yielding 660 + 59. Then the addition yields 719.

Addition, subtraction, and multiplication all do what you expect, but you might be
surprised by division. For example, the following fragment tries to compute the frac‐
tion of an hour that has elapsed:

System.out.print("Fraction of the hour that has passed: ");
System.out.println(minute / 60);

The output is:

Fraction of the hour that has passed: 0

This result often confuses people. The value of minute is 59, and 59 divided by 60
should be 0.98333, not 0. The problem is that Java performs “integer division” when
the operands are integers. By design, integer division always rounds toward zero,
even in cases like this one where the next integer is close.

As an alternative, we can calculate a percentage rather than a fraction:

System.out.print("Percent of the hour that has passed: ");
System.out.println(minute * 100 / 60);

The new output is:

Percent of the hour that has passed: 98

Again the result is rounded down, but at least now it’s approximately correct.

Floating-Point Numbers
A more general solution is to use floating-point numbers, which can represent frac‐
tions as well as integers. In Java, the default floating-point type is called double,
which is short for double-precision. You can create double variables and assign values
to them using the same syntax we used for the other types:

Floating-Point Numbers | 17

double pi;
pi = 3.14159;

Java performs “floating-point division” when one or more operands are double val‐
ues. So we can solve the problem we saw in the previous section:

double minute = 59.0;
System.out.print("Fraction of the hour that has passed: ");
System.out.println(minute / 60.0);

The output is:

Fraction of the hour that has passed: 0.9833333333333333

Although floating-point numbers are useful, they can be a source of confusion. For
example, Java distinguishes the integer value 1 from the floating-point value 1.0, even
though they seem to be the same number. They belong to different data types, and
strictly speaking, you are not allowed to make assignments between types.

The following is illegal because the variable on the left is an int and the value on the
right is a double:

int x = 1.1; // compiler error

It is easy to forget this rule because in many cases Java automatically converts from
one type to another:

double y = 1; // legal, but bad style

The preceding example should be illegal, but Java allows it by converting the int
value 1 to the double value 1.0 automatically. This leniency is convenient, but it often
causes problems for beginners. For example:

double y = 1 / 3; // common mistake

You might expect the variable y to get the value 0.333333, which is a legal floating-
point value. But instead it gets the value 0.0. The expression on the right divides two
integers, so Java does integer division, which yields the int value 0. Converted to dou
ble, the value assigned to y is 0.0.

One way to solve this problem (once you figure out the bug) is to make the right-
hand side a floating-point expression. The following sets y to 0.333333, as expected:

double y = 1.0 / 3.0; // correct

As a matter of style, you should always assign floating-point values to floating-point
variables. The compiler won’t make you do it, but you never know when a simple
mistake will come back and haunt you.

18 | Chapter 2: Variables and Operators

Rounding Errors
Most floating-point numbers are only approximately correct. Some numbers, like
reasonably-sized integers, can be represented exactly. But repeating fractions, like
1/3, and irrational numbers, like π, cannot. To represent these numbers, computers
have to round off to the nearest floating-point number.

The difference between the number we want and the floating-point number we get is
called rounding error. For example, the following two statements should be equiva‐
lent:

System.out.println(0.1 * 10);
System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1
 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1);

But on many machines, the output is:

1.0
0.9999999999999999

The problem is that 0.1, which is a terminating fraction in base 10, is a repeating
fraction in base 2. So its floating-point representation is only approximate. When we
add up the approximations, the rounding errors accumulate.

For many applications, like computer graphics, encryption, statistical analysis, and
multimedia rendering, floating-point arithmetic has benefits that outweigh the costs.
But if you need absolute precision, use integers instead. For example, consider a bank
account with a balance of $123.45:

double balance = 123.45; // potential rounding error

In this example, balances will become inaccurate over time as the variable is used in
arithmetic operations like deposits and withdrawals. The result would be angry cus‐
tomers and potential lawsuits. You can avoid the problem by representing the balance
as an integer:

int balance = 12345; // total number of cents

This solution works as long as the number of cents doesn’t exceed the largest integer,
which is about 2 billion.

Operators for Strings
In general, you cannot perform mathematical operations on strings, even if the
strings look like numbers. The following expressions are illegal:

"Hello" - 1 "World" / 123 "Hello" * "World"

Rounding Errors | 19

The + operator works with strings, but it might not do what you expect. For strings,
the + operator performs concatenation, which means joining end-to-end. So "Hello,
" + "World!" yields the string "Hello, World!".

Or if you have a variable called name that has type String, the expression "Hello, "
+ name appends the value of name to the hello string, which creates a personalized
greeting.

Since addition is defined for both numbers and strings, Java performs automatic con‐
versions you may not expect:

System.out.println(1 + 2 + "Hello");
// the output is 3Hello

System.out.println("Hello" + 1 + 2);
// the output is Hello12

Java executes these operations from left to right. In the first line, 1 + 2 is 3, and 3 +
"Hello" is "3Hello". But in the second line, "Hello" + 1 is "Hello1", and "Hello1"
+ 2 is "Hello12".

When more than one operator appears in an expression, they are evaluated according
to order of operations. Generally speaking, Java evaluates operators from left to right
(as we saw in the previous section). But for numeric operators, Java follows mathe‐
matical conventions:

• Multiplication and division take “precedence” over addition and subtraction,
which means they happen first. So 1 + 2 * 3 yields 7, not 9, and 2 + 4 / 2
yields 4, not 3.

• If the operators have the same precedence, they are evaluated from left to right.
So in the expression minute * 100 / 60, the multiplication happens first; if the
value of minute is 59, we get 5900 / 60, which yields 98. If these same operations
had gone from right to left, the result would have been 59 * 1, which is incor‐
rect.

• Any time you want to override the order of operations (or you are not sure what
it is) you can use parentheses. Expressions in parentheses are evaluated first, so
(1 + 2) * 3 is 9. You can also use parentheses to make an expression easier to
read, as in (minute * 100) / 60, even though it doesn’t change the result.

Don’t work too hard to remember the order of operations, especially for other opera‐
tors. If it’s not obvious by looking at the expression, use parentheses to make it clear.

20 | Chapter 2: Variables and Operators

Composition
So far we have looked at the elements of a programming language—variables, expres‐
sions, and statements—in isolation, without talking about how to put them together.

One of the most useful features of programming languages is their ability to take
small building blocks and compose them. For example, we know how to multiply
numbers and we know how to display values. We can combine these operations into a
single statement:

System.out.println(17 * 3);

Any arithmetic expression can be used inside a print statement. We’ve already seen
one example:

System.out.println(hour * 60 + minute);

You can also put arbitrary expressions on the right side of an assignment:

int percentage;
percentage = (minute * 100) / 60;

The left side of an assignment must be a variable name, not an expression. That’s
because the left side indicates where the result will be stored, and expressions do not
represent storage locations.

hour = minute + 1; // correct
minute + 1 = hour; // compiler error

The ability to compose operations may not seem impressive now, but we will see
examples later on that allow us to write complex computations neatly and concisely.
But don’t get too carried away. Large, complex expressions can be hard to read and
debug.

Types of Errors
Three kinds of errors can occur in a program: compile-time errors, run-time errors,
and logic errors. It is useful to distinguish among them in order to track them down
more quickly.

Compile-time errors occur when you violate the syntax rules of the Java language.
For example, parentheses and braces have to come in matching pairs. So (1 + 2) is
legal, but 8) is not. In the latter case, the program cannot be compiled, and the com‐
piler displays an error.

Error messages from the compiler usually indicate where in the program the error
occurred, and sometimes they can tell you exactly what the error is. As an example,
let’s get back to the hello world program from “The Hello World Program” on page 4.

Composition | 21

public class Hello {

 public static void main(String[] args) {
 // generate some simple output
 System.out.println("Hello, World!");
 }
}

If you forget the semicolon at the end of the print statement, you might get an error
message like this:

File: Hello.java [line: 5]
Error: ';' expected

That’s pretty good: the location of the error is correct, and the error message tells you
what’s wrong.

But error messages are not always easy to understand. Sometimes the compiler
reports the place in the program where the error was detected, not where it actually
occurred. And sometimes the description of the problem is more confusing than
helpful.

For example, if you leave out the closing brace at the end of main (line 6), you might
get a message like this:

File: Hello.java [line: 7]
Error: reached end of file while parsing

There are two problems here. First, the error message is written from the compiler’s
point of view, not yours. Parsing is the process of reading a program before translat‐
ing; if the compiler gets to the end of the file while still parsing, that means something
was omitted. But the compiler doesn’t know what. It also doesn’t know where. The
compiler discovers the error at the end of the program (line 7), but the missing brace
should be on the previous line.

Error messages contain useful information, so you should make an effort to read and
understand them. But don’t take them too literally.

During the first few weeks of your programming career, you will probably spend a lot
of time tracking down compile-time errors. But as you gain experience, you will
make fewer mistakes and find them more quickly.

The second type of error is a run-time error, so-called because it does not appear
until after the program has started running. In Java, these errors occur while the
interpreter is executing byte code and something goes wrong. These errors are also
called “exceptions” because they usually indicate that something exceptional (and
bad) has happened.

22 | Chapter 2: Variables and Operators

Run-time errors are rare in the simple programs you will see in the first few chapters,
so it might be a while before you encounter one. When a run-time error occurs, the
interpreter displays an error message that explains what happened and where.

For example, if you accidentally divide by zero you will get a message like this:

Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Hello.main(Hello.java:5)

Some parts of this output are useful for debugging. The first line includes the name of
the exception, java.lang.ArithmeticException, and a message that indicates more
specifically what happened, / by zero. The next line shows the method where the
error occurred; Hello.main indicates the method main in the class Hello. It also
reports the file where the method is defined, Hello.java, and the line number where
the error occurred, 5.

Error messages sometimes contain additional information that won’t make sense yet.
So one of the challenges is to figure out where to find the useful parts without being
overwhelmed by extraneous information. Also, keep in mind that the line where the
program crashed may not be the line that needs to be corrected.

The third type of error is the logic error. If your program has a logic error, it will
compile and run without generating error messages, but it will not do the right thing.
Instead, it will do exactly what you told it to do. For example, here is a version of the
hello world program with a logic error:

public class Hello {

 public static void main(String[] args) {
 System.out.println("Hello, ");
 System.out.println("World!");
 }
}

This program compiles and runs just fine, but the output is:

Hello,
World!

Assuming that we wanted the output on one line, this is not correct. The problem is
that the first line uses println, when we probably meant to use print (see the “good‐
bye world” example of “Displaying Strings” on page 5).

Identifying logic errors can be hard because you have to work backwards, looking at
the output of the program, trying to figure out why it is doing the wrong thing, and
how to make it do the right thing. Usually the compiler and the interpreter can’t help
you, since they don’t know what the right thing is.

Now that you know about the three kinds of errors, you might want to read Appen‐
dix C, where we’ve collected some of our favorite debugging advice. It refers to lan‐

Types of Errors | 23

guage features we haven’t talked about yet, so you might want to re-read it from time
to time.

Vocabulary
variable:

A named storage location for values. All variables have a type, which is declared
when the variable is created.

value:
A number, string, or other data that can be stored in a variable. Every value
belongs to a type (for example, int or String).

declaration:
A statement that creates a new variable and specifies its type.

type:
Mathematically speaking, a set of values. The type of a variable determines which
values it can have.

keyword:
A reserved word used by the compiler to analyze programs. You cannot use key‐
words (like public, class, and void) as variable names.

assignment:
A statement that gives a value to a variable.

initialize:
To assign a variable for the first time.

state:
The variables in a program and their current values.

state diagram:
A graphical representation of the state of a program at a point in time.

operator:
A symbol that represents a computation like addition, multiplication, or string
concatenation.

operand:
One of the values on which an operator operates. Most operators in Java require
two operands.

expression:
A combination of variables, operators, and values that represents a single value.
Expressions also have types, as determined by their operators and operands.

24 | Chapter 2: Variables and Operators

floating-point:
A data type that represents numbers with an integer part and a fractional part. In
Java, the default floating-point type is double.

rounding error:
The difference between the number we want to represent and the nearest
floating-point number.

concatenate:
To join two values, often strings, end-to-end.

order of operations:
The rules that determine in what order operations are evaluated.

composition:
The ability to combine simple expressions and statements into compound
expressions and statements.

syntax:
The structure of a program; the arrangement of the words and symbols it con‐
tains.

compile-time error:
An error in the source code that makes it impossible to compile. Also called a
“syntax error”.

parse:
To analyze the structure of a program; what the compiler does first.

run-time error:
An error in a program that makes it impossible to run to completion. Also called
an “exception”.

logic error:
An error in a program that makes it do something other than what the program‐
mer intended.

Exercises
The code for this chapter is in the ch02 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “DrJava Interactions” on page 202, now might be a good
time. It describes the DrJava Interactions Pane, which is a useful way to develop and
test short fragments of code without writing a complete class definition.

Exercises | 25

Exercise 2-1.

If you are using this book in a class, you might enjoy this exercise. Find a partner and
play “Stump the Chump”:

Start with a program that compiles and runs correctly. One player looks away while
the other player adds an error to the program. Then the first player tries to find and
fix the error. You get two points if you find the error without compiling the program,
one point if you find it using the compiler, and your opponent gets a point if you
don’t find it.

Exercise 2-2.

The point of this exercise is (1) to use string concatenation to display values with dif‐
ferent types (int and String), and (2) to practice developing programs gradually by
adding a few statements at a time.

1. Create a new program named Date.java. Copy or type in something like the
hello world program and make sure you can compile and run it.

2. Following the example in “Printing Variables” on page 16, write a program that
creates variables named day, date, month, and year. The variable day will contain
the day of the week (like Friday), and date will contain the day of the month (like
the 13th). What type is each variable? Assign values to those variables that repre‐
sent today’s date.

3. Display (print out) the value of each variable on a line by itself. This is an inter‐
mediate step that is useful for checking that everything is working so far. Compile
and run your program before moving on.

4. Modify the program so that it displays the date in standard American format, for
example: Thursday, July 16, 2015.

5. Modify the program so it also displays the date in European format. The final
output should be:
American format:
Thursday, July 16, 2015
European format:
Thursday 16 July 2015

26 | Chapter 2: Variables and Operators

Exercise 2-3.

The point of this exercise is to (1) use some of the arithmetic operators, and (2) start
thinking about compound entities (like time of day) that are represented with multi‐
ple values.

1. Create a new program called Time.java. From now on, we won’t remind you to
start with a small, working program, but you should.

2. Following the example program in “Printing Variables” on page 16, create vari‐
ables named hour, minute, and second. Assign values that are roughly the cur‐
rent time. Use a 24-hour clock so that at 2pm the value of hour is 14.

3. Make the program calculate and display the number of seconds since midnight.
4. Calculate and display the number of seconds remaining in the day.
5. Calculate and display the percentage of the day that has passed. You might run

into problems when computing percentages with integers, so consider using
floating-point.

6. Change the values of hour, minute, and second to reflect the current time. Then
write code to compute the elapsed time since you started working on this exer‐
cise.

Hint: You might want to use additional variables to hold values during the computa‐
tion. Variables that are used in a computation but never displayed are sometimes
called “intermediate” or “temporary” variables.

Exercises | 27

CHAPTER 3

Input and Output

The programs we’ve looked at so far simply display messages, which doesn’t involve a
lot of real computation. This chapter will show you how to read input from the key‐
board, use that input to calculate a result, and then format that result for output.

The System Class
We have been using System.out.println for a while, but you might not have
thought about what it means. System is a class that provides methods related to the
“system” or environment where programs run. It also provides System.out, which is
a special value that provides methods for displaying output, including println.

In fact, we can use System.out.println to display the value of System.out:

System.out.println(System.out);

The result is:

java.io.PrintStream@685d72cd

This output indicates that System.out is a PrintStream, which is defined in a pack‐
age called java.io. A package is a collection of related classes; java.io contains
classes for “I/O” which stands for input and output.

The numbers and letters after the @ sign are the address of System.out, represented
as a hexadecimal (base 16) number. The address of a value is its location in the com‐
puter’s memory, which might be different on different computers. In this example the
address is 685d72cd, but if you run the same code you might get something different.

As shown in Figure 3-1, System is defined in a file called System.java, and Print
Stream is defined in PrintStream.java. These files are part of the Java library, which
is an extensive collection of classes you can use in your programs.

29

Figure 3-1. System.out.println refers to the out variable of the System class, which is
a PrintStream that provides a method called println.

The Scanner Class

The System class also provides the special value System.in, which is an InputStream
that provides methods for reading input from the keyboard. These methods are not
easy to use; fortunately, Java provides other classes that make it easier to handle com‐
mon input tasks.

For example, Scanner is a class that provides methods for inputting words, numbers,
and other data. Scanner is provided by java.util, which is a package that contains
classes so useful they are called “utility classes”. Before you can use Scanner, you have
to import it like this:

import java.util.Scanner;

This import statement tells the compiler that when you say Scanner, you mean the
one defined in java.util. It’s necessary because there might be another class named
Scanner in another package. Using an import statement makes your code unambigu‐
ous.

Import statements can’t be inside a class definition. By convention, they are usually at
the beginning of the file.

Next you have to create a Scanner:

Scanner in = new Scanner(System.in);

30 | Chapter 3: Input and Output

This line declares a Scanner variable named in and creates a new Scanner that takes
input from System.in.

Scanner provides a method called nextLine that reads a line of input from the key‐
board and returns a String. The following example reads two lines and repeats them
back to the user:

import java.util.Scanner;

public class Echo {

 public static void main(String[] args) {
 String line;
 Scanner in = new Scanner(System.in);

 System.out.print("Type something: ");
 line = in.nextLine();
 System.out.println("You said: " + line);

 System.out.print("Type something else: ");
 line = in.nextLine();
 System.out.println("You also said: " + line);
 }
}

If you omit the import statement and later refer to Scanner, you will get a compiler
error like “cannot find symbol”. That means the compiler doesn’t know what you
mean by Scanner.

You might wonder why we can use the System class without importing it. System
belongs to the java.lang package, which is imported automatically. According to the
documentation, java.lang “provides classes that are fundamental to the design of the
Java programming language.” The String class is also part of the java.lang package.

Program Structure
At this point, we have seen all of the elements that make up Java programs. Figure 3-2
shows these organizational units.

To review, a package is a collection of classes, which define methods. Methods con‐
tain statements, some of which contain expressions. Expressions are made up of
tokens, which are the basic elements of a program, including numbers, variable
names, operators, keywords, and punctuation like parentheses, braces and semico‐
lons.

Program Structure | 31

Figure 3-2. Elements of the Java language, from largest to smallest.

The standard edition of Java comes with several thousand classes you can import,
which can be both exciting and intimidating. You can browse this library at http://
docs.oracle.com/javase/8/docs/api/. Most of the Java library itself is written in Java.

Note there is a major difference between the Java language, which defines the syntax
and meaning of the elements in Figure 3-2, and the Java library, which provides the
built-in classes.

Inches to Centimeters
Now let’s see an example that’s a little more useful. Although most of the world has
adopted the metric system for weights and measures, some countries are stuck with
English units. For example, when talking with friends in Europe about the weather,
people in the United States might have to convert from Celsius to Fahrenheit and
back. Or they might want to convert height in inches to centimeters.

We can write a program to help. We’ll use a Scanner to input a measurement in
inches, convert to centimeters, and then display the results. The following lines
declare the variables and create the Scanner:

int inch;
double cm;
Scanner in = new Scanner(System.in);

The next step is to prompt the user for the input. We’ll use print instead of println
so they can enter the input on the same line as the prompt. And we’ll use the Scanner
method nextInt, which reads input from the keyboard and converts it to an integer:

System.out.print("How many inches? ");
inch = in.nextInt();

Next we multiply the number of inches by 2.54, since that’s how many centimeters
there are per inch, and display the results:

32 | Chapter 3: Input and Output

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/

cm = inch * 2.54;
System.out.print(inch + " in = ");
System.out.println(cm + " cm");

This code works correctly, but it has a minor problem. If another programmer reads
this code, they might wonder where 2.54 comes from. For the benefit of others (and
yourself in the future), it would be better to assign this value to a variable with a
meaningful name. We’ll demonstrate in the next section.

Literals and Constants
A value that appears in a program, like 2.54 (or " in ="), is called a literal. In gen‐
eral, there’s nothing wrong with literals. But when numbers like 2.54 appear in an
expression with no explanation, they make code hard to read. And if the same value
appears many times, and might have to change in the future, it makes code hard to
maintain.

Values like that are sometimes called magic numbers (with the implication that being
“magic” is not a good thing). A good practice is to assign magic numbers to variables
with meaningful names, like this:

double cmPerInch = 2.54;
cm = inch * cmPerInch;

This version is easier to read and less error-prone, but it still has a problem. Variables
can vary, but the number of centimeters in an inch does not. Once we assign a value
to cmPerInch, it should never change. Java provides a language feature that enforces
that rule, the keyword final.

final double CM_PER_INCH = 2.54;

Declaring that a variable is final means that it cannot be reassigned once it has been
initialized. If you try, the compiler reports an error. Variables declared as final are
called constants. By convention, names for constants are all uppercase, with the
underscore character (_) between words.

Formatting Output
When you output a double using print or println, it displays up to 16 decimal
places:

System.out.print(4.0 / 3.0);

The result is:

1.3333333333333333

Literals and Constants | 33

That might be more than you want. System.out provides another method, called
printf, that gives you more control of the format. The “f ” in printf stands for “for‐
matted”. Here’s an example:

System.out.printf("Four thirds = %.3f", 4.0 / 3.0);

The first value in the parentheses is a format string that specifies how the output
should be displayed. This format string contains ordinary text followed by a format
specifier, which is a special sequence that starts with a percent sign. The format speci‐
fier %.3f indicates that the following value should be displayed as floating-point,
rounded to three decimal places. The result is:

Four thirds = 1.333

The format string can contain any number of format specifiers; here’s an example
with two:

int inch = 100;
double cm = inch * CM_PER_INCH;
System.out.printf("%d in = %f cm\n", inch, cm);

The result is:

100 in = 254.000000 cm

Like print, printf does not append a newline. So format strings often end with a
newline character.

The format specifier %d displays integer values (“d” stands for “decimal”). The values
are matched up with the format specifiers in order, so inch is displayed using %d, and
cm is displayed using %f.

Learning about format strings is like learning a sub-language within Java. There are
many options, and the details can be overwhelming. Table 3-1 lists a few common
uses, to give you an idea of how things work. For more details, refer to the documen‐
tation of java.util.Formatter. The easiest way to find documentation for Java
classes is to do a web search for “Java” and the name of the class.

Table 3-1. Example format specifiers

%d decimal integer 12345

%08d padded with zeros, at least 8 digits wide 00012345

%f floating-point 6.789000

%.2f rounded to 2 decimal places 6.79

34 | Chapter 3: Input and Output

www.allitebooks.com

http://www.allitebooks.org

Centimeters to Inches
Now suppose we have a measurement in centimeters, and we want to round it off to
the nearest inch. It is tempting to write:

inch = cm / CM_PER_INCH; // syntax error

But the result is an error—you get something like, “Bad types in assignment: from
double to int.” The problem is that the value on the right is floating-point, and the
variable on the left is an integer.

The simplest way to convert a floating-point value to an integer is to use a type cast,
so called because it molds or “casts” a value from one type to another. The syntax for
type casting is to put the name of the type in parentheses and use it as an operator.

double pi = 3.14159;
int x = (int) pi;

The (int) operator has the effect of converting what follows into an integer. In this
example, x gets the value 3. Like integer division, converting to an integer always
rounds toward zero, even if the fraction part is 0.999999 (or -0.999999). In other
words, it simply throws away the fractional part.

Type casting takes precedence over arithmetic operations. In this example, the value
of pi gets converted to an integer before the multiplication. So the result is 60.0, not
62.0.

double pi = 3.14159;
double x = (int) pi * 20.0;

Keeping that in mind, here’s how we can convert a measurement in centimeters to
inches:

inch = (int) (cm / CM_PER_INCH);
System.out.printf("%f cm = %d in\n", cent, inch);

The parentheses after the cast operator require the division to happen before the type
cast. And the result is rounded toward zero; we will see in the next chapter how to
round floating-point numbers to the closest integer.

Modulus Operator
Let’s take the example one step further: suppose you have a measurement in inches
and you want to convert to feet and inches. The goal is divide by 12 (the number of
inches in a foot) and keep the remainder.

We have already seen the division operator (/), which computes the quotient of two
numbers. If the numbers are integers, it performs integer division. Java also provides
the modulus operator (%), which divides two numbers and computes the remainder.

Centimeters to Inches | 35

Using division and modulus, we can convert to feet and inches like this:

quotient = 76 / 12; // division
remainder = 76 % 12; // modulus

The first line yields 6. The second line, which is pronounced “76 mod 12”, yields 4. So
76 inches is 6 feet, 4 inches.

The modulus operator looks like a percent sign, but you might find it helpful to think
of it as a division sign (÷) rotated to the left.

The modulus operator turns out to be surprisingly useful. For example, you can
check whether one number is divisible by another: if x \% y is zero, then x is divisible
by y. You can use modulus to “extract” digits from a number: x \% 10 yields the
rightmost digit of x, and x \% 100 yields the last two digits. Also, many encryption
algorithms use the modulus operator extensively.

Putting It All Together
At this point, you have seen enough Java to write useful programs that solve everyday
problems. You can (1) import Java library classes, (2) create a Scanner, (3) get input
from the keyboard, (4) format output with printf, and (5) divide and mod integers.
Now we will put everything together in a complete program:

import java.util.Scanner;

/**
 * Converts centimeters to feet and inches.
 */
public class Convert {

 public static void main(String[] args) {
 double cm;
 int feet, inches, remainder;
 final double CM_PER_INCH = 2.54;
 final int IN_PER_FOOT = 12;
 Scanner in = new Scanner(System.in);

 // prompt the user and get the value
 System.out.print("Exactly how many cm? ");
 cm = in.nextDouble();

 // convert and output the result
 inches = (int) (cm / CM_PER_INCH);
 feet = inches / IN_PER_FOOT;
 remainder = inches % IN_PER_FOOT;
 System.out.printf("%.2f cm = %d ft, %d in\n",
 cm, feet, remainder);
 }
}

36 | Chapter 3: Input and Output

Although not required, all variables and constants are declared at the top of main.
This practice makes it easier to find their types later on, and it helps the reader know
what data is involved in the algorithm.

For readability, each major step of the algorithm is separated by a blank line and
begins with a comment. It also includes a documentation comment (/**), which we’ll
learn more about in the next chapter.

Many algorithms, including the Convert program, perform division and modulus
together. In both steps, you divide by the same number (IN_PER_FOOT).

When statements get long (generally wider than 80 characters), a common style con‐
vention is to break them across multiple lines. The reader should never have to scroll
horizontally.

The Scanner Bug
Now that you’ve had some experience with Scanner, there is an unexpected behavior
we want to warn you about. The following code fragment asks users for their name
and age:

System.out.print("What is your name? ");
name = in.nextLine();
System.out.print("What is your age? ");
age = in.nextInt();
System.out.printf("Hello %s, age %d\n", name, age);

The output might look something like this:

Hello Grace Hopper, age 45

When you read a String followed by an int, everything works just fine. But when
you read an int followed by a String, something strange happens.

System.out.print("What is your age? ");
age = in.nextInt();
System.out.print("What is your name? ");
name = in.nextLine();
System.out.printf("Hello %s, age %d\n", name, age);

Try running this example code. It doesn’t let you input your name, and it immediately
displays the output:

What is your name? Hello , age 45

To understand what is happening, you have to understand that the Scanner doesn’t
see input as multiple lines, like we do. Instead, it gets a “stream of characters” as
shown in Figure 3-3.

The Scanner Bug | 37

Figure 3-3. A stream of characters as seen by a Scanner.

The arrow indicates the next character to be read by Scanner. When you call
nextInt, it reads characters until it gets to a non-digit. Figure 3-4 shows the state of
the stream after nextInt is invoked.

Figure 3-4. A stream of characters after nextInt is invoked.

At this point, nextInt returns 45. The program then displays the prompt "What is
your name? " and calls nextLine, which reads characters until it gets to a newline.
But since the next character is already a newline, nextLine returns the empty string
"".

To solve this problem, you need an extra nextLine after nextInt.

System.out.print("What is your age? ");
age = in.nextInt();
in.nextLine(); // read the newline
System.out.print("What is your name? ");
name = in.nextLine();
System.out.printf("Hello %s, age %d\n", name, age);

This technique is common when reading int or double values that appear on their
own line. First you read the number, and then you read the rest of the line, which is
just a newline character.

Vocabulary
package:

A group of classes that are related to each other.

address:
The location of a value in computer memory, often represented as a hexadecimal
integer.

library:
A collection of packages and classes that are available for use in other programs.

38 | Chapter 3: Input and Output

import statement:
A statement that allows programs to use classes defined in other packages.

token:
A basic element of a program, such as a word, space, symbol, or number.

literal:
A value that appears in source code. For example, "Hello" is a string literal and
74 is an integer literal.

magic number:
A number that appears without explanation as part of an expression. It should
generally be replaced with a constant.

constant:
A variable, declared final, whose value cannot be changed.

format string:
A string passed to printf to specify the format of the output.

format specifier:
A special code that begins with a percent sign and specifies the data type and for‐
mat of the corresponding value.

type cast:
An operation that explicitly converts one data type into another. In Java it
appears as a type name in parentheses, like (int).

modulus:
An operator that yields the remainder when one integer is divided by another. In
Java, it is denoted with a percent sign; for example, 5 \% 2 is 1.

Exercises
The code for this chapter is in the ch03 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “Command-Line Interface” on page 203, now might be a
good time. It describes the command-line interface, which is a powerful and efficient
way to interact with your computer.

Exercises | 39

Exercise 3-1.

When you use printf, the Java compiler does not check your format string. See what
happens if you try to display a value with type int using %f. And what happens if you
display a double using %d? What if you use two format specifiers, but then only pro‐
vide one value?

Exercise 3-2.

Write a program that converts a temperature from Celsius to Fahrenheit. It should (1)
prompt the user for input, (2) read a double value from the keyboard, (3) calculate
the result, and (4) format the output to one decimal place. For example, it should dis‐
play "24.0 C = 75.2 F".

Here is the formula. Be careful not to use integer division!

F = C × 9
5 + 32

Exercise 3-3.

Write a program that converts a total number of seconds to hours, minutes, and sec‐
onds. It should (1) prompt the user for input, (2) read an integer from the keyboard,
(3) calculate the result, and (4) use printf to display the output. For example, "5000
seconds = 1 hours, 23 minutes, and 20 seconds".

Hint: Use the modulus operator.

Exercise 3-4.

The goal of this exercise is to program a “Guess My Number” game. When it’s fin‐
ished, it will work like this:

I'm thinking of a number between 1 and 100
(including both). Can you guess what it is?
Type a number: 45
Your guess is: 45
The number I was thinking of is: 14
You were off by: 31

To choose a random number, you can use the Random class in java.util. Here’s how
it works:

40 | Chapter 3: Input and Output

import java.util.Random;

public class GuessStarter {

 public static void main(String[] args) {
 // pick a random number
 Random random = new Random();
 int number = random.nextInt(100) + 1;
 System.out.println(number);
 }
}

Like the Scanner class we saw in this chapter, Random has to be imported before we
can use it. And as we saw with Scanner, we have to use the new operator to create a
Random (number generator).

Then we can use the method nextInt to generate a random number. In this example,
the result of nextInt(100) will be between 0 and 99, including both. Adding 1 yields
a number between 1 and 100, including both.

1. The definition of GuessStarter is in a file called GuessStarter.java, in the
directory called ch03, in the repository for this book.

2. Compile and run this program.
3. Modify the program to prompt the user, then use a Scanner to read a line of user

input. Compile and test the program.
4. Read the user input as an integer and display the result. Again, compile and test.
5. Compute and display the difference between the user’s guess and the number that

was generated.

Exercises | 41

CHAPTER 4

Void Methods

So far we’ve only written short programs that have a single class and a single method
(main). In this chapter, we’ll show you how to organize longer programs into multiple
methods and classes. We’ll also present the Math class, which provides methods for
common mathematical operations.

Math Methods
In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin π/2 and log 1/x . First, you evaluate the
expression in parentheses, which is called the argument of the function. Then you
can evaluate the function itself, maybe by punching it into a calculator.

This process can be applied repeatedly to evaluate more complex expressions like
log 1/ sin π/2 . First we evaluate the argument of the innermost function, then
evaluate the function itself, and so on.

The Java library includes a Math class that provides common mathematical opera‐
tions. Math is in the java.lang package, so you don’t have to import it. You can use,
or invoke, Math methods like this:

double root = Math.sqrt(17.0);
double angle = 1.5;
double height = Math.sin(angle);

The first line sets root to the square root of 17. The third line finds the sine of 1.5
(the value of angle).

Arguments of the trigonometric functions—sin, cos, and tan—should be in radians.
To convert from degrees to radians, you can divide by 180 and multiply by π. Con‐

43

veniently, the Math class provides a constant double named PI that contains an
approximation of π:

double degrees = 90;
double angle = degrees / 180.0 * Math.PI;

Notice that PI is in capital letters. Java does not recognize Pi, pi, or pie. Also, PI is
the name of a variable, not a method, so it doesn’t have parentheses. The same is true
for the constant Math.E, which approximates Euler’s number.

Converting to and from radians is a common operation, so the Math class provides
methods that do it for you.

double radians = Math.toRadians(180.0);
double degrees = Math.toDegrees(Math.PI);

Another useful method is round, which rounds a floating-point value to the nearest
integer and returns a long. A long is like an int, but bigger. More specifically, an int
uses 32 bits; the largest value it can hold is 231 − 1, which is about 2 billion. A long
uses 64 bits, so the largest value is 263 − 1, which is about 9 quintillion.

long x = Math.round(Math.PI * 20.0);

The result is 63 (rounded up from 62.8319).

Take a minute to read the documentation for these and other methods in the Math
class. The easiest way to find documentation for Java classes is to do a web search for
“Java” and the name of the class.

Composition Revisited
Just as with mathematical functions, Java methods can be composed. That means you
can use one expression as part of another. For example, you can use any expression as
an argument to a method:

double x = Math.cos(angle + Math.PI / 2.0);

This statement divides Math.PI by two, adds the result to angle, and computes the
cosine of the sum. You can also take the result of one method and pass it as an argu‐
ment to another:

double x = Math.exp(Math.log(10.0));

In Java, the log method always uses base e. So this statement finds the log base e of
10, and then raises e to that power. The result gets assigned to x.

Some math methods take more than one argument. For example, Math.pow takes two
arguments and raises the first to the power of the second. This line of code assigns the
value 1024.0 to the variable x:

44 | Chapter 4: Void Methods

double x = Math.pow(2.0, 10.0);

When using Math methods, it is a common error to forget the Math. For example, if
you try to invoke pow(2.0, 10.0), you get an error message like:

File: Test.java [line: 5]
Error: cannot find symbol
 symbol: method pow(double,double)
 location: class Test

The message “cannot find symbol” is confusing, but the last line provides a useful
hint. The compiler is looking for pow in the same class where it is used, which is Test.
If you don’t specify a class name, the compiler looks in the current class.

Adding New Methods
You have probably guessed by now that you can define more than one method in a
class. Here’s an example:

public class NewLine {

 public static void newLine() {
 System.out.println();
 }

 public static void main(String[] args) {
 System.out.println("First line.");
 newLine();
 System.out.println("Second line.");
 }
}

The name of the class is NewLine. By convention, class names begin with a capital let‐
ter. NewLine contains two methods, newLine and main. Remember that Java is case-
sensitive, so NewLine and newLine are not the same.

Method names should begin with a lowercase letter and use “camel case”, which is a
cute name for jammingWordsTogetherLikeThis. You can use any name you want for
methods, except main or any of the Java keywords.

newLine and main are public, which means they can be invoked from other classes.
They are both static, but we can’t explain what that means yet. And they are both
void, which means that they don’t yield a result (unlike the Math methods, for exam‐
ple).

The parentheses after the method name contain a list of variables, called parameters,
where the method stores its arguments. main has a single parameter, called args,
which has type String[]. That means that whoever invokes main must provide an
array of strings (we’ll get to arrays in a later chapter).

Adding New Methods | 45

Since newLine has no parameters, it requires no arguments, as shown when it is
invoked in main. And because newLine is in the same class as main, we don’t have to
specify the class name.

The output of this program is:

First line.

Second line.

Notice the extra space between the lines. If we wanted more space between them, we
could invoke the same method repeatedly:

public static void main(String[] args) {
 System.out.println("First line.");
 newLine();
 newLine();
 newLine();
 System.out.println("Second line.");
}

Or we could write a new method that displays three blank lines:

public static void threeLine() {
 newLine();
 newLine();
 newLine();
}

public static void main(String[] args) {
 System.out.println("First line.");
 threeLine();
 System.out.println("Second line.");
}

You can invoke the same method more than once, and you can have one method
invoke another. In this example, main invokes threeLine, and threeLine invokes new
Line.

Beginners often wonder why it is worth the trouble to create new methods. There are
many reasons, but this example demonstrates a few of them:

• Creating a new method gives you an opportunity to give a name to a group of
statements, which makes code easier to read and understand.

• Introducing new methods can make a program smaller by eliminating repetitive
code. For example, to display nine consecutive new lines, you could invoke three
Line three times.

46 | Chapter 4: Void Methods

• A common problem solving technique is to break tasks down into sub-problems.
Methods allow you to focus on each sub-problem in isolation, and then compose
them into a complete solution.

Flow of Execution
Pulling together the code from the previous section, the complete program looks like
this:

public class NewLine {

 public static void newLine() {
 System.out.println();
 }

 public static void threeLine() {
 newLine();
 newLine();
 newLine();
 }

 public static void main(String[] args) {
 System.out.println("First line.");
 threeLine();
 System.out.println("Second line.");
 }
}

When you look at a class definition that contains several methods, it is tempting to
read it from top to bottom. But that is likely to be confusing, because that is not the
flow of execution of the program.

Execution always begins at the first statement of main, regardless of where it is in the
source file. Statements are executed one at a time, in order, until you reach a method
invocation, which you can think of as a detour. Instead of going to the next statement,
you jump to the first line of the invoked method, execute all the statements there, and
then come back and pick up exactly where you left off.

That sounds simple enough, but remember that one method can invoke another one.
In the middle of main, we go off to execute the statements in threeLine. While we are
executing threeLine, we go off to execute newLine. Then newLine invokes println,
which causes yet another detour.

Fortunately, Java is good at keeping track of which methods are running. So when
println completes, it picks up where it left off in newLine; when newLine completes,
it goes back to threeLine, and when threeLine completes, it gets back to main.

Flow of Execution | 47

In summary, when you read a program, don’t read from top to bottom. Instead, fol‐
low the flow of execution.

Parameters and Arguments
Some of the methods we have used require arguments, which are the values you pro‐
vide when you invoke the method. For example, to find the sine of a number, you
have to provide the number, so sin takes a double as an argument. To display a mes‐
sage, you have to provide the message, so println takes a String.

When you use a method, you provide the arguments. When you write a method, you
name the parameters. The parameter list indicates what arguments are required. The
following class shows an example:

public class PrintTwice {

 public static void printTwice(String s) {
 System.out.println(s);
 System.out.println(s);
 }

 public static void main(String[] args) {
 printTwice("Don't make me say this twice!");
 }
}

printTwice has a parameter named s with type String. When we invoke
printTwice, we have to provide an argument with type String.

Before the method executes, the argument gets assigned to the parameter. In this
example, the argument "Don't make me say this twice!" gets assigned to the
parameter s.

This process is called parameter passing because the value gets passed from outside
the method to the inside. An argument can be any kind of expression, so if you have a
String variable, you can use it as an argument:

String argument = "Never say never.";
printTwice(argument);

The value you provide as an argument must have the same type as the parameter. For
example, if you try:

printTwice(17); // syntax error

You will get an error message like this:

48 | Chapter 4: Void Methods

File: Test.java [line: 10]
Error: method printTwice in class Test cannot be applied
 to given types;
 required: java.lang.String
 found: int
 reason: actual argument int cannot be converted to
 java.lang.String by method invocation conversion

Sometimes Java can convert an argument from one type to another automatically. For
example, Math.sqrt requires a double, but if you invoke Math.sqrt(25), the integer
value 25 is automatically converted to the floating-point value 25.0. But in the case of
printTwice, Java can’t (or won’t) convert the integer 17 to a String.

Parameters and other variables only exist inside their own methods. Inside main,
there is no such thing as s. If you try to use it there, you’ll get a compiler error. Simi‐
larly, inside printTwice there is no such thing as argument. That variable belongs to
main.

Because variables only exist inside the methods where they are defined, they are often
called local variables.

Multiple Parameters
Here is an example of a method that takes two parameters:

public static void printTime(int hour, int minute) {
 System.out.print(hour);
 System.out.print(":");
 System.out.println(minute);
}

In the parameter list, it may be tempting to write:

public static void printTime(int hour, minute) {
 ...

But that format (without the second int) is only legal for variable declarations. In
parameter lists, you need to specify the type of each variable separately.

To invoke this method, we have to provide two integers as arguments:

int hour = 11;
int minute = 59;
printTime(hour, minute);

A common error is to declare the types of the arguments, like this:

int hour = 11;
int minute = 59;
printTime(int hour, int minute); // syntax error

Multiple Parameters | 49

That’s a syntax error; the compiler sees int hour and int minute as variable declara‐
tions, not expressions. You wouldn’t declare the types of the arguments if they were
simply integers:

printTime(int 11, int 59); // syntax error

Stack Diagrams
Pulling together the code fragments from the previous section, here is a complete
class definition:

public class PrintTime {

 public static void printTime(int hour, int minute) {
 System.out.print(hour);
 System.out.print(":");
 System.out.println(minute);
 }

 public static void main(String[] args) {
 int hour = 11;
 int minute = 59;
 printTime(hour, minute);
 }
}

printTime has two parameters, named hour and minute. And main has two variables,
also named hour and minute. Although they have the same names, these variables are
not the same. hour in printTime and hour in main refer to different storage locations,
and they can have different values.

For example, you could invoke printTime like this:

int hour = 11;
int minute = 59;
printTime(hour + 1, 0);

Before the method is invoked, Java evaluates the arguments; in this example, the
results are 12 and 0. Then it assigns those values to the parameters. Inside printTime,
the value of hour is 12, not 11, and the value of minute is 0, not 59. Furthermore, if
printTime modifies one of its parameters, that change has no effect on the variables
in main.

One way to keep track of everything is to draw a stack diagram, which is a state dia‐
gram (see “State Diagrams” on page 15) that shows method invocations. For each
method there is a box called a frame that contains the method’s parameters and vari‐
ables. The name of the method appears outside the frame; the variables and parame‐
ters appear inside.

50 | Chapter 4: Void Methods

As with state diagrams, stack diagrams show variables and methods at a particular
point in time. Figure 4-1 is a stack diagram at the beginning of the printTime
method.

Figure 4-1. Stack diagram for PrintTime.

Reading Documentation
One of the nice things about Java is that it comes with an extensive library of classes
and methods. But before you use them, you might have to read the documentation.
And sometimes that’s not easy.

As an example, let’s look at the documentation for Scanner, which we used in “The
Scanner Class” on page 30. You can find it by doing a web search for “Java Scanner”.
Figure 4-2 shows a screenshot of the page.

Figure 4-2. Screenshot of the documentation for Scanner.

Reading Documentation | 51

Documentation for other classes uses a similar format. The first line is the package
that contains the class, such as java.util. The second line is the name of the class.
The “Implemented Interfaces” section lists some of the things a Scanner can do; we
won’t say more about that for now.

The next section of the documentation is a narrative that explains the purpose of the
class and includes examples of how to use it. This text can be difficult to read because
it uses terms we have not learned yet. But the examples are often very useful. A good
way to get started with a new class is to paste the examples into a test file and see if
you can compile and run them.

One of the examples shows how you can use a Scanner to read input from a String
instead of System.in:

String input = "1 fish 2 fish red fish blue fish";
Scanner s = new Scanner(input);

After the narrative, code examples, and some other details, you will find the following
tables:

Constructor summary:
Ways of creating, or “constructing”, a Scanner.

Method summary:
The list of methods that Scanner provides.

Constructor detail:
More information about how to create a Scanner.

Method detail:
More information about each method.

As an example, here is the summary information for nextInt:

public int nextInt()
Scans the next token of the input as an int.

The first line is the method’s signature, which specifies the name of the method, its
parameters (none), and what type it returns (int). The next line is a short description
of what it does.

The “Method detail” explains more:
public int nextInt()
Scans the next token of the input as an int.

An invocation of this method of the form nextInt() behaves in
exactly the same way as the invocation nextInt(radix), where
radix is the default radix of this scanner.

Returns:
the int scanned from the input

52 | Chapter 4: Void Methods

Throws:
InputMismatchException - if the next token does not match
 the Integer regular expression, or is out of range
NoSuchElementException - if input is exhausted
IllegalStateException - if this scanner is closed

The “Returns” section describes the result when the method succeeds. In contrast, the
“Throws” section describes possible errors and their resulting exceptions. Exceptions
are said to be “thrown”, like a referee throwing a flag, or like a toddler throwing a fit.

It might take you some time to get comfortable reading documentation and learning
which parts to ignore. But it’s worth the effort. Knowing what’s available in the library
helps you avoid reinventing the wheel. And a little bit of documentation can save you
a lot of debugging.

Writing Documentation
As you benefit from reading good documentation, you should “pay it forward” by
writing good documentation. A nice feature of the Java language is the ability to
embed documentation in your source code. That way, you can write it as you go, and
as things change, it is easier to keep the documentation consistent with the code.

If you include documentation in your source code, you can extract it automatically,
and generate well-formatted HTML, using a tool called Javadoc. This tool is included
in standard Java development environments, and it is widely used. In fact, the online
documentation of the Java libraries is generated by Javadoc.

Javadoc scans your source files looking for specially-formatted documentation com‐
ments, also known as “Javadoc comments”. They begin with /** (two stars) and end
with */ (one star). Anything in between is considered part of the documentation.

Here’s a class definition with two Javadoc comments, one for the class and one for the
main method:

/**
 * Example program that demonstrates print vs println.
 */
public class Goodbye {

 /**
 * Prints a greeting.
 */
 public static void main(String[] args) {
 System.out.print("Goodbye, "); // note the space
 System.out.println("cruel world");
 }
}

Writing Documentation | 53

The class comment explains the purpose of the class. The method comment explains
what the method does.

Notice that this example also includes an inline comment, beginning with //. In gen‐
eral, inline comments are short phrases that help explain complex parts of a program.
They are intended for other programmers reading and maintaining the source code.

In contrast, Javadoc comments are longer, usually complete sentences. They explain
what each method does, but they omit details about how the method works. And they
are intended for people who will use the methods without looking at the source code.

Appropriate comments and documentation are essential for making source code
readable. And remember that the person most likely to read your code in the future,
and appreciate good documentation, is you.

Vocabulary
argument:

A value that you provide when you invoke a method. This value must have the
same type as the corresponding parameter.

invoke:
To cause a method to execute. Also known as “calling” a method.

parameter:
A piece of information that a method requires before it can run. Parameters are
variables: they contain values and have types.

flow of execution:
The order in which Java executes methods and statements. It may not necessarily
be from top to bottom, left to right.

parameter passing:
The process of assigning an argument value to a parameter variable.

local variable:
A variable declared inside a method. Local variables cannot be accessed from
outside their method.

stack diagram:
A graphical representation of the variables belonging to each method. The
method calls are “stacked” from top to bottom, in the flow of execution.

frame:
In a stack diagram, a representation of the variables and parameters for a
method, along with their current values.

54 | Chapter 4: Void Methods

signature:
The first line of a method that defines its name, return type, and parameters.

Javadoc:
A tool that reads Java source code and generates documentation in HTML for‐
mat.

documentation:
Comments that describe the technical operation of a class or method.

Exercises
The code for this chapter is in the ch04 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “Command-Line Testing” on page 204, now might be a
good time. It describes an efficient way to test programs that take input from the user
and display specific output.

Exercise 4-1.

The point of this exercise is to practice reading code and to make sure that you
understand the flow of execution through a program with multiple methods.

1. What is the output of the following program? Be precise about where there are
spaces and where there are newlines.
Hint: Start by describing in words what ping and baffle do when they are
invoked.

2. Draw a stack diagram that shows the state of the program the first time ping is
invoked.

3. What happens if you invoke baffle(); at the end of the ping method? (We will
see why in the next chapter.)

public static void zoop() {
 baffle();
 System.out.print("You wugga ");
 baffle();
}

public static void main(String[] args) {
 System.out.print("No, I ");
 zoop();
 System.out.print("I ");
 baffle();
}

Exercises | 55

public static void baffle() {
 System.out.print("wug");
 ping();
}

public static void ping() {
 System.out.println(".");
}

Exercise 4-2.

The point of this exercise is to make sure you understand how to write and invoke
methods that take parameters.

1. Write the first line of a method named zool that takes three parameters: an int
and two Strings.

2. Write a line of code that calls zool, passing as arguments the value 11, the name
of your first pet, and the name of the street you grew up on.

Exercise 4-3.

The purpose of this exercise is to take code from a previous exercise and encapsulate
it in a method that takes parameters. You should start with a working solution to
Exercise 2-2.

1. Write a method called printAmerican that takes the day, date, month and year as
parameters and that displays them in American format.

2. Test your method by invoking it from main and passing appropriate arguments.
The output should look something like this (except that the date might be differ‐
ent):
Saturday, July 22, 2015

3. Once you have debugged printAmerican, write another method called
printEuropean that displays the date in European format.

56 | Chapter 4: Void Methods

CHAPTER 5

Conditionals and Logic

The programs we’ve seen in previous chapters do pretty much the same thing every
time, regardless of the input. For more complex computations, programs usually
react to the inputs, check for certain conditions, and generate appropriate results.
This chapter presents the features you need for programs to make decisions: a new
data type called boolean, operators for expressing logic, and if statements.

Relational Operators
Relational operators are used to check conditions like whether two values are equal,
or whether one is greater than the other. The following expressions show how they
are used:

x == y // x is equal to y
x != y // x is not equal to y
x > y // x is greater than y
x < y // x is less than y
x >= y // x is greater than or equal to y
x <= y // x is less than or equal to y

The result of a relational operator is one of two special values, true or false. These
values belong to the data type boolean; in fact, they are the only boolean values.

You are probably familiar with these operations, but notice that the Java operators are
different from the mathematical symbols like =, ≠, and ≤. A common error is to use a
single = instead of a double ==. Remember that = is the assignment operator, and == is
a comparison operator. Also, there is no such thing as the =< or => operators.

The two sides of a relational operator have to be compatible. For example, the expres‐
sion 5 < "6" is invalid because 5 is an int and "6" is a String. When comparing
values of different numeric types, Java applies the same conversion rules we saw pre‐

57

viously with the assignment operator. For example, when evaluating the expression 5
< 6.0, Java automatically converts the 5 to 5.0.

Most relational operators don’t work with strings. But confusingly, == and != do work
with strings—they just don’t do what you expect. We’ll explain what they do later; in
the meantime, don’t use them with strings. Instead, you should use the equals
method:

String fruit1 = "Apple";
String fruit2 = "Orange";
System.out.println(fruit1.equals(fruit2));

The result of fruit1.equals(fruit2) is the boolean value false.

Logical Operators
Java has three logical operators: &&, ||, and !, which respectively stand for and, or,
and not. The results of these operators are similar to their meanings in English.

For example, x > 0 && x < 10 is true when x is both greater than zero and less than
10. The expression evenFlag || n \% 3 == 0 is true if either condition is true, that
is, if evenFlag is true or the number n is divisible by 3. Finally, the ! operator inverts a
boolean expression. So !evenFlag is true if evenFlag is not true.

Logical operators evaluate the second expression only when necessary. For example,
true || anything is always true, so Java does not need to evaluate the expression
anything. Likewise, false && anything is always false. Ignoring the second operand,
when possible, is called short circuit evaluation, by analogy with an electrical circuit.
Short circuit evaluation can save time, especially if anything takes a long time to eval‐
uate. It can also avoid unnecessary errors, if anything might fail.

If you ever have to negate an expression that contains logical operators, and you
probably will, De Morgan’s laws can help:

• !(A && B) is the same as !A || !B
• !(A || B) is the same as !A && !B

Negating a logical expression is the same as negating each term and changing the
operator. The ! operator takes precedence over && and ||, so you don’t have to put
parentheses around the individual terms !A and !B.

De Morgan’s laws also apply to the relational operators. In this case, negating each
term means using the “opposite” relational operator.

58 | Chapter 5: Conditionals and Logic

• !(x < 5 && y == 3) is the same as x >= 5 || y != 3
• !(x >= 1 || y != 7) is the same as x < 1 && y == 7

It may help to read these examples out loud in English. For instance, “If I don’t want x
to be less than 5, and I don’t want y to be 3, then I need x to be greater than or equal
to 5, or I need y to be anything but 3.”

Conditional Statements
To write useful programs, we almost always need to check conditions and react
accordingly. Conditional statements give us this ability. The simplest conditional
statement in Java is the if statement:

if (x > 0) {
 System.out.println("x is positive");
}

The expression in parentheses is called the condition. If it is true, the statements in
braces get executed. If the condition is false, execution skips over that block of code.
The condition in parentheses can be any boolean expression.

A second form of conditional statement has two possibilities, indicated by if and
else. The possibilities are called branches, and the condition determines which one
gets executed:

if (x % 2 == 0) {
 System.out.println("x is even");
} else {
 System.out.println("x is odd");
}

If the remainder when x is divided by 2 is zero, we know that x is even, and this frag‐
ment displays a message to that effect. If the condition is false, the second print state‐
ment is executed instead. Since the condition must be true or false, exactly one of the
branches will run.

The braces are optional for branches that have only one statement. So we could have
written the previous example this way:

if (x % 2 == 0)
 System.out.println("x is even");
else
 System.out.println("x is odd");

However, it’s better to use braces—even when they are optional—to avoid making the
mistake of adding statements to an if or else block and forgetting to add the braces.

Conditional Statements | 59

if (x > 0)
 System.out.println("x is positive");
 System.out.println("x is not zero");

This code is misleading because it’s not indented correctly. Since there are no braces,
only the first println is part of the if statement. Here is what the compiler actually
sees:

if (x > 0) {
 System.out.println("x is positive");
}
 System.out.println("x is not zero");

As a result, the second println runs no matter what. Even experienced programmers
make this mistake; search the web for Apple’s “goto fail” bug.

Chaining and Nesting
Sometimes you want to check related conditions and choose one of several actions.
One way to do this is by chaining a series of if and else statements:

if (x > 0) {
 System.out.println("x is positive");
} else if (x < 0) {
 System.out.println("x is negative");
} else {
 System.out.println("x is zero");
}

These chains can be as long as you want, although they can be difficult to read if they
get out of hand. One way to make them easier to read is to use standard indentation,
as demonstrated in these examples. If you keep all the statements and braces lined up,
you are less likely to make syntax errors.

In addition to chaining, you can also make complex decisions by nesting one condi‐
tional statement inside another. We could have written the previous example as:

if (x == 0) {
 System.out.println("x is zero");
} else {
 if (x > 0) {
 System.out.println("x is positive");
 } else {
 System.out.println("x is negative");
 }
}

The outer conditional has two branches. The first branch contains a print statement,
and the second branch contains another conditional statement, which has two
branches of its own. These two branches are also print statements, but they could
have been conditional statements as well.

60 | Chapter 5: Conditionals and Logic

These kinds of nested structures are common, but they get difficult to read very
quickly. Good indentation is essential to make the structure (or intended structure)
apparent to the reader.

Flag Variables
To store a true or false value, you need a boolean variable. You can create one like
this:

boolean flag;
flag = true;
boolean testResult = false;

The first line is a variable declaration, the second is an assignment, and the third is
both. Since relational operators evaluate to a boolean value, you can store the result
of a comparison in a variable:

boolean evenFlag = (n % 2 == 0); // true if n is even
boolean positiveFlag = (x > 0); // true if x is positive

The parentheses are unnecessary, but they make the code easier to read. A variable
defined in this way is called a flag, because it signals or “flags” the presence or absence
of a condition.

You can use flag variables as part of a conditional statement later:

if (evenFlag) {
 System.out.println("n was even when I checked it");
}

Notice that you don’t have to write if (evenFlag == true). Since evenFlag is a
boolean, it’s already a condition. Likewise, to check if a flag is false:

if (!evenFlag) {
 System.out.println("n was odd when I checked it");
}

The return Statement
The return statement allows you to terminate a method before you reach the end of
it. One reason to use return is if you detect an error condition:

public static void printLogarithm(double x) {
 if (x <= 0.0) {
 System.err.println("Error: x must be positive.");
 return;
 }
 double result = Math.log(x);
 System.out.println("The log of x is " + result);
}

Flag Variables | 61

This example defines a method named printLogarithm that takes a double value
(named x) as a parameter. It checks whether x is less than or equal to zero, in which
case it displays an error message and then uses return to exit the method. The flow of
execution immediately returns to where the method was invoked, and the remaining
lines of the method are not executed.

This example uses System.err, which is an OutputStream normally used for error
messages and warnings. Some development environments display output to Sys
tem.err with a different color or in a separate window.

Validating Input
Here is a method that uses printLogarithm from the previous section:

public static void scanDouble() {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter a number: ");
 double x = in.nextDouble();
 printLogarithm(x);
}

This example uses nextDouble, so the Scanner tries to read a double. If the user
enters a floating-point number, the Scanner converts it to a double. But if the user
types anything else, the Scanner throws an InputMismatchException.

We can prevent this error by checking the input before parsing it:

public static void scanDouble() {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter a number: ");
 if (!in.hasNextDouble()) {
 String word = in.next();
 System.err.println(word + " is not a number");
 return;
 }
 double x = in.nextDouble();
 printLogarithm(x);
}

The Scanner class provides hasNextDouble, which checks whether the next token in
the input stream can be interpreted as a double. If so, we can call nextDouble with no
chance of throwing an exception. If not, we display an error message and return.
Returning from main terminates the program.

Recursive Methods
Now that we have conditional statements, we can explore one of the most magical
things a program can do: recursion. Consider the following example:

62 | Chapter 5: Conditionals and Logic

public static void countdown(int n) {
 if (n == 0) {
 System.out.println("Blastoff!");
 } else {
 System.out.println(n);
 countdown(n - 1);
 }
}

The name of the method is countdown; it takes a single integer as a parameter. If the
parameter is zero, it displays the word “Blastoff ”. Otherwise, it displays the number
and then invokes itself, passing n - 1 as the argument. A method that invokes itself is
called recursive.

What happens if we invoke countdown(3) from main?

The execution of countdown begins with n == 3, and since n is not zero, it displays the
value 3, and then invokes itself...

The execution of countdown begins with n == 2, and since n is not zero, it
displays the value 2, and then invokes itself...

The execution of countdown begins with n == 1, and since n is not
zero, it displays the value 1, and then invokes itself...

The execution of countdown begins with n == 0, and
since n is zero, it displays the word “Blastoff!” and then
returns.

The countdown that got n == 1 returns.

The countdown that got n == 2 returns.

The countdown that got n == 3 returns.

And then you’re back in main. So the total output looks like:

3
2
1
Blastoff!

As a second example, we’ll rewrite the methods newLine and threeLine from
“Adding New Methods” on page 45.

public static void newLine() {
 System.out.println();
}

public static void threeLine() {
 newLine();
 newLine();
 newLine();
}

Recursive Methods | 63

Although these methods work, they would not help if we wanted to display two new‐
lines, or maybe 100. A better alternative would be:

public static void nLines(int n) {
 if (n > 0) {
 System.out.println();
 nLines(n - 1);
 }
}

This method takes an integer, n, as a parameter and displays n newlines. The structure
is similar to countdown. As long as n is greater than zero, it displays a newline and
then invokes itself to display n − 1 additional newlines. The total number of new‐
lines is 1 + n − 1 , which is just what we wanted: n.

Recursive Stack Diagrams
In the previous chapter, we used a stack diagram to represent the state of a program
during a method invocation. The same kind of diagram can make it easier to inter‐
pret a recursive method.

Remember that every time a method gets called, Java creates a new frame that con‐
tains the current method’s parameters and variables. Figure 5-1 is a stack diagram for
countdown, called with n == 3.

Figure 5-1. Stack diagram for the countdown program.

By convention, the stack for main is at the top and the stack grows down. The frame
for main is empty because main does not have any variables. (It has the parameter
args, but since we’re not using it, we left it out of the diagram.)

64 | Chapter 5: Conditionals and Logic

There are four frames for countdown, each with a different value for the parameter n.
The last frame, with n == 0, is called the base case. It does not make a recursive call,
so there are no more frames below it.

If there is no base case in a recursive method, or if the base case is never reached, the
stack would grow forever, at least in theory. In practice, the size of the stack is limited;
if you exceed the limit, you get a StackOverflowError.

For example, here is a recursive method without a base case:

public static void forever(String s) {
 System.out.println(s);
 forever(s);
}

This method displays the string until the stack overflows, at which point it throws an
exception.

Binary Numbers
The countdown example has three parts: (1) it checks the base case, (2) displays some‐
thing, and (3) makes a recursive call. What do you think happens if you reverse steps
2 and 3, making the recursive call before displaying?

public static void countup(int n) {
 if (n == 0) {
 System.out.println("Blastoff!");
 } else {
 countup(n - 1);
 System.out.println(n);
 }
}

The stack diagram is the same as before, and the method is still called n times. But
now the System.out.println happens just before each recursive call returns. As a
result, it counts up instead of down:

Blastoff!
1
2
3

This behavior comes in handy when it is easier to compute results in reverse order.
For example, to convert a decimal integer into its binary representation, you repeat‐
edly divide the number by two:

23 / 2 is 11 remainder 1
11 / 2 is 5 remainder 1
 5 / 2 is 2 remainder 1
 2 / 2 is 1 remainder 0
 1 / 2 is 0 remainder 1

Binary Numbers | 65

Reading these remainders from bottom to top, 23 in binary is 10111. For more back‐
ground about binary numbers, see http://www.mathsisfun.com/binary-number-
system.html.

Here is a recursive method that displays the binary representation of any positive
integer:

public static void displayBinary(int value) {
 if (value > 0) {
 displayBinary(value / 2);
 System.out.print(value % 2);
 }
}

If value is zero, displayBinary does nothing (that’s the base case). If the argument is
positive, the method divides it by two and calls displayBinary recursively. When the
recursive call returns, the method displays one digit of the result and returns (again).

The leftmost digit is at the bottom of the stack, so it gets displayed first. The right‐
most digit, at the top of the stack, gets displayed last. After invoking displayBinary,
we use println to complete the output.

displayBinary(23);
System.out.println();
// output is 10111

Learning to think recursively is an important aspect of learning to think like a com‐
puter scientist. Many algorithms can be written concisely with recursive methods that
perform computations on the way down, on the way up, or both.

Vocabulary
boolean:

A data type with only two values, true and false.

relational operator:
An operator that compares two values and produces a boolean indicating the
relationship between them.

logical operator:
An operator that combines boolean values and produces a boolean value.

short circuit:
A way of evaluating logical operators that only evaluates the second operand if
necessary.

De Morgan’s laws:
Mathematical rules that show how to negate a logical expression.

66 | Chapter 5: Conditionals and Logic

http://www.mathsisfun.com/binary-number-system.html
http://www.mathsisfun.com/binary-number-system.html

conditional statement:
A statement that uses a condition to determine which statements to execute.

branch:
One of the alternative sets of statements inside a conditional statement.

chaining:
A way of joining several conditional statements in sequence.

nesting:
Putting a conditional statement inside one or both branches of another condi‐
tional statement.

flag:
A variable (usually boolean) that represents a condition or status.

recursion:
The process of invoking (and restarting) the same method that is currently exe‐
cuting.

recursive:
A method that invokes itself, usually with different arguments.

base case:
A condition that causes a recursive method not to make another recursive call.

binary:
A system that uses only zeros and ones to represent numbers. Also known as
“base 2”.

Exercises
The code for this chapter is in the ch05 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “Tracing with a Debugger” on page 207, now might be a
good time. It describes the DrJava debugger, which is a useful tool for tracing the flow
of execution.

Exercise 5-1.

Logical operators can simplify nested conditional statements. For example, can you
rewrite this code using a single if statement?

Exercises | 67

if (x > 0) {
 if (x < 10) {
 System.out.println("positive single digit number.");
 }
}

Exercise 5-2.

For the following program:

1. Draw a stack diagram that shows the state of the program the second time ping is
invoked.

2. What is the complete output?

public static void zoop(String fred, int bob) {
 System.out.println(fred);
 if (bob == 5) {
 ping("not ");
 } else {
 System.out.println("!");
 }
}

public static void main(String[] args) {
 int bizz = 5;
 int buzz = 2;
 zoop("just for", bizz);
 clink(2 * buzz);
}

public static void clink(int fork) {
 System.out.print("It's ");
 zoop("breakfast ", fork) ;
}

public static void ping(String strangStrung) {
 System.out.println("any " + strangStrung + "more ");
}

Exercise 5-3.

Draw a stack diagram that shows the state of the program in “Recursive Methods” on
page 62 after main invokes nLines with the parameter n == 4, just before the last
invocation of nLines returns.

68 | Chapter 5: Conditionals and Logic

Exercise 5-4.

Fermat’s Last Theorem says that there are no integers a, b, and c such that
an + bn = cn, except when n ≤ 2.

Write a method named checkFermat that takes four integers as parameters—a, b, c
and n—and checks to see if Fermat’s theorem holds. If n is greater than 2 and
an + bn = cn, the program should display “Holy smokes, Fermat was wrong!” Other‐
wise the program should display “No, that doesn’t work.”

Hint: You may want to use Math.pow.

Exercise 5-5.

The purpose of this exercise is to take a problem and break it into smaller problems,
and to solve the smaller problems by writing simple methods. Consider the first verse
of the song “99 Bottles of Beer”:

99 bottles of beer on the wall,
99 bottles of beer,
ya’ take one down, ya’ pass it around,
98 bottles of beer on the wall.

Subsequent verses are identical except that the number of bottles gets smaller by one
in each verse, until the last verse:

No bottles of beer on the wall,
no bottles of beer,
ya’ can’t take one down, ya’ can’t pass it around,
’cause there are no more bottles of beer on the wall!

And then the song (finally) ends.

Write a program that displays the entire lyrics of “99 Bottles of Beer”. Your program
should include a recursive method that does the hard part, but you might want to
write additional methods to separate other parts of the program. As you develop your
code, test it with a small number of verses, like 3.

Exercise 5-6.

This exercise reviews the flow of execution through a program with multiple meth‐
ods. Read the following code and answer the questions.

Exercises | 69

public class Buzz {

 public static void baffle(String blimp) {
 System.out.println(blimp);
 zippo("ping", -5);
 }

 public static void zippo(String quince, int flag) {
 if (flag < 0) {
 System.out.println(quince + " zoop");
 } else {
 System.out.println("ik");
 baffle(quince);
 System.out.println("boo-wa-ha-ha");
 }
 }

 public static void main(String[] args) {
 zippo("rattle", 13);
 }

}

1. Write the number 1 next to the first line of code in this program that will execute.
2. Write the number 2 next to the second line of code, and so on until the end of the

program. If a line is executed more than once, it might end up with more than
one number next to it.

3. What is the value of the parameter blimp when baffle gets invoked?
4. What is the output of this program?

Exercise 5-7.

Now that we have conditional statements, we can get back to the “Guess My Number”
game from Exercise 3-4.

You should already have a program that chooses a random number, prompts the user
to guess it, and displays the difference between the guess and the chosen number.

Adding a small amount of code at a time, and testing as you go, modify the program
so it tells the user whether the guess is too high or too low, and then prompts the user
for another guess.

The program should continue until the user gets it right. Hint: Use two methods, and
make one of them recursive.

70 | Chapter 5: Conditionals and Logic

CHAPTER 6

Value Methods

Some of the methods we have used, like the Math methods, return values. But all the
methods we have written so far have been void; that is, they don’t return values. In
this chapter, we’ll write methods that return values, which we call value methods.

Return Values
When you invoke a void method, the invocation is usually on a line all by itself. For
example, here is the countup method from “Recursive Methods” on page 62:

public static void countup(int n) {
 if (n == 0) {
 System.out.println("Blastoff!");
 } else {
 countup(n - 1);
 System.out.println(n);
 }
}

And here is how it is invoked:

countup(3);
System.out.println("Have a nice day.");

On the other hand, when you invoke a value method, you have to do something with
the return value. We usually assign it to a variable or use it as part of an expression,
like this:

double error = Math.abs(expected - actual);
double height = radius * Math.sin(angle);

71

Compared to void methods, value methods differ in two ways:

• They declare the type of the return value (the return type);
• They use at least one return statement to provide a return value.

Here’s an example: calculateArea takes a double as a parameter and returns the area
of a circle with that radius:

public static double calculateArea(double radius) {
 double result = Math.PI * radius * radius;
 return result;
}

As usual, this method is public and static. But in the place where we are used to
seeing void, we see double, which means that the return value from this method is a
double.

The last line is a new form of the return statement that includes a return value. This
statement means, “return immediately from this method and use the following
expression as the return value.” The expression you provide can be arbitrarily com‐
plex, so we could have written this method more concisely:

public static double calculateArea(double radius) {
 return Math.PI * radius * radius;
}

On the other hand, temporary variables like result often make debugging easier,
especially when you are stepping through code using an interactive debugger (see
“Tracing with a Debugger” on page 207).

The type of the expression in the return statement must match the return type of the
method. When you declare that the return type is double, you are making a promise
that this method will eventually produce a double value. If you try to return with no
expression, or an expression with the wrong type, the compiler will generate an error.

Sometimes it is useful to have multiple return statements, for example, one in each
branch of a conditional:

public static double absoluteValue(double x) {
 if (x < 0) {
 return -x;
 } else {
 return x;
 }
}

Since these return statements are in a conditional statement, only one will be exe‐
cuted. As soon as either of them executes, the method terminates without executing
any more statements.

72 | Chapter 6: Value Methods

Code that appears after a return statement (in the same block), or any place else
where it can never be executed, is called dead code. The compiler will give you an
“unreachable statement” error if part of your code is dead. For example, this method
contains dead code:

public static double absoluteValue(double x) {
 if (x < 0) {
 return -x;
 } else {
 return x;
 }
 System.out.println("This line is dead.");
}

If you put return statements inside a conditional statement, you have to make sure
that every possible path through the program reaches a return statement. The com‐
piler will let you know if that’s not the case. For example, the following method is
incomplete:

public static double absoluteValue(double x) {
 if (x < 0) {
 return -x;
 } else if (x > 0) {
 return x;
 }
 // syntax error
}

When x is 0, neither condition is true, so the method ends without hitting a return
statement. The error message in this case might be something like “missing return
statement”, which is confusing since there are already two of them. But hopefully you
will know what it means.

Writing Methods
Beginners often make the mistake of writing a lot of code before they try to compile
and run it. Then they spend way too much time debugging. A better approach is what
we call incremental development. The key aspects of incremental development are:

• Start with a working program and make small, incremental changes. At any
point, if there is an error, you will know where to look.

• Use variables to hold intermediate values so you can check them, either with
print statements or by using a debugger.

• Once the program is working, you can consolidate multiple statements into com‐
pound expressions (but only if it does not make the program more difficult to
read).

Writing Methods | 73

As an example, suppose you want to find the distance between two points, given by
the coordinates x1, y1 and x2, y2 . By the usual definition:

distance = x2 − x1
2 + y2 − y1

2

The first step is to consider what a distance method should look like in Java. In other
words, what are the inputs (parameters) and what is the output (return value)? In this
case, the two points are the parameters, and it is natural to represent them using four
double values. The return value is the distance, which should also have type double.

Already we can write an outline for the method, which is sometimes called a stub.
The stub includes the method signature and a return statement:

public static double distance
 (double x1, double y1, double x2, double y2) {
 return 0.0;
}

The return statement is a placeholder that is necessary for the program to compile. At
this stage the program doesn’t do anything useful, but it is good to compile it so we
can find any syntax errors before we add more code.

It’s usually a good idea to think about testing before you develop new methods; doing
so can help you figure out how to implement them. To test the method, we can
invoke it from main using sample values:

double dist = distance(1.0, 2.0, 4.0, 6.0);

With these values, the horizontal distance is 3.0 and the vertical distance is 4.0. So the
result should be 5.0, the hypotenuse of a 3-4-5 triangle. When you are testing a
method, it is helpful to know the right answer.

Once we have compiled the stub, we can start adding lines of code one at a time. After
each incremental change, we recompile and run the program. If there is an error at
any point, we have a good idea where to look: the last line we added.

The next step is to find the differences x2 − x1 and y2 − y1. We store those values in
temporary variables named dx and dy.

public static double distance
 (double x1, double y1, double x2, double y2) {
 double dx = x2 - x1;
 double dy = y2 - y1;
 System.out.println("dx is " + dx);
 System.out.println("dy is " + dy);
 return 0.0;
}

74 | Chapter 6: Value Methods

The print statements allows us to check the intermediate values before proceeding.
They should be 3.0 and 4.0. We will remove the print statements when the method is
finished. Code like that is called scaffolding, because it is helpful for building the pro‐
gram, but it is not part of the final product.

The next step is to square dx and dy. We could use the Math.pow method, but it is
simpler to multiply each term by itself.

public static double distance
 (double x1, double y1, double x2, double y2) {
 double dx = x2 - x1;
 double dy = y2 - y1;
 double dsquared = dx * dx + dy * dy;
 System.out.println("dsquared is " + dsquared);
 return 0.0;
}

Again, you should compile and run the program at this stage and check the inter‐
mediate value, which should be 25.0. Finally, we can use Math.sqrt to compute and
return the result.

public static double distance
 (double x1, double y1, double x2, double y2) {
 double dx = x2 - x1;
 double dy = y2 - y1;
 double dsquared = dx * dx + dy * dy;
 double result = Math.sqrt(dsquared);
 return result;
}

As you gain more experience programming, you might write and debug more than
one line at a time. Nevertheless, incremental development can save you a lot of time.

Method Composition
Once you define a new method, you can use it as part of an expression, or build new
methods using existing methods. For example, suppose someone gave you two
points, the center of the circle and a point on the perimeter, and asked for the area of
the circle. Let’s say the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp.

The first step is to find the radius of the circle, which is the distance between the two
points. Fortunately, we have a method that does just that (distance).

double radius = distance(xc, yc, xp, yp);

The second step is to find the area of a circle with that radius. We have a method for
that computation too (calculateArea).

Method Composition | 75

double area = calculateArea(radius);
return area;

Putting everything together in a new method, we get:

public static double circleArea
 (double xc, double yc, double xp, double yp) {
 double radius = distance(xc, yc, xp, yp);
 double area = calculateArea(radius);
 return area;
}

The temporary variables radius and area are useful for development and debugging,
but once the program is working we can make it more concise by composing the
method calls:

public static double circleArea
 (double xc, double yc, double xp, double yp) {
 return calculateArea(distance(xc, yc, xp, yp));
}

This example demonstrates a process called functional decomposition; that is,
breaking a complex computation into simple methods, testing the methods in isola‐
tion, and then composing the methods to perform the computation. This process
reduces debugging time and yields code that is more likely to be correct and easier to
maintain.

Overloading
You might have noticed that circleArea and calculateArea perform similar func‐
tions. They both find the area of a circle, but they take different parameters. For cal
culateArea, we have to provide the radius; for circleArea we provide two points.

If two methods do the same thing, it is natural to give them the same name. Having
more than one method with the same name is called overloading, and it is legal in
Java as long as each version takes different parameters. So we could rename cir
cleArea to calculateArea:

public static double calculateArea
 (double xc, double yc, double xp, double yp) {
 return calculateArea(distance(xc, yc, xp, yp));
}

Note that this new calculateArea method is not recursive. When you invoke an
overloaded method, Java knows which version you want by looking at the arguments
that you provide. If you write:

double x = calculateArea(3.0);

76 | Chapter 6: Value Methods

Java looks for a method named calculateArea that takes one double as an argument,
and so it uses the first version, which interprets the argument as a radius. If you write:

double y = calculateArea(1.0, 2.0, 4.0, 6.0);

Java uses the second version of calculateArea, which interprets the arguments as
two points. In this example, the second version actually invokes the first version.

Many Java methods are overloaded, meaning that there are different versions that
accept different numbers or types of parameters. For example, there are versions of
print and println that accept a single parameter of any data type. In the Math class,
there is a version of abs that works on doubles, and there is also a version for ints.

Although overloading is a useful feature, it should be used with caution. You might
get yourself nicely confused if you are trying to debug one version of a method while
accidentally invoking a different one.

Boolean Methods
Methods can return boolean values, just like any other type, which is often conve‐
nient for hiding tests inside methods. For example:

public static boolean isSingleDigit(int x) {
 if (x > -10 && x < 10) {
 return true;
 } else {
 return false;
 }
}

The name of this method is isSingleDigit. It is common to give boolean methods
names that sound like yes/no questions. Since the return type is boolean, the return
statement has to provide a boolean expression.

The code itself is straightforward, although it is longer than it needs to be. Remember
that the expression x > -10 && x < 10 has type boolean, so there is nothing wrong
with returning it directly (without the if statement):

public static boolean isSingleDigit(int x) {
 return x > -10 && x < 10;
}

In main, you can invoke the method in the usual ways:

System.out.println(isSingleDigit(2));
boolean bigFlag = !isSingleDigit(17);

The first line displays true because 2 is a single-digit number. The second line sets
bigFlag to true, because 17 is not a single-digit number.

Boolean Methods | 77

Conditional statements often invoke boolean methods and use the result as the con‐
dition:

if (isSingleDigit(z)) {
 System.out.println("z is small");
} else {
 System.out.println("z is big");
}

Examples like this one almost read like English: “If is single digit z, print ... else
print ...”.

Javadoc Tags
In “Writing Documentation” on page 53, we discussed how to write documentation
comments using /**. It’s generally a good idea to document each class and method,
so that other programmers can understand what they do without having to read the
code.

To organize the documentation into sections, Javadoc supports optional tags that
begin with the at sign (@). For example, we can use @param and @return to provide
additional information about parameters and return values.

/**
 * Tests whether x is a single digit integer.
 *
 * @param x the integer to test
 * @return true if x has one digit, false otherwise
 */
public static boolean isSingleDigit(int x) {

Figure 6-1 shows part of the resulting HTML page generated by Javadoc. Notice the
relationship between the source code and the documentation.

Figure 6-1. HTML documentation for isSingleDigit.

78 | Chapter 6: Value Methods

Methods with multiple parameters should have separate @param tags that describe
each one. Void methods should have no @return tag, since they do not return a value.

More Recursion
Now that we have methods that return values, we have a Turing complete program‐
ming language. That means Java can compute anything computable, for any reason‐
able definition of “computable”. This idea was developed by Alonzo Church and Alan
Turing, so it is known as the Church-Turing thesis.

To give you an idea of what you can do with the tools we have learned, let’s look at
some methods for evaluating recursively-defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the definition refers to
the thing being defined.

Of course, a truly circular definition is not very useful:

recursive:
An adjective used to describe a method that is recursive.

If you saw that definition in the dictionary, you might be annoyed. But if you search
for recursion on Google, it displays “Did you mean: recursion” as an inside joke.

Many mathematical functions are defined recursively, because that is often the sim‐
plest way. For example, the factorial of an integer n, which is written n!, is defined
like this:

0! = 1
n! = n · n − 1 !

Don’t confuse the mathematical symbol !, which means factorial, with the Java opera‐
tor !, which means not. This definition says that factorial(0) is 1, and that facto
rial(n) is n * factorial(n - 1).

So factorial(3) is 3 * factorial(2); factorial(2) is 2 * factorial(1);
factorial(1) is 1 * factorial(0); and factorial(0) is 1. Putting it all together,
we get 3 * 2 * 1 * 1, which is 6.

If you can formulate a recursive definition of something, you can easily write a Java
method to evaluate it. The first step is to decide what the parameters and return type
are. Since factorial is defined for integers, the method takes an int as a parameter and
returns an int. So here’s a good starting place:

public static int factorial(int n) {
 return 0;
}

More Recursion | 79

Next, we think about the base case. If the argument happens to be zero, we return 1.

public static int factorial(int n) {
 if (n == 0) {
 return 1;
 }
 return 0;
}

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n − 1, and then multiply it by n.

public static int factorial(int n) {
 if (n == 0) {
 return 1;
 }
 int recurse = factorial(n - 1);
 int result = n * recurse;
 return result;
}

The flow of execution for this program is similar to countdown from “Recursive
Methods” on page 62. If we invoke factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of n − 1...
Since 2 is not zero, we take the second branch and calculate the factorial of
n − 1...

Since 1 is not zero, we take the second branch and calculate the fac‐
torial of n − 1...

Since 0 is zero, we take the first branch and return the
value 1 immediately.

The return value (1) gets multiplied by n, which is 1, and the result
is returned.

The return value (1) gets multiplied by n, which is 2, and the result is
returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is returned to
whatever invoked factorial(3).

Figure 6-2 shows what the stack diagram looks like for this sequence of method invo‐
cations. The return values are shown being passed back up the stack. Notice that
recurse and result do not exist in the last frame, because when n == 0 the code that
declares them does not execute.

80 | Chapter 6: Value Methods

Figure 6-2. Stack diagram for the factorial method.

Leap of Faith
Following the flow of execution is one way to read programs, but it can quickly
become overwhelming. An alternative is the leap of faith: when you come to a
method invocation, instead of following the flow of execution, you assume that the
method works correctly and returns the appropriate value.

In fact, you are already practicing a leap of faith when you use methods in the Java
library. When you invoke Math.cos or System.out.println, you don’t examine the
implementations of those methods. You just assume that they work properly.

You should apply the same reasoning to your own methods. For example, in “Boolean
Methods” on page 77 we wrote a method called isSingleDigit that determines
whether a number is between 0 and 9. Once we convince ourselves that this method
is correct—by testing and examination of the code—we can use the method without
ever looking at the implementation again.

The same is true of recursive methods. When you get to the recursive call, instead of
following the flow of execution you should assume that the recursive invocation
works. For example, “Assuming that I can find the factorial of n − 1, can I compute
the factorial of n?” Yes you can, by multiplying by n.

Of course, it is strange to assume that the method works correctly when you have not
finished writing it, but that’s why it’s called a leap of faith!

Leap of Faith | 81

One More Example
Another common recursively-defined mathematical function is the Fibonacci
sequence, which has the following definition:

f ibonacci 1 = 1
f ibonacci 2 = 1
f ibonacci n = f ibonacci n − 1 + f ibonacci n − 2

Translated into Java, this function is:

public static int fibonacci(int n) {
 if (n == 1 || n == 2) {
 return 1;
 }
 return fibonacci(n - 1) + fibonacci(n - 2);
}

If you try to follow the flow of execution here, even for small values of n, your head
will explode. But if we take a leap of faith and assume that the two recursive invoca‐
tions work correctly, it is clear that their sum is the result.

Vocabulary
void method:

A method that does not return a value.

value method:
A method that returns a value.

return type:
The type of value a method returns.

return value:
The value provided as the result of a method invocation.

temporary variable:
A short-lived variable, often used for debugging.

dead code:
Part of a program that can never be executed, often because it appears after a
return statement.

incremental development:
A process for creating programs by writing a few lines at a time, compiling, and
testing.

82 | Chapter 6: Value Methods

stub:
A placeholder for an incomplete method so that the class will compile.

scaffolding:
Code that is used during program development but is not part of the final ver‐
sion.

functional decomposition:
A process for breaking down a complex computation into simple methods, then
composing the methods to perform the computation.

overload:
To define more than one method with the same name but different parameters.

tag:
A label that begins with an at sign (@) and is used by Javadoc to organize docu‐
mentation into sections.

Turing complete:
A programming language that can implement any theoretically possible algo‐
rithm.

factorial:
The product of all the integers up to and including a given integer.

leap of faith:
A way to read recursive programs by assuming that the recursive call works,
rather than following the flow of execution.

Exercises
The code for this chapter is in the ch06 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “Testing with JUnit” on page 208, now might be a good
time. It describes JUnit, a tool for efficiently testing value methods.

Exercise 6-1.

If you have a question about whether something is legal, and what happens if it is not,
a good way to find out is to ask the compiler. Answer the following questions by try‐
ing them out.

Exercises | 83

1. What happens if you invoke a value method and don’t do anything with the
result; that is, if you don’t assign it to a variable or use it as part of a larger expres‐
sion?

2. What happens if you use a void method as part of an expression? For example,
try System.out.println("boo!") + 7;

Exercise 6-2.

Write a method named isDivisible that takes two integers, n and m, and that returns
true if n is divisible by m, and false otherwise.

Exercise 6-3.

If you are given three sticks, you may or may not be able to arrange them in a trian‐
gle. For example, if one of the sticks is 12 inches long and the other two are one inch
long, you will not be able to get the short sticks to meet in the middle. For any three
lengths, there is a simple test to see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two, you cannot form a
triangle.

Write a method named isTriangle that takes three integers as arguments and
returns either true or false, depending on whether you can or cannot form a trian‐
gle from sticks with the given lengths. The point of this exercise is to use conditional
statements to write a value method.

Exercise 6-4.

Many computations can be expressed more concisely using the “multadd” operation,
which takes three operands and computes a * b + c. Some processors even provide
a hardware implementation of this operation for floating-point numbers.

1. Create a new program called Multadd.java.
2. Write a method called multadd that takes three doubles as parameters and that

returns a * b + c.
3. Write a main method that tests multadd by invoking it with a few simple parame‐

ters, like 1.0, 2.0, 3.0.

84 | Chapter 6: Value Methods

www.allitebooks.com

http://www.allitebooks.org

4. Also in main, use multadd to compute the following values:

sin π
4 +

cos π
4

2
log 10 + log 20

5. Write a method called expSum that takes a double as a parameter and that uses
multadd to calculate:

xe−x + 1 − e−x

Hint: The method for raising e to a power is Math.exp.

In the last part of this exercise, you need to write a method that invokes another
method you wrote. Whenever you do that, it is a good idea to test the first method
carefully before working on the second. Otherwise, you might find yourself debug‐
ging two methods at the same time, which can be difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability to rec‐
ognize a specific problem as an instance of a general category of problems.

Exercise 6-5.

What is the output of the following program?

public static void main(String[] args) {
 boolean flag1 = isHoopy(202);
 boolean flag2 = isFrabjuous(202);
 System.out.println(flag1);
 System.out.println(flag2);
 if (flag1 && flag2) {
 System.out.println("ping!");
 }
 if (flag1 || flag2) {
 System.out.println("pong!");
 }
}

public static boolean isHoopy(int x) {
 boolean hoopyFlag;
 if (x % 2 == 0) {
 hoopyFlag = true;
 } else {
 hoopyFlag = false;
 }
 return hoopyFlag;
}

Exercises | 85

public static boolean isFrabjuous(int x) {
 boolean frabjuousFlag;
 if (x > 0) {
 frabjuousFlag = true;
 } else {
 frabjuousFlag = false;
 }
 return frabjuousFlag;
}

The purpose of this exercise is to make sure you understand logical operators and the
flow of execution through value methods.

Exercise 6-6.

In this exercise, you will use a stack diagram to understand the execution of the fol‐
lowing recursive program.

public static void main(String[] args) {
 System.out.println(prod(1, 4));
}

public static int prod(int m, int n) {
 if (m == n) {
 return n;
 } else {
 int recurse = prod(m, n - 1);
 int result = n * recurse;
 return result;
 }
}

1. Draw a stack diagram showing the state of the program just before the last invo‐
cation of prod completes.

2. What is the output of this program? (Try to answer this question on paper first,
then run the code to check your answer.)

3. Explain in a few words what prod does (without getting into the details of how it
works).

4. Rewrite prod without the temporary variables recurse and result. Hint: You
only need one line for the else branch.

86 | Chapter 6: Value Methods

Exercise 6-7.

Write a recursive method named oddSum that takes a positive odd integer n and
returns the sum of odd integers from 1 to n. Start with a base case, and use temporary
variables to debug your solution. You might find it helpful to print the value of n each
time oddSum is invoked.

Exercise 6-8.

The goal of this exercise is to translate a recursive definition into a Java method. The
Ackermann function is defined for non-negative integers as follows:

A m, n =
n + 1 if m = 0

A m − 1, 1 if m > 0 and n = 0
A m − 1, A m, n − 1 if m > 0 and n > 0

Write a method called ack that takes two ints as parameters and that computes and
returns the value of the Ackermann function.

Test your implementation of Ackermann by invoking it from main and displaying the
return value. Note the return value gets very big very quickly. You should try it only
for small values of m and n (not bigger than 3).

Exercise 6-9.

Write a recursive method called power that takes a double x and an integer n and
returns xn.

Hint: A recursive definition of this operation is xn = x · xn − 1. Also, remember that
anything raised to the zeroth power is 1.

Optional challenge: you can make this method more efficient, when n is even, using
xn = xn/2 2.

Exercises | 87

CHAPTER 7

Loops

Computers are often used to automate repetitive tasks. Repeating tasks without mak‐
ing errors is something that computers do well and people do poorly.

Running the same code multiple times is called iteration. We have seen methods, like
countdown and factorial, that use recursion to iterate. Although recursion is elegant
and powerful, it takes some getting used to. Java provides language features that make
iteration much easier: the while and for statements.

The while Statement
Using a while statement, we can rewrite countdown like this:

public static void countdown(int n) {
 while (n > 0) {
 System.out.println(n);
 n = n - 1;
 }
 System.out.println("Blastoff!");
}

You can almost read the while statement like English: “While n is greater than zero,
print the value of n and then reduce the value of n by 1. When you get to zero, print
Blastoff!”

The expression in parentheses is called the condition. The statements in braces are
called the body. The flow of execution for a while statement is:

1. Evaluate the condition, yielding true or false.
2. If the condition is false, skip the body and go to the next statement.
3. If the condition is true, execute the body and go back to step 1.

89

This type of flow is called a loop, because the last step loops back around to the first.

The body of the loop should change the value of one or more variables so that, even‐
tually, the condition becomes false and the loop terminates. Otherwise the loop will
repeat forever, which is called an infinite loop. An endless source of amusement for
computer scientists is the observation that the directions on shampoo, “Lather, rinse,
repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop terminates when n is positive.
But in general, it is not so easy to tell whether a loop terminates. For example, this
loop continues until n is 1 (which makes the condition false):

public static void sequence(int n) {
 while (n != 1) {
 System.out.println(n);
 if (n % 2 == 0) { // n is even
 n = n / 2;
 } else { // n is odd
 n = n * 3 + 1;
 }
 }
}

Each time through the loop, the program displays the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument passed to
sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that
n will ever reach 1 and that the program will ever terminate. For some values of n, we
can prove that it terminates. For example, if the starting value is a power of two, then
the value of n will be even every time through the loop until we get to 1. The previous
example ends with such a sequence, starting when n is 16.

The hard question is whether this program terminates for all values of n. So far, no
one has been able to prove it or disprove it! For more information, see https://en.wiki
pedia.org/wiki/Collatz_conjecture.

Generating Tables
Loops are good for generating and displaying tabular data. Before computers were
readily available, people had to calculate logarithms, sines and cosines, and other
common mathematical functions by hand. To make that easier, there were books of
tables where you could look up values of various functions. Creating these tables by
hand was slow and boring, and the results were often full of errors.

90 | Chapter 7: Loops

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

When computers appeared on the scene, one of the initial reactions was: “This is
great! We can use a computer to generate the tables, so there will be no errors.” That
turned out to be true (mostly), but shortsighted. Not much later, computers were so
pervasive that printed tables became obsolete.

Even so, for some operations, computers use tables of values to get an approximate
answer, and then perform computations to improve the approximation. In some
cases, there have been errors in the underlying tables, most famously in the table the
original Intel Pentium used to perform floating-point division (see https://en.wikipe
dia.org/wiki/Pentium_FDIV_bug).

Although a “log table” is not as useful as it once was, it still makes a good example of
iteration. The following loop displays a table with a sequence of values in the left col‐
umn and their logarithms in the right column:

int i = 1;
while (i < 10) {
 double x = (double) i;
 System.out.println(x + " " + Math.log(x));
 i = i + 1;
}

The output of this program is:

1.0 0.0
2.0 0.6931471805599453
3.0 1.0986122886681098
4.0 1.3862943611198906
5.0 1.6094379124341003
6.0 1.791759469228055
7.0 1.9459101490553132
8.0 2.0794415416798357
9.0 2.1972245773362196

Math.log computes natural logarithms, that is, logarithms base e. For computer sci‐
ence applications, we often want logarithms with respect to base 2. To compute them,
we can apply this equation:

log2 x =
logex
loge2

We can modify the loop as follows:

int i = 1;
while (i < 10) {
 double x = (double) i;
 System.out.println(x + " " + Math.log(x) / Math.log(2));
 i = i + 1;
}

Generating Tables | 91

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

And here are the results:

1.0 0.0
2.0 1.0
3.0 1.5849625007211563
4.0 2.0
5.0 2.321928094887362
6.0 2.584962500721156
7.0 2.807354922057604
8.0 3.0
9.0 3.1699250014423126

Each time through the loop, we add one to x, so the result is an arithmetic sequence.
If we multiply x by something instead, we get a geometric sequence:

final double LOG2 = Math.log(2);
int i = 1;
while (i < 100) {
 double x = (double) i;
 System.out.println(x + " " + Math.log(x) / LOG2);
 i = i * 2;
}

The first line stores Math.log(2) in a final variable to avoid computing that value
over and over again. The last line multiplies x by 2. The result is:

1.0 0.0
2.0 1.0
4.0 2.0
8.0 3.0
16.0 4.0
32.0 5.0
64.0 6.0

This table shows the powers of two and their logarithms, base 2. Log tables may not
be useful anymore, but for computer scientists, knowing the powers of two helps a
lot!

Encapsulation and Generalization
In “Writing Methods” on page 73, we presented a way of writing programs called
incremental development. In this section we present another program development
process called “encapsulation and generalization”. The steps are:

1. Write a few lines of code in main or another method, and test them.
2. When they are working, wrap them in a new method, and test again.
3. If it’s appropriate, replace literal values with variables and parameters.

The second step is called encapsulation; the third step is generalization.

92 | Chapter 7: Loops

To demonstrate this process, we’ll develop methods that display multiplication tables.
Here is a loop that displays the multiples of two, all on one line:

int i = 1;
while (i <= 6) {
 System.out.printf("%4d", 2 * i);
 i = i + 1;
}
System.out.println();

The first line initializes a variable named i, which is going to act as a loop variable: as
the loop executes, the value of i increases from 1 to 6; when i is 7, the loop termi‐
nates.

Each time through the loop, we display the value 2 * i padded with spaces so it’s
four characters wide. Since we use System.out.printf, the output appears on a sin‐
gle line.

After the loop, we call println to print a newline and complete the line. Remember
that in some environments, none of the output is displayed until the line is complete.

The output of the code so far is:

 2 4 6 8 10 12

The next step is to “encapsulate” this code in a new method. Here’s what it looks like:

public static void printRow() {
 int i = 1;
 while (i <= 6) {
 System.out.printf("%4d", 2 * i);
 i = i + 1;
 }
 System.out.println();
}

Next we replace the constant value, 2, with a parameter, n. This step is called “gener‐
alization” because it makes the method more general (less specific).

public static void printRow(int n) {
 int i = 1;
 while (i <= 6) {
 System.out.printf("%4d", n * i);
 i = i + 1;
 }
 System.out.println();
}

Invoking this method with the argument 2 yields the same output as before. With the
argument 3, the output is:

 3 6 9 12 15 18

Encapsulation and Generalization | 93

And with argument 4, the output is:

 4 8 12 16 20 24

By now you can probably guess how we are going to display a multiplication table:
we’ll invoke printRow repeatedly with different arguments. In fact, we’ll use another
loop to iterate through the rows.

int i = 1;
while (i <= 6) {
 printRow(i);
 i = i + 1;
}

And the output looks like this:

 1 2 3 4 5 6
 2 4 6 8 10 12
 3 6 9 12 15 18
 4 8 12 16 20 24
 5 10 15 20 25 30
 6 12 18 24 30 36

The format specifier %4d in printRow causes the output to align vertically, regardless
of whether the numbers are one or two digits.

Finally, we encapsulate the second loop in a method:

public static void printTable() {
 int i = 1;
 while (i <= 6) {
 printRow(i);
 i = i + 1;
 }
}

One of the challenges of programming, especially for beginners, is figuring out how
to divide up a program into methods. The process of encapsulation and generaliza‐
tion allows you to design as you go along.

More Generalization
The previous version of printTable always displays six rows. We can generalize it by
replacing the literal 6 with a parameter:

public static void printTable(int rows) {
 int i = 1;
 while (i <= rows) {
 printRow(i);
 i = i + 1;
 }
}

94 | Chapter 7: Loops

Here is the output with the argument 7:

 1 2 3 4 5 6
 2 4 6 8 10 12
 3 6 9 12 15 18
 4 8 12 16 20 24
 5 10 15 20 25 30
 6 12 18 24 30 36
 7 14 21 28 35 42

That’s better, but it still has a problem: it always displays the same number of col‐
umns. We can generalize more by adding a parameter to printRow:

public static void printRow(int n, int cols) {
 int i = 1;
 while (i <= cols) {
 System.out.printf("%4d", n * i);
 i = i + 1;
 }
 System.out.println();
}

Now printRow takes two parameters: n is the value whose multiples should be dis‐
played, and cols is the number of columns. Since we added a parameter to printRow,
we also have to change the line in printTable where it is invoked:

public static void printTable(int rows) {
 int i = 1;
 while (i <= rows) {
 printRow(i, rows);
 i = i + 1;
 }
}

When this line executes, it evaluates rows and passes the value, which is 7 in this
example, as an argument. In printRow, this value is assigned to cols. As a result, the
number of columns equals the number of rows, so we get a square 7x7 table:

 1 2 3 4 5 6 7
 2 4 6 8 10 12 14
 3 6 9 12 15 18 21
 4 8 12 16 20 24 28
 5 10 15 20 25 30 35
 6 12 18 24 30 36 42
 7 14 21 28 35 42 49

When you generalize a method appropriately, you often find that it has capabilities
you did not plan. For example, you might notice that the multiplication table is sym‐
metric; since ab = ba, all the entries in the table appear twice. You could save ink by
printing half of the table, and you would only have to change one line of printTable:

printRow(i, i);

More Generalization | 95

In words, the length of each row is the same as its row number. The result is a trian‐
gular multiplication table.

 1
 2 4
 3 6 9
 4 8 12 16
 5 10 15 20 25
 6 12 18 24 30 36
 7 14 21 28 35 42 49

Generalization makes code more versatile, more likely to be reused, and sometimes
easier to write.

The for Statement
The loops we have written so far have several elements in common. They start by ini‐
tializing a variable, they have a condition that depends on that variable, and inside the
loop they do something to update that variable. This type of loop is so common that
there is another statement, the for loop, that expresses it more concisely.

For example, we could rewrite printTable like this:
public static void printTable(int rows) {
 for (int i = 1; i <= rows; i = i + 1) {
 printRow(i, rows);
 }
}

for loops have three components in parentheses, separated by semicolons: the initial‐
izer, the condition, and the update.

1. The initializer runs once at the very beginning of the loop.
2. The condition is checked each time through the loop. If it is false, the loop ends.

Otherwise, the body of the loop is executed (again).
3. At the end of each iteration, the update runs, and we go back to step 2.

The for loop is often easier to read because it puts all the loop-related statements at
the top of the loop.

There is one difference between for loops and while loops: if you declare a variable
in the initializer, it only exists inside the for loop. For example, here is a version of
printRow that uses a for loop:

public static void printRow(int n, int cols) {
 for (int i = 1; i <= cols; i = i + 1) {
 System.out.printf("%4d", n * i);
 }
 System.out.println(i); // compiler error
}

96 | Chapter 7: Loops

The last line tries to display i (for no reason other than demonstration) but it won’t
work. If you need to use a loop variable outside the loop, you have to declare it out‐
side the loop, like this:

public static void printRow(int n, int cols) {
 int i;
 for (i = 1; i <= cols; i = i + 1) {
 System.out.printf("%4d", n * i);
 }
 System.out.println(i);
}

Assignments like i = i + 1 don’t often appear in for loops, because Java provides a
more concise way to add and subtract by one. Specifically, ++ is the increment opera‐
tor; it has the same effect as i = i + 1. And -- is the decrement operator; it has the
same effect as i = i - 1.

If you want to increment or decrement a variable by an amount other than 1, you can
use += and -=. For example, i += 2 increments i by 2.

The do-while Loop
The while and for statements are pretest loops; that is, they test the condition first
and at the beginning of each pass through the loop.

Java also provides a posttest loop: the do-while statement. This type of loop is useful
when you need to run the body of the loop at least once.

For example, in “Validating Input” on page 62 we used the return statement to avoid
reading invalid input from the user. We can use a do-while loop to keep reading
input until it’s valid:

Scanner in = new Scanner(System.in);
boolean okay;
do {
 System.out.print("Enter a number: ");
 if (in.hasNextDouble()) {
 okay = true;
 } else {
 okay = false;
 String word = in.next();
 System.err.println(word + " is not a number");
 }
} while (!okay);
double x = in.nextDouble();

Although this code looks complicated, it is essentially only three steps:

The do-while Loop | 97

1. Display a prompt.
2. Check the input; if invalid, display an error and start over.
3. Read the input.

The code uses a flag variable, okay, to indicate whether we need to repeat the loop
body. If hasNextDouble() returns false, we consume the invalid input by calling
next(). We then display an error message via System.err. The loop terminates when
hasNextDouble() return true.

break and continue
Sometimes neither a pretest nor a posttest loop will provide exactly what you need. In
the previous example, the “test” needed to happen in the middle of the loop. As a
result, we used a flag variable and a nested if-else statement.

A simpler way to solve this problem is to use a break statement. When a program
reaches a break statement, it exits the current loop.

Scanner in = new Scanner(System.in);
while (true) {
 System.out.print("Enter a number: ");
 if (in.hasNextDouble()) {
 break;
 }
 String word = in.next();
 System.err.println(word + " is not a number");
}
double x = in.nextDouble();

Using true as a conditional in a while loop is an idiom that means “loop forever”, or
in this case “loop until you get to a break statement.”

In addition to the break statement, which exits the loop, Java provides a continue
statement that moves on to the next iteration. For example, the following code reads
integers from the keyboard and computes a running total. The continue statement
causes the program to skip over any negative values.

Scanner in = new Scanner(System.in);
int x = -1;
int sum = 0;
while (x != 0) {
 x = in.nextInt();
 if (x <= 0) {
 continue;
 }
 System.out.println("Adding " + x);
 sum += x;
}

98 | Chapter 7: Loops

Although break and continue statements give you more control of the loop execu‐
tion, they can make code difficult to understand and debug. Use them sparingly.

Vocabulary
iteration:

Executing a sequence of statements repeatedly.

loop:
A statement that executes a sequence of statements repeatedly.

loop body:
The statements inside the loop.

infinite loop:
A loop whose condition is always true.

program development:
A process for writing programs. So far we have seen “incremental development”
and “encapsulation and generalization”.

encapsulate:
To wrap a sequence of statements in a method.

generalize:
To replace something unnecessarily specific (like a constant value) with some‐
thing appropriately general (like a variable or parameter).

loop variable:
A variable that is initialized, tested, and updated in order to control a loop.

increment:
Increase the value of a variable.

decrement:
Decrease the value of a variable.

pretest loop:
A loop that tests the condition before each iteration.

posttest loop:
A loop that tests the condition after each iteration.

Exercises
The code for this chapter is in the ch07 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.

Vocabulary | 99

Before you start the exercises, we recommend that you compile and run the
examples.

If you have not already read “Running Checkstyle” on page 206, now might be a good
time. It describes Checkstyle, a tool that analyzes many aspects of your source code.

Exercise 7-1.

Consider the following methods:

public static void main(String[] args) {
 loop(10);
}

public static void loop(int n) {
 int i = n;
 while (i > 1) {
 System.out.println(i);
 if (i % 2 == 0) {
 i = i / 2;
 } else {
 i = i + 1;
 }
 }
}

1. Draw a table that shows the value of the variables i and n during the execution of
loop. The table should contain one column for each variable and one line for
each iteration.

2. What is the output of this program?
3. Can you prove that this loop terminates for any positive value of n?

Exercise 7-2.

Let’s say you are given a number, a, and you want to find its square root. One way to
do that is to start with a rough guess about the answer, x0, and then improve the guess
using this formula:

x1 = x0 + a/x0 /2

For example, if we want to find the square root of 9, and we start with x0 = 6, then
x1 = 6 + 9/6 /2 = 3 . 75, which is closer. We can repeat the procedure, using x1 to cal‐
culate x2, and so on. In this case, x2 = 3 . 075 and x3 = 3 . 00091. So it converges
quickly on the correct answer.

100 | Chapter 7: Loops

Write a method called squareRoot that takes a double and returns an approximation
of the square root of the parameter, using this technique. You should not use
Math.sqrt.

As your initial guess, you should use a/2. Your method should iterate until it gets two
consecutive estimates that differ by less than 0.0001. You can use Math.abs to calcu‐
late the absolute value of the difference.

Exercise 7-3.

In Exercise 6-9 we wrote a recursive version of power, which takes a double x and an
integer n and returns xn. Now write an iterative method to perform the same calcula‐
tion.

Exercise 7-4.

“More Recursion” on page 79 presents a recursive method that computes the factorial
function. Write an iterative version of factorial.

Exercise 7-5.

One way to calculate ex is to use the infinite series expansion:

ex = 1 + x + x2/2! + x3/3! + x4/4! + . . .

The ith term in the series is xi/i!.

1. Write a method called myexp that takes x and n as parameters and estimates ex by
adding the first n terms of this series. You can use the factorial method from
“More Recursion” on page 79 or your iterative version from the previous exer‐
cise.

2. You can make this method more efficient if you realize that the numerator of
each term is the same as its predecessor multiplied by x, and the denominator is
the same as its predecessor multiplied by i. Use this observation to eliminate the
use of Math.pow and factorial, and check that you get the same result.

3. Write a method called check that takes a parameter, x, and displays x, myexp(x),
and Math.exp(x). The output should look something like:
1.0 2.708333333333333 2.718281828459045

You can use the escape sequence "\t" to put a tab character between columns of
a table.

Exercises | 101

4. Vary the number of terms in the series (the second argument that check sends to
myexp) and see the effect on the accuracy of the result. Adjust this value until the
estimated value agrees with the correct answer when x is 1.

5. Write a loop in main that invokes check with the values 0.1, 1.0, 10.0, and 100.0.
How does the accuracy of the result vary as x varies? Compare the number of
digits of agreement rather than the difference between the actual and estimated
values.

6. Add a loop in main that checks myexp with the values -0.1, -1.0, -10.0, and -100.0.
Comment on the accuracy.

Exercise 7-6.

One way to evaluate exp − x2 is to use the infinite series expansion:

exp − x2 = 1 − x2 + x4/2 − x6/6 + ...

The ith term in this series is − 1 ix2i/i!. Write a method named gauss that takes x
and n as arguments and returns the sum of the first n terms of the series. You should
not use factorial or pow.

102 | Chapter 7: Loops

CHAPTER 8

Arrays

Up to this point, the only variables we have used were for individual values such as
numbers or strings. In this chapter, we’ll learn how to store multiple values of the
same type using a single variable. This language feature will enable you to write pro‐
grams that manipulate larger amounts of data.

Creating Arrays
An array is a sequence of values; the values in the array are called elements. You can
make an array of ints, doubles, or any other type, but all the values in an array must
have the same type.

To create an array, you have to declare a variable with an array type and then create
the array itself. Array types look like other Java types, except they are followed by
square brackets ([]). For example, the following lines declare that counts is an “inte‐
ger array” and values is a “double array”:

int[] counts;
double[] values;

To create the array itself, you have to use the new operator, which we first saw in “The
Scanner Class” on page 30:

counts = new int[4];
values = new double[size];

The first assignment makes count refer to an array of four integers. The second
makes values refer to an array of double, where the number of elements in values
depends on the value of size.

103

Of course, you can also declare the variable and create the array in a single line of
code:

int[] counts = new int[4];
double[] values = new double[size];

You can use any integer expression for the size of an array, as long as the value is non‐
negative. If you try to create an array with –4 elements, for example, you will get a
NegativeArraySizeException. An array with zero elements is allowed, and there are
special uses for such arrays that we’ll see later on.

Accessing Elements
When you create an array of ints, the elements are initialized to zero. Figure 8-1
shows a state diagram of the counts array so far.

Figure 8-1. State diagram of an int array.

The arrow indicates that the value of counts is a reference to the array. You should
think of the array and the variable that refers to it as two different things. As we’ll
soon see, we can assign a different variable to refer to the same array, and we can
change the value of counts to refer to a different array.

The large numbers inside the boxes are the elements of the array. The small numbers
outside the boxes are the indexes (or indices) used to identify each location in the
array. Notice that the index of the first element is 0, not 1, as you might have
expected.

The [] operator selects elements from an array:

System.out.println("The zeroth element is " + counts[0]);

You can use the [] operator anywhere in an expression:

counts[0] = 7;
counts[1] = counts[0] * 2;
counts[2]++;
counts[3] -= 60;

Figure 8-2 shows the result of these statements.

104 | Chapter 8: Arrays

Figure 8-2. State diagram after several assignment statements.

You can use any expression as an index, as long as it has type int. One of the most
common ways to index an array is with a loop variable. For example:

int i = 0;
while (i < 4) {
 System.out.println(counts[i]);
 i++;
}

This while loop counts from 0 up to 4. When i is 4, the condition fails and the loop
terminates. So the body of the loop is only executed when i is 0, 1, 2, and 3.

Each time through the loop we use i as an index into the array, displaying the ith
element. This type of array processing is often written using a for loop.

for (int i = 0; i < 4; i++) {
 System.out.println(counts[i]);
}

For the counts array, the only legal indexes are 0, 1, 2, and 3. If the index is negative
or greater than 3, the result is an ArrayIndexOutOfBoundsException.

Displaying Arrays
You can use println to display an array, but it probably doesn’t do what you would
like. For example, the following fragment (1) declares an array variable, (2) makes it
refer to an array of four elements, and (3) attempts to display the contents of the array
using println:

int[] a = {1, 2, 3, 4};
System.out.println(a);

Unfortunately, the output is something like:

[I@bf3f7e0

The bracket indicates that the value is an array, I stands for “integer”, and the rest rep‐
resents the address of the array. If we want to display the elements of the array, we can
do it ourselves:

Displaying Arrays | 105

public static void printArray(int[] a) {
 System.out.print("{" + a[0]);
 for (int i = 1; i < a.length; i++) {
 System.out.print(", " + a[i]);
 }
 System.out.println("}");
}

Given the previous array, the output of this method is:

{1, 2, 3, 4}

The Java library provides a utility class java.util.Arrays that provides methods for
working with arrays. One of them, toString, returns a string representation of an
array. We can invoke it like this:

System.out.println(Arrays.toString(a));

And the output is:

[1, 2, 3, 4]

As usual, we have to import java.util.Arrays before we can use it. Notice that the
string format is slightly different: it uses square brackets instead of curly braces. But it
beats having to write the printArray method.

Copying Arrays
As explained in “Accessing Elements” on page 104, array variables contain references
to arrays. When you make an assignment to an array variable, it simply copies the
reference. But it doesn’t copy the array itself! For example:

double[] a = new double[3];
double[] b = a;

These statements create an array of three doubles and make two different variables
refer to it, as shown in Figure 8-3.

Figure 8-3. State diagram showing two variables that refer to the same array.

Any changes made through either variable will be seen by the other. For example, if
we set a[0] = 17.0, and then display b[0], the result is 17.0. Because a and b are
different names for the same thing, they are sometimes called aliases.

If you actually want to copy the array, not just a reference, you have to create a new
array and copy the elements from the old to the new, like this:

106 | Chapter 8: Arrays

double[] b = new double[3];
for (int i = 0; i < 3; i++) {
 b[i] = a[i];
}

Another option is to use java.util.Arrays, which provides a method named copyOf
that copies an array. You can invoke it like this:

double[] b = Arrays.copyOf(a, 3);

The second parameter is the number of elements you want to copy, so you can also
use copyOf to copy just part of an array.

Array Length
The examples in the previous section only work if the array has three elements. It
would be better to generalize the code to work with arrays of any size. We can do that
by replacing the magic number, 3, with a.length:

double[] b = new double[a.length];
for (int i = 0; i < a.length; i++) {
 b[i] = a[i];
}

All arrays have a built-in constant, length, that stores the number of elements. The
expression a.length may look like a method invocation, but there are no parentheses
and no arguments.

The last time this loop gets executed, i is a.length - 1, which is the index of the last
element. When i is equal to a.length, the condition fails and the body is not exe‐
cuted—which is a good thing, because trying to access a[a.length] would throw an
exception.

You can also use a.length with Arrays.copyOf:

double[] b = Arrays.copyOf(a, a.length);

Array Traversal
Many computations can be implemented by looping through the elements of an array
and performing an operation on each element. For example, the following loop
squares the elements of a double array:

for (int i = 0; i < a.length; i++) {
 a[i] = Math.pow(a[i], 2.0);
}

Looping through the elements of an array is called a traversal. Another common pat‐
tern is a search, which involves traversing an array looking for a particular element.

Array Length | 107

For example, the following method takes an int array and an integer value, and it
returns the index where the value appears:

public static int search(double[] a, double target) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] == target) {
 return i;
 }
 }
 return -1;
}

If we find the target value in the array, we return its index immediately. If the loop
exits without finding the target, it returns -1, a special value chosen to indicate a
failed search.

Another common traversal is a reduce operation, which “reduces” an array of values
down to a single value. Examples include the sum or product of the elements, the
minimum, and the maximum. The following method takes a double array and
returns the sum of the elements:

public static int sum(double[] a) {
 double total = 0.0;
 for (int i = 0; i < a.length; i++) {
 total += a[i];
 }
 return total;
}

Before the loop, we initialize total to zero. Each time through the loop, we update
total by adding one element from the array. At the end of the loop, total contains
the sum of the elements. A variable used this way is sometimes called an accumula‐
tor.

Random Numbers
Most computer programs do the same thing every time they run; programs like that
are deterministic. Usually determinism is a good thing, since we expect the same cal‐
culation to yield the same result. But for some applications, we want the computer to
be unpredictable. Games are an obvious example, but there are many others.

Making a program nondeterministic turns out to be hard, because it’s hard for a
computer to generate truly random numbers. But there are algorithms that generate
unpredictable sequences called pseudorandom numbers. For most applications, they
are as good as random.

108 | Chapter 8: Arrays

If you did Exercise 3-4, you have already seen java.util.Random, which generates
pseudorandom numbers. The method nextInt takes an integer argument, n, and
returns a random integer between 0 and n - 1 (inclusive).

If you generate a long series of random numbers, every value should appear, at least
approximately, the same number of times. One way to test this behavior of nextInt is
to generate a large number of values, store them in an array, and count the number of
times each value occurs.

The following method creates an int array and fills it with random numbers between
0 and 99. The argument specifies the size of the array, and the return value is a refer‐
ence to the new array.

public static int[] randomArray(int size) {
 Random random = new Random();
 int[] a = new int[size];
 for (int i = 0; i < a.length; i++) {
 a[i] = random.nextInt(100);
 }
 return a;
}

The following fragment generates an array and displays it using printArray from
“Displaying Arrays” on page 105:

int numValues = 8;
int[] array = randomArray(numValues);
printArray(array);

The output looks like this:

{15, 62, 46, 74, 67, 52, 51, 10}

If you run it, you will probably get different values.

Traverse and Count
If these values were exam scores—and they would be pretty bad exam scores—the
teacher might present them to the class in the form of a histogram. In statistics, a
histogram is a set of counters that keeps track of the number of times each value
appears.

For exam scores, we might have ten counters to keep track of how many students
scored in the 90s, the 80s, etc. To do that, we can traverse the array and count the
number of elements that fall in a given range.

The following method takes an array and two integers, low and high. It returns the
number of elements that fall in the range from low to high.

Traverse and Count | 109

public static int inRange(int[] a, int low, int high) {
 int count = 0;
 for (int i = 0; i < a.length; i++) {
 if (a[i] >= low && a[i] < high) {
 count++;
 }
 }
 return count;
}

This pattern should look familiar: it is another reduce operation. Notice that low is
included in the range (>=), but high is excluded (<). This detail keeps us from count‐
ing any scores twice.

Now we can count the number of scores in each grade range:

int[] scores = randomArray(30);
int a = inRange(scores, 90, 100);
int b = inRange(scores, 80, 90);
int c = inRange(scores, 70, 80);
int d = inRange(scores, 60, 70);
int f = inRange(scores, 0, 60);

Building a Histogram
The previous code is repetitious, but it is acceptable as long as the number of ranges
is small. But suppose we wanted to keep track of the number of times each score
appears. We would have to write 100 lines of code:

int count0 = inRange(scores, 0, 1);
int count1 = inRange(scores, 1, 2);
int count2 = inRange(scores, 2, 3);
...
int count99 = inRange(scores, 99, 100);

What we need is a way to store 100 counters, preferably so we can use an index to
access them. In other words, we need another array!

The following fragment creates an array of 100 counters, one for each possible score.
It loops through the scores and uses inRange to count how many times each score
appears. Then it stores the results in the array:

int[] counts = new int[100];
for (int i = 0; i < counts.length; i++) {
 counts[i] = inRange(scores, i, i + 1);
}

Notice that we are using the loop variable i three times: as an index into the counts
array, and as two arguments for inRange. The code works, but it is not as efficient as
it could be. Every time the loop invokes inRange, it traverses the entire array.

110 | Chapter 8: Arrays

It would be better to make a single pass through the array, and for each score, com‐
pute which range it falls in and increment the corresponding counter. This code tra‐
verses the array of scores only once to generate the histogram:

int[] counts = new int[100];
for (int i = 0; i < scores.length; i++) {
 int index = scores[i];
 counts[index]++;
}

Each time through the loop, it selects one element from scores and uses it as an
index to increment the corresponding element of counts. Because this code only tra‐
verses the array of scores once, it is much more efficient.

The Enhanced for Loop
Since traversing arrays is so common, Java provides an alternative syntax that makes
the code more compact. For example, consider a for loop that displays the elements
of an array on separate lines:

for (int i = 0; i < values.length; i++) {
 System.out.println(values[i]);
}

We could rewrite the loop like this:

for (int value : values) {
 System.out.println(value);
}

This statement is called an enhanced for loop. You can read it as, “for each value in
values”. It’s conventional to use plural nouns for array variables and singular nouns
for element variables.

Using the enhanced for loop, and removing the temporary variable, we can write the
histogram code from the previous section more concisely:

int[] counts = new int[100];
for (int score : scores) {
 counts[score]++;
}

Enhanced for loops often make the code more readable, especially for accumulating
values. But they are not helpful when you need to refer to the index, as in search
operations.

The Enhanced for Loop | 111

Vocabulary
array:

A collection of values, where all the values have the same type, and each value is
identified by an index.

element:
One of the values in an array. The [] operator selects elements.

index:
An integer variable or value used to indicate an element of an array.

reference:
A value that indicates another value, like an array. In a state diagram, a reference
appears as an arrow.

alias:
A variable that refers to the same object as another variable.

traversal:
Looping through the elements of an array (or other collection).

search:
A traversal pattern used to find a particular element of an array.

reduce:
A traversal pattern that combines the elements of an array into a single value.

accumulator:
A variable used to accumulate results during a traversal.

deterministic:
A program that does the same thing every time it is invoked.

nondeterministic:
A program that always behaves differently, even when run multiple times with
the same input.

pseudorandom:
A sequence of numbers that appear to be random, but which are actually the
product of a deterministic computation.

histogram:
An array of integers where each integer counts the number of values that fall into
a certain range.

enhanced for loop:
An alternative syntax for traversing the elements (values) of an array.

112 | Chapter 8: Arrays

Exercises
The code for this chapter is in the ch08 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 8-1.

The goal of this exercise is to practice encapsulation with some of the examples in this
chapter.

1. Starting with the code in “Array Traversal” on page 107, write a method called
powArray that takes a double array, a, and returns a new array that contains the
elements of a squared. Generalize it to take a second argument and raise the ele‐
ments of a to the given power.

2. Starting with the code in “The Enhanced for Loop” on page 111, write a method
called histogram that takes an int array of scores from 0 to (but not including)
100, and returns a histogram of 100 counters. Generalize it to take the number of
counters as an argument.

Exercise 8-2.

The purpose of this exercise is to practice reading code and recognizing the traversal
patterns in this chapter. The following methods are hard to read, because instead of
using meaningful names for the variables and methods, they use names of fruit.

public static int banana(int[] a) {
 int kiwi = 1;
 int i = 0;
 while (i < a.length) {
 kiwi = kiwi * a[i];
 i++;
 }
 return kiwi;
}

public static int grapefruit(int[] a, int grape) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] == grape) {
 return i;
 }
 }
 return -1;
}

Exercises | 113

public static int pineapple(int[] a, int apple) {
 int pear = 0;
 for (int pine: a) {
 if (pine == apple) {
 pear++;
 }
 }
 return pear;
}

For each method, write one sentence that describes what the method does, without
getting into the details of how it works. For each variable, identify the role it plays.

Exercise 8-3.

What is the output of the following program? Draw a stack diagram that shows the
state of the program just before mus returns. Describe in a few words what mus does.

public static int[] make(int n) {
 int[] a = new int[n];
 for (int i = 0; i < n; i++) {
 a[i] = i + 1;
 }
 return a;
}

public static void dub(int[] jub) {
 for (int i = 0; i < jub.length; i++) {
 jub[i] *= 2;
 }
}

public static int mus(int[] zoo) {
 int fus = 0;
 for (int i = 0; i < zoo.length; i++) {
 fus += zoo[i];
 }
 return fus;
}

public static void main(String[] args) {
 int[] bob = make(5);
 dub(bob);
 System.out.println(mus(bob));
}

Exercise 8-4.

Write a method called indexOfMax that takes an array of integers and returns the
index of the largest element. Can you write this method using an enhanced for loop?
Why or why not?

114 | Chapter 8: Arrays

Exercise 8-5.

The Sieve of Eratosthenes is “a simple, ancient algorithm for finding all prime num‐
bers up to any given limit,” which you can read about at https://en.wikipedia.org/wiki/
Sieve_of_Eratosthenes.

Write a method called sieve that takes an integer parameter, n, and returns a boolean
array that indicates, for each number from 0 to n - 1, whether the number is prime.

Exercise 8-6.

Write a method named areFactors that takes an integer n and an array of integers,
and that returns true if the numbers in the array are all factors of n (which is to say
that n is divisible by all of them).

Exercise 8-7.

Write a method named arePrimeFactors that takes an integer n and an array of inte‐
gers, and that returns true if the numbers in the array are all prime and their product
is n.

Exercise 8-8.

Many of the patterns we have seen for traversing arrays can also be written recur‐
sively. It is not common, but it is a useful exercise.

1. Write a method called maxInRange that takes an array of integers and two
indexes, lowIndex and highIndex, and finds the maximum value in the array, but
only considering the elements between lowIndex and highIndex, including both.
This method should be recursive. If the length of the range is 1, that is, if lowIn
dex == highIndex, we know immediately that the sole element in the range must
be the maximum. So that’s the base case.
If there is more than one element in the range, we can break the array into two
pieces, find the maximum in each of the pieces, and then find the maximum of
the maxima.

2. Methods like maxInRange can be awkward to use. To find the largest element in
an array, we have to provide the range for the entire array.
double max = maxInRange(a, 0, a.length - 1);

Write a method called max that takes an array and uses maxInRange to find and
return the largest element.

Exercises | 115

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

CHAPTER 9

Strings and Things

In Java and other object-oriented languages, an object is a collection of data that pro‐
vides a set of methods. For example, Scanner, which we saw in “The Scanner Class”
on page 30, is an object that provides methods for parsing input. System.out and
System.in are also objects.

Strings are objects, too. They contain characters and provide methods for manipulat‐
ing character data. We explore some of those methods in this chapter.

Not everything in Java is an object: int, double, and boolean are so-called primitive
types. We will explain some of the differences between object types and primitive
types as we go along.

Characters
Strings provide a method named charAt, which extracts a character. It returns a char,
a primitive type that stores an individual character (as opposed to strings of them).

String fruit = "banana";
char letter = fruit.charAt(0);

The argument 0 means that we want the letter at position 0. Like array indexes, string
indexes start at 0, so the character assigned to letter is b.

Characters work like the other primitive types we have seen. You can compare them
using relational operators:

if (letter == 'a') {
 System.out.println('?');
}

117

Character literals, like 'a', appear in single quotes. Unlike string literals, which
appear in double quotes, character literals can only contain a single character. Escape
sequences, like '\t', are legal because they represent a single character.

The increment and decrement operators work with characters. So this loop displays
the letters of the alphabet:

System.out.print("Roman alphabet: ");
for (char c = 'A'; c <= 'Z'; c++) {
 System.out.print(c);
}
System.out.println();

Java uses Unicode to represent characters, so strings can store text in other alphabets
like Cyrillic and Greek, and non-alphabetic languages like Chinese. You can read
more about it at http://unicode.org/.

In Unicode, each character is represented by a “code unit”, which you can think of as
an integer. The code units for uppercase Greek letters run from 913 to 937, so we can
display the Greek alphabet like this:

System.out.print("Greek alphabet: ");
for (int i = 913; i <= 937; i++) {
 System.out.print((char) i);
}
System.out.println();

This example uses a type cast to convert each integer (in the range) to the corre‐
sponding character.

Strings Are Immutable
Strings provide methods, toUpperCase and toLowerCase, that convert from upper‐
case to lowercase and back. These methods are often a source of confusion, because it
sounds like they modify strings. But neither these methods nor any others can change
a string, because strings are immutable.

When you invoke toUpperCase on a string, you get a new string object as a return
value. For example:

String name = "Alan Turing";
String upperName = name.toUpperCase();

After these statements run, upperName refers to the string "ALAN TURING". But name
still refers to "Alan Turing".

118 | Chapter 9: Strings and Things

http://unicode.org/

Another useful method is replace, which finds and replaces instances of one string
within another. This example replaces "Computer Science" with "CS":

String text = "Computer Science is fun!";
text = text.replace("Computer Science", "CS");

This example demonstrates a common way to work with string methods. It invokes
text.replace, which returns a reference to a new string, "CS is fun!". Then it
assigns the new string to text, replacing the old string.

This assignment is important; if you don’t save the return value, invoking
text.replace has no effect.

String Traversal
The following loop traverses the characters in fruit and displays them, one on each
line:

for (int i = 0; i < fruit.length(); i++) {
 char letter = fruit.charAt(i);
 System.out.println(letter);
}

Strings provide a method called length that returns the number of characters in the
string. Because it is a method, you have to invoke it with the empty argument list, ().

The condition is i < fruit.length(), which means that when i is equal to the
length of the string, the condition is false and the loop terminates.

Unfortunately, the enhanced for loop does not work with strings. But you can con‐
vert any string to a character array and iterate that:

for (char letter : fruit.toCharArray()) {
 System.out.println(letter);
}

To find the last letter of a string, you might be tempted to try something like:

int length = fruit.length();
char last = fruit.charAt(length); // wrong!

This code compiles and runs, but invoking the charAt method throws a StringIndex
OutOfBoundsException. The problem is that there is no sixth letter in "banana".
Since we started counting at 0, the 6 letters are indexed from 0 to 5. To get the last
character, you have to subtract 1 from length.

int length = fruit.length();
char last = fruit.charAt(length - 1); // correct

Many string traversals involve reading one string and creating another. For example,
to reverse a string, we simply add one character at a time:

String Traversal | 119

public static String reverse(String s) {
 String r = "";
 for (int i = s.length() - 1; i >= 0; i--) {
 r = r + s.charAt(i);
 }
 return r;
}

The initial value of r is "", which is the empty string. The loop traverses the letters of
s in reverse order. Each time through the loop, it creates a new string and assigns it to
r. When the loop exits, r contains the letters from s in reverse order. So the result of
reverse("banana") is "ananab".

Substrings
The substring method returns a new string that copies letters from an existing
string, starting at the given index.

• fruit.substring(0) returns "banana"
• fruit.substring(2) returns "nana"
• fruit.substring(6) returns ""

The first example returns a copy of the entire string. The second example returns all
but the first two characters. As the last example shows, substring returns the empty
string if the argument is the length of the string.

To visualize how the substring method works, it helps to draw a picture like
Figure 9-1.

Figure 9-1. State diagram for a String of six characters.

Like most string methods, substring is overloaded. That is, there are other versions
of substring that have different parameters. If it’s invoked with two arguments, they
are treated as a start and end index:

• fruit.substring(0, 3) returns "ban"
• fruit.substring(2, 5) returns "nan"
• fruit.substring(6, 6) returns ""

120 | Chapter 9: Strings and Things

Notice that the character indicated by the end index is not included. Defining sub
string this way simplifies some common operations. For example, to select a sub‐
string with length len, starting at index i, you could write fruit.substring(i, i +
len).

The indexOf Method
The indexOf method searches for a character in a string.

String fruit = "banana";
int index = fruit.indexOf('a');

This example finds the index of 'a' in the string. But the letter appears three times,
so it’s not obvious what indexOf should do. According to the documentation, it
returns the index of the first appearance.

To find subsequent appearances, you can use another version of indexOf, which takes
a second argument that indicates where in the string to start looking.

int index = fruit.indexOf('a', 2);

This code starts at index 2 (the first 'n') and finds the next 'a', which is at index 3. If
the letter happens to appear at the starting index, the starting index is the answer. So
fruit.indexOf('a', 5) returns 5.

If the character does not appear in the string, indexOf returns -1. Since indexes can‐
not be negative, this value indicates the character was not found.

You can also use indexOf to search for a substring, not just a single character. For
example, the expression fruit.indexOf("nan") returns 2.

String Comparison
To compare two strings, it may be tempting to use the == and != operators.

String name1 = "Alan Turing";
String name2 = "Ada Lovelace";
if (name1 == name2) { // wrong!
 System.out.println("The names are the same.");
}

This code compiles and runs, and most of the time it gets the answer right. But it is
not correct, and sometimes it gets the answer wrong. The problem is that the == oper‐
ator checks whether the two variables refer to the same object (by comparing the ref‐
erences). If you give it two different strings that contain the same letters, it yields
false.

The right way to compare strings is with the equals method, like this:

The indexOf Method | 121

if (name1.equals(name2)) {
 System.out.println("The names are the same.");
}

This example invokes equals on name1 and passes name2 as an argument. The equals
method returns true if the strings contain the same characters; otherwise it returns
false.

If the strings differ, we can use compareTo to see which comes first in alphabetical
order:

int diff = name1.compareTo(name2);
if (diff == 0) {
 System.out.println("The names are the same.");
} else if (diff < 0) {
 System.out.println("name1 comes before name2.");
} else if (diff > 0) {
 System.out.println("name2 comes before name1.");
}

The return value from compareTo is the difference between the first characters in the
strings that differ. If the strings are equal, their difference is zero. If the first string
(the one on which the method is invoked) comes first in the alphabet, the difference
is negative. Otherwise, the difference is positive.

In the preceding code, compareTo returns positive 8, because the second letter of
"Ada" comes before the second letter of "Alan" by 8 letters.

Both equals and compareTo are case-sensitive. The uppercase letters come before the
lowercase letters, so "Ada" comes before "ada".

String Formatting
In “Formatting Output” on page 33, we learned how to use printf to display format‐
ted output. Sometimes programs need to create strings that are formatted a certain
way, but not display them immediately, or ever. For example, the following method
returns a time string in 12-hour format:

public static String timeString(int hour, int minute) {
 String ampm;
 if (hour < 12) {
 ampm = "AM";
 if (hour == 0) {
 hour = 12; // midnight
 }
 } else {
 ampm = "PM";
 hour = hour - 12;
 }
 return String.format("%02d:%02d %s", hour, minute, ampm);
}

122 | Chapter 9: Strings and Things

String.format takes the same arguments as System.out.printf: a format specifier
followed by a sequence of values. The main difference is that System.out.printf dis‐
plays the result on the screen; String.format creates a new string, but does not dis‐
play anything.

In this example, the format specifier %02d means “two digit integer padded with
zeros”, so timeString(19, 5) returns the string "07:05 PM".

Wrapper Classes
Primitive values (like ints, doubles, and chars) do not provide methods. For exam‐
ple, you can’t call equals on an int:

int i = 5;
System.out.println(i.equals(5)); // compiler error

But for each primitive type, there is a corresponding class in the Java library, called a
wrapper class. The wrapper class for char is called Character; for int it’s called
Integer. Other wrapper classes include Boolean, Long, and Double. They are in the
java.lang package, so you can use them without importing them.

Each wrapper class defines constants MIN_VALUE and MAX_VALUE. For example,
Integer.MIN_VALUE is -2147483648, and Integer.MAX_VALUE is 2147483647. Because
these constants are available in wrapper classes, you don’t have to remember them,
and you don’t have to include them in your programs.

Wrapper classes provide methods for converting strings to other types. For example,
Integer.parseInt converts a string to (you guessed it) an integer:

String str = "12345";
int num = Integer.parseInt(str);

In this context, parse means something like “read and translate”.

The other wrapper classes provide similar methods, like Double.parseDouble and
Boolean.parseBoolean. They also provide toString, which returns a string repre‐
sentation of a value:

int num = 12345;
String str = Integer.toString(num);

The result is the string "12345".

Command-Line Arguments
Now that you know about arrays and strings, we can finally explain the args parame‐
ter for main that we have been ignoring since Chapter 1. If you are unfamiliar with

Wrapper Classes | 123

the command-line interface, please read or review “Command-Line Interface” on
page 203.

Continuing an earlier example, let’s write a program to find the largest value in a
sequence of numbers. Rather than read the numbers from System.in, we’ll pass them
as command-line arguments. Here is a starting point:

public class Max {
 public static void main(String[] args) {
 System.out.println(Arrays.toString(args));
 }
}

You can run this program from the command line by typing:

java Max

The output indicates that args is an empty array; that is, it has no elements:

[]

But if you provide additional values on the command line, they are passed as argu‐
ments to main. For example, if you run it like this:

java Max 10 -3 55 0 14

The output is:

[10, -3, 55, 0, 14]

But remember that the elements of args are strings. To find the maximum number,
we have to convert the arguments to integers.

The following fragment uses an enhanced for loop to parse the arguments (using the
Integer wrapper class) and find the largest value:

int max = Integer.MIN_VALUE;
for (String arg : args) {
 int value = Integer.parseInt(arg);
 if (value > max) {
 max = value;
 }
}
System.out.println("The max is " + max);

The initial value of max is the smallest (most negative) number an int can represent,
so any other value is greater. If args is empty, the result is MIN_VALUE.

124 | Chapter 9: Strings and Things

Vocabulary
object:

A collection of related data that comes with a set of methods that operate on it.

primitive:
A data type that stores a single value and provides no methods.

Unicode:
A standard for representing characters in most of the world’s languages.

immutable:
An object that, once created, cannot be modified. Strings are immutable by
design.

empty string:
The string "", which contains no characters and has a length of zero.

wrapper class:
Classes in java.lang that provide constants and methods for working with prim‐
itive types.

parse:
To read a string and interpret or translate it.

empty array:
An array with no elements and a length of zero.

Exercises
The code for this chapter is in the ch09 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 9-1.

The point of this exercise is to explore Java types and fill in some of the details that
aren’t covered in the chapter.

1. Create a new program named Test.java and write a main method that contains
expressions that combine various types using the + operator. For example, what
happens when you “add” a String and a char? Does it perform character addi‐
tion or string concatenation? What is the type of the result? (How can you deter‐
mine the type of the result?)

Vocabulary | 125

2. Make a bigger copy of the following table and fill it in. At the intersection of each
pair of types, you should indicate whether it is legal to use the + operator with
these types, what operation is performed (addition or concatenation), and what
the type of the result is.

boolean char int double String

boolean

char

int

double

String

3. Think about some of the choices the designers of Java made when they filled in
this table. How many of the entries seem unavoidable, as if there was no other
choice? How many seem like arbitrary choices from several equally reasonable
possibilities? Which entries seem most problematic?

4. Here’s a puzzler: normally, the statement x++ is exactly equivalent to x = x + 1.
But if x is a char, it’s not exactly the same! In that case, x++ is legal, but x = x +
1 causes an error. Try it out and see what the error message is, then see if you can
figure out what is going on.

5. What happens when you add "" (the empty string) to the other types, for exam‐
ple, "" + 5?

6. For each data type, what types of values can you assign to it? For example, you
can assign an int to a double but not vice versa.

Exercise 9-2.

Write a method called letterHist that takes a string as a parameter and returns a
histogram of the letters in the string. The zeroth element of the histogram should
contain the number of a’s in the string (upper- and lowercase); the 25th element
should contain the number of z’s. Your solution should only traverse the string once.

Exercise 9-3.

The purpose of this exercise is to review encapsulation and generalization (see
“Encapsulation and Generalization” on page 92). The following code fragment traver‐
ses a string and checks whether it has the same number of open and close parenthe‐
ses:

126 | Chapter 9: Strings and Things

String s = "((3 + 7) * 2)";
int count = 0;

for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i);
 if (c == '(') {
 count++;
 } else if (c == ')') {
 count--;
 }
}

System.out.println(count);

1. Encapsulate this fragment in a method that takes a string argument and returns
the final value of count.

2. Now that you have generalized the code so that it works on any string, what
could you do to generalize it more?

3. Test your method with multiple strings, including some that are balanced and
some that are not.

Exercise 9-4.

Create a program called Recurse.java and type in the following methods:
/**
 * Returns the first character of the given String.
 */
public static char first(String s) {
 return s.charAt(0);
}

/**
 * Returns all but the first letter of the given String.
 */
public static String rest(String s) {
 return s.substring(1);
}

/**
 * Returns all but the first and last letter of the String.
 */
public static String middle(String s) {
 return s.substring(1, s.length() - 1);
}

/**
 * Returns the length of the given String.
 */
public static int length(String s) {
 return s.length();
}

Exercises | 127

1. Write some code in main that tests each of these methods. Make sure they work,
and you understand what they do.

2. Using these methods, and without using any other String methods, write a
method called printString that takes a string as a parameter and that displays
the letters of the string, one on each line. It should be a void method.

3. Again using only these methods, write a method called printBackward that does
the same thing as printString but that displays the string backward (again, one
character per line).

4. Now write a method called reverseString that takes a string as a parameter and
that returns a new string as a return value. The new string should contain the
same letters as the parameter, but in reverse order.
String backwards = reverseString("coffee");
System.out.println(backwards);

The output of this example code should be:
eeffoc

5. A palindrome is a word that reads the same both forward and backward, like
“otto” and “palindromeemordnilap”. Here’s one way to test whether a string is a
palindrome:

A single letter is a palindrome, a two-letter word is a palindrome if the letters are
the same, and any other word is a palindrome if the first letter is the same as the
last and the middle is a palindrome.

Write a recursive method named isPalindrome that takes a String and returns a
boolean indicating whether the word is a palindrome.

Exercise 9-5.

A word is said to be “abecedarian” if the letters in the word appear in alphabetical
order. For example, the following are all six-letter English abecedarian words:

abdest, acknow, acorsy, adempt, adipsy, agnosy, befist, behint, beknow, bijoux, biopsy,
cestuy, chintz, deflux, dehors, dehort, deinos, diluvy, dimpsy

Write a method called isAbecedarian that takes a String and returns a boolean
indicating whether the word is abecedarian. Your method can be iterative or recur‐
sive.

128 | Chapter 9: Strings and Things

1 Scrabble is a registered trademark owned in the USA and Canada by Hasbro Inc., and in the rest of the world
by J. W. Spear & Sons Limited of Maidenhead, Berkshire, England, a subsidiary of Mattel Inc.

Exercise 9-6.

A word is said to be a “doubloon” if every letter that appears in the word appears
exactly twice. Here are some example doubloons found in the dictionary:

Abba, Anna, appall, appearer, appeases, arraigning, beriberi, bilabial, boob, Caucasus,
coco, Dada, deed, Emmett, Hannah, horseshoer, intestines, Isis, mama, Mimi, murmur,
noon, Otto, papa, peep, reappear, redder, sees, Shanghaiings, Toto

Write a method called isDoubloon that takes a string and checks whether it is a dou‐
bloon. To ignore case, invoke the toLowerCase method before checking.

Exercise 9-7.

Two words are anagrams if they contain the same letters and the same number of
each letter. For example, “stop” is an anagram of “pots” and “allen downey” is an ana‐
gram of “well annoyed”.

Write a method that takes two strings and checks whether they are anagrams of each
other.

Exercise 9-8.

In Scrabble1 each player has a set of tiles with letters on them. The object of the game
is to use those letters to spell words. The scoring system is complex, but longer words
are usually worth more than shorter words.

Imagine you are given your set of tiles as a string, like "quijibo", and you are given
another string to test, like "jib".

Write a method called canSpell that takes two strings and checks whether the set of
tiles can spell the word. You might have more than one tile with the same letter, but
you can only use each tile once.

Exercises | 129

CHAPTER 10

Objects

As we learned in the previous chapter, an object is a collection of data that provides a
set of methods. For example, a String is a collection of characters that provides
methods like charAt and substring.

Java is an “object-oriented” language, which means that it uses objects to represent
data and provide methods related to them. This way of organizing programs is a
powerful design concept, and we will introduce it a little at a time throughout the
remainder of the book.

In this chapter, we introduce two new types of objects: Point and Rectangle. We
show how to write methods that take objects as parameters and produce objects as
return values. We also take a look at the source code for the Java library.

Point Objects
The java.awt package provides a class named Point intended to represent the coor‐
dinates of a location in a Cartesian plane. In mathematical notation, points are often
written in parentheses with a comma separating the coordinates. For example, 0, 0
indicates the origin, and x, y indicates the point x units to the right and y units up
from the origin.

In order to use the Point class, you have to import it:

import java.awt.Point;

Then, to create a new point, you have to use the new operator:

Point blank;
blank = new Point(3, 4);

131

The first line declares that blank has type Point. The second line creates the new
Point with the given arguments as coordinates.

The result of the new operator is a reference to the new object. So blank contains a
reference to the new Point object. Figure 10-1 shows the result.

Figure 10-1. State diagram showing a variable that refers to a Point object.

As usual, the name of the variable blank appears outside the box, and its value
appears inside the box. In this case, the value is a reference, which is represented with
an arrow. The arrow points to the new object, which contains two variables, x and y.

Attributes
Variables that belong to an object are usually called attributes, but you might also see
them called “fields”. To access an attribute of an object, Java uses dot notation. For
example:

int x = blank.x;

The expression blank.x means “go to the object blank refers to, and get the value of
the attribute x.” In this case, we assign that value to a local variable named x. There is
no conflict between the local variable named x and the attribute named x. The pur‐
pose of dot notation is to identify which variable you are referring to unambiguously.

You can use dot notation as part of an expression. For example:

System.out.println(blank.x + ", " + blank.y);
int sum = blank.x * blank.x + blank.y * blank.y;

The first line displays 3, 4; the second line calculates the value 25.

132 | Chapter 10: Objects

Objects as Parameters
You can pass objects as parameters in the usual way. For example:

public static void printPoint(Point p) {
 System.out.println("(" + p.x + ", " + p.y + ")");
}

This method takes a point as an argument and displays its attributes in parentheses. If
you invoke printPoint(blank), it displays (3, 4).

But we don’t really need a method like printPoint, because if you invoke Sys
tem.out.println(blank) you get:

java.awt.Point[x=3,y=4]

Point objects provide a method called toString that returns a string representation
of a point. When you call println with objects, it automatically calls toString and
displays the result. In this case, it shows the name of the type (java.awt.Point) and
the names and values of the attributes.

As another example, we can rewrite the distance method from “Writing Methods”
on page 73 so that it takes two Points as parameters instead of four doubles.

public static double distance(Point p1, Point p2) {
 int dx = p2.x - p1.x;
 int dy = p2.y - p1.y;
 return Math.sqrt(dx * dx + dy * dy);
}

Passing objects as parameters makes the source code more readable and less error-
prone, because related values are bundled together.

Objects as Return Types
The java.awt package also provides a class called Rectangle. To use it, you have to
import it:

import java.awt.Rectangle;

Rectangle objects are similar to points, but they have four attributes: x, y, width, and
height. The following example creates a Rectangle object and makes the variable
box refer to it:

Rectangle box = new Rectangle(0, 0, 100, 200);

Figure 10-2 shows the effect of this assignment.

Objects as Parameters | 133

Figure 10-2. State diagram showing a Rectangle object.

If you run System.out.println(box), you get:

java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, println uses the toString method provided by Rectangle, which knows how
to display Rectangle objects.

You can write methods that return objects. For example, findCenter takes a
Rectangle as an argument and returns a Point with the coordinates of the center of
the rectangle:

public static Point findCenter(Rectangle box) {
 int x = box.x + box.width / 2;
 int y = box.y + box.height / 2;
 return new Point(x, y);
}

The return type of this method is Point. The last line creates a new Point object and
returns a reference to it.

Mutable Objects
You can change the contents of an object by making an assignment to one of its
attributes. For example, to “move” a rectangle without changing its size, you can
modify the x and y values:

Rectangle box = new Rectangle(0, 0, 100, 200);
box.x = box.x + 50;
box.y = box.y + 100;

The result is shown in Figure 10-3.

134 | Chapter 10: Objects

Figure 10-3. State diagram showing updated attributes.

We can encapsulate this code in a method and generalize it to move the rectangle by
any amount:

public static void moveRect(Rectangle box, int dx, int dy) {
 box.x = box.x + dx;
 box.y = box.y + dy;
}

The variables dx and dy indicate how far to move the rectangle in each direction.
Invoking this method has the effect of modifying the Rectangle that is passed as an
argument.

Rectangle box = new Rectangle(0, 0, 100, 200);
moveRect(box, 50, 100);
System.out.println(box);

Modifying objects by passing them as arguments to methods can be useful. But it can
also make debugging more difficult, because it is not always clear which method
invocations modify their arguments.

Java provides a number of methods that operate on Points and Rectangles. For
example, translate has the same effect as moveRect, but instead of passing the rec‐
tangle as an argument, you use dot notation:

box.translate(50, 100);

This line invokes the translate method for the object that box refers to. As a result,
the box object is updated directly.

This example is a good illustration of object-oriented programming. Rather than
write methods like moveRect that modify one or more parameters, we apply methods
to objects themselves using dot notation.

Mutable Objects | 135

Aliasing
Remember that when you assign an object to a variable, you are assigning a reference
to an object. It is possible to have multiple variables that refer to the same object. The
state diagram in Figure 10-4 shows the result.

Rectangle box1 = new Rectangle(0, 0, 100, 200);
Rectangle box2 = box1;

Figure 10-4. State diagram showing two variables that refer to the same object.

Notice how box1 and box2 are aliases for the same object, so any changes that affect
one variable also affect the other. This example adds 50 to all four sides of the rectan‐
gle, so it moves the corner up and to the left by 50, and it increases the height and
width by 100:

System.out.println(box2.width);
box1.grow(50, 50);
System.out.println(box2.width);

The first line displays 100, which is the width of the Rectangle referred to by box2.
The second line invokes the grow method on box1, which stretches the Rectangle
horizontally and vertically. The effect is shown in Figure 10-5.

Figure 10-5. State diagram showing the effect of invoking grow.

When we make a change using box1, we see the change using box2. Thus, the value
displayed by the third line is 200, the width of the expanded rectangle.

136 | Chapter 10: Objects

The null Keyword
When you create an object variable, remember that you are storing a reference to an
object. In Java, the keyword null is a special value that means “no object”. You can
declare and initialize object variables this way:

Point blank = null;

The value null is represented in state diagrams by a small box with no arrow, as in
Figure 10-6.

Figure 10-6. State diagram showing a variable that contains a null reference.

If you try to use a null value, either by accessing an attribute or invoking a method,
Java throws a NullPointerException.

Point blank = null;
int x = blank.x; // NullPointerException
blank.translate(50, 50); // NullPointerException

On the other hand, it is legal to pass a null reference as an argument or receive one as
a return value. For example, null is often used to represent a special condition or
indicate an error.

Garbage Collection
In “Aliasing” on page 136, we saw what happens when more than one variable refers
to the same object. What happens when no variables refer to an object?

Point blank = new Point(3, 4);
blank = null;

The first line creates a new Point object and makes blank refer to it. The second line
changes blank so that instead of referring to the object, it refers to nothing. In the
state diagram, we remove the arrow between them, as in Figure 10-7.

If there are no references to an object, there is no way to access its attributes or invoke
a method on it. From the programmer’s view, it ceases to exist. However it’s still
present in the computer’s memory, taking up space.

The null Keyword | 137

Figure 10-7. State diagram showing the effect of setting a variable to null.

As your program runs, the system automatically looks for stranded objects and
reclaims them; then the space can be reused for new objects. This process is called
garbage collection.

You don’t have to do anything to make garbage collection happen, and in general
don’t have to be aware of it. But in high-performance applications, you may notice a
slight delay every now and then when Java reclaims space from discarded objects.

Class Diagrams
To summarize what we’ve learned so far, Point and Rectangle objects each have their
own attributes and methods. Attributes are an object’s data, and methods are an
object’s code. An object’s class defines which attributes and methods it will have.

In practice, it’s more convenient to look at high-level pictures than to examine the
source code. Unified Modeling Language (UML) defines a standard way to summa‐
rize the design of a class.

As shown in Figure 10-8, a class diagram is divided into two sections. The top half
lists the attributes, and the bottom half lists the methods. UML uses a language-
independent format, so rather than showing int x, the diagram uses x: int.

Figure 10-8. UML class diagrams for Point and Rectangle.

138 | Chapter 10: Objects

In contrast to state diagrams, which visualize objects (and variables) at run-time, a
class diagram visualizes the source code at compile-time.

Both Point and Rectangle have additional methods; we are only showing the ones
introduced in this chapter. See the documentation for these classes to learn more
about what they can do.

Java Library Source
Throughout the book, you have used classes from the Java library including System,
String, Scanner, Math, Random, and others. You may not have realized that these
classes are written in Java. In fact, you can take a look at the source code to see how
they work.

The Java library contains thousands of files, many of which are thousands of lines of
code. That’s more than one person could read and understand fully, so please don’t be
intimidated!

Because it’s so large, the library source code is stored in a file named src.zip. Take a
few minutes to locate this file on your machine:

• On Linux, it’s likely under: /usr/lib/jvm/openjdk-8/ (You might need to install
the openjdk-8-source package.)

• On OS X, it’s likely under: /Library/Java/JavaVirtualMachines/jdk.../
Contents/Home/

• On Windows, it’s likely under: C:\Program Files\Java\jdk...\

When you open (or unzip) the file, you will see folders that correspond to Java pack‐
ages. For example, open the java folder and then open the awt folder. You should
now see Point.java and Rectangle.java, along with the other classes in the
java.awt package.

Open Point.java in your editor and skim through the file. It uses language features
we haven’t yet discussed, so you probably won’t understand everything. But you can
get a sense of what professional Java software looks like by browsing through the
library.

Notice how much of Point.java is documentation. Each method is thoroughly com‐
mented, including @param, @return, and other Javadoc tags. Javadoc reads these com‐
ments and generates documentation in HTML. You can see the results by reading the
documentation for the Point class, which you can find by doing a web search for
“Java Point”.

Java Library Source | 139

Now take a look at Rectangle’s grow and translate methods. There is more to them
than you may have realized, but that doesn’t limit your ability to use these methods in
a program.

To summarize the whole chapter, objects encapsulate data and provide methods to
access and modify the data directly. Object-oriented programming makes it possible
to hide messy details so that you can more easily use and understand code that other
people wrote.

Vocabulary
attribute:

One of the named data items that make up an object.

dot notation:
Use of the dot operator (.) to access an object’s attributes or methods.

object-oriented:
A way of organizing code and data into objects, rather than independent meth‐
ods.

garbage collection:
The process of finding objects that have no references and reclaiming their stor‐
age space.

UML:
Unified Modeling Language, a standard way to draw diagrams for software engi‐
neering.

class diagram:
An illustration of the attributes and methods for a class.

Exercises
The code for this chapter is in the ch10 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

140 | Chapter 10: Objects

Exercise 10-1.

The point of this exercise is to make sure you understand the mechanism for passing
objects as parameters.

1. For the following program, draw a stack diagram showing the local variables and
parameters of main and riddle just before riddle returns. Use arrows to show
which objects each variable references.

2. What is the output of the program?
3. Is the blank object mutable or immutable? How can you tell?

public static int riddle(int x, Point p) {
 x = x + 7;
 return x + p.x + p.y;
}

public static void main(String[] args) {
 int x = 5;
 Point blank = new Point(1, 2);

 System.out.println(riddle(x, blank));
 System.out.println(x);
 System.out.println(blank.x);
 System.out.println(blank.y);
}

Exercise 10-2.

The point of this exercise is to make sure you understand the mechanism for return‐
ing new objects from methods.

1. Draw a stack diagram showing the state of the program just before distance
returns. Include all variables and parameters, and show the objects those vari‐
ables refer to.

2. What is the output of this program? (Can you tell without running it?)

public static double distance(Point p1, Point p2) {
 int dx = p2.x - p1.x;
 int dy = p2.y - p1.y;
 return Math.sqrt(dx * dx + dy * dy);
}

public static Point findCenter(Rectangle box) {
 int x = box.x + box.width / 2;
 int y = box.y + box.height / 2;
 return new Point(x, y);
}

Exercises | 141

public static void main(String[] args) {
 Point blank = new Point(5, 8);

 Rectangle rect = new Rectangle(0, 2, 4, 4);
 Point center = findCenter(rect);

 double dist = distance(center, blank);
 System.out.println(dist);
}

Exercise 10-3.

This exercise is about aliasing. Recall that aliases are two variables that refer to the
same object.

1. Draw a diagram that shows the state of the program just before the end of main.
Include all local variables and the objects they refer to.

2. What is the output of the program?
3. At the end of main, are p1 and p2 aliased? Why or why not?

public static void printPoint(Point p) {
 System.out.println("(" + p.x + ", " + p.y + ")");
}

public static Point findCenter(Rectangle box) {
 int x = box.x + box.width / 2;
 int y = box.y + box.height / 2;
 return new Point(x, y);
}

public static void main(String[] args) {
 Rectangle box1 = new Rectangle(2, 4, 7, 9);
 Point p1 = findCenter(box1);
 printPoint(p1);

 box1.grow(1, 1);
 Point p2 = findCenter(box1);
 printPoint(p2);
}

142 | Chapter 10: Objects

Exercise 10-4.

You might be sick of the factorial method by now, but we’re going to do one more
version.

1. Create a new program called Big.java and write (or reuse) an iterative version of
factorial.

2. Display a table of the integers from 0 to 30 along with their factorials. At some
point around 15, you will probably see that the answers are not right anymore.
Why not?

3. BigInteger is a Java class that can represent arbitrarily big integers. There is no
upper bound except the limitations of memory size and processing speed. Take a
minute to read the documentation, which you can find by doing a web search for
“Java BigInteger”.

4. To use BigIntegers, you have to import java.math.BigInteger at the beginning
of your program.

5. There are several ways to create a BigInteger, but the simplest uses valueOf. The
following code converts an integer to a BigInteger:
int x = 17;
BigInteger big = BigInteger.valueOf(x);

6. Since BigIntegers are not primitive types, the usual math operators don’t work.
Instead, we have to use methods like add. To add two BigIntegers, invoke add on
one and pass the other as an argument.
BigInteger small = BigInteger.valueOf(17);
BigInteger big = BigInteger.valueOf(1700000000);
BigInteger total = small.add(big);

Try out some of the other methods, like multiply and pow.
7. Convert factorial so that it performs its calculation using BigIntegers and

returns a BigInteger as a result. You can leave the parameter alone; it will still be
an integer.

8. Try displaying the table again with your modified factorial method. Is it correct
up to 30? How high can you make it go?

9. Are BigInteger objects mutable or immutable? How can you tell?

Exercises | 143

Exercise 10-5.

Many encryption algorithms depend on the ability to raise large integers to a power.
Here is a method that implements an efficient algorithm for integer exponentiation:

public static int pow(int x, int n) {
 if (n == 0) return 1;

 // find x to the n/2 recursively
 int t = pow(x, n / 2);

 // if n is even, the result is t squared
 // if n is odd, the result is t squared times x
 if (n % 2 == 0) {
 return t * t;
 } else {
 return t * t * x;
 }
}

The problem with this method is that it only works if the result is small enough to be
represented by an int. Rewrite it so that the result is a BigInteger. The parameters
should still be integers, though.

You should use the BigInteger methods add and multiply. But don’t use
BigInteger.pow; that would spoil the fun.

144 | Chapter 10: Objects

CHAPTER 11

Classes

Whenever you define a new class, you also create a new type with the same name. So
way back in “The Hello World Program” on page 4, when we defined the class Hello,
we created a type named Hello. We didn’t declare any variables with type Hello, and
we didn’t use new to create a Hello object. It wouldn’t have done much if we had—but
we could have!

In this chapter, we will define classes that represent useful object types. We will also
clarify the difference between classes and objects. Here are the most important ideas:

• Defining a class creates a new object type with the same name.
• Every object belongs to some object type; that is, it is an instance of some class.
• A class definition is like a template for objects: it specifies what attributes the

objects have and what methods can operate on them.
• Think of a class like a blueprint for a house: you can use the same blueprint to

build any number of houses.
• The methods that operate on an object type are defined in the class for that

object.

The Time Class
One common reason to define a new class is to encapsulate related data in an object
that can be treated as a single unit. That way, we can use objects as parameters and
return values, rather than passing and returning multiple values. This design princi‐
ple is called data encapsulation.

145

We have already seen two types that encapsulate data in this way: Point and
Rectangle. Another example, which we will implement ourselves, is Time, which rep‐
resents a time of day. The data encapsulated in a Time object are an hour, a minute,
and a number of seconds. Because every Time object contains these data, we define
attributes to hold them.

Attributes are also called instance variables, because each instance has its own vari‐
ables (as opposed to class variables, coming up in “Class Variables” on page 164).

The first step is to decide what type each variable should be. It seems clear that hour
and minute should be integers. Just to keep things interesting, let’s make second a
double.

Instance variables are declared at the beginning of the class definition, outside of any
method. By itself, this code fragment is a legal class definition:

public class Time {
 private int hour;
 private int minute;
 private double second;
}

The Time class is public, which means that it can be used in other classes. But the
instance variables are private, which means they can only be accessed from inside
the Time class. If you try to read or write them from another class, you will get a com‐
piler error.

Private instance variables help keep classes isolated from each other so that changes
in one class won’t require changes in other classes. It also simplifies what other pro‐
grammers need to understand in order to use your classes. This kind of isolation is
called information hiding.

Constructors
After declaring the instance variables, the next step is to define a constructor, which
is a special method that initializes the instance variables. The syntax for constructors
is similar to that of other methods, except:

• The name of the constructor is the same as the name of the class.
• Constructors have no return type (and no return value).
• The keyword static is omitted.

146 | Chapter 11: Classes

Here is an example constructor for the Time class:

public Time() {
 this.hour = 0;
 this.minute = 0;
 this.second = 0.0;
}

This constructor does not take any arguments. Each line initializes an instance vari‐
able to zero (which in this example means midnight).

The name this is a keyword that refers to the object we are creating. You can use
this the same way you use the name of any other object. For example, you can read
and write the instance variables of this, and you can pass this as an argument to
other methods. But you do not declare this, and you can’t make an assignment to it.

A common error when writing constructors is to put a return statement at the end.
Like void methods, constructors do not return values.

To create a Time object, you must use the new operator:

Time time = new Time();

When you invoke new, Java creates the object and calls your constructor to initialize
the instance variables. When the constructor is done, new returns a reference to the
new object. In this example, the reference gets assigned to the variable time, which
has type Time. Figure 11-1 shows the result.

Figure 11-1. State diagram of a Time object.

Constructors | 147

Beginners sometimes make the mistake of invoking new inside the constructor. You
don’t have to, and you shouldn’t. In this example, invoking new Time() in the con‐
structor causes an infinite recursion:

public Time() {
 new Time(); // wrong!
 this.hour = 0;
 this.minute = 0;
 this.second = 0.0;
}

More Constructors
Like other methods, constructors can be overloaded, which means you can provide
multiple constructors with different parameters. Java knows which constructor to
invoke by matching the arguments you provide with the parameters of the construc‐
tors.

It is common to provide a constructor that takes no arguments, like the previous one,
and a “value constructor”, like this one:

public Time(int hour, int minute, double second) {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
}

All this constructor does is copy values from the parameters to the instance variables.
In this example, the names and types of the parameters are the same as the instance
variables. As a result, the parameters shadow (or hide) the instance variables, so the
keyword this is necessary to tell them apart. Parameters don’t have to use the same
names, but that’s a common style.

To invoke this second constructor, you have to provide arguments after the new oper‐
ator. This example creates a Time object that represents a fraction of a second before
noon:

Time time = new Time(11, 59, 59.9);

Overloading constructors provides the flexibility to create an object first and then fill
in the attributes, or collect all the information before creating the object itself.

Once you get the hang of it, writing constructors gets boring. You can write them
quickly just by looking at the list of instance variables. In fact, some IDEs can gener‐
ate them for you.

Pulling it all together, here is the complete class definition so far:

148 | Chapter 11: Classes

public class Time {
 private int hour;
 private int minute;
 private double second;

 public Time() {
 this.hour = 0;
 this.minute = 0;
 this.second = 0.0;
 }

 public Time(int hour, int minute, double second) {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
}

Getters and Setters
Recall that the instance variables of Time are private. We can access them from
within the Time class, but if we try to access them from another class, the compiler
generates an error.

For example, here’s a new class called TimeClient, because a class that uses objects
defined in another class is called a client:

public class TimeClient {

 public static void main(String[] args) {
 Time time = new Time(11, 59, 59.9);
 System.out.println(time.hour); // compiler error
 }
}

If you try to compile this code, you will get a message like hour has private access
in Time. There are three ways to solve this problem:

• We could make the instance variables public.
• We could provide methods to access the instance variables.
• We could decide that it’s not a problem, and refuse to let other classes access the

instance variables.

The first choice is appealing because it’s simple. But the problem is that when Class A
accesses the instance variables of Class B directly, A becomes “dependent” on B. If
anything in B changes later, it is likely that A will have to change, too.

Getters and Setters | 149

But if A only uses methods to interact with B, A and B are “independent”, which
means that we can make changes in B without affecting A (as long as we don’t change
the method signatures).

So if we decide that TimeClient should be able to read the instance variables of Time,
we can provide methods to do it:

public int getHour() {
 return this.hour;
}

public int getMinute() {
 return this.minute;
}

public int getSecond() {
 return this.second;
}

Methods like these are formally called “accessors”, but more commonly referred to as
getters. By convention, the method that gets a variable named something is called
getSomething.

If we decide that TimeClient should also be able to modify the instance variables of
Time, we can provide methods to do that, too:

public void setHour(int hour) {
 this.hour = hour;
}

public void setMinute(int minute) {
 this.minute = minute;
}

public void setSecond(int second) {
 this.second = second;
}

These methods are formally called “mutators”, but more commonly known as setters.
The naming convention is similar; the method that sets something is usually called
setSomething.

Writing getters and setters can get boring, but many IDEs can generate them for you
based on the instance variables.

150 | Chapter 11: Classes

Displaying Objects
If you create a Time object and display it with println:

public static void main(String[] args) {
 Time time = new Time(11, 59, 59.9);
 System.out.println(time);
}

The output will look something like:

Time@80cc7c0

When Java displays the value of an object type, it displays the name of the type and
the address of the object (in hexadecimal). This address can be useful for debugging,
if you want to keep track of individual objects.

To display Time objects in a way that is more meaningful to users, you could write a
method to display the hour, minute, and second. Using printTime in “Multiple
Parameters” on page 49 as a starting point, we could write:

public static void printTime(Time t) {
 System.out.print(t.hour);
 System.out.print(":");
 System.out.println(t.minute);
 System.out.print(":");
 System.out.println(t.second);
}

The output of this method, given the time object from the previous section, would be
11:59:59.9. We can use printf to write it more concisely:

public static void printTime(Time t) {
 System.out.printf("%02d:%02d:%04.1f\n",
 t.hour, t.minute, t.second);
}

As a reminder, you need to use %d with integers and %f with floating-point numbers.
The 02 option means “total width 2, with leading zeros if necessary”, and the 04.1
option means “total width 4, one digit after the decimal point, leading zeros if neces‐
sary”.

The toString Method
Every object type has a method called toString that returns a string representation of
the object. When you display an object using print or println, Java invokes the
object’s toString method.

Displaying Objects | 151

By default it simply displays the type of the object and its address, but you can over‐
ride this behavior by providing your own toString method. For example, here is a
toString method for Time:

public String toString() {
 return String.format("%02d:%02d:%04.1f\n",
 this.hour, this.minute, this.second);
}

The definition does not have the keyword static, because it is not a static method. It
is an instance method, so called because when you invoke it, you invoke it on an
instance of the class (Time in this case). Instance methods are sometimes called “non-
static”; you might see this term in an error message.

The body of the method is similar to printTime in the previous section, with two
changes:

• Inside the method, we use this to refer to the current instance; that is, the object
the method is invoked on.

• Instead of printf, it uses String.format, which returns a formatted String
rather than displaying it.

Now you can call toString directly:

Time time = new Time(11, 59, 59.9);
String s = time.toString();

Or you can invoke it indirectly through println:

System.out.println(time);

In this example, this in toString refers to the same object as time. The output is
11:59:59.9.

The equals Method
We have seen two ways to check whether values are equal: the == operator and the
equals method. With objects you can use either one, but they are not the same.

• The == operator checks whether objects are identical; that is, whether they are
the same object.
The equals method checks whether they are equivalent; that is, whether they
have the same value.

The definition of identity is always the same, so the == operator always does the same
thing. But the definition of equivalence is different for different objects, so objects can
define their own equals methods.

152 | Chapter 11: Classes

Consider the following variables:

Time time1 = new Time(9, 30, 0.0);
Time time2 = time1;
Time time3 = new Time(9, 30, 0.0);

Figure 11-2 is a state diagram that shows these variables and their values.

Figure 11-2. State diagram of three Time variables.

The assignment operator copies references, so time1 and time2 refer to the same
object. Because they are identical, time1 == time2 is true.

But time1 and time3 refer to different objects. Because they are not identical, time1
== time3 is false.

By default, the equals method does the same thing as ==. For Time objects, that’s
probably not what we want. For example, time1 and time3 represent the same time of
day, so we should consider them equivalent.

We can provide an equals method that implements this notion of equivalence:

public boolean equals(Time that) {
 return this.hour == that.hour
 && this.minute == that.minute
 && this.second == that.second;
}

equals is an instance method, so it uses this to refer to the current object and it
doesn’t have the keyword static. We can invoke equals as follows:

time1.equals(time3);

Inside the equals method, this refers to the same object as time1, and that refers to
the same object as time3. Since their instance variables are equal, the result is true.

Many objects use a similar notion of equivalence; that is, two objects are equivalent if
their instance variables are equal. But other definitions are possible.

The equals Method | 153

Adding Times
Suppose you are going to a movie that starts at 18:50 (or 6:50 PM), and the running
time is 2 hours 16 minutes. What time does the movie end?

We’ll use Time objects to figure it out. Here are two ways we could “add” Time objects:

• We could write a static method that takes the two Time objects as parameters.
• We could write an instance method that gets invoked on one object and takes the

other as a parameter.

To demonstrate the difference, we’ll do both. Here is a rough draft that uses the static
approach:

public static Time add(Time t1, Time t2) {
 Time sum = new Time();
 sum.hour = t1.hour + t2.hour;
 sum.minute = t1.minute + t2.minute;
 sum.second = t1.second + t2.second;
 return sum;
}

And here’s how we would invoke the static method:

Time startTime = new Time(18, 50, 0.0);
Time runningTime = new Time(2, 16, 0.0);
Time endTime = Time.add(startTime, runningTime);

On the other hand, here’s what it looks like as an instance method:

public Time add(Time t2) {
 Time sum = new Time();
 sum.hour = this.hour + t2.hour;
 sum.minute = this.minute + t2.minute;
 sum.second = this.second + t2.second;
 return sum;
}

The changes are:

• We removed the keyword static.
• We removed the first parameter.
• We replaced t1 with this.

Optionally, you could replace t2 with that. Unlike this, that is not a keyword; it’s
just a slightly clever variable name.

And here’s how we would invoke the instance method:

Time endTime = startTime.add(runningTime);

154 | Chapter 11: Classes

That’s all there is to it. Static methods and instance methods do the same thing, and
you can convert from one to the other with just a few changes.

There’s only one problem: the addition code itself is not correct. For this example, it
returns 20:66, which is not a valid time. If second exceeds 59, we have to “carry” into
the minutes column, and if minute exceeds 59, we have to carry into hour.

Here is a better version of add:

public Time add(Time t2) {
 Time sum = new Time();
 sum.hour = this.hour + t2.hour;
 sum.minute = this.minute + t2.minute;
 sum.second = this.second + t2.second;

 if (sum.second >= 60.0) {
 sum.second -= 60.0;
 sum.minute += 1;
 }
 if (sum.minute >= 60) {
 sum.minute -= 60;
 sum.hour += 1;
 }
 return sum;
}

It’s still possible that hour may exceed 23, but there’s no days attribute to carry into. In
that case, sum.hour -= 24 would yield the correct result.

Pure Methods and Modifiers
This implementation of add does not modify either of the parameters. Instead, it cre‐
ates and returns a new Time object. As an alternative, we could have written a method
like this:

public void increment(double seconds) {
 this.second += seconds;
 while (this.second >= 60.0) {
 this.second -= 60.0;
 this.minute += 1;
 }
 while (this.minute >= 60) {
 this.minute -= 60;
 this.hour += 1;
 }
}

The increment method modifies an existing Time object. It doesn’t create a new one,
and it doesn’t return anything.

In contrast, methods like add are called pure because:

Pure Methods and Modifiers | 155

• They don’t modify the parameters.
• They don’t have any other “side effects”, like printing.
• The return value only depends on the parameters, not on any other state.

Methods like increment, which breaks the first rule, are sometimes called modifiers.
They are usually void methods, but sometimes they return a reference to the object
they modify.

Modifiers can be more efficient because they don’t create new objects. But they can
also be error-prone. When objects are aliased, the effects of modifiers can be confus‐
ing.

To make a class immutable, like String, you can provide getters but no setters and
pure methods but no modifiers. Immutable objects can be more difficult to work
with, at first, but they can save you from long hours of debugging.

Vocabulary
class:

Previously, we defined a class as a collection of related methods. Now you know
that a class is also a template for a new type of object.

instance:
A member of a class. Every object is an instance of some class.

data encapsulation:
A technique for bundling multiple named variables into a single object.

instance variable:
An attribute of an object; a non-static variable defined at the class level.

information hiding:
The practice of making instance variables private to limit dependencies between
classes.

constructor:
A special method that initializes the instance variables of a newly-constructed
object.

shadowing:
Defining a local variable or parameter with the same name and type as an
instance variable.

client:
A class that uses objects defined in another class.

156 | Chapter 11: Classes

getter:
A method that returns the value of an instance variable.

setter:
A method that assigns a value to an instance variable.

override:
Replacing a default implementation of a method, such as toString.

instance method:
A non-static method that has access to this and the instance variables.

identical:
Two values that are the same; in the case of objects, two variables that refer to the
same object.

equivalent:
Two objects that are “equal” but not necessarily identical, as defined by the
equals method.

pure method:
A static method that depends only on its parameters and no other data.

modifier method:
A method that changes the state (instance variables) of an object.

Exercises
The code for this chapter is in the ch11 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

At this point you know enough to read Appendix B, which is about simple 2D graph‐
ics and animations. During the next few chapters, you should take a detour to read
this appendix and work through the exercises.

Exercise 11-1.

Review the documentation of java.awt.Rectangle. Which methods are pure?
Which are modifiers?

If you review the documentation of java.lang.String, you should see that there are
no modifiers, because strings are immutable.

Exercises | 157

Exercise 11-2.

The implementation of increment in this chapter is not very efficient. Can you
rewrite it so it doesn’t use any loops? Hint: Remember the modulus operator.

Exercise 11-3.

In the board game Scrabble, each tile contains a letter, which is used to spell words in
rows and columns, and a score, which is used to determine the value of words.

1. Write a definition for a class named Tile that represents Scrabble tiles. The
instance variables should include a character named letter and an integer
named value.

2. Write a constructor that takes parameters named letter and value and initial‐
izes the instance variables.

3. Write a method named printTile that takes a Tile object as a parameter and
displays the instance variables in a reader-friendly format.

4. Write a method named testTile that creates a Tile object with the letter Z and
the value 10, and then uses printTile to display the state of the object.

5. Implement the toString and equals methods for a Tile.
6. Create getters and setters for each of the attributes.

The point of this exercise is to practice the mechanical part of creating a new class
definition and code that tests it.

Exercise 11-4.

Write a class definition for Date, an object type that contains three integers: year,
month, and day. This class should provide two constructors. The first should take no
parameters and initialize a default date. The second should take parameters named
year, month and day, and use them to initialize the instance variables.

Write a main method that creates a new Date object named birthday. The new object
should contain your birth date. You can use either constructor.

Exercise 11-5.

A rational number is a number that can be represented as the ratio of two integers.
For example, 2/3 is a rational number, and you can think of 7 as a rational number
with an implicit 1 in the denominator.

158 | Chapter 11: Classes

1. Define a class called Rational. A Rational object should have two integer
instance variables that store the numerator and denominator.

2. Write a constructor that takes no arguments and that sets the numerator to 0 and
denominator to 1.

3. Write an instance method called printRational that displays a Rational in
some reasonable format.

4. Write a main method that creates a new object with type Rational, sets its
instance variables to some values, and displays the object.

5. At this stage, you have a minimal testable program. Test it and, if necessary,
debug it.

6. Write a toString method for Rational and test it using println.
7. Write a second constructor that takes two arguments and uses them to initialize

the instance variables.
8. Write an instance method called negate that reverses the sign of a rational num‐

ber. This method should be a modifier, so it should be void. Add lines to main to
test the new method.

9. Write an instance method called invert that inverts the number by swapping the
numerator and denominator. It should be a modifier. Add lines to main to test the
new method.

10. Write an instance method called toDouble that converts the rational number to a
double (floating-point number) and returns the result. This method is a pure
method; it does not modify the object. As always, test the new method.

11. Write an instance method named reduce that reduces a rational number to its
lowest terms by finding the greatest common divisor (GCD) of the numerator
and denominator and dividing through. This method should be a pure method;
it should not modify the instance variables of the object on which it is invoked.
Hint: Finding the GCD only takes a few lines of code. Search the web for “Eucli‐
dean algorithm”.

12. Write an instance method called add that takes a Rational number as an argu‐
ment, adds it to this, and returns a new Rational object.
There are several ways to add fractions. You can use any one you want, but you
should make sure that the result of the operation is reduced so that the numera‐
tor and denominator have no common divisor (other than 1).

The purpose of this exercise is to write a class definition that includes a variety of
methods, including constructors, static methods, instance methods, modifiers, and
pure methods.

Exercises | 159

CHAPTER 12

Arrays of Objects

In the remaining chapters, we will develop programs that work with playing cards
and decks of cards. Here is an outline of the road ahead:

• In this chapter, we define a Card class and write methods that work with cards
and arrays of cards.

• In “The Deck Class” on page 175, we create a Deck class that encapsulates an
array of cards, and we write methods that operate on decks.

• In Chapter 14, we introduce inheritance as a way to create new classes that
extend existing classes. We then use all these classes to implement the card game
Crazy Eights.

The code for this chapter is in Card.java, which is in the directory ch12 in the repos‐
itory for this book. Instructions for downloading this code are in “Using the Code
Examples” on page xi.

Card Objects
If you are unfamiliar with traditional playing cards, now would be a good time to get
a deck or read through https://en.wikipedia.org/wiki/Standard_52-card_deck.

There are 52 cards in a standard deck. Each card belongs to one of four suits and one
of 13 ranks. The suits are Spades, Hearts, Diamonds, and Clubs. The ranks are Ace, 2,
3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.

If we want to define a class to represent a playing card, it is pretty obvious what the
instance variables should be: rank and suit. It is not as obvious what types they
should be. One possibility is a String containing things like "Spade" for suits and

161

https://en.wikipedia.org/wiki/Standard_52-card_deck

"Queen" for ranks. A problem with this design is that it would not be easy to compare
cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By “encode” we don’t
mean to encrypt or translate into a secret code. We mean “define a mapping between
a sequence of numbers and the things we want to represent.”

Here is a mapping for suits:

Clubs ↦ 0

Diamonds ↦ 1

Hearts ↦ 2

Spades ↦ 3

We use the mathematical symbol ↦ to make it clear that these mappings are not part
of the program. They are part of the program design, but they never appear explicitly
in the code.

Each of the numerical ranks (2 through 10) maps to the corresponding integer, and
for face cards:

Ace ↦ 1

Jack ↦ 11

Queen ↦ 12

King ↦ 13

So far, the class definition for the Card type looks like this:
public class Card {
 private int rank;
 private int suit;

 public Card(int rank, int suit) {
 this.rank = rank;
 this.suit = suit;
 }
}

The instance variables are private: we can access them from inside this class, but not
from other classes.

The constructor takes a parameter for each instance variable. To create a Card object,
we use the new operator:

Card threeOfClubs = new Card(3, 0);

The result is a reference to a Card that represents the 3 of Clubs.

162 | Chapter 12: Arrays of Objects

Card toString
When you create a new class, the first step is to declare the instance variables and
write constructors. A good next step is to write toString, which is useful for debug‐
ging and incremental development.

To display Card objects in a way that humans can read easily, we need to map the
integer codes onto words. A natural way to do that is with an array of Strings. We
can create the array like this:

String[] suits = new String[4];

And then assign values to the elements:

suits[0] = "Clubs";
suits[1] = "Diamonds";
suits[2] = "Hearts";
suits[3] = "Spades";

Or we can create the array and initialize the elements at the same time, as we saw in
“Displaying Arrays” on page 105:

String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};

The state diagram in Figure 12-1 shows the result. Each element of the array is a ref‐
erence to a String.

Figure 12-1. State diagram of an array of strings.

Now we need an array to decode the ranks:

String[] ranks = {null, "Ace", "2", "3", "4", "5", "6",
 "7", "8", "9", "10", "Jack", "Queen", "King"};

The zeroth element should never be used, because the only valid ranks are 1–13. We
set it to null to indicate an unused element.

Using these arrays, we can create a meaningful String using suit and rank as
indexes.

String s = ranks[card.rank] + " of " + suits[card.suit];

The expression suits[card.suit] means “use the instance variable suit from the
object card as an index into the array suits.”

Card toString | 163

Now we can wrap all that in a toString method.

public String toString() {
 String[] ranks = {null, "Ace", "2", "3", "4", "5", "6",
 "7", "8", "9", "10", "Jack", "Queen", "King"};
 String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};
 String s = ranks[this.rank] + " of " + suits[this.suit];
 return s;
}

When we display a card, println automatically calls toString:

Card card = new Card(11, 1);
System.out.println(card);

The output is Jack of Diamonds.

Class Variables
So far we have seen local variables, which are declared inside a method, and instance
variables, which are declared in a class definition, usually before the method defini‐
tions.

Local variables are created when a method is invoked, and their space is reclaimed
when the method ends. Instance variables are created when you construct an object
and reclaimed when the object is garbage-collected.

Now it’s time to learn about class variables. Like instance variables, class variables are
defined in a class definition, before the method definitions. But they are identified by
the keyword static. They are created when the program begins (or when the class is
used for the first time) and survive until the program ends. Class variables are shared
across all instances of the class.

public class Card {

 public static final String[] RANKS = {
 null, "Ace", "2", "3", "4", "5", "6", "7",
 "8", "9", "10", "Jack", "Queen", "King"};

 public static final String[] SUITS = {
 "Clubs", "Diamonds", "Hearts", "Spades"};

 // instance variables and constructors go here

 public String toString() {
 return RANKS[this.rank] + " of " + SUITS[this.suit];
 }
}

164 | Chapter 12: Arrays of Objects

Class variables are often used to store constant values that are needed in several
places. In that case, they should also be defined as final. Note that whether a variable
is static or final involves two separate considerations: static means the variable is
shared, and final means the variable is constant.

Naming static final variables with capital letters is a common convention that
makes it easier to recognize their role in the class. Inside toString we can refer to
SUITS and RANKS as if they were local variables, but we can tell that they are class vari‐
ables.

One advantage of defining SUITS and RANKS as class variables is that they don’t need
to be created (and garbage-collected) every time toString is called. They may also be
needed in other methods and classes, so it’s helpful to make them available every‐
where. Since the array variables are final, and the strings they reference are immuta‐
ble, there is no danger in making them public.

The compareTo Method
As we saw in “The equals Method” on page 152, it’s helpful to create an equals
method to test whether two objects are equivalent.

public boolean equals(Card that) {
 return this.rank == that.rank
 && this.suit == that.suit;
}

It would also be nice to have a method for comparing cards, so we can tell if one is
higher or lower than another. For primitive types, we can use the comparison opera‐
tors—<, >, etc.—to compare values. But these operators don’t work for object types.

For Strings, Java provides a compareTo method, as we saw in “String Comparison”
on page 121. Like the equals method, we can write our own version of compareTo for
the classes that we define.

Some types are “totally ordered”, which means that you can compare any two values
and tell which is bigger. Integers and strings are totally ordered.

Other types are “unordered”, which means that there is no meaningful way to say that
one element is bigger than another. In Java, the boolean type is unordered; if you try
to compare true < false, you get a compiler error.

The set of playing cards is “partially ordered”, which means that sometimes we can
compare cards and sometimes not. For example, we know that the 3 of Clubs is
higher than the 2 of Clubs, and the 3 of Diamonds is higher than the 3 of Clubs. But
which is better, the 3 of Clubs or the 2 of Diamonds? One has a higher rank, but the
other has a higher suit.

The compareTo Method | 165

To make cards comparable, we have to decide which is more important: rank or suit.
The choice is arbitrary, and it might be different for different games. But when you
buy a new deck of cards, it comes sorted with all the Clubs together, followed by all
the Diamonds, and so on. So for now, let’s say that suit is more important.

With that decided, we can write compareTo as follows:

public int compareTo(Card that) {
 if (this.suit < that.suit) {
 return -1;
 }
 if (this.suit > that.suit) {
 return 1;
 }
 if (this.rank < that.rank) {
 return -1;
 }
 if (this.rank > that.rank) {
 return 1;
 }
 return 0;
}

compareTo returns 1 if this wins, -1 if that wins, and 0 if they are equivalent. It com‐
pares suits first. If the suits are the same, it compares ranks. If the ranks are also the
same, it returns 0.

Cards Are Immutable
The instance variables of Card are private, so they can’t be accessed from other
classes. We can provide getters to allow other classes to read the rank and suit val‐
ues:

public int getRank() {
 return this.rank;
}

public int getSuit() {
 return this.suit;
}

Whether or not to provide setters is a design decision. If we did, cards would be
mutable, so you could transform one card into another. That is probably not a feature
we need, and in general mutable objects are more error-prone. So it might be better
to make cards immutable. To do that, all we have to do is not provide any modifier
methods (including setters).

166 | Chapter 12: Arrays of Objects

That’s easy enough, but it is not foolproof, because some fool might come along later
and add a modifier. We can prevent that possibility by declaring the instance variables
final:

public class Card {
 private final int rank;
 private final int suit;

 ...
}

You can still assign values to these variables inside a constructor. But if someone
writes a method that tries to modify these variables, they’ll get a compiler error.

Arrays of Cards
Just as you can create an array of String objects, you can create an array of Card
objects. The following statement creates an array of 52 cards:

Card[] cards = new Card[52];

Figure 12-2 shows the state diagram for this array.

Figure 12-2. State diagram of an unpopulated Card array.

Although we call it an “array of cards”, the array contains references to objects; it does
not contain the Card objects themselves. The elements are initialized to null. You can
access the elements of the array in the usual way:

if (cards[0] == null) {
 System.out.println("No card yet!");
}

But if you try to access the instance variables of the non-existent Cards, you will get a
NullPointerException.

cards[0].rank // NullPointerException

That code won’t work until we put cards in the array. One way to populate the array is
to write nested for loops:

Arrays of Cards | 167

int index = 0;
for (int suit = 0; suit <= 3; suit++) {
 for (int rank = 1; rank <= 13; rank++) {
 cards[index] = new Card(rank, suit);
 index++;
 }
}

The outer loop iterates suits from 0 to 3. For each suit, the inner loop iterates ranks
from 1 to 13. Since the outer loop runs 4 times, and the inner loop runs 13 times for
each suit, the body is executed 52 times.

We use a separate variable index to keep track of where in the array the next card
should go. Figure 12-3 shows what the array looks like after the first two cards have
been created.

Figure 12-3. State diagram of a Card array with two cards.

When you work with arrays, it is convenient to have a method that displays the con‐
tents. We have seen the pattern for traversing an array several times, so the following
method should be familiar:

public static void printDeck(Card[] cards) {
 for (int i = 0; i < cards.length; i++) {
 System.out.println(cards[i]);
 }
}

Since cards has type Card[], an element of cards has type Card. So println invokes
the toString method in the Card class. This method is similar to invoking
System.out.println(Arrays.toString(cards)).

168 | Chapter 12: Arrays of Objects

Sequential Search
The next method we’ll write is search, which takes an array of cards and a Card
object as parameters. It returns the index where the Card appears in the array, or -1 if
it doesn’t. This version of search uses the algorithm we saw in “Array Traversal” on
page 107, which is called sequential search:

public static int search(Card[] cards, Card target) {
 for (int i = 0; i < cards.length; i++) {
 if (cards[i].equals(target)) {
 return i;
 }
 }
 return -1;
}

The method returns as soon as it discovers the card, which means we don’t have to
traverse the entire array if we find the target. If we get to the end of the loop, we know
the card is not in the array. Notice that this algorithm depends on the equals method.

If the cards in the array are not in order, there is no way to search faster than sequen‐
tial search. We have to look at every card, because otherwise we can’t be certain the
card we want is not there. But if the cards are in order, we can use better algorithms.

We will learn in the next chapter how to sort arrays. If you pay the price to keep them
sorted, finding elements becomes much easier. Especially for large arrays, sequential
search is rather inefficient.

Binary Search
When you look for a word in a dictionary, you don’t just search page by page from
front to back. Since the words are in alphabetical order, you probably use a binary
search algorithm:

1. Start on a page near the middle of the dictionary.
2. Compare a word on the page to the word you are looking for. If you find it, stop.
3. If the word on the page comes before the word you are looking for, flip to some‐

where later in the dictionary and go to step 2.
4. If the word on the page comes after the word you are looking for, flip to some‐

where earlier in the dictionary and go to step 2.

If you find two adjacent words on the page and your word comes between them, you
can conclude that your word is not in the dictionary.

Getting back to the array of cards, we can write a faster version of search if we know
the cards are in order:

Sequential Search | 169

public static int binarySearch(Card[] cards, Card target) {
 int low = 0;
 int high = cards.length - 1;
 while (low <= high) {
 int mid = (low + high) / 2; // step 1
 int comp = cards[mid].compareTo(target);

 if (comp == 0) { // step 2
 return mid;
 } else if (comp < 0) { // step 3
 low = mid + 1;
 } else { // step 4
 high = mid - 1;
 }
 }
 return -1;
}

First, we declare low and high variables to represent the range we are searching. Ini‐
tially we search the entire array, from 0 to length - 1.

Inside the while loop, we repeat the four steps of binary search:

1. Choose an index between low and high—call it mid—and compare the card at
mid to the target.

2. If you found the target, return the index.
3. If the card at mid is lower than the target, search the range from mid + 1 to high.
4. If the card at mid is higher than the target, search the range from low to mid - 1.

If low exceeds high, there are no cards in the range, so we break out of the loop and
return -1. Notice that this algorithm depends on the compareTo method of the object.

Tracing the Code
To see how binary search works, it’s helpful to add the following print statement at
the beginning of the loop:

System.out.println(low + ", " + high);

If we invoke binarySearch like this:

Card card = new Card(11, 0);
System.out.println(binarySearch(cards, card));

We expect to find this card at position 10. Here is the result:

170 | Chapter 12: Arrays of Objects

0, 51
0, 24
0, 11
6, 11
9, 11
10

If we search for a card that’s not in the array, like new Card(15, 1), which is the “15
of Diamonds”, we get the following:

0, 51
26, 51
26, 37
26, 30
26, 27
-1

Each time through the loop, we cut the distance between low and high in half. After k
iterations, the number of remaining cards is 52/2k. To find the number of iterations it
takes to complete, we set 52/2k = 1 and solve for k. The result is log2 52, which is
about 5.7. So we might have to look at 5 or 6 cards, as opposed to all 52 if we did a
sequential search.

More generally, if the array contains n elements, binary search requires log2 n com‐
parisons, and sequential search requires n. For large values of n, binary search can be
much faster.

Recursive Version
Another way to write a binary search is with a recursive method. The trick is to write
a method that takes low and high as parameters, and turn steps 3 and 4 into recursive
invocations. Here’s what the code looks like:

public static int binarySearch(Card[] cards, Card target,
 int low, int high) {
 if (high < low) {
 return -1;
 }
 int mid = (low + high) / 2; // step 1
 int comp = cards[mid].compareTo(target);

 if (comp == 0) { // step 2
 return mid;
 } else if (comp < 0) { // step 3
 return binarySearch(cards, target, mid + 1, high);
 } else { // step 4
 return binarySearch(cards, target, low, mid - 1);
 }
}

Recursive Version | 171

Instead of a while loop, we have an if statement to terminate the recursion. If high is
less than low, there are no cards between them, and we conclude that the card is not
in the array.

Two common errors in recursive programs are (1) forgetting to include a base case,
and (2) writing the recursive call so that the base case is never reached. Either error
causes infinite recursion and a StackOverflowException.

Vocabulary
encode:

To represent one set of values using another set of values, by constructing a map‐
ping between them.

class variable:
A variable declared within a class as static. There is only one copy of a class
variable, no matter how many objects there are.

sequential search:
An algorithm that searches array elements, one by one, until a target value is
found.

binary search:
An algorithm that searches a sorted array by starting in the middle, comparing
and element to the target, and eliminating half of the remaining elements.

Exercises
The code for this chapter is in the ch12 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 12-1.

Encapsulate the deck-building code from “Arrays of Cards” on page 167 in a method
called makeDeck that takes no parameters and returns a fully-populated array of
Cards.

Exercise 12-2.

In some card games, Aces are ranked higher than Kings. Modify the compareTo
method to implement this ordering.

172 | Chapter 12: Arrays of Objects

Exercise 12-3.

In Poker a “flush” is a hand that contains five or more cards of the same suit. A hand
can contain any number of cards.

1. Write a method called suitHist that takes an array of cards as a parameter and
that returns a histogram of the suits in the hand. Your solution should only tra‐
verse the array once.

2. Write a method called hasFlush that takes an array of cards as a parameter and
returns true if the hand contains a flush (and false otherwise).

Exercise 12-4.

Working with cards is more interesting if you can display them on the screen. If you
have not already read Appendix B about 2D graphics, you should read it before work‐
ing on this exercise. In the code directory for this chapter, ch12, you will find:

• cardset-oxymoron: A directory containing images of playing cards.
• CardTable.java: A sample program that demonstrates how to read and display

images.

This code demonstrates the use of a 2D array, specifically an array of images. The
declaration looks like this:

private Image[][] images;

The variable images refers to a 2D array of Image objects, which are defined in the
java.awt package. Here’s the code that creates the array itself:

images = new Image[14][4];

The array has 14 rows (one for each rank plus an unused row for rank 0) and 4 col‐
umns (one for each suit). Here’s the loop that populates the array:

String cardset = "cardset-oxymoron";
String suits = "cdhs";

for (int suit = 0; suit <= 3; suit++) {
 char c = suits.charAt(suit);

 for (int rank = 1; rank <= 13; rank++) {
 String s = String.format("%s/%02d%c.gif",
 cardset, rank, c);
 images[rank][suit] = new ImageIcon(s).getImage();
 }
}

Exercises | 173

The variable cardset contains the name of the directory that contains the image files.
suits is a string that contains the single-letter abbreviations for the suits. These
strings are used to assemble s, which contains the filename for each image. For exam‐
ple, when rank=1 and suit=2, the value of s is "cardset-oxymoron/01h.gif", which
is an image of the Ace of Hearts.

The last line of the loop reads the image file, extracts an Image object, and assigns it
to a location in the array, as specified by the indexes rank and suit. For example, the
image of the Ace of Hearts is stored in row 1, column 2.

If you compile and run CardTable.java, you should see images of a deck of cards
laid out on a green table. You can use this class as a starting place to implement your
own card games.

174 | Chapter 12: Arrays of Objects

CHAPTER 13

Objects of Arrays

In the previous chapter, we defined a class to represent cards and used an array of
Card objects to represent a deck.

In this chapter, we take another step toward object-oriented programming by defin‐
ing a class to represent a deck of cards. And we present algorithms for shuffling and
sorting arrays.

The code for this chapter is in Card.java and Deck.java, which are in the directory
ch13 in the repository for this book. Instructions for downloading this code are in
“Using the Code Examples” on page xi.

The Deck Class
The main idea of this chapter is to create a Deck class that encapsulates an array of
Cards. The initial class definition looks like this:

public class Deck {
 private Card[] cards;

 public Deck(int n) {
 this.cards = new Card[n];
 }
}

The constructor initializes the instance variable with an array of n cards, but it doesn’t
create any card objects. Figure 13-1 shows what a Deck looks like with no cards.

175

Figure 13-1. State diagram of an unpopulated Deck object.

We’ll add a second constructor that makes a standard 52-card deck and populates it
with Card objects:

public Deck() {
 this.cards = new Card[52];
 int index = 0;
 for (int suit = 0; suit <= 3; suit++) {
 for (int rank = 1; rank <= 13; rank++) {
 this.cards[index] = new Card(rank, suit);
 index++;
 }
 }
}

This method is similar to the example in “Arrays of Cards” on page 167; we just
turned it into a constructor. We can now create a standard Deck like this:

Deck deck = new Deck();

Now that we have a Deck class, we have a logical place to put methods that pertain to
decks. Looking at the methods we have written so far, one obvious candidate is print
Deck from “Arrays of Cards” on page 167.

public void print() {
 for (int i = 0; i < this.cards.length; i++) {
 System.out.println(this.cards[i]);
 }
}

When you transform a static method into an instance method, it usually gets shorter.
We can simply type deck.print() to invoke the instance method.

Shuffling Decks
For most card games you need to be able to shuffle the deck; that is, put the cards in a
random order. In “Random Numbers” on page 108 we saw how to generate random
numbers, but it is not obvious how to use them to shuffle a deck.

One possibility is to model the way humans shuffle, which is usually dividing the
deck in two halves and then choosing alternately from each one. Since humans usu‐
ally don’t shuffle perfectly, after about seven iterations the order of the deck is pretty
well randomized.

176 | Chapter 13: Objects of Arrays

But a computer program would have the annoying property of doing a perfect shuffle
every time, which is not very random. In fact, after eight perfect shuffles, you would
find the deck back in the order you started in! (For more information, see https://
en.wikipedia.org/wiki/Faro_shuffle.)

A better shuffling algorithm is to traverse the deck one card at a time, and at each
iteration choose two cards and swap them. Here is an outline of how this algorithm
works. To sketch the program, we will use a combination of Java statements and
English. This technique is sometimes called pseudocode.

for each index i {
 // choose a random number between i and length - 1
 // swap the ith card and the randomly-chosen card
}

The nice thing about pseudocode is that it often makes clear what methods you are
going to need. In this case, we need a method that chooses a random integer between
low and high, and a method that takes two indexes and swaps the cards at those posi‐
tions. Methods like these are called helper methods, because they help you imple‐
ment more complex algorithms.

And this process—writing pseudocode first and then writing methods to make it
work—is called top-down development (see https://en.wikipedia.org/wiki/Top-
down_and_bottom-up_design).

One of the exercises at the end of the chapter asks you to write the helper methods
randomInt and swapCards and use them to implement shuffle.

Selection Sort
Now that we have messed up the deck, we need a way to put it back in order. There is
an algorithm for sorting that is ironically similar to the algorithm for shuffling. It’s
called selection sort, because it works by traversing the array repeatedly and selecting
the lowest (or highest) remaining card each time.

During the first iteration, we find the lowest card and swap it with the card in the 0th
position. During the ith iteration, we find the lowest card to the right of i and swap it
with the ith card. Here is pseudocode for selection sort:

public void selectionSort() {
 for each index i {
 // find the lowest card at or to the right of i
 // swap the ith card and the lowest card found
 }
}

Selection Sort | 177

https://en.wikipedia.org/wiki/Faro_shuffle
https://en.wikipedia.org/wiki/Faro_shuffle
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

Again, the pseudocode helps with the design of the helper methods. In this algorithm
we can use swapCards again, so we only need a method to find the lowest card; we’ll
call it indexLowest.

One of the exercises at the end of the chapter asks you to write the helper method
indexLowest and use it to implement selectionSort.

Merge Sort
Selection sort is a simple algorithm, but it is not very efficient. To sort n items, it has
to traverse the array n − 1 times. Each traversal takes an amount of time proportional
to n. The total time, therefore, is proportional to n2.

In the next two sections, we’ll develop a more efficient algorithm called merge sort.
To sort n items, merge sort takes time proportional to n log2 n. That may not seem
impressive, but as n gets big, the difference between n2 and n log2 n can be enormous.

For example, log2 of one million is around 20. So if you had to sort a million num‐
bers, selection sort would require one trillion steps; merge sort would require only 20
million.

The idea behind merge sort is this: if you have two subdecks, each of which has
already been sorted, it is easy and fast to merge them into a single, sorted deck. Try
this out with a deck of cards:

1. Form two subdecks with about 10 cards each, and sort them so that when they
are face up the lowest cards are on top. Place both decks face up in front of you.

2. Compare the top card from each deck and choose the lower one. Flip it over and
add it to the merged deck.

3. Repeat step 2 until one of the decks is empty. Then take the remaining cards and
add them to the merged deck.

The result should be a single sorted deck. In the next few sections, we’ll explain how
to implement this algorithm in Java.

Subdecks
The first step of merge sort is to split the deck into two subdecks, each with about half
the cards. So we might want a method, subdeck, that takes a deck and a range of
indexes. It returns a new deck that contains the specified subset of the cards:

178 | Chapter 13: Objects of Arrays

public Deck subdeck(int low, int high) {
 Deck sub = new Deck(high - low + 1);
 for (int i = 0; i < sub.cards.length; i++) {
 sub.cards[i] = this.cards[low + i];
 }
 return sub;
}

The first line creates an unpopulated subdeck. Inside the for loop, the subdeck gets
populated with copies of references from the deck.

The length of the subdeck is high - low + 1, because both the low card and the high
card are included. This sort of computation can be confusing, and forgetting the + 1
often leads to “off-by-one” errors. Drawing a picture is usually the best way to avoid
them.

Figure 13-2 is a state diagram of a subdeck with low = 0 and high = 4. The result is
a hand with five cards that are shared with the original deck; that is, they are aliased.

Figure 13-2. State diagram showing the effect of subdeck.

Aliasing might not be a good idea, because changes to shared cards would be reflec‐
ted in multiple decks. But since Card objects are immutable, this kind of aliasing is
not a problem at all.

Merging Decks
The next helper method we need is merge, which takes two sorted subdecks and
returns a new deck containing all cards from both decks, in order. Here’s what the
algorithm looks like in pseudocode, assuming the subdecks are named d1 and d2:

Merging Decks | 179

public static Deck merge(Deck d1, Deck d2) {
 // create a new deck big enough for all the cards

 // use the index i to keep track of where we are at in
 // the first deck, and the index j for the second deck
 int i = 0;
 int j = 0;

 // the index k traverses the result deck
 for (int k = 0; k < result.cards.length; k++) {

 // if d1 is empty, d2 wins
 // if d2 is empty, d1 wins
 // otherwise, compare the two cards

 // add the winner to the new deck at position k
 // increment either i or j
 }
 // return the new deck
}

One of the exercises at the end of the chapter asks you to implement merge.

Adding Recursion
Once your merge method is working correctly, you can try out a simple version of
merge sort:

public Deck almostMergeSort() {
 // divide the deck into two subdecks
 // sort the subdecks using selectionSort
 // merge the two halves and return the result
}

An exercise at the end of the chapter asks you to implement this algorithm. Once you
get it working, the real fun begins! The magical thing about merge sort is that it is
inherently recursive.

At the point where you sort the subdecks, why should you invoke the slower algo‐
rithm, selectionSort? Why not invoke the spiffy new mergeSort you are in the pro‐
cess of writing? Not only is that a good idea, it is necessary to achieve the log2
performance advantage.

To make mergeSort work recursively, you have to add a base case; otherwise it repeats
forever. A simple base case is a subdeck with 0 or 1 cards. If mergeSort receives such
a small subdeck, it can return it unmodified since it would already be sorted.

The recursive version of mergeSort should look something like this:

180 | Chapter 13: Objects of Arrays

public Deck mergeSort() {
 // if the deck is 0 or 1 cards, return it
 // divide the deck into two subdecks
 // sort the subdecks using mergeSort
 // merge the two halves and return the result
}

As usual, there are two ways to think about recursive programs: you can think
through the entire flow of execution, or you can make the “leap of faith” (see “Leap of
Faith” on page 81). This example should encourage you to make the leap of faith.

When you used selectionSort to sort the subdecks, you didn’t feel compelled to fol‐
low the flow of execution. You just assumed it works because you had already
debugged it. And all you did to make mergeSort recursive was replace one sorting
algorithm with another. There is no reason to read the program any differently.

Well, almost. You might have to give some thought to getting the base case right and
making sure that you reach it eventually. But other than that, writing the recursive
version should be no problem.

Vocabulary
pseudocode:

A way of designing programs by writing rough drafts in a combination of English
and Java.

helper method:
Often a small method that does not do anything enormously useful by itself, but
which helps another, more complex method.

top-down development:
Breaking down a problem into sub-problems, and solving each sub-problem one
at a time.

selection sort:
A simple sorting algorithm that searches for the smallest or largest element n
times.

merge sort:
A recursive sorting algorithm that divides an array into two parts, sorts each part
(using merge sort), and merges the results.

Exercises
The code for this chapter is in the ch13 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.

Vocabulary | 181

Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 13-1.

You can learn more about the sorting algorithms in this chapter, and others, at http://
www.sorting-algorithms.com/. This site includes explanations of the algorithms, ani‐
mations that show how they work, and analysis of their efficiency.

Exercise 13-2.

The goal of this exercise is to implement the shuffling algorithm from this chapter.

1. In the repository for this book, you should find a file called Deck.java that con‐
tains the code in this chapter. Check that you can compile it in your environ‐
ment.

2. Add a Deck method called randomInt that takes two integers, low and high, and
returns a random integer between low and high, including both. You can use the
nextInt provided by java.util.Random, which we saw in “Random Numbers”
on page 108. But you should avoid creating a Random object every time random
Int is invoked.

3. Write a method called swapCards that takes two indexes and swaps the cards at
the given locations.

4. Write a method called shuffle that uses the algorithm in “Shuffling Decks” on
page 176.

Exercise 13-3.

The goal of this exercise is to implement the sorting algorithms from this chapter. Use
the Deck.java file from the previous exercise (or create a new one from scratch).

1. Write a method called indexLowest that uses the compareCard method to find
the lowest card in a given range of the deck (from lowIndex to highIndex,
including both).

2. Write a method called selectionSort that implements the selection sort algo‐
rithm in “Selection Sort” on page 177.

3. Using the pseudocode in “Merge Sort” on page 178, write the method called
merge. The best way to test it is to build and shuffle a deck. Then use subdeck to
form two small subdecks, and use selection sort to sort them. Then you can pass
the two halves to merge to see if it works.

182 | Chapter 13: Objects of Arrays

http://www.sorting-algorithms.com/
http://www.sorting-algorithms.com/

4. Write the simple version of mergeSort, the one that divides the deck in half, uses
selectionSort to sort the two halves, and uses merge to create a new, sorted
deck.

5. Write a recursive version of mergeSort. Remember that selectionSort is a
modifier and mergeSort is a pure method, which means that they get invoked
differently:
deck.selectionSort(); // modifies an existing deck
deck = deck.mergeSort(); // replaces old deck with new

Exercise 13-4.

The goal of this exercise is to practice top-down programming by implementing
“insertion sort”. Read about insertion sort at http://www.sorting-algorithms.com/
insertion-sort. Write a method named insertionSort that implements this algorithm.

Exercise 13-5.

Write a toString method for the Deck class. It should return a single string that rep‐
resents the cards in the deck. When it’s printed, this string should display the same
results as the print method in “The Deck Class” on page 175.

Hint: You can use the + operator to concatenate strings, but it is not very efficient.
Consider using java.util.StringBuilder; you can find the documentation by doing
a web search for “Java StringBuilder”.

Exercises | 183

http://www.sorting-algorithms.com/insertion-sort
http://www.sorting-algorithms.com/insertion-sort

CHAPTER 14

Objects of Objects

Now that we have classes that represent cards and decks, let’s use them to make a
game! Crazy Eights is a classic card game for two or more players. The main objective
is to be the first player to get rid of all your cards. Here’s how to play:

• Deal five or more cards to each player, and then deal one card face up to create
the “discard pile”. Place the remaining cards face down to create the “draw pile”.

• Each player takes turns placing a single card on the discard pile. The card must
match the rank or suit of the previously played card, or be an eight, which is a
“wild card”.

• When players don’t have a matching card or an eight, they must draw new cards
until they get one.

• If the draw pile ever runs out, the discard pile is shuffled (except the top card)
and becomes the new draw pile.

• As soon as a player has no cards, the game ends and all other players score pen‐
alty points for their remaining cards. Eights are worth 20, face cards are worth
10, and all others are worth their rank.

You can read https://en.wikipedia.org/wiki/Crazy_Eights for more details, but we have
enough to get started.

The code for this chapter is in the directory ch14 in the repository for this book.
Instructions for downloading this code are in “Using the Code Examples” on page xi.

185

https://en.wikipedia.org/wiki/Crazy_Eights

Decks and Hands
To implement this game, we need to represent a deck of cards, a discard pile, a draw
pile, and a hand for each player. And we need to be able to deal, draw, and discard
cards.

The Deck class from the previous chapter meets some of these requirements, but
there are two problems:

• Hands and piles have different sizes, and their sizes change as the game pro‐
gresses. Our implementation of Deck uses a Card array, and the size of an array
can’t change.

• It’s not clear that a Deck object is the right way to represent hands and piles. We
might want new classes for other collections of cards.

We can solve the first problem by replacing the Card array with an ArrayList, which
is in the java.util package. An ArrayList is a collection, which is an object that
contains other objects.

The Java library provides a variety of collections. For our purposes, ArrayList is a
good choice because it provides methods to add and remove elements, and it grows
and shrinks automatically.

To solve the second problem, we can use a language feature called inheritance. We’ll
define a new class, CardCollection, to represent a collection of cards. Then we’ll
define Deck and Hand as subclasses of CardCollection.

A subclass is a new class that “extends” an existing class; that is, it has the attributes
and methods of the existing class, plus more. We’ll see the details soon, but let’s start
with CardCollection:

CardCollection
Here’s the beginning of a CardCollection class that uses ArrayList instead of a
primitive array:

public class CardCollection {

 private String label;
 private ArrayList<Card> cards;

 public CardCollection(String label) {
 this.label = label;
 this.cards = new ArrayList<Card>();
 }
}

186 | Chapter 14: Objects of Objects

When you declare an ArrayList, you specify the type it contains in angle brackets
(<>). This declaration says that cards is not just an ArrayList, it’s an ArrayList of
Card objects.

The constructor takes a string as an argument and assigns it to an instance variable,
label. It also initializes cards with an empty ArrayList.

ArrayList provides a method, add, that adds an element to the collection. We will
write a CardCollection method that does the same thing:

public void addCard(Card card) {
 this.cards.add(card);
}

Until now, we have used this explicitly to make it easy to identify attributes. Inside
addCard and other instance methods, you can access instance variables without using
the keyword this. So from here on, we will drop it:

public void addCard(Card card) {
 cards.add(card);
}

We also need to be able to remove cards from a collection. The following method
takes an index, removes the card at that location, and shifts the following cards left to
fill the gap:

public Card popCard(int i) {
 return cards.remove(i);
}

If we are dealing cards from a shuffled deck, we don’t care which card gets removed.
It is most efficient to choose the last one, so we don’t have to shift any following cards.
Here is an overloaded version of popCard that removes and returns the last card:

public Card popCard() {
 int i = size() - 1;
 return popCard(i);
}

Notice that popCard uses CardCollection’s own size method, which in turn calls the
ArrayList’s size method:

public int size() {
 return cards.size();
}

For convenience, CardCollection also provides an empty method that returns true
when size is zero:

public boolean empty() {
 return cards.size() == 0;
}

CardCollection | 187

Methods like addCard, popCard, and size, which invoke another method without
doing much additional work, are called wrapper methods. We will use these wrapper
methods to implement less trivial methods, like deal:

public void deal(CardCollection that, int n) {
 for (int i = 0; i < n; i++) {
 Card card = popCard();
 that.addCard(card);
 }
}

The deal method removes cards from the collection it is invoked on, this, and adds
them to the collection it gets as a parameter, that. The second parameter, n, is the
number of cards to deal.

To access the elements of an ArrayList, you can’t use the array [] operator. Instead,
you have to use the methods get and set. Here is a wrapper for get:

public Card getCard(int i) {
 return cards.get(i);
}

The last method gets the last card (but doesn’t remove it):

public Card last() {
 int i = size() - 1;
 return cards.get(i);
}

In order to control the ways card collections are modified, we don’t provide a wrap‐
per for set. The only modifiers we provide are the two versions of popCard and the
following version of swapCards:

public void swapCards(int i, int j) {
 Card temp = cards.get(i);
 cards.set(i, cards.get(j));
 cards.set(j, temp);
}

We use swapCards to implement shuffle, which we described in “Shuffling Decks”
on page 176:

public void shuffle() {
 Random random = new Random();
 for (int i = size() - 1; i > 0; i--) {
 int j = random.nextInt(i);
 swapCards(i, j);
 }
}

188 | Chapter 14: Objects of Objects

ArrayList provides additional methods we aren’t using here. You can read about
them in the documentation, which you can find by doing a web search for “Java
ArrayList”.

Inheritance
At this point we have a class that represents a collection of cards. Next we’ll use it to
define Deck and Hand. Here is the complete definition of Deck:

public class Deck extends CardCollection {

 public Deck(String label) {
 super(label);

 for (int suit = 0; suit <= 3; suit++) {
 for (int rank = 1; rank <= 13; rank++) {
 cards.add(new Card(rank, suit));
 }
 }
 }
}

The first line uses the keyword extends to indicate that Deck extends the class Card
Collection. That means a Deck object has the same instance variables and methods
as a CardCollection. Another way to say the same thing is that Deck “inherits from”
CardCollection. We could also say that CardCollection is a superclass, and Deck is
one of its subclasses.

In Java, classes may only extend one superclass. Classes that do not specify a super‐
class with extends automatically inherit from java.lang.Object. So in this example,
Deck extends CardCollection, which in turn extends Object. The Object class pro‐
vides the default equals and toString methods, among other things.

Constructors are not inherited, but all other public attributes and methods are. The
only additional method in Deck, at least for now, is a constructor. So you can create a
Deck object like this:

Deck deck = new Deck("Deck");

The first line of the constructor uses something new, super, which is a keyword that
refers to the superclass of the current class. When super is used like a method, as in
this example, it invokes the constructor of the superclass.

So in this case, super invokes the CardCollection constructor, which initializes the
attributes label and cards. When it returns, the Deck constructor resumes and pop‐
ulates the (empty) ArrayList with Card objects.

Inheritance | 189

That’s it for the Deck class. Next we need a way to represent a hand, which is the col‐
lection of cards held by a player, and a pile, which is a collection of cards on the table.
We could define two classes, one for hands and one for piles, but there is not much
difference between them. So we’ll use one class, called Hand, for both hands and piles.
Here’s what the definition looks like:

public class Hand extends CardCollection {

 public Hand(String label) {
 super(label);
 }

 public void display() {
 System.out.println(getLabel() + ": ");
 for (int i = 0; i < size(); i++) {
 System.out.println(getCard(i));
 }
 System.out.println();
 }
}

Like Deck, Hand extends CardCollection, so it inherits methods like getLabel, size,
and getCard, which are used in display. Hand also provides a constructor, which
invokes the constructor of CardCollection (and nothing else).

In summary, a Deck is just like a CardCollection, but it provides a different con‐
structor. And a Hand is just like a CardCollection, but it provides an additional
method, display.

Dealing Cards
At this point we can create a Deck and start dealing cards. Here’s a simple example
that deals five cards to a hand, and deals the rest into a draw pile:

Deck deck = new Deck("Deck");
deck.shuffle();

Hand hand = new Hand("Hand");
deck.deal(hand, 5);
hand.display();

Hand drawPile = new Hand("Draw Pile");
deck.dealAll(drawPile);
System.out.printf("Draw Pile has %d cards.\n",
 drawPile.size());

CardCollection provides dealAll, which deals all of the remaining cards. Here’s the
output of the previous example:

190 | Chapter 14: Objects of Objects

Hand:
5 of Diamonds
Ace of Hearts
6 of Clubs
6 of Diamonds
2 of Clubs

Draw Pile has 47 cards.

Of course, if you run this example you will probably get a different hand, because the
deck is shuffled randomly.

If you are a careful reader, you might notice something strange about this example.
Take another look at the definition of deal:

public void deal(CardCollection that, int n) {
 for (int i = 0; i < n; i++) {
 Card card = popCard();
 that.addCard(card);
 }
}

Notice that the first parameter is supposed to be a CardCollection. But we invoked it
like this:

Hand hand = new Hand("Hand");
deck.deal(hand, 5);

The argument is a Hand, not a CardCollection. So why is this example legal? It’s
because Hand is a subclass of CardCollection, so a Hand object is also considered to
be a CardCollection object. If a method expects a CardCollection, you can give it a
Hand, a Deck, or a CardCollection.

But it doesn’t work the other way around: not every CardCollection is a Hand, so if a
method expects a Hand, you have to give it a Hand, not a CardCollection.

If it seems strange that an object can belong to more than one type, remember that
this happens in real life, too. Every cat is also a mammal, and every mammal is also
an animal. But not every animal is a mammal, and not every mammal is a cat.

The Player Class
The classes we have defined so far could be used for any card game; we have not yet
implemented any of the rules specific to Crazy Eights. And that’s probably a good
thing, since it makes it easy to reuse these classes if we want to make another game in
the future.

But now it’s time to implement the rules. We’ll use two classes: Player, which encap‐
sulates player strategy, and Eights, which creates and maintains the state of the game.
Here is the beginning of the Player definition:

The Player Class | 191

public class Player {

 private String name;
 private Hand hand;

 public Player(String name) {
 this.name = name;
 this.hand = new Hand(name);
 }

A Player has two private attributes: a name and a hand. The constructor takes the
player’s name as a string and saves it in an instance variable. In this example, we have
to use this to distinguish between the instance variable and the parameter with the
same name.

The primary method that Player provides is play, which decides which card to dis‐
card during each turn:

public Card play(Eights eights, Card prev) {
 Card card = searchForMatch(prev);
 if (card == null) {
 card = drawForMatch(eights, prev);
 }
 return card;
}

The first parameter is a reference to the Eights object that encapsulates the state of
the game. We’ll need it if we have to draw a new card. The second parameter, prev, is
the card on top of the discard pile.

Using top-down development, we’ll have play invoke two helper methods, searchFor
Match and drawForMatch. searchForMatch looks in the player’s hand for a card that
matches the previously played card:

public Card searchForMatch(Card prev) {
 for (int i = 0; i < hand.size(); i++) {
 Card card = hand.getCard(i);
 if (cardMatches(card, prev)) {
 return hand.popCard(i);
 }
 }
 return null;
}

The strategy is pretty simple: the for loop searches for the first card that’s legal to play
and returns it. If there are no cards that match, it returns null. And in that case, we
have to draw cards until we get a match:

192 | Chapter 14: Objects of Objects

public Card drawForMatch(Eights eights, Card prev) {
 while (true) {
 Card card = eights.draw();
 System.out.println(name + " draws " + card);
 if (cardMatches(card, prev)) {
 return card;
 }
 hand.addCard(card);
 }
}

The while loop runs until it finds a match (we’ll assume for now that it always does).
It uses the Eights object to draw a card. If it matches, it returns the card. Otherwise it
adds the card to the player’s hand and continues.

Both searchForMatch and drawForMatch use cardMatches, which is a static method,
also defined in Player. cardMatches is a straightforward translation of the rules of
the game:

public static boolean cardMatches(Card card1, Card card2) {
 if (card1.getSuit() == card2.getSuit()) {
 return true;
 }
 if (card1.getRank() == card2.getRank()) {
 return true;
 }
 if (card1.getRank() == 8) {
 return true;
 }
 return false;
}

Finally, Player provides score, which computes penalty points for cards left in a
player’s hand at the end of the game:

public int score() {
 int sum = 0;
 for (int i = 0; i < hand.size(); i++) {
 Card card = hand.getCard(i);
 int rank = card.getRank();
 if (rank == 8) {
 sum -= 20;
 } else if (rank > 10) {
 sum -= 10;
 } else {
 sum -= rank;
 }
 }
 return sum;
}

The Player Class | 193

The Eights Class
In “Shuffling Decks” on page 176 we introduced top-down development, which is a
way of developing programs by identifying high-level goals, like shuffling a deck, and
breaking them into smaller problems, like finding the lowest element in an array or
swapping two elements.

In this section we present bottom-up development, which goes the other way
around: first we identify simple pieces we need, then we assemble them into more
complex algorithms.

Looking at the rules of Crazy Eights, we can identify some methods we’ll need:

• Create the deck, the discard and draw piles, and the player objects.
• Deal the cards.
• Check whether the game is over.
• If the draw pile is empty, shuffle the discard pile and move the cards into the

draw pile.
• Draw a card.
• Keep track of whose turn it is and switch from one player to the next.
• Display the state of the game.
• Wait for the user before running the next turn.

Now we can start implementing the pieces. Here is the beginning of the class defini‐
tion for Eights, which encapsulates the state of the game:

public class Eights {

 private Player one;
 private Player two;
 private Hand drawPile;
 private Hand discardPile;
 private Scanner in;

In this version, there are always two players. One of the exercises at the end of the
chapter asks you to modify this code to handle more players.

The last instance variable is a Scanner that we’ll use to prompt the user after each
move. Here’s a constructor that initializes the instance variables and deals the cards:

public Eights() {
 Deck deck = new Deck("Deck");
 deck.shuffle();

 int handSize = 5;
 one = new Player("Allen");
 deck.deal(one.getHand(), handSize);

194 | Chapter 14: Objects of Objects

 two = new Player("Chris");
 deck.deal(two.getHand(), handSize);

 discardPile = new Hand("Discards");
 deck.deal(discardPile, 1);

 drawPile = new Hand("Draw pile");
 deck.dealAll(drawPile);

 in = new Scanner(System.in);
}

The next piece we’ll need is a method that checks whether the game is over. If either
hand is empty, we’re done:

public boolean isDone() {
 return one.getHand().empty() || two.getHand().empty();
}

When the draw pile is empty, we have to shuffle the discard pile. Here is a method for
that:

public void reshuffle() {
 Card prev = discardPile.popCard();
 discardPile.dealAll(drawPile);
 discardPile.addCard(prev);
 drawPile.shuffle();
}

The first line saves the top card from discardPile. The next line transfers the rest of
the cards to drawPile. Then we put the saved card back into discardPile and shuffle
drawPile.

Now we can use reshuffle as part of draw:

public Card draw() {
 if (drawPile.empty()) {
 reshuffle();
 }
 return drawPile.popCard();
}

We can switch from one player to the next like this:

public Player nextPlayer(Player current) {
 if (current == one) {
 return two;
 } else {
 return one;
 }
}

The nextPlayer method takes the current player as a parameter and returns the
player who should go next.

The Eights Class | 195

The last two pieces are displayState and waitForUser:

public void displayState() {
 one.display();
 two.display();
 discardPile.display();
 System.out.println("Draw pile:");
 System.out.println(drawPile.size() + " cards");
}

public void waitForUser() {
 in.nextLine();
}

Using these pieces, we can write takeTurn, which executes one player’s turn:

public void takeTurn(Player player) {
 Card prev = discardPile.last();
 Card next = player.play(this, prev);
 discardPile.addCard(next);

 System.out.println(player.getName() + " plays " + next);
 System.out.println();
}

takeTurn reads the top card off the discard pile and passes it to player.play, which
we saw in the previous section. The result is the card the player chose, which is added
to the discard pile.

Finally, we use takeTurn and the other methods to write playGame:

public void playGame() {
 Player player = one;

 // keep playing until there's a winner
 while (!isDone()) {
 displayState();
 waitForUser();
 takeTurn(player);
 player = nextPlayer(player);
 }

 // display the final score
 one.displayScore();
 two.displayScore();
}

Done! Notice the result of bottom-up development is similar to top-down: we have a
high-level method that calls helper methods. The main difference is the order we
used to arrive at this solution.

196 | Chapter 14: Objects of Objects

Class Relationships
This chapter demonstrates two common relationships between classes:

composition:
Instances of one class contain references to instances of another class. For exam‐
ple, an instance of Eights contains references to two Player objects, two Hand
objects, and a Scanner.

inheritance:
One class extends another class. For example, Hand extends CardCollection, so
every instance of Hand is also a CardCollection.

Composition is also known as a HAS-A relationship, as in “Eights HAS-A Scanner”.
Inheritance is also known as an IS-A relationship, as in “a Hand IS-A
CardCollection”. This vocabulary provides a concise way to talk about an object-
oriented design.

There is also a standard way to represent these relationships graphically in UML class
diagrams. As we saw in “Class Diagrams” on page 138, the UML representation of a
class is a box with three sections: the class name, the attributes, and the methods. The
latter two sections are optional when showing relationships.

Relationships between classes are represented by arrows: composition arrows have a
standard arrow head, and inheritance arrows have a hollow triangle head (usually
pointing up). Figure 14-1 shows the classes defined in this chapter and the relation‐
ships among them.

Figure 14-1. UML diagram for the classes in this chapter.

UML is an international standard, so almost any software engineer in the world could
look at this diagram and understand our design. And class diagrams are only one of
many graphical representations defined in the UML standard.

We hope this final chapter has been a useful summary of all the techniques presented
in the book, including variables, methods, conditionals, loops, arrays, objects, and
algorithms. Congratulations on making it to the end!

Class Relationships | 197

Vocabulary
collection:

An object that contains other objects, or more specifically, one of the objects in
the Java library, like ArrayList, that contains objects.

inheritance:
The ability to define a new class that has the same instance variables and meth‐
ods of an existing class.

subclass:
A class that inherits from, or extends, an existing class.

superclass:
An existing class that is extended by another class.

wrapper method:
A method that calls another method without doing much additional work.

bottom-up development:
A way of developing programs by identifying simple pieces, implementing them,
and then assembling them into more complex algorithms.

HAS-A:
A relationship between two classes where one class “has” an instance of another
class as one of its attributes.

IS-A:
A relationship between two classes where one class extends another class; the
subclass “is” an instance of the superclass.

Exercises
The code for this chapter is in the ch14 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise 14-1.

Design a better strategy for the Player.play method. For example, if there are multi‐
ple cards you can play, and one of them is an eight, you might want to play the eight.

Think of other ways you can minimize penalty points, such as playing the highest
ranking cards first. Write a new class that extends Player and overrides play to
implement your strategy.

198 | Chapter 14: Objects of Objects

Exercise 14-2.

Write a loop that plays the game 100 times and keeps track of how many times each
player wins. If you implemented multiple strategies in the previous exercise, you can
play them against each other to evaluate which one works best.

Hint: Design a Genius class that extends Player and overrides the play method, and
then replace one of the players with a Genius object.

Exercise 14-3.

One limitation of the program we wrote in this chapter is that it only handles two
players. Modify the Eights class to create an ArrayList of players, and modify next
Player to select the next player.

Exercise 14-4.

When we designed the program for this chapter, we tried to minimize the number of
classes. As a result, we ended up with a few awkward methods. For example, card
Matches is a static method in Player, but it would be more natural if it were an
instance method in Card.

The problem is that Card is supposed to be useful for any card game, not just Crazy
Eights. You can solve this problem by adding a new class, EightsCard, that extends
Card and provides a method, match, that checks whether two cards match according
to the rules of Crazy Eights.

At the same time, you could create a new class, EightsHand, that extends Hand and
provides a method, scoreHand, that adds up the scores of the cards in the hand. And
while you’re at it, you could add a method named scoreCard to EightsCard.

Whether or not you actually make these changes, draw a UML class diagram that
shows this alternative object hierarchy.

Exercises | 199

APPENDIX A

Development Tools

The steps for compiling, running, and debugging Java code depend on your develop‐
ment environment and operating system. We avoided putting these details in the
main text, because they can be distracting. Instead, we provide this appendix with a
brief introduction to DrJava—an integrated development environment (IDE) that is
well suited for beginners—and other development tools, including Checkstyle for
code quality and JUnit for testing.

Installing DrJava
The easiest way to start programming in Java is to use a website that compiles and
runs Java code in the browser. Examples include jdoodle.com, compilejava.net,
tutorialspoint.com, and others.

If you are unable to install software on your computer (which is often the case in
public schools and Internet cafés), you can use these online development environ‐
ments for almost everything in this book.

But if you want to compile and run Java programs on your own computer, you will
need:

• The Java Development Kit (JDK), which includes the compiler, the Java Virtual
Machine (JVM) that interprets the compiled byte code, and other tools such as
Javadoc.

• A simple text editor such as Notepad++ or Sublime Text, and/or an IDE such as
DrJava, Eclipse, jGrasp, or NetBeans.

201

https://www.jdoodle.com/
https://www.compilejava.net/
http://tutorialspoint.com/

The JDK we recommend is Java SE (Standard Edition), which Oracle makes available
for free. The IDE we recommend is DrJava, which is an open-source development
environment written in Java (see Figure A-1).

To install the JDK, search the web for “download JDK” which should take you to Ora‐
cle’s website. Scroll down to “Java Platform, Standard Edition” and click the download
button under JDK. Then accept the license agreement and select the installer for your
operating system. Don’t forget to run the installer after you download it!

To install DrJava, visit http://drjava.org and download the JAR file. We recommend
that you save it to your Desktop or another convenient location. Simply double-click
the JAR file to run DrJava. Refer to the DrJava documentation (http://drjava.org/docs/
quickstart/) for more details.

Figure A-1. Screenshot of DrJava editing the hello world program.

When running DrJava for the first time, we recommend you change three settings
from the Edit > Preferences menu under Miscellaneous: set the Indent Level to 4, check
the Automatically Close Block Comments box, and uncheck the Keep Emacs-style
Backup Files box.

DrJava Interactions
One of the most useful features of DrJava is the “Interactions Pane” at the bottom of
the window. It provides the ability to try out code quickly, without having to write a
class definition and save/compile/run the program. Figure A-2 shows an example.

202 | Appendix A: Development Tools

http://drjava.org
http://drjava.org/docs/quickstart/
http://drjava.org/docs/quickstart/

Figure A-2. Screenshot of the Interactions Pane in DrJava.

There is one subtle detail to note when using the Interactions feature. If you don’t end
an expression (or statement) with a semicolon, DrJava automatically displays its
value. Notice in Figure A-2 how the variable declarations end with semicolons, but
the logic expressions in the following lines do not. This feature saves you from having
to type System.out.println every time.

What’s nice about this feature is that you don’t have to create a new class, declare a
main method, write arbitrary expressions inside System.out.println statements,
save the source file, and get all of your code to compile in advance. Also, you can
press the up/down arrows on the keyboard to repeat previous commands and experi‐
ment with incremental differences.

Command-Line Interface
One of the most powerful and useful skills you can learn is how to use the command-
line interface, also called the “terminal”. The command line is a direct interface to the
operating system. It allows you to run programs, manage files and directories, and
monitor system resources. Many advanced tools, both for software development and
general purpose computing, are available only at the command line.

There are many good tutorials online for learning the command line for your operat‐
ing system; just search the web for “command line tutorial”. On Unix systems like
Linux and OS X, you can get started with just four commands: change the working

Development Tools | 203

directory (cd), list directory contents (ls), compile Java programs (javac), and run
Java programs (java).

Figure A-3 shows an example where the Hello.java source file is stored in the Desk
top directory. After changing to that location and listing the files, we use the javac
command to compile Hello.java. Running ls again, we see that the compiler gener‐
ated a new file, Hello.class, which contains the byte code. We run the program
using the java command, which displays the output on the following line.

Figure A-3. Compiling and running Hello.java from the command line.

Note that the javac command requires a filename (or multiple source files separated
by spaces), whereas the java command requires a single class name. If you use
DrJava, it runs these commands for you behind the scenes and displays the output in
the Interactions Pane.

Taking time to learn this efficient and elegant way of interacting with your operating
system will make you more productive. People who don’t use the command line don’t
know what they’re missing.

Command-Line Testing
As described in “Debugging Code” on page 8, it’s more effective to program and
debug your code little by little than to attempt writing everything all at once. And
after you’ve completed programming an algorithm, it’s important to test that it works
correctly on a variety of inputs.

Throughout the book, we illustrate techniques for testing your programs. Most if not
all testing is based on a simple idea: does the program do what we expect it to do? For
simple programs, it’s not difficult to run them several times and see what happens.
But at some point, you will get tired of typing the same test cases over and over.

We can automate the process of entering input and comparing “expected output”
with “actual output” using the command line. The basic idea is to store the test cases

204 | Appendix A: Development Tools

in plain text files and trick Java into thinking they are coming from the keyboard.
Here are step-by-step instructions:

1. Make sure you can compile and run the Convert.java example in the ch03
directory of ThinkJavaCode.

2. In the same directory as Convert.java, create a plain text file named test.in
(“in” is for input). Enter the following line and save the file:

193.04

3. Create a second plain text file named test.exp (“exp” is for expected). Enter the
following line and save the file:

193.04 cm = 6 ft, 4 in

4. Open a terminal, and change to the directory with these files. Run the following
command to test the program:

java Convert < test.in > test.out

On the command line, < and > are redirection operators. The first one redirects the
contents of test.in to System.in, as if it were entered from the keyboard. The sec‐
ond one redirects the contents of System.out to a new file test.out, much like a
screen capture. In other words, the test.out file contains the output of your pro‐
gram.

By the way, it’s perfectly okay to compile your programs in DrJava (or some other
environment) and run them from the command line. Knowing both techniques
allows you to use the right tool for the job.

At this point, we just need to compare the contents test.out with test.exp. If the
files are the same, then the program outputted what we expected it to output. If not,
then we found a bug, and we can use the output to begin debugging our program.
Fortunately, there’s a simple way to compare files on the command line:

diff test.exp test.out

The diff utility summarizes the differences between two files. If there are no differ‐
ences, then it displays nothing, which in our case is what we want. If the expected
output differs from the actual output, then we need to continue debugging. Usually
the program is at fault, and diff provides some insight about what is broken. But
there’s also a chance that we have a correct program and the expected output is
wrong.

Interpreting the results from diff can be confusing, but fortunately there are many
graphical tools that show the differences between two files. For example, on Windows
you can install WinMerge, on Mac you can use opendiff (which comes with Xcode),
and on Linux there’s meld, shown in Figure A-4.

Development Tools | 205

Figure A-4. Using meld to compare expected output with the actual output.

Regardless of what tool you use, the goal is the same. Debug your program until the
actual output is identical to the expected output.

Running Checkstyle
Checkstyle is a command-line tool that can be used to determine if your source code
follows a set of style rules. It also checks for common programming mistakes, such as
class and method design problems.

You can download the latest version as a JAR file from http://checkstyle.source
forge.net/. To run Checkstyle, move (or copy) the JAR file to the same directory as
your program. Open a terminal in that location, and run the following command:

java -jar checkstyle-*-all.jar -c /google_checks.xml *.java

The * characters are wildcards that match whatever version of Checkstyle you have
and whatever Java source files are present. The output indicates the file and line num‐
ber of each problem. This example refers to a method beginning on line 93, column 5
of Hello.java:

Hello.java:93:5: Missing a Javadoc comment

The file /google_checks.xml is inside the JAR file and represents most of Google’s
style rules. You can alternatively use /sun_checks.xml or provide your own configu‐
ration file. See Checkstyle’s website for more information.

206 | Appendix A: Development Tools

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

If you apply Checkstyle to your source code often, you will likely internalize good
style habits over time. But there are limits to what automatic style checkers can do. In
particular, they can’t evaluate the quality of your comments, the meaning of your vari‐
able names, or the structure of your algorithms.

Good comments make it easier for experienced developers to identify errors in your
code. Good variable names communicate the intent of your program and how the
data is organized. And good programs are designed to be efficient and demonstrably
correct.

Tracing with a Debugger
A great way to visualize the flow of execution, including how parameters and argu‐
ments work, is to use a debugger. Most debuggers make it possible to:

1. Set a breakpoint, a line where you want the program to pause.
2. Step through the code one line at a time and watch what it does.
3. Check the values of variables and see when and how they change.

For example, open any program in DrJava and move the cursor to the first line of
main. Press Ctrl+B to toggle a breakpoint on the current line; it should now be high‐
lighted in red. Press Ctrl+Shift+D to turn on Debug Mode; a new pane should appear
at the bottom of the window. These commands are also available from the Debugger
menu, in case you forget the shortcut keys.

When you run the program, execution pauses at the first breakpoint. The debug pane
displays the call stack, with the current method on top of the stack, as shown in
Figure A-5. You might be surprised to see how many methods were called before the
main method!

To the right are several buttons that allow you to step through the code at your own
pace. You can also press Automatic Trace to watch DrJava run your code one line at a
time.

Using a debugger is like having the computer proofread your code out loud. When
the program is paused, you can examine (or even change) the value of any variable
using the Interactions Pane.

Tracing allows you to follow the flow of execution and see how data pass from one
method to another. You might expect the code do one thing, but then the debugger
shows it doing something else. At that moment, you gain insight about what may be
wrong with the code.

Development Tools | 207

Figure A-5. Screenshot of the DrJava debugger. Execution is currently paused on the first
line of printTwice. There is a breakpoint on the first line of main.

You can edit your code while debugging it, but we don’t recommend it. If you add or
delete multiple lines of code while the program is paused, the results can be confus‐
ing.

See http://drjava.org/docs/user/ch09.html for more information about using the
debugger feature of DrJava.

Testing with JUnit
When beginners start writing methods, they usually test them by invoking them from
main and checking the results by hand. Writing code like this can get repetitive, but
there are tools to make it easier. For cases where we know the right answer, we can do
better by writing unit tests.

For example, to test fibonacci from “One More Example” on page 82, we could
write:

public static void main(String[] args) {
 if (fibonacci(1) != 1) {
 System.err.println("fibonacci(1) is incorrect");
 }
 if (fibonacci(2) != 1) {
 System.err.println("fibonacci(2) is incorrect");
 }

208 | Appendix A: Development Tools

http://drjava.org/docs/user/ch09.html

 if (fibonacci(3) != 2) {
 System.err.println("fibonacci(3) is incorrect");
 }
}

This test code is self-explanatory, but it’s longer than it needs to be and it doesn’t scale
very well. In addition, the error messages provide limited information. Using a unit
test framework addresses these and other issues.

JUnit is a common testing tool for Java programs (see http://junit.org). To use it, you
have to create a test class that contains test methods. If the name of your class is
Class, the name of the test class is ClassTest. And if there is a method in Class
named method, there should be a method in TestClass named testMethod.

For example, suppose that the fibonacci method belongs to a class named Series.
Here is the corresponding JUnit test class and test method:

import junit.framework.TestCase;

public class SeriesTest extends TestCase {

 public void testFibonacci() {
 assertEquals(1, Series.fibonacci(1));
 assertEquals(1, Series.fibonacci(2));
 assertEquals(2, Series.fibonacci(3));
 }
}

This example uses the keyword extends, which indicates that the new class,
SeriesTest, is based on an existing class, TestCase, which is imported from the
package junit.framework.

Many development environments can generate test classes and test methods automat‐
ically. In DrJava, you can select New JUnit Test Case from the File menu to generate an
empty test class.

assertEquals is provided by the TestCase class. It takes two arguments and checks
whether they are equal. If so, it does nothing; otherwise it displays a detailed error
message. Normally the first argument is the “expected value”, which we consider cor‐
rect, and the second argument is the “actual value” we want to check. If they are not
equal, the test fails.

Using assertEquals is more concise than writing your own if statements and Sys
tem.err messages. JUnit provides additional assert methods, such as assertNull,
assertSame, and assertTrue, that can be used to design a variety of tests.

To run JUnit directly from DrJava, click the Test button on the toolbar. If all your test
methods pass, you will see a green bar in the lower-right corner. Otherwise, DrJava
will take you directly to the first assertion that failed.

Development Tools | 209

http://junit.org

Vocabulary
IDE:

An “integrated development environment” that includes tools for editing,
compiling, and debugging programs.

JDK:
The “Java Development Kit” that contains the compiler, Javadoc, and other tools.

JVM:
The “Java Virtual Machine” that interprets the compiled byte code.

text editor:
A program that edits plain text files, the format used by most programming lan‐
guages.

JAR:
A “Java Archive”, which is essentially a ZIP file containing classes and other
resources.

command-line interface:
A means of interacting with the computer by issuing commands in the form of
successive lines of text.

redirection operator:
A command-line feature that substitutes System.in and/or System.out with a
plain text file.

wildcard:
A command-line feature that allows you to specify a pattern of filenames using
the * character.

debugger:
A tool that allows you to run one statement at a time and see the contents of vari‐
ables.

breakpoint:
A line of code where the debugger will pause a running program.

call stack:
The history of method calls and where to resume execution after each method
returns.

unit test:
Code that exercises a single method of a program, testing for correctness and/or
efficiency.

210 | Appendix A: Development Tools

APPENDIX B

Java 2D Graphics

The Java library includes a simple package for drawing 2D graphics, called java.awt.
AWT stands for “Abstract Window Toolkit”. We are only going to scratch the surface
of graphics programming; you can read more about it in the Java tutorials at https://
docs.oracle.com/javase/tutorial/2d/.

Creating Graphics
There are several ways to create graphics in Java; the simplest way is to use
java.awt.Canvas and java.awt.Graphics. A Canvas is a blank rectangular area of
the screen onto which the application can draw. The Graphics class provides basic
drawing methods such as drawLine, drawRect, and drawString.

Here is an example program that draws a circle using the fillOval method:
import java.awt.Canvas;
import java.awt.Graphics;
import javax.swing.JFrame;

public class Drawing extends Canvas {

 public static void main(String[] args) {
 JFrame frame = new JFrame("My Drawing");
 Canvas canvas = new Drawing();
 canvas.setSize(400, 400);
 frame.add(canvas);
 frame.pack();
 frame.setVisible(true);
 }

 public void paint(Graphics g) {
 g.fillOval(100, 100, 200, 200);
 }
}

211

https://docs.oracle.com/javase/tutorial/2d/
https://docs.oracle.com/javase/tutorial/2d/

The Drawing class extends Canvas, so it has all the methods provided by Canvas,
including setSize. You can read about the other methods in the documentation,
which you can find by doing a web search for “Java Canvas”.

In the main method, we:

1. Create a JFrame object, which is the window that will contain the canvas.
2. Create a Drawing object (which is the canvas), set its width and height, and add it

to the frame.
3. Pack the frame (resize it) to fit the canvas, and display it on the screen.

Once the frame is visible, the paint method is called whenever the canvas needs to be
drawn; for example, when the window is moved or resized. The application doesn’t
end after the main method returns; instead, it waits for the JFrame to close. If you run
this code, you should see a black circle on a gray background.

Graphics Methods
You are probably used to Cartesian coordinates, where x and y values can be positive
or negative. In contrast, Java uses a coordinate system where the origin is in the
upper-left corner. That way, x and y are always positive integers. Figure B-1 shows
these coordinate systems.

Figure B-1. Diagram of the difference between Cartesian coordinates and Java graphical
coordinates.

Graphical coordinates are measured in pixels; each pixel corresponds to a dot on the
screen.

212 | Appendix B: Java 2D Graphics

To draw on the canvas, you invoke methods on a Graphics object. You don’t have to
create the Graphics object; it gets created when you create the Canvas, and it gets
passed as an argument to paint.

The previous example used fillOval, which has the following signature:

/**
 * Fills an oval bounded by the specified rectangle with
 * the current color.
 */
public void fillOval(int x, int y, int width, int height)

The four parameters specify a bounding box, which is the rectangle in which the oval
is drawn. x and y specify the the location of the upper-left corner of the bounding
box. The bounding box itself is not drawn (see Figure B-2).

Figure B-2. Diagram of an oval inside its bounding box.

To choose the color of a shape, invoke setColor on the Graphics object:

g.setColor(Color.red);

The setColor method determines the color of everything that gets drawn afterward.
Color.red is a constant provided by the Color class; to use it you have to import
java.awt.Color. Other colors include:

black blue cyan darkGray gray green
lightGray magenta orange pink white yellow

You can create your own colors by specifying the red, green, and blue (RGB) compo‐
nents. For example:

Color purple = new Color(128, 0, 128);

Each value is an integer in the range 0 (darkest) to 255 (lightest). The color (0, 0,
0) is black, and (255, 255, 255) is white.

Java 2D Graphics | 213

You can set the background color of the Canvas by invoking setBackground:

canvas.setBackground(Color.white);

Example Drawing
Suppose we want to draw a “Hidden Mickey”, which is an icon that represents Mickey
Mouse (see https://en.wikipedia.org/wiki/Hidden_Mickey). We can use the oval we just
drew as the face, and then add two ears. To make the code more readable, let’s use
Rectangle objects to represent bounding boxes.

Here’s a method that takes a Rectangle and invokes fillOval:

public void boxOval(Graphics g, Rectangle bb) {
 g.fillOval(bb.x, bb.y, bb.width, bb.height);
}

And here’s a method that draws Mickey Mouse:

public void mickey(Graphics g, Rectangle bb) {
 boxOval(g, bb);

 int dx = bb.width / 2;
 int dy = bb.height / 2;
 Rectangle half = new Rectangle(bb.x, bb.y, dx, dy);

 half.translate(-dx / 2, -dy / 2);
 boxOval(g, half);

 half.translate(dx * 2, 0);
 boxOval(g, half);
}

The first line draws the face. The next three lines create a smaller rectangle for the
ears. We translate the rectangle up and left for the first ear, then to the right for the
second ear. The result is shown in Figure B-3.

Figure B-3. A “Hidden Mickey” drawn using Java graphics.

You can read more about Rectangle and translate in Chapter 10. See the exercises
at the end of this appendix for more example drawings.

214 | Appendix B: Java 2D Graphics

https://en.wikipedia.org/wiki/Hidden_Mickey

Vocabulary
AWT:

The “Abstract Window Toolkit”, a Java package for creating graphical user inter‐
faces.

coordinate:
A value that specifies a location in a two-dimensional graphical window.

pixel:
The unit in which coordinates are measured.

bounding box:
A common way to specify the coordinates of a rectangular area.

RGB:
A color model based on adding red, green, and blue light.

Exercises
The code for this chapter is in the ap02 directory of ThinkJavaCode. See “Using the
Code Examples” on page xi for instructions on how to download the repository.
Before you start the exercises, we recommend that you compile and run the
examples.

Exercise B-1.

Draw the flag of Japan: a red circle on a white background that is wider than it is tall.

Exercise B-2.

Modify Mickey.java to draw ears on the ears, and ears on those ears, and more ears
all the way down until the smallest ears are only 3 pixels wide.

The result should look like “Mickey Moose”, shown in Figure B-4. Hint: You should
only have to add or modify a few lines of code.

Figure B-4. A recursive shape we call “Mickey Moose”.

Java 2D Graphics | 215

Exercise B-3.

In this exercise, you will draw “Moiré patterns” that seem to shift around as you
move. For an explanation of what is going on, see https://en.wikipedia.org/wiki/
Moire_pattern.

1. In the directory app02 in the repository for this book, you’ll find a file named
Moire.java. Open it and read the paint method. Draw a sketch of what you
expect it to do. Now run it. Did you get what you expected?

2. Modify the program so that the space between the circles is larger or smaller. See
what happens to the image.

3. Modify the program so that the circles are drawn in the center of the screen and
concentric, as in Figure B-5 (left). The distance between the circles should be
small enough that the Moiré interference is apparent.

4. Write a method named radial that draws a radial set of line segments as shown
in Figure B-5 (right), but they should be close enough together to create a Moiré
pattern.

5. Just about any kind of graphical pattern can generate Moiré-like interference pat‐
terns. Play around and see what you can create.

Figure B-5. Graphical patterns that can exhibit Moiré interference.

216 | Appendix B: Java 2D Graphics

https://en.wikipedia.org/wiki/Moire_pattern
https://en.wikipedia.org/wiki/Moire_pattern

APPENDIX C

Debugging

Although there are debugging suggestions throughout the book, we thought it would
be useful to organize them in an appendix. If you are having a hard time debugging,
you might want to review this appendix from time to time.

The best debugging strategy depends on what kind of error you have:

• Compile-time errors indicate that there is something wrong with the syntax of
the program. Example: omitting the semicolon at the end of a statement.

• Run-time errors are produced if something goes wrong while the program is
running. Example: infinite recursion eventually causes a StackOverflowError.

• Logic errors cause the program to do the wrong thing. Example: an expression
may not be evaluated in the order you expect.

The following sections are organized by error type; some techniques are useful for
more than one type.

Compile-Time Errors
The best kind of debugging is the kind you don’t have to do because you avoid mak‐
ing errors in the first place. Incremental development, which we presented in “Writ‐
ing Methods” on page 73, can help. The key is to start with a working program and
add small amounts of code at a time. When there is an error, you will have a pretty
good idea where it is.

Nevertheless, you might find yourself in one of the following situations. For each sit‐
uation, we have some suggestions about how to proceed.

217

The compiler is spewing error messages.
If the compiler reports 100 error messages, that doesn’t mean there are 100 errors in
your program. When the compiler encounters an error, it often gets thrown off track
for a while. It tries to recover and pick up again after the first error, but sometimes it
reports spurious errors.

Only the first error message is truly reliable. We suggest that you only fix one error at
a time, and then recompile the program. You may find that one semicolon or brace
“fixes” 100 errors.

I’m getting a weird compiler message, and it won’t go away.
First of all, read the error message carefully. It may be written in terse jargon, but
often there is a carefully hidden kernel of information.

If nothing else, the message will tell you where in the program the problem occurred.
Actually, it tells you where the compiler was when it noticed a problem, which is not
necessarily where the error is. Use the information the compiler gives you as a guide‐
line, but if you don’t see an error where the compiler is pointing, broaden the search.

Generally the error will be prior to the location of the error message, but there are
cases where it will be somewhere else entirely. For example, if you get an error mes‐
sage at a method invocation, the actual error may be in the method definition itself.

If you don’t find the error quickly, take a breath and look more broadly at the entire
program. Make sure the program is indented properly; that makes it easier to spot
syntax errors.

Now, start looking for common syntax errors:

1. Check that all parentheses and brackets are balanced and properly nested. All
method definitions should be nested within a class definition. All program state‐
ments should be within a method definition.

2. Remember that uppercase letters are not the same as lowercase letters.
3. Check for semicolons at the end of statements (and no semicolons after squiggly

braces).
4. Make sure that any strings in the code have matching quotation marks. Make

sure that you use double quotes for strings and single quotes for characters.
5. For each assignment statement, make sure that the type on the left is the same as

the type on the right. Make sure that the expression on the left is a variable name
or something else that you can assign a value to (like an element of an array).

218 | Appendix C: Debugging

6. For each method invocation, make sure that the arguments you provide are in
the right order and have the right type, and that the object you are invoking the
method on is the right type.

7. If you are invoking a value method, make sure you are doing something with the
result. If you are invoking a void method, make sure you are not trying to do
something with the result.

8. If you are invoking an instance method, make sure you are invoking it on an
object with the right type. If you are invoking a static method from outside the
class where it is defined, make sure you specify the class name (using dot nota‐
tion).

9. Inside an instance method you can refer to the instance variables without speci‐
fying an object. If you try that in a static method—with or without this—you get
a message like “non-static variable x cannot be referenced from a static context.”

If nothing works, move on to the next section...

I can’t get my program to compile no matter what I do.
If the compiler says there is an error and you don’t see it, that might be because you
and the compiler are not looking at the same code. Check your development environ‐
ment to make sure the program you are editing is the program the compiler is
compiling.

This situation is often the result of having multiple copies of the same program. You
might be editing one version of the file, but compiling a different version.

If you are not sure, try putting an obvious and deliberate syntax error right at the
beginning of the program. Now compile again. If the compiler doesn’t find the new
error, there is probably something wrong with the way you set up the development
environment.

If you have examined the code thoroughly, and you are sure the compiler is compil‐
ing the right source file, it is time for desperate measures: debugging by bisection.

• Make a backup of the file you are working on. If you are working on Bob.java,
make a copy called Bob.java.old.

• Delete about half the code from Bob.java. Try compiling again.
— If the program compiles now, you know the error is in the code you deleted.

Bring back about half of what you deleted and repeat.
— If the program still doesn’t compile, the error must be in the code that

remains. Delete about half of the remaining code and repeat.

Debugging | 219

• Once you have found and fixed the error, start bringing back the code you
deleted, a little bit at a time.

This process is ugly, but it goes faster than you might think, and it is very reliable. It
works for other programming languages too!

I did what the compiler told me to do, but it still doesn’t work.
Some error messages come with tidbits of advice, like “class Golfer must be declared
abstract. It does not define int compareTo(java.lang.Object) from interface
java.lang.Comparable.” It sounds like the compiler is telling you to declare Golfer as
an abstract class, and if you are reading this book, you probably don’t know what
that is or how to do it.

Fortunately, the compiler is wrong. The solution in this case is to make sure Golfer
has a method called compareTo that takes an Object as a parameter.

Don’t let the compiler lead you by the nose. Error messages give you evidence that
something is wrong, but the remedies they suggest are unreliable.

Run-Time Errors
It’s not always clear what causes a run-time error, but you can often figure things out
by adding print statements to your program.

My program hangs.
If a program stops and seems to be doing nothing, we say it is “hanging”. Often that
means it is caught in an infinite loop or an infinite recursion.

• If there is a particular loop that you suspect is the problem, add a print statement
immediately before the loop that says “entering the loop” and another immedi‐
ately after that says “exiting the loop”.
Run the program. If you get the first message and not the second, you know
where the program is getting stuck. Go to the section titled “Infinite loop”.

• Most of the time an infinite recursion will cause the program to run for a while
and then produce a StackOverflowError. If that happens, go to the section titled
“Infinite recursion”.
If you are not getting a StackOverflowError, but you suspect there is a problem
with a recursive method, you can still use the techniques in the infinite recursion
section.

220 | Appendix C: Debugging

• If neither of the previous suggestions helps, you might not understand the flow
of execution in your program. Go to the section titled “Flow of execution”.

Infinite loop
If you think you have an infinite loop and you know which loop it is, add a print
statement at the end of the loop that displays the values of the variables in the condi‐
tion, and the value of the condition.

For example:

while (x > 0 && y < 0) {
 // do something to x
 // do something to y

 System.out.println("x: " + x);
 System.out.println("y: " + y);
 System.out.println("condition: " + (x > 0 && y < 0));
}

Now when you run the program you see three lines of output for each time through
the loop. The last time through the loop, the condition should be false. If the loop
keeps going, you will see the values of x and y, and you might figure out why they are
not getting updated correctly.

Infinite recursion
Most of the time, an infinite recursion will cause the program to throw a
StackOverflowError. But if the program is slow, it may take a long time to fill the
stack.

If you know which method is causing an infinite recursion, check that there is a base
case. There should be some condition that makes the method return without making
a recursive invocation. If not, you need to rethink the algorithm and identify a base
case.

If there is a base case, but the program doesn’t seem to be reaching it, add a print
statement at the beginning of the method that displays the parameters. Now when
you run the program you see a few lines of output every time the method is invoked,
and you can see the values of the parameters. If the parameters are not moving
toward the base case, you might see why not.

Flow of execution
If you are not sure how the flow of execution is moving through your program, add
print statements to the beginning of each method with a message like “entering

Debugging | 221

method foo”, where foo is the name of the method. Now when you run the program,
it displays a trace of each method as it is invoked.

You can also display the arguments each method receives. When you run the pro‐
gram, check whether the values are reasonable, and check for one of the most com‐
mon errors—providing arguments in the wrong order.

When I run the program I get an exception.
When an exception occurs, Java displays a message that includes the name of the
exception, the line of the program where the exception occurred, and a “stack trace”.
The stack trace includes the method that was running, the method that invoked it, the
method that invoked that one, and so on.

The first step is to examine the place in the program where the error occurred and see
if you can figure out what happened.

NullPointerException:
You tried to access an instance variable or invoke a method on an object that is
currently null. You should figure out which variable is null and then figure out
how it got to be that way.

Remember that when you declare a variable with an array type, its elements are
initially null until you assign a value to them. For example, this code causes a
NullPointerException:

int[] array = new Point[5];
System.out.println(array[0].x);

ArrayIndexOutOfBoundsException:
The index you are using to access an array is either negative or greater than
array.length - 1. If you can find the site where the problem is, add a print
statement immediately before it to display the value of the index and the length
of the array. Is the array the right size? Is the index the right value?

Now work your way backwards through the program and see where the array
and the index come from. Find the nearest assignment statement and see if it is
doing the right thing. If either one is a parameter, go to the place where the
method is invoked and see where the values are coming from.

StackOverflowError:
See “Infinite recursion” on page 221.

FileNotFoundException:
This means Java didn’t find the file it was looking for. If you are using a project-
based development environment like Eclipse, you might have to import the file

222 | Appendix C: Debugging

into the project. Otherwise make sure the file exists and that the path is correct.
This problem depends on your file system, so it can be hard to track down.

ArithmeticException:
Something went wrong during an arithmetic operation; for example, division by
zero.

I added so many print statements I get inundated with output.
One of the problems with using print statements for debugging is that you can end up
buried in output. There are two ways to proceed: either simplify the output, or sim‐
plify the program.

To simplify the output, you can remove or comment out print statements that aren’t
helping, or combine them, or format the output so it is easier to understand. As you
develop a program, you should write code to generate concise, informative traces of
what the program is doing.

To simplify the program, scale down the problem the program is working on. For
example, if you are sorting an array, sort a small array. If the program takes input
from the user, give it the simplest input that causes the error.

Also, clean up the code. Remove unnecessary or experimental parts, and reorganize
the program to make it easier to read. For example, if you suspect that the error is in a
deeply-nested part of the program, rewrite that part with a simpler structure. If you
suspect a large method, split it into smaller methods and test them separately.

The process of finding the minimal test case often leads you to the bug. For example,
if you find that a program works when the array has an even number of elements, but
not when it has an odd number, that gives you a clue about what is going on.

Reorganizing the program can help you find subtle bugs. If you make a change that
you think doesn’t affect the program, and it does, that can tip you off.

Logic Errors
My program doesn’t work.
Logic errors are hard to find because the compiler and interpreter provide no infor‐
mation about what is wrong. Only you know what the program is supposed to do,
and only you know that it isn’t doing it.

The first step is to make a connection between the code and the behavior you get. You
need a hypothesis about what the program is actually doing. Here are some questions
to ask yourself:

Debugging | 223

• Is there something the program was supposed to do, but doesn’t seem to be hap‐
pening? Find the section of the code that performs that function, and make sure
it is executing when you think it should. See “Flow of execution” on page 221.

• Is something happening that shouldn’t? Find code in your program that performs
that function, and see if it is executing when it shouldn’t.

• Is a section of code producing an unexpected effect? Make sure you understand
the code, especially if it invokes methods in the Java library. Read the documenta‐
tion for those methods, and try them out with simple test cases. They might not
do what you think they do.

To program, you need a mental model of what your code does. If it doesn’t do what
you expect, the problem might not actually be the program; it might be in your head.

The best way to correct your mental model is to break the program into components
(usually the classes and methods) and test them independently. Once you find the
discrepancy between your model and reality, you can solve the problem.

Here are some common logic errors to check for:

• Remember that integer division always rounds toward zero. If you want frac‐
tions, use double. More generally, use integers for countable things and floating-
point numbers for measurable things.

• Floating-point numbers are only approximate, so don’t rely on them to be per‐
fectly accurate. You should probably never use the == operator with doubles.
Instead of writing if (d == 1.23), do something like if (Math.abs(d - 1.23)
< .000001).

• When you apply the equality operator (==) to objects, it checks whether they are
identical. If you meant to check equivalence, you should use the equals method
instead.

• By default for user-defined types, equals checks identity. If you want a different
notion of equivalence, you have to override it.

• Inheritance can lead to subtle logic errors, because you can run inherited code
without realizing it. See “Flow of execution” on page 221.

I’ve got a big hairy expression and it doesn’t do what I expect.
Writing complex expressions is fine as long as they are readable, but they can be hard
to debug. It is often a good idea to break a complex expression into a series of assign‐
ments to temporary variables.

rect.setLocation(rect.getLocation().translate(
 -rect.getWidth(), -rect.getHeight()));

224 | Appendix C: Debugging

This example can be rewritten as:

int dx = -rect.getWidth();
int dy = -rect.getHeight();
Point location = rect.getLocation();
Point newLocation = location.translate(dx, dy);
rect.setLocation(newLocation);

The second version is easier to read, partly because the variable names provide addi‐
tional documentation. It’s also easier to debug, because you can check the types of the
temporary variables and display their values.

Another problem that can occur with big expressions is that the order of operations
may not be what you expect. For example, to evaluate x

2π , you might write:

double y = x / 2 * Math.PI;

That is not correct, because multiplication and division have the same precedence,
and they are evaluated from left to right. This code computes x

2 π.

If you are not sure of the order of operations, check the documentation, or use paren‐
theses to make it explicit.

double y = x / (2 * Math.PI);

This version is correct, and more readable for other people who haven’t memorized
the order of operations.

My method doesn’t return what I expect.
If you have a return statement with a complex expression, you don’t have a chance to
display the value before returning.

public Rectangle intersection(Rectangle a, Rectangle b) {
 return new Rectangle(
 Math.min(a.x, b.x), Math.min(a.y, b.y),
 Math.max(a.x + a.width, b.x + b.width)
 - Math.min(a.x, b.x)
 Math.max(a.y + a.height, b.y + b.height)
 - Math.min(a.y, b.y));
}

Instead of writing everything in one statement, use temporary variables:

public Rectangle intersection(Rectangle a, Rectangle b) {
 int x1 = Math.min(a.x, b.x);
 int y2 = Math.min(a.y, b.y);
 int x2 = Math.max(a.x + a.width, b.x + b.width);
 int y2 = Math.max(a.y + a.height, b.y + b.height);
 Rectangle rect = new Rectangle(x1, y1, x2 - x1, y2 - y1);
 return rect;
}

Debugging | 225

Now you have the opportunity to display any of the intermediate variables before
returning. And by reusing x1 and y1, you made the code smaller, too.

My print statement isn’t doing anything.
If you use the println method, the output is displayed immediately, but if you use
print (at least in some environments), the output gets stored without being displayed
until the next newline. If the program terminates without displaying a newline, you
may never see the stored output. If you suspect that this is happening, change some
or all of the print statements to println.

I’m really, really stuck and I need help.
First, get away from the computer for a few minutes. Computers emit waves that
affect the brain, causing the following symptoms:

• Frustration and rage.
• Superstitious beliefs (“the computer hates me”) and magical thinking (“the pro‐

gram only works when I wear my hat backwards”).
• Sour grapes (“this program is lame anyway”).

If you suffer from any of these symptoms, get up and go for a walk. When you are
calm, think about the program. What is it doing? What are possible causes of that
behavior? When was the last time you had a working program, and what did you do
next?

Sometimes it just takes time to find a bug. People often find bugs when they let their
mind wander. Good places to find bugs are buses, showers, and bed.

No, I really need help.
It happens. Even the best programmers get stuck. Sometimes you need a another pair
of eyes.

Before you bring someone else in, make sure you have tried the techniques described
in this appendix.

Your program should be as simple as possible, and you should be working on the
smallest input that causes the error. You should have print statements in the appropri‐
ate places (and the output they produce should be comprehensible). You should
understand the problem well enough to describe it concisely.

226 | Appendix C: Debugging

When you bring someone in to help, give them the information they need:

• What kind of bug is it? Compile-time, run-time, or logic?
• What was the last thing you did before this error occurred? What were the last

lines of code that you wrote, or what is the test case that fails?
• If the bug occurs at compile time or run time, what is the error message, and

what part of the program does it indicate?
• What have you tried, and what have you learned?

By the time you explain the problem to someone, you might see the answer. This phe‐
nomenon is so common that some people recommend a debugging technique called
“rubber ducking”. Here’s how it works:

1. Buy a standard-issue rubber duck.
2. When you are really stuck on a problem, put the rubber duck on the desk in

front of you and say, “Rubber duck, I am stuck on a problem. Here’s what’s hap‐
pening...”

3. Explain the problem to the rubber duck.
4. Discover the solution.
5. Thank the rubber duck.

We’re not kidding, it works! See https://en.wikipedia.org/wiki/Rubber_duck_debugging.

I found the bug!
When you find the bug, it is usually obvious how to fix it. But not always. Sometimes
what seems to be a bug is really an indication that you don’t understand the program,
or there is an error in your algorithm. In these cases, you might have to rethink the
algorithm, or adjust your mental model. Take some time away from the computer to
think, work through test cases by hand, or draw diagrams to represent the computa‐
tion.

After you fix the bug, don’t just start in making new errors. Take a minute to think
about what kind of bug it was, why you made the error, how the error manifested
itself, and what you could have done to find it faster. Next time you see something
similar, you will be able to find the bug more quickly. Or even better, you will learn to
avoid that type of bug for good.

Debugging | 227

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Index

Symbols
% operator, 35
== operator, 152

A
abecedarian, 128
accessor, 150
accumulator, 108, 112
addition

integer, 16
string, 20
time, 154

address, 29, 38, 151
algorithm, 2, 9
alias, 106, 112
aliasing, 136, 179
anagram, 129
angle brackets, 187
argument, 43, 48
arithmetic

floating-point, 19
integer, 17, 18

ArithmeticException, 23, 222
array, 103

2D, 173
copying, 106
element, 104
index, 104
length, 107
of cards, 175
of objects, 167
of strings, 163

ArrayIndexOutOfBoundsException, 105, 222
ArrayList, 186

Arrays class, 106, 107
assignment, 14, 24, 57
attribute, 132
AWT, 131, 211

B
base case, 65, 67
BigInteger, 143, 144
binary, 65, 67
binary search, 169, 172
boolean, 57, 77
bottom-up development, 194, 198
bounding box, 213, 215
branch, 59, 67
break, 98
breakpoint, 207, 210
bug, 2, 9
byte code, 3, 10

C
call stack, 65, 207, 210
camel case, 45
Canvas, 211
Card, 161
case-sensitive, 5, 14, 45, 122
chaining, 60, 67
char, 5, 117
Character, 123
charAt, 117
Checkstyle, 206
Church, Alonzo, 79
class, 5, 10, 47

Canvas, 211
Card, 161

229

definition, 4, 145
Graphics, 211
JFrame, 212
Math, 43
Point, 131
Rectangle, 133
Scanner, 30
System, 29
Time, 146
utility, 30

class diagram, 138, 140
class variable, 164, 172
client, 149, 156
collection, 186
Color, 213
command-line interface, 203, 210
comment, 10

documentation, 53
inline, 5

comparable, 166
compareTo, 121
comparison operator, 57
compile, 3, 9, 218
compile-time error, 21, 25, 217
complete ordering, 165
composition, 21, 25, 44, 75
computer science, 2, 9
concatenate, 20, 25, 125
conditional statement, 59, 66
constant, 33, 39
constructor, 146, 156, 162, 175, 179

value, 148
continue, 98
coordinate, 212, 215
counter, 109
Crazy Eights, 185

D
data encapsulation, 145, 156
De Morgan’s laws, 58, 66
dead code, 73, 82
debugger, 207, 210
debugging, 2, 9, 217

by bisection, 219
experimental, 8
rubber duck, 227

declaration, 13, 24, 132
decrement, 97, 99
degrees, 43

dependent, 150
deterministic, 108, 112
diagram

class, 138
stack, 50, 64, 80
state, 15, 104, 132

divisible, 36
division

floating-point, 91
integer, 17, 18

do-while, 97
documentation, 51, 55, 139

Javadoc comments, 53
Javadoc tags, 78

dot notation, 132, 140
double, 17
Double, 123
doubloon, 129
DrJava, 201

E
efficiency, 101, 111, 169, 178, 183, 187
element, 103, 104, 112
empty array, 124, 125
empty string, 120, 125
encapsulate, 92, 99
encapsulation, 126, 135

data, 145
encode, 162
enhanced for loop, 111, 112
equals, 121, 152, 153
equivalent, 152, 157, 165
error

compile-time, 21, 217
logic, 23, 217, 224
message, 8, 21, 21, 218
run-time, 22, 217
syntax, 218

escape sequence, 6, 10, 118
exception, 22, 217, 222

Arithmetic, 23
ArrayIndexOutOfBounds, 105
InputMismatch, 62
NegativeArraySize, 104
NullPointer, 137, 167
StackOverflow, 172
StringIndexOutOfBounds, 119

executable, 3, 10
experimental debugging, 8

230 | Index

expression, 17, 24, 43, 44
big and hairy, 224
boolean, 61

extends, 186, 189
extract digits, 36

F
factorial, 79, 83, 143
fibonacci, 82
FileNotFoundException, 222
final, 33, 92, 165, 167
flag, 61, 67
floating-point, 17, 24
flow of execution, 47, 54, 221
for, 96
format specifier, 34, 39
format string, 34, 39, 151
frame, 50, 54
functional decomposition, 76, 83

G
garbage collection, 138, 140
generalization, 93, 94, 126, 135
generalize, 92, 99
getter, 150, 156
GitHub, xi
Google style, 7
Graphics, 211
Greenfield, Larry, 8

H
hanging, 220
HAS-A, 197, 198
hello world, 4
helper method, 177, 181
hexadecimal, 29, 151
high-level language, 3, 9
histogram, 109, 112, 173
HTML, 53, 78, 139

I
IDE, 201
identical, 157
if statement, 59
immutable, 118, 125, 156, 166
import statement, 30, 38
increment, 97, 99
incremental development, 73, 82

independent, 150
index, 104, 112, 168
indexOf, 121
infinite loop, 90, 99, 220
infinite recursion, 148, 172, 220, 221
information hiding, 146, 156
inheritance, 186, 197, 198
initialize, 15, 24, 61
InputMismatchException, 62
instance, 145, 156
instance method, 152, 154, 157
instance variable, 146, 156
Integer, 123
integer division, 17, 18
interpret, 3, 9
invoke, 43, 54
IS-A, 197, 198
iteration, 89

J
JAR, 202, 210
java.awt, 131
java.util, 30
Javadoc, 53, 55, 78, 139, 201
JDK, 201, 210
JFrame, 212
JVM, 3, 201, 210

K
keyword, 14, 24, 147

L
language

complete, 79
high-level, 3
low-level, 3

leap of faith, 81, 83, 181
length

array, 107
string, 119

library, 29, 38, 139
Linux, 8
literal, 33, 39
local variable, 49, 54
logarithm, 62, 90
logic error, 23, 25, 217, 224
logical operator, 58, 66, 165
long, 44

Index | 231

loop, 90, 99
for, 96
infinite, 90
nested, 167
search, 169
while, 89

loop body, 89, 99
loop variable, 93, 99, 105, 119
low-level language, 3, 9

M
magic number, 33, 39
main, 5, 45
map to, 162
Math class, 43
mental model, 224
merge sort, 178, 181
method, 5, 10, 47

accessor, 150
boolean, 77
constructor, 146
definition, 4, 45
equals, 152, 153
getter, 150
helper, 177
instance, 152, 154
modifier, 156, 188
mutator, 150
parameters, 49
pure, 155
setter, 150
static, 154
toString, 151
value, 71, 72
void, 71

Mickey Mouse, 214
modifier method, 156, 157, 188
modulus, 35, 39
mutable, 134
mutator, 150

N
NegativeArraySizeException, 104
nesting, 60, 67, 167
new, 41, 103, 131, 147
newline, 6, 10, 64
nextInt

Random, 109
Scanner, 32

nondeterministic, 108, 112
null, 137, 167
NullPointerException, 137

O
object, 117

array of, 167
as parameter, 133
displaying, 151
mutable, 134
type, 145

Object class, 189
object code, 3, 9
object-oriented, 131, 135, 140, 197
off-by-one, 179
operand, 17, 24
operator, 16, 24

assignment, 57
cast, 35
logical, 58, 66, 165
modulus, 35
new, 41, 103, 131, 147
relational, 57, 66
string, 19

order of operations, 20, 25, 225
ordering, 165
overload, 76, 83, 148, 179
override, 152, 157, 198

P
package, 29
paint, 212
palindrome, 128
param tag, 78
parameter, 45, 48, 54, 133

multiple, 49
parameter passing, 48, 54
parse, 22, 25, 123, 125
partial ordering, 165
pi, 43
pixel, 212, 215
Point, 131
portable, 3, 9
posttest loop, 97, 99
precedence, 20, 225
pretest loop, 97, 99
primitive, 117, 125
print, 6, 151

array, 168

232 | Index

Card, 163
print statement, 4, 10, 151, 223, 226
printDeck, 176
printf, 34, 122, 151
println, 4
private, 146, 149
problem solving, 1
program, 1, 9
program development, 73, 92, 99, 177, 194
programming, 2, 9
pseudocode, 177
pseudorandom, 108, 112
public, 45
pure method, 155, 157

Q
quote mark, 5, 6, 118

R
radians, 43
Random, 109
rank, 161
rational number, 158
readability, 21
Rectangle, 133
recursion, 62, 67, 79, 171, 180

infinite, 148, 172, 221
recursive, 63, 67
redirection operator, 205, 210
reduce, 108, 110, 112
reference, 104, 112, 132, 136, 163, 179
relational operator, 57, 66
replace, 119
repository, xi
return, 61, 72, 134

inside loop, 169
return statement, 225
return tag, 78
return type, 72, 82
return value, 72, 82
RGB, 213, 215
rounding error, 19, 25
rubber duck, 227
run-time error, 22, 25, 137, 167, 217

S
scaffolding, 75, 83
Scanner, 30

Scrabble, 129, 158
search, 107, 112
selection sort, 177, 181
semicolon, 4, 14, 22
sequential search, 169, 172
setter, 150, 157
shadowing, 148, 156
short circuit, 58, 66
shuffle, 176, 177
signature, 52, 54
sort

merge, 178
selection, 177

source code, 3, 9
src.zip, 139
stack, 80
stack diagram, 50, 54, 64
stack overflow, 65
stack trace, 222
StackOverflowError, 220, 222
state, 15, 24
state diagram, 15, 24, 104, 132, 163, 175
statement, 4, 10

assignment, 14
comment, 5
conditional, 59
declaration, 13, 132
else, 59
for, 96
if, 59
import, 30
initialization, 61
print, 6, 151, 223, 226
return, 61, 72, 134, 169, 225
while, 89

static, 146, 154, 164
string, 5, 10

array of, 163
format, 123, 152
length, 119
operator, 19
reference to, 163

String class, 131
StringBuilder, 183
StringIndexOutOfBoundsException, 119
stub, 74, 82
subclass, 186, 198
subdeck, 178
suit, 161

Index | 233

super, 189
superclass, 189, 198
syntax, 21, 25, 217
syntax errors, 218
System.err, 62, 98, 209
System.in, 30, 117, 205
System.out, 29, 117, 205

T
table, 90

two-dimensional, 92
tag, 78, 83
temporary variable, 72, 82, 225
terminal, 203
testing, 182
text editor, 201, 210
this, 147, 187
Time, 146

addition, 154
toCharArray, 119
token, 31, 39
toLowerCase, 118
top-down development, 177, 181, 192, 194
Torvalds, Linus, 8
toString, 151
toUpperCase, 118
traversal, 107, 112
traverse, 119, 169
Turing complete, 79, 83
Turing, Alan, 79, 118
type, 24

array, 103
boolean, 57
char, 13, 117
double, 17

int, 13
long, 19, 44
object, 145
String, 5, 13, 131
void, 45

type cast, 35, 39

U
UML, 138, 140, 197
Unicode, 118, 125
unit test, 208, 210
utility class, 30, 106
utility method, 122

V
value, 13, 24
value constructor, 148
value method, 71, 72, 82
variable, 13

instance, 146
local, 49
loop, 93, 105, 119
private, 146, 149
static, 164
temporary, 72, 225

virtual machine, 3, 201
void, 45, 71
void method, 71

W
while, 89
wildcard, 206, 210
wrapper class, 123, 125
wrapper method, 188, 198

234 | Index

About the Authors
Allen Downey is a Professor of Computer Science at Olin College of Engineering. He
has taught computer science at Wellesley College, Colby College and U.C. Berkeley.
He has a Ph.D. in Computer Science from U.C. Berkeley and Master’s and Bachelor’s
degrees from MIT.

Chris Mayfield is an Assistant Professor of Computer Science at James Madison Uni‐
versity, with a research focus on CS education and professional development. He has
a Ph.D. in Computer Science from Purdue University and Bachelor’s degrees in CS
and German from the University of Utah.

Colophon
The animal on the cover of Think Java is a red-tailed black cockatoo (Calyptorhynchus
banksii), also known as Banks’ black cockatoo after an 18th-century English botanist.
It is a large bird native to Australia, found in many habitats such as forests, open
plains, or riverlands, often nesting in eucalyptus trees.

As suggested by their name, these birds have black plumage, though only males have
vivid red panels on their tails. They are typically around 2 feet in length and weigh
between 1–2 pounds. Like other cockatoo species, the red-tailed black cockatoo has a
large curved beak, the ability to raise a feathered crest on its head, and feet with 2 toes
facing forward and two facing backward. This allows them to grab and manipulate
objects with one foot while gripping a branch with the other. Interestingly, the vast
majority of cockatoos are left-footed.

The diet of the red-tailed black cockatoo is primarily made of up of eucalyptus seeds,
though it will also eat nuts, fruits, insects, and various grains. They are very noisy
birds, and will flock in large groups near plentiful food sources. However, this species
is typically very shy around humans.

Due to their reliance on trees for shelter and food, the red-tailed black cockatoo is
sensitive to deforestation, which threatens some populations in southeastern Aus‐
tralia. In addition, while Australia requires a special license to keep and breed these
birds, they are still affected by illegal smuggling for the pet trade—they can have long
lifespans in captivity and are in high demand.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	The Philosophy Behind the Book
	Object-Oriented Programming
	Appendixes
	Using the Code Examples
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Way of the Program
	What Is Programming?
	What Is Computer Science?
	Programming Languages
	The Hello World Program
	Displaying Strings
	Escape Sequences
	Formatting Code
	Debugging Code
	Vocabulary
	Exercises

	Chapter 2. Variables and Operators
	Declaring Variables
	Assignment
	State Diagrams
	Printing Variables
	Arithmetic Operators
	Floating-Point Numbers
	Rounding Errors
	Operators for Strings
	Composition
	Types of Errors
	Vocabulary
	Exercises

	Chapter 3. Input and Output
	The System Class
	The Scanner Class
	Program Structure
	Inches to Centimeters
	Literals and Constants
	Formatting Output
	Centimeters to Inches
	Modulus Operator
	Putting It All Together
	The Scanner Bug
	Vocabulary
	Exercises

	Chapter 4. Void Methods
	Math Methods
	Composition Revisited
	Adding New Methods
	Flow of Execution
	Parameters and Arguments
	Multiple Parameters
	Stack Diagrams
	Reading Documentation
	Writing Documentation
	Vocabulary
	Exercises

	Chapter 5. Conditionals and Logic
	Relational Operators
	Logical Operators
	Conditional Statements
	Chaining and Nesting
	Flag Variables
	The return Statement
	Validating Input
	Recursive Methods
	Recursive Stack Diagrams
	Binary Numbers
	Vocabulary
	Exercises

	Chapter 6. Value Methods
	Return Values
	Writing Methods
	Method Composition
	Overloading
	Boolean Methods
	Javadoc Tags
	More Recursion
	Leap of Faith
	One More Example
	Vocabulary
	Exercises

	Chapter 7. Loops
	The while Statement
	Generating Tables
	Encapsulation and Generalization
	More Generalization
	The for Statement
	The do-while Loop
	break and continue
	Vocabulary
	Exercises

	Chapter 8. Arrays
	Creating Arrays
	Accessing Elements
	Displaying Arrays
	Copying Arrays
	Array Length
	Array Traversal
	Random Numbers
	Traverse and Count
	Building a Histogram
	The Enhanced for Loop
	Vocabulary
	Exercises

	Chapter 9. Strings and Things
	Characters
	Strings Are Immutable
	String Traversal
	Substrings
	The indexOf Method
	String Comparison
	String Formatting
	Wrapper Classes
	Command-Line Arguments
	Vocabulary
	Exercises

	Chapter 10. Objects
	Point Objects
	Attributes
	Objects as Parameters
	Objects as Return Types
	Mutable Objects
	Aliasing
	The null Keyword
	Garbage Collection
	Class Diagrams
	Java Library Source
	Vocabulary
	Exercises

	Chapter 11. Classes
	The Time Class
	Constructors
	More Constructors
	Getters and Setters
	Displaying Objects
	The toString Method
	The equals Method
	Adding Times
	Pure Methods and Modifiers
	Vocabulary
	Exercises

	Chapter 12. Arrays of Objects
	Card Objects
	Card toString
	Class Variables
	The compareTo Method
	Cards Are Immutable
	Arrays of Cards
	Sequential Search
	Binary Search
	Tracing the Code
	Recursive Version
	Vocabulary
	Exercises

	Chapter 13. Objects of Arrays
	The Deck Class
	Shuffling Decks
	Selection Sort
	Merge Sort
	Subdecks
	Merging Decks
	Adding Recursion
	Vocabulary
	Exercises

	Chapter 14. Objects of Objects
	Decks and Hands
	CardCollection
	Inheritance
	Dealing Cards
	The Player Class
	The Eights Class
	Class Relationships
	Vocabulary
	Exercises

	Appendix A. Development Tools
	Installing DrJava
	DrJava Interactions
	Command-Line Interface
	Command-Line Testing
	Running Checkstyle
	Tracing with a Debugger
	Testing with JUnit
	Vocabulary

	Appendix B. Java 2D Graphics
	Creating Graphics
	Graphics Methods
	Example Drawing
	Vocabulary
	Exercises

	Appendix C. Debugging
	Compile-Time Errors
	The compiler is spewing error messages.
	I’m getting a weird compiler message, and it won’t go away.
	I can’t get my program to compile no matter what I do.
	I did what the compiler told me to do, but it still doesn’t work.

	Run-Time Errors
	My program hangs.
	When I run the program I get an exception.
	I added so many print statements I get inundated with output.

	Logic Errors
	My program doesn’t work.
	I’ve got a big hairy expression and it doesn’t do what I expect.
	My method doesn’t return what I expect.
	My print statement isn’t doing anything.
	I’m really, really stuck and I need help.
	No, I really need help.
	I found the bug!

	Index
	About the Authors
	Colophon

