
www.allitebooks.com

http://www.allitebooks.org

Unity 5.x Animation Cookbook

A recipe-based guide to give you practical information on
Unity 5.x animation techniques and tools

Maciej Szcześnik

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unity 5.x Animation Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1160516

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-391-0

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Maciej Szcześnik

Copy Editor

Sameen Siddiqui

Reviewer

Grzegorz Mazur

Project Coordinator

Bijal Patel

Commissioning Editor

Amarabha Banerjee

Proofreader

Safis Editing

Acquisition Editor

Aaron Lazar

Indexer

Rekha Nair

Content Development Editor

Prashanth G Rao

Production Coordinator

Aparna Bhagat

Technical Editor

Murtaza Tinwala

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author
Maciej Szcześnik is an experienced game designer and Unity developer, specializing in
gameplay and combat mechanics. His daily responsibilities include motion capture session
planning and coordination, creating animation graphs and state machines, and AI design
and implementation.

He started his professional career in 2004 at CD Projekt RED—the company best known for
the critically acclaimed The Witcher series. Maciej had key roles in the Witcher games, being
lead gameplay designer and lead combat designer. He also worked at 11 bit studios,
another well-known Polish game development company, famous for the This War Of Mine
game.

Maciej gave three talks at the Game Developers Conference and Game Developers
Conference Europe. He is also a lecturer at Warsaw Film School, teaching Unity and
technical aspects of animation as part of the game development BA course.

I'd like to thank my wife for her support, Kacper Kwiatkowski and Grzegorz Mazur from
Vile Monarch for their reviews, Marek Ziemak and Piotr Tomsiński for inspiring
discussions about games and animations, and Michał Pieńkowski and Marcin Iwanek for
countless RPG and tabletop game sessions. I'd also like to thank all my friends and former
coworkers from 11 bit studios and CD Projekt RED for helping me develop my skills.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Grzegorz Mazur is a programmer who graduated in information technology from Warsaw
University of Technology. He is currently co-boss and technical director at Vile Monarch.
Previously, he worked for 11 bit studios, where he was lead programmer of This War of
Mine and Sleepwalker's Journey. He specializes in gameplay and AI programming and is a
teacher at Warsaw Film School. He is also an amateur musician and board game enthusiast.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.packtpub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Working with Animations 7
Introduction 7
Importing skeletal animations 8

Getting ready 8
How to do it… 8
How it works… 11
There's more… 11

Configuring generic and humanoid rigs 12
Getting ready 12
How to do it… 13
How it works… 17
There's more… 18

Creating and assigning an Animator Controller 19
Getting ready 20
How to do it… 20
How it works… 21
See also 22

Creating animation transitions in Animator Controller 23
Getting ready 23
How to do it… 23
How it works… 24
There's more… 26

Using parameters to control the animation flow 27
Getting ready 27
How to do it… 27
How it works… 29
There's more… 30

Using animations from multiple assets 31
Getting ready 31
How to do it… 32
How it works… 33

Looping, mirroring and offsetting the animations 33
Getting ready 33

www.allitebooks.com

http://www.allitebooks.org

[ii]

How to do it… 33
How it works… 34
There's more… 34

Adjusting the playback speed of animations 35
Getting ready 35
How to do it… 35
How it works… 35
There's more… 36

Using override animator controllers to animate different types of
characters 37

Getting ready 37
How to do it… 37
How it works… 38

Importing object animation from a 3D package 39
Getting ready 39
How to do it… 39
How it works… 40

Chapter 2: Working with the Animation View 41
Introduction 41
Using the Animation View to create a flickering light 42

Getting ready 42
How to do it… 42
How it works… 44
There's more… 45

Blending light colors with the Animation View and the Animator
Controller 46

Getting ready 46
How to do it… 46
How it works… 47

Animating an object's world position – creating a moving platform 48
Getting ready 48
How to do it… 48
How it works… 50
There's more… 51

Animating object's local position – creating automatic doors 52
Getting ready 53
How to do it… 53
How it works… 58
See also 59

www.allitebooks.com

http://www.allitebooks.org

[iii]

Using the Hierarchy to animate local rotation – creating an orbiting
planet 59

Getting ready 59
How to do it… 60
How it works… 61
There's more… 62

Animating triggers – creating a death trap 62
Getting ready 62
How to do it… 63
How it works… 67
There's more… 67

Creating an elevator triggered by player input 68
Getting ready 68
How to do it… 68
How it works… 71
There's more… 72

Chapter 3: 2D and User Interface Animation 74
Introduction 74
Exporting a 2D sprite animation from a 3D package 75

Getting ready 75
How to do it… 75
How it works… 78
There's more… 79
See also 79

Creating a frame-by-frame sprite animation with the Animation View 80
Getting ready 80
How to do it… 80
How it works… 81

Creating a 2D sprite doll animation with the Animation View 82
Getting ready 82
How to do it… 83
How it works… 86

Using the Animator Controller to play sprite animations 86
Getting ready 86
How to do it… 86
How it works… 88
There's more… 89

Creating a fade out – fade in transition with the Animation View 89
Getting ready 89

www.allitebooks.com

http://www.allitebooks.org

[iv]

How to do it… 90
How it works… 93

Creating a swipe transition with the Animation View 93
Getting ready 93
How to do it… 94
How it works… 97

Using filled images for creating animated progress bars 98
Getting ready 98
How to do it… 98
How it works… 99
There's more… 99

Using Mecanim states for animating UI button states 100
Getting ready 100
How to do it… 100
How it works… 102
There's more… 102

Chapter 4: Character Movement 103
Introduction 103
Using Blend Trees to blend walk and run animations 104

Getting ready 104
How to do it… 104
How it works… 107
There's more… 108

Using root motion to drive Rigid Body characters' movement with
animations 109

Getting ready 110
How to do it… 111
How it works… 113
There's more… 115

Using root motion to steer a character 115
Getting ready 115
How to do it… 116
How it works… 119

Using animations for better looking transitions 120
Getting ready 120
How to do it… 120
How it works… 123
There's more… 123

Using root motion for a 180 degrees turn 123

[v]

Getting ready 124
How to do it… 124
How it works… 126
There's more… 126

Making a character jump with 3-phase animation 127
Getting ready 127
How to do it… 127
How it works… 130
There's more… 130

Using root motion to drive a NavMesh Agents' movement with
animations 130

Getting ready 131
How to do it… 131
How it works… 133
There's more… 133

Using triggers to grab an edge while jumping 134
Getting ready 134
How to do it… 135

Chapter 5: Character Actions and Expressions 139
Introduction 139
Creating an appear or a disappear animation 140

Getting ready 140
How to do it… 141
How it works… 141
There's more… 142

Creating background characters and critters with animation-driven
behavior 142

Getting ready 142
How to do it… 143
How it works… 144
There's more… 144

Using Blend Trees to create randomized actions 145
Getting ready 145
How to do it… 146
How it works… 147
There's more… 147

Using Quaternion.LookRotation() and Animator.SetLookAtPosition()
methods to make characters follow an object with their gaze 148

Getting ready 148

[vi]

How to do it… 149
How it works… 151
There's more… 151

Action Points – performing an action in a specified spot 152
Getting ready 152
How to do it… 152
How it works… 155
There's more… 156

Synchronizing an animation with objects in the scene 156
Getting ready 157
How to do it… 157
How it works… 158
There's more… 159

Using IK for interacting with scene objects 159
Getting ready 159
How to do it… 160
How it works… 162
See also 162

Animating facial expressions with Blend Shapes 162
Getting ready 163
How to do it… 163
How it works… 164
There's more… 165

Chapter 6: Handling Combat 166
Introduction 166
Using Sub-State Machines in Animator Controller 167

Getting ready 167
How to do it… 167
How it works… 169
There's more… 169

Using Animation Events to trigger script functions 170
Getting ready 170
How to do it… 170
How it works… 174
There's more… 174

Using transitions from Any State to play hit reactions 174
Getting ready 174
How to do it… 175
How it works… 176

[vii]

Using root motion to create a dodge move 177
Getting ready 177
How to do it… 178
How it works… 179
There's more… 179

Checking what Animator state is currently active to disable or enable
player actions 180

Getting ready 180
How to do it… 180
How it works… 181
There's more… 181

Using Animation Events to draw a weapon 182
Getting ready 182
How to do it… 182
How it works… 185

Using Avatar Masks and animator controller layers to walk and aim 186
Getting ready 186
How to do it… 186
How it works… 189
There's more… 190

Using the LookAt() method to aim 190
Getting ready 190
How to do it… 191
How it works… 191
There's more… 192

Using Blend Trees to aim 192
Getting ready 193
How to do it… 193
How it works… 196
There's more… 196

Detecting the hit location on a character 196
Getting ready 196
How to do it… 196
How it works… 200
There's more… 201

Chapter 7: Special Effects 202
Introduction 202
Using Animation Events to trigger sound and visual effects 203

Getting ready 203

[viii]

How to do it… 203
How it works… 206
There's more… 206

Creating camera shakes with the Animation View and the Animator
Controller 206

Getting ready 207
How to do it… 207
How it works… 208
There's more… 208

Using the Animation View to animate public script variables 208
Getting ready 208
How to do it… 209
How it works… 211

Using additive Mecanim layers to add extra motion to a character 211
Getting ready 211
How to do it… 211
How it works… 213

Using Blend Shapes to morph an object into another one 214
Getting ready 214
How to do it… 214
How it works… 215

Using wind emitters to create motion for foliage and particle systems 216
Getting ready 216
How to do it… 216
How it works… 217

Using sprite sheets to animate particles 218
Getting ready 218
How to do it… 219
How it works… 220

Animating properties of a particle system with the Animation View 220
Getting ready 221
How to do it… 221
How it works… 222

Using waveform of a sound clip to animate objects in the scene 222
Getting ready 222
How to do it… 222
How it works… 224
See also 224

Creating a day and night cycle with the Animation View 224

[ix]

Getting ready 224
How to do it… 225
How it works… 227
There's more… 227

Chapter 8: Animating Cutscenes 228
Introduction 228
Using the Animation View to animate the camera 229

Getting ready 229
How to do it… 229
How it works… 230
There's more… 230

Changing cameras with animation 230
Getting ready 231
How to do it… 231
How it works… 232

Synchronizing animation of multiple objects 233
Getting ready 233
How to do it… 234
How it works… 235
There's more… 235

Importing a whole cutscene from a 3D package 236
Getting ready 236
How to do it… 237
How it works… 238
There's more… 239

Synchronizing subtitles 239
Getting ready 239
How to do it… 240
How it works… 241

Using root motion to play cutscenes in gameplay 242
Getting ready 242
How to do it… 243
How it works… 246

Chapter 9: Physics and Animations 247
Introduction 247
Using cloth 248

Getting ready 248
How to do it… 248

[x]

How it works… 250
There's more… 251

Using rigid body joints 251
Getting ready 252
How to do it… 253
How it works… 254

Destructible objects 255
Getting ready 255
How to do it… 256
How it works… 258

Creating a humanoid ragdoll with the ragdoll wizard 258
Getting ready 259
How to do it… 259
How it works… 261

Creating a generic ragdoll with character joints 262
Getting ready 262
How to do it… 262
How it works… 264

Applying force to a ragdoll 264
Getting ready 265
How to do it… 265
How it works… 266
There's more… 267

Dismemberment 267
Getting ready 268
How to do it… 268
How it works… 271
There's more… 271

Getting up from a ragdoll 271
Getting ready 271
How to do it… 272
How it works… 278
There's more… 278

Chapter 10: Miscellaneous 279
Introduction 279
Using math to animate an object 279

Getting ready 280
How to do it… 280
How it works… 282

[xi]

Using the Lerp() function to animate an object 282
Getting ready 282
How to do it… 283
How it works… 285
See also 286

Using the Rotate() function to animate an object 286
Getting ready 286
How to do it… 287
How it works… 288
There's more… 288

Preparing motion capture files for humanoid characters 288
Getting ready 289
How to do it… 289
How it works… 293
See also 294

Adding behaviors to Mecanim states 294
Getting ready 294
How to do it… 295
How it works… 299

Index 300

Preface
This book describes Unity's animation techniques from a designer's point of view. It is
focused on achieving interesting gameplay effects and creating game mechanics. Each topic
is presented in the form of a short recipe with a list of steps needed to implement the given
feature. All the recipes are prepared in the most condensed form—a good basis to build
your own solutions on.

This book doesn't cover animating in a 3D package, although you may find some helpful
tips regarding Blender 3D in it. A lot of the recipes presented in this book use C# scripting
not only for triggering animations, but also for creating interesting motions and effects. If
you are a game designer or a Unity developer and would like to know more about what's
possible with Unity's animation system, I hope this book will be an interesting read for you.
Also, if you have any questions regarding this book or the topics it covers, you can contact
me via Twitter (@MaciejSzczesnik). I will be happy to help.

What this book covers
Chapter 1, Working with Animations, describes the tools essential for importing animations
from 3D packages. It also covers most of the import settings.

Chapter 2, Working with the Animation View, covers Unity's built-in animation tool, used to
animate almost everything apart from characters.

Chapter 3, 2D and User Interface Animation, focuses on animating 2D sprites and UI
elements.

Chapter 4, Character Movement, covers different types of movement, using animations and
root motion.

Chapter 5, Character Actions and Expressions, is about actions, action points, and facial
expressions.

Chapter 6, Handling Combat, covers combat-specific topics, such as using animations for
aiming and creating a hit-detection system.

Chapter 7, Special Effects, is not only about particle systems, but also about animating fog,
creating wind zones, and even using sound waveforms for animation.

https://twitter.com/maciejszczesnik

Preface

[2]

Chapter 8, Animating Cutscenes, describes how to import a cutscene from a 3D package
and how to prepare simple cutscenes using Unity's Animation View.

Chapter 9, Physics and Animations, shows how to create ragdolls and break stuff.

Chapter 10, Miscellaneous, is the last chapter and describes a few solutions to common
problems—for instance, working with mocap animations in Blender and Unity.

What you need for this book
You need to install Unity 5.x (preferably 5.3 or greater). You also need to have your own
animations or download the provided example project. It contains the assets needed to
follow each recipe.

Who this book is for
This book is for Unity developers who have some exposure to Unity game development
and want to learn the nuances of animation in Unity. Previous knowledge of animation
techniques and mecanim is not necessary.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

[3]

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Simply
drag and drop the file to your Assets folder."

A block of code is set as follows:

using UnityEngine;
using System.Collections;

public class Wave : MonoBehaviour {
//The anim variable is used to store the reference
//to the Animator component of the character.
private Animator anim;

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to Assets | Import new
asset and choose your FBX file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / U n i t y - 5 . x - A n i m a t i o n - C o o k b o o k. We also have other code bundles from our
rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / U n i t y 5 x A n i m a t i o n C o o k b o o k _ C o l o r e d I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/Unity-5.x-Animation-Cookbook
https://github.com/PacktPublishing/Unity-5.x-Animation-Cookbook
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Unity5xAnimationCookbook_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5xAnimationCookbook_ColoredImages.pdf
http://www.packtpub.com/submit-errata

Preface

[6]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Working with Animations

This chapter explains the essentials of working with animations in Unity and covers the
following topics:

Importing skeletal animations
Configuring generic and humanoid rigs
Creating and assigning an Animator Controller
Creating animation transitions in Animator Controller
Using parameters to control the animation flow
Using animations from multiple assets
Looping mirroring and offsetting animations
Adjusting the playback speed of animations
Using override Animator Controllers to animate different types of characters
Importing object animation from a 3D package

Introduction
Unity is a great game engine that implements the animate everything philosophy, which
allows you to visualize even the most creative gameplay ideas. Through the course of this
book, we will learn a variety of recipes that will help you unleash the power of Unity 5.x
animation tools and make your games more fun.

In this first chapter, we will get more familiar with using skeletal animations in Unity. It
will guide you through the process of importing such animations, editing them, and
assigning them to your in game characters. This knowledge is essential for understanding
recipes described in further chapters.

Working with Animations

[8]

Importing skeletal animations
This first recipe shows how to import a skeletal animation from a 3D package. It assumes
that you have an animation already prepared. We are going to bring the file to Unity and
show where you can adjust the import settings. We will not jump into too much detail for
now to make the import process as quick as possible. We will cover all the settings in
further recipes.

Getting ready
Most animations are created in external 3D packages such as Maya, 3ds Max, Motion
Builder, or Blender 3D. Make sure you have prepared a 3D model with a skeleton, the
model is skinned, and you have created at least one animation. You can also download the
provided example; open the project in Unity and go to this folder: Chapter 01 Working
with animations\Recipe 01 Importing skeletal animations\Sheep Model. You
will find an imported FBX file called Sheep.fbx there.

How to do it…
To import a skeletal animation, you need to follow these steps:

Export a skinned model and its skeleton (called rig in Unity) to FBX format.1.

If you are using Blender, you don't have to manually export the file to FBX
format. Simply drag and drop the file to your Assets folder. Unity will
use Blender FBX exporter in the background. Additionally, you will be
able to open the file by double-clicking on it in Unity. After you edit and
save it, Unity will reimport it again. It is a very convenient way of editing
animations as you don't have to go through the export-import process
each time you make a change.

Drag and drop the exported file into any subfolder in the Assets folder in your2.
project or go to Assets | Import new asset and choose your FBX file.

Working with Animations

[9]

Select the imported file and navigate to the Inspector tab. Click on the Rig3.
button:

Here you can specify the type of the rig to use. For bipedal characters, use4.
the Humanoid option, for all the rest choose Generic. We use a sheep model in
this example, so we need to choose the Generic rig. Differences between those
options are described in the How it works section.
Leave all the other inputs as defaults.5.

Working with Animations

[10]

Click on the Animations button. If an Unapplied import settings window6.
appears, click on Apply.

Make sure the Import Animation checkbox is checked.7.
Click on the Apply button in the lower right corner of the Inspector (just above8.
the Animation Preview). You may need to scroll the Inspector down.

You should be able to see all imported animation clips as child assets of your9.
imported FBX file.

Working with Animations

[11]

How it works…
Unity uses four different rig configurations:

Generic rig: This one is used for quadrupeds, spiders, and other non-humanoid
characters. It uses Unity's Mecanim system for controlling animation flow. It can
use root motion if you provide a Root node—a bone responsible for character
movement.
Humanoid rig: This one is used for humanoid characters only. It also uses
Mecanim system for controlling animation. If you are using Humanoid rigs, you
have more options for importing animations. The biggest advantage is automatic
animation retargeting—you can use the same animation clip on various types of
humanoid characters (for example, a dwarf and a troll).
Legacy: This option is used mostly for backward compatibility with previous
versions of Unity. It is similar to the Generic rig but uses scripts instead of
Mecanim for controlling animation flow. I recommend using Generic rig instead.
None: This last option turns off the rig and disables animation import.

We will discuss differences between Generic and Humanoid rigs further in the next recipe.

There's more…
Imported animation clips are also listed in the Clips section of the Animations
tab.

Working with Animations

[12]

You can add new clips by clicking on the plus button below the Clips section.
You can also remove clips by clicking on the minus button.
You can rename each clip by using the input field above the Source Take drop-
down menu.
You can choose the source take (the animation stored in your FBX file) for each
animation clip with the Source Take drop-down menu.
You can also trim the animation clip by editing the Start and End input fields.

If you are using Blender, make sure to rotate the rig -90 degrees in the X
axis, apply the rotation in Blender and then rotate it again, +90 degrees in
the X axis. The rotation of the rig in Blender should be: 90 X, 0 Y, and 0 Z.
Your model should be facing the -Y axis in Blender (when you change the
view to FRONT, you should see the face of your character). Blender and
Unity use different axes alignment: in Blender, Z is up and Y is back; in
Unity Z, is front and Y is up. This little trick solves the problem. Your
model after import should have 0 rotation and should be facing the Z axis.
It is important for moving objects (such as characters) and rig
configuration. If you don't do this, your model will have -90 X rotation
after the import.

Configuring generic and humanoid rigs
This recipe shows how to configure two most frequently used rig types: Generic
and Humanoid. We will go through all the available options for both of them.

Getting ready
As previously mentioned, make sure you have prepared two animated characters. One of
them should be a humanoid and the other a non-humanoid, a quadruped for instance. You
can also download the provided example Unity project and go to the Chapter 01
Working with animations\Recipe 02 Configuring generic and humanoid

rigs\Rigs directory.

You will find there three FBX files:

Generic.fbx

Humanoid.fbx

Quadruped.fbx

www.allitebooks.com

http://www.allitebooks.org

Working with Animations

[13]

If you are creating your characters from scratch, the bones hierarchy of your humanoid rig
is important for Unity to recognize the rig as a humanoid. It should follow this pattern:

HIPS -> SPINE -> CHEST -> NECK -> HEAD
HEAD -> EYE (for left and right eyes)
HEAD -> JAW
HIPS -> UPPER LEG -> LOWER LEG -> FOOT -> TOES (for left and right legs)
CHEST -> SHOULDER -> ARM -> FOREARM -> HAND (for left and right hands)
HAND -> PROXIMAL -> INTERMEDIATE -> DISTAL (for five fingers in left and
right hands)

The hip bone is the root bone of the humanoid character. Fingers, shoulders, chest, neck,
eyes, jaw, and toes are optional bones. Your humanoid character will work without them.

You should also remember to model the character in a T-POSE. It should face the Z axis in
Unity (if your 3D software uses different axis alignment from Unity's like Blender,
remember about the -90 and +90 degrees rotation trick shown in the Importing skeletal
animations recipe). Hands of the character should be flat, palm down, and parallel to the
ground along the X axis. A-POSE characters will also work.

How to do it…
To configure a generic rig you need to follow these steps:

Import your animated asset into Unity the same way as in the Importing skeletal1.
animations recipe.
Select the asset and choose the Rig tab in the Inspector. Then select the Generic2.
option in the Animation Tab drop-down menu. If you are using the provided
example Unity Project, select the Generic.fbx file in the Chapter 01 Working
with animations\Recipe 02 Configuring generic and humanoid

rigs\Rigs directory.
Choose the Create From This Model option from the Avatar Definition drop-3.
down menu.
Leave the Root Node option set to None.4.
Leave the Optimize Game Objects option unchecked.5.
Click on the Apply button to complete the configuration.6.

Working with Animations

[14]

Humanoid rig configuration has a lot more options:

First, import your skinned humanoid model to Unity the same way as in1.
the Importing skeletal animations recipe.
Select the asset and choose the Rig tab in the Inspector. Then select2.
the Humanoid option in the Animation Tab drop-down menu. If you are using
the provided example Unity Project, select the Humanoid.fbx file in the Chapter
01 Working with animations\Recipe 02 Configuring generic and

humanoid rigs\Rigs directory.
Choose the Create From This Model option from the Avatar Definition drop-3.
down menu.
Leave the Optimize Game Objects option unchecked.4.
Click on the Apply button.5.
You should see a Configure button with a tick icon near to it.6.

The tick icon shows that Unity was able to automatically recognize the rig7.
hierarchy as a humanoid. If Unity fails to recognize it, automatically a cross will
be displayed instead of the tick. If you are using the provided example, you can
observe it when you try to set the rig to Humanoid for the Generic.fbx file.

Working with Animations

[15]

Some quadruped characters can be mistaken by Unity for humanoids. You
can find a Quadruped.fbx file in the provided example Unity project.
Theoretically, you can set its rig to Humanoid, and Unity will recognize it
as valid. This, however, is a mistake—all quadruped characters' rigs
should be set to Generic. Setting them as humanoids can cause problems
later.

Click on the Configure button to enter the Avatar Configuration Inspector. A8.
new scene will be opened. You should be able to see your model in the scene and
bone mapping section in the Inspector tab.

Working with Animations

[16]

Make sure you are in the Mapping section (1). All recognized and assigned bones9.
are shown as green body parts on the displayed dummy character. If a required
bone is missing or is not assigned, it will show up as red. You can navigate
between the Body, Head, Left Hand, and Right Hand sections by clicking on a
corresponding button (2). All bones are displayed in a list (3) for each section.
Required bones are marked with circle icons and optional bones are marked with
dotted circle icons.
You can change the bone assignment by dragging a bone from the Hierarchy tab10.
and dropping it onto a corresponding bone slot in the Inspector tab. Unity will
occasionally miss a bone or two (especially fingers); thus, you should always
check the bone assignment manually.
If your character is not in a T-POSE (is modeled in an A-POSE for instance),11.
a Character is not in T-POSE message will be displayed in the scene view and
the character's bones will show up in red. Unity needs the character in a T-POSE
for proper humanoid avatar configuration. You can enforce that pose by choosing
the Pose |Enforce T-POSE option, found below the bones mapping list.

Click on the Apply button and then the Done button to finish configuration.12.

Working with Animations

[17]

How it works…
Humanoid rig uses more advanced Mecanim features than the Generic rig. You can find
the list of such features below:

Automatic retargeting: This is one of the most important differences between
those two rigs. The Humanoid rig uses automatic retargeting, which means that
you can have the same animations on different humanoid characters. Your
characters can share a group of animations (basic movement or some common
actions). It gives you the possibility to buy your animation assets from the Asset
Store and easily use them on your characters. Generic rigs don't support this
feature. You have to prepare animations for your specific rig or retarget them in a
3D package.
Inverse kinematics: This feature lets you control your characters' feet and hands
position with scripting. It is useful for making your characters stand on uneven
ground or grab an object in the scene. It is a built-in feature for Humanoid rigs in
Unity. Generic rigs have to use custom-made solutions.
Advanced animation settings: Humanoid rigs have more settings for animation
import, such as the mirror option. We will discuss them in depth in the Looping
mirroring and offsetting animations recipe.
Look at: Unity has a built-in solution for humanoid characters looking at
something. You have to write custom systems for generic characters.
Additional bones: A lot of people think that they cannot use additional bones
with Humanoid rigs. It is not true. If your rig has an animated weapon slot for
instance, you can still use it with the Humanoid rig. All you need to do is to find
the Mask section in your animation import settings and enable the additional
bone for each animation it is used in (you need to use the Transform foldout to
find your additional bone).

I highly recommend using Humanoid rigs for all humanoid characters in your game.

Working with Animations

[18]

There's more…
In the Humanoid rig configuration, you can find the Muscles & Settings section,
where you can preview and adjust the movement (muscle) range for your
character.

Working with Animations

[19]

You can preview the range of movement in the Muscle Group Preview section
by adjusting the sliders (1). You can preview the range of movement per muscle
in the Per-Muscle Settings section. You can also adjust the range here by
unfolding a given muscle foldout and using the slider (2). In the Additional
Settings section, you can adjust more options of your avatar. These are mainly
responsible for the flexibility of your rig. You can set how much a bone can be
stretched during animation for instance.
The Translation DoF option enables animating bones transition in
your Humanoid rig. It is turned off by default, meaning that only rotation of the
bones is used in animation.
In the Rig tab in the model import settings, you can find some additional
options:

Avatar Definition: This option is responsible for creating a new
avatar or copying the avatar from another model. The second
option is useful for storing animations in multiple files. It will be
discussed further in the Using animations from multiple assets recipe.
Optimize Game Objects: This option lets you hide all bones from
the Hierarchy view. The number of game objects in the game has
an impact on the performance. You can still choose a number of
bones that will be displayed in the Hierarchy. It is useful for
having exposing weapon slots and similar gameplay-related bones
while hiding others.
Root node: This option is visible only for Generic rigs. It lets you
choose the bone responsible for root motion calculation. We will
discuss it further in Chapter 4, Character Movement.

Creating and assigning an Animator
Controller
Animator Controllers are state machines (graphs) responsible for controlling the flow of
animations of any animated object in the game. The same Animator Controller asset can be
used by multiple objects or characters. Unity will create an independent runtime copy of the
asset for each animated object it is assigned to.

Working with Animations

[20]

Getting ready
As always, you should have a rigged and animated character ready before we start. Import
it into Unity, choose the proper rig type, and put it into a scene. You can download the
example Unity project and go to the Chapter 01 Working with animations\Recipe
03 Creating and assigning an animator controller directory. There is a scene
called Example.unity there. If you open it, you'll find a Sheep character in the Hierarchy.
It has an Animator Controller already created and assigned. You can also use
the Quadruped.fbx file from the Chapter 01 Working with animations\Recipe 03
Creating and assigning an animator controller\Rigs directory to follow the
recipe step by step.

How to do it…
To create and assign an Animator Controller, follow these steps:

Navigate to the Project View (any directory in the Assets folder) and press the1.
right mouse button.
Choose Create | Animator Controller from the menu. A controller asset will be2.
created. You can name it as you wish.
Double-click on the created controller. An Animator tab will appear. It will show3.
the current selected Animator Controller.

Here you can add the first animation. Navigate to your imported character in4.
the Project View. Unfold it and drag and drop one of the imported animations
into the Animator window. A new state will be created and will be colored
orange, showing that this is the default animation state—the state from which
your graph starts.

Working with Animations

[21]

Navigate to your character on the scene and select it.5.
Find the Animator component in the Inspector tab. All animated objects have6.
an Animator component added automatically.
Find the Controller slot in the Animator component inspector.7.
Drag and drop your Animator Controller asset into the Controller slot of8.
the Animator component.
Run the game to see your character play the default state animation of9.
your Animator Controller. If the animation is not looped, it will be played just
once and then the character will freeze.
You can also select your character in runtime and navigate to the Animator tab to10.
see what animation state the character is currently in. Current animation state
will have a blue progress bar displayed.

How it works…
Every animated object in Unity uses an Animator component and an Animator Controller
asset. The component is responsible for playing animations in runtime. It has a number of
parameters that we have to set or we can use to tweak the component's functionality:

Controller: This is the field we have to attach the Animator Controller asset to. It
determines which animation graph the Animator component will use.

Working with Animations

[22]

Avatar: In Unity, Avatars are rig definitions. For instance, if we have multiple
files containing animations with the same Generic rig, we should use the
same Avatar for all of them. You can find more information about it in the Using
animations from multiple assets recipe.
Apply Root Motion: With this checkbox, we can turn the root motion on and off.
It can be useful when we have animations with root motion but don't want to use
the root motion definition for a given character.
Update Mode: This parameter tells Unity in which update the animations should
be evaluated. The Normal option makes the animations synchronized with the
normal Update() call, the Animate Physics option synchronizes animations
with the physics FixedUpdate() call, and the Unscaled Time option
synchronizes the animation with the normal Update() call, but disables
animation time scaling (the animation is played with 100 percent speed
regardless of the Time.timeScale variable value).
Culling Mode: This parameter tells Unity when to turn off the animation
playback on a given Animator. The Always Animate option makes the Animator
always play animations (event when off-screen), the Cull Update Transforms
option culls Retarget and IK Transforms when the Animator is not visible on
screen, and the Cull Completely option disables the animation completely when
the Animator is not visible on screen.

The Animator Controller asset stores a graph of animations (animation states) and defines
the rules of switching between them, blending them, and so on. The controller (asset) is
attached to the component's Controller field (the component is attached to a character
prefab or a character placed in the scene). Many objects or characters can share the same
Animator Controller if they use the same animations (have the same rigs or are humanoid
characters).

See also
If you want to learn how to create animation graphs and control their flow, see the next two
recipes: Creating animation transitions in Animator Controller and Using parameters to control
the animation flow.

Working with Animations

[23]

Creating animation transitions in Animator
Controller
As mentioned previously, Animator Controllers are state machines containing animations
(states). Any given character can be in one such state (play one animation) at a time. To
switch between states (animations), you need to create state transitions.

Getting ready
Before we start, you should have an animated model placed on a scene with an Animator
Controller assigned. You can find such a model in the provided example Unity project. Go
to the Chapter 01 Working with animations\Recipe 04 Creating animation
transitions in Animator Controller directory. Open the Example.unity file. You
will find a Sheep object in the Hierarchy. It has an Animator Controller assigned. You can
open it by double-clicking on the Controller field in the Animator component of the Sheep
game object.

How to do it…
To create a state transition in an Animator Controller, follow these steps:

Open the Animator Controller asset.1.
Add at least two states by dragging and dropping two animations into2.
the Animator window. You can also point the cursor at an empty space in
the Animator window, press the right mouse button and select Create State
| Empty, then select the state, and add an animation to the Motion field in
the Inspector.
Click on the right mouse button on the state you want to transition from and3.
choose Make Transition.
Drag the transition onto the state you want to transition to and click the left4.
mouse button.

Working with Animations

[24]

A default transition will be created. The state will switch after its animation has5.
finished playing. To be able to observe it in gameplay, make sure you transition
from the default (orange) state, as only the default state will play when the game
starts.

How it works…
State transitions define how we can travel through the graph of animations. They are
combined with transition conditions based on Animator Controller parameters; we will
discuss the parameters in detail in the next recipe: Using parameters to control the animation
flow. Each transition has a set of properties we can adjust. Click on the transition (white
arrow) to select it. You can find the transition properties in the Inspector tab (make sure to
unfold the Settings foldout):

Working with Animations

[25]

Has Exit Time: If set to true, this enables the transition only after a given
percentage of the animation has been already played. If disabled, the transition
will take place instantly after its conditions are met. If you want to create a
sequence of animations, set it to true.
Exit Time: This is the percentage (0-1 range) of the animation length after which
the Has Exit Time condition is met. If you set it to 0.5, for instance, the state will
transition after 50 percent of the animation was played.
Fixed Duration: This property is combined with the next one, Transition
Duration (s). If it's on, the Transition Duration (s) is in seconds, and if it's off,
the Transition Duration (s) is in percentage of the animation time.
Transition Duration (s): the time of the state transition. This is how long the
animations will transition one into another. Animations are being blended
together during the transition. Longer transitions are smoother, shorter, are more
sharp. A good default value is around 0.25.

Working with Animations

[26]

Transition Offset: This offsets the target animation in time. The value is in
percentage of the animation. Setting it to 0.3 means that the target animation will
start from 30 percent of its length instead of the beginning.
Interruption Source: This setting tells Unity whether the transition can be
interrupted by other transitions. You can set it to:

None: the transition cannot be interrupted by any other transition.
Current State: The transition can be interrupted by transitions from
the state we are trying to transition from.
Next State: The transition can be interrupted by transition from the
state we are trying to transition to.
Current State then Next State: The transition can be interrupted by
the transitions of the state we are trying to transition from or by the
transitions of the state we are trying to transition to. The transitions
from the state we are trying to transition from take the priority.
Next State then Current State: The transition can be interrupted by
the transitions of the state we are trying to transition from or by the
transitions of the state we are trying to transition to. The transitions
from the state we are trying to transition to take the priority.
Ordered Interruption: If set to false, this lets the transition be
interrupted by other transitions independently of their order. If set
to true,the order of the transitions matters.

There's more…
When you create an Animator Controller, you can see three more nodes apart from your
animation states:

Entry and Exit: This node is used when you transition between state machines
(Animator Controllers or substate machines). We will discuss it in detail in
the Using Sub-State Machines in Animator Controller recipe in Chapter 6, Handling
Combat.
Any state: This node can be used as a helper to make a transition from any state
to a given state. It is used when you have an animation that can be played
anytime, for instance, a hit animation. We will discuss it in detail in the Using
transitions from any state to play hit reactions recipe in Chapter 6, Handling Combat.

Working with Animations

[27]

Using parameters to control the animation
flow
You can define a set of parameters in an Animator Controller and use them to control the
transitions between animation states in Mecanim. In this recipe, we will show how to use
parameters for transition conditions and use scripts to set values of those parameters in
runtime.

Getting ready
Before we start, you should prepare an Animator Controller with at least one transition
between animation states. The controller should be assigned to a character (its Animator
component) placed in a scene. You can also use the provided example Unity project and go
to the Chapter 01 Working with animations\Recipe 05 Using parameters to
control the animation flow directory. You will find an Example.unity scene there.
There is a Warrior game object in the scene's Hierarchy. If you run the game and press the
space bar, the Warrior will make a wave gesture. You can select the Warrior and open
his Animator Controller. If you click on the Idle | Wave transition, you will be able to see
the transition condition.

How to do it…
To use parameters for controlling state transitions, follow these steps:

Open the Animator Controller asset.1.
Find the Parameters tab in the upper left corner of the Animator window and2.
click on it.
Click on the plus icon in the Parameters tab to add a new parameter.3.
Choose the Trigger type for the parameter.4.
Type a name of the newly created parameter (in the provided example, the name5.
of the parameter is Wave).
Click on the transition between states you want to use parameters for. In the6.
provided example, it is the transition between Idle and Wave animation
states. Idle is the default state.
Go to the Inspector tab and find the Conditions section.7.

Working with Animations

[28]

Click on the plus icon to add a new condition. If you have only one parameter, it8.
will be chosen as the condition automatically. If you have more parameters, you
need to choose the proper one from a drop-down list.

If you want to make an immediate transition between your animation states,9.
make sure to disable the Has Exit Time option, found above the Settings foldout.
Your transition will take place only when its conditions are met. You need to set10.
the parameter using scripts.
To create a new C# script, click on the right mouse button in the Project View11.
and select Create | C# Script. Name the script as you wish (in the provided
example, it's called Wave, the same as the parameter it sets).
Open the script and write the following:12.

 using UnityEngine;
 using System.Collections;

 public class Wave : MonoBehaviour {
 //The anim variable is used to store the reference
 //to the Animator component of the character.
 private Animator anim;
 void Start () {
 //We get the component and assign it to
 //the anim variable when the game starts
 anim = GetComponent<Animator>();
 }
 void Update () {
 //We check if player pressed the spacebar

Working with Animations

[29]

 if (Input.GetKeyDown(KeyCode.Space))
 {
 /*We cal the SetTrigger() function on the
 Animator component stored in the anim
 variable. The function requires one
 parameter - the name of the trigger
 parameter set in our Animator Controller
 ("Wave" in our example). Make sure to match
 it with the name of the parameter you've
 created in your Animator Controller*/
 anim.SetTrigger("Wave");
 }
 }
 }

Make sure your class name is the same as the file name of the script, as it won't13.
compile otherwise.
Assign the script to the character, to the same Transform that has the Animator14.
component with your Animator Controller attached. Play the game and press the
space bar; you should see your character switch to the next animation state.

How it works…
You can use several types of parameters and corresponding script functions to set them:

Trigger: This is the simplest parameter. It is set to true with
the SetTrigger(string name) function called on the Animator component
object. It is reset by the Animator Controller after it is consumed (used) by a
transition. The string name parameter of the function has to match your trigger
parameter name set in the Animator Controller.
Int: This is an integer parameter. When you use it, you have to specify a logical
comparison in the condition. The transition will only occur if the value of the
parameter meets the comparison condition with a given number. You can use
the Equal, Greater, Less, and Not Equal options to compare the value of your
parameter with the given number. Integer type parameters are set with
the SetInteger(string name, int value) function. The string name
parameter needs to match the parameter name set in the controller. The int
value parameter is the value to set the controller parameter to.
Float: This is a float parameter. It works the same as the integer type, but uses
floating point numbers instead of integers. It is set using the SetFloat(string
name, float value) function.

Working with Animations

[30]

Bool: This is a Boolean parameter. The condition can check if the parameter is
true or false. The value of the parameter is set with the SetBool(string name,
bool value) function.

There's more…
You can add more than one condition to a state transition by clicking on the plus
icon in the Conditions section in the transition Inspector. For the transition to
occur, all its conditions have to be met. It works as logical AND for the
conditions.
You can also create more than one transition between the same states. To do this,
right-click on the state you want to transition from and choose the Make
Transition option, and then select the state you already have a transition to. A
multi-transition is marked with three arrows instead of one. If the conditions of
any of the transitions are met, the transition will occur. You can use it as
logical OR for transition conditions.

If you have more than one transition between states, you can only edit one of
them at a time. To edit a transition, select it in the Transitions section of
the Inspector.

If you want to remove a transition, select it in the Inspector and click on the
minus icon, or select it in the Animator Controller and press Delete on the
keyboard. Pressing Delete removes all the transitions.

Working with Animations

[31]

If you want to remove a condition from a transition, select it in the Inspector tab
and click on the minus icon. To select a condition, you need to click on the handle
to the left of the condition drop-down list (the handle looks like a = sign).
If you want to remove a parameter from the Animator Controller, you need to
click on the handle on the left of the parameter and press the Delete button on the
keyboard. You can also right-click on the parameter and choose the Delete option
from the context menu.

Using animations from multiple assets
At times it is very convenient to separate animations to multiple assets. A common scenario
is to have rigged models separated from animations or different animation types separated
from each other (combat from movement, movement from actions, actions from cut scenes,
and so on). This recipe shows how to do it for both Humanoid and Generic rigs.

Getting ready
Before we start, you should prepare and import at least two assets containing animations. If
you are using a Generic rig, make sure to have the same rig in both assets. You can also use
the provided example Unity project and go to the Chapter 01 Working with
animations\Recipe 06 Using animations from multiple assets. There is a scene
called Example.unity file there. In the scene Hierarchy you can find a Character game
object. It has an attached Animator Controller in which you can find two animations: Idle
and Wave. In the Rigs directory, you will find the Character.fbx asset containing only a
rigged character along with the Idle.fbx and Wave.fbx assets containing the
corresponding animations.

If you are exporting FBX files from Blender, make sure to disable the Add
Leaf Bones option in the exporter. If you are exporting just the rig and
animations (without a mesh), add an empty object to the scene. If you will
not do this, your rig could be messed up a bit after import.

Working with Animations

[32]

How to do it…
To use animations from multiple assets, you need to follow these steps:

Import the files to Unity.1.
If you are using the Generic rig, you have to set the Avatar Definition to Create2.
From This Model on your character (or reference character if you plan to have
multiple characters with the same rig). For each imported animation asset, set
the Avatar Definition to Copy From Other Avatar and choose the avatar of your
character or reference character. To do so, you need to unfold the character asset,
find the avatar, and drag and drop it to the Source field in the Inspector tab.

If you are using a Humanoid rig, you don't have to copy the Avatar3.
Definition (you still can if your rigs are exactly the same; that way you will have
fewer avatars in your project, making it easier to find the ones you need).
Create or open an Animator Controller.4.
Assign animations from different files and build transitions between them.5.
Run the game to see the animations work.6.

www.allitebooks.com

http://www.allitebooks.org

Working with Animations

[33]

How it works…
All Generic rigs can use animations from multiple assets that share the same Avatar
Definition. To share the same Avatar Definition, Generic rigs have to have exactly the
same rigs (the same hierarchy, the same bone names and transforms). All Humanoid rigs
can use animations from multiple assets that are also set to Humanoid. Additionally, they
don't need to have the same rigs because Unity automatically retargets all humanoid
animations.

Looping, mirroring and offsetting the
animations
Unity allows editing the animations to some extent after they're imported. It can save a lot
of work and greatly speed up your workflow.

Getting ready
Before we start, you should prepare and import a Humanoid rig with at least one
animation. You can also use the provided example Unity project and go to the Chapter 01
Working with animations\Recipe 07 Looping mirroring and offsetting

animations directory. There is a scene called Example.file there. In the
scene Hierarchy, you can find a Mirror game object. It has an attached Animator Controller
in which you can find two animations: Wave and WaveMirror. In the Rigs directory, you
will find the Mirror.fbx asset. If you select it and go to the Inspector, and to
the Animations tab, you can find normal and mirrored animation examples, as well as
looped animation examples (Idle and IdleMirror).

How to do it…
To set an animation to loop, you need to go through the following steps:

Select the animated asset and go to the Animations tab.1.
Check the Loop Time checkbox and click on the Apply button. The animation is2.
looped.
If your animation's first and last frames don't match perfectly, you can force them3.
to match with the Loop Pose checkbox. It is not recommended to use this option
for animations that have matching first and last frames.

Working with Animations

[34]

To offset an animation, you need to go through the following steps:

Select the animated asset and go to the Animations tab.1.
Select your animation and make it loop (Loop Time checkbox).2.
Enter a value in the Cycle Offset field, below the Loop Pose checkbox.3.
Click on the Apply button.4.

To mirror an animation, you need to go through the following steps:

Select the animated Humanoid asset and go to the Animations tab.1.
Find the Mirror checkbox on the bottom of the animation settings.2.
Check the Mirror checkbox and click on the Apply button. The animation is3.
mirrored.
Mirroring animations works only for Humanoid rigs.4.

How it works…
Looping animations: This is a common technique used for all cyclic movements
(walk and run cycles, idle animations, and so on). If you don't set an animation to
loop, it will play once and freeze on the last frame.
Offsetting animations: Sometimes it is convenient to offset the cycle of a looped
animation. It is often used with the Mirror option for steering animations (clips
used to turn the character while moving). We will be showing that in the Using
root motion to steer a character recipe in Chapter 4, Character Movement.
Mirroring animations: This option works only with Humanoid rigs. It is used to
flip the animation left to right and can save up to 50 percent of steering
animations when combined with the Offset Cycle option.

There's more…
You can also mirror and offset animation states in the Animator Controller. If you select an
animation state and go to the Inspector tab, you can find the Mirror and Cycle Offset
options. There is also an option to use Animator Controller parameters to switch the Mirror
option on and off and set the Cycle Offset. You need to have a Boolean parameter defined
for the Mirror option and a float parameter for the Cycle Offset. Those settings will be
automatically synchronized with the parameters. Whenever you change a parameter value,
the setting will also be changed.

Working with Animations

[35]

Adjusting the playback speed of animations
Unity allows you to slow down and speed the animation playback in the Animator
Controller. You can do it in runtime with scripts to achieve interesting effects, for instance,
slow motion.

Getting ready
Before we start, you should prepare and import a rig with at least one animation and create
an Animator Controller with at least one animation state for it. You can also use the
provided example Unity project and go to the Chapter 01 Working with
animations\Recipe 08 Adjusting the playback speed of animationsdirectory.
There is a scene called Example.unity there. In the scene Hierarchy, you can find
and AdjustSpeed game object. It has an attached Animator Controller in which you can
find two animation states: WaveSpeedNormal and WaveSpeedIncreased. There is also
an AdjustSpeedByScript game object in the scene. You can increase the playback speed of
its animations by pressing the Space button on your keyboard in runtime.

How to do it…
To change the animation playback speed, follow these steps:

Open an Animator Controller.1.
Select an animation state.2.
Go to the animation state Inspector and find the Speed parameter below3.
the Motion field.
Enter a number in the Speed parameter to change the playback speed.4.

How it works…
The Speed parameter set for an animation state in the Animator Controller multiplies the
speed playback of the animation state. Setting this parameter to zero will freeze the
animation.

Working with Animations

[36]

There's more…
You can also set the parameter using scripts. Following is an example script (it is used by
the AdjustSpeedByScript game object in the provided Example.unity). You can assign
it to your animated game object that has the Animator component and an Animator
Controller attached:

using UnityEngine;
using System.Collections;

public class AdjustSpeedByScript : MonoBehaviour {
//This is a variable, in which we store the reference to the
Animator component
private Animator anim;
//We store the wanted animation speed in this variable, the
default value is 2 (200%).

public float newAnimationSpeed = 2f;
void Start () {
//At the start of the game we assign the Animator
component to our anim variable
anim = GetComponent<Animator>();
}
void Update () {
//We check if player pressed the Space button
if (Input.GetKeyDown(KeyCode.Space)) {
//And set the playback speed of the whole Animator
Controller (it multiplies all states animation
playback speed)

anim.speed = newAnimationSpeed;
}
}
}

If you want to change the speed of just one animation state, then add a float parameter to
your Animator Controller, use this parameter in the Multiplier field in the animation
state Inspector, and change the parameter with scripts using the following function:

anim.SetFloat(string name, float value);

Here name is the name of your parameter in the Animator Controller and value is the float
value you want to set the parameter and playback speed to.

Working with Animations

[37]

Using override animator controllers to
animate different types of characters
If you have multiple types of character in your game, most probably you would like to be
able to share the animation states logic between them and just replace the animation clips.
Imagine that you have several types of enemies, and their combat logic is the same (they
have attacks, movement, hit reactions, and so on) but they use different animation clips. For
such situations, Override Animator Controllers come in handy.

Getting ready
You should have at least two characters with different animation clips ready and imported
into Unity. You can also download the provided example Unity project and go to the
Chapter 01 Working with animations\Recipe 09 Using override animator

controllers to animate different types of characters directory. There is a
scene called Example.unity there. If you open it, you'll find Warrior and Spider game
objects in the Hierarchy. They have Override Animator Controllers attached, and you can
examine them. If you run the game, the characters will play attack animations. The
underlying logic is defined in the HumanCombat controller (found in the Animator
Controllers directory). The Warrior game object uses the HumanCombat controller without
overriding it, the Spider game object uses a SpiderCombat override controller.

How to do it…
To use Override Animator Controllers, follow these steps:

Create a normal Animator Controller that will be used as the reference controller1.
containing the logic of animation states. In the provided example, it is
the HumanCombat controller, created with Warrior animations.
You can attach this controller to your first character (its Animator component)2.
and use it as previously.
Create an Override Animator Controller by right-clicking on the Project View3.
and choosing Create | Override Animator Controller.
Select the newly created override controller and go to the Inspector tab.4.
Drag and drop your original/reference Animator Controller to the Controller5.
field of the newly created override controller.
You will see all your original animation clips listed on the left and fields for6.
overriding those animation clips.

Working with Animations

[38]

Drag and drop the animation clips from your second character to the override7.
fields corresponding with original animation clips of your first character. In the
provided example, Human animations are replaced with Spider animations.
Assign the Override Animator Controller to the Controller field of the Animator8.
component of your second character.

How it works…
Override Animator Controller only replace animation clips from your original Animator
Controller. The logic of the original controller stays the same (so you can also use the same
scripts to set the same parameters and so on). It is extremely useful for creating NPC
characters in your games. You create the Animator Controller once, you write the scripts
driving the controller once and only change the animations.

Your original Animator Controller has to have animation clips. You
cannot override empty animation states.

Working with Animations

[39]

Importing object animation from a 3D
package
In Unity, you can import not only skeletal animation but also object transform animation. It
can be useful for creating complex movements, for instance, an object following a path.

Getting ready
You have to animate an object's translation, rotation, or scale in a 3D package, then export
the object as FBX file. You can also download the provided example Unity project and go to
the Chapter 01 Working with animations\Recipe 10 Importing object
animation from a 3D package directory. There is a scene called Example.unity there.
This object has a follow path animation created in Blender and exported to FBX file. It has a
normal Animator Controller with that animation as default state (looped). You can run the
game to see the object animate.

How to do it…
To import object animation, follow these steps:

Animate an object in a 3D package (translation, rotation, and scale animations are1.
supported).
Import the object into Unity and select the Generic rig type.2.
You can adjust animation settings normally (loop an animation for instance).3.
Create an Animator Controller and drag and drop one of the imported4.
animations into the Animator window to create a default animation state.
Place your animated object into a scene and assign the controller to the Animator5.
component of the object.
If you run the game, the object will be animated.6.

Working with Animations

[40]

How it works…
Unity imports translation, rotation, and scale animation of 3D objects from a 3D package. It
makes it easy to create complex animations and use advanced features of a chosen 3D
software. Make sure to bake your animations into frames before importing them to Unity
(Blender bakes the exported animations to frames by default). Importing mesh animation
(vertices movement) is not supported (you have to use Blend Shapes instead; we will
discuss them in detail in the Animating facial expressions with Blend Shapes recipe in Chapter
5, Character Actions and Expressions).

2
Working with the Animation

View
This chapter explains the Animation View, which is an essential tool in Unity's animation
workflow, and the following topics are covered in this chapter:

Using the Animation View to create a flickering light
Blending light colors with the Animation View and the Animator Controller
Animating object's world position – creating a moving platform
Animating object's local position – creating automatic doors
Using the Hierarchy to animate local rotation – creating an orbiting planet
Animating triggers – creating a death trap
Creating an elevator triggered by player input

Introduction
In the first chapter, we imported animations from external 3D packages to Unity. Now we
will learn how to use Unity's powerful built-in tool called the Animation View. It allows us
to animate almost everything within the editor and can be used to create interesting
gameplay mechanisms. Knowledge of this tool is essential to learn future recipes as we will
use Animation View a lot.

Working with the Animation View

[42]

Using the Animation View to create a
flickering light
This first recipe shows how to make a basic animation inside Unity. We will animate a light-
intensity value to create an interesting flickering light effect, which is often found in horror
or sci-fi games.

Getting ready
Before we start, you need to have a scene with geometry and at least one light. You can also
download the example provided; open the project in Unity and go to the folder Chapter
02 Working with the animation view\Recipe 01 Using the animation view

to create a flickering light. You will find a scene called Example.unity there,
with a point light that has already been animated.

How to do it…
To use the Animation View and create a flickering light, follow these steps:

Open the scene and select a light you want to animate.1.
With the light selected, go to Window | Animation. The Animation View will2.
open.
To create a new animation, click on the Create button, as shown in the following3.
screenshot:

Working with the Animation View

[43]

A Create New Animation Clip will appear. You can choose a directory and the4.
animation name. Then, click the Save button.
A new, empty animation will be created, an Animator component will be added5.
to the selected game object (a light in this example), and an Animator Controller
will be created in the same directory as the animation clip.
To animate the light intensity, we need to add an Intensity property. Click on6.
the Add Property button in the Animation View, then choose Light | Intensity,
and then click on the + icon next to it, as shown in the following screenshot:

Two key frames will be added. You can click and drag on them to adjust their7.
position in time. You can also add new key frames by changing any property in
the light game object's Inspector (make sure to have the record button clicked in
the upper-left corner of the Animation View).
Add several key frames with different values of light intensity.8.
Close the Animation View when the animation is done. Any changes will be9.
saved automatically.
Play the game to see the effect.10.

Working with the Animation View

[44]

How it works…
The Animation View is divided into three main parts, as shown in the following screenshot:

Playback buttons (1): Here you can play back the animation on your scene (you
do not have to enter Play Mode to see your animation). On the right to the play
back buttons, you can find an Insert Key Frame button and an Insert Animation
Event button. You can use the first one to insert key frames; the second one
inserts Animation Events that allow to call script functions from an animation
(Animation Events will be covered later in Chapter 6, Handling Combat). Just
below the playback buttons, you can find a drop-down menu, with which you
can switch between this object's animations and add new ones.
Animated properties (2): Here you can find all the properties of the game object
used by this animation. You can also click on the Add Property button to add
new properties to the animation.
Timeline (3): It represents the time in the animation. You can find all the key
frames (and animation events) here. You can click on the timeline header (the one
with time displayed in seconds) to go to the frame you clicked on. If you click on
a key frame instead, the timeline will automatically jump to that exact key frame.

When you create an animation in the Animation View for the first time for a given game
object, a new Animation Clip and an Animation Controller are created. The Animator
Controller is automatically assigned to the game object you are animating and
the Animation Clip is added to the Animator Controller. Any new animation created for the
same game object will be added to the same Animator Controller automatically.

Working with the Animation View

[45]

There's more…
The timeline of the Animation View has two modes (you can switch between them by
clicking on the corresponding buttons on the bottom of the properties section):

Dope Sheet: This mode displays key frames in the timeline.
Curves: With this mode, you can adjust the interpolation curves of the animation.
When you click on a property, its animation curves will be displayed. You can
manipulate the handles to adjust the shape of the curves. You can also right-click
on any handle to change its tangent type, as shown in the following screenshot:

All Animation Clips created in the Animation View are looped by default. To
change this, find the Animation Clip asset, select it, and disable the Loop
Time checkbox in its Inspector.
All the animations are created for selected game objects in the Hierarchy. To view
an object animation, you need to select it and open the Animation View.
If you have multiple Animator components in your object's Hierarchy, a
new Animator Controller will be created for each Animator component. It may be
useful to create different animations for different objects in the Hierarchy and
play them simultaneously. For example, you can have a 2D sprite character with
its head and body as separate game objects. You can use
two Animator components: one for the body, one for the head. If you choose so,
you will be able to create facial expressions independently of the body animation.

Working with the Animation View

[46]

Blending light colors with the Animation
View and the Animator Controller
This recipe shows how to use Animation Controllers with the clips created in Animation
View.

Getting ready
We will animate the light color in this example. You need to have a scene with at least one
light and a mesh to see the effect. You can also download the provided example Unity
project and go to the Chapter 02 Working with the animation view\Recipe 02
Using the animation view and the animator controller to blend light

colors directory. You will find a scene called Example.unity there, with a direction light
that has already been animated. In this example, we also animate the background color of
the camera (the camera is a child object of the directional light).

How to do it…
To blend animations (colors in this example) of a game object, you need to follow these
steps:

Open the scene and select the light game object in the Hierarchy.1.
With the light selected, go to Window | Animation to open the Animation View2.
and create at least two animations the same way as in the Using Animation View to
create a flickering light recipe, but this time set the color property instead of the
light's intensity. In our example, we have two Animation Clips: Day and Night.
They just set the color of the directional light: Day sets it to bright yellow
and Night to dark blue. There is no change in the light color over time. Each
animation has two key frames with the exact same color value in each key frame
(this color is different for each animation). Each animation lasts for about 7
seconds.
An Animator Controller will be created automatically.3.

Working with the Animation View

[47]

Open the Animator Controller and create two transitions between our4.
animations, one going from Day to Night and one from Night to Day, as shown
in the following screenshot:

Those animations are looped, so you can set the Transition Duration to around 55.
seconds to make the effect more subtle. You can set the Transition Duration in
the Settings foldout in the Inspector after you select the transition.
Make sure that the Has Exit Time option is selected as we do not use any other6.
conditions in this example. You can also add your own conditions and use scripts
to trigger them.
Play the game to see the effect.7.

How it works…
The purpose of this recipe is to show one very important feature of the Unity animation
system: the Animator Controller can blend Color, Vector3, Quaternion, bool,
and float values stored in Animation Clips. The Int and string values are not
supported and cannot be animated. You can only animate public MonoBehaviour script
variables and Unity component properties.

Working with the Animation View

[48]

You do not have to always animate the properties of a game object. Using the transitions in
the Animator Controller will create a smooth blend between them.

Animating an object's world position –
creating a moving platform
In this recipe, we will create a very common gameplay mechanism: a moving platform. We
will use a Rigid body for our character and an animated, kinematic Rigid body for the
platform.

Getting ready
Before we start, you should have a scene with your character and a platform you want to
animate. You can use the example project; go to the Chapter 02 Working with the
animation view\Recipe 03 Animating objects world position - creating a

moving platform directory. There is a scene called Example.unity there. If you open it,
you will find a Sheep character in the Hierarchy. This is our character, using the Rigidbody
component and a Simple Move script to move. There is also a Moving Platform game object
in the Hierarchy. This is the kinematic rigid body with a Platform script attached to it. It
also has an Animator component and an Animator Controller with just one animation in it.
This animation makes the platform move.

How to do it…
To create and assign an animated moving platform, follow these steps:

Select your platform game object in the Hierarchy.1.
Open the Animation View.2.
Make sure the record button is pressed (in the upper-left corner of the Animation3.
View).
Move the platform to the desired position in the first frame.4.
Adjust the timeline a few seconds forward and move your platform to new5.
destination.

Working with the Animation View

[49]

To make the animation loop, select the first key frame and press Ctrl + C (cmd + C6.
on Mac). Then adjust the timeline forward from the second key frame, the same
amount of seconds like the previous step. If the first key frame is on the 0 seconds
mark and the second on the 10 seconds mark, set the timeline to 20 seconds mark.
Press Ctrl + V to paste the copied key frame. In our example, the platform is going
from one floating island to another and back. It also has some pauses on each end
to make it easier for the player to jump on to it.
When you are happy with your animation, exit the Animation View.7.
An Animator Controller will be created and an Animation Clip will be assigned8.
to it automatically. Also, an Animator component will be added to the platform
game object.
Find the Animator Controller on the platform game object and set the Update9.
Mode property to Animate Physics. Set the Culling Mode to Always Animate.
Add a Rigidbody component to the platform and select the Kinematic checkbox.10.
Add a collider component (a Mesh Collider or a Box Collider) to your platform.11.
If you are using a Mesh Collider, make sure to select the Convex checkbox.
Create a new script, and name the file Platform.cs.12.
Open the script and write the following code:13.

 using UnityEngine;
 using System.Collections;

 public class Platform : MonoBehaviour {

 /*This function is called by Unity every time this object
 starts to collide with any other game object with a Collider
 component attached.The Collision collisionInfo object
 parameter stores the information about the collision and the
 object we are colliding with.*/

 void OnCollisionEnter(Collision collisionInfo)
 {
 /*We are checking if the object we are colliding with
 has a RigidBody component and the RigidBody is not set
 to kinematic. Optionally we can also check the tag of
 the object we are colliding with here (to make it work
 only for the player for instance).*/
 if (collisionInfo.rigidbody != null
 && !collisionInfo.rigidbody.isKinematic)
 {
 /*We are setting the parent of the object we are
 colliding with to the platform game object (the
 object out script is attached to).This will make
 our character move with the platform instead of

Working with the Animation View

[50]

 slide from it.*/
 collisionInfo.transform.parent = transform;

 }
 }

 /*This function is called by Unity every time this object stop
 colliding with any object with a Collider component attached.
 The CollisionInfo collision info parameter stores the same
 information as in the OnCollisionEnter function.*/

 void OnCollisionExit(Collision collisionInfo)
 {

 /*We are checking the same conditions as before*/

 if (collisionInfo.rigidbody != null
 && !collisionInfo.rigidbody.isKinematic)
 {
 /*We are setting the parent of the object we are
colliding with to null. The object has no parent
 at all and stops moving with the platform*/
 collisionInfo.transform.parent = null;
 }
 }
 }

Attach the script to the platform game object and play the game to see the effect.14.
This moving platform will work with characters using Rigidbody components to15.
move. You can import the ThirdPersonCharacter prefab from
Unity's Standard Assets. You can also write your own simple character
movement. To do so, see the There's more section.

How it works…
This is the most simple but working moving platform solution. It uses a few key elements:

Animation-driven movement: The platform is moved only by the Animation
Clip created with the Animation View. This allows you to experiment with the
movement easily.

Working with the Animation View

[51]

Kinematic Rigid body: To animate a game object with a Rigidbody component
attached, you need to set the Kinematic checkbox to true. It completely disables
the physics of the Rigid Body. You can still animate the object with Kinematic set
to false, but physics will still have an impact on the movement (the object will not
be able to penetrate other objects, it will rotate on collisions, and so on).
Animate Physics option: Set in the Update Mode parameter of the Rigidbody
component. This option makes the Rigid body to be animated in the physics loop
(you can think of it as the FixedUpdate() function equivalent). It prevents
the Rigid Bodies colliding with this object to jitter and behave in strange ways.
Animation in world space: Our platform is animated in world coordinates. This
means that the animation sets the object's position regarding the scene's 0x, 0y, 0z
point. It does not matter where the object is placed in the scene; after playing the
animation, it will be placed in the positions stored in the animation's key frames.
We will discuss local space animation in the Animating object's local position –
creating automatic doors recipe.
Moving platform as a parent to the character: We are setting the platform as the
parent to the in-game character, which collides with it. Rigid bodies parented to
other Transforms try to move with them in game. This is the easiest and rather
bulletproof way of making our character move with/relative to the platform game
object. And because the platform moves with the Update Mode set to Animate
Physics, no jittering will occur. Instead of parenting the character to the platform,
you could also experiment with creating a physical material with appropriate
friction, or write your own custom solution that would add the platform's speed
to the character's speed.

There's more…
In the provided example, we created our own script for moving the character using a
Rigidbody component. You can find the script in the Shared scripts directory. It is
called SimpleMove.cs. To make your character move:

Add a collider component (we use a Sphere Collider in the example) and1.
a Rigidbody component to it.
Create a zero friction Physics Material and assign it to the collider2.
component.
Set the Rigidbody component Constraints to Freeze Rotation in the X, Y, and Z3.
axes.
Create an empty game object, position it around 0.2 units above the character's4.
feet, and parent it to the character. Name it GroundCheck for clarity.

Working with the Animation View

[52]

Attach the script to the character's game object. Attach the GroundCheck game5.
object to the Ground Check Transform field of the Simple Move script
component.
If you want your character to have an animation, create an Animator Controller6.
with float Speed, bool Ground, and Trigger Jump parameters.
Prepare idle, walk, and jump animations. Idle and walk should be looped, jump
should end in the air.
Create a transition between idle and run using the Speed parameter with7.
the Speed > 0.1 condition.
Create a transition between run and idle using the Speed parameter with8.
the Speed < 0.1 condition.
Create transitions from run and idle to jump using the Jump trigger parameter.9.
Create transitions from jump to run and idle using the Ground and Speed10.
parameters. Conditions should check if Ground is true and if Speed < 0.1
(transition to idle) or Speed > 0.1 (transition to run).
Attach the Animator Controller to your character.11.
Parent the game camera to your character or use the provided CameraFollow.cs12.
script found in the Shared scripts directory. You can also use one of the camera
scripts found in Unity's Standard Assets.

Animating object's local position – creating
automatic doors
In this recipe, we will learn how to animate an object's local position to be able to use the
same animated object in multiple locations in the scene. We will create another common
gameplay mechanism, automatic door, as an example.

Working with the Animation View

[53]

Getting ready
To make an animated door, you should have two objects ready: the Door Frame and
the Door. The Door should be a child of the Frame in the Hierarchy. It should be placed in
the closed position. We assume that our Door will slide upward when opening. You should
also have a player character with the Player tag assigned. The character should use
a Rigidbody component to move or have a kinematic Rigidbody component. We will use
triggers for our doors, and triggers react to Rigid bodies only. You can also go to the
Chapter 02 Working with the animation view\Recipe 04 Animating objects

local position - creating automatic doors directory and find
the Example.unity scene there. If you open it, you can find Automatic Door game object
in the Hierarchy and a Sheep game object that will work as our player (it has the
Player tag). If you run the game and go near the door, it will open.

How to do it…
To create automatic doors, follow these steps:

Select your Door Frame game object, and add an Animator component to it. To1.
do so, click on the Add Component button in the Inspector and
choose Animator. Make sure to add the component to the Door Frame instead of
the Door (the parent instead of the child). Set the Update Mode of the Animator
component to Animate Physics.
With the Door Frame game object selected, go to Window | Animation to open2.
the Animation View.
Create a new Animation Clip and call it Closed; this will be our animation for3.
the closed door. To create a new clip, click on the drop-down list below the
playback buttons and choose the Create New Clip option.
Click on the Add Property button and find your Door object in the list (a child of4.
the Door Frame game object).

Working with the Animation View

[54]

Unfold the Door game object foldout and find the Transform section. Unfold it5.
and click on the plus icon near the Position property, as shown in the following
screenshot:

Two key frames will be added for the Door game object's local position. We are6.
not going to adjust them (assuming that the Door is in the closed position).
Add another Animation Clip and name it Door Opening.7.
Click on the Add Property button, choose your door game object, and add8.
the Transform | Position key the same way as in step 5.
Move the second key frame to around the 3 second mark.9.
Select the Door game object (the child of the Door Frame).10.
Move it up to the open position. Make sure the record button is active (in the11.
upper-left corner of the Animation View). If you play the animation, it should
move the Door game object up.
Select the last frame of the Door Opening animation (in the Animation View). Go12.
to the Inspector and copy the Door's Transform component. To do so, click on
the small gear icon in the upper right corner of the component and choose
the Copy Component option.

Working with the Animation View

[55]

Create a new Animation Clip and name it Opened. Add the key frames to13.
the Door child object the same way as in step 5. If your Door object moved, select
it, click on the gear icon near the Transform component in the Inspector, and
choose Paste Component Values. That will paste our copied Transform
properties from the last frame of the Door Opening animation.
Make sure both frames in the animation have the same position.14.
Create one more Animation Clip (the last one) and name it Door Closing.15.
Make the animation of the Door game object slide down from open to closed16.
positions. Remember that you can copy the Door's Transform component from
appropriate animation frames and paste them in the animation you are working
on.
Preview all the animations with the Animation View. You can switch between17.
animations using the drop-down list below the playback buttons.
If you are happy with your animations, close the Animation View. Select18.
your Door Frame game object and find its Animator component in the Inspector.
Click on the Controller field, which will show you the automatically19.
created Animator Controller in the Project View. Double-click to open it.
Create a bool parameter and call it Open.20.
Create a loop of transitions between the animation states: Closed | Door21.
Opening | Open | Door Closing | Closed. See the following screenshot:

Select the Closed | Door Opening transition. Add a condition to it, choose22.
the Open parameter, and set the condition to true. Disable the Has Exit Time
option in the transition.

Working with the Animation View

[56]

Select the Opened | Door Closing transition. Add a condition to it, choose23.
the Open parameter, and set the condition to false. Disable the Has Exit Time
option in the transition.
Leave the Door Opening | Opened and Door Closing | Closed transitions24.
without a condition. Make sure the Has Exit Time option is enabled in both those
transitions.
Close the Animator Controller.25.
Select the Door Frame game object in the scene's Hierarchy.26.
Add a Cube child object to the Door Frame game object. To do so, right-click on27.
the Door Frame game object and choose Create | 3D Object | Cube. This will be
our trigger.
Select the Cube and scale it so that it stands out on both sides of the Door Frame.28.
See the following screenshot for reference:

Remove the Mesh Renderer and Mesh Filter components from the Cube. To do29.
so, click on the small gear icon in the upper-right corner of the given component
and choose the Remove Component option. That will leave only the Transform
and Box Collider components on the Cube.
Enable the Is Trigger checkbox on the Cube's Box Collider component.30.
Rename the Cube game object to Trigger.31.
Select the Door Frame game object and add a Mesh Collider component to it.32.

Working with the Animation View

[57]

Select the Door game object and add a Box Collider component (or a Mesh33.
Collider set to Convex) and a Rigidbody component. Enable the Is Kinematic
option in the Rigidbody component.
Create a new C# script and name it AutomaticDoors.cs. Open it and write the34.
following code:

 using UnityEngine;
 using System.Collections;

 public class AutomaticDoor : MonoBehaviour
 {

 /*The anim variable is used to store the reference
 to the Animator component*/

 private Animator anim;

 void Start ()
 {
 /*We assign the Animator component of the parent object
 because this script is attached to the trigger, which
 is the child object of our animated doors*/

 anim = transform.parent.GetComponent<Animator> ();
 }
 /* This function is called when a Rigidbody intersects with
 the collider attached to our game object for the first time.
 Our collider has to be set to trigger. The Collider other
 parameter stores information about the object which collided
 with our trigger (entered the trigger).*/
 void OnTriggerEnter (Collider other)
 {

 //We check the tag of the object entering the trigger
 if (other.gameObject.CompareTag ("Player")) {

 /*If the tag equals "Player", we set the
 bool parameter "Open" to true in our
 Animator Controller - that plays the open
 animation and opens the doors*/

 anim.SetBool ("Open", true);
 }
 }
 /* This function is called when a Rigidbody exists the trigger
 (stops colliding with our trigger collider).*/

Working with the Animation View

[58]

 void OnTriggerExit (Collider other)
 {

 /*Again, we check if the object was the player*/
 if (other.gameObject.CompareTag ("Player")) {

 /*If it's true, we set the bool parameter "Open"
 to false in our Animator Controller. That plays
 the close animation and closes the doors.*/

 anim.SetBool ("Open", false);
 }
 }
 }

Assign the script to your Trigger game object and make sure your character has35.
a Rigidbody component and the Player tag.
Play the game and approach the door; it should open. It should close when you36.
exit the trigger.

How it works…
This recipe illustrates a very important feature of Unity's animation workflow, the
possibility to animate objects in local space. If we animate child game objects, their position,
rotation, and scale will be animated in relation to their parent game objects. This makes it
possible to create animated game objects, save them as prefabs, and reuse them in our
games.

There are a few key elements of this recipe:

Door as a child of Door Frame: We have two objects: an animated, moving Door
and a stationary Door Frame. The Door game object is the child of the Door
Frame game object in the Hierarchy. If we animate it, an Animator component
will be added to the Door Frame game object (the parent), and the Door (the
child) will be animated relative to the Door Frame (the parent).
Bool parameter “Open”: This parameter is used by the door Animator Controller
to switch between Opened and Closed states. We set it in the script attached to
the trigger game object. When player enters the trigger, it sets the Open parameter
to true, which tells the Door Animator Controller it should play the Door
Opening animation. When the player exits the trigger, it sets the Open parameter
to false, so the Door Animator Controller plays the Door Closing animation.

Working with the Animation View

[59]

Animation-driven movement: The Door game object is animated to open (move
up) and close (move down), depending on the bool Open parameter. The Door
game object has a collider to prevent any Rigid body going through it. It also has
a Rigidbody component set to Is Kinematic. All moving colliders should be
kinematic Rigid bodies for optimization reasons.
Trigger game object: The Door Frame has also a trigger game object as a child. A
trigger is a game object with a collider set to Is Trigger. It recognizes when an
object with a Rigidbody component enters or exits the collider and calls
the OnTriggerEnter and OnTriggerExit functions, respectively. We set the
value of the bool Open parameter in those functions.

See also
The concept of animating game objects in local space will be used multiple times
throughout the course of this book. We are going to create an interesting example in the
next recipe.

Using the Hierarchy to animate local rotation
– creating an orbiting planet
In this recipe, we will explore local transform animations further. We will use the Hierarchy
and create smart parent-child relationships between our game objects to make an
interesting effect of orbiting planets. Learning how to animate an object's local position and
rotation and use the Hierarchy to our advantage is key to getting the most of Unity's
animation system.

Getting ready
Before we start, you need to prepare at least two objects to animate. We are using planets in
this example. You can also use the example Unity project provided and go to the Chapter
02 Working with the animation view\Recipe 05 Using the hierarchy to

animate local rotation - creating an orbiting planet directory. You will find
an Example.unity scene there. There is a Planets game object with an Animator
component and an Animator Controller assigned. If you select the Planets game object and
go to Window | Animation, you can edit the animation of orbiting planets.

Working with the Animation View

[60]

How to do it…
To use Hierarchy to animate an object's local rotation, follow these steps:

Put your planet models into the scene.1.
One of our planets will be the parent of our little “planetary system.” Call2.
it Planet1 (as we will refer to it in this recipe a lot).
Add an empty child game object to Planet1 and name it Planet2Orbit.3.
The Planet2Orbit game object should be placed in the center of the Planet1 game
object.
Parent your second planet game object (let's call it Planet2) to the Planet2Orbit4.
game object.
Set the position of the Planet2 game object to 0x, 0y, 0z to place it exactly in the5.
same position as the Planet2Orbit (and Planet1) game object.
Move your Planet2 object to the desired distance from Planet1. Use only one axis6.
(X, Y, or Z). See the following screenshot :

Add an Animator component to the root game object of our planetary system7.
(Planet1).
Open the Animation View with the Planet1 game object selected (go to Window8.
| Animation).
Create a new Animation Clip by clicking on the Create button.9.
Make sure the record button is pressed (upper-left corner of the Animation10.
View).
Select the Planet2Orbit game object from the Hierarchy.11.

Working with the Animation View

[61]

Rotate the Planet2Orbit a bit in one axis (choose Y for instance) to create a new12.
key frame. After you rotate it, the Rotation property of that object will be added
automatically to the Animation View. Find the Rotation section, in
the Transform component in the Inspector of the Planet2Orbit game object, and
enter 0 in the axis you chose (Y in this example).
Move the timeline in the Animation View a few seconds forward to create the13.
second key frame.
Make sure the Planet2Orbit game object is still selected and the record button is14.
pressed.
Type 360 in the rotation section in the Transform component of15.
the Planet2Orbit game object. Remember to type it in the same axis you chose
before (Y in this example). This will create the second key frame and the
animation will be perfectly looped.
Play the game to see the effect of an orbiting planet.16.

How it works…
The key element of this recipe is the Hierarchy of our game objects. All animations created
with Unity's Animation View are made in local space, which means that if you animate a
parent object's position or rotation, its child objects will also move or rotate, respectively.

Our Hierarchy looks like this: Planet1 | Planet2Orbit | Planet2:

Planet1: This is our root game object. We can move it in space and our animation
will still work perfectly.
Planet2Orbit: This game object is the child of the Planet1 game object. It is placed
in the center of Planet1. Only this object is animated in the whole Hierarchy. We
use this empty game object because we may want to rotate the root planet
(Planet1) and we need another object in the Hierarchy to desynchronize the
rotation of Planet1 with the orbiting movement of Planet2.
Planet2-This game object is the child of Planet2Orbit. It is translated in the local
space of Planet2Orbit in one axis only. The rotation of the Planet2Orbit game
object makes Planet2 move in circles, which creates the orbiting planet effect.

Working with the Animation View

[62]

There's more…
You can add more planets to our planetary system. In the provided example,
there is also a Moon game object orbiting Planet2.
You can also have nested game objects with their own Animator components
attached. That will make it possible to have multiple Animator Controllers
driving animations of different parts of the Hierarchy.

Animating triggers – creating a death trap
In this recipe, we will animate a trigger position and use it to create a death trap. You can
use Unity's Animation View to create various game play mechanisms with minimum
scripting.

Getting ready
Before we start, you should prepare a death trap model. We are using a “press trap” as an
example. It contains two identical moving elements. See the following screenshot:

Working with the Animation View

[63]

The model is not skinned and has no rig; instead, the moving elements are separate objects.
We will animate them with Unity's Animation View. You can also use the example Unity
project provided and go to the Chapter 02 Working with the animation
view\Recipe 06 Animating triggers - creating a death trap directory. You
will find an Example.unity scene there. If you play the game, you can see the trap
working. If you open the scene, you will find the Trap game object with the LeftTrap
and RightTrap game objects as its children. Those child objects are the only ones animated
in this example. They have trigger objects as their children. Those trigger objects kill the
player when he enters them. All other child objects of the Trap game object are only
decorations and are optional.

How to do it…
To animate the trigger position and create a death trap, follow these steps:

Create an empty object in the scene and name it Trap. It will be a parent object for1.
our moving parts.
Put your models into the scene and parent them to the Trap game object. The2.
models should have descriptive names, for instance, LeftTrap and RightTrap.
Add an Animator component to your Trap game object (the root object of our3.
death trap). Set the Update Mode to Animate Physics.
Go to Window | Animation and open the Animation View.4.
Create a new Animation Clip by clicking on the Create button.5.
Select the LeftTrap game object and make sure the record button is pressed (in6.
the upper-left corner of the Animation View).
Move the LeftTrap game object to the open position.7.
Adjust the timeline a few seconds forward and move the LeftTrap game object to8.
the closed position.
Adjust the timeline a few seconds again and move the LeftTrap game object to9.
the open position again to create a looping animation.
Repeat steps 7-9 for the RightTrap game object.10.
You should have a looping animation of the trap opening and closing. You can11.
adjust the animation until you're happy with it. You can add a pause in the open
position to make it easier for the player to go through the trap without being
killed.
Close the Animation View.12.

Working with the Animation View

[64]

We need to write a script for our character to be able to harm them with our13.
death trap. Create a new C# script and call it Character.cs. Write the following
code:

 using UnityEngine;
 using System.Collections;

 public class Character : MonoBehaviour
 {

 /*We are going to store the reference to a blood effect prefab
 in this variable*/
 public GameObject bloodEffect;

 /*This variable is set to true when the character object was
 already killed*/
 bool isKilled = false;

 /*This function is called by the death
 trap, when we enter it*/
 public void Kill ()
 {
 /*If the character was already killed by the trap,
 we don't want to do anything*/
 if (isKilled) {
 return;
 }
 /*If it was not killed, we set the isKilled
 variable to true*/
 isKilled = true;

 /*We check if the character has a Rigidbody component*/
 Rigidbody rb = GetComponent<Rigidbody> ();

 if (rb != null) {

 /*If we find the component, we need to set it to
 kinematic to prevent our character from being
 launched in the air by the collision with our
 trap*/
 rb.isKinematic = true;
 }

 /*Here we spawn a blood effect prefab stored in the
 bloodEffect variable*/
 GameObject.Instantiate (bloodEffect, transform.position
 + Vector3.up * 2f, Quaternion.identity);

Working with the Animation View

[65]

 /*We are getting all the Renderer components of our
 character*/

 Renderer[] r = GetComponentsInChildren<Renderer> ();

 for (int i = 0; i < r.Length; i++) {
 /*We are turning all the renderers of, making the
 object dissapear*/
 r [i].enabled = false;
 }

 /*We are also checking if our character uses our
 SimpleMove script if so, we are turning it off to
 prevent player from moving the character after death*/
 SimpleMove move = GetComponent<SimpleMove> ();

 if (move != null) {
 move.enabled = false;
 }

 }
 }

Select the LeftTrap game object and add a Box Collider component to it.14.
Adjust the collider shape so that it will not cover the spikes section (we plan to15.
add a trigger there). To do so, click on the Edit Shape button in the Box Collider
component. Shapes handles will appear on every face of the Box Collider in
the Scene View. You can click on the handle and move it to adjust the shape.
Add a Rigidbody component to the LeftTrap game object and set it to Is16.
Kinematic.
Right-click on the LeftTrap game object and choose 3D Object | Cube to add17.
a Cube child object to it. It will become our trigger.

Working with the Animation View

[66]

Scale the Cube to cover the spikes with it. See the following screenshot:18.

Remove the MeshRenderer and MeshFilter components from the Cube. Give19.
the Cube a descriptive name, for instance, LeftTrapTrigger.
Check the Is Trigger option in the Box Collider of the LeftTrapTrigger.20.
Repeat steps 14-20 for the RightTrap.21.
Now we need to write a script for the death trap itself. Create a new C# script and22.
call it DeathTrap.cs. Open the script and write the following code:

 using UnityEngine;
 using System.Collections;

 public class DeathTrap : MonoBehaviour
 {

 /*This function is called when a Rigidbody
 enters the trigger object*/
 void OnTriggerEnter (Collider other)
 {

 /*We are checking if the object which entered the
trigger has a Character script, if so we are calling the
 Kill() method on it*/
 Character characterScript =
 other.gameObject.GetComponent<Character> ();

 if (characterScript != null) {
 characterScript.Kill ();
 }
 }
 }

Working with the Animation View

[67]

Attach the DeathTrap.cs script to the LeftTrapTrigger game object and23.
the RightTrapTrigger game object.
Make sure your character has a Rigidbody component24.
(the ThirdPersonCharacter prefab from Unity's Standard assets will work).
Add the Character.cs script to your character.25.
Create a blood particle effect and save it as a prefab. Name it BloodSplash.26.
Assign the BloodSplash prefab to the Blood Effect field of the Character script27.
component in your character.
Play the game and enter the trap to see the effect. Your character should28.
disappear and the BloodSplash effect should be spawned.

How it works…
In this recipe, we attach triggers (game objects with Box Collider components set to Is
Trigger) as child objects of our trap's moving parts. The OnTriggerEnter() method in
our DeathTrap.cs script is called whenever an object with a Rigidbody component enters
one of our trigger objects. It does not matter if the object or the trigger is moving. The
animation of the moving parts of our trap also moves the child trigger objects. You can use
it to create some really spectacular traps in your games.

There's more…
In our example, the character will die whenever it touches the spikes of our trap. We can
add some more realism by using Animation Events to enable the triggers when the trap is
closing and disable them when it opens. It would prevent us from killing the character
when the trap is not closing on them. You can learn more about Animation Events in
Chapter 6, Handling Combat.

Remember that you can also rotate the triggers, similar to how we did it in the Using the
Hierarchy to animate local rotation – creating an orbiting planet recipe. Scaling the triggers is
also possible.

You should not use this concept for moving normal colliders. Always try to use a Rigid
body set to Is Kinematic when you want to move a collider (for optimization reasons).

Working with the Animation View

[68]

Creating an elevator triggered by player
input
In this last recipe, we will use player input to create a simple elevator.

Getting ready
Before we start, you should prepare an elevator model to contain the objects: the root object
called Elevator, the Lift object (this one will be animated), and the ElevatorFrame object,
which will work as decoration. The Lift and ElevatorFrame objects should be children of
the empty Elevator object. You can also use the example Unity project provided and go to
the Chapter 02 Working with the animation view\Recipe 07 Creating an
elevator triggered by player input directory. You will find
an Example.unity scene there with the Elevator game object and its children Lift
and ElevatorFrame objects. The Elevator is already animated in the example assets.

How to do it…
To create an elevator triggered by player input, follow these steps:

Select the root Elevator object and assign an Animator component to it. Set1.
the Update Mode to Animate Physics.
Open Window | Animation and create a new Animation Clip by clicking on2.
the Create button. Call it ElevatorGoingDown.
Make sure the record button is pressed (in the upper-left corner of the Animation3.
View).
Select your Lift game object and move it to the up position.4.
Adjust the timeline a few seconds forward and move the Lift game object to the5.
down position. Your Lift game object should animate going from the maximum
up position to the minimum down position.
Create another Animation Clip by selecting the Create New Clip option from the6.
animations drop-down list (you can find it below the playback buttons). Call
it ElevatorGoingUp.
Animate your Lift game object to go from the down position to the up position.7.
Create another Animation Clip and call it ElevatorDown. Create a one-second8.
looping animation for the Lift game object in the down position.

Working with the Animation View

[69]

Create another Animation Clip and call it ElevatorUp. Create a one-second9.
looping animation for the Lift game object in the up position.
Close the Animation View.10.
Navigate to the ElevatorGoingUp and ElevatorGoingDown assets in the Project11.
View. Select them and uncheck the Loop Time option in the Inspector.
Select the Elevator game object in the Hierarchy and find its Animator12.
component in the Inspector.
Double-click on the Controller field to open the automatically created Animator13.
Controller asset.
Create a new trigger parameter and call it Move.14.
Create a loop of transitions, as shown in the following screenshot:15.

Make sure the ElevatorDown state is the default one. If not, right-click on it and16.
choose the Set as Layer Default State option.
The ElevatorDown | ElevatorGoingUp and ElevatorUp | ElevatorGoingDown17.
transitions should both have the Move trigger set as the condition and the Has
Exit option set to false.
The ElevatorGoingDown | ElevatorDown and ElevatorGoingUp | ElevatorUp18.
transitions should have the Has Exit Time option set to true and should have no
additional conditions.

Working with the Animation View

[70]

Create a new C# script and call it Elevator.cs. Write the following code:19.

 using UnityEngine;
 using System.Collections;

 public class Elevator : MonoBehaviour
 {

 // Update is called once per frame
 void Update ()
 {

 /*When the player presses the E key, we are setting the
 Move trigger on the Animator component. We are assuming
 the Animator component is present on the game object our
 script is attached to*/
 if (Input.GetKeyDown (KeyCode.E)) {
 GetComponent<Animator> ().SetTrigger ("Move");
 }

 }
 }

Assign the Elevator.cs script to the Elevator game object.20.
Select the ElevatorFrame game object and add a Mesh Collider component to it.21.
Select the Lift game object and add three Cube game objects to it by choosing22.
the 3D Object | Cube from the right-click menu. Use the cubes to encapsulate the
floor and two barriers of the Lift (the number of the cubes may vary in your
particular case). See the following screenshot:

Working with the Animation View

[71]

Remove the Mesh Renderer and Mesh Filter components from the cubes,23.
leaving just the Box Collider components. Give the cubes proper names, for
example, FloorCollider, LeftCollider, and RightCollider.
Select the Lift object again. Add a Rigidbody component to it and set it to Is24.
Kinematic.
Add the Platform.cs script to the Lift game object. You can find the script in25.
the Animating an object's world position – creating a moving platform recipe, the How
to do it section, step 13.
This simple elevator will work for characters using Rigidbody components. You26.
can use the ThirdPersonCharacter prefab from Unity's Standard Assets or use
the one in the Unity example project provided.
Run the game and press the E button on the keyboard to trigger the elevator.27.

How it works…
This recipe has a few key elements that make it work:

Animated Lift game object: The Lift game object uses animations to go from the
up to the down position.
Lift as a child game object: The Lift game object is a child of the Elevator game
object, which makes it possible to copy the Elevator and use it in multiple places
in the scene.
Platform.cs script: We are using the same Platform.cs script as in the
Animating an object's world position – creating a moving platform recipe. This script
parents the character to the Lift. This way the character is forced to move with
the Lift, which prevents it from jittering (you can try removing the Platform.cs
script from the Lift game object and going down in the Elevator: the character
will jump up and down).
Player input: We are using player input to set the Move trigger parameter in
the Animator Controller of the Elevator. That plays the animation
(ElevatorGoingUp or ElevatorGoingDown, depending on the state in which the
Elevator is currently in).

Working with the Animation View

[72]

There's more…
Right now, the Elevator will move after every player input, regardless of whether the
player is standing in the Lift or not. You can use a Box Collider component set to Is Trigger
and write a script to check whether the player is in the Lift, and only then allow the player
to use the input. Here is an example LiftCheck.cs script that would do it (you can find
the script in the example Unity project provided in the Chapter 02 Working with the
animation view\Recipe 07 Creating an elevator triggered by player

input\Scripts directory):

 using UnityEngine;
 using System.Collections;

 public class LiftCheck : MonoBehaviour
 {
 Elevator elevatorScript;
 // Use this for initialization
 void Start ()
 {
 /*We try to find the Elevator script on the root
 transform (we are assuming this is the Elevator game
 object)*/
 elevatorScript = transform.root.GetComponent<Elevator> ();
 }
 // This function is called when our character
 enters the trigger
 void OnTriggerEnter (Collider other)
 {
 /*We check if we've found the Elevator script*/
 if (elevatorScript != null) {
 /*We check if the object which entered
 the trigger is the Player*/
 if (other.gameObject.CompareTag ("Player")) {
 /*We enable the Elevator script
 (and enable the input)*/
 elevatorScript.enabled = true;
 }
 }
 }
 // This function is called when our character
 exits the trigger
 void OnTriggerExit (Collider other)
 {
 /*We check if we've found the Elevator script*/
 if (elevatorScript != null) {
 /*We check if the object which exited the
 trigger is the Player*/

Working with the Animation View

[73]

 if (other.gameObject.CompareTag ("Player")) {
 /*We disable the Elevator script (and ,
 disable the input)*/
 elevatorScript.enabled = false;
 }
 }
 }
 }

3
2D and User Interface

Animation
In this chapter, we are going to cover the following topics:

Exporting a 2D sprite animation from a 3D package
Creating a frame-by-frame sprite animation with the Animation View
Creating a 2D sprite doll animation with the Animation View
Using the Animator Controller to play sprite animations
Creating a fade out-fade in transition with the Animation View
Creating a swipe transition with the Animation View
Using filled images for creating animated progress bars
Using Mecanim states for animating UI button states

Introduction
In the previous chapter, we were working with the Animation View, which is an essential
tool for authoring animations in Unity. This chapter explains the 2D and user interface
animation pipeline. We will continue to use the Animation View to create various 2D and
UI animation in this chapter.

2D and User Interface Animation

[75]

Exporting a 2D sprite animation from a 3D
package
Drawing animated 2D sprites can be a challenge. Some artists create their characters in a 3D
package and export them as 2D sprites to make the animation process easier. In this first
recipe, we will create such a character and export it's animation as a sprite sheet.

Getting ready
Before we start, you need to have an animated model in your chosen 3D package (we are
using Blender). You can also download the provided example; open the project in Unity; go
to the Chapter 03 2D and user interface animation\Recipe 01 Exporting a
2d sprite animation from a 3d package folder. You will find a scene
called Example.unity there, with an animated coin sprite. In the Animation directory,
you can find exported frames and a sprite sheet containing them. You can also find
a *.blend file with the coin model; set to render out the animation.

How to do it…
To export a 2D sprite animation from a 3D package and import it into Unity, follow these
steps:

Create an animated object in your chosen 3D package.1.
Set the camera to render out the animated object. The camera can be perspective2.
or orthographic, depending on what you would like to achieve. In this example (a
rotating coin), it is set to perspective to better show the animation. Try to have the
center of your object in the center of the frame.
Render the animation into separate frames with a transparent background (often3.
12 frames per second is enough for a good quality sprite animation). Use a logical
naming convention (for example, frame_01.png, frame_02.png, and so on). All
the frames should have the same size in pixels.
Create a new image in a chosen image editing software (we are using GIMP in4.
this recipe). The image should have a transparent background.

2D and User Interface Animation

[76]

Count all your rendered frames and set the size of the newly created image to be5.
big enough to contain all the rendered frames, one next to another (in columns
and rows). For example, an image of 512 × 512 pixels size can contain up to 8
frames of 256 × 256 size, 16 frames of 128 × 128 size, or 32 frames of 64 × 64 size.
Place all the frames next to each other on the newly created image (in columns6.
and rows), starting from the first frame, as shown in the following screenshot:

Export the image as a *.png file with transparent background.7.
Import the image to Unity (drag and drop it to the Project View or go to Assets |8.
Import New Asset and choose the image file in the explorer).

2D and User Interface Animation

[77]

Select the imported file in the Project View and go to the Inspector. Set the9.
Texture Type to Sprite (2d and UI), as shown in the following screenshot:

Set the Sprite Mode to Multiple, click on the Apply button (to save the settings),10.
and then click on the Sprite Editor button.
The Sprite Editor window will open, as shown in the following screenshot:11.

2D and User Interface Animation

[78]

Click on the Slice button, a dialog with additional settings will appear.12.
Set the Type to Automatic, Pivot to Center, and click on the Slice button.13.
To finish the editing, click on the Apply button and close the Sprite Editor14.
window.
The texture asset will be turned into a sprite asset with all the frames as separate15.
children: sprites with numbers added to their names, as shown in the following
screenshot:

You can use those children sprites as static 2D graphics or create an animation in16.
the Animation View.

How it works…
You can use animation frames rendered from a 3D package to create 2D sprites in Unity as
long as those frames have transparent background. Combining those frames into a sprite
sheet saves precious draw calls (sprites are treated as one texture) and makes your game
run smoother on lower end devices. It is also easier to organize your project files if you
combine sprites into sprite sheets. Unity can automatically split a sprite sheet with
transparency into multiple sprites. It recognizes empty pixels (transparent pixels) and
isolates individual objects (or animation frames) quite effectively.

2D and User Interface Animation

[79]

Unity can also automatically pack the sprites into a sprite sheet using the sprite packing
feature. To pack sprites into an atlas, first make sure that packing is enabled. To do so, go to
Edit | Project Settings | Editor and check the Sprite Packer Mode. You should change it
to Always Enabled. Then select the sprites you want to pack into one atlas and give them
the same Packing Tag. Finally, open the Sprite Packer (go to Window | Sprite Packer) and
click on the Pack button. All sprites with the same Packing Tag will be packed together.

There's more…
There are a few other, interesting options in the Sprite Editor:

 In the Slice dialog, you can set the Type to:
Automatic: Unity will try to automatically slice the sprite sheet into
individual sprites.
Grid By Cell Size: Unity will slice the sprite sheet into a grid with
defined size of every cell in pixels. You can slice the sprite sheet
into 64 × 64 pixel cells for instance
Grid By Cell Count: Unity will slice the sprite sheet into a grid of
sprites with the given number of cells and rows

You can also set the Pivot of each sprite in the Slice dialog. There are multiple
options available for setting the pivot of each created sprite to the center of the
sprite, right corner, left corner, and so on.
You can also trim each sprite manually when you select it. To do so, click on the
border of the sprite and drag it.
You can adjust the pivot of each sprite in a similar way. Select the sprite in
the Sprite Editor, click on its pivot (the blue circle), and drag it to change its
position.

See also
To create a sprite animation, see the next recipe.

2D and User Interface Animation

[80]

Creating a frame-by-frame sprite animation
with the Animation View
This recipe shows how to use the Animation View to create sprite animations from
previously rendered (or hand drawn) frames.

Getting ready
To create a frame by frame sprite animation in Unity, you should first draw or render out
the animation frames from a 3D package, combine them into a sprite sheet, and import the
sprite sheet into Unity (see the Exporting a 2D sprite animation from a 3D package recipe). You
can also download the provided example Unity project and go to Chapter 03 2D and
user interface animation\Recipe 02 Creating a frame by frame sprite

animation with the animation view directory. You will find a scene
called Example.unity there, with a Coin game object that has been already animated. You
can select it and go to Window | Animation to see how the animation was prepared.

How to do it…
To create a frame by frame sprite animation in Unity, follow these steps:

Select your sprite sheet asset in the Project View.1.
Unfold the sprite sheet to see the individual sprites (children objects of the sprite2.
sheet asset).
Select one of the sprites, and then drag and drop it into the scene's Hierarchy.3.
You can rename the created game object.4.
With the game object selected, go to Window |Animation.5.
Click on the Create button in the Animation View to create a new Animation6.
Clip.

2D and User Interface Animation

[81]

Adjust the Samples to the number of frames per second your animation was7.
created with (12 in this example), as shown in the following screenshot:

Make sure the record button is pressed. In the Project View, select all the frames8.
(child sprites) in your sprite sheet asset and drag them into the Animation View.
A frame by frame sprite animation will be created. Click on the Play button in9.
the Animation View or run the game to see the effect.

How it works…
Unity can animate the public Sprite field in the Sprite Renderer component of a game
object. This is exactly what we did in this recipe. We are changing the sprites each frame to
create a frame by frame animation. We have changed the Samples number to lower the
frame rate of the animation. That allows us to use less frames per second. In standard 2D
frame by frame animation, we use 12 or 24 frames per second, and Unity's default Samples
number is 60.

In some cases, you can use even lower Samples values: try experimenting with 8 frames per
second.

2D and User Interface Animation

[82]

Creating a 2D sprite doll animation with the
Animation View
In this recipe, we will use a different approach: a 2D sprite doll animation. It is based on
creating a 2D doll character with all its limbs as separate sprites and then animating those
sprites using Unity's Hierarchy and the Animation View.

Getting ready
To create a 2D doll animation, first you need to prepare your character sprite sheet with all
the limbs as separate sprites. See the following screenshot for reference:

You can also use the example project, and go to the Chapter 03 2D and user
interface animation\Recipe 03 Creating a 2d sprite doll animation with

the animation view directory. You can find the Example.unity scene there, with
a Warrior character already animated in the scene's Hierarchy. In the Animation directory,
you can find a Warrior.png sprite sheet with all the body parts of the character.

www.allitebooks.com

http://www.allitebooks.org

2D and User Interface Animation

[83]

How to do it…
To create a 2D sprite doll style animation, follow these steps:

Import your character sprite sheet with all the body parts into Unity.1.
Select the sprite sheet and go to its Inspector.2.
Set the Sprite Mode to Multiple and click on the Apply button.3.
Click on the Sprite Editor button to open the Sprite Editor.4.
Click on the Slice button in the Sprite Editor. The Slice dialog will appear.5.
Set the Type do Automatic.6.
Click on the Slice button in the bottom of the Slice dialog.7.
In the Sprite Editor, adjust all the pivot points of the character's body parts. Body8.
parts will be rotated around those pivot points in our animation. Try to have the
pivot points in the joints of the limbs, as shown in the following screenshot:

2D and User Interface Animation

[84]

Click on the Apply button in the Sprite Editor.9.
Create an empty game object in the scene's Hierarchy and give it a descriptive10.
name (Warrior in our example).
Drag and drop all the body parts from your character sprite sheet onto Warrior11.
game object (you have to drag and drop one body part at a time because
dragging multiple sprites will create an Animation Clip).
Rename the body parts for better clarity. In our example, we12.
have Hips, Chest, Head, FrontUpperArm, FrontLowerArm, Front
Hand, BackUpperArm, BackLowerArm, BackHand, FrontUpperLeg, FrontLowe
rLeg, FrontFoot, BackUpperLeg, BackLowerLeg, and BackFoot.
Build a humanoid hierarchy from all the body parts in the scene's Hierarchy,13.
with the Warrior game object as the root. In our example, the hierarchy looks like
the following:

 Warrior | Hips | Chest | Head
 Chest | FrontUpperArm | FrontLowerArm | FrontHand
 Chest | BackUpperArm | BackLowerArm | BackHand
 Hips | FrontUpperLeg | FrontLowerLeg | FrontFoot
 Hips | BackUpperLeg | BackLowerLeg | BackFoot

Adjust the Order in Layer field for every Sprite Renderer component in every14.
body part. In our example, body parts have this order:

0 BackUpperArm

1 BackLowerArm

2 BackHand

3 BackUpperLeg

4 BackLowerLeg

5 BackFoot

6 FrontUpperLeg

7 FrontLowerLeg

8 FrontFoot

9 Head

10 Chest

11 Hips

2D and User Interface Animation

[85]

12 FrontUpperArm

13 FrontLowerArm

14 FrontHand

Move the body parts to their “anatomical” positions to form the character, as15.
shown in the following screenshot:

Select the Warrior game object (the root game object containing all the body16.
parts).
Go to Window | Animation.17.
Create a new Animation Clip by clicking on the Create button in the Animation18.
View.
Make sure the record button is pressed (upper left corner of the Animation19.
View).
Animate the character by rotating its individual body parts.20.

2D and User Interface Animation

[86]

How it works…
Creating a 2D doll animation uses the same concept as shown in the Using the Hierarchy to
animate local rotation – creating an orbiting planet recipe in Chapter 2, Working with the
Animation View. The key element of this recipe is the Warrior root game object containing all
the body parts of our character as children game objects. When we select this object and
open the Animation View, we can animate all its children game objects. The saved
Animation Clip will be used by the Warrior game object's Animator Controller. That allows
us to create complex hierarchical animations (such as this one) and save them as single
Animation Clips.

Using the Animator Controller to play sprite
animations
In this recipe, we will create an Animator Controller to play 2D animations of a character.
Unity's animation system is using the same principles for both 2D and 3D animation clips,
which makes it quite intuitive to use.

Getting ready
First, you should have at least two sprite animations (or 2D sprite doll animations) ready.
You can also go to the Chapter 03 2D and user interface animation\Recipe 04
Using the animator controller to play sprite animations directory and open
the Example.unity scene. You will find an already animated Warrior game object there. If
you play the game, you can use the arrow keys (left and right) to move the character. It will
play 2D animations accordingly.

How to do it…
To create an Animator Controller for 2D animation, follow these steps:

Import your 2D sprite sheets to Unity the same way as in the Exporting a 2D sprite1.
animation from a 3D package recipe.
Drag and drop one of the child sprites (not sprite sheets) into the Hierarchy.2.
Select the sprite game object and give it an appropriate name (it is named Warrior3.
in this example).

2D and User Interface Animation

[87]

With the Warrior game object selected, go to Window | Animation to open4.
the Animation View.
Create the required Animation Clips using the Animation View (the same way as5.
in the Creating a frame-by-frame sprite animation with the Animation View recipe). In
this example, we use two animations: Warrior2dIdle and Warrior2dWalk.
An Animator Controller will be automatically created and assigned to the6.
Animator component on the Warrior game object.
Open the created Animator Controller (you can easily do it by selecting7.
the Warrior game object in the Hierarchy and going to Window | Animator).
Create a new float parameter in the Animator Controller and name it Speed.8.
We will use it for controlling the animation flow.
Create two transitions: from Warrior2dIdle to Warrior2dWalk and9.
from Warrior2dWalk to Warrior2dIdle. The first one should have a condition of
Speed greater than 0.1 and the second should have a condition of Speed less than
0.1. See the following screenshot:

Set the Has Exit Time to false and the Transition Duration to 0 in both10.
transitions (you cannot blend frame by frame sprite animations).

2D and User Interface Animation

[88]

Write a script to set the Speed parameter based on the player input. You can also11.
find and use the Warrior2dMove.cs script in the provided Unity project in
the Scripts directory of this recipe.
In this script's Update() function, we take the Horizontal axis as the input.12.
Then we set the Speed variable to be the absolute value of the input because in
our Animator Controller, we check only if it's greater or less than 0.1, and
the Horizontal axis can have values between-1 and 1. We use the speed
variable to set the Speed parameter in our Animator Controller. The animator
variable holds reference to the Animator component on the same game object (we
set this reference in the Start() function):

 hor = Input.GetAxis("Horizontal");
 speed = Mathf.Abs(hor);
 animator.SetFloat("Speed", speed);

This will make the character play the Warrior2dWalk animation when the user13.
presses the left or right arrow on the keyboard and Warrior2dIdle animation
when player is not pressing any button.

How it works…
There are a few key elements of this recipe:

Animator Controller for 2D animations: Controlling 2D animations playback
works very similar to 3D and skeletal animations in Unity. You can create
Animator Controllers as usual, with all required states and transitions between
them.
Transition Duration set to 0: The Transition Duration parameter only makes
sense with animations that can be blended together to create a smooth transition.
In 2D frame by frame animation, this is not possible (Unity cannot create “in
between sprites” automatically). This is the reason to set the parameter to 0 and
have a sharp, immediate transition. In case of the parameter value being greater
than 0, the transition will still look sharp but also be delayed.

2D and User Interface Animation

[89]

There's more…
We have used a simple trick in our Warrior2dMove.cs script to lower the number of
required animations. Our character can move left and right, but we use only one
animation: Warrior2dWalk (in which the character is moving right). In the
script's Update() function, we check if the player Horizontal axis input is greater than 0
or less than 0 and set the local X scale of the character to 1 or-1, depending on the
movement direction. This flips the character and saves us around 50 percent of the
animations:

if (hor > 0f)
{
 transform.localScale = Vector3.one;
}
else if (hor < 0f)
{
 transform.localScale = new Vector3(-1f, 1f, 1f);
}

Creating a fade out – fade in transition with
the Animation View
Every game has some sort of fade in/fade out transitions: between the levels, or when you
enter a dialog or a cutscene, and so on. In Unity, we can create such transitions very easily
using the Animation View.

Getting ready
You don't have to prepare anything for this recipe; everything is created in Unity from
scratch. You can open the provided example Unity project and go to the Chapter 03 2D
and user interface animation\Recipe 05 Creating a fade out - fade in

transition with the animation view directory. You will find an Example.unity
scene there. Play the game and press the space bar to see the fade in/fade out effect.

2D and User Interface Animation

[90]

How to do it…
To create a fade in/fade out effect, follow these steps:

Open a scene.1.
Create an Image in the Hierarchy. To do so, go to Game Object | UI | Image2.
menu on the top of the screen.
Image and Canvas game objects will be created in the Hierarchy.3.
Select the Image game object and set its name to BlackScreen.4.
Right-click on the Canvas game object and choose Create Empty to create an5.
empty game object.
Set the name of the newly created game object to FadeAnimator. This object will6.
animate the effect.
Set the Anchor Preset of the BlackScreen and FadeAnimator game objects to7.
stretch in both X and Y coordinates, as shown in the following screenshot:

Set the Left, Top, Right, and Bottom position parameters to 0 in both8.
the BlackScreen and FadeAnimator game objects. That will make
the BlackScreen and FadeAnimator game objects cover the whole screen.
Parent the BlackScreen game object to the FadeAnimator game object in9.
the Hierarchy.

2D and User Interface Animation

[91]

Select the FadeAnimator game object and go to Window | Animation to open10.
the Animation View.
Create a new Animation Clip by clicking on the Create button. Name the11.
clip Alpha_0; this will be our default animation.
Make sure the record button is pressed and select the BlackScreen game object.12.
Set its color to black with alpha channel set to 0 (also black). Also disable
the BlackScreen game object. This Animation Clip should only have one key
frame on the frame 0; delete any unwanted key frames. Disable the BlackScreen
game object in this animator (set is as inactive). This way the object will not
render when its alpha is 0 percent.
Select the FadeAnimator game object again and create another Animation Clip.13.
Name it Alpha_100. The object in this animation should be enabled.
Make sure the record button is pressed and select the BlackScreen game object.14.
Set its color to black and the alpha channel to 100 percent (white). Enable
the BlackScreen game object (make sure a Game Object.Is Active property
shows in the Animation View, and, if not, click on the game object's enable
checkbox twice). This Animation Clip should also have only one key frame on the
frame 0; remove any other key frames.
Select the FadeAnimator game object again and create another animation. Name15.
it FadeIn. With the record button pressed, select the BlackScreen game object
and create two key frames: one on frame 0 and one on 1-second mark.
The BlackScreen game object should have a black color with alpha set to 0
percent (black) on the first frame and a black color with alpha set to 100 percent
(white) on the second key frame. This is meant to be our fade to black animation.
You should also enable the BlackScreen game object at frame 0 to make it render.
Select the FadeAnimator game object again and create another animation. Name16.
it FadeOut. With the record button pressed, select the BlackScreen game object
and create two key frames: one on frame 0 and one on 1-second mark.
The BlackScreen game object should have a black color with alpha set to 100
percent (white) on the first frame and a black color with alpha set to 0 percent
(black) on the second key frame. This is meant to be our fade from black
animation. You should also disable the BlackScreen game object on the second
key frame to prevent it from rendering despite its alpha is 0 percent.
Open the Animator Controller assigned to the FadeAnimator game object.17.
Create a Trigger parameter and call it Fade.18.

2D and User Interface Animation

[92]

Create a loop of transitions (see the following screenshot for reference):19.

Alpha_0 | FadeIn with the trigger Fade set as condition and Has Exit Time set
to false.
FadeIn | Alpha_100 with no conditions and Has Exit Time set to true.
Alpha_100 | FadeOut with the trigger Fade set as condition and Has Exit Time
set to false.
FadeOut |Alpha_0 with no conditions and Has Exit Time set to true.

Write a script to set the Fade Trigger parameter in the Animator Controller. In20.
this example, we use player input to set the Fade parameter. Whenever a player
presses the space bar button, the Fade Trigger is set. You can find the Fade.cs
script in the provided example Unity project in the Chapter 03 2D and user
interface animation\Recipe 05 Creating a fade out - fade in

transition with the animation view\Scripts directory:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 animator.SetTrigger("Fade");
 }

Attach the script to the FadeAnimator game object.21.

2D and User Interface Animation

[93]

How it works…
This recipe animates the color of an Image component (a part of Unity's UI). We can
animate the alpha parameter to fade the transparency of an Image. It allows us to create a
fade in/fade out effect very easily. This recipe has some other key elements:

FadeAnimator empty game object: Our BlackScreen game object (containing
the Image component) is a child of an empty game object (named FadeAnimator
in this example). The empty game object has the Animator component attached.
This way we can disable and enable the BlackScreen game object in our
animations (it wouldn't be possible if the Animator component would be
attached to the same BlackScreen game object).
Disabling and enabling the BlackScreen game object: It is a good practice to
disable our black screens because they can block mouse input for UI elements if
they are enabled (even if they are fully transparent).
BlackScreen in the bottom of the Hierarchy: Our BlackScreen object should be
placed in the very bottom of the Hierarchy to cover all other UI elements in our
game.

Creating a swipe transition with the
Animation View
In this recipe, we will create a bit more creative transition effect. A lot of the steps are
similar to the previous recipe, but the final result is completely different. This recipe's goal
is to encourage you to experiment with animating different UI properties to achieve
interesting effects.

Getting ready
Similar to the previous recipe, we will create everything from scratch in Unity; you don't
have to prepare anything beforehand. You can open the provided example Unity project
and go to the Chapter 03 2D and user interface animation\Recipe 06
Creating a swipe transition with the animation view directory. You will find
an Example.unity scene there. Play the game and press space bar to see the swipe
transition effect.

2D and User Interface Animation

[94]

How to do it…
To create a swipe transition effect, follow these steps:

Open a scene.1.
Create an Image in the Hierarchy. To do so, go to Game Object | UI | Image2.
menu on the top of the screen.
Image and Canvas game objects will be created in the Hierarchy.3.
Select the Image game object and set its name to BlackScreen.4.
Right-click on the Canvas game object and choose Create Empty to create an5.
empty game object.
Set the name of the newly created game object to FadeAnimator. This object will6.
animate the effect.
Set the Anchor Preset of the BlackScreen and FadeAnimator game objects to7.
stretch in both X and Y coordinates the same way as we did in the previous
recipe.
Select the Canvas game object and add a Canvas Scaler component to it. We will8.
need it to scale our effect when players change the screen resolution in our game.
Set the UI Scale Mode in the Canvas Scaler component to Scale With Screen9.
Size to scale the whole canvas, depending on the screen resolution.
Set the Left, Top, Right, and Bottom position parameters to 0 in both the10.
BlackScreen and FadeAnimator game objects the same way as we did in the
previous recipe.
Set the color of the Image component in the BlackScreen game object to fully11.
opaque black.
Parent the BlackScreen game object to the FadeAnimator game object in the12.
Hierarchy.

2D and User Interface Animation

[95]

Make sure the Scene View is set to 2D. Set the Right position parameter in the13.
BlackScreen game object to –20 pixels and the Left position parameter to a
number bigger than your current Game View screen resolution. The BlackScreen
game object should be visible as a very thin strip on the right of the Canvas in the
Scene View, as shown in the following screenshot:

Select the FadeAnimator game object and go to Window | Animation to open14.
the Animation View.
Create a new Animation Clip by clicking on the Create button. Name the clip15.
Alpha_0; this will be our default animation.
Make sure the record button is pressed and select the BlackScreen game object.16.
Click on the Left position input field in the Inspector and enter the same value
again. It should insert the key frame for all position values. Disable the
BlackScreen game object; it should also create a key frame. This Animation Clip
should only have one key frame on the frame 0; delete any unwanted key frames.
Select the FadeAnimator game object again and create another Animation Clip.17.
Name it Alpha_100.

2D and User Interface Animation

[96]

Make sure the record button is pressed and select the BlackScreen game object.18.
Set the Right and Left positions to 0. Enable the BlackScreen game object (make
sure a Game Object.Is Active property shows in the Animation View, and, if
not, click on the game object's enable checkbox twice). This Animation Clip
should also have only one key frame on the frame 0; remove any other key
frames. The whole Game View should show a black screen.
Select the FadeAnimator game object again and create another animation. Name19.
it FadeIn. With the record button pressed, select the BlackScreen game object
and create two key frames: one on frame 0 and one on 1-second mark. The
BlackScreen game object's position on frame 0 should be set to the same values
as in the Alpha_0 animation (Right to –20 and Left to a number bigger than the
Game View screen resolution). On the 1-second frame, the position should be set
to Left 0, Right 0. Also enable the game object in both frames. When you play the
animation in the Animation View, you should see the BlackScreen game object
swipe from right to left (from a clear game screen to a complete black screen).
Select the FadeAnimator game object again and create another animation. Name20.
it FadeOut. With the record button pressed, select the BlackScreen game object
and create two key frames: one on frame 0 and one on 1-second mark. The
position of the BlackScreen game object in frame 0 should be set to Left 0 and
Right 0. In the 1-second mark frame, the Left position should be set to –20 and the
Right position to a number higher than the Game View's screen resolution. Also
make sure to enable the BlackScreen game object in both key frames. When you
play the animation in the Animation View, you should see the BlackScreen game
object swipe from right to left (from a full black screen to a clear game screen).
Open the Animator Controller assigned to the FadeAnimator game object.21.
Create a Trigger parameter and call it Fade.22.
Create a loop of transitions:23.

 Alpha_0 | FadeIn with the trigger Fade set as condition and Has Exit Time set
to false
 FadeIn | Alpha_100 with no conditions and Has Exit Time set to true
 Alpha_100 | FadeOut with the trigger Fade set as condition and Has Exit Time
set to false
 FadeOut | Alpha_0 with no conditions and Has Exit Time set to true

Set every Transition Duration to 0.24.

2D and User Interface Animation

[97]

Write a script to set the Fade Trigger parameter in the Animator Controller. In25.
this example, we use the same script as in the previous recipe. Whenever player
presses the space bar button, the Fade Trigger is set. You can find the Fade.cs
script in the provided example Unity project in the Chapter 03 2D and user
interface animation\Recipe 05 Creating a fade out - fade in

transition with the animation view\Scripts directory:

if (Input.GetKeyDown(KeyCode.Space))
{
 animator.SetTrigger("Fade");
}

Attach the script to the FadeAnimator game object.26.

How it works…
This recipe is very similar to the previous one but uses a different concept for the black
screen animation. Instead of animating the color value, we are animating the position of the
black screen to create the swipe effect. This recipe has several key elements that are different
from the precious recipe:

Animating Left and Right positions: Our UI BlackScreen game object has its
anchors set to stretch in both X and Y coordinates to make it cover the whole
screen. With this anchor type, Left, Right, Top, and Bottom position parameters
work as offsets from the screen edge. So setting them to 0 means that the game
object will cover the whole screen. The goal of setting the Right position to -20
pixels and the Left position to a number bigger than the Game View screen
resolution was to put our BlackScreen game object completely off screen on the
right. This way we were able to hide it in game and animate its position later.
Canvas Scaler: We were using a new component, the Canvas Scaler. This
component's job is to scale the whole UI canvas to fill the whole screen. If we
didn't use this component, our black screen wouldn't cover the whole screen after
changing the screen resolution.

2D and User Interface Animation

[98]

Using filled images for creating animated
progress bars
In this recipe, we will create a very common UI mechanism: progress bar. The same concept
can also be used for creating health bars, cooldown indicators, and so on.

Getting ready
Before we start, you should prepare at least one sprite image and import it to Unity. You
can also use the provided example Unity project and go to the Chapter 03 2D and user
interface animation\Recipe 07 Using filled images for creating animated

progress bars directory. You will find an Example.unity scene there. Open it and play
the game to see the effect.

How to do it…
To create an animated progress bar, follow these steps:

Import the progress bar image to Unity and set its type to Sprite (2d and UI).1.
Open a scene and create a new Image by using the Game Object | UI |Image2.
command.Canvas and Image game objects will be created.
Select the Image game object and change its name to ProgressBar.3.
Find the Image component in the ProgressBar game object's Inspector.4.
Set the Image Type property to Filled, the Fill Method to Horizontal, and5.
the Fill Amount to 0, as shown in the following screenshot:

2D and User Interface Animation

[99]

By changing the Fill Amount, value you can animate a progress bar. You can do6.
it with an Animation View, but it makes more sense to use a script here.
Create a new script and call it ProgressBars.cs (you can also use the same7.
script provided with the example Unity project; you can find it in the Scripts
directory of this recipe). Make sure to include the UnityEngine.UI namespace
in the script. Write the following line in the Update() function:

 image.fillAmount += Time.deltaTime * fillSpeed;

The image object is a reference to the Image component on the same game object.8.
We assign it in the Start() function by calling the line:

 image = GetComponent<Image>();

The fillSpeed variable is a public float variable that describes the fill9.
amount increment per second.
In this simple script, we increase the Fill Amount of the Image component in10.
time.
Assign the script to the ProgressBar game object and play the game to see the11.
effect.

How it works…
This recipe has a few key elements that make it work:

Image Type set to Filled: Unity provides the Filled Image type for the UI Image
components. It fills the image from left to right (or in any other desired direction).

Fill Amount reference in scripts: The fill amount of an image can be changed
through scripts: it's a public variable of the Image class.

There's more…
Try experimenting with different Fill Types. You can find an example of a Fill Type set to
Radial360 in the provided example Unity project.

2D and User Interface Animation

[100]

Using Mecanim states for animating UI
button states
Unity has a very powerful built in UI system. An important part of it is buttons. Buttons
have four states: Normal, Highlighted, Pressed, and Disabled. You can use the
default Color Tint option to visualize those states, but there is a more interesting option: the
animation transition. This recipe covers it.

Getting ready
You don't need to prepare anything before hand as we will create animated buttons from
scratch in Unity. You can also use the provided example Unity project and go to the
Chapter 03 2D and user interface animation\Recipe 08 Using Mecanim

states for animating UI button states directory. You will find
an Example.unity scene there. Open it, play the game, and click on the buttons to see the
effect.

How to do it…
To create an animated button, follow these steps:

(Optional) Import the Button graphic to Unity.1.
Open a scene and create a new Button by using the Game Object | UI | Button2.
command. Canvas and Button game objects will be created.
Select the Button game object and find the Button component in Inspector.3.
Set the Transition to Animation.4.

2D and User Interface Animation

[101]

Click on the Auto Generate Animation button, as shown in the following5.
screenshot:

Four empty Animation Clips will be created, one for each button state.6.
With the button selected, open the Animation View.7.
Select each animation in the Animation View (their names correspond with8.
button states) and change the appearance of the Button game object with the
record button pressed in the Animation View. You can change the size of the
button, its color, text, and so on. Even one frame of the animation is enough for
creating a smooth transition because Unity will smoothly transition between
those animations when the game changes the Button state.
When you finish your animations, close the Animation View and play the game9.
to see the effect.

2D and User Interface Animation

[102]

How it works…
This recipe has a few key elements that make it work:

Button Animator Controller: When you click on the Auto Generate Animation
button, not only the Animation Clips are created, but also an Animator Controller
is. It is also automatically assigned to the button (along with an Animator
component). All the transitions between animation states in the Animator
Controller are also already set up. Unity also creates parameters in the Animator
Controller for you-those are the Trigger parameters used for transitions
between the button states.
Calling the Triggers: You can find four properties in the Button
component: Normal Trigger, Highlighted Trigger, Pressed Trigger,
and DisabledTrigger. Unity will try to call those triggers in the Button's
Animator Controller to transition to a proper button state. If you change
the Trigger names in the Animator Controller, make sure to change them also in
the Button component.

There's more…
You don't have to make one frame animations for button states. In fact, your animations can
be as long and complex as you please. Remember that you can also add child objects to your
buttons and animate them the same way we did in the Exporting a 2D sprite animation from a
3D package recipe. Try experimenting! You can achieve awesome results with this simple
system.

4
Character Movement

This chapter explains the usage of animations for character movement and covers the
following recipes:

Using Blend Trees to blend walk and run animations
Using root motion to drive Rigid Body characters' movement with animations
Using root motion to steer a character
Using animations for better looking transitionWe've seen a lot of “hovering”
monsters in games in the past, but creatures flying s
Using root motion for a 180 degrees turn
Making a character jump with 3-phase animation
Using root motion to drive Nav Mesh Agents' movement with animations
Using triggers to grab an edge while jumping
Changing the character's collision while crouching
Adding animation to off-mesh links
Using root motion for climbing
Using root motion to create flying characters

Introduction
Character movement is an essential part of almost every game. In this chapter, we will
explore different possibilities, from simple walk and run blending to complex animation-
driven movement.

Character Movement

[104]

Using Blend Trees to blend walk and run
animations
In this first recipe, we will get familiar with Blend Trees (a new type of states in the
Animator Controller). Blend Trees allow to smoothly blend multiple animations together. A
common example for using them is blending walk and run cycles.

Getting ready
Before we start, you should have a character with at least three looped animations: idle,
walk (in place), and run (also in place). You can download the provided example; open the
project in Unity and go to the Chapter 04 Character movement\Recipe 01 Using
blend trees to blend walk and run animations folder. You will find a scene
called Example.unity there, with an animated humanoid character. If you play the game,
you can click on the ground to move the character, and if you press Shift while moving, the
character will blend to run animation smoothly. In the Rigs directory, you can find
the Humanoid.fbx asset with the required animations.

How to do it…
To create a smooth blend between walk and run animations, follow these steps:

Import your animated character with Idle, Walk, and Run animations. Walk1.
and Run animations should be done “in place“.
Set the animations to Loop Time in the character asset's Inspector in2.
the Animation tab. If your character's rig is set to Humanoid, you may also need
to set all the Bake Into Pose options to true for each animation and all the Based
Upon options to Original, as shown in the following screenshot:

Character Movement

[105]

Settings of in place Idle, Walk and Run animations

Create an Animator Controller for your character.3.
Drag and drop the Idle animation into the Animator Controller to make it the4.
default state.
Add a float Speed parameter in the Animator Controller.5.
Right-click on the empty space in the Animator Controller and choose Create6.
State | New From Blend Tree. This will create an empty Blend Tree.
Click on the Blend Tree and change its name in the Inspector to something7.
meaningful; we use WalkAndRunBlend in this example.
Double-click on the Blend Tree. It will open the Blend Tree settings.8.
Click on the plus button (marked with number 1 in the following screenshot) and9.
choose the Add Motion Field option twice. Two Motion fields will be added.

Character Movement

[106]

Drag and drop your WalkInPlace animation in the first (upper) field and10.
your RunInPlace animation in the second (lower) field. Fields are marked with
number 2, as shown in the following screenshot:

Blend Tree properties

Unselect the Automate Thresholds option (3 in the preceding screenshot). This11.
will make the Threshold field available for each Motion field. These are the
thresholds of the Parameter used by the Blend Tree (marked with 4 in the
preceding screenshot). If the Parameter is set to the exact value of a given
threshold, the animation corresponding to that threshold is played. If
the Parameter is set to a value between two thresholds, both animations are
played with appropriate weights (and are blended together).
Set the Thresholds to 1 for the WalkInPlace motion and 4 for12.
the RunInPlaceMotion (you may need to adjust these values later).
Click on the Play button in the Preview window, below the Blend Tree settings.13.
Find the Speed parameter slider on the Blend Tree node, and move it to see the14.
animations blending smoothly, depending on the Speed parameter value.
Double-click on the empty space in the Animator Controller to get out of15.
the Blend Tree settings.
Create two transitions:16.

Idle | WalkAndRunBlend with the condition set to Speed parameter
greater than 0.5, Has Exit Time set to false, and Transition Duration
set to 0.2 seconds.
WalkAndRunBlend | Idle with the condition set to Speed parameter
less than 0.5, HasExitTime set to false, and TransitionDuration set to
0.2 seconds.

Character Movement

[107]

Write a script to move your character and set the Speed parameter value17.
according to the movement speed of your character. We are using point and click
movement in this example. You can find two scripts in the provided Unity
project, ClickToMove.cs in the Shared scripts directory
and SetSpeedFromAgent.cs in the Scripts directory of this recipe. The first
one is used to set the destination for the Nav Mesh Agent component attached to
the character.
In the Update() function of the SetSpeedFromAgent.cs script, we use18.
the desiredVelocity of the NavMeshAgent to set the Speed parameter in our
Animator Controller:

 anim.SetFloat("Speed", agent.desiredVelocity.magnitude,
 0.2f, Time.deltaTime);

The anim variable stores the reference to the Animator component of the19.
character and the agent variable stores the reference to the Nav Mesh Agent
component.
We are also adjusting the agent.speed variable in the Update() function to set20.
the maximum speed of the NavMeshAgent. This allows us to make the character
run when player holds the Shift button and walk when player releases the Shift
button:

 if (Input.GetKey(KeyCode.LeftShift) ||
 Input.GetKey(KeyCode.RightShift))

 {

 agent.speed = 4f;
 }
 else
 {
 agent.speed = 1f;
 }

How it works…
Blend Trees blend multiple animations based on the chosen Animator Controller parameter
value and Motion fields' thresholds. In the standard Blend Tree, always only two
animations are blended at the same time: the animation with a lower Threshold and the
animation with a higher Threshold. Each animation is blended with the weight
corresponding to the distance between the actual parameter value and the Threshold of the
animation. For instance, if your Walk animation Threshold is set to 1, your Run

Character Movement

[108]

animation Threshold is set to 2, and your current Speed parameter value equals 1.5,
both Walk and Run animations will be played with 50 percent weight, which will most
likely result in your character jogging slowly.

When blending Walk and Run animations, make sure to have the contact
poses in the same normalized time in both animations. For instance, if
the Walk animation has contact poses in 0 percent, 50 percent, and 100
percent of the animation, the Run animation should also have contact
poses in 0 percent, 50 percent, and 100 percent of the animation. That will
assure proper and smooth blending between the animations.

There's more…
There are a few other interesting options in the Blend Tree settings:

You can set the Blend Type of a Blend Tree to the following:
1D: A simple Blend Tree using one parameter to define the weight
of a currently played animation.
2D Simple Directional: This option uses two parameters for
blending the animations, such as the X axis and Y axis. It is best
used for motions representing different movement directions, for
instance, walk forward, walk left, walk right, and walk back. It
shouldn't be used with multiple animations representing
movement in the same direction (such as walk forward and run
forward).
2D Freeform Directional: This option is similar to the previous
one, but you can use multiple animations representing movement
in the same direction (such as walk and run). You need to add a
single animation representing the motion in the 0, 0 position (such
as idle).
2D Freeform Cartesian: This option is similar to the preceding one,
but is used when your animations don't represent movement in
different directions. It can be used to blend multiple versions of the
idle animation, for instance.
Direct: You can control the weight of each of the nodes (Motion
fields) directly. This type is often used while blending facial
expressions (see the Animating facial expressions with Blend Shapes
recipe in Chapter 5, Character Actions and Expressions).

Character Movement

[109]

 You can set a few additional Motion field options:
 Time Scale: You can alter the playback speed of each animation in
the Blend Tree by changing the number in the Time Scale field:
the one with a clock icon. It is set to 1 (100 percent) by default.
Mirror: You can mirror any of the animations in the Blend Tree by
checking the Mirror option, the one with a mirrored humanoid
icon.

You can also check the Automate Thresholds option, which will distribute
the Motion fields' Thresholds evenly throughout the whole parameter's range.
For instance, if your parameter's range is 0 to 9 and you have four animations, the
first one will have a Threshold of 0, the second one 3, the third one 6, the fourth
one 9. You can change the parameter range by clicking on the 0 and 1 numbers
below the blending graph.
You can also use the Compute Thresholds option (Automate Thresholds have to
be set to false). This option will compute the Thresholds based on the root
motion information from your animations (speed magnitude, velocity in the X
axis, velocity in the Y axis, velocity in the Z axis, angular speed in radians, and
angular speed in degrees). We will cover root motion in the next recipe.

Using root motion to drive Rigid Body
characters' movement with animations
This recipe describes a very important concept called root motion. It allows the extraction of
translation and rotation data from an animation and applies it to our character in the game.

Character Movement

[110]

Getting ready
To use root motion, first you need to create a character with a walk or run animation, that
has translation in it; see the following screenshot:

Frames of a run animation using root motion. The character is animated with root node translation

If you are using a Humanoid character, the hip bone is used as the root node, the one
describing root motion. So hip translation will describe the translation of the character in
game (you can still have motion in the Y axis as we can then adjust it in the Import
settings). Its rotation will describe character rotation in the game. If you are using a Generic
character, you need to choose the Root Node manually in the Import settings. Select the
model, go to Inspector, click on the Rig tab, set the Animation Type to Generic, and select
the Root Node from its drop-down menu (it contains the whole bone hierarchy of your rig).

You can also download the provided example Unity project and go to Chapter 04
Character movement\Recipe 02 Using root motion to drive rigid body

characters movement with animations directory. You will find a scene
called Example.unity there, with a Humanoid game object in the Hierarchy.

If you play the game, you can move the character with WSAD or the arrow
keys and run with Shift. The movement is described by root motion, but
steering is done with scripts (we simply rotate the character). In the Rigs
directory, you can find the imported Humanoid.fbx file with all the
required animations.

Character Movement

[111]

How to do it…
To move a using animations, follow these steps:

Import your character with root motion animations into Unity. We are using1.
three animations in this example: Idle, WalkRoot, and RunRoot.
Select the character asset file and go to the Inspector. Make sure the Animation2.
Type is set properly for your character (Generic or Humanoid). If you are using
a Generic character, make sure to set its Root Node.
Go to the Animation tab and select the Idle animation. Select all the Bake Into3.
Pose options. This bakes all the root motion data into the animation and makes it
completely stationary. We don't want the Idle animation to move or rotate our
character. You may also set the Base Upon option of the Root Transform
Rotation to Original. This will make your character stand in the same pose as
authored in the 3D software.
For WalkRoot and RunRoot animations, select the same options as for the Idle4.
animation, but uncheck Bake Into Pose for Root Transform Position (XZ). This
will make our character move in the X and Z axes only. The Y movement of the
root node and its rotation will be baked into the animation and will not be stored
as root motion anymore.
Set the Loop Time options to true for all animations.5.
Apply the import settings.6.
Place your character onto a scene.7.
Select it in the Hierarchy and add a Capsule Collider to it. You may need to8.
adjust the Capsule Collider properties to better fit your character. In our
examples, we need to set the Height property to 2 units and the Y axis in
the Center property to 1 unit.
Add a Rigidbody component to the character and set its Constraints to Freeze9.
Rotation in every axis.
Navigate to the Animator component of the character (it is added automatically10.
for animated game objects). Set Update Mode to Animate Physics. Make sure
the Apply Root Motion option is checked in the Animator component.
Create an Animator Controller asset for the character.11.
Drag and drop the Idle animation into the Animator Controller to make it the12.
default state.
Create a float DesiredSpeed parameter in the Animator Controller.13.
Right-click on the empty space in the Animator Controller and choose Create14.
State | New From Blend Tree.

Character Movement

[112]

Click on the Blend Tree and change its name in the Inspector to WalkAndRun.15.
Double-click on the Blend Tree to open its settings.16.
Click on the Plus button and choose the Add Motion Field option twice.17.
Drag and drop your WalkRoot animation in the first (upper) field and18.
your RunRoot animation in the second (lower) field.
Uncheck the Automate Thresholds option.19.
Set the WalkRoot animation Threshold to 1 and RunRoot animation Threshold20.
to 2.
Double-click on the empty space in the Animator Controller to get out of21.
the Blend Tree settings.
Create two transitions:22.

Idle | WalkAndRun with the condition set to DesiredSpeed
parameter greater than 0.5, Has Exit Time set to false, and Transition
Duration set to 0.2 seconds.
WalkAndRun | Idle with the condition set to DesiredSpeed
parameter less than 0.5, Has Exit Time set to false, and Transition
Duration set to 0.2 seconds.

Write a script to set the DesiredSpeed parameter and assign it to the character.23.
Play the game to see the effect (make sure your scene has a floor with a collider to
prevent your character from falling down).
You can also use the MoveAndSteer.cs script from the Scripts directory in this24.
recipe. In the Update() function, we get the player input and save the values
in hor and ver variables:

 hor = Input.GetAxis("Horizontal");

 ver = Input.GetAxis("Vertical");

Then we use the Rotate() method to rotate our character in the global Y axis25.
(Vector3.up) based on the hor variable and a public float rotationSpeed
variable (set to 90 degrees per second):

 transform.Rotate(Vector3.up * hor * rotationSpeed *
 Time.deltaTime);

We modify the desiredSpeed variable based on player input (we check if the26.
player holds the Shift key):

 if (Input.GetKey(KeyCode.LeftShift) ||
 Input.GetKey(KeyCode.RightShift))
 {

Character Movement

[113]

 desiredSpeed = 2f;
 }
 else
 {
 desiredSpeed = 1f;
 }

Finally, we use the vertical axis input stored in the ver variable and27.
our desiredSpeed value to set the DesiredSpeed parameter in the Animator
Controller (which moves our character using root motion):

 anim.SetFloat("DesiredSpeed", desiredSpeed * ver, 0.2f,
 Time.deltaTime);

We use the SetFloat() method with the dampTime parameter set to 0.2 seconds.28.
That smooths out the changes of the parameter, which results in smoother blends
between run and walk animations. The anim variable stores the reference to the
Animator component and is set in the Start() function.

How it works…
The traditional approach to animation in games required all the movement animations to be
done “in place.” Characters were only moved with code (in Unity, with the
transform.Translate() and transform.Rotate() methods, by changing
the rigidbody.velocity vector, or by using the rigidbody.ApplyForce() method).
Animations were merely visual effects and the game could work without a single animation
being played. In the root motion approach, animations drive the movement of a character.
The translation and rotation data is captured from the root node (a bone in the rig's
hierarchy) and applied to the whole character in game. There are a few pros and cons to
each approach:

Traditional approach Root motion approach

Pros
• Small number of animations
• You can prototype without a single
animation
• You can adjust the speed of the character
easily

Pros
• Looks more natural, there is no foot sliding
• You can create complex moves and even game
mechanics with animations
• You can have irregular movements such as a
wounded or zombie walk

Character Movement

[114]

Cons
• Hard to remove foot sliding
• Special attacks and evasion moves have to
be programmed
• Looks “last gen”

Cons
• Requires a bigger number of animations
• You can't move your character without an
animation
• Longer prototyping iterations

There are a few important options regarding root motion in the Animation Import
Settings:

Root Transform Rotation: This option captures the rotation of the root node and
applies it to the whole game object. You can set it to Bake Into Pose to disable the
root motion rotation. With this option selected, the rotation will be treated as a
visual effect of the animation and will not be applied to the game object. You
should set it to true for every animation that shouldn't rotate the character. You
can set the Based Upon option to one of the following options:

Original: This is the original root node rotation from the animation
file.
Body Orientation: This alters the original rotation to make the
character's upper body face the Z axis of the game object (the
forward axis). You can also set the Offset option to offset the
rotation.

Root Transform Position Y: This option captures the vertical movement of the
root node and applies it to the whole game object. You can set it to Bake Into
Pose to disable the root motion in the Y axis. With this option selected, the Y axis
motion will be treated as a visual effect of the animation and will not be applied
to the game object. You should set it to true for every “on ground” animation
(unless it's a jump). You can set the Based Upon option to the following options:

Original: This is the original root node Y axis motion from the
animation file.
Center Of Mass: This aligns the center of mass with the root node
vertical position.
Feet: This keeps the feet aligned with the vertical root node
position. You can also set the Offset option to offset the vertical
root node position.

Character Movement

[115]

Root Transform Position XZ : This option captures the horizontal (XZ)
movement of the root node and applies it to the whole game object. You can set it
to Bake Into Pose to disable the root motion in the X and Z axis. With this option
selected, horizontal motion will be treated as a visual effect of the animation and
will not be applied to the game object. You should set it to true for all stationary
animations (such as Idle). You can set the Based Upon option to the following
options:

Original: This is the original root node horizontal motion from the
animation file.
Center Of Mass: This aligns the center of mass with the root node
horizontal position. You can also set the Offset option to offset the
horizontal root node position.

There's more…
In Unity, you can combine root motion and traditional approaches very easily. In fact, we
are doing it in this recipe. We control the movement of our character with root motion but
we steer it with the transform.Rotate() method. You can also create a character with
traditional movement (“in place” animations with all the Bake Into Pose options set to true
for walk and run animations) and root motion actions such as attacks and evade moves.

Using root motion to steer a character
In this recipe, we will use animations to move and steer our character.

Getting ready
To use root motion for steering, you need to prepare a character with at least four
animations: Idle, WalkForward, WalkLeft, and WalkRight. WalkRight and WalkLeft
should make the character walk in circles (clockwise and counterclockwise). You don't need
to create a full circle, just make sure that the start and end poses of the animation look
similar. As always, all the animations should have contact points of the feet in the same
normalized time. Make sure not to switch the left and right foot. If you start
the WalkForward animation with the left foot forward, both WalkLeft and WalkRight
animations should also start with the left foot forward, as shown in the following
screenshot:

Character Movement

[116]

Steering animations using root motion

You can also use the example project; go to the Chapter 04 Character
movement\Recipe 03 Using root motion to steer a character directory. You
can find the Example.unity scene there, with a Humanoid character already animated in
the scene's Hierarchy. You can start the game and use the WSAD keys to move the character
relative to the camera. In the Rigs directory, you can find the Humanoid.fbx character
with all the required animations.

How to do it…
To use root motion for steering, follow these steps:

Import your character with Idle, WalkForward, WalkLeft, and WalkRight root1.
motion animations into Unity.
Select the character asset file and go to the Inspector. Make sure the Animation2.
Type is set properly for your character (Generic or Humanoid). If you are using
a Generic character, make sure to set its Root Node.
Go to the Animation tab and select the Idle animation. Select all the Bake Into3.
Pose options and set the Base Upon option of the Root Transform Rotation
to Original.
For the WalkForward animation, select the same options as for the Idle4.
animation, but uncheck Bake Into Pose for Root Transform Position (XZ).

Character Movement

[117]

For the WalkLeft and WalkRight animations, set all the option the same as for5.
the WalkForward animation, but additionally uncheck the Bake Into Pose option
for Root Transform Rotation.
Set the Loop Time options to true for these animations.6.
If your animations don't loop perfectly, you can try out the Loop Pose option. It7.
will force the start and end poses to loop.
Apply the import settings.8.
Place your character into a scene.9.
Select it in the Hierarchy and add a Capsule Collider to it. You may need to10.
adjust the Capsule Collider properties to better fit your character. In our
examples, we need to set the Height property to 2 units and the Y axis in
the Center property to 1 unit.
Add a Rigidbody component to the character and set its Constraints to Freeze11.
Rotation in every axis.
Navigate to the Animator component of the character (it is added automatically12.
for animated game objects). Set Update Mode to Animate Physics. Make sure
the Apply Root Motion option is checked in the Animator component.
Create an Animator Controller asset for the character.13.
Drag and drop the Idle animation into the Animator Controller to make it the14.
default state.
Create float Speed and float Direction parameters in the Animator15.
Controller.
Right-click on the empty space in the Animator Controller and choose Create16.
State | New From Blend Tree.
Click on the Blend Tree and change its name in the Inspector to Steering.17.
Double-click on the Blend Tree to open its settings.18.
Click on the plus button and choose the Add Motion Field option three times.19.
Set the Parameter of the Blend Tree to Direction; we will only use the Direction20.
parameter for blending walk animations.
Drag and drop the WalkLeft animation in the first (upper) field,21.
the WalkForward in the second (middle) field, and WalkRight in the third
(lower) field.
Uncheck the Automate Thresholds option.22.
Set the WalkLeft animation Threshold to -45, WalkForward23.
animation Threshold to 0, and the WalkRight animation Threshold to 45.
Double-click on the empty space in the Animator Controller to get out of24.
the Blend Tree settings.

Character Movement

[118]

Create two transitions:25.
Idle | Steering with the condition set to Speed parameter greater than
0.5, Has Exit Time set to false, and Transition Duration set to 0.2
seconds.
Steering | Idle with the condition set to Speed parameter less than
0.5, Has Exit Time set to false, and Transition Duration set to 0.2
seconds.

Write a script to set the Speed and Direction parameters of our Animator 26.
Controller and assign that script to the character.
You can find the script in the provided Unity project in the Scripts directory of27.
this recipe. It is called RootMotionSteering.cs.
In this script, we make the character move relative to the camera. In28.
the Update() function, first we get and store player input in two variables, hor
(for Horizontal input) and ver (for Vertical input):

 hor = Input.GetAxis("Horizontal");

 ver = Input.GetAxis("Vertical");

As we want to move the character relative to the camera, we're using the camera's29.
forward and right axis to build a desired movement vector. Our camera is not
completely horizontal (it can face slightly down, for instance), so first we need to
calculate cameraHorizontalForward by taking the normal camera forward
vector, setting its Y axis to 0, and normalizing the vector (so it has a length of 1):

 cameraHorizontalForward = new
 Vector3(cameraTransform.forward.x,
 0f, cameraTransform.forward.z).normalized;

In this script, cameraTransform is a public Transform variable to which we30.
attach our in-game camera.
Next we calculate the desiredMoveDirection: this is a vector pointing in the31.
direction that we would like to move our character. This vector points directly to
the right axis of the camera when the player holds the right arrow, to the left of
the camera when player holds the left arrow, to the horizontal version of camera's
forward axis (cameraForwardHorizontal) when the player holds the up arrow,
and to the opposite direction of that vector when player holds the down arrow:

 desiredMoveDirection = ver * cameraHorizontalForward + hor *
 cameraTransform.right;

Character Movement

[119]

Next we calculate the angle between our character's forward vector and32.
our desiredMoveDirection vector. We will use this value to set the Direction
parameter in the Animator Controller. The Vector3.Angle() method returns an
angle between two vectors. This angle is always positive (greater than 0).
Therefore, we use the dot product of the desiredMoveDirection
and transform.right (our character's right axis) vectors to determine whether
the desiredMoveDirection points to the right or to the left of the character (the
dot product is greater than 0 for vectors pointing in the same direction and less
than 0 for vectors pointing in the opposite direction). We use the Mathf.Sign()
method to make sure our dot product value equals -1 or 1. The result is an angle
from -180 to 180 degrees; we store the value in the float direction variable:

 direction = Vector3.Angle(transform.forward,
 desiredMoveDirection) *
 Mathf.Sign(Vector3.Dot(desiredMoveDirection,
 transform.right));

Then we calculate a float speed variable's value; it is simply the magnitude of33.
our desiredMoveVector. The speed variable is used to set the Speed parameter
in our Animator Controller:

 speed = desiredMoveDirection.magnitude;

Lastly, we use the calculated direction and speed values and set them in our34.
Animator Controller, with a dampTime parameter of the SetFloat() method set
to 0.2 seconds to smooth out the blends. The anim variable stores the reference to
the Animator component of our character and is set in the Start() function:

 anim.SetFloat("Direction", direction, 0.2f, Time.deltaTime);
 anim.SetFloat("Speed", speed, 0.2f, Time.deltaTime);

How it works…
Root motion steering works the same way as the root motion movement. We are using the
rotation of the root bone to rotate the character. In our example, the character is walking in
circles, so its hips are rotating during the animation. That data is then used to rotate the
whole character.

Again, to make the walk animations blend properly, you have to make sure that they all
start with the same leg and that the feet contact poses are in the same normalized time as
the animation.

Character Movement

[120]

If you are using a Humanoid rig, it is enough to create only forward and
left animations. Then you can create a new animation clip in the
character Import Settings in the Animation tab (you need to click on the
plus button in the Clips section). When you choose the WalkLeft
animation as the source, set it to Mirror and set its Cycle Offset to 0.5; you
should get a proper WalkRight animation.

Using animations for better looking
transitions
You've probably already noticed that sometimes when our character stops walking, it
blends to the Idle animation in a strange way (with sliding feet). That is mostly visible
when legs in the Walk animation are in a pose that looks like a mirrored Idle pose. We are
going to fix this problem in this recipe.

Getting ready
You should use the same character as in the previous recipe and prepare one additional
animation that will be a transition from a mirrored Idle pose to a normal Idle pose. You can
also go to the Chapter 04 Character movement\Recipe 04 Using animations for
better looking transitions directory and open the Example.unity scene. You will
find our Humanoid character working the same way as in the previous recipe, but with
a ToIdle animation added. You can also find the rig with all required animations in
the Rigs directory.

How to do it…
To use additional animations for a better-looking transition, follow these steps:

First, follow all the points from the Using root motion to steer a character recipe to1.
have a working character driven by root motion animations.
In the Animation Import Settings of the character, find your additional ToIdle2.
animation. You may need to add it as a new clip by clicking on the plus button in
the Clips section (Animations tab) and choosing the ToIdle animation as the
source.

Character Movement

[121]

Check the Bake Into Pose option for Root Transform Rotation and Root3.
Transform Position (Y) in the ToIdle animation.
Open the Animator Controller (this should be the same controller as in the4.
previous recipe), add another float parameter, and call it ToIdle.
Go back to the Animation Import Settings and find the WalkForward animation.5.
In its import settings, go down to the Curves section, unfold it, and click on the6.
plus icon to add a new Animation Curve.
Name it ToIdle (its name should match exactly the parameter we created in the7.
Animator Controller in step 4). Click on the curve (it's a flat green line at the
moment) to open the Curve Editor. Curves are described by float values on the
vertical axis and normalized animation time on the horizontal axis.
Create a square-shaped curve with its maximum value equal to 1 and its8.
minimum value equal to 0 (point 1 in the following screenshot). You can add
curve control points by clicking on the curve. You can select points by clicking on
them. You can remove points with the Delete key. To adjust the handles and
interpolation types of a point, right-click on it. To set a square curve, choose Both
Tangents | Constant. You can save a Curve Preset for later use by clicking on the
small gear icon in the lower left corner of the Curve Editor (see point 2 in the
following screenshot). When you scrub through the timeline (point 3 in the
following screenshot), you can see where your curve starts in the normalized
animation time (point 4 in the following screenshot):

Animation Curve and the Curve Editor

Character Movement

[122]

In our example, the Idle animation has its left foot in front and our ToIdle9.
animation starts with its right foot in front. During the animation, the character
makes a small step to go back to the proper Idle pose with its left foot in front. In
the WalkForward animation settings, try to set the curve value to 1, on the
passing pose, when the right foot passes the left foot (and will be in front of the
character few frames later).
Save the curve as a Curve Preset and add it to the WalkLeft and WalkRight10.
animations. Set their curves names to ToIdle as well.
Go to the Animator Controller.11.
Add the ToIdle animation and create new state transitions:12.

Steering | ToIdle with two conditions, the Speed parameter less than
0.5 and the ToIdle parameter set to greater than 0.5. Has Exit Time
should be set to false and Transition Duration should be set to 0.2
seconds.
ToIdle | Idle with no conditions, Has Exit Time set to true,
and Transition Duration set to 0.2 seconds.

Alter the Steering | Idle transition by adding a second condition to it: the ToIdle13.
parameter set to less than 0.5. See the following screenshot:

Animator Controller using an additional ToIdle transition animation

Start the game and try walking and stopping the character in different time of the14.
walk animation. You should see that the character plays the ToIdle animation to
prevent foot sliding in the most visible case of the walk pose being a mirrored
idle pose.

Character Movement

[123]

How it works…
There are a few key elements of this recipe:

Animation Curves: You can add curves to your animations (multiple curves per
animation clip) in the Import Settings, Animation tab. Curves assign arbitrary
float values to the animation frames. If the name of the curve is the same as the
name of a parameter in the Animator Controller, the value of the parameter will
be set to the value of the curve in any given frame of the animation.
Using curve values: We are using the ToIdle value set by the Animation Curves
in the WalkForward, WalkLeft, and WalkRight animations to trigger the
transition from Steering to Idle (when the ToIdle value is less than 0.5) or
from Steering to ToIdle animation (when the ToIdle parameter is greater than
0.5). This allows us to control the state transitions in the Animator Controller
depending on the poses in the animations.

There's more…
We've covered the most simple (yet most visible) case in this recipe. You can add more stop
animations (or any transition animations) from different walk and run poses. You may need
to add a stop animation for walk and run passing poses and for all the extremes, depending
on your Idle pose. To do so, add more curves to your animations and react to them in the
Animator Controller. For instance, you may have curves for
LeftFootExtreme, RightFootExtreme, LeftFootPassing, and RightFootPassing;
use them in your Walk and Run animations to trigger appropriate stop animations.

You can also check the value of an Animation Curve in runtime by checking the
corresponding parameter value of the Animator Controller in scripts. To do so, use
the animator.GetFloat() method, where animator is the reference to the Animator
component.

Using root motion for a 180 degrees turn
In the previous recipe, we've added a stop animation for a better transition to the idle state.
We can add even more animations to our movement to make it more accurate and
responsive. An example of such animation is a 180-degree turn.

Character Movement

[124]

Getting ready
Use the same character as in the previous recipe. Add a 180-degree turn animation, starting
with the Idle pose and ending with the Idle pose rotated by 180 degrees in the vertical axis.
Name the animation 180Turn for clarity. You can open the provided example Unity project
and go to the Chapter 04 Character movement\Recipe 05 Using root motion
for a 180 degrees turn directory. You will find an Example.unity scene there. Play
the game and try to walk in the direction opposite to the one the character is facing (press
the down arrow). You can find the Humanoid.fbx asset in the Rigs directory with all the
required animations.

How to do it…
To make a 180-degree turn, follow these steps:

Create four transitions (see the following screenshot):1.
Drag and drop your 180Turn animation into the Animator Controller to create a2.
new state.
Open the Animator Controller (this should be the same controller as in the3.
previous recipe), add two float parameters, and call them DirectionRaw
and SpeedRaw.
Check the Bake Into Pose option for the Root Transform Position (Y) in4.
the 180Turn animation.
In the Animation Import Settings of the character, find your additional 180Turn5.
animation. You may need to add it as a new clip by clicking on the plus button in
the Clips section (Animations tab) and choosing the 180Turn animation as the
source.
Import the character and repeat all the steps from the Using root motion to steer a6.
character and Using animations for better looking transitions recipes to have a
character that is able to walk.

 Idle | 180Turn with two conditions: The SpeedRaw parameter
should be greater than 0.5 and the DirectionRaw parameter should
be greater than 160. Has Exit Time should be set to false
and Transition Duration should be set to around 0.1 seconds.
 Idle | 180Turn (a second one) with two conditions: The SpeedRaw
parameter should be greater than 0.5 and the DirectionRaw parameter
should be less than -160. Has Exit Time should be set to false
and Transition Duration set to around 0.1 seconds. We have two
transitions between the same states because we want them to work as a

Character Movement

[125]

logical OR operator; if any of them is met, the transition will be
triggered.
 180Turn | Idle with one condition: Speed parameter less than
0.5. Has Exit Time should be set to true and Transition Duration set to
around 0.1 seconds.
 180Turn | Steering with one condition: Speed parameter greater
than 0.5. Has Exit Time should be set to true and Transition Duration
set to around 0.1 seconds.

Animator Controller with additional 180Turn transition animation

Edit the Idle | Steering transition by adding two more conditions: DirectionRaw7.
parameter greater than -160 and DirectionRaw parameter less than 160. Multiple
conditions in the same transition work as an AND logical operator; all of them
have to be met to trigger the transition.
The Animator Controller is set up, but we need to set the SpeedRaw8.
and DirectionRaw parameters from scripts. We've created those two additional
parameters because we need raw values here (not damped in time). First, open
the script in which we calculate and set the direction and speed parameters. In
this example, it is called RootMotionSteering.cs; you can find it in
the Chapter 04 Character movement\Recipe 03 Using root motion to
steer a character\Scripts directory.
We have two float variables there: direction and speed. They are being9.
calculated every frame. We just need to make them public to be able to read
them in another script (they are already public in the example script).

Character Movement

[126]

Write another script and call it SetRawDirectionAndSpeed.cs (you can find it10.
in the Scripts directory of this recipe). To set the DirectionRaw and SpeedRaw
parameters, we use the following lines in the Update() function:

 anim.SetFloat("DirectionRaw", steeringScript.direction);
 anim.SetFloat("SpeedRaw", steeringScript.speed);

In the preceding lines, the anim variable is the reference to the Animator 11.
component, the steeringScript variable is the reference to
the RootMotionScript component (we set it with the steeringScript =
GetComponent<RootMotionSteering>() line in the Start() function), and
the steeringScript.direction and steeringScript.speed variables are
the calculated raw direction and speed values.

Alternatively, you can call the anim.SetFloat("DirectionRaw",
direction) and anim.SetFloat("SpeedRaw", speed) methods
directly in the Update() function of the RootMotionSteering.cs script
(without writing another script).

Assign the script to the character, play the game, and try to walk in the direction12.
opposite to the direction the character is facing. The character should start with
an 180Turn animation first.

How it works…
This recipe adds a start animation that works as a transition between the Idle and Steering
states. We use the SpeedRaw and DirectionRaw parameters to check the raw player input
(not damped). Using damped values wouldn't work in this case because the
damped Direction parameter always starts from 0 and increases in time to the raw input
direction value. This would always trigger the Idle | Steering transition before the Idle
| 180Turn transition as the Idle | 180Turn transition checks if the direction is greater than
160 or less than -160 degrees.

There's more…
To make it simple, this recipe shows just one case of a start animation: the 180 degrees turn.
You may require more start animations (-90 and +90 degrees turn or even -45, +45, -270, and
+270 turns). You may also need to add a 180 degree turn transition from walking/running to
make the character react to the input faster. In such a case, you may need to use Animation
Curves to determine the walk/run position

Character Movement

[127]

(LeftPassing, RightPassing, LeftExtreme, RightExtreme) and play an appropriate
turn animation accordingly (starting with
the LeftPassing, RightPassing, LeftExtreme, or RightExtreme pose).

Making a character jump with 3-phase
animation
In this recipe, we will make our character jump. Jumping is best done with physics, so we
will use this approach.

Getting ready
Before we start, you should add three more animations to your character: a short Jump
animation starting on the ground in a pose similar to Idle; an InAir animation, a looped
animation of the character being in the air; and a Land animation starting when the
character touches the ground with his feet and ending with the Idle pose. All those
animations should be done “in place” without root node translation. You can open the
provided example Unity project and go to the Chapter 04 Character
movement\Recipe 06 Making a character jump with 3-phase animation

directory. You will find an Example.unity scene there. Play the game and press the space
bar to see the character jump. You will find all the animations needed in the Rigs directory.

How to do it…
To make the character jump, follow these steps:

Import the character and repeat all the steps from the Using root motion to steer a1.
character, Using animations for better looking transitions, and Using root motion for a
180 degrees turn recipes to have a character that is able to move properly.
In the Animation Import Settings of the character, find your2.
additional Jump, InAir, and Land animations. You may need to add them as new
clips by clicking on the plus button in the Clips section (Animations tab) and
choosing the appropriate animation as the source.
Check all the Bake Into Pose options for in Jump, InAir, and Land animations.3.
Open the Animator Controller (this should be the same controller as in the4.
previous recipe) and add two parameters: a Trigger called Jump and a bool
called OnGround.

Character Movement

[128]

Drag and drop your Jump, InAir, and Land animations into the Animator5.
Controller.
Create these transitions, as shown in the following screenshot:6.

Any State | Jump with a Jump trigger parameter. Has Exit Time
should be set to false and Transition Duration set to around 0.1
seconds.
Jump | InAir with no conditions: Has Exit Time should be set to true
and Transition Duration set to around 0.1 seconds.
InAir | Idle with one condition: OnGround parameter set to true.Has
Exit Time should be set to false and Transition Duration set to around
0.1 seconds.

Create a new script and call it Jump.cs (you can find it in the Scripts directory7.
of this recipe).
In the Update() function of the script, we check if player pressed the space bar8.
and if the character is on the ground: the onGround variable is set by
the GroundCheck() function. If the player presses space bar and the character is
on ground, we save the current game time as our lastJumpTime (this variable is
used in the GroundCheck() function). Then we disable root motion on the
Animator component by setting the anim.applyRootMotion variable to false.
We set the onGround variable to false because our character is jumping. We
add force to the Rigidbody component of the character and set the Trigger
Jump in our Animator Controller. Lastly, we call the GroundCheck() function,
which will be described later:

 if (Input.GetKeyDown(KeyCode.Space) && onGround)
 {
 lastJumpTime = Time.time;
 anim.applyRootMotion = false;
 onGround = false;
 rb.AddForce(Vector3.up* jumpForceUp +
 transform.forward * jumpForceForward, ForceMode.Impulse);
 anim.SetTrigger("Jump");
 }
 GroundCheck();

The anim variable stores the reference to the Animator component. The rb9.
variable stores the reference to the Rigidbody component. Both variables are set
in the Start() function. The jumpForceUp and jumpForceForward are public
float variables that control the applied force magnitude.

Character Movement

[129]

In the GroundCheck() function, we check if the current game time is bigger than10.
our lastJumpTime plus the value of the public float
groundCheckPauseTime variable. It this is not true, we are setting the onGround
variable to false (we are assuming that the character is always in the air for a
short moment after the player presses the jump button). Then we use
the Physics.Raycast() method to check if our character stands on the ground.
This method casts a ray from the groundCheck transform down. We set the
maximum ray cast length with a public float
variable, maxGroundCheckDistance. If the character is standing on ground, we
set the onGround variable to true and we enable the root motion in the Animator
component. We also set the OnGround parameter in our Animator Controller to
the value of the onGround variable:

 void GroundCheck()
 {
 if(Time.time > lastJumpTime + groundCheckPauseTime &&
Physics.Raycast(groundCheck.position, Vector3.down,
 maxGroundCheckDistance))
 {
 onGround = true;
 anim.applyRootMotion = true;
 }
 else
 {
 onGround = false;
 }
 anim.SetBool("OnGround", onGround);
 }

Assign the script to our character.11.
Create an empty child object of the character and call it GroundCheck. Set its12.
local position to X = 0, Y = 0.1, and Z = 0. Make sure it is a child object of the
character game object.
Assign the GroundCheck game object to the Ground Check field of the Jump13.
script attached to the character.
Play the game and press the space bar to see the result.14.

Character Movement

[130]

How it works…
In this recipe, we are using physics to make the character jump. To do it properly, we need
to turn off root motion in the Animator component when the character is in the air to make
it fully controlled by the physics engine instead of our animations. We are allowing the
character to jump only when it's standing on the ground. To avoid setting the onGround
variable to true just after the jump, we temporarily disable the ground checking function
after the player presses the jump button.

Jump animation is divided into three parts:

Jump: In this animation, our character starts to jump
InAir: This is a long looped animation of the character being in the air
(or falling down)
Land: This animation is played when the character touches the ground
after being in the air

There's more…
Again, this recipe shows the most basic jump setup. You may want to add more start jump
animations from different poses (run and walk extremes, passing poses, and another one
from the idle animation). To do so, create Animator Controller parameters for each of those
poses and Animation Curves with the same names as the parameters you've created. Use
the Animation Curves in the walk and run animations to tell Unity which pose is the
animation currently in (left/right extreme or left/right passing pose). Use the parameters in
the Animator Controller to set the appropriate transitions between the animations. You may
also need to add more landing animations that would transition to idle, walk, or run,
depending on the current character Speed parameter value (player input).

Using root motion to drive a NavMesh
Agents' movement with animations
In this recipe, we will use root motion to move and steer a character with a Nav Mesh
Agent component. This can be used to get rid of foot sliding in this type of character.

Character Movement

[131]

Getting ready
We are going to use the same character as in the previous recipe with all its animations. You
should have a character with at least the Idle, WalkLeft, WalkForward, and WalkRight
animations ready and set up in the Animator Controller the same way as in the Using root
motion to steer a character recipe. You can also go to the Chapter 04 Character
movement\Recipe 07 Using root motion to drive Navmesh Agents movement

with animations directory. You will find an Example.unity scene there. Open it, play
the game, and click on the ground to make the characters move using NavMesh Agents and
root motion.

How to do it…
To use root motion for moving and steering a character with Nav Mesh Agent component,
follow these steps:

Import the character with the Idle, WalkLeft, WalkForward, and WalkRight1.
animations and set it up the same way as in the Using root motion to steer a
character recipe, but don't write the RootMotionSteering.cs script as we will
create a new one.
Add the Nav Mesh Agent component to the character. Make sure it also has2.
the Capsule Collider component and the Rigidbody component with frozen
rotation in every axis. Also make sure that the Animator component's Apply
Root Motion option is set to true and Update Mode set to Animate Physics (the
same way as in the Using root motion to steer a character recipe).
Bake the NavMesh in the scene. To do so, make sure your ground model has a3.
collider attached (you can use the Mesh Collider component). Then go
to Window | Navigation. Select the ground in your scene and set it
to Navigation Static in the Object tab of the Navigation window. Click on
the Bake button at the bottom of the Navigation window. After a short
while, NavMesh should be baked (it is visible in the scene as a light blue,
semitransparent mesh covering the ground model). It is needed for our NavMesh
Agent to work.
If your character is using any scripts from this book, remove them from4.
its Inspector (we don't need the Jump, RootMotionSteering,
and SetRawDirectionAndSpeed scripts).
Create a new script and call it NavMeshAgentWithRigidBody.cs. We will use5.
both the NavMesh Agent and the Rigidbody components in this script.

Character Movement

[132]

In the Update() function of the script, we first disable updating rotation and6.
position in the NavMesh Agent. That will prevent the agent from moving our
character's transform. Then we calculate the float direction variable's value.
We do it in a very similar way to what we did in the Using root motion to steer a
character recipe, but instead of creating our own desiredMoveDirection vector,
we are using the NavMesh Agent's desiredVelocity vector. This vector
describes the speed and direction the agent would like to move with:

 agent.updatePosition = false;
 agent.updateRotation = false;

 direction = Vector3.Angle(transform.forward,
 agent.desiredVelocity) *
 Mathf.Sign(Vector3.Dot(agent.desiredVelocity,
 transform.right));

In the preceding code agent is the variable in which we store the reference to the Nav Mesh
Agent component. We set this reference in the Start() function.

Next we calculate the float speed variable value: it's simply the magnitude of7.
the agent.desiredVelocity vector. We also set
the Direction, Speed, DirectionRaw, and SpeedRaw parameters in our
Animator Controller using the anim variable that stores the reference to the
Animator component. The anim variable is set in the Start() function. Lastly,
we set the agent.nextPosition to be the same as our transform position every
frame. This prevents the agent from moving away from our character's transform.
Save the script and attach it to the character.8.
We also need a script to tell the NavMesh Agent where we want to go. There is9.
a ClickToMove.cs script in the Shared Scripts folder in the provided Unity
example. In the Update() function, we use the agent.SetDestination()
method when the player presses the left mouse button. A ray is cast from the
mouse cursor position in the main camera's forward direction. If the ray hits a
collider, the hit position is used to set the new destination for the NavMesh
Agent:

 if (Input.GetKeyDown(KeyCode.Mouse0))
 {
 if (Physics.Raycast(Camera.main.ScreenPointToRay(
 Input.mousePosition), out hit))
 {
 agent.SetDestination(hit.point);
 }
 }

Character Movement

[133]

In the preceding code agent is a public NavMeshAgent variable that stores the reference
to the Nav Mesh Agent component. We assign this reference manually in the Inspector by
dragging the game object with the Nav Mesh Agent component to the Agent field of the
script. The hit variable is a global RaycastHit variable that is used by
the Physics.Raycast() method to store the ray cast result.

Save the script and attach it to the character. Drag and drop the character game10.
object to the Agent field of the script (the script is attached to the same game
object but can be attached to any game object).
Play the game and click on the ground to see the character move using11.
both NavMesh Agent and root motion.

How it works…
This recipe has a few key elements that make it work:

NavMesh and NavMesh Agent: Nav Mesh Agent component is used to navigate
in the game level with a baked NavMesh. Without one of those elements, our
character wouldn't be able to move effectively with point and click input.
Disabling the agent's updateRotation and updatePosition: By default, NavMesh
Agents update the rotation and position of a game object. To use root motion, we
need to disable this feature and update the game object's position and rotation
with the root node animation instead.
Rigid Body and Animator with Apply Root Motion set to true: We use Rigid
Body to have collisions between all the objects in the game (not only
other NavMesh Agents) and we use the Apply Root Motion option in the
Animator to make the character move with root node animation.

There's more…
In the Scripts directory of this recipe, you can also find a NavAgent.cs script that uses
root motion without the Rigidbody component. The Update() function of the script is very
similar to the NavMeshAgentWithRigidBody.cs script that we were using in this recipe,
but we enable updating the position by the Nav Mesh Agent component. We only disable
rotation updating. We add a OnAnimatorMove() function to the script. This method is
called every frame after Unity finishes evaluating all the states in the Animator.

Character Movement

[134]

In that function, we set the agent.velocity vector to be the same as the velocity of the
root node. We also update the transform rotation to be the same as the root node's rotation:

 void OnAnimatorMove()
 {
 agent.velocity = anim.deltaPosition /
 Time.deltaTime;
 transform.rotation = anim.rootRotation;
 }

Using triggers to grab an edge while
jumping
Grabbing an edge while jumping is a common feature, especially in platform games. It is
easily done in Unity with a small amount of scripting. This recipe covers a simple edge grab
functionality.

Getting ready
You need three new animations for our character: EdgeGrab, EdgeGrabLoop,
and EdgeGrabClimb. The first one is a transition from the InAir animation to
the EdgeGrabLoop animation. It should have minimum movement in the root node if
possible. The second one is a looped animation of hanging on the cliff's edge. The last one is
an animation that uses root motion to climb the cliff's edge and ends with an Idle pose. See
the following screenshot for reference:

Frames of the EdgeGrabClimb animation using root motion to climb over the cliff's edge

Character Movement

[135]

EdgeGrab and EdgeGrabLoop animations should have all Bake Into Pose options selected
in Import Settings. EdgeGrabLoop should also have the Loop Time option selected. You
can also use the provided example Unity project and go to the Chapter 04 Character
movement\Recipe 08 Using triggers to grab an edge while jumping directory.
You will find an Example.unity scene there. Open it, play the game, and press the space
bar to jump towards the edge. After the character grabs it, press the up arrow to climb over
the edge.

How to do it…
To be able to grab a cliff's edge while jumping, follow these steps:

Import your character to Unity. Make sure your character can move and jump1.
(follow the Making a character jump with 3-phase animation recipe if needed). The
character should use a Rigidbody component for moving and jumping. You can
still use root motion to move and steer the character.
Place the character in your scene and make sure it has the Player tag set.2.
You need to have a cliff to be able to grab its edge. Import a suitable model or use3.
a Cube from the Game Object | 3D Object | Cube menu. The cliff game object
should have a collider (Mesh Collider for example) because we use a Rigid Body
character.
Add a trigger game object (an empty game object with a Box Collider component4.
set to Is Trigger). Name it GrabTrigger for clarity. Place the trigger near the
edge of the cliff. The trigger is marked with the number 1, as shown in the
screenshot after step 5.

Add another empty game object and name it RootTarget. Place it in the position5.
where your character's transform should be when it grabs the edge. It is marked
with the number 2, as shown in the following screenshot. You can adjust the
exact position later.

Character Movement

[136]

GrabTrigger and RootTarget game objects' placement

Open the character's Animator Controller. Drag and drop6.
your GrabEdge, GrabEdgeLoop, and GrabEdgeClimb animations into the
controller.
Add a Trigger GrabEdge parameter and a Trigger PullUp parameter to the7.
controller.
Create these transitions:8.

Jump | GrabEdge with one condition: GrabEdge trigger
parameter. Has Exit Time should be set to false and Transition
Duration set to around 0.2 seconds.
InAir | GrabEdge with one condition: GrabEdge trigger
parameter. Has Exit Time should be set to false and Transition
Duration set to around 0.2 seconds.
GrabEdge | GrabEdgeLoop with no conditions. Has Exit Time should
be set to true and Transition Duration set to around 0.2 seconds.
GrabEdgeLoop | GrabEdgeClimbing with one condition: PullUp
trigger parameter. Has Exit Time should be set to false and Transition
Duration set to around 0.2 seconds.
GrabEdgeClimbing | Idle with no conditions: Has Exit Time should
be set to true and Transition Duration set to around 0.2 seconds.

Character Movement

[137]

Close the Animator Controller and assign it to the character's Animator9.
component.
Create a new script and call it EdgeGrab.cs (you can find the finished script in10.
the Scripts directory of this recipe). The goal of this script is to play appropriate
animation when we touch the edge of the cliff. We also need to disable collisions
and physics and make sure our character will be in the right place while playing
the animation (in the RootTarget game object's position).
First we need a Grab() function to handle the situation when player starts11.
touching the edge (we will call this function from our GrabTrigger game object
later):

 public void Grab (Transform target) {
 grabTarget = target;

 if (grabTarget != null)
 {
 anim.SetTrigger("GrabEdge");
 adjustPosition = true;
 steeringScript.enabled = false;
 jumpScript.enabled = false;
 rb.isKinematic = true;
 anim.applyRootMotion = true;
 }
 }

This function has a target parameter which will hold the reference to12.
the RootTarget game object. We assign this parameter to a class member
variable grabTarget (we will use it later). We are starting to play the GrabEdge
animation by setting the GrabEdge Trigger in the controller. We are also setting
a flag (class member) adjustPosition to true. This flag is used later to
determine whether we should match our character's position with the RootTarget
game object's position. Then we disable two scripts stored in steeringScript
and jumpScript variables. We are doing it only because we don't want them to
interfere with our edge grab action. We are also setting the isKinematic option
on our Rigidbody component (the rb variable stores the reference to it) to disable
collisions and gravity. Lastly, we enable root motion for our Animator
Component (reference to which is stored in the anim variable). That makes
the GrabEdgeClimb animation work.

Character Movement

[138]

Next we have to write the GrabLerp() function that handles the character's13.
position and RootTarget's position matching:

 void GrabLerp()
 {
 if (grabTarget == null || !adjustPosition)
 {
 return;
 }
 if ((transform.position -
 grabTarget.

5
Character Actions and

Expressions
This chapter explains the usage of animations for character actions and expressions and
covers the following recipes:

Creating an appear or a disappear animation
Creating background characters and critters with animation-driven behavior
Using Blend Trees to create randomized actions
Using Quaternion.LookRotation() and Animator.SetLookAtPosition()
methods to make characters follow an object with their gaze
Action Points – performing an action in a specified spot
Synchronizing an animation with objects in the scene
Using IK for interacting with scene objects
Animating facial expressions with Blend Shapes

Introduction
In most games, characters perform a variety of actions and expressions. This chapter
explains how to use animations to create believable behaviors and interactions.

Character Actions and Expressions

[140]

Creating an appear or a disappear animation
If our game has monsters in it, there is a huge probability that we will need to use an appear
or a disappear animation to introduce such characters in the scene. Often times, monsters
spawn near our players to ambush them. This is where the appear animations come in
handy.

Getting ready
Before we start, you should have a character with at least two animations: a looped Idle
animation and an Appear animation. This animation should start below the ground (or
high in the air if your character is a flying one). It should end with the Idle pose. See the
following image for reference:

Appear animation key frames (the animation is done “in place”)

You can download the provided example; open the project in Unity and go to the Chapter
05 Character actions and expressions\Recipe 01 Creating an appear or

disappear animation folder. You will find a scene called Example. Scene there. When
you play it, a Spider character will be spawned (instantiated) and it will play the Appear
animation. In the Rigs directory, you can find the Spider.fbx asset with the required
animations.

Character Actions and Expressions

[141]

How to do it…
To create an appear animation, follow these steps:

Import your animated character with Idle and Appear animations.1.
Make sure to check the Idle animation's Loop Time option.2.
Place the imported character in the scene.3.
Create a new Animator Controller and call it Appear (or you can edit an existing4.
controller).
Drag and drop your Appear animation into the controller and make sure it is the5.
default state. If not, right-click on it and choose the Set As Layer Default State
option.
Drag and drop your Idle animation into the controller.6.
Create one transition:7.

Appear | Idle with no conditions: Has Exit Time should be set to true
and Transition Duration set to 0.2 seconds.

Assign the Animator Controller to the character standing on the scene (to its8.
Animator component).
To better see the Appear animation in action, create a prefab from the character.9.
To do so, drag and drop it from the Hierarchy to any folder in the Project View.
Delete the character from the Hierarchy and write a script to spawn (instantiate)10.
the character in runtime. In this recipe, we use the Spawner.cs script from the
example Unity project's Shared Scripts directory.
This script spawns a prefab (a list of prefabs) in the same position and with the11.
same rotation as the Spawner game object (the object the Spawner.cs script is
attached to).

How it works…
We use a very simple mechanism here—when Unity instantiates an animated game object,
it always plays the game object's default animation state. So, when we set our Appear
animation to be the default state, it is played when the character is spawned (instantiated).
This way we can create interesting animations to make the characters appear near our
players. In this example, our character crawls out from the ground.

Character Actions and Expressions

[142]

There's more…
To make the effect complete, you should also add a spawn VFX to the character. You can
find an example of that: a particle system prefab called RocksEffect in the Prefabs
directory in the provided Unity project. This is an “unearthing” effect. We spawn it with the
same Spawner.cs script. Additionally, this prefab has an AutoDestroy.cs script that
destroys the spawned effect after a few seconds.

Creating background characters and critters
with animation-driven behavior
In this recipe, we are going to create animated characters that will serve as decorations in
the game. Such characters' behavior is driven only by animations; thus, we can have quite a
large number of them in the game.

Getting ready
Before we start, we need to have a character with a few animations. In this example, we are
using a bird. It has Idle, StartFlying, FlyingInCircles, and Land animations. The Idle
animation is looped and played when our birds sits on the ground. The StartFlying
animation is a transition between Idle and FlyingInCircles, which is a looped animation of
the bird flying around. The last animation, the Land animation, is a transition
between FlyingInCircles and Idle. We don't use root motion for those animations because
we want the birds to always land in the same position (we don't want to check where the
ground is, it's just a decoration).

You can also download the provided example Unity project and go to the Chapter 05
Character actions and expressions\Recipe 02 Creating background

characters and critters with animation driven behavior directory. You will
find a scene called Example.scene there, with some birds sitting around. If you press the
space bar, the birds will start flying. If you press it again, they will land. In the Rigs
directory, you can find the Bird.fbx character with all required animations.

Character Actions and Expressions

[143]

How to do it…
To create lightweight background characters with animation-driven behaviors, follow these
steps:

Import your character (a bird with Idle, StartFlying, FlyingInCircles, and Land1.
animations) to Unity.
Create a new Animator Controller.2.
Drag and drop the Idle, StartFlying, FlyingInCircles, and Land animations into3.
the controller.
Create a bool Fly parameter. We will use it later to make the birds start flying.4.
Create four transitions:5.

Idle | Start Flying with the conditions: Fly parameter should be set to
true, Has Exit Time set to false, and Transition Duration set to 0.2
seconds.
StartFlying | FlyingInCircles with no conditions: Has Exit Time
should be set to true and Transition Duration set to 0.2 seconds.
FlyingInCircles | Land with one condition: Fly parameter should be
set to false, Has Exit Time set to true, and Transition Duration set to
0.2 seconds. We need to set Has Exit Time to true in this case because
our Land animation starts from the last frame of the FlyingInCircles
animation.
Land | Idle with no conditions: Has Exit Time set to true
and Transition Duration set to 0.2 seconds.

Place our character in the scene and assign the controller to its Animator6.
component.
Add a Bird tag to the character. We will use the tag in the following script.7.
Create a new script and call it FlockDecoration.cs.8.
In this script, we first find all the game objects with the Bird tag and store them9.
in the GameObject[] birds array. We do it in the Start() function. In
the Update() function, when the player presses the space bar, we set
the bool Fly parameter in our controller to its inverted value (if it was true, we
set it to false, and vice versa). We do it for every bird stored in the birds array:

 for (int i = 0; i < birds.Length; i++)

 {

 Animator anim = birds[i].GetComponent<Animator>();
 anim.SetBool("Fly", !anim.GetBool("Fly"));

Character Actions and Expressions

[144]

 }

Assign the script to an empty game object in the scene. Play the game and press10.
the space bar to see the effect. You can also duplicate the Bird game object several
times.

How it works…
This recipe uses the Animator Controller to create states for the character. Our bird can sit
on the ground and fly. We also have transition animations between those two looped states
to make the bird start flying or land. With this simple setup, we can create birds that will
react to the player. They can, for instance, start flying when player is near and land if player
walks away. The purpose of this recipe is to show that we can create interesting behavior
with just the animations alone (and one script to call the animations). Animated game
objects that have no scripts and no rigid bodies attached are quite lightweight in Unity. That
allows us to use them as interesting decorations.

There's more…
In the FlockDecoration.cs script, we also try to desynchronize the animations of our
birds. We do it in the Start() function for every bird by setting the speed variable in
its Animator to a random number:

 for (int i = 0; i < birds.Length; i++)
 {
 Animator anim = birds[i].GetComponent<Animator>();
 anim.speed = Random.Range(0.8f, 1.3f);
 }

That makes the birds play their animations with randomized playback speed. We could
randomize it further by creating multiple versions of FlyInCircles and Idle animations.
Then we would have to randomly choose currently played animation (see the next
recipe for details).

In the Import settings of our FBX file, in the Rig tab, we also checked the Optimize Game
Objects option. This makes our rig hierarchy (bones) invisible in the Hierarchy and reduces
the number of game objects Unity has to handle.

Character Actions and Expressions

[145]

Using Blend Trees to create randomized
actions
In this recipe, we will create a simple randomized action using a Blend Tree.

Getting ready
Before we start, we need to have a character with at least two different animations for the
randomization to work. In this example, we are using a character with
the Walk, Idle, Hurray, Wave, and PickUp animations. The Walk and Idle animations are
used as helpers. The three others are being randomized. You can also use the example
project; go to the Chapter 05 Character actions and expressions\Recipe 03
Using blend trees to create randomized actions directory. You can find
the Example.scene scene there, with two characters. You can start the game to see the
effect. Both characters should play different animation after walking. You may need to start
the game several times because we have only three animations to pick from, so there is a 9
percent chance that both characters will play the same animation. In the Rigs directory, you
can find the required animations.

Characters with randomized animations

Character Actions and Expressions

[146]

How to do it…
To use randomized animations, follow these steps:

Import your character with the animations to pick from. In our case, they are1.
Hurray, Wave, and PickUp. We also use Idle and Walk animations (the Walk
animation is used before the randomized action and the Idle animation is used
after).
Create a new Animator Controller (or edit an existing one).2.
Create a new float parameter in the controller and call it Random.3.
Create a new Blend Tree in the controller and name it RandomAction.4.
In the Blend Tree settings, add Motion Fields for your randomized animations.5.
In our example, we have three Motion Fields (for Hurray, Wave, and PickUp).
Assign your animations to the Motion Fields.6.
Choose the Random parameter as the Parameter of the Blend Tree.7.
Uncheck the Automate Thresholds option.8.
Set the Thresholds to integer numbers, starting from 0. In our example, they are9.
0, 1, and 2.
Exit Blend Tree settings.10.
Create transitions to and from the Blend Tree, if needed. In our example, we11.
have following transitions:

Walk | RandomAction with no conditions: Has Exit Time should be
set to true and Transition Duration set to 0.2 seconds. Our scene starts
with the characters playing one cycle of the Walk animation and then
transitioning to the RandomAction Blend Tree.
RandomAction | Idle with no conditions: Has Exit Time should be set
to true and Transition Duration set to 0.2 seconds. Our scene ends
with the characters transitioning from RandomAction to Idle
animation.

Place the character in the scene.12.
Assign the controller to the character's Animator component.13.
Create a new script and call it RandomAction.cs.14.
In this script's Start() function, we create an integer random value and set it as15.
the value of our float Random parameter in the controller:

 Animator anim = GetComponent<Animator>();
 int randomValue = Random.Range(0, numActions);
 anim.SetFloat("Random", (float)randomValue);

Character Actions and Expressions

[147]

In the preceding script, numActions is a public int variable that stores the16.
total number of randomized actions in our Blend Tree (3 in our example).
Assign the script to the character and play the game to see the effect. You may17.
need to start the game multiple times or copy the character several times.

How it works…
The trick here is to set the Random parameter in the controller before we transition to
the Blend Tree. This way we don't see the sudden change in the animations (the animation
is already chosen before we start playing it).

We are still using the float type parameter in the Blend Tree because we
cannot use integers in Blend Trees in Unity.

There's more…
There are situations where you need to have multiple randomized animations played one
after another, for instance, when your character is standing in place and performing some
random actions. To be able to set the parameter responsible for randomizing the
animations, you may need to transition through a neutral Idle pose. In that state, you can
set the parameter value safely. See the following image:

Setting the parameter in the safe Idle state

Additionally, if your random actions blend together nicely (maybe they are different
versions of the Idle animation), you can allow the parameter to change when you are
already in the Blend Tree. To do so, make sure to use the SetFloat() function with
the dampTime parameter set to an appropriate value (0.5 should be okay, but you will need
to experiment).

Character Actions and Expressions

[148]

Using Quaternion.LookRotation() and
Animator.SetLookAtPosition() methods to
make characters follow an object with their
gaze
Sometimes you need a character to look at an object in the game, for instance, at the camera.
To do so, we can use two methods: Quaternion.LookRotation()
and Animator.SetLookAtPosition(). We will cover both in this recipe (the second one
is covered in the There's more… section).

Getting ready
To follow this recipe, you need a character with one Idle animation. You can also go to
the Chapter 05 Character actions and expressions\Recipe 04 Using
LookRotation and SetLookAtPosition methods to make characters follow an

object with their gaze directory. Open the Example.scene scene there. You will find
the HumanoidLookAt and HumanoidIKLookAt game objects there. The first one uses a
generic LookAt() method and the second one uses the Animator.SetLookAtPosition()
function. To see the effect, play the game, switch to the Scene View, and move the Target
game object around (a red shiny sphere).

Characters looking at the Target game object

Character Actions and Expressions

[149]

How to do it…
To make characters follow an object with their gaze, follow these steps:

Import the character into Unity and place it in a scene.1.
Make sure to create an Animator Controller with at least one animation, or use an2.
existing one.
To use the firstQuaternion.LookRotation() method, create a new script and3.
call it CharacterLookAt.cs.
In that script, we use the void LateUpdate() function to alter bone rotation after4.
all animations are evaluated. In that function, we first check if a publicfloat
weight variable is less than or equal to 0. If so, we don't do anything (we turn off
the look at behavior):

 if (weight <= 0f)
 {
 return;
 }

If that is not true, we calculate our desired lookDirection. This is a vector in5.
which our character should look. We calculate it by subtracting our public
Transform bone position from the public Transform target position. This
vector is then damped in time using the SmoothDamp() function. This prevents it
from sudden changes. We use a public floatdampTime variable to determine
the time in which we smooth the vector out. The dampVelocity vector is class
member variable required by the SmoothDamp() function to store the changes in
the lookDirection vector between frames:

 lookDirection = Vector3.SmoothDamp(lookDirection,
 target.position - bone.position, ref dampVelocity,
 dampTime);

Next we check if the angle between our desired lookDirection vector and the6.
character's transform.forward vector is greater than our public float
maxAngle value. If so, we calculate the finalLookVector. This is our
character's transform.forward vector, which is rotated toward the
desired lookDirection vector by the maxAngle degrees. This way we create
a cone of vision for our character and prevent it from breaking the neck joint. We
need to use the MathfDeg2Rad constant to change our maxAngle degrees to
radians because the Vector3.RotateTowards() function uses radians instead
of degrees. If the angle between lookDirection and transform.forward is
less than or equal to maxAngle, we don't alter the lookDirection:

Character Actions and Expressions

[150]

 if (Vector3.Angle(lookDirection, transform.forward) >
 maxAngle)
 {
 finalLookVector =
 Vector3.RotateTowards(transform.forward,
 lookDirection, Mathf.Deg2Rad*maxAngle, 0.5f);
 }
 else
 {
 finalLookVector = lookDirection;
 }

Finally, we calculate the Quaternion rotation value by using7.
the Quaternion.LookRotation() method and multiplying its result by
a public Vector3 additinalRotation value. First we need to turn
this Vector3 into a Quaternion by using the Quaternion.Euler() function.
Multiplying two quaternions is simply adding an additional rotation. We need to
use the additionalRotation vector because, in most cases, the head bone's
forward axis doesn't match the face of our character. By applying an additional
rotation of +90 or -90 degrees in one of the axes (X, Y, or Z), we can make the
script work for every rig. After calculating the rotation, we linearly interpolate
the current bone.rotation value to our calculated rotation using the weight
value. This way we can turn the look at on and off easily:

 rotation = Quaternion.LookRotation(finalLookVector) *
 Quaternion.Euler(additionalRotation);
 bone.rotation = Quaternion.Lerp(bone.rotation, rotation,
 weight);

Save the script and add it to the character.8.
Drag and drop the head bone of the character to the Bone field in the9.
script's Inspector.
Drag and drop the look at target transform to the Target field in the10.
script's Inspector.
You may need to adjust the Additional Rotation field. Experiment in Play Mode11.
with +90 or -90 values in different axes to find a matching value. Modifying one
axis at a time should be enough.
Move the target transform in Play Mode to see the effect (you can do it in12.
the Scene View).

Character Actions and Expressions

[151]

How it works…
In this recipe, we are using a Quaternion.LookRotation() method that creates a
rotation, which works the same way as we would use the Transform.LookAt() function.
It is applied to the head bone's transform. Our character's rig and all its bones are standard
transforms in Unity. We can modify their rotation or position as we would with other game
objects, but we need to do it in the LateUpdate() function because all the animations have
to be evaluated first. We cannot modify any of the bones' transforms in the Update()
function because all our modifications would be overwritten by the animations.

The Quaternion.LookRotation() function creates a rotation that makes a transform
forward axis point to the desired direction. In most cases, the head bone's forward axis
doesn't match the face of the character; thus, we need to apply an additional rotation. To do
so, we use the public Vector3 additionalRotation variable.

There's more…
For humanoid characters, we can use the IK approach. To do so, follow these steps:

Make sure to check the IK Pass option in the Animator Controller's layer1.
properties.
Create a new script and call it CharacterLookAtIK.cs.2.
Create a void OnAnimatorIK(int layerIndex) function in that script. This3.
function is called in the IK Pass after all animations are evaluated.
In that script, we use the SetLookAtPosition() and SetLookAtWeight()4.
functions on the Animator component. We use a public Transform target
variable to set the look at position and a public float weight variable to set
the weight of the look at. We also use the Vector3.SmoothDamp() method to
damp any sudden changes in the position of our target:

 targetPosition = Vector3.SmoothDamp(targetPosition,
 target.position, ref dampVelocity, dampTime);
 anim.SetLookAtPosition(targetPosition);
 anim.SetLookAtWeight(weight);

Save the script and assign it to the character.5.
Assign the Target game object to the Target field in the script's Inspector. Make6.
sure to set the Weight field to 1.

Character Actions and Expressions

[152]

Play the game and move the Target game object to see the result (you can do it in7.
the Scene View).
To turn the look at on and off smoothly, interpolate the weight value in time8.
using the Mathf.Lerp() function.

Action Points – performing an action in a
specified spot
Action Points are a common concept used for characters in games that have to perform a
certain action in a certain spot. You will find a lot of them in RPG games where NPCs
populate towns and perform different actions creating an illusion of a living community.
We are going to address a simple case of an Action Point in this recipe.

Getting ready
We are going to use a character with three animations: Walk, Idle, and Action. We are also
going to use the SetSpeedFromAgent.cs script from the Using Blend Trees to blend walk and
run animations recipe in Chapter 5, Character Movement. You can also open the provided
example Unity project and go to the Chapter 05 Character actions and
expressions\Recipe 05 Action points performing an action in a specified

spot directory. You will find an Example.scene scene there. Play the game to see the
effect—the Humanoid character will approach an Action Point and perform a pick up
animation.

How to do it…
To create a simple Action Point, follow these steps:

Import the character to Unity.1.
Put it on the scene and add a NavMesh Agent component to it.2.
Bake the NavMesh in the scene.3.
Create an Animator Controller and assign it to the character's Animator4.
component.
Create a float Speed parameter and a Trigger Action parameter in the5.
controller.

Character Actions and Expressions

[153]

Drag and drop the Idle, Walk, and Action animations to the controller. Make6.
sure that the Idle animation is the default state.
Create four transitions (see the following image):7.

Idle | Walk with one condition: Speed parameter greater than 0.5. Has
Exit Time should be set to false and TransitionDuration set to around
0.1 seconds.
Walk | Idle with one condition: Speed parameter less than 0.5. Has
Exit Time should be set to false and Transition Duration set to around
0.1 seconds.
Any State | Action with one condition: Action triggers parameter. Has
Exit Time should be set to false and Transition Duration set to around
0.1 seconds.
Action | Idle with no conditions: Has Exit Time should be set to true
and Transition Duration set to around 0.1 seconds.

Animator Controller with Action state used by the Action Point

Create a new script and call it ActionPoint.cs.8.
In that script, we have an IEnumerator PerformAction() coroutine that9.
handles the Action Point usage (it is started in the Start() function). In this
coroutine, we first check if our character is close enough to the Action Point. If
not, we set the NavMesh Agent's destination to the Action Point's position, wait
one frame, and check again:

 while ((agentTransform.position -
 transform.position).sqrMagnitude > actionDistance *
 actionDistance)
 {

Character Actions and Expressions

[154]

 agent.SetDestination(transform.position);
 agent.Resume();
 yield return null;
 }

The agentTransform variable holds the reference to the character's transform.10.
The actionDistance is the distance from the Action Point in which our
character should start performing the action.
When our character is closer to the Action Point than the actionDistance, we11.
stop the NavMesh Agent and check if we want to match the character's position
and/or rotation to our Action Point before the character starts playing the action
animation. If not, we start playing the animation right away:

 agent.Stop();
 if (!matchBeforeAction)
 {
 anim.SetTrigger(actionTrigger);
 }

Next we check if we want to match character's position and/or rotation12.
with Action Point's position/rotation. If so, we use linear interpolation to match
the position and/or rotation. If the position and/or rotation of the character are
close enough to the Action Point's position/rotation, we set the character's
position/rotation to be exactly the same as Action Point's position/rotation:

 while (matchRotation == true || matchRotation == true)
 {
 yield return null;
 if (matchPosition && (agentTransform.position -
 transform.position).sqrMagnitude > 0.01f)
 {
 agentTransform.position =
 Vector3.Lerp(agentTransform.position,
 transform.position, Time.deltaTime *
 lerpSpeed);
 }
 else
 {
 matchPosition = false;
 agentTransform.position =
 transform.position;
 }
 if (matchRotation &&
 Vector3.Angle(agentTransform.forward,
 transform.forward) > 1f)
 {

Character Actions and Expressions

[155]

 agentTransform.rotation =
 Quaternion.Lerp(agentTransform.rotation,
 transform.rotation, Time.deltaTime *
 lerpSpeed);
 }
 else
 {
 agentTransform.rotation =
 transform.rotation;
 matchRotation = false;
 }
 }

Lastly, we check if we want to play the animation after the character's position13.
and/or rotation was matched with the Action Point. If so, we play the animation
now (as the character position and/or rotation was adjusted):

 if (matchBeforeAction)
 {
 anim.SetTrigger(actionTrigger);
 }

Save the script.14.
Create a new empty game object, call it Action Point, and place it in the scene,15.
where the character should perform the action.
Attach the script to the Action Point game object. Drag and drop the character to16.
the Agent field of the script's component.
You may need to adjust the Action Distance value of the script. You can also set17.
the Match Position, Match Rotation, and Match Before Action options to
achieve different results.
Play the game to see the effect.18.

How it works…
The ActionPoint.cs script's role is to tell the character where to go and what animation to
play. The PerformAction() coroutine also adjusts the character's position and rotation to
match the position and rotation of the Action Point. We use the simple Lerp() function
here for both the position and the rotation. In most cases, it's enough.

Character Actions and Expressions

[156]

There's more…
You may also use the MatchTarget() function to interpolate the character's position and
rotation and match it with the Action Point. We were using this technique in the Adding
animation to off-mesh links recipe in Chapter 4, Character Movement. In such cases, it would
be best to have a special approach animation in which the character approaches the Action
Point.

You may also want to use the randomized actions concept for creating Action Points with
random actions. The concept is described in the Using Blend Trees to create randomized actions
recipe. Instead of creating random actions, you can also prepare a public enum Action
variable containing all your actions as enumerations and a pu variable to store the Action
in the Actionblic Action actionPointAction variable to store the Action in the Action
Point. Then you need to set the RandomAction parameter (as described in the mentioned
recipe) to the (float) actionPointAction value. This will allow you to use Blend Trees
for performing specified actions (instead of random ones).

Also, in many cases, you will need to divide your actions into three steps:

Pre-Action: This animation can be used to approach the Action Point or as a
“state transition” animation. For instance, when we want our character to sit on a
chair it is good to have a Pre-Action animation of the character sitting (transition
from Idle to Sitting states).
Looped-Action: A looped animation suitable for this Action Point. In our sitting
example, that would be a looped sitting animation. It can also be a series of
animations (our character can, for instance, sit and eat or sit and drink).
Post-Action: This is an animation that transitions from the Looped-Action
animation to the Idle animation. In our example, it would be a character getting
up from the chair.

Synchronizing an animation with objects in
the scene
In this recipe, we will synchronize a character's animation with an object placed in the
scene. This is again a common mechanism used in games.

Character Actions and Expressions

[157]

Getting ready
To follow this recipe, you need two animated game objects: a character and an interactive
object. In our example, we use a wheel lever that the character can rotate. We use only two
animations, WheelStart and WheelLoop, for both the Character and the Wheel objects. The
animations have the same number of frames and are synchronized in a 3D package already.
You can also open the provided example Unity project and go to the Chapter 05
Character actions and expressions\Recipe 06 Synchronizing an animation

with objects in the scene directory. You will find an Example.scene there. Play the
game and press the space bar to see the Character and the Wheel play a synchronized
animation. You will find all the necessary animations in the Rigs directory.

Character and Wheel objects playing synchronized animations

How to do it…
To make the two objects play synchronized animations, follow these steps:

Import the Character and Wheel objects into Unity.1.
Set the Loop Time option in the WheelLoop animations for both the Wheel and2.
the Character.
Place the Character and the Wheel in the scene and match their position3.
according to what was set in the 3D package.
Create an Animator Controller for the Character.4.
Insert the WheelStart and WheelLoop animations into the controller. Make sure5.
the WheelStart animation is the default state.

Character Actions and Expressions

[158]

Create a PlayAnim bool parameter in the controller.6.
Create two transitions:7.

WheelStart | WheelLoop with one condition: PlayAnim parameter set
to true parameter. Has Exit Time should be set to false and Transition
Duration set to around 0.1 seconds.
WheelLoop | WheelStart with one conditions: PlayAnim parameter
set to false. Has Exit Time should be set to true and Transition
Duration set to around 0.1 seconds.

Assign the controller to the Character game object's Animator component.8.
Create an Animator Override Controller. Derive it from the Character's9.
controller. Assign it to the Wheel game object's Animator component.
Change the animations in the override controller to the Wheel's animations.10.
Write a new script and call it PlayAndStop.cs. In that script's Update()11.
function, we check if the player pressed the space bar. If so, we set
the PlayAnim bool parameter to its inverted value in both the Character's
and Wheel's animator controllers:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 play = !play;
 characterAnimator.SetBool("PlayAnim", play);
 objectAnimator.SetBool("PlayAnim", play);
 }

In the preceding script, play is a helper member variable, characterAnimator12.
is a reference to the Character game object's Animator component,
and objectAnimator is the reference to the Wheel game object's Animator
component.
Assign the script to the Character game object.13.
Drag and drop the Character game object to the Character Animator field in the14.
script and the Wheel game object to the Object Animator field.
Play the game and press the space bar to see the effect.15.

How it works…
Animations that have the same number of frames and the same playback speed are
synchronized in Unity. All we need to care about is to start them in the same frame. That's
why we have the WheelStart animations. We also need to take care of the transitions—if the
transitions length differs in both Animator Controllers, the animations can be out of sync.

Character Actions and Expressions

[159]

There's more…
You can combine this and the previous recipe to create Action Points with synchronized
object animation. Make sure to have the Pre-Action animation before a looped action. This
way it will be easier to trigger the animations in the same time (for instance, from
an Animation Event inside the Pre-Action animation).

You may also need to turn off Rigidbody physics and the NavMesh Agent component for
your character to make it stand in the right position before playing the animation. We did it
in the Using triggers to grab an edge while jumping recipe in Chapter 4, Character Movement.

Using IK for interacting with scene objects
Sometimes our characters need to interact with objects in the scene. Most likely we will
need to have a solution for picking up items from the ground or other objects. This recipe
shows a simple solution for that.

Getting ready
In this recipe, we are using only two animations: Idle and Pickup. The second one makes
the character pick something from the ground. You can go to the Chapter 05 Character
actions and expressions\Recipe 07 Using IK for interacting with scene

objects directory. You will find an Example.scene there. Open it, play the game, and
press the space bar to see the character trying to pick up an object from the ground. You can
move the object and play the game again. The character will still try to reach the object.

Character trying to pick an object from the ground

Character Actions and Expressions

[160]

How to do it…
To use IK to interac with scene objects, follow these steps:

Import the character to Unity. Make sure to have the Idle and Pickup animations1.
and set the rig to Humanoid.
Create an Animator Controller and assign it to the character.2.
Make sure to check the IK Pass option in the layer properties of the controller.3.
Drag and drop the Idle and Pickup animations into the controller. Make4.
sure Idle is the default state.
Create a Trigger parameter and call it Pickup. Also create a float parameter5.
and call it PickupIK.
Create two transitions:6.

Idle | Pickup with one condition: Pickup Trigger parameter. Exit
Time should be set to false and Transition Duration set to around 0.1
seconds.
Pickup | Idle with no conditions. Has Exit Time should be set to true
and Transition Duration set to around 0.1 seconds.

Go to the character's Import settings in the Animations tab.7.
Create a new Animation Curve and name it PickupIK (the name has to match8.
the float PickupIK parameter name).
Create a smooth curve with the minimum value of 0 and the maximum of 1. The9.
maximum value should match the moment when the character reaches for the
object. See the following image for reference:

Character Actions and Expressions

[161]

PickupIK Animation Curve. The maximum value (1) matches the frame when character picks up the object

Apply the import settings.10.
Create a new script and call it PickUpIK.cs. In that script, we have a void11.
OnAnimatorIK(int layerIndex) function. This function is called every frame
in the IK Pass after all animations have been evaluated. In that function, we get
the value of the PickupIK float parameter from the controller (which equals the
value of the Animation Curve). Then we set this value as the weight for the left-
hand IK. We also set the left-hand IK position to match a public Transform
ikTarget member variable in which we store the reference to the object we want
to pick up:

 ikWeight = anim.GetFloat("PickupIK");
 anim.SetIKPosition(AvatarIKGoal.LeftHand,
 ikTarget.position);
 anim.SetIKPositionWeight(AvatarIKGoal.LeftHand, ikWeight)

In the Update() function of the script, we check if the player pressed the space12.
bar and played the Pickup animation.

Character Actions and Expressions

[162]

Save the script and attach it to the character. Create a new game object that we13.
want to pick up. Call it PickupObject and drag it to the Ik Target field in the
script's Inspector.
Play the game and press the space bar to see the effect. You may move14.
the PickupObject in the Scene View and press the space bar again. Our character
will still try to reach it (it may fail due to the limited range of its arms).

How it works…
This recipe works for Humanoid characters only. It uses the Unity's built-in inverse
kinematics solver. The key elements of this recipe are as follows:

Animation Curve: We use an Animation Curve to smoothly set the weight for the
IK solver during the Pickup animation playback.
SetIKPosition(): This function sets the target position for a given body part. We
are using a public Transform ikTarget variable in the script and pass it to
the function. You can get the target in runtime.
SetIKPositionWeight(): This function sets the weight of the IK solver. A weight
value of 1 means that IK is in full control of a given body part and a value of 0
means that the animation is in full control.
IK Pass: To be able to use inverse kinematics for Humanoid characters, we need
to enable the IK Pass option in the controller's layer properties.

See also
If you want to play with IK solutions a little more, definitely check out the Final IK package
published by RootMotion in the Asset store. It is a very robust full-body IK solution for
Unity.

Animating facial expressions with Blend
Shapes
If you want to animate a character talking or changing its facial expression, it is best to use
Blend Shapes. This recipe covers creating facial expressions with Blend Shapes exported
from a 3D package.

Character Actions and Expressions

[163]

Getting ready
We need several Blend Shapes that store our facial expressions. In this recipe, we will
use Smile, Angry, BlinkLeft, BlinkRight, and BrowsDown shapes. Create them in your 3D
package. If you are using Blender, Blend Shapes are called Shape Keys. In other softwares,
they may be called Morph Targets.

You can also use the provided example Unity project and go to the Chapter 05
Character actions and expressions\Recipe 08 Animating facial

expressions with blend shapes directory. You will find an Example.scene there.
Open it, play the game, and adjust the sliders on the UI to see the effect. You can find the
character with all the Blend Shapes in the Rigs directory.

How to do it…
To use Blend Shapes for facial expressions, follow these steps:

Import your character to Unity. Place it on the scene.1.
Create an empty game object in the same place as our character. Call the2.
object FaceAnims.
Make the character a child of the FaceAnims game object.3.
With the FaceAnims game object selected, open the Animation View (go4.
to Window | Animation).
Create a new Animation Clip and call it Angry.5.
Click on the Add Property button and choose Character | Mesh | SkinnedMesh6.
Renderer | Blend Shape.Angry, where Character is the name of your character
game object, Mesh is the name of your character game object containing
the Skinned Mesh Renderer component, and Angry is the name of the Blend
Shape exported from the 3D package.
Click on the plus icon next to the Blend Shape.Angry option to add the property.7.
Go to the Curves tab. Select both key frames and right-click on one of them.8.
Choose the Edit Keys option and enter 100 in the Value field.
This way we've created an Angry animation with the Angry Blend Shape set to9.
100 (maximum value).
Repeat the steps 5 to 9 for Smile, BlinkLeft, BlinkRight, and BrowsDown Blend10.
Shapes. Remember to call the animations according to the Blend Shapes names (it
makes it easier to recognize animations).
An Animator Controller was automatically created for the FaceAnims game11.
object. Open it.

Character Actions and Expressions

[164]

Delete all the states in the controller and add a new Blend Tree.12.
Double-click on the Blend Tree to enter its settings.13.
Set the Blend Tree type to Direct. It allows the blending of multiple animations14.
together.
Create five Motion Fields in the Blend Tree and assign15.
the Angry, Smile, BlinkLeft, BlinkRight, and BrowsDown animations to them.
Create five float parameters in the controller, one for each animation. Name16.
them accordingly and assign them to the Motion Fields (Smile parameter
to Smile animation, Angry parameter to Angry animation, and so on).
Write a new script and call it BlendMultiple.cs. Create five public float17.
member variables in the script and name them according to the Blend Shape
names (public float Smile, public float Angry, and so on).
In the Update() function, we set the values of the controller parameters to the18.
values of the variables. This way when we change the variable's values, the
parameters in the controller also change and our character plays facial
expressions:

 anim.SetFloat("Angry", Angry);
 anim.SetFloat("Smile", Smile);
 anim.SetFloat("BlinkLeft", BlinkLeft);
 anim.SetFloat("BlinkRight", BlinkRight);
 anim.SetFloat("BrowsDown", BrowsDown);

Attach the script to the FaceAnims game object. Play the game and change the19.
scripts float variables in runtime to see the effect (you can use the Scene View).

A mix of different Blend Shapes gives an interesting facial expression

Character Actions and Expressions

[165]

How it works…
This recipe has a few key elements that make it work:

Blend Shapes: You need to export the Blend Shapes from your 3D package.
Blend Shapes store different version of the same mesh. The mesh has to have the
same number of vertices. When creating new Blend Shapes, you can only move
the vertices around (you cannot add or delete vertices).
FaceAnims game object: Our character is a child of a new game
object, FaceAnims. This allows us to be able to animate facial expressions. As our
character has its own Animator component and its own animations, we cannot
modify it with the Animation View. Adding a parent game object solves the
problem.
Direct Blend Tree: We use a Blend Tree set to Direct. This allows us to blend
multiple animations at once. This is suitable for Blend Shapes and facial
expressions.

There's more…
You don't have to create Animation Clips for Blend Shapes. Instead, you can manipulate
them directly from code. Use the SetBlendShapeWeight() function on the Skinned Mesh
Renderer component. You will need to know the index of the Blend Shape in the Blend
Shapes array (you can check it in the Inspector, in the Skinned Mesh Renderer component
of the character). We've prepared a small script that sets the weight. It is attached to
the DirectBlendShapes game object. You can also find it in the Scripts directory of this
recipe.

Creating animations for Blend Shapes gives more flexibility. You can also animate the
Blend Shapes' weight with the Animation View. This way you can create dialog animations
and believable animated facial expressions.

6
Handling Combat

This chapter explains usage of animations in combat and covers the following topics:

Using Sub-State Machines in Animator Controller
Using Animation Events to trigger script functions
Using transitions from Any State to play hit reactions
Using root motion to create a dodge move
Checking what Animator state is currently active to disable or enable player
actions
Using Animation Events to draw a weapon
Using Avatar Masks and animator controller layers to walk and aim
Using the LookAt() method to aim
Using Blend Trees to aim
Detecting the hit location on a character

Introduction
Every game is different and every game handles combat mechanics in its own way. Despite
that, there is a common set of concepts that are useful in almost every case. In this chapter,
we will cover the tools essential for melee and ranged combat.

Handling Combat

[167]

Using Sub-State Machines in Animator
Controller
This recipe shows how to use Sub-State Machines. This concept helps to organize the flow
in Animator Controller.

Getting ready
To start, you need to have a character with a few animations. In this example, we are using
a character with NormalIdle, NormalMove, CombatIdle, and CombatMove animations.
These animations will be then grouped in two Sub-State Machines: Combat and Normal.

You can also open the provided example Unity project and go to the Chapter 06
Handling combat\Recipe 01 Using sub state machines in animator

controller directory. In the Rigs directory you, will find all the necessary animations. In
the Controllers directory, you can find the finished controller with two Sub-State
Machines. You can find the Humanoid character in the Example.unity scene. If you press
the space bar, our character will switch from Normal to Combat Sub-State Machine.

How to do it…
To create a Sub-State Machine in a controller, follow these steps:

Create and open a new Animator Controller.1.
Right-click on the empty space and choose Create Sub-State Machine. A new2.
Sub-State Machine will be created. Name it Normal.
Create another Sub-State Machine and name it Combat.3.
Create one bool parameter: CombatState.4.
Create two transitions:5.

Combat | Normal with no conditions.
Normal | Combat with no conditions.

Double-click on the Normal Sub-State Machine.6.
Create a float Speed parameter.7.
Drag and drop the NormalIdle and NormalMove animations to the controller8.
(make sure you are in the Normal Sub-State Machine).

Handling Combat

[168]

Create two transitions:9.
NormalIdle | NormalMove with one condition: Speed parameter
greater than 0.5. Has Exit Time should be set to false and Transition
Duration should be set to around 0.2 seconds.
NormalMove | NormalIdle with one condition: Speed parameter less
than 0.5. Has Exit Time should be set to false and Transition
Duration should be set to around 0.2 seconds.

Create two transitions—one from NormalIdle to Exit state and another one10.
from NormalMove to Exit state—both with one condition: CombatState
parameter set to true. Time Duration should be set to around 0.2 seconds
and Has Exit Time should be set to false.
Double-click on the empty space in the controller to get out of the NormalSub-11.
State Machine.
Double-click on the Combat Sub-State Machine and repeat steps 9 and 1012.
with CombatIdle and CombatMove animations this time.
Close the Animator Controller and assign it to your character.13.
Write a script to be able to set the Speed value and the CombatState bool14.
parameter. Name it SetCombatAndSpeed.cs.
In this script's Update() function, we check if player pressed the space bar. If so,15.
we invert the CombatSate parameter value. We also check if player pressed the
up arrow. If so, we set the Speed parameter to make the character play
movement animations:

 if (Input.GetKeyDown(KeyCode.Space))

 {

 combat = !combat;

 anim.SetBool("CombatState", combat);

 }
 if (Input.GetKey(KeyCode.UpArrow))
 {
 anim.SetFloat("Speed", 1f);
 }
 else
 {
 anim.SetFloat("Speed", 0f);
 }

Handling Combat

[169]

Assign the script to the character, launch the game, and press the space bar to see16.
the character change Sub-State Machines.

How it works…
The concept of Sub-State Machines makes it easier to organize the controller. You can think
of them as of nested controllers. You can have Sub-State Machines inside other Sub-State
Machines. Clever organization of your controllers prevents spaghetti graphs.

To exit a Sub-State Machine you have to transition to the Exit state. You can have multiple
such transitions the same way you can have multiple transitions between Sub-State
Machines. Use transition conditions to determine where your graph should transition to.

There's more…
You can also transition from Sub-State Machines to specific states in any other Sub-State
Machine. To do so, make a transition to the state named (Up) Base Layer (the name can
vary depending on the Sub-State Machine you are currently in and the names of your
layers). If you do this transition, a menu will appear and let you choose the state you want
to transition to; see the following screenshot for reference:

Transition to a specific state in another Sub-State Machine

Handling Combat

[170]

Using Animation Events to trigger script
functions
We used Animation Events sporadically in earlier recipes because they are so handy, and it
was simply difficult to until to this moment. Most present games use Animation Events
very extensively, especially for handling combat. Creating believable melee encounters
would be a lot harder without this handy tool.

Getting ready
Before we start, we need to have a character with an attack animation. In the example files,
we named the animation HumanAttack. We also need an enemy (we use a Spider character
in this example) with Idle and Death animations. You can also download the provided
example Unity project and go to the Chapter 06 Handling combat\Recipe 02 Using
animation events to trigger script functions directory. You will find a scene
called Example.unity there, with Humanoid and Spider characters. In the Rigs directory,
you can find the Humanoid.fbx character with all required animations. When you play the
game, the Humanoid character will attack the Spider several times and deal damage to it.

How to do it…
To use Animation Events to trigger script functions, follow these steps:

Import your character with the HumanAttack animation to Unity.1.
Go to the Animation import settings tab in the Inspector window.2.
Select the HumanAttack animation.3.
Navigate down to the Events section and unfold it.4.
Use the Preview window to scrub through the animation to the moment of the hit5.
in the attack.

Handling Combat

[171]

Add an Animation Event by pressing the Add Event button, as shown in the6.
following screenshot:

Adding Animation Events

The Edit Animation Event window will appear. Type Attack in the Function7.
text field. To make the event work, we need to have a function with the same
name in a script assigned to our character.
We will create a simple fight scene, so we need a script for the enemy. Create a8.
new script and call it Enemy.cs. In this script, we have the public float
hitPoints variable to store current health of our enemy. We also have
two public virtual void functions: Hit(float damage) and Die().
The Hit(float damage) function subtracts damage from our
current hitPoints and calls the Die() function when hitPoin ts drop to 0.
The Die() function plays the death animation by setting the bool Dead
parameter in the controller. These functions are virtual because we want to
derive from this script in later recipes to add new functionality:

 public void Hit(float damage)
 {
 hitPoints -= damage;
 if (hitPoints <= 0)
 {
 Die();
 }
 }
 public void Die()
 {
 anim.SetBool("Dead", true);
 }

Create one transition:9.

Handling Combat

[172]

In it, create the bool Dead parameter. Drag and drop the Idle and Death10.
animations to the controller. Make Idle the default state.

Create a new Animator Controller for our Spider character.11.
Idle | Death with the condition: Dead parameter set to true, Has Exit
Time set to false, and Transition Duration set to 0.2 seconds.
Place the Spider character in the scene. Add a Rigidbody component,
a Sphere Collider component, and our Enemy.cs script component to
it. Set the Rigidbody component to Is Kinematic.

Assign the controller to Spider's Animator component.12.
Create another Animator Controller for our Humanoid character.13.
Place a looped HumanAttack animation in that controller and assign it to14.
the Humanoid character.
Place the Humanoid character near the Spider in the scene.15.
Create a new script and call it MeleeAttack.cs. In this script, we use16.
our public void Attack() function. This is the function called from the
animation event. We have a list of all enemies in range. We iterate through that
list and call the Hit() function on every enemy from that list. We also have
a publicfloat damage variable to store the character's damage value and send
it in the Hit() function:

 public void Attack () {

 for (int i = 0; i < enemiesInRange.Count; i++)

 {
 enemiesInRange[i].Hit(damage);
 }
 }

Assign the script to the Humanoid character.17.
We need one more script to get the targets in range. Create a new script and call18.
it TargetTrigger.cs. In the void OnTriggerEnter(Collider other)
function of this script, we check if the object entering the trigger has an Enemy.cs
component. If so, we add it to the enemiesInRange in the MeleeAttack.cs
component:

 Enemy e = other.gameObject.GetComponent<Enemy>();
 if (e != null)
 {
 if (!attackScript.enemiesInRange.Contains(e))
 {

Handling Combat

[173]

 attackScript.enemiesInRange.Add(e);
 }
 }

In the void OnTriggerExit(Collider other) function, we remove the19.
enemy from the enemiesInRange list:

 Enemy e = other.gameObject.GetComponent<Enemy>();
 if (e != null)
 {
 if (attackScript.enemiesInRange.Contains(e))
 {
 attackScript.enemiesInRange.Remove(e);
 }
 }

In the preceding script, attackScript is the reference to the MeleeAttack.cs20.
script component.
Create an empty game object and name it TargetTrigger. Add a Box Collider21.
component to it and set the collider to Is Trigger. Assign
our TargetTrigger.cs script to it.
Make the TargetTrigger game object the child of our Humanoid character and22.
shape the Box Collider for checking melee hit range. See the following
screenshot:

Melee attack range trigger

Play the game to see the effect.23.

Handling Combat

[174]

How it works…
Animation Events call public functions from the scripts assigned to the game object playing
the animation. To make it work, the Function field of the Animation Event needs to have
the same name as the function we want to call from the script.

Events are extremely useful because they allow us to synchronize function calls with
animations. The best moment to check if player hits the target is when we see a visual hit in
the animation—a fist is in its extreme position in a punch, or a sword is in its extreme
position in a swing. Without Animation Events, we would have to always manually delay
function calls to achieve similar results.

There's more…
Animation Events can also have an int, float, string, or an object type parameter. To
use these parameters, we have to implement them in our functions called by the event.
These parameters can be useful for playing special effects or sounds (you can find more
information about it in the Using Animation Events to trigger sound and visual effects recipe
in Chapter 7, Special Effects.

Using transitions from Any State to play hit
reactions
Often, there are situations when we would like to transition to an animation from any other
one. The most common example is the hit reaction. Our characters can be hit while
standing, walking, or even attacking. Creating and managing all those transitions would be
cumbersome and difficult. In Unity, we can use a special Any State in the controllers to
achieve transitions from any given animation.

Getting ready
We are going to use the characters from the previous recipe and add one animation to the
Spider character: HitReaction. You can also use the example project and go to the Chapter
06 Handling combat\Recipe 03 Using transitions from any state to play

hit reactions directory. You can find the Example.unity scene there, with two
characters: Humanoid and Spider. When you play the game, Spider will react to hits. In
the Rigs directory of the previous recipe, you can find the required animations.

Handling Combat

[175]

How to do it…
To use Any State transitions, follow these steps:

Follow the previous recipe to import the characters and place them on the scene.1.
Create a new Animator Controller for the Spider (you can also edit the existing2.
one).
Create a new bool parameter in the controller and call it Dead.3.
Create a new Trigger parameter in the controller and call it Hit.4.
Drag and drop the Idle, Death, and HitReaction animations of the Spider into5.
the controller. The Idle animation should be our default state.
Find the blue Any State node in the controller. See the following screenshot for6.
reference:

Transitions from Any State

Right-click on it and create the following transitions:7.
Any State | HitReaction with one condition: Hit Trigger
parameter. Has Exit Time should be set to false, Can Transition To
Self set to true, and Transition Duration set to 0.2 seconds.
Any State | Death with one condition: Dead bool parameter set
to true. Has Exit Time should be set to false, Can Transition To Self
set to false, and Transition Duration set to 0.2 seconds.
HitReaction | Idle: For this one, you need to right-click on
the HitReaction state first. It should have no conditions, Has Exit Time
set to true, and Transition Duration set to 0.2 seconds.

Assign the controller to the Spider's Animator component.8.
Create a new script and call it EnemyWithHits.cs.9.

Handling Combat

[176]

Derive this script from the Enemy.cs script instead of MonoBehaviour. You can10.
find the Enemy.cs script in the previous recipe.
To make our hit reactions work, we need to override the Hit() and Die()11.
functions. In the first one, we check if our character's isAlive flag. If our Spider
is dead already, we don't attempt to play hit reactions. If it is alive, we play the
hit reaction by setting the Hit Trigger parameter in the controller. Next we call
the base implementation of the Hit() function:

 public override void Hit(int damage)

 {

 if (!isAlive)
 {
 return;
 }
 anim.SetTrigger("Hit");
 base.Hit(damage);
 }

In the Die() function, we set the isAlive flag to false and call the base12.
implementation of the Die() function:

 public override void Die()
 {
 isAlive = false;
 base.Die();
 }

Assign the script to the Spider character and play the game to see the effect.13.

How it works…
Any State is a powerful tool for organizing animation graphs. If we know we need to access
an animation state from any other state, we can create a transition from Any State node,
instead of creating a web of transitions from all the necessary states.

This special state's transitions have one additional parameter: Can Transition to Self. If set
to false it blocks transitions to the same state.

Handling Combat

[177]

Any State transitions are most useful for hit reactions and death
animations.

Using root motion to create a dodge move
We can achieve a lot of gameplay actions in combat using just animations. A great example
of such an action is the dodge move.

Getting ready
To follow this recipe, we need a character with SpiderIdle and Dodge animations (we will
be using our Spider character in this example). The dodge animation should be created
with root motion. Please check the example in the following screenshot:

Spider dodge with root motion translation

Handling Combat

[178]

You can also go to the Chapter 06 Handling combat\Recipe 04 Using root
motion to create a dodge move directory. Open the Example.unity scene there.
You will find the same Humanoid and Spider characters we had in previous recipes. They
have the same animations and scripts as in the Using transitions from Any State to play hit
reactions recipe. The Spider has one additional animation: Dodge. If you hit the space bar in
Play Mode, the Spider will attempt to dodge the sword swing. You can find all the
necessary animations in the Chapter 06 Handling combat\Recipe 02 Using
animation events to trigger script functions\Rigs directory.

How to do it…
To make a character dodge, follow these steps:

Import the character into Unity and place it in a scene.1.
If you want the character to get damage and play hit reactions, follow the2.
previous recipe.
Create a new Animator Controller or edit the one from the previous recipe.3.
Drag and drop the Dodge animation into the controller.4.
Create a Dodge Trigger parameter in the controller.5.
Create two transitions:6.

SpiderIdle | Dodge with one condition: Dodge Trigger
parameter. Has Exit Time should be set to false and Transition
Duration set to 0.2 seconds.
Dodge | SpiderIdle with no conditions: Has Exit Time should be set
to true and Transition Duration set to 0.2 seconds.

Add a Rigidbody component to the Spider character and freeze its rotations.7.
Add a collider to the Spider character (we are using Sphere Collider for8.
our Spider). You may also need to create a zero friction Physical Material and
add it to the collider. It allows the animation to control Rigid Body movement
without any additional friction.
Set the Animator component's Update Mode to Animate Physics in our Spider.9.
Attach the controller to the Animator component of our Spider.10.
Create a new script and call it Dodge.cs. In this script's Update() function, we11.
simply set the Dodge Trigger in the controller when player presses the space
bar:

 if (Input.GetKeyDown(KeyCode.Space))

Handling Combat

[179]

 {

 anim.SetTrigger("Dodge");
 }

As always, the anim variable stores the reference to the Animator component and12.
is set in the Start() function.
Attach the script to the Spider character.13.
Play the game and press the space bar to see the Spider play the dodge14.
animation. It should be able to get out of the Humanoid character's attack range
and avoid being hit.

How it works…
This recipe uses a very simple, yet powerful concept. The only additional thing we do here
is triggering the Dodge animation. This animation uses root motion and translates
our Spider character. Our Humanoid character uses the Attack Animation Event and
the TargetTrigger to check if an enemy is in its attack range (see the Using Animation Events
to trigger script functions recipe for details). If our Spider leaves the TargetTrigger before
the Attack event occurs, it will avoid being hit.

There's more…
The Dodge animation will also work for other hit detection mechanisms. For instance, you
can manually check the range and attack angle in the Attack event using
the Vector3.Distance() and Vector3.Angle() methods. You can also use a Rigidbody
component on the sword and check its collisions with the void
OnCollisionEnter(Collision collision) method. In both cases, our Dodge move
will work just fine. It will also work for bullets that use collisions to determine hits (for
example, arrows).

You can use the same concept for other actions: dashes, combos, and some crazy melee
attacks that use root translation and/or rotation (for instance, jump attacks). Root motion is
a very powerful tool for combat design. Try experimenting with your own animation ideas
to create interesting moves and actions.

Handling Combat

[180]

Checking what Animator state is currently
active to disable or enable player actions
There are situations when we need to block or allow certain actions depending on the
currently played animation. This recipe describes how to easily check what animation is
currently being played.

Getting ready
We are going to use the same Spider character from the previous recipe. It
has SpiderIdle, Dodge, HitReaction, and Death animations. You can open the provided
example project and go to the Chapter 06 Handling combat\Recipe 05 Checking
what animator state is currently active to disable or enable player

actions directory. There is a Spider character in the Example.unity scene. When you
press the H key, it will start a healing action, only when in SpiderIdle state. You can find all
the necessary animations in the Chapter 06 Handling combat\Recipe 02 Using
animation events to trigger script functions\Rigs directory.

How to do it…
To check which Animator state is currently active, follow these steps:

Import the character to Unity.1.
Create an Animator Controller for it or use an existing one.2.
If you want your character to react to hits, follow the Using transitions from Any3.
State to play hit reactions recipe.
In this recipe, we are going to use the healing action as an example. Create a new4.
script and call it Healing.cs. In this script's Update() function, first we check if
player pressed the H key. Then we check if our character is playing in the
proper Animator state and saved in the public stringhealingAllowedState
variable. We also check if a healing action is not active because we don't want to
stack healing actions. If all these conditions are met, we start a healing coroutine:

 if (Input.GetKeyDown(KeyCode.H))
 {
 if (anim.GetCurrentAnimatorStateInfo(0).IsName(
 healingAllowedState))
 {
 if (!isHealing)

Handling Combat

[181]

 {
 StartCoroutine("Heal");
 }
 }
 }

The IEnumarator Heal() coroutine is responsible for increasing our5.
Spider's hitPoints in time:

 isHealing = true;
 Enemy enemyScript = GetComponent<Enemy>();

 while (enemyScript.hitPoints <
 (float)enemyScript.initialHitPoints)
 {
 enemyScript.hitPoints += healingSpeed * Time.deltaTime;
 yield return null;
 }

 enemyScript.hitPoints = enemyScript.initialHitPoints;
 isHealing = false;

Assign the script to the Spider character.6.
Play the game and press the H key to start the healing action. Our character needs7.
to be in the SpiderIdle state (the public string healinAllowedState is set
to Base Layer.SpiderIdle in the Inspector).

How it works…
To check the Animator state our character is currently in, we first use
the GetCurrentAnimatorStateInfo(int layerIndex) function to get the state the
character's Animator is in. We need to call this function on the Animator component; thus,
we need to have a variable storing a reference to it (anim in our example). Then we call
the IsName(string name) function on the state we got from
the GetCurrentAnimatorStateInfo(int layerIndex) function. The IsName(string
name) function compares the Animator state name to the name we put as the parameter.

We need to specify the full name of the state. This name needs to be in this
format: <Layer Name>.<State Name>. For instance, our SpiderIdle
state is in the Base Layer, so we need to put Base Layer.SpiderIdle as
the name parameter in the IsName() function.

Handling Combat

[182]

There's more…
Sometimes we need to check not only the current state of the Animator but also a specified
moment in it. Let's assume we have a 2-second long jump attack animation. Our character
starts the jump in the first second of the animation, and then it jumps and lands on the
ground with a strike at the end of the animation. We may want to allow players to break the
animation when the character is still on the ground (for instance, with a dodge animation).
To do so, we may use Animation Curves to set an AllowBreak float parameter (you can
choose a different name) in the controller and check this parameter value while trying to
perform actions or transition to other states. Animation Curves are described in the Using
animations for better looking transitions recipe in Chapter 4, Character Movement.

Using Animation Events to draw a weapon
Another common case in combat mechanics is drawing and sheathing a weapon. In this
recipe we will use Animation Events along with a Draw animation to make our character
draw and sheath a sword.

Getting ready
To follow this recipe, we need to have a Warrior character with two animations: Idle
and Draw. The first one is a standard, looped Idle animation. The second one is an
animation in which our character reaches for their weapon in a sheath attached to the
character's belt. We are not using a sheath model here to make the recipe more simple and
condensed. You can open the provided example project and go to the Chapter 06
Handling combat\Recipe 06 Using animation events to draw a weapon

directory. There is a Warrior character in the Example.unity scene. When you press the
space bar, it will draw or sheath a sword. You can find all the necessary animations in
the Rigs directory.

How to do it…
To make a character draw or sheath a weapon, follow these steps:

Import the Warrior character with the Idle and Draw animations into Unity.1.
Import a Sword prop to Unity.2.
Go to the Import Settings | Animation tab. Select the Draw animation and3.
navigate to the Events section.

Handling Combat

[183]

Add a Draw event in the frame where the character's hand reaches the sword in4.
the sheath.
Create an Animator Controller with the Idle and Draw animations.5.
Create a Draw Trigger parameter in the controller.6.
Create two transitions:7.

Idle | Draw with one condition:Draw Trigger parameter. Has Exit
Time should be set to false and Transition Duration set to around
0.2 seconds.
Draw | Idle with no conditions: Has Exit Time should be set to true
and Transition Duration set to around 0.2 seconds.

Place the Warrior character in the scene.8.
Assign the controller to the Warrior game object's Animator component.9.
Place the Sword prop in the scene. Move it near the character's hips and pose it as10.
it needs to be when it lays in the sheath.
When you are happy with the Sword's position, create an empty child object in it.11.
Name it SheathMarker and drag it onto the hip bone of the character to parent it
to Warrior's hips. This way the SheathMarker will store our Sword's initial
position and rotation relative to our character's hips. You should also parent the
Sword to SheathMarker. See the following screenshot for reference:

Sheath Marker (red) stores sword's desired position and rotation

Handling Combat

[184]

Move the Sword to the Warrior's hand. Pose the sword as desired. Create another12.
empty child object in the Sword and name it HandMarker. Drag and drop
the HandMarker game object onto the right-hand bone in the character's rig to
parent it to the Warrior's hand. See the following screenshot for reference:

Hand Marker (orange) stores sword's desired position and rotation in the hand

Write a new script and call it DrawWeapon.cs. In this script's Update() function,13.
we check if player pressed the space bar. If so, we first set the Draw Trigger
parameter in the controller to play the animation:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 anim.SetTrigger("Draw");
 }

We also interpolate the Sword's position and rotation to its parent game object's14.
position and rotation (Hand Marker or Sheath Marker):

 if (weapon.parent != null)
 {
 if ((weapon.position -
 weapon.parent.position).sqrMagnitude > 0.0001f)
 {
 weapon.position =
 Vector3.Lerp(weapon.position,
 weapon.parent.position, Time.deltaTime *
 lerpSpeed);
 weapon.rotation =
 Quaternion.Lerp(weapon.rotation,
 weapon.parent.rotation, Time.deltaTime *

Handling Combat

[185]

 lerpSpeed);
 }
 }

In the preceding script, the weapon variable holds the reference to Sword's15.
Transform component. The public float lerpSpeed variable is set in
the Inspector.
This script has also a public voidDraw() function, which is called by16.
an Animation Event set in the Draw animation. In this function, we check if the
sword is already in hand with the public bool weaponInHand variable. We
need to set this variable's initial value in the Inspector, depending on the
initial Sword position (in hand or in sheath). The Draw() function only changes
the Sword parent and sets the weaponInHand flag:

 if (weaponInHand)
 {
 weaponInHand = false;
 weapon.parent = sheathMarker;
 }
 else
 {
 weaponInHand = true;
 weapon.parent = handMarker;
 }

Attach the script to the character. Drag and drop the Sheath Marker game object17.
to the Sheath Marker field in the script, the Sword game object to the Weapon
field, and the Hand Marker to the Hand Marker field. Set the Weapon In Hand
checkbox to match the Sword's initial position.
Play the game and press the space bar to see the effect.18.

How it works…
We use the Animation Event in the Draw animation to find the moment where our
character reaches for the weapon attached to the character's belt. In this event, we change
the parent of the weapon to attach it to the hand or to the belt (depending on whether our
character is drawing or sheathing the weapon). We additionally use the Lerp() method to
adjust or match the position and rotation of our weapon with appropriate slots in the
character (the Hand Marker and the Sheath Marker). This way our Draw animation
doesn't have to perfectly match with the desired positions of the weapon. It makes it easier
to use the same animation for a wider range of different weapons.

Handling Combat

[186]

Using Avatar Masks and animator controller
layers to walk and aim
This recipe shows how to use Avatar Masks and Layers in the Animator Controller to play
animations on certain body parts. In combat, it can be useful for playing aim animations on
the upper body and movement animations on the lower body.

Getting ready
In this recipe, we are using WalkForward, WalkLeft, WalkRight, and Idle animations, and
a looped AimForward animation. The first four animations are covered in the Using root
motion to steer a character recipe in Chapter 4, Character Movement. The last one is a simple
looped aim animation where our character aims a crossbow straight ahead. You can go to
the Chapter 07 Special effects\Recipe 07 Using sprite sheets to animate
particles directory. You will find an Example.unity scene there. Open it and play the
game. You can move the character with the WSAD keys and rotate the camera with the
mouse. You can find the AimForward animation in the Rigs directory and all the other
required animations in the Chapter 04 Character movement\Recipe 03 Using root
motion to steer a character directory. We also need a Crossbow prop, which you
can find in the Props folder.

How to do it…
To use Avatar Masks and Layers, follow these steps:

Import the character and the Crossbow prop to Unity. Make sure to have all the1.
required animations.
Create an Animator Controller and assign it to the character.2.
Follow the Using root motion to steer a character recipe in Chapter 4, Character3.
Movement, to make the character move.
Open the Animator Controller and find the Layers tab.4.

Handling Combat

[187]

Click on the plus button near the Layers tab to create a new Layer and name5.
it Aim. See the following screenshot for reference:

Layers tab

Drag and drop the AimForward animation to it.6.
Click on the small gear icon in the Layer. The Layer Properties window will7.
appear.
Find the Weight slider and drag it all the way up to 1.8.
Right-click on Project View and choose Create |Avatar Mask to create a9.
new Avatar Mask. Name it AimMask.
Click on it and unfold the Humanoid foldout.10.

Handling Combat

[188]

Unselect the legs of the character. See the following screenshot for reference:11.

Avatar Mask with only the upper body turned on

Handling Combat

[189]

Go back to the Animator Controller, open the Layer Properties of the Aim Layer,12.
and assign the AimMask to the Mask field. See the following screenshot for
reference:

Avatar Mask assigned to the Aim Layer

Assign the RootMotionSteering.cs script to the character to make the13.
character walk. You can find it in the Using root motion to steer a character recipe
(Chapter 04 Character movement\Recipe 03 Using root motion to
steer a character\Scripts).
Play the game to see the effect.14.

How it works…
This recipe has a few key elements that make it work:

Layers: Animator Controller Layers are useful for overriding animations.
The Blending drop-down menu in the Layer Properties defines the type of
animation blending. We can override the animations or use additive blending
(this will be covered in the next chapter).
Layer Weight: When blending Layers, Unity takes the Weight parameter into
account. A weight of 1 means 100 percent override. You can set the Weight in
runtime by using the animator.SetLayerWeight(int index, float
weight) function (animator is a variable that holds the reference to the
Animator component).
Avatar Masks: We can create an Avatar Mask asset and specify the body parts on
which we want to play an animation. Then we can use this Avatar Mask in
our Layers to override only certain body parts' animations. This way we can play
the AimForward animation on the upper body and not on the legs and root. This
makes the character move while playing the AimForward animation.

Handling Combat

[190]

There's more…
You can also select the Sync option in the Layer Properties. It will inherit the structure of
another, chosen layer, but you will be able to change all the animations. This option may be
useful for implementing different types of animations for different character states
(normal/wounded for example).

We are also using a CameraLook.cs script in this recipe. The script can be found in
the Shared Scripts folder of the provided Unity project. This script works with basic
camera rig. The rig is built from three game objects:

CameraRig: This game object follows the Target transform specified in
the CameraLook.cs script component. It also rotates in the global Y axis
responding to player's horizontal mouse input.
CameraPivot: This game object rotates in its local X axis to tilt the camera up and
down. It responds to the vertical mouse input.
Main Camera: This is the standard game camera. It is moved away from the
CameraPivot game object in local Z axis. This way we have a crane behavior for
the camera. It orbits around the CameraPivot game object.

Using the LookAt() method to aim
In this recipe, we will use a simple but effective implementation of aiming mechanics.

Getting ready
We are going to use the same assets as in the previous recipe. Additionally, we are going to
use the CharacterLookAt.cs created in the Using Quaternion.LookRotation() and
Animator.SetLookAtPosition() methods to make characters follow an object with their gaze recipe
in Chapter 5, Character Actions and Expressions.

You can also use the provided example Unity project and go to the Chapter 06 Handling
combat\Recipe 08 Using the LookAt method to aim directory. You will find
an Example.unity scene there, with a Humanoid character. Play the game to see the
aiming effect.

Handling Combat

[191]

How to do it…
To use the LookAt() method for aiming, follow these steps:

Import your character to Unity and place it on the Scene.1.
Follow the previous recipe to make a character walk and aim.2.
Attach the CharacterLookAt.cs script to the character.3.
Create a new Sphere object and name it AimTarget.4.
Assign the chest bone to the CharacterLookAt.cs component's Bone field.5.
Assign the AimTarget to the Target field of the CharacterLookAt.cs6.
component.
Make the AimTarget a child of the Main Camera game object. We are using the7.
same CameraLook.cs script in this recipe. You can find the script in the Shared
Scripts folder in the example Unity project provided.
Offset the AimTarget position in its local Z axis around 20 units.8.
Play the game to see the effect. Our character will try to aim at the AimTarget.9.
You may need to adjust the Additional Rotation vector in
the CharacterLookAt.cs component. In our example, it is set to 15 in X and 20
in Y.

How it works…
We are using the same principle as in the Using LookRotation() and SetLookAtPosition()
methods to make characters follow an object with their gaze recipe. Our script rotates the chest
bone in such a way that the character appears to aim at the target. We use the Additional
Rotation vector in the CharacterLookAt.cs script to adjust the rotation (chest is not
facing straight forward in most animations). This way of aiming is good for games in which
characters walk relative to the camera (it is suitable for TPP games with an over-the-
shoulder camera). It fails when characters have to rotate more than 50-60 degrees. The next
recipe solves this problem.

Handling Combat

[192]

There's more…
LookAt() aiming is best used with robots and machines. It can be very useful for
implementing turrets. You can find a Turret game object in the scene. It is built of three
objects:

Turret: This is the base of the Turret.
TurretPivot: This game object only rotates horizontally (in the Y axis). This is a
child object of the Turret.
Gun: This object always points at the target. It is a child object of the TurretPivot.
The TurretPivot rotates horizontally, so the Gun looks like it only rotates
vertically.

The Turret game object has a TurretAim.cs script attached. In this script's Update()
function, we first damp the public Transform target position and save the value in
the Vector3 dampedTargetPosition variable. Then we use this variable to calculate
the aimVector and we use the aimVector to calculate the horizontalAimVector (we
simply remove the Y component from it). Lastly, we calculate new rotations for
the TurretPivot and Gun game objects (stored in public Transform variables) using
our aimVector and horizontalAimVector:

 dampedTargetPosition =
 Vector3.SmoothDamp(dampedTargetPosition,
 aimTarget.position, ref refDampSpeed, dampTime);

 aimVector = dampedTargetPosition - turretGun.position;

 horizontalAimVector = aimVector;
 horizontalAimVector.y = 0f;

 turretPivot.rotation =
 Quaternion.LookRotation(horizontalAimVector);
 turretGun.rotation = Quaternion.LookRotation(aimVector);

Using Blend Trees to aim
In this recipe, we will use a more sophisticated method of aiming. This method is based on
using several aim animations combined into a Blend Tree.

Handling Combat

[193]

Getting ready
We are going to use the same assets as in the previous recipe, but instead of using the
CharacterLookAt.cs script, we will use additional animations: AimForward,
AimForwardUp (aim 45 degrees up), AimForwardDown (45 degrees down), AimLeft (45
degrees left), AimLeftUp (45 degrees left and 45 degrees up), Aim
LeftDown (45 degrees left and 45 degrees down), AimRight (45 degrees right),
AimRightDown (45 degrees right and 45 degrees down), AimRightUp (45 degrees right
and 45 degrees up). See the following screenshot for reference:

Nine directional aim animations

You can also use the provided example Unity project and go to the Chapter 06 Handling
combat\Recipe 09 Using blend trees to aim directory. You will find
an Example.unity scene there, with a Humanoid character. Play the game to see the effect.
You can find all the necessary animations in the Rigs directory.

How to do it…
To use the Blend Trees methods for aiming, follow these steps:

Import your character with all the necessary animations to Unity and place it on1.
the Scene.
Follow the Using Avatar Masks and animator controller layers to walk and aim recipe2.
to make the character walk and aim.
Open the controller and go to the Aim Layer.3.
Delete the AimForward state and create a new Blend Tree.4.
Create two float parameters: AimVer and AimHor.5.

Handling Combat

[194]

Set the Blend Type to Freeform Cartesian.6.
Set the first parameter of the Blend Tree to AimHor and the second one7.
to AimVer.
Create nine Motion Fields in the Blend Tree and assign all the aim animations to8.
them.
Set the Motion Fields as follows (also see the following screenshot for reference):9.

AimLeftDownPos X set to -45, Pos Y set to -45
AimLeftPos X set to -45, Pos Y set to 0
AimLeftUpPos X set to -45, Pos Y set to 45
AimForwardDownPos X set to 0, Pos Y set to -45
AimForwardPos X set to 0, Pos Y set to 0
AimForwardUpPos X set to 0, Pos Y set to 45
AimRightDownPos X set to 45, Pos Y set to -45
AimRightPos X set to 45, Pos Y set to 0
AimRightUpPos X set to 45, Pos Y set to 45

Aim Blend Tree settings

Handling Combat

[195]

Create a new Sphere object and name it AimTarget.10.
Make AimTarget a child of the Main Camera game object. We are using the11.
same CameraLook.cs script in this recipe. You can find the script in the Shared
Scripts folder in the provided example Unity project.
Offset the AimTarget position in its local Z axis by around 20 units.12.
Create a new script and call it AimWithBlendTree.cs. In the Update() function13.
of this script, we first calculate the aimVector. This is a vector from a
helper aimNode transform to the target transform. Then we use this vector to
calculate a horAimVector, a horizontal vector for aiming. Then we use
the horAimVector to calculate the aimHor angle. We use the Vector3.Angle()
method to find the angle between the horAimVector and transform.forward
axis and Mathf.Sign() with Vector3.Dot() to determine the sign of the angle.
We calculate the aimVer angle in a similar way, but we use the horAimVector
instead of the transform.forward axis. Lastly, we assign the AimVer
and AimHor parameters in the controller:

 aimVector = target.position - aimNode.position;

 horAimVector = aimVector;
 horAimVector.y = 0f;

 aimHor = Vector3.Angle(horAimVector, transform.forward) *
Mathf.Sign(Vector3.Dot(horAimVector, transform.right));

 aimVer = Vector3.Angle(horAimVector, aimVector) *
 Mathf.Sign(Vector3.Dot(aimVector, Vector3.up));

 anim.SetFloat("AimHor", aimHor, aimSmooth, Time.deltaTime);
 anim.SetFloat("AimVer", aimVer, aimSmooth, Time.deltaTime);

Assign the script to the character. Drag and drop the AimTarget transform to14.
the Target field of the script.
Create an empty game object and name it AimNode. Place it roughly where the15.
chest of the character is and make it a child of the character's transform.
Assign the AimNode transform to the Aim Node field of the script. You can use16.
the AimNode to adjust the aimVector calculation.
Play the game to see the effect.17.

Handling Combat

[196]

How it works…
We are using a similar principle as used in the Using root motion to create flying characters
recipe in Chapter 4, Character Movement. Our script calculates the angles between our
target and our character's forward axis. Then it assigns those angles as parameters in the
controller. The Blend Tree uses those parameters to blend between nine directional aim
animations.

There's more…
You can further develop this recipe with additional animations to handle more extreme
angles. You can even have animations targeting +180 and -180 degrees in horizontal angles.
This would make your character aim in every possible direction.

Detecting the hit location on a character
Another animation-related topic in combat is the hit location detection. This recipe shows
how to easily detect hits to different body parts.

Getting ready
We are going to use a simple character with just one looped Idle animation in this recipe.
You can also use the provided example Unity project and go to the Chapter 06 Handling
combat\Recipe 10 Detecting the hit location on a character directory. You
will find an Example.unity scene there, with a Humanoid character. Play the game to see
the effect.

How to do it…
To be able to detect hits for different body parts, follow these steps:

Import your character with all the necessary animations to Unity. Place it on the1.
scene.

Handling Combat

[197]

Create a new Layer and name it BodyParts. To do so, go to the Layers menu and2.
choose the Edit Layers option, as shown in the following screenshot:

Adding a new Layer

Create a new script and name it BodyPart.cs. Create only one public string3.
bodyPartName variable in this script. We will use it as a dummy script for our
body parts. You will be able to implement custom effects of given body part hits
in this script layer.
Create an empty game object and name it Head.4.
Assign the BodyPart.cs script to the Head game object. Type Head in the Body5.
Part Name field of the BodyPart.cs component.
Assign a Capsule Collider component to the Head game object.6.
Set the Head Layer to BodyParts.7.
Add a Rigidbody component to the Head game object and set it to Is Kinematic.8.

Handling Combat

[198]

Go to the Edit | Project Settings | Physics menu. Unselect the collisions9.
between BodyParts <-> BodyParts Layers and BodyParts <-> Default Layers, as
shown in the following screenshot :

Collision matrix for BodyParts layer

Find the head bone in the character rig's hierarchy. Drag and drop the Head10.
game object onto the head bone to parent it.
Zero out the Head transform's rotation and position.11.
Adjust the Capsule Collider's settings to roughly encapsulate the character's12.
head shape.
Copy the Head game object and name it Chest. Type Chest in the Body Part13.
Name of the BodyPart.cs component.
Drag and drop the Chest game object onto the chest bone in the character rig's14.
hierarchy.
Zero out the Chest's position and rotation.15.
Adjust the Chest's Capsule Collider properties to roughly match the shape of the16.
character's chest.

Handling Combat

[199]

Repeat the steps 13 to 16 for all the body parts. In this example, we've17.
created Head, Chest, ArmL (and a copy of it for the forearm), ArmR (and a copy
of it for the forearm), LegL (and a copy of it for the shin), LegR (and a copy of it
for the shin), and Groin. See the following screenshot for reference:

Body parts encapsulated by colliders

All the body parts will move along with the character. They do not collide with18.
one another or with the Default layer. It prevents the character's physics from
behaving in strange ways. You may also need to turn the collisions off for other
layers in your game.
We are going to detect the body part hit with a simple script attached to the19.
camera. Create a new script and name it Shoot.cs. In this script's Update()
function, we constantly cast a ray from the camera's forward axis. We use
the Physics.Raycast() implementation with the LayerMask parameter. This
allows us to hit only those colliders that have the appropriate layer. If we hit such
collider, we check if it has the BodyPart.cs component attached. If so, we set an
on-screen UI text to the name of the body part we've hit:

 Transform cameraTransform = Camera.main.transform;

 if (Physics.Raycast(cameraTransform.position,
 cameraTransform.forward, out hit, maxDistance,
 bodyPartsLayer))

Handling Combat

[200]

 {
 BodyPart p =
 hit.collider.gameObject.GetComponent<BodyPart>();
 if (p != null)
 {
 bodyPartText.text = "Hit body part: " +
 p.bodyPartName;
 }
 else
 {
 bodyPartText.text = "No body part was hit";
 }
 }
 else
 {
 bodyPartText.text = "No body part was hit";
 }

Attach the script to the camera.20.
Create a UI Text in the scene and attach it to the BodyPart.cs21.
component's Body Part Text field.
Set the Body Parts Layer layer mask in the BodyPart.cs component22.
to BodyParts.
Attach any free look script to the camera; you can also use the CameraLook.cs23.
script from the Shared Scripts folder.
Play the game to see the effect.24.

How it works…
We are using the Unity's Hierarchy to attach colliders to the bones in the character's rig.
This way we can check collisions with those body parts and react to them via scripts. To
make this recipe simple, we only display the hit body part's name on the UI, but you can
easily implement complex reactions to certain body part hits. For instance, you could
implement additional damage for head shots or even a sophisticated wound system.

Handling Combat

[201]

There's more…
We've covered hit detection using the Physics.Raycast() method, which is good for
targeting body parts or fast moving projectiles. But you can just as easily implement body
part detection in melee combat. All you need to do is to implement the void
OnCollisionEnter(Collision collision) method in either the BodyPart.cs script
or a new script attached to the weapon (it needs to have a Collider and a Rigid Body
component set to Is Kinematic). You would then have to check if the entering collision
object has a proper script or tag attached to determine whether you hit a body part.

7
Special Effects

This chapter explains how to achieve interesting effects with animations and covers the
following recipes:

Using Animation Events to trigger sound and visual effects
Creating camera shakes with the Animation View and the Animator Controller
Using the Animation View to animate public script variables
Using additive Mecanim layers to add extra motion to a character
Using Blend Shapes to morph an object into another one
Using wind emitters to create motion for foliage and particle systems
Using sprite sheets to animate particles
Animating properties of a particle system with the Animation View
Using waveform of a sound clip to animate objects in the scene
Creating a day and night cycle with the Animation View

Introduction
We've learned a lot in the previous chapters. This chapter is all about encouraging you to
experiment with Unity's animation system. During the next 10 recipes, we will create
interesting effects and use animations in new, creative ways. This chapter also covers
additional built—in Unity features that can be used to animate our scenes.

Special Effects

[203]

Using Animation Events to trigger sound
and visual effects
This recipe shows a simple, generic way of playing different sound and visual effects with
Animation Events.

Getting ready
To start, you need to have a character with one looped animation: Jump. We also need a
sound effect and a particle system. We will need a transparent DustParticle.png texture
for the particle system. It should resemble a small dust cloud. You can open the provided
example Unity project and go to the Chapter 07 Special effects\Recipe 01 Using
animation events to trigger sound and visual effects directory. In the Rigs
directory, you will find all the needed animations, and in the Resources folder, you will
find all other necessary assets. When you play the game, you will see a character playing
the Jump animation. It will also play a sound effect and a particle effect when landing.

How to do it…
To play sound and visual effects with Animation Events, follow these steps:

Import the character with the Jump animation.1.
In the Import Settings, Animation tab, select the Jump animation.2.
Make it loop.3.
Go to the Events section.4.
Scrub through the timeline in the Preview section and click on the Add Event5.
button. The Edit Animation Event window will appear, as shown in the
following screenshot:

Special Effects

[204]

Edit Animation Event window

Type Sound in the Function field and Jump in the String field. This will call6.
a Sound function in a script attached to the character and pass the Jump word as
a string parameter to it.
Create another Animation Event. Set the Function field to Effect and the String7.
field to Dust.
Apply the Import Settings.8.
Create an Animator Controller for the character with just the Jump animation in9.
it.
Place the character in the scene.10.
Attach the controller to the Animator component of the character.11.
Attach an Audio Source component to the character.12.
Uncheck the Play On Awake option.13.
Create an empty game object and name it Dust.14.
Add a Particle System component to it. This will be our dust effect.15.
Set the Particle System's parameters as follows: 16.

Duration to 1 second
Start Life Time to 0.5 seconds
Start Speed to 0.4
Start Size to random between two constants: 1 and 2
Start Color to a light brown
Emission | Rate to 0
Emission | Bursts to one burst with Time set to 0, Min and Max set to
5
Shape | Shape to Sphere

Special Effects

[205]

Shape | Radius to 0.2
Color Over Lifetime—Create a gradient for the alpha channel. In the
0% mark and 100% mark, it should be set to 0. In the 10% and 90%
mark, it should be set to 255.

Create a new Material and set the shader to Particles | Alpha Blended.17.
Drag and drop a transparent texture of a DustParticle.png into the Texture18.
field of the Material.
Drag and drop the Material into the Renderer | Material slot of our DustParticle19.
System.
Create a Resources folder in the project's structure. Unity can load assets from20.
the Resources folder in runtime, without the need to reference them as prefabs.
Drag and drop the Jump.ogg sound and the Dust game object into21.
the Resources folder.
Write a new script and name it TriggerEffects.cs.22.
This script has two public void functions. Both are called from the Jump23.
animation as Animation Events. In the first function, we load an Audio Clip from
the Resources folder. We set the Audio Clip name in the Animation Event
itself as the string parameter (it was set to Jump). When we successfully load
the Audio Clip, we play it using the Audio Source component, reference to
which we store in the source variable. We also randomize the pitch of the Audio
Source to have a little variation when playing the Jump.ogg sound:

 public void Sound (string soundResourceName) {

 AudioClip clip = (AudioClip)
 Resources.Load(soundResourceName);

 if (clip != null)
 {
 source.pitch = Random.Range(0.9f, 1.2f);
 source.PlayOneShot(clip);
 }
 }

In the second function, we try to load a prefab with the name specified as the24.
function's parameter. We also set this name in the Animation Event (it was set
to Dust). If we manage to load the prefab, we instantiate it, creating the dust
effect under our character's feet:

 public void Effect (string effectResourceName) {
 GameObject effectResource =

Special Effects

[206]

 (GameObject)Resources.Load(effectResourceName);
 if (effectResource != null)
 {
 GameObject.Instantiate(effectResource,
 transform.position, Quaternion.identity);
 }
 }

Assign the script to our character and play the game to see the effect.25.

How it works…
We are using one important feature of Animation Events in this recipe: the possibility to
pass a string, int, or float parameter to our script's functions. This way we can create
one function for playing all the sound effects associated with our character and pass the
clips' names as string parameters from the Animation Events. The same concept is used
for spawning the Dust effect.

The Resources folder is needed to get any resources (prefab, texture, audio clip, and so on)
with the Resources.Load(string path) function. This method is convenient for loading
assets using their names.

There's more…
Our Dust effect has the AutoDestroy.cs script attached to make it disappear after a
certain time. You can find that script in the Shared Scripts folder in the provided
example Unity project.

Creating camera shakes with the Animation
View and the Animator Controller
In this recipe, we will use a simple, but very effective method for creating camera shakes.
Those effects are often used to emphasize impacts or explosions in our games.

Special Effects

[207]

Getting ready
You don't need anything special for this recipe. We will create everything from scratch in
Unity. You can also download the provided example Unity project and go to the Chapter
07 Special effects\Recipe 02 Creating camera shakes with the animation

window and the animator controller directory. When you open the
Example.unity scene and play the game, you can press the space bar to see a simple
camera shake effect.

How to do it…
To create a camera shake effect, follow these steps:

Create an empty game object in the Scene View and name it CameraRig.1.
Parent the Main Camera to the CameraRig.2.
Select the Main Camera and add an Animator component to it.3.
Open the Animation View.4.
Create a new Animation Clip and call it CamNormal. The camera should have5.
no motion in this clip. Add keys for both the camera's position and rotation.
Create another Animation Clip and call it CameraShake. Animate the camera's6.
rotation and position to create a shake effect. The animation should have about
0.5 seconds.
Open the automatically created Main Camera controller.7.
Add a Shake Trigger parameter.8.
Create two transitions: 9.

CamNormal | CameraShake with the condition: Shake Trigger
parameter. Has Exit Time should be set to false and Transition
Duration set to 0.2 seconds.
CameraShake| CamNormal with no conditions: Has Exit Time should
be set to true and Transition Duration set to 0.2 seconds.

Write a new script and call it CamShake.cs.10.
In this script's Update() function, we check if player pressed the space bar. If so,11.
we trigger the Shake Trigger in our controller:

 if (Input.GetKeyDown(KeyCode.Space))

 {

 anim.SetTrigger("Shake");

Special Effects

[208]

 }

As always, the anim variable holds the reference to the Animator component and12.
is set in the Start() function with the GetComponent<Animator>() method.
Assign the script to the Main Camera.13.
Play the game and press the space bar to see the effect.14.

How it works…
In this recipe, we've animated the camera's position and rotation relative to the CameraRig
object. This way we can still move the CameraRig (or attach it to a character).
Our CameraShake animation only affects the local position and rotation of the camera. In
the script, we simply call the Shake Trigger to play the CameraShake animation once.

There's more…
You can create more sophisticated camera shake effects with BlendTrees. To do so, prepare
several shake animations with different strength and blend them in a Blend Tree using
a Strength float parameter. This way, you will be able to set the shake's strength,
depending on different situations in the game (the distance from an explosion for instance).

Using the Animation View to animate public
script variables
In Unity, we can animate public script variables. Most standard types are supported. We
can use this to achieve interesting effects that are not possible to achieve directly. For
instance, we can animate fog color and density, which is not directly accessible through the
Animation View.

Getting ready
In this recipe, everything will be created from scratch, so you don't need to prepare any
special assets. You can also use the example project and go to the Chapter 07 Special
effects\Recipe 03 Using the animation window to animate public script

variables directory. You can find the Example.unity scene there. If you open it and
press the space bar, you can observe the fog changing color and density.

Special Effects

[209]

It is achieved by animating the public variables of a script.

Animated fog

How to do it…
To animate public script variables, follow these steps:

Create a new script and call it FogAnimator.cs.1.
Create two public variables in this script: public float fogDensity2.
and public Color fogColor.
In this script's Update() function, we call the ChangeFog Trigger in the3.
controller when player presses the space bar. We also set
the RenderSettings.fogColor and RenderSettings.fogDensity
parameters using our public variables. We also adjust the Main Camera's
background color to match the fog color:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 anim.SetTrigger("ChangeFog");
 }
 RenderSettings.fogColor = fogColor;
 RenderSettings.fogDensity = fogDensity;

 Camera.main.backgroundColor = fogColor;

Special Effects

[210]

Create a new game object and name it FogAnimator.4.
Attach the FogAnimator.cs script to it.5.
Select the FogAnimator game object and add an Animator component to it.6.
Open the Animation View.7.
Create a new Animation Clip.8.
Make sure the record button is pressed.9.
Create an animation for public float fogDensity and public Color10.
fogColor parameters by changing their values.
You can create any number of animations and connect them in the automatically11.
created Animator Controller with transitions based on the ChangeFog Trigger
(you need to add this parameter to the controller first).
The following is an example controller:12.

Example controller for different fog animations

Remember that you don't need to create animations of the fog changing its color13.
or density. You can rely on blending between animations in the controller. All
you need to have is one key for the density and one for the color in each
animation. In this example, all Transition Durations are set to 1 second and
every transition's Has Exit Time parameter is set to false.
Make sure fog is enabled in the Lighting settings.14.
Play the game and press the space bar to see the effect.15.

Special Effects

[211]

How it works…
Normally, we can't animate the fog's color or density using the Animation View. But we
can do it easily with a script that sets the RenderSettings.fogColor
and RenderSettings.fogDensity parameters every frame. We use animations to change
the script's public variables values in time. This way we've created a workaround for
animating fog in Unity.

We've just scratched the surface of what's possible with animating public script variables.
Try experimenting to achieve awesome effects.

Using additive Mecanim layers to add extra
motion to a character
In previous recipes, we were using Mecanim layers in override mode. We can set a layer to
be additive. This can add additional movement to our base layer animations.

Getting ready
We will need a character with three animations: Idle, TiredReference, and Tired. The Idle
animation is a normal, stationary idle. The TiredReference animation has no motion and is
used as a reference pose for calculating additive motion from the Tired animation.
The TiredReference animation can be the first frame of the Tired animation. In the Tired
animation, our character is breathing heavily.

You can also go to the Chapter 07 Special effects\Recipe 04 Using additive
mecanim layers to add extra motion to a character directory. Open
the Example.unity scene there. You will find the same Humanoid character there. If you
play the game and press the space bar, our character will start breathing heavily while still
playing the Idle animation. You can find all the needed animations in the Rigs directory.

How to do it…
To use additive layers, follow these steps:

Import the character into Unity and place it in a scene.1.
Go to the Animation tab in the Import Settings.2.

Special Effects

[212]

Find the TiredReference animation and check the Additive Reference Pose3.
option (you can also use the normal Tired animation and specify the frame in
the Pose Frame field).
Loop the Idle and Tired animations.4.
Create a new Animator Controller.5.
Drag and drop the Idle animation into the controller and make it the Default6.
state.
Find the Layers tab in upper left corner of the Animator window.7.
Select it and click on the plus button below to add a new layer.8.
Name the newly created layer Tired.9.
Click on the Gear icon and set the Blending to Additive, as shown in the10.
following screenshot:

Additive layer settings

Drag and drop the Tired animation to the newly created layer.11.
Assign the controller to our character.12.

Special Effects

[213]

Create a new script and call it Tired.cs. In this script's Update() function, we13.
set the weight of the Tired layer when player presses the space bar. The Tired
layer has the index of 1. We use a helper variable weightTarget to set the
new weight to 0 or 1, depending on its current value. This allows us to switch
the additive layer on and off every time player presses the space bar. Finally, we
interpolate the weight value in time to make the transition more smooth and we
set the weight of our additive layer with the SetLayerWeight() function:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 if (weightTarget < 0.5f)
 {
 weightTarget = 1f;
 }
 else if (weightTarget > 0.5f)
 {
 weightTarget = 0f;
 }
 }
 weight = Mathf.Lerp(weight, weightTarget, Time.deltaTime *
 tiredLerpSpeed);

 anim.SetLayerWeight(1, weight);

Attach the script to the Humanoid character.14.
Play the game and press the space bar to see the additive animation effect.15.

How it works…
Additive animations are calculated using the reference pose. Movements relative to this
pose are then added to other animations. This way we can not only override the base layer
with other layers but also modify the base movements by adding secondary motion.

Try experimenting with different additive animations. You can, for instance, make your
character bend, aim, or change its overall body pose.

Special Effects

[214]

Using Blend Shapes to morph an object into
another one
Previously, we used Blend Shapes to create face expressions. Blend Shapes are also an
excellent tool for special effects. In this recipe, we will morph one object into another.

Getting ready
To follow this recipe, we need to prepare an object with Blend Shapes. We've created a
really simple example in Blender—a subdivided cube with one shape key that looks like a
sphere. See the following screenshot for reference:

A cube with a Blend Shape that turns it into a sphere

You can also go to the Chapter 07 Special effects\Recipe 05 Using
blendshapes to morph an object into another one directory. Open
the Example.unity scene there. You will see a number of cubes there. If you hit the space
bar in play mode, the cubes will morph into spheres. You can find the Cuboid.fbx asset
with the required Blend Shapes in the Model directory.

How to do it…
To use Blend Shapes to morph objects, follow these steps:

Import the model with at least one Blend Shape to Unity. You may need to go to1.
the Import Settings, Model tab, and choose Import BlendShapes.
Place the model in the Scene.2.

Special Effects

[215]

Create a new script and call it ChangeShape.cs. This script is similar to the one3.
from the previous recipe. In the Update() function, we change the weight of the
first Blend Shape when player presses the space bar. Again, we use a helper
variable weightTarget to set the new weight to 0 or 100, depending on its
current value. Blend Shapes have weights from 0 to 100 instead of 1. Finally, we
interpolate the weight value in time to make the transition smoother. We use
the SetBlendShapeWeight() function on the skinnedRenderer object. This
variable is set in the Start() function with
the GetComponent<SkinnedMeshRenderer>() function:

 if (Input.GetKeyDown(KeyCode.Space))
 {
 if (weightTarget < 50f)
 {
 weightTarget = 100f;
 }
 else if (weightTarget > 50f)
 {
 weightTarget = 0f;
 }
 }
 weight = Mathf.Lerp(weight, weightTarget, Time.deltaTime *
 blendShapeLerpSpeed);
 skinnedRenderer.SetBlendShapeWeight(0, weight);

Attach the script to the model on the scene.4.
Play the game and press the space bar to see the model morph.5.

How it works…
stores vertices position of a mesh. We have to create them in a 3D package. Unity imports
Blend Shapes and we can modify their weights in runtime using
the SetBlendShapeWeight() function on the Skinned Mesh Renderer component. We
can also use animations as shown in the, Animating facial expressions with Blend Shapes recipe
in Chapter 5, Characters Actions and Expressions.

Blend Shapes have trouble with storing Normals. If we import Normals
from our model, it may look weird after morphing. Sometimes, setting
the Normals option to Calculate in the Import Settings can helps with the
problem. If we choose this option, Unity will calculate Normals based on
the angle between faces of our model. This allowed us to morph a hard
surface cube into a smooth sphere in this example.

Special Effects

[216]

Using wind emitters to create motion for
foliage and particle systems
Unity supports wind emitters with which we can create realistic effects for foliage and
particles. Using them is really simple.

Getting ready
To follow this recipe, you need to have a particle system and a tree created with Unity's
built—in Tree Creator. You can open the provided example project and go to the Chapter
07 Special effects\Recipe 06 Using wind emitters to create motion for

foliage and particle systems directory. In the Example.unity scene there, you can
find a tree and a simple particle system (falling leaves). Play the game to see the tree and
particles moving with the wind.

Tree with a falling leaves particle system. Both animated with a WindZone

How to do it…
To use Unity's wind, follow these steps:

Place the tree and the particle system in the scene.1.
Create a new WindZone. To do so, go to the GameObject | 3D Object | Wind2.
Zone option.

Special Effects

[217]

The tree will move when you play the game, but the particle system needs to be3.
adjusted.
To make the particle system react to wind, open its properties and check4.
the External Forces option.
Click on it to unfold it. You can edit the Multiplier field to increase or decrease5.
the influence of the wind.
If you're not sure whether your particles react to wind, set their Start Speed to 0.6.
Play the game to see the effect.7.

How it works…
Wind Zones are a built—in Unity feature, useful for animating foliage and particle systems.
There are two types of Wind Zone:

Directional: This is a global wind for the whole scene (still you can have several
of them). It blows in one direction.
Spherical: This type has a Radius in which it influences particles and trees. It's
useful for helicopters and explosions.

Wind Zones are described by a series of parameters defining the strength of the wind:

Main: This is the main wind force. It changes softly over time.
Turbulence: This produces a rapidly changing force and is useful for creating
storms.
Pulse Magnitude: This describes how much the wind changes over time.
Pulse Frequency: This describes the frequency of the wind changes.

Remember that you can animate the Wind Zone's parameters with the
Animation View. This gives you a great amount of control over how the
wind should change in time. For instance, you can create a strong,
spherical wind for explosions with an animation of the Main
and Turbulence parameters quickly fading out. You can also animate the
Wind Zone rotation and/or position (applicable only to the Spherical type)
to change the effect.

Special Effects

[218]

Using sprite sheets to animate particles
We can add sprite sheet animation to Unity's particles to make them more interesting. This
concept is especially useful for various explosions and magical effects.

Getting ready
To follow this recipe, we need an animation exported as a sprite sheet. If you want to know
how to create a sprite sheet animation, you can read the Exporting a 2D sprite animation from
a 3D package recipe in Chapter 3, 2D and User Interface Animation, where you can find an
example sprite animation.

Example sprite sheet animation

You can also open the provided example project and go to the Chapter 07 Special
effects\Recipe 07 Using sprite sheets to animate particles directory. If you
open the Example.unity scene there and play the game, you will see a particle system
with explosions using sprite sheet animation. You can find the necessary sprite sheet in
the Rigs directory.

Special Effects

[219]

How to do it…
To use sprite sheets for particles animation, follow these steps:

Import the sprite sheet texture into Unity. Its size should be a power of 2. The1.
animation should be rendered from left to right and from top to bottom in equal
tiles (128 × 128, 256 × 256, or similar).
Set it as a normal Texture (not a Sprite) and check the Alpha Is Transparency2.
option.
Create a new Material and name it Explosion.3.
Set the Shader to Particles | Alpha Blended (you can also use Additive or4.
Additive Soft).
Drag and drop the texture into the Particle Texture slot in the Material.5.
Create an empty game object in the scene and name it AnimatedExplosion.6.
Add a Particle System component to it.7.
Drag and drop the Explosion material into the Renderer | Material slot.8.
Check the Texture Sheet Animation option and unfold it.9.
Set the Tile's X and Y fields according to your exported sprite sheet. In our10.
example, the sheet has 8 tiles in X and 4 in Y, as shown in the following
screenshot:

Texture Sheet Animation settings

Adjust the Start Lifetime of the particles to match the frame rate of your exported11.
sprite sheet animation. If your exported animation lasts 1 second, then the Start
Lifetime of a particle should be also equal to 1 second.
Adjust the other settings of the particle system to your liking. In this example,12.
those settings are as follows:

Start Lifetime: 1
Looping: True
Start Speed: 0
Start Size: 5

Special Effects

[220]

Emission | Rate: 1
Shape | Shape: Sphere
Shape | Radius: 4

Play the game or simulate the particle system to see the effect.13.

How it works…
Unity's particle system can play sprite sheet animation for each of its particles. To do so, the
Texture Sheet Animation option has to be checked. This option has several important
settings:

Tiles: The X and Y fields specify how many tiles in X and Y the texture sheet has.
Animation is played from left to right and from top to bottom.
Animation: We can use the whole sheet or a single row. If the Single Row option
is selected, we can use a random row of the Sprite Sheet or specify a single row
for our animation. This way we can have multiple animations in one sprite sheet.
It also gives us the possibility to have multiple animations per particle system,
instead of playing the same one for every particle (Random Row has to be
checked to achieve this).
Frame Over Time: This is a curve describing which frame should be played over
time. Remember that, by default, the whole sprite sheet is always played during
the whole lifetime of a particle.
Cycles: Here we can specify how many cycles of the animation should be played
in one lifetime of a particle.

Animating properties of a particle system
with the Animation View
This recipe shows how to use the Animation View to animate a particle system's properties.
Not all of them can be directly accessed with the Animation View, but we will use the same
trick as with the fog in the Using the Animation View to animate public script variables recipe.

Special Effects

[221]

Getting ready
This recipe is created from scratch in Unity; you don't need any special assets. You should
have a particle system ready before we start. You can go to the Chapter 07 Special
effects\Recipe 08 Animating properties of a particle system with the

animation window directory. You will find an Example.unity scene there. Open it and
play the game to a particle system with animated properties.

How to do it…
To animate particle system properties, follow these steps:

Create an empty game object and name it AnimatedParticleSystem.1.
Add a Particle System component to it.2.
Create the particle system to your liking. We have a very simple particle system3.
with particles flying in straight line in this example.
Add an Animator component to the AnimatedParticleSystem game object.4.
Create an animation of the Emission | Rate parameter. It is only possible to5.
directly animate Emission Module and Shape Module of a particle system.
To animate other properties, create a new script and call it ParticleAnims.cs.6.
In this script, we have two public variables: public float gravityModifier
and public Color color. We use those variables to set the gravityModifier
and the startColor properties of the particle system in the Update() function.
The reference to the Particle System component is set in the Start() function
and stored in the particles variable:

 void Update () {
 particles.gravityModifier = gravityModifier;
 particles.startColor = color;
 }

Assign the script to the AnimatedParticleSystem game object.7.
Open the Animation View again and animate the Color and Gravity Modifier8.
public fields of the script. This way we can create a workaround to animate the
particle system's properties unreachable from the Animation View.
Play the game to see the effect.9.

Special Effects

[222]

How it works…
This recipe uses the same concept as described in the Using the Animation View to animate
public script variables recipe. This time we use the public script variable animation to animate
a particle system's properties, normally unreachable from the Animation View. Unity has
the animate everything philosophy, so I think we may expect that all the particle system's
properties will be available to animate directly in the Animation View in the future.

Using waveform of a sound clip to animate
objects in the scene
In this recipe, we will use a waveform of a sound effect to create motion based on the
average volume of the fragment of the waveform.

Getting ready
To follow this recipe, we need a sound effect. You can use the provided example Unity
project and go to the Chapter 07 Special effects\Recipe 09 Using waveform of
a sound clip to animate objects in the scene directory. If you open
the Example.unity scene there and play the game, you will be able to see a few cubes react
to the playing audio clip.

How to do it…
To use sound waveforms for animation, follow these steps:

Import the sound into Unity.1.
Create an empty game object and name it AudioSource.2.
Add an Audio Source component to it, and make the sound Loop and Play On3.
Awake. Drag and drop your sound into the AudioClip field.
Create a Cube game object (go to Game Object | 3D Object | Cube).4.
Create a new script and call it ScaleWithWaveForm.cs. In this script, we have5.
one public AudioSource audioSource variable, one public float
lerpSpeed variable, one float[] samples array, and a float
currentSample variable to store the average volume of the samples. In this
script's Start() function, we set the size of the samples array to 1024 (it needs

Special Effects

[223]

to be a power of 2). This is the number of samples we will read from the Audio
Source. We also start a IEnumerator SampleAudio() coroutine:

 public AudioSource audioSource;
 public float lerpSpeed = 100f;
 float[] samples;
 float currentSample;

 void Start()
 {
 samples = new float[1024];
 StartCoroutine("SampleAudio");
 }

This coroutine uses the audioSource.GetOutputData() function to get and6.
store the output audio samples in the samples array. Then we sum all the squared
samples and calculate an average volume (the RMS). Lastly, we use this value to
scale the Cube game object. Additionally, we interpolate the scale changes in time
to make it smoother. The currentSample value is multiplied by 10 to make the
changes more visible (RMS ranges from 0 to 1):

 IEnumerator SampleAudio()
 {
 while (true)
 {
 audioSource.GetOutputData(samples, 0);
 currentSample = 0f;
 for (int i = 0; i < samples.Length; i++)
 {
 currentSample += (samples[i]*
 samples[i]);
 }
 currentSample = Mathf.Sqrt(currentSample /
 samples.Length);
 transform.localScale =
 Vector3.Lerp(transform.localScale,
 Vector3.one * currentSample*100f,
 Time.deltaTime*4f);
 yield return null;
 }
 }

Assign the script to the Cube game object.7.
Drag and drop the AudioSource game object into the Audio Source field of the8.
script.
Play the game to see the effect.9.

Special Effects

[224]

How it works…
The key component of this recipe is the AudioSource.GetOutputData(float[]
samples, int channel) function. It grabs a number of samples from the currently
playing audio. The number of samples is specified by the length of the float[] samples
array. This length has to be a power of 2. We get the samples every frame in
the IEnumerator SampleAudio() coroutine. We average the values of squared samples to
calculate an RMS of the audio (an average volume of a number of samples). The more
samples we average, the smoother the changes of the RMS. For most sounds, 1024 is a good
number. We use the calculated RMS to scale the Cube game object.

See also
You can perform more complex signal analysis of the waveform to create more interesting
effects. For instance, if you want to create an equalizer showing different frequencies of the
sound, you need to use the fast Fourier transform. You can find a lot of interesting
information about it in the Unity forums.

Creating a day and night cycle with the
Animation View
In this recipe, we will create a simple day and night cycle animation using the Animation
View.

Getting ready
We are going to create this recipe from scratch in Unity, so we don't need any additional
assets. You can also use the provided example Unity project and go to the Chapter 07
Special effects\Recipe 10 Creating a day and night cycle with the

animation window directory. You will find an Example.unity scene there.

Special Effects

[225]

Open it and play the game to see the effect.

Simple day and night cycle

How to do it…
To create a day and night cycle with the Animation View, follow these steps:

Create an empty game object and call it DayAndNight.1.
Create another empty game object, call it SunAndMoonPivot, and parent it to2.
the DayAndNight game object.
Create two more game objects, SunPivot and MoonPivot, and parent them3.
to SunAndMoonPivot.
Then create the Sun and Moon objects and parent the first one to SunPivot and4.
the second one to MoonPivot.
Lastly, create two Directional Lights and two Spheres and parent one of each to5.
the Sun object and the remaining two to the Moon object.
The hierarchy should look like the following:6.

DayAndNight | SunAndMoonPivot1.
SunAndMoonPivot | SunPivot2.
SunAndMoonPivot | MoonPivot3.
SunPivot | Sun4.
MoonPivot | Moon5.
Sun | Directional Light6.

Special Effects

[226]

Sun | SunSphere7.
Moon | Directional Light8.
Moon | MoonSphere9.

Create two materials: Moon and Sun. Choose the Unlit | Color shader for them7.
and adjust the colors to your liking (you can also use the Standard Shader with an
Emission color).
Apply the materials to the SunSphere and MoonSphere objects.8.
Move the Sun and the Moon away from the center. You can also use9.
the SunPivot and MoonPivot to rotate the Sun and the Moon. See the following
screenshot for reference:

Sun and Moon placement

Select the DayAndNight game object and add an Animator component to it.10.
Create a new script and call it CameraColor.cs. This script has one public11.
Color cameraColor variable. In the Update() function of this script, we set
the backgroundColor of the main camera to the cameraColor variable's value:

 void Update () {
 Camera.main.backgroundColor = cameraColor;
 }

Assign the script to the DayAndNight game object.12.

Special Effects

[227]

With the DayAndNight game object selected, open the Animation View.13.
Create an animation of the Sun and Moon moving on the horizon. Rotate14.
the SunAndMoonPivot to make the job easier.
Animate the Directional Light colors and their Intensity and Shadow Strength.15.
In the day, only the Sun's Directional Light should cast shadows, and in the
night, only the Moon's Directional Light should cast shadows.
If you are using the camera's background color as the background color of the16.
scene, animate it using the public Color cameraColor of the script attached
to SunAndMoonPivot game object. If you're using Unity's parametric skybox,
make sure to choose your Sun's Directional Light as the Sun in the Lighting
settings. This will make the skybox change with the respect of Sun's Directional
Light rotation.
Run the game to see the effect.17.

How it works…
In this recipe, we use the Hierarchy to animate rotation of Sun and Moon. We also animate
the Intensity, Color, and Shadow Strength of Directional Lights attached to those game
objects. This way, we can create an illusion of a day and night cycle.

There's more…
To control the speed of the day and night cycle animation, you can modify the anim.speed
parameter in runtime from scripts. The anim variable is a reference to the Animator
component attached to the DayAndNight game object.

8
Animating Cutscenes

This chapter explains how to create and play cutscenes in games and covers the following
recipes:

Using the Animation View to animate the camera

Changing cameras with animation

Synchronizing animation of multiple objects

Importing a whole cutscene from a 3D package

Synchronizing subtitles

Using root motion to play cutscenes in gameplay

Introduction
In this chapter we will handle cutscenes. These are short animated sequences used mostly
to unveil new story events. You can create a lot of them directly in Unity, or import
animations from your favorite 3D package (we will be using Blender 3D as an example).

Animating Cutscenes

[229]

Using the Animation View to animate the
camera
In this recipe, we will create camera animation using Unity's built-in Animation View:

Simple vertigo effect created with the Animation View

Getting ready
We don't need anything fancy for this recipe as we will create it from scratch in Unity. You
may need some decorations in the scene though. You can also open the provided example
Unity project and go to the Chapter 08 Animating Cutscenes\Recipe 01 Using the
animation view to animate the camera directory. You can find an animated Camera
(1) game object in the Example.unity scene there. If you play the game, the camera will
play an animation.

How to do it…
To create camera animation with the Animation View, follow these steps:

Select the camera you want to animate (you can also add a new camera to the1.
scene).
Open the Animation View (go to Window | Animation).2.

Animating Cutscenes

[230]

Create a new Animation Clip and call it CameraAnimation.3.
Make sure the record button is pressed.4.
Move and rotate the camera to create the desired animation. If the camera is not5.
parented to any game object, the animation will be done in world space.
If you want to use this animation as a cutscene, create a prefab from the camera.6.
Play the game to see the effect.7.

How it works…
Cameras can be animated the same way as other game objects. We can animate their
Transforms, but additionally, we can also animate the Camera component. This way we
can create interesting effects with the Field of View parameter (for instance, the simple
vertigo effect shown in the example project).

There's more…
If you create a prefab out of an animated camera, you can instantiate it to play a cutscene.
Remember to set the cutscene camera's Depth to be greater than the in-game camera's. This
way, simply instantiating the cutscene camera prefab will automatically play the cutscene.
All you need to do is to destroy the instantiated game object after the animation ends. You
can do so with an Animation Event associated with a function that will destroy the object
(you need to use a script for that).

You should also remember to disable the Audio Listener component in the in-game camera
when you instantiate the cutscene camera. After the cutscene is finished, make sure to re-
enable the Audio Listener component again.

Changing cameras with animation
Not only can we animate cameras using the Animation View, but we can also change the
shots in time.

Animating Cutscenes

[231]

Getting ready
This recipe will also be created from scratch in Unity. You can download the example Unity
project provided and go to Chapter 08 Animating Cutscenes\Recipe 02 Changing
cameras with animation directory. You can find a Camera Changer game object in
the Example.unity scene there, with three cameras as children. If you play the game, the
cameras will change.

How to do it…
To change cameras using animation, follow these steps:

Create an empty game object in the Scene View and name it CameraChanger.1.
Rename the Main Camera to Camera (1) and copy it two times. You should2.
have Camera (1), Camera (2), and Camera (3) game objects.
Parent all three cameras to the CameraChanger.3.
Place the cameras as you wish.4.
Set the Depth of the cameras in increasing order. Every new shot should have a5.
greater Depth value.
Select the CameraChanger game object and open the Animation View.6.
Create a new Animation Clip and call it CameraChange.7.
Make sure the record button is pressed.8.
Select all cameras and disable their game objects. Then select the first camera and9.
enable its game object. New keys should be created in the first frame of the
animation. The first camera should be active and the remaining two should be
inactive (you can check this by clicking on a key). You may need to set the
cameras to active to create the keys and then set them to inactive (Unity
sometimes doesn't create a key if you deactivate an object and only creates the
key if you click to enable it):

Animating Cutscenes

[232]

Keys containing cameras' state (active/inactive)

Adjust the timeline and activate the second camera. You don't need to deactivate10.
the first one, but you should have only one Audio Listener component enabled.
Adjust the timeline again and activate the third camera.11.
Close the Animation View.12.
Play the animation or run the game to see the effect.13.

How it works…
This recipe has a few important elements:

Cameras as children: All cameras are children of the CameraChanger game
object. This way, we can add the Animator component to the CameraChanger
and animate all its children cameras using one Animation Clip.
Camera's Depth: The depth parameter describes the “layer” of the camera.
Cameras with greater Depth are rendered on top of cameras with lesser Depth.
This way, we can change the cameras without the need to worry about not
rendering anything.

Animating Cutscenes

[233]

Enabling/disabling game objects: We can enable or disable game objects using
animation. All we need to do is to click on the enable checkbox, as shown in the
following screenshot. As always, parameters that are animated (have keys in the
animation) are marked in red:

Enable / disable game object checkbox with a key frame

Synchronizing animation of multiple objects
In a cutscene, we have to synchronize animation of multiple objects in time. This recipe
shows how to do it.

Getting ready
To follow this recipe, you will need an animated character and an animated object. You can
download the provided example Unity project and go to the Chapter 08 Animating
Cutscenes\Recipe 03 Synchronizing animation of multiple objects directory.
You can find the Example.unity scene there. If you play the game, you will see a character
kicking a soccer ball. Both objects are animated and synchronized. You can find the needed
animations in the Animations directory:

Animating Cutscenes

[234]

Synchronized animation of the ball and a the character kicking it

How to do it…
To synchronize animation of multiple objects, follow these steps:

Open both objects in your 3D package (we are using Blender in this example).1.
Synchronize both objects' animations in the 3D package. In our example, the2.
animation has about 160 frames. Both objects have the same length of animation:

Ball and character animation synchronized in a 3D package

In this example, the ball has no skeletal animation; we only animate its3.
Transform.

Animating Cutscenes

[235]

Make sure to have key frames for both the ball and the character in the first and4.
last frames of the animation. This way, the animations will have equal length
after importing them to Unity.
After synchronizing the animation in a 3D package, save it to two files: one with5.
only the ball object and its animation, and one only with the character and its
animation. Unity can import multiple transform animations, but has problems
with importing multiple skeletal animations (for example, you will not be able to
set the rig to Humanoid).
Export both files separately to FBX format and make sure to include the Default6.
Take. In Blender, use the 6.1 version of FBX.
Import both files to Unity.7.
If you want to use a Humanoid character, make sure to set all the Based Upon8.
options to Original in the Animation Import Settings.
Create an Animator Controller for the ball and another one for the character with9.
the soccer kick animation.
Place the ball and the character in the same location on the scene. Attach the10.
Animator Controllers to them.
Play the game to see the effect.11.

How it works…
The best way to synchronize cutscene animations is to make sure that they have the same
length and are synchronized in a 3D package. If we import them in Unity and start the
playback in the same moment, they will stay synchronized.

Remember that you need to export the characters as separate files if you want to use the
Humanoid rigs.

There's more…
You can also synchronize animations using Animation Events. In our example, we could
create the ball animation from the moment it is kicked by the character and transition to it
using an Animation Event in the character's kick animation. Although this is possible, it is
more cumbersome than synchronizing the whole cutscene in a 3D package.

Animating Cutscenes

[236]

Importing a whole cutscene from a 3D
package
The best way of creating cutscenes in Unity is to import whole animations from a 3D
package. We did a similar thing in the previous recipe (we synchronized the animations in a
3D package before importing them to Unity). Here we are going to create a full cutscene
with camera animations.

Getting ready
For this recipe, we need the same character as in the previous recipe, with a kicking the ball
animation. Additionally, we've added three simple cubes to the animation. Those cubes are
animated and represent cameras. We used cubes instead of empty objects or cameras
because Unity sometimes has trouble with importing the motion of objects that are not rigs
nor have mesh renderers:

Cutscene objects in Blender. Red cubes hold camera positions

You can also go to the Chapter 08 Animating Cutscenes\Recipe 04 Importing a
whole cutscene from a 3D package directory. You can find the Example.unity scene
there. If you play the game, you will see a character kicking a soccer ball. The cameras will
animate and change as the animation progresses. You can find all the needed animations in
the Animations directory.

Animating Cutscenes

[237]

How to do it…
To import a whole cutscene from a 3D package, follow these steps:

Create the cutscene in a 3D package. Remember that all the objects' animations1.
should have the same length. They should have keys on the first and last frame.
If you plan to use Humanoid rigs, save every character as a separate file before2.
importing it to Unity.
Import the cutscene to Unity (and all the characters, if needed). All objects that3.
use Generic rigs can be exported together as one file. In such cases, a Generic rig
will be created for the whole cutscene.
If you are using Blender and want to export the cutscene to FBX format, use the4.
6.1 version and make sure to check the Default Take option.
Go to the Animation tab in Import Settings.5.
The Default Take holds the whole cutscene animation. You may see additional6.
clips in the Animation tab (especially if you are using skeletal animation). Don't
use them. You can remove them from the Import Settings and change the Default
Take clip name to something more descriptive.
If you are using Humanoid rigs for the characters, import them one by one from7.
the separate files.
Create an Animator Controller for the cutscene and one for every character (if8.
you are using the Humanoid rig).
Place the cutscene animation in the controllers.9.
Place all the objects in the same place on the scene.10.
If you want to animate cameras, create one camera for every shot of your11.
cutscene.
Parent the cameras to the animated camera holder objects from the cutscene. You12.
may need to adjust camera rotations.
Our cameras are children of the camera holder objects (and the cutscene object).13.
But the animation is imported and read-only. So, we cannot change the cameras
the same way we did in the Changing cameras with animation recipe. We need a
script on the root object of the cutscene (the one with the Animator component).
Create a new script and call it CutsceneCameraChanger.cs. In this script, we
have a list of all the cutscene cameras and a public void ChangeCamera()
animation event that changes the camera based on the given int
newCameraIndex parameter. It disables all other cameras from the list:

 public void ChangeCamera (int newCameraIndex)
 {

Animating Cutscenes

[238]

 for (int i = 0; i < cutsceneCameras.Length; i++)
 {
 cutsceneCameras[i].gameObject.
 SetActive(false);
 }
 cutsceneCameras[newCameraIndex].gameObject.
 SetActive(true);
 }

Assign the script to the root object of the cutscene.14.
Open the Animation Import Settings for the cutscene.15.
Adjust the timeline to the place you want to change the shot.16.
Add Animation Events to enable appropriate cameras and change the shots. Use17.
the int parameter to provide the newCameraIndex for the ChangeCamera
function. Remember to set the Depth parameters of the cameras to be higher than
the gameplay camera.
Apply the Animation Import Settings and disable the Mesh Renderer18.
components for each of the camera holder objects so that they will not be visible
in-game.
Play the game to see the effect.19.

How it works…
Unity can import whole cutscenes as single assets. You can animate a cutscene with a lot of
objects and characters and then export it to FBX (or simply save the file if you are using
Blender). After the import, the Default Take holds the whole animation. You cannot change
the animation (it is read-only), but you can write scripts to enable/disable cameras using
Animation Events. You need to add the events in the Animation Import Settings though.

If you plan to reuse the animation for different characters, you need to export every rig
from the cutscene as a separate file. Only then can you set it to Humanoid.

You cannot export particle systems from a 3D package. Only transform and skeletal
animation is supported. You will need to create VFX in Unity and synchronize them with
the cutscene using Animation Events. The same rule applies to sound effects. We were
doing this in the Using Animation Events to trigger sound and visual effects recipe in Chapter
7, Special Effects.

Animating Cutscenes

[239]

There's more…
According to Unity's roadmap, a Director tool is planned sometime in the 5.x schedule. It
may make authoring cutscenes in Unity easier. But, for animators used to their favorite 3D
packages, importing whole cutscenes can still be the preferred option.

Synchronizing subtitles
In this recipe, we create subtitles and synchronize them with the animation:

Subtitles synchronized with animation

Getting ready
In this recipe, we will use the same cutscene as in the previous one. You can also open the
example Unity project and go to the Chapter 08 Animating Cutscenes\Recipe 05
Synchronizing subtitles directory. If you open the Example.unity scene there and
play the game, you will see changing subtitles synchronized with the animation.

Animating Cutscenes

[240]

How to do it…
To synchronize subtitles with a cutscene, follow these steps:

Import the cutscene the same way as in the previous recipe.1.
Create a new Image (go to Game Object | UI | Image).2.
Name it SubtitlesContainer.3.
Create a new Text game object and parent it to the SubtitlesContainer. To do so,4.
right-click on the SubtitlesContainer and choose UI |Text.
Change the color of the SubtitlesContainer's Image component to5.
semitransparent black. Change the color of the Text component to white. Adjust
the position and size of the objects as desired.
Place the model in the Scene.6.
Create a new script and call it Subtitles.cs. This script has a string7.
subtitlesText variable in which we will store the text displayed in the
subtitles. It also has public references to the SubtitlesContainer and Text game
objects: public GameObject subtitlesContainer and public Text
textComponent. This script has one public void SetSubtitles(string
text) function. It is called from an Animation Event and is used to set
the subtitlesText variable's value:

 public void SetSubtitles(string text)
 {
 subtitlesText = text;
 }

In the Update() function of this script, we check if the subtitlesText variable8.
contains any text. If so, we enable the SubtitlesContainer game object and set
the Text game object to display our subtitles. If subtitlesText is an empty
string, we disable the SubtitlesContainer:

 if (string.IsNullOrEmpty(subtitlesText)
 && subtitlesContainer.activeSelf)
 {
 subtitlesContainer.SetActive(false);
 }
 else if (!string.IsNullOrEmpty(subtitlesText)
 && !subtitlesContainer.activeSelf)
 {
 subtitlesContainer.SetActive(true);
 }
 else
 {

Animating Cutscenes

[241]

 textComponent.text = subtitlesText;
 }

Attach the script to the cutscene game object (the one that has the Animator9.
component and animates all the props).
Open the Animation Import Settings for the cutscene animation.10.
You can scrub through the timeline and add Animation Events.11.
Add an Animation Event and name the function as SetSubtitles. Enter the text12.
you want to display as subtitles in the String parameter, as shown in the
following screenshot:

SetSubtitles Animation Event with the “Goooal!” text

If you want the subtitles to disappear, add a SetSubitles Animation Event and13.
leave the String parameter empty.
Apply the Animation Import Settings.14.
Play the game to see the effect.15.

How it works…
In this recipe, we use Animation Events to synchronize subtitles with the cutscene. The
principle is the same as in the Using Animation Events to trigger sound and visual effects recipe
in Chapter 7, Special Effects. The Subtitles.cs script also handles showing and hiding
the subtitles, depending on the value of the subtitlesText variable set by the public
voidSetSubitltes(string text) function that we call with the Animation Events.

Animating Cutscenes

[242]

If you want to localize your subtitles, use string localization keys instead
of text. The Subtitles.cs script will then have to search for the text in
your localization base using those keys.

Using root motion to play cutscenes in
gameplay
We can also play cutscenes in gameplay without changing the camera, and using smooth
transitions to move in and out of a cutscene. This recipe shows an example of that.

Getting ready
In this recipe, we will use the same cutscene as in the previous recipe. You can also open the
example Unity project and go to the Chapter 08 Animating Cutscenes\Recipe 06
Using root motion to play cutscenes during gameplay directory. If you open
the Example.unity scene there and play the game, you will be able to move the character.
Approach the red sphere marker and press the space bar to play the cutscene:

Cutscene played during gameplay

Animating Cutscenes

[243]

How to do it…
To play cutscenes during gameplay, follow these steps:

Import your cutscene. Make sure to import the character animation as a separate1.
file.
Go to the cutscene asset's Import Settings, Animation tab.2.
Rename the Default Take animation to Cutscene.3.
Create a new Animation Clip, choose the Default Take as the source, and set4.
the Start frame to 0 and the End frame to 1. Call this animation CutsceneIdle and
make it loop.
Place the cutscene game object (in our example this is the Ball game object) and5.
the character in the scene.
Follow the Using root motion to steer a character recipe from Chapter 4, Character6.
Movement. This way, you will have a moving character you can control.
Create an Animator Controller for the cutscene.7.
Make the CutsceneIdle the default animation.8.
Drag and drop the Cutscene animation.9.
Create a Trigger parameter and name it Cutscene.10.
Make a transition from CutsceneIdle to Cutscene animation using11.
the Cutscene Trigger parameter. Set the Has Exit Time to false and
the Transition Duration to 0.1 seconds.
Assign the Player tag to the character.12.
Add the cutscene animation to the character's Animator Controller. In our13.
example, the animation is called SoccerKick.
Add a Cutscene Trigger parameter to the character's controller.14.
Create a transition from Any State to SoccerKick with the Cutscene Trigger as15.
the condition. Has Exit Time should be set to false and Transition Duration
set to around 0.5 seconds.
Add another transition from SoccerKick to Idle, with no conditions, and Has Exit16.
Time set to true. Transition Duration should also be set to around 0.5 seconds.
Create a new C# script and call it CutsceneTrigger.cs. In this script, we have17.
the void OnTriggerEnter() and void OnTriggerExit() functions. Their
main task is to set the bool inTrigger flag. The OnTriggerEnter() function
also stores the reference to the player's game object:

 void OnTriggerEnter (Collider other) {
 if (other.gameObject.CompareTag("Player"))
 {

Animating Cutscenes

[244]

 player = other.gameObject;
 inTrigger = true;
 }
 }
 void OnTriggerExit(Collider other)
 {
 if (other.gameObject.CompareTag("Player"))
 {
 inTrigger = false;
 }
 }

We check the inTrigger flag's value in the Update() function. If it is set to true,18.
the player can press the space bar to start the cutscene. This starts a coroutine to
match the character's position and rotation with the trigger's position and
rotation. This position and rotation is the one our character should have when the
cutscene starts. We also enable or disable a hint, the reference to which we store
in the public GameObject onScreenInfo variable. When the player starts the
cutscene, we turn off the Box Collider component to disable the trigger:

 if (inTrigger)
 {
 onScreenInfo.SetActive(true);

 if (Input.GetKeyDown(KeyCode.Space))
 {
 GetComponent<BoxCollider>().enabled = false;
 inTrigger = false;
 StartCoroutine("StartCutscene");
 }
 }
 else
 {
 onScreenInfo.SetActive(false);
 }

In the IEnumerator StartCutscene() coroutine, we first set the Rigidbody19.
component of the character to Kinematic. This way, we turn off the physics
simulation. Then we interpolate the player's position and rotation so that it
matches the position and rotation of the trigger. If it is close enough, we set
the Cutscene Trigger in the player's and cutscene's Animator component to
play the animation simultaneously on both objects:

 IEnumerator StartCutscene()
 {
 player.GetComponent<Rigidbody>().isKinematic = true;

Animating Cutscenes

[245]

 bool positionAdjusted = false;
 bool rotationAdjusted = false;
 while(true)
 {
 yield return null;
 if ((player.transform.position -
 transform.position).magnitude <= 0.01f)
 {
 positionAdjusted = true;
 }
 else
 {
 player.transform.position =
 Vector3.Lerp(player.transform.position,
 transform.position, positionAdjustmentSpeed
 * Time.deltaTime);
 }
 if (Vector3.Angle(player.transform.forward,
 transform.forward) <= 1f)
 {
 rotationAdjusted = true;
 }
 else
 {
 player.transform.rotation =
 Quaternion.Lerp(player.transform.rotation,
 transform.rotation, positionAdjustmentSpeed
 * Time.deltaTime);
 }
 if (positionAdjusted && rotationAdjusted)
 {
 break;
 }
 }
 player.GetComponent<Animator>
 ().SetTrigger(animationTrigger);
 cutsceneAnimator.SetTrigger(animationTrigger);
 }

Create a new empty game object and name it CutsceneTrigger. Add a Box20.
Collider component to it and set it to Is Trigger.
Place it in the exact spot at which the character has to be in the cutscene. Rotate it21.
the same way the character needs to be rotated. You may use an empty object in
the cutscene (exported from the 3D package) to make it easier.

Animating Cutscenes

[246]

Assign the CutsceneTrigger.cs script to the CutsceneTrigger game object.22.
Create a hint UI Text and assign it to the On Screen Info field of the Cutscene23.
Trigger component.
Assign the cutscene game object's Animator component to24.
the CutsceneAnimator field of the Cutscene Trigger component.
Create another C# script and call it SetKinematic.cs. In this script, we have just25.
one public void NotKinematic() function, in which we set the Rigidbody
component to non-kinematic:

 public void NotKinematic()
 {
 GetComponent<Rigidbody>().isKinematic = false;
 }

Attach the script to the character.26.
With the character selected, open the Animation View.27.
Select the SoccerKick animation.28.
Add an Animation Event near the end of the animation and29.
choose NotKinematic(). This will make the character react to physics again.
Play the game, approach the trigger, and press the space bar to see the effect.30.

How it works…
This recipe uses a similar concept to the one used in the Action Points – performing an action
in a specified spot recipe from Chapter 5, Characters Actions and Expressions. Here we've
added a one-frame looped CutsceneIdle animation to the animated props (a Ball game
object in our example). This makes the objects wait for the cutscene to start. Our character's
cutscene animation is exported as a separate file, which enables us to set its rig
to Humanoid and use it along with other animations.

Our character starts playing the animation in the same moment as the cutscene game object.
This makes them synchronized.

Another important thing is that we set the Rigidbody component of our character to Is
Kinematic for the time of the cutscene. This makes the animation control our character with
100 percent weight. No collisions can interrupt our character from playing the animation.
After the cutscene is finished, we turn off the Is Kinematic option to make our character
behave normally.

9
Physics and Animations

This chapter presents Unity's 5 physics engine and what can be achieved with it. It covers
the following recipes:

Using cloth
Using rigid body joints
Destructible objects
Creating a humanoid ragdoll with the ragdoll wizard
Creating a generic ragdoll with character joints
Applying force to a ragdoll
Dismemberment
Getting up from a ragdoll

Introduction
Unity's physics engine can be used to create interesting effects as well as gameplay
mechanics. Previously we were using rigid bodies to move our character and to detect
collisions. In this chapter, we will focus on more visually appealing aspects of rigid bodies
and physics.

Physics and Animations

[248]

Using cloth
In this recipe, we will create a simple cloth simulation:

Cloth simulation used to create a flag

Getting ready
For this recipe, we need a model of the cloth. It should be a plane divided several times to
have enough vertices for the cloth simulation to work. In our example, we use one
additional model: the flag pole. You can go to the Chapter 09 Physics and
animations\Recipe 01 Using cloth directory. You will find a FlagPole game object in
the Example.unity scene there. This object contains the Flag and the FlagPole objects as
children. The Flag game object uses the cloth simulation.

How to do it…
To use cloth simulation, follow these steps:

Place the Flag game object in the scene.1.
Add the Cloth component to the Flag game object (go to Component | Physics2.
| Cloth).

Physics and Animations

[249]

Notice that a Skinned Mesh Renderer component is automatically added. You3.
may remove the Mesh Renderer component from the object.
Find the mesh of the Flag and drag it to the Mesh field in the Skinned Mesh4.
Renderer component. If your game object still has the Mesh Filter component,
you may click on the mesh attached to it and it will be displayed in the Project
View. This makes it easier to find the mesh we need.
If your game object still has the Mesh Filter component attached, you can remove5.
it.
You may need to add a material to the Flag game object. If it lacks the material,6.
drag appropriate materials into the Materials section in the Skinned Mesh
Renderer.
Go to the Cloth component settings in the Inspector and click on the Edit7.
Constraints button, as shown in the following screenshot:

Edit Constraints button

The Cloth Constraints window will appear, as shown in the following8.
screenshot:

Editing constraints

Physics and Animations

[250]

It is used to constrain the cloth movement. To pin a cloth to something, select9.
the Paint tab and click on the Max Distance checkbox. By left-clicking on a
vertex, you can paint it red, which means its movement is fully constrained. You
may choose a different color to make the cloth move slightly. Black means no
constrains at all.
After painting at least one vertex, you may switch to the Select tab. In this tab,10.
you can box-select vertices. After selecting a group of vertices, you may check
the Max Distance checkbox and edit the value for all selected vertices at once.
If you cannot select or paint the vertices, rotate the view—you may be looking at11.
your mesh from the backfaces side. Selecting and painting works only on the
frontfaces side, unless you check the Manipulate Backfaces option in
the Visualization dropdown.
Our Flag's orientation is top to bottom (it is pinned with its top to the pole). So we12.
should select all top vertices and paint them red (set the Max Distance to 0). In
your case, you may want to pin other vertices.
To remove the constrain from any given vertex, select it (you need to be in13.
the Select tab) and uncheck the Max Distance checkbox. The vertex will turn
black, which means it is not constrained any more.
To make the Flag collide with other game objects, go to the Capsule Colliders14.
and Sphere Colliders array in the Cloth component's settings. You may
add Sphere Colliders or Capsule Colliders located in the scene here. Cloth can
collide only with those two types of colliders.
Play the game to see the effect.15.

How it works…
Cloth simulation uses vertices of a mesh to simulate cloth-like behavior. The mesh needs to
be dense enough to make the simulation look good. The flag used in this example has 100
vertices.

The Cloth component has a number of options to use and tweak:

Stretching Stiffness: How stiff the cloth is when stretching.
Bending Stiffness: How stiff the cloth is when bending.
Use Tethers: This helps prevent unconstrained vertices going too far away from
the constrained ones
Use Gravity: This applies gravity to cloth vertices.
Damping: This damps the motion of cloth vertices.

Physics and Animations

[251]

External Acceleration: This is a constant acceleration of cloth vertices and can be
used to simulate wind.
Random Acceleration: This is similar to the preceding option, but is random. It is
useful for simulating wind.
World Velocity Scale: This scales the world velocity of the object to which the
cloth is attached to. It is useful for a character's clothing.
World Acceleration Scale: This scales the world acceleration of cloth vertices
when the object the cloth is attached to accelerates. It is useful for a character's
clothing.
Friction: The friction to apply when cloth vertices collide with something.
Collision Mass Scale: This scales the mass of cloth vertices when they collide
with something.
Use Continuous Collision: This is similar to the continuous collision detection of
the rigid bodies and improves collision quality but is heavier on performance.
Use Virtual Particles: This adds one virtual particle/vertex per cloth triangle and
improves collision quality.
Solver Frequency: Number of solver iterations per second.
 Sleep Threshold: The threshold after which cloth stops being simulated (sleeps).
Capsule Colliders: An array of capsule colliders to collide with.
Sphere Colliders: An array of sphere colliders to collide with.

There's more…
Cloth works best with single-sided flat meshes (subdivided planes). It can also be used on
thin subdivided boxes. Avoid using copied planes with inverted face normals (that makes
two sheets of cloth that constantly collide with each other).

For best results, you should use some kind of double-sided shader on the single-sided flat
mesh. You may use a simple shader provided with the example project; you can find it in
the Textures materials and shaders\Shaders directory. It doesn't support shadows.
You can also find good double-sided shaders in the Asset Store; I can recommend
the Double Sided Standard Mobile Legacy Shaders package created by Mario Lelas.

Cloth components can be used with any Skinned Mesh Renderer. So you can make parts of
your characters be simulated as cloth. The best practice would be to have a second Skinned
Mesh Renderer with just the cloth mesh (it will be far easier to constrain such mesh than
trying to constrain the whole character).

Physics and Animations

[252]

Using rigid body joints
In this recipe, we will create two objects with physics simulation: a rope and doors. We will
use rigid body joints to constrain the movement and rotation of those objects.

Getting ready
For this recipe, we need four models: a RopePole (similar to the one from the previous
recipe), a skinned Rope with a RopeRig containing around 10 bones, a Frame and two
doors, DoorLeft and DoorRight (resembling those swing doors from a saloon). We also
need a character with a rigid body to collide with our objects. You can go to the Chapter
09 Physics and animations\Recipe 02 Using rigid body joints directory. You
will find all these objects in the Example.unity scene. When you play the game, try to
walk with our character and collide with the rope and doors to see the effect.

Rope and swing doors

Physics and Animations

[253]

How to do it…
To use rigid body joints, follow these steps:

Import our swing doors to Unity. The model should contain three1.
objects: Frame, DoorLeft, and DoorRight.
Place the objects in the scene and parent them all to an empty game object, which2.
you may call SwingDoors.
Add a Mesh Collider to the Frame game object to prevent our character from3.
going through it.
Add a Box Collider or a Mesh Collider set to Convex to the DoorLeft game4.
object.
Add a Rigidbody component to the DoorLeft game object.5.
Add a Hinge Joint component to DoorLeft.6.
Set the Axis parameter to 0 X, 1 Y, and 0 Z. This is the axis in which our Hinge7.
Joint can rotate.
Check the Use Limits option and set the Min to -120 and Max to 120 (exact limits8.
may differ in your particular case). Those values describe the range in which
our Hinge Joint can rotate from its neutral position.
If you want the doors to come back to their original position after they are9.
pushed, check the Use Spring option.
Set the Spring parameter to 1 and Damper to 0.5 (you may need to experiment10.
with the exact values).
Repeat steps 4-10 for the DoorRight game object.11.
Play the game and make any other rigid body collide with the doors to see the12.
effect (you may use your character if it uses rigid body physics to move).

To create a rope using Hinge Joints, follow these steps:

Import our skinned Rope model to Unity. Rope should have enough bones to1.
simulate its behavior (around 10-20 should be enough in most cases). Make sure
the bones have identical or similar size and are not parented to each other (it will
make the editing much easier).
Place the Rope model in the scene.2.
Go to the RopeRig game object and select all the bones.3.
Add Capsule Collider, Rigidbody, and Hinge Joint components to all the bones4.
in the rig.
With all the bones selected, use the Inspector to scale the Capsule Colliders to fit5.
the bones sizes.

Physics and Animations

[254]

Make sure the Auto Configure Connected Anchor option is selected in each6.
bone's Hinge Joint settings.
For every bone, find its Hinge Joint settings. Drag and drop the next bone to7.
the Connected Body field of the previous bone. For instance, if you have a rig
containing five bones, Bone1, Bone2, Bone3, Bone4, Bone5. Bone5 is the top
one—drag and drop Bone5 to the Connected Body field in the Hinge Joint
settings of Bone4. Drag and drop Bone4 to Connected Body field in the Hinge
Joint settings of Bone3 and so on. Leave the top bone's Connected Body field
empty—this will constrain its movement in space.
You may also need to adjust the Limits and Axis fields. The rotation axis should8.
point in the same direction in which the bones are pointing. If you select a game
object with a Hinge Joint, you may see the rotation axis as a small brownish
arrow.
Disable or remove the Animator component from the Rope game object.9.
Play the game and collide with the rope to see the effect.10.

How it works…
In this recipe, we used Hinge Joints—one of the joint types in Unity. Those joints constrain
rigid body movement. If we use them on a rig of a Skinned Mesh Renderer, we can
introduce physics simulation to it (as we did with the rope). Hinge Joints have a few
interesting parameters:

Connected Body: We can connect the object to another rigid body by placing it
into this field. Connected objects can form ropes, chains, and other interesting
structures.
Anchor: A defined local space position around which the joint can rotate.
Axis: This specifies the axis around which the joint can rotate.
Auto Configure Connected Anchor: If we check this, the Connected Anchor will
be configured automatically to match the Connected Body's Anchor.
Connected Anchor: Here we can manually configure the connected body
position (we have to disable Auto Configure Connected Anchor first).
Use Spring: If this option is checked, the joint will behave as if a spring is
attached to it. It will try to get back to its Target Position (see further down this
list).
Spring: This is the force of the spring.
Damper: This damps the movement caused by the spring force. The object will
slow down in time until it completely stops.

Physics and Animations

[255]

Target Position: This is the target angle to which the joint's spring wants to pull
the object.
Use Motor: This makes the object spin around its joint Axis.
Target Velocity: This is the velocity the object wants to achieve when rotating.
Force: This is the force applied to the object to achieve the Target Velocity.
Free Spin: When you enable this option, the object will not try to slow down to
match the Target Velocity, it will only accelerate.
Use Limits: Enable this option if you want to limit the rotation of the object
around its joint Axis.
Min: This is the lowest rotation limit.
Max: This is the highest rotation limit.
Bounciness: How much the object will bounce off when it reaches the rotation
limit.
Contact Distance: It makes the limits have some width to decrease jitter. In this
distance from the limits, the joint will have contact with the given limit.
Break Force: This is the force needed to break the joint and is useful if you want
to ram your doors.
Break Torque: Similar to the preceding one, this is the torque needed to break the
joint.
Enable Collision: This enables collision between rigid bodies connected to the
joint.
Enable Preprocessing: his is used to stabilize the situations that are impossible to
fulfill.

Destructible objects
In this recipe, we are going to create a simple destructible object.

Getting ready
To follow this recipe, you will need an object with two states: normal and shattered. The
shattered object is a cut-to-pieces version of the normal one. Each piece of the fractured
object should be a separate game object. See the following screenshot (we are using Blender
fracture tools to fracture a simple sphere):

Physics and Animations

[256]

Normal ball and a fractured one: each fractured element is a separate game object

You can also download the provided example Unity project and go to the Chapter 09
Physics and animations\Recipe 03 Destructible objects directory. You can find
the Example.unity scene there. If you play the game, you will see a ball falling down.
When it hits the ground, it will be fractured into pieces.

How to do it…
To create a destructible object, follow these steps:

Import the normal and shattered objects to Unity. In our example, we have an1.
object called Ball and the other one is called BallFractured.
Drag and drop both objects into the scene.2.
Select all child game objects (pieces) of the BallFractured game object. Add3.
the Rigidbody and Mesh Collider components to them. Set the Mesh Collider
to Convex.
Create a prefab from the BallFractured game object (containing all the pieces).4.
Select the Ball game object and add a Rigidbody and a Sphere Collider to it (or5.
another type, depending on the shape of your object).
Write a new C# script and call it SpawnFracturedObject.cs. In this script, we6.
have a void Fracture() function that spawns a fractured game object prefab
(our BallFractured), applies velocity to all its pieces, and destroys the main object
(Ball):

 void Fracture()
 {
 GetComponent<Collider>().enabled = false;
 GameObject fracturedObject =
 (GameObject)GameObject.Instantiate(fracturedObject

Physics and Animations

[257]

 Prefab, transform.position, transform.rotation);
 Rigidbody[] rigidBodies =
 fracturedObject.GetComponentsInChildren<Rigidbody> ();
 for (int i = 0; i < rigidBodies.Length; i++)
 {
 rigidBodies[i].velocity +=
 lastRigidBodyVelocity;
 }
 Destroy(gameObject);
 }

The void Fracture() function is called when our main object collides with7.
anything:

 void OnCollisionEnter(Collision col)
 {
 Fracture();
 }

The Ball's velocity is saved every frame to the float lastRigidBodyVelocity8.
variable (in the FixedUpdate() function):

 void FixedUpdate () {
 lastRigidBodyVelocity = rb.velocity;
 }

Assign the script to the Ball game object and drag the BallFractured prefab onto9.
the Fractured Object Prefab field in the Inspector.
Play the game to see the effect:10.

Before and after collision

Physics and Animations

[258]

How it works…
two objects, a normal one and a fractured one built out of a number of pieces. The normal
object works as any other game object in our game. The fractured game object is spawned
only when we destroy the normal object. We save the normal object's velocity (its rigid
body velocity in this example) every frame to be able to add this velocity to our spawned,
fractured pieces. This makes them continue movement after the normal object was
destroyed.

In this recipe, we created two objects, a normal one and a fractured one built out of a
number of pieces. The normal object works as any other game object in our game. The
fractured game object is spawned only when we destroy the normal object. We save the
normal object's velocity (its rigid body velocity in this example) every frame to be able to
add this velocity to our spawned, fractured pieces. This makes them continue movement
after the normal object was destroyed. There's more…

You can use this simple technique to create even more complex objects (destructible barrels
where each plank is a separate object is a good example). There are also different fracture
systems available on the Asset Store (try searching for “fracture,” “shatter,” or
“destructible”).

Creating a humanoid ragdoll with the ragdoll
wizard
In this recipe, we will turn our character into a ragdoll and learn how to enable the ragdoll
and disable it. We will use Unity's built-in Ragdoll Wizard, which is useful for creating
humanoid ragdolls:

A character with the ragdoll effect applied

Physics and Animations

[259]

Getting ready
For this recipe, we need an animated character. We can use the one we were using before
(for instance, the one from the Chapter 4, Character Movement). You can also go to
the Chapter 09 Physics and animations\Recipe 04 Creating a humanoid
ragdoll with ragdoll wizard directory. You can find the Example.unity scene there.
If you play the game and press the space bar, the character will turn into a ragdoll. You can
press the space bar again to turn the ragdoll off.

How to do it…
To create a humanoid ragdoll, follow these steps:

Place your character in the scene.1.
Go to Game Object | 3d Object | Ragdoll to open the Create Ragdoll window.2.
Drag and drop the bones from your character rig to the fields in the Create3.
Ragdoll window. The fields' names aren't very accurate. Left Hips means left
thigh, Left Knee means left shin, LeftArm means the left upper arm,
and LeftElbow means the lower left arm, as shown in the following screenshot.
The same applies to the right side. The rest of the names are self-explanatory:

Create Ragdoll window

Physics and Animations

[260]

After you assign all the bones, click on the Create button. The ragdoll will be4.
created. Rigidbody, Capsule Collider (or Box Collider), and Character Joint
components will be added to the required bones.
You may need to adjust the size of the colliders to better match your character's5.
shape. See the following screenshot:

Configured ragdoll

Add two layers in the game: Characters and Ragdoll. To do so, go to Edit6.
| Project Settings | Tags and Layers.
Set the character's layer to Characters and its rig with all its children (the ragdoll)7.
to Ragdoll.
Go to Edit | Project Settings | Physics and disable the collision between8.
the Characters and Ragdoll layers. This is a good way to prevent our ragdoll
colliding with our character's main collider which would cause unwanted
behavior (jitter, glitches in movement, and so on).
Create a new C# script and name it HandleRagdoll.cs. In this script, we have9.
the public void EnableRagdoll(bool enable, List<Rigidbody>
rigidbodies) function. It iterates through all the rigid bodies attached to any of
the children of the public Transform charactersRig transform and enables
them or disables them depending on the enable flag. It also enables or disables
the mainRigidbody and the mainCollider (attached to the character's root
object). Finally, it enables or disables the character's Animator component:

 public void EnableRagdoll(bool enable, List<Rigidbody>
 rigidbodies)
 {

Physics and Animations

[261]

 for (int i = 0; i < rigidbodies.Count; i++)
 {
 rigidbodies[i].isKinematic = !enable;
 }
 if (mainCollider != null)
 {
 mainCollider.enabled = !enable;
 }
 if (mainRigidbody != null)
 {
 mainRigidbody.isKinematic = enable;
 }
 if (anim != null)
 {
 anim.enabled = !enable;
 }
 }

We call this function every time player presses the space bar. At the start of the10.
game, we collect all rigid bodies attached to character's rig children objects and
store them in a global list. We pass that list to the EnableRagdoll() function
every time we call it. We also call the EnableRagdoll() function at the start of
the game with the enable parameter set to false. This disables the ragdoll.
Attach the script to the character and drag its rig to the Characters Rig field of the11.
script.
Play the game and press the space bar to see the effect.12.

How it works…
The Create Ragdoll window helps with attaching Character Joint, Capsule Collider,
and Rigidbody components to humanoid characters' rigs. Those characters don't have to
use the HumanoidumanoidHumanoid rig in the same way as the Mecanim feature.

Rigid bodies, colliders, and character joint components create a ragdoll. To turn the ragdoll
on, we need to disable the Animator component as animations override the movement of
rigid bodies. This is what our script does. It also makes the ragdoll's rigid bodies kinematic
when the ragdoll is off, to turn the physics simulation off when it's not needed.

Physics and Animations

[262]

Creating a generic ragdoll with character
joints
This time we will create a ragdoll for a non-humanoid character. We cannot use the Ragdoll
Wizard in this case, but instead we will make the ragdoll manually.

A generic character ragdoll in action

Getting ready
For this recipe, we need a nonhumanoid character. We use our old fellow Spider as an
example. The character needs to be rigged. You can also open the example Unity project
and go to the Chapter 09 Physics and animations\Recipe 05 Creating a
generic ragdoll with character joints directory. If you open the Example.unity
scene there and play the game, you will see a falling spider with the ragdoll already turned
on. You can find the Spider in the Rigs directory.

How to do it…
To create a generic ragdoll, follow these steps:

Import the character to Unity and place it in the scene.1.
Select all the bones of the character's rig that will be used in the ragdoll2.
simulation. In our example, we skipped the fangs.
Add Capsule Collider, Rigidbody, and Character Joint components to the3.
selected bones.

Physics and Animations

[263]

Adjust the shapes of the colliders to match the limbs of the character. You should 4.
avoid colliders intersecting with each other. You may need to change a few
colliders to Box Colliders or Sphere Colliders (our Spider's abdomen has Box
Colliders instead of Capsule Colliders and the head has a Sphere Collider).
Make sure all Character Joints have the Auto Configure ConnectedAnchor5.
option selected.
Choose the root body part of your character (for our Spider, it was the abdomen).6.
Remove the Character Joint component from that body part to make it work just7.
like a normal rigid body.
Connect all other Character Joints to their parent game objects (also containing8.
the Character Joint components). For instance, if the character has a leg with
three segments, Leg1, Leg2, and Leg3, drag the Leg2 object to Leg3
object's Connected Body field in the Character Joint component. Then drag Leg1
to the Connected Body field of Leg2. Finally, drag Leg1 to its root
bone's Connected Body field (in our case it's the Abdomen).
Repeat this process for all the bones with Character Joints. The hierarchy of the9.
joints should reflect the hierarchy of the rig.
Disable the character's Animator component and play the game to see the effect.10.
You may need to further adjust Character Joint components' properties to
achieve the desired effect:

Spider with a defined ragdoll

Physics and Animations

[264]

How it works…
In this recipe, we use the Character Joint components to create a ragdoll from scratch.
Every such component works with a Rigidbody component and a Collider component that
have to be attached to the same game object. We can create chains of Character Joint
components by dragging a connected game object to the Connected Body field of the joint.

Character Joint components have a set of parameters we can tweak:

Connected Body: This is the parent object to which the joint is connected.
Anchor: This is the point in space the joint rotates around.
Axis: This is the twist axis—the one our bone will twist around. It is visualized
with an orange arrow.
Auto Configure Connected Anchor: Enable this if you want Unity to try to
autoconfigure the Connected Anchor.
Connected Anchor: If you disable the Auto Configure Connected Anchor, you
can manually configure it here.
Swing Axis: This is the axis our bone will swing (or bend) around . It is
visualized with a green arrow.
Low Twist Limit: This is the lower limit angle for bone twisting.
High Twist Limit: This is the higher limit angle for bone twisting.
Swing 1 Limit: This is the lower limit angle for bone swinging.
Swing 2 Limit: This is the upper limit angle for bone swinging.
Break Force: This is the force needed to break the joint.
Break Torque: This is the torque needed to break the joint.
Enable Collision: If this is checked, collisions between rigid bodies connected to
this joint are enabled.
Enable Preprocessing: This is used to stabilize impossible-to-fulfill scenarios.

Applying force to a ragdoll
In this recipe, we are going to apply some additional force to a ragdoll when we turn it on.
Normally, when you turn the ragdoll on, it starts from idle; no initial movement is
introduced. It looks stiff and unnatural. Applying force to a body part will help to avoid
that.

Physics and Animations

[265]

Getting ready
We are going to use the same character as in the Creating a humanoid ragdoll with the ragdoll
wizard recipe. We will also use the HandleRagdoll.cs script from the same recipe to turn
the ragdoll on. You can also open the example Unity project and go to the Chapter 09
Physics and animations\Recipe 06 Applying force to a ragdoll directory. If
you open the Example.unity scene there and play the game, you will be able to click on
any body part of the character. That will turn the ragdoll on and apply force to this body
part, which will make the character look like it was hit or shot in that particular limb:

Force applied directly to the head of the character

How to do it…
To apply force to a ragdoll's body part, follow these steps:

Follow the Creating a humanoid ragdoll with the ragdoll wizard recipe to have a1.
character with a working ragdoll and the HandleRagdoll.cs script (a script to
turn the ragdoll on).
Create a new C# script and name it RagdollForceApply.cs. In this2.
script's Update() function, we first check whether the player clicks on the left
mouse button. Then we create a ray from the mouse cursor position in the
camera's direction and we check if we hit a collider that has one of the layers
described by the publicLayer Mask ragdollBodyPartsLayer variable. If we
manage to hit a collider, we try to get the Rigidbody component from it and store
it in our Rigidbody hitBodyPart variable. If we indeed find the rigid body, we
call the void ApplyForce() function:

 if (Input.GetKeyDown(KeyCode.Mouse0))

Physics and Animations

[266]

 {
 if (Physics.Raycast(Camera.main.ScreenPointToRay
 (Input.mousePosition), out hitInfo, 100f,
 ragdollBodyPartsLayer))
 {
 hitPodyPart = hitInfo.collider.gameObject
 .GetComponent<Rigidbody>();
 if (hitPodyPart != null)
 {
 AddForce();
 }
 }
 }

The void ApplyForce() function turns the ragdoll on using3.
the HandleRagdoll script. After that, it applies the force in the camera direction
with the public float forceMagnitude strenght:

 void AddForce()
 {
 ragdollHandler.EnableRagdoll(true);
 force = (hitInfo.point -
 Camera.main.transform.position).normalized *
 forceMagnitude;
 hitPodyPart.AddForce(force, ForceMode.Impulse);
 }

We set the reference to the HandleRagdoll script in the Start() function.4.
Add the script to the character.5.
Make sure the character ragdoll's body parts have the proper Layer set.6.
Set the Ragdoll Body Parts Layer mask in the RagdollForceApply in7.
the Inspector to match the layer of the ragdoll's body parts.
Play the game and click on any given body part of the character to see the effect.8.

How it works…
This recipe simply applies a force to a chosen body part of the ragdoll using the
AddForce() function called on the limb's Rigidbody component. This function requires
a Vector3 force parameter that describes the direction and magnitude of the applied
force. We can also specify a ForceMode mode parameter to change the mode of the applied
force. Here we've chosen to use the ForceMode.Impulse as our force is applied only in one
frame.

Physics and Animations

[267]

The rest of the script handles selecting the body part we want to apply the force to. In this
example, we are using the mouse input to cast a ray and try to hit a body part's collider. If
we manage to do so, we choose this particular limb as the target that we want to apply the
force to.

There's more…
You can also use the concept illustrated in the Destructible objects recipe to store the velocity
of the character (or of its limbs) and then apply it to the ragdoll's body parts. To do so, you
may calculate the linear and angular velocity of any given body part in the Update()
function, by subtracting the previous position from the current position, and the previous
rotation in Euler angles from the current rotation. Then you can apply the calculated values
as the velocity and angularVelocity to that part's Rigidbody component when you
turn the ragdoll on.

Dismemberment
This recipe shows how to create a dismemberment effect for a rigged character. We are
going to create a decapitation as an example. This effect is often used in various combat
games (both shooters and melee combat games):

Decapitation—an example of the dismemberment effect

Physics and Animations

[268]

Getting ready
We are going to use the same character as in the Creating a humanoid ragdoll with the ragdoll
wizard recipe. We will also use the HandleRagdoll.cs script from the same recipe to turn
the ragdoll on. On top of that, we will need to have two additional meshes: the Head model
and the Neck model. See the following screenshot for reference:

Neck and head models

You can also open the example Unity project and go to the Chapter 09 Physics and
animations\Recipe 07 Dismemberment directory. If you open the Example.unity
scene there, play the game and press the space bar so that the poor character will be
decapitated. You can find all the additional models in the Models directory.

How to do it…
To create a decapitation effect, follow these steps:

Follow the Creating a humanoid ragdoll with the ragdoll wizard recipe to have a1.
character with a working ragdoll and the HandleRagdoll.cs script (a script to
turn the ragdoll on).
Import the Neck and Head models and place them in the scene near the2.
character.
Create two empty game objects; name the first one HeadMarker and the second3.
one NeckMarker.
Parent the HeadMarker to the head bone and the NeckMarker to the neck bone.4.
Make sure that the local position of HeadMarker and NeckMarker is 0.
Parent the Head object to the HeadMarker and the Neck object to5.
the NeckMarker. Zero out Head's and Neck's local rotation and position.

Physics and Animations

[269]

Use the HeadMarker and NeckMarker to position the Head and the Neck to6.
match the head and neck of the character as closely as possible. Remember
that Head's and Neck's local position and rotation is 0, so when we position them
by manipulating HeadMarker and NeckMarker, it will make is easier for us to
spawn the Head and Neck later.
Add a Sphere Collider and a Rigidbody component to the Head game object.7.
Make a prefab from the Head game object and another one from the Neck game8.
object.
Delete Head and Neck from the scene, but make sure to leave HeadMarker9.
and NeckMarker still parented to their corresponding bones in the character's
rig.
Create a new C# script and name it Dismemberment.cs. In this10.
script's Update() function, we check whether the player presses the space bar
and we call the void Decapitate() function if the wasSevered flag is false
(you can really only decapitate someone once):

 if (Input.GetKeyDown(KeyCode.Space) && !wasSevered)
 {
 Decapitate();
 }

The void Decapitate() function does the rest. First it checks if11.
the HandleRagdoll.cs script was found (the reference to it is set in the Start()
function). If it was found, we enable the ragdoll with it and disable the script.
Next we remove the Character Joint, Rigidbody, and Collider components from
the head bone (we are going to scale it to 0 because we don't want to bother with
this joint anymore). Next we spawn the new, severed Head from a prefab stored
in the public GameObject headPrefab variable. The Head is spawned with
the HeadMarker position and rotation, a reference to which is stored in
the public Transform headMarker variable. Then we get the Rigidbody
component of the spawned Head and apply a random force and random torque
to make it move. We use the public Vector3 variables to store
the randomForce1, randomForce2, randomTorque1, and randomTorque2
values. We have a small helper function Vector3 RandomVector(Vector3 v1,
Vector3 v2) that takes two vectors and returns a random vector build from
those two parameters. Lastly, we scale the head bone to 0 (reference to it is stored
in the public Transform head variable). Finally, we spawn the Neck prefab
and parent it to the NeckMarker:

 wasSevered = true;
 if (ragdollHandler != null)

Physics and Animations

[270]

 {
 ragdollHandler.EnableRagdoll(true);
 ragdollHandler.enabled = false;
 }
 Joint headJoint = head.GetComponent<Joint>();
 if (headJoint != null)
 {
 Destroy(headJoint);
 }
 Collider headCollider = head.GetComponent<Collider>();
 if (headCollider != null)
 {
 Destroy(headCollider);
 }
 Rigidbody headRigidBody = head.GetComponent<Rigidbody>();
 if (headRigidBody != null)
 {
 Destroy(headRigidBody);
 }
 GameObject spawnedHead =
 (GameObject)GameObject.Instantiate(headPrefab,
 headMarker.position, headMarker.rotation);

 Rigidbody spawnedHeadRB = spawnedHead.GetComponent<Rigidbody>();
 if (spawnedHeadRB != null)
 {
 spawnedHeadRB.AddForce(RandomVector(randomForce1,
 randomForce2), ForceMode.Impulse);

 spawnedHeadRB.AddTorque(RandomVector(randomTorque,
 randomTorque2),ForceMode.Impulse);
 }
 head.localScale = Vector3.zero;

 GameObject spawnedNeck =
 (GameObject)GameObject.Instantiate(neckPrefab,
 neckMarker.position, neckMarker.rotation);
 spawnedNeck.transform.parent = neckMarker;

Add the script to the character.12.
Play the game and press the space bar to see the effect.13.

Physics and Animations

[271]

How it works…
The main feature of this recipe is hiding the character's head. To do so, we simply need to
scale the head bone to 0. All vertices assigned to this bone will be then squashed to the same
point in space. After we hide the head, we can spawn a second one with a Rigidbody
component and a Collider attached. This way our second head will fall down. To make the
effect more spectacular, we're adding a small random force and torque to the newly
spawned head. This makes it rotate and fly up after the decapitation.

We also spawn a neck game object to mask the stretched polygons that appear after we
scale the head to 0. We use the HeadMarker and NeckMarker game objects parented to the
corresponding bones in the character's rig just because they make it easier to match the
position and rotation of the Head and Neck objects.

There's more…
You can also cut off other limbs with this technique. If you want to use this concept for
cutting off arms or legs, consider spawning a rigged severed arm or leg with a ragdoll. Such
a ragdoll can contain only two Rigidbody components, two Colliders, and one Character
Joint (the elbow or the knee).

Getting up from a ragdoll
This recipe is slightly more advanced but fun to implement. It makes our character use
three different rigs: the original animated rig, the rig our character's mesh is skinned with,
and a ragdoll. By using these three rigs, we can smoothly blend between ragdoll and
animation any time.

Getting ready
Again, we are going to use the same character as in the Creating a humanoid ragdoll with the
ragdoll wizard recipe. We will need two getting up animations: one from face facing down
and one from face facing up positions. Name them StandUpFaceUp
and StandUpFaceDown. We also need at least a looped Idle animation.

Physics and Animations

[272]

You can also open the example Unity project and go to the Chapter 09 Physics and
animations\Recipe 08 Getting up from a ragdoll directory. If you open
the Example.unity scene there, play the game and press the space bar; the character will
fall down using ragdoll. If you press the space bar again, it will blend from a ragdoll to a
getting up animation and will be animated again.

How to do it…
To make a character get up from being a ragdoll, follow these steps:

Place your character in the scene.1.
Make two copies of it and name the2.
characters CharacterAnimated, CharacterSkinned, and CharacterRagdoll. We
will use these names for better clarity.
Make all characters stand in the exact same place in the scene.3.
Select the CharacterRagdoll and follow the Creating a humanoid ragdoll with the4.
ragdoll wizard recipe to make a character a working ragdoll. We are not going to
use the HandleRagdoll.cs script this time, so you can stop after using the
Ragdoll Wizard.
Select CharacterRagdoll game object's rig and name it Ragdoll.5.
Select the CharacterAnimated and expand its hierarchy.6.
Remove all objects but the rig of the character. You cannot change the rig's name.7.
Select the CharacterSkinned and expand its hierarchy.8.
Rename the CharacterSkinned rig to SkinnedRig.9.
Select the SkinnedRig and the skinned mesh (or meshes if you have more). Drag10.
and drop them onto CharacterAnimated. A window warning about prefab
connection loss may appear. Click on Continue. This will parent the SkinnedRig
and the mesh skinned to it to the CharacterAnimated game object.
Select CharacterRagdoll, grab the Ragdoll rig, and drop it onto11.
the CharacterAnimated game object to parent it. Again click on Continue if the
warning appears.
You can delete the CharacterRagdoll and CharacterSkinned game objects.12.
Create an Animator Controller or open an existing one.13.
In this controller, create two Triggers: StandUpFaceUp and StandUpFaceDown.14.

Physics and Animations

[273]

Create four transitions:15.
Any State | StandUpFaceDown with one
condition: StandUpFaceDown Trigger. Has Exit Time should be set to
false and Transition Duration set to 0.
Any State | StandUpFaceUp with one condition: StandUpFaceUp
Trigger. Has Exit Time should be set to false and Transition Duration
set to 0.
StandUpFaceDown | Idle with no conditions: Has Exit Time should
be set to true and Transition Duration set to around 0.2.
StandUpFaceUp | Idle with no conditions: Has Exit Time should be
set to true and Transition Duration set to around 0.2.

Assign the controller to the character's Animator component.16.
[Optional] You can find the ShowRig.cs script in the Shared Scripts folder. If17.
you attach it three times to the CharacterAnimated game object, you may drag
and drop its three rigs, one to each ShowRig script. You may also assign different
colors for each rig. If you play the game, you will be able to see the three rigs
working. In the following screenshot, the red rig is the ragdoll, the yellow one is
the one that is animated (we cannot change its name, in our example it's
called metarig), and the green one is the one our mesh is skinned to (it's not
clearly visible because it's hidden inside the mesh).

Ragdoll rig (red), animated rig (yellow), and skinned rig (green)

Physics and Animations

[274]

Create a new C# script and name it RagdollWeight.cs. This script contains18.
several functions. First, in the void Init() function that is called from
the Start() function, we set references to the bones of our three rigs to be able to
blend between them later on. We also get the reference to the Rigidbody and
Animator components attached to our character. Finally, we turn the ragdoll
game object off:

 void Init()
 {
 rb = GetComponent<Rigidbody>();
 anim = GetComponent<Animator>();
 skinnedRigTransforms =
 skinnedRig.GetComponentsInChildren<Transform>();
 ragdollTransforms =
 ragdoll.GetComponentsInChildren<Transform>();
 animatedRigTransforms =
 animatedRig.GetComponentsInChildren<Transform>();
 ragdoll.gameObject.SetActive(false);
 }

In the voidEnableRagdoll() function, we first check whether our float19.
blendFactor is not greater than 0.5 (that would mean we are still in the “ragdoll
phase”). If it is less than 0.5, we set all ragdoll bones' positions and rotations to
match the animatedRigTransforms (we match the pose of the ragdoll to the
current character pose). Finally, we set the main Rigidbody component to
kinematic and enable the ragdoll game object. We also set the blendFactor to 1,
which means the ragdoll is fully enabled:

 void EnableRagdoll()
 {
 if(blendFactor > 0.5f)
 {
 return;
 }
 for (int i = 0; i < ragdollTransforms.Length; i++)
 {
 ragdollTransforms[i].localPosition =
 animatedRigTransforms[i].localPosition;
 ragdollTransforms[i].localRotation =
 animatedRigTransforms[i].localRotation;
 }
 rb.isKinematic = true;
 ragdoll.gameObject.SetActive(true);
 ragdollOn = true;
 blendFactor = 1f;
 }

Physics and Animations

[275]

In the voidDisableRagdoll() function, we check if our character is lying face20.
down or face up and play an appropriate standing up animation. After we trigger
the animation, we start the IEnumeratorBlendFromRagdoll() coroutine to
blend smoothly from the ragdoll rig to the animatedRig:

 void DisableRagdoll()
 {
 bool faceUp = Vector3.Dot(
 faceDirectionHelper.forward, Vector3.up) > 0f;
 if (faceUp)
 {
 anim.SetTrigger("StandUpFaceUp");
 }
 else
 {
 anim.SetTrigger("StandUpFaceDown");
 }

 StartCoroutine("BlendFromRagdoll");
 }

The IEnumerator BlendFromRagdoll() coroutine decreases21.
the blendFactor in time and checks if it's still greater than 0. If it is less than or
equal to 0, we set it to be exactly 0, enable the main Rigidbody component again,
and disable the ragdoll:

 IEnumerator BlendFromRagdoll()
 {
 while (blendFactor > 0f)
 {
 blendFactor -= Time.deltaTime * blendSpeed;
 yield return null;
 }
 blendFactor = 0f;
 rb.isKinematic = false;
 blendFactor = 0f;
 ragdollOn = false;
 ragdoll.gameObject.SetActive(false);
 }

Physics and Animations

[276]

In the FixedUpdate() function, if the ragdoll is on, we move our22.
character's Rigidbody to the position of the ragdoll's hips. We additionally check
the ground position to make sure our main Rigidbody stands on the ground and
doesn't levitate. We also rotate the Rigidbody so that the character looks in the
hips -> head direction. We intentionally omit the Y component of
the Vector3desiredLookVector to prevent our character's capsule from tilting.
Moving our character's Rigidbody to the position of the ragdolls hips makes the
blending from ragdoll to animation easier:

 void FixedUpdate()
 {
 if (!ragdollOn)
 {
 return;
 }
 desiredLookVector = head.position - hips.position;
 desiredLookVector.y = 0f;
 desiredLookVector = desiredLookVector.normalized;
 lookVector = Vector3.Slerp(transform.forward,
 desiredLookVector, Time.deltaTime);

 if (Physics.Raycast(hips.position, Vector3.down,
 out groundHit, groundCheckDistance,
 groundCheckMask))
 {
 finalPosition = groundHit.point;
 }
 else
 {
 finalPosition = hips.position;
 }
 rb.MovePosition(finalPosition);
 rb.MoveRotation(Quaternion.LookRotation(lookVector
));
 }

In the Update() function, we check whether the player pressed the space bar. If23.
so, we enable or disable the ragdoll depending on whether it is enabled or
disabled at the moment:

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Space))
 {
 if (ragdollOn)
 {

Physics and Animations

[277]

 DisableRagdoll();
 }
 else
 {
 EnableRagdoll();
 }
 }
 }

In the LateUpdate() function, we constantly interpolate the localPosition24.
and localRotation of all the bones of the skinnedRig (the one our character's
mesh is using). The position and rotation of the bones is interpolated between the
position and rotation of the ragdoll and the animatedRig. We use
the blendFactor variable for the interpolation:

 void LateUpdate()
 {
 for (int i=0; i<skinnedRigTransforms.Length; i++)
 {
 skinnedRigTransforms[i].localPosition =
 Vector3.Lerp(
 animatedRigTransforms[i].localPosition,
ragdollTransforms[i].localPosition,
 blendFactor);

 skinnedRigTransforms[i].localRotation =
 Quaternion.Lerp(
 animatedRigTransforms[i].localRotation,
 ragdollTransforms[i].localRotation,
 blendFactor);
 }
 }

Add the preceding script to the character.25.
Drag and drop the animated rig (in our example it's called metarig) to26.
the Animated Rig field, the Ragdoll to the Ragdoll field, and the SkinnedRig to
the Skinned Rig field. Choose the chest bone as the Face Direction Helper (if it
doesn't work, you may create an empty object parented to the chest bone—the
goal here is to have the forward axis of this helper object point down when the
character lays face down, and up when it lays face up). Set the Ground Check
Mask to contain your level layers. Assign the hips bone to the Hips field and the
head bone to the Head field (you may choose different bones that properly
describe your character's rotation when the ragdoll is on).
Play the game and press the space bar to see the effect.27.

Physics and Animations

[278]

How it works…
The concept behind this recipe is based on having three rigs: one that holds the animations,
one that is a simple ragdoll, and one to which the mesh is skinned. To make it work in
Unity, we need to copy our character three times. One of the copies is used to create the
ragdoll, the second is the animated rig and we need to remove the mesh from it, and the last
one is the mesh with the rig but has no Animator component. All these objects finally get
parented to the animated rig's parent (the CharacterAnimated game object). This way, our
character is still a single game object and can be driven with root motion. The final
hierarchy looks like the following:

CharacterAnimated
metarig (the original name of the rig of this character)
SkinnedRig
SkinnedMesh
Ragdoll

With such a setup, we can get all the transforms from the metarig (the rig that is actually
animated), the SkinnedRig (the rig to which the mesh is skinned), and the ragdoll. Since
our character's mesh is using the SkinnedRig (we cannot see the two remaining rigs in the
game), we can dynamically set its transforms' location and rotation. This way we can use
the Vector3.Lerp() and Quaternion.Lerp() functions to interpolate the SkinnedRig
transforms' between the Ragdoll's and metarig's (the animated rig's) transforms.

The standing up animations are prepared in such a way that the hips of the character are
roughly at the 0,0,0 point. We move the main Rigidbody of the character to the point where
the hips of the ragdoll are. This way, when we blend to the standing up animation, our
character's animated rig (an animation) matches the position of the ragdoll. The rest is
handled by blending the pose from the ragdoll to the current animation.

There's more…
You can also use this concept on non-humanoid characters.

10
Miscellaneous

This chapter contains a number of extra recipes:

Using math to animate an object
Using the Lerp() function to animate an object
Using the Rotate() function to animate an object
Preparing motion capture files for humanoid characters
Adding behaviors to Mecanim states

Introduction
This chapter contains additional recipes with useful tricks and solutions.

Using math to animate an object
We can use mathematical formulas to create interesting-looking animations. We are going
to use this concept to make an endless curve animation with the Mathf.Sin()
and Mathf.Cos() functions.

Miscellaneous

[280]

Getting ready
We don't need anything special for this recipe. We are going to create it from scratch in
Unity. You may also download the provided example project. Open the Chapter 10
Miscellaneous\Recipe 01 Using math to animate an object directory and load
the Example.unity scene there. If you run the game, you will see the finished effect—a
curve animated with the Mathf.Sin() and Mathf.Cos() functions:

Final effect—curve animated with the Mathf.Sin() and Mathf.Cos() functions

How to do it…
To use math for animating a curve, follow these steps:

Create an empty game object.1.
Add a Line Renderer component to it.2.
Create a new material of your liking and assign it to the Line Renderer.3.
Make sure the Use World Space option in the Line renderer component is not4.
selected (we will use local coordinates in this example as it makes it slightly
easier to position the Line Renderer in the camera).
Change the Start Width and End Width of the Line Renderer to 0.2 to make the5.
line thinner.
Create a new C# script and name it MathAnim.cs. In this script's Start()6.
function, we set the number of points of the Line Renderer using
the SetVertices() method:

 positions = new Vector3[linePoints];
 lRenderer = GetComponent<LineRenderer>();

Miscellaneous

[281]

 if (lRenderer != null)
 {
 lRenderer.SetVertexCount(linePoints);
 }

Then, in the Update() function, we call the void SetLinePositions()7.
function and we move the game object so that the line center is at the (0, 0, 0)
point:

 transform.position = new Vector3(-0.5f
 * lineLenght, 0f, 0f);
 SetLinePositions();

In the void SetLinePositions() function, use the Mathf.Sin()8.
and Mathf.Cos() functions to calculate the point's Y and Z positions. We set the
line points positions with the SetPositions() function. We also use a simple
timer to introduce time into our formula. We have two timers: timerY
and timerZ. The first one works for the Y position values and the second one for
Z position values. We also have the public float variables for
controlling frequencyY, frequencyZ, amplitudeY, and amplitudeZ. The X
positions of the line points are set in equal distances so that the total length of the
line is equal the public float lineLength variable's value:

 if (lRenderer == null)
 {
 return;
 }

 timerY += Time.deltaTime * speedY;
 timerZ += Time.deltaTime * speedZ;

 for (int i = 0; i < positions.Length; i++)
 {
 positions[i].x = lineLenght * (float)i /
 (float)positions.Length;
 positions[i].y = amplitudeY * Mathf.Sin(frequencyY
 * ((2f*Mathf.PI * (float)i /
 (float)positions.Length) + timerY));
 positions[i].z = amplitudeZ * Mathf.Cos(frequencyZ
 * ((2f * Mathf.PI * (float)i /
 (float)positions.Length) + timerZ));
 }
 lRenderer.SetPositions(positions);

Miscellaneous

[282]

Attach the script to our game object.9.
Play the game to see the effect.10.

How it works…
We have plenty of mathematical formulas that we can use from the Mathf library. Using
some of them can give interesting results for animation. We are using the Mathf.Sin()
and Mathf.Cos() functions in this example. They are periodic, which gives us an infinite
loop motion.

Using the Lerp() function to animate an
object
We were using the Lerp() method previously, but it is important to know that we can use
it in two different ways. This recipe covers both of these uses.

Getting ready
We are going to create this recipe from scratch and we don't need any special assets. You
can download the example project and go to the Chapter 10 Miscellaneous\Recipe
02 Using the Lerp function to animate an object directory. Open
the Example.unity scene there and play the game. You will see two objects: RedDot
and BlueDot (both are children of the Canvas object). The first one uses the
standard Lerp() method and interpolates its position from a minimum to a maximum
value in time. The second one uses the Lerp() method in a different way and continuously
follows the mouse pointer.

RedDot interpolates its position between min and max and BlueDot follows the cursor

Miscellaneous

[283]

How to do it…
To use the Lerp() function for animating objects, follow these steps:

First we need to create some objects to work with. Create a new Image (go1.
to Game Object | UI | Image). Name it RedDot (you can add a circle sprite to it
or leave it as it is). Change its color to red.
Set the RedDot position to (0,0,0) and its Anchor Preset to middle center, as2.
shown in the following screenshot:

RedDot's Anchor Preset

Miscellaneous

[284]

Create another Image and name it BlueDot. Change its color to blue.3.
Change its Anchor Preset to bottom left.4.
Create a new C# script and name it LerpNormal.cs. In this script's Update()5.
function, we interpolate a float posX variable's value from the public float
minPos to public float maxPos value. We use a floattimer that increases to
the value of 1 in time. If its value reaches 1, it starts to decrease to 0. If it reaches 0,
it starts to increase again. Finally, we set the localPosition
of RedDot rectTransform using our interpolated posX value. The posY
and posZ values are set in the Start() function and are constant:

 if (timer > 1f)
 {
 lerpDir = -1f;
 }
 else if (timer < 0f)
 {
 lerpDir = 1f;
 }

 timer += lerpDir*Time.deltaTime * speed;

 posX = Mathf.Lerp(minPos, maxPos, timer);

 rectTransform.localPosition = new Vector3(posX, posY,
 posZ);

Assign the script to the RedDot game object.6.
Create another C# script and call it LerpContinuous.cs. In this7.
script's Update() function, we interpolate the position of the BlueDot with itself
and the mouse cursor position. We do it every frame. In the Lerp() function, we
use the Time.deltaTime value multiplied by a public float speed variable:

 rectTransform.position =
 Vector3.Lerp(rectTransform.position,
 Input.mousePosition, Time.deltaTime *
 speed);

Assign the script to the BlueDot game object.8.
Play the game to see the effect.9.

Miscellaneous

[285]

How it works…
We are using the Lerp() function in two ways:

Standard method: The Lerp() function's float t parameter has values from 0
to 1. We've used a timer as out t parameter. The timer first was increasing to the
value of 1. After it reached 1, it was decreasing to 0. This method gives us
standard linear interpolation between two values. The t parameter is the
percentage of the interpolation (for t = 0.5, the interpolated value is an average
of two input values).
Continuous method: The second method is based on using the output value (in
our case the position) as the lower input value in the Lerp() function. We call
the Lerp() function in Update() and use Time.deltaTime as the t
parameter. Time.deltaTime is a very small value, so each time the function is
called, the output value is interpolated toward the end value by a very small
fraction. Calling this method in Update() results in smooth movement. It is not
linear anymore. The BlueDot moves faster if it is further away from the cursor
and slows down when it gets closer.

Remember that when you're using the second method, the interpolated
value will never truly get to the end position or end value. That's why
sometimes we have to implement an if statement and check if the
interpolated value is close enough to the end value. If so, we can set it to
be exactly the same.

The Lerp() function is implemented in various classes. These are the most commonly
used examples:

Mathf.Lerp(): This interpolates between two float values
Vector3.Lerp():This interpolates between two vectors (positions for instance)
Quaternion.Lerp():This interpolates between two rotations
Color.Lerp():This interpolates between two colors

Miscellaneous

[286]

See also
Two more methods are also worth checking out in Unity's Scripting Reference:
Vector3.Slerp() and Vector3.SmoothDamp(). The first one interpolates a vector
spherically (as we would by rotating it) and the second one dampens the change in a vector
(a position for instance). It can be used for implementing objects that should smoothly
follow another object.

Using the Rotate() function to animate an
object
In this recipe, we will use the Transform.Rotate() function to create an infinite looping
animation of a windmill. We could make the same with the Animation View, but
sometimes writing a simple script means much less effort than creating a key frame
animation.

Getting ready
We need a few models we can rotate in this recipe. As an example, we will use a windmill.
It is composed of three game objects: WindmillBase, which is the root of the whole
windmill, Windmill which is parented to the WindmillBase, and WindmillWings which is
parented to the Windmill. The Windmill game object itself can rotate in the Y axis.
The WindmillWings game object can rotate in its local Z axis.

Windmill hierarchy

Miscellaneous

[287]

You can download the example project and go to the Chapter 10
Miscellaneous\Recipe 03 Using the Rotate function to animate an object

directory. Open the Example.unity scene there and play the game. You will see the
windmill rotating around the Y axis and its wings rotating around their local Z axis.

How to do it…
To use the Rotate() function for animating objects, follow these steps:

Import our windmill to Unity. The model should contain three1.
objects: WindmillBase, Windmill (parented to WindmillBase),
and WindmillWings (parented to Windmill).
Place the model in the scene.2.
Create a new C# script and name it ScriptRotation.cs. In this3.
script's Update() function, we use only one method: transform.Rotate(). We
have a series of public variables to be able to control the rotation speed and axis.
The Rotate() method can rotate an object in the World or Self (local) space. We
have a public Space rotationSpace variable to be able to control it from
the Inspector:

 transform.Rotate(rotateAxis * rotationSpeed *
 Time.deltaTime, rotationSpace);

Assign the script to the Windmill game object.4.
Set the Rotation Space to World, and the Rotation Axis to (0, 1, 0). This means5.
our object will rotate in the global Y axis (the up vector). Set the Rotation Speed
to your liking (it's in degrees per second; a value of 45-90 should be OK).
Assign the same script to the WindmillWings game object.6.
Set the Rotation Space to Self and the Rotation Axis to (0,0,1). This means the7.
object will rotate around its local Z axis (the forward vector of the object). Again,
set the Rotation Speed to your liking.
Play the game and observe the effect. The Windmill game object rotates in the8.
global Y axis and the WindmillWings game object rotates around its local Z axis
and follows the Windmill's Y axis rotation (because of the hierarchy setup).

Miscellaneous

[288]

How it works…
We are using Unity's Transform.Rotate() function in this recipe. It allows rotating a
transform around any given axis. It rotates the object the number of degrees we set as the
function's parameter. We are using Time.deltatime to rotate the object X degrees per
second. This function also has the space parameter, which lets us make a rotation in world
or local space. The rest is handled by the hierarchy setup (WindmillWings being parented
to the Windmill game object).

Using this method can save us a lot of time tweaking animations for simple rotating objects.
What's more, we can still use Animation View to create an animation of the public float
rotationSpeed parameter of our script. This way we can control the changes of rotation
speed with a very simple animation clip, instead of animating the whole transform.

There's more…
Unity has also a Transform.Translate() function, which has the same parameters as
the Transform.Rotate() method but moves our game object instead of rotating it. We can
use it to create a similar script and move our object in the scene.

Preparing motion capture files for humanoid
characters
Using motion capture files is not always easy. In most cases, we can use them directly (after
exporting them to an FBX file) for characters using the Generic rig type. But we almost
always want to use our motion capture files for humanoid characters. The problem occurs
when our motion capture rig is not a standard Unity Humanoid rig (and again, it is almost
always the case). We can expect all kinds of errors—bones rotating with an offset,
deformations in the mesh, and so on.

This recipe shows how to retarget motion capture files onto a rig suitable for Unity
humanoid animations. We are going to use Blender 3D.

Miscellaneous

[289]

Getting ready
To follow this recipe, you will need a humanoid character ready to be rigged to a proper
Unity Humanoid rig. We also need a motion capture animation. You can find a huge free-
to-use library of motion capture data on the Carnegie Mellon University's website at h t t p :
/ / m o c a p . c s . c m u . e d u /. We are going to use the 01_01.bvh file in this example.

You can also download the example Unity project provided and go to the Chapter 10
Miscellaneous\Recipe 04 Preparing motion capture files for humanoid

characters directory. You can find the Example.unity scene there. If you play the game,
you will see a character playing a retargeted motion capture animation. You can find the
BVH file in the Raw data directory. The final FBX file is in the Final FBX directory, and
all the blend files are located in the Blend Files directory.

How to do it…
To use motion capture data for Humanoid characters, follow these steps:

First we need to create a rig suitable for Unity's Humanoid characters. In Blender,1.
creating such a rig is quite easy. First enable the Rigify add-on and create a
new Human (metarig) object from the Armature section.
This rig has almost the same structure as Unity's Humanoid rig, but we need to2.
adjust a few things. First, edit the rig and delete the heel.L, heel.R, heel.02.L,
and heel.02.R bones from the feet.
Then delete3.
the palm.01.L, palm.02.L, palm.03.L, palm.04.L, palm.01.R, palm.02.R, palm.03.R
, and palm.04.R bones from the hands.
This gives us a proper Unity Humanoid rig. We can also adjust the T-Pose4.
(a Rigify rig is created in a more relaxed T-Pose). This step is not a necessity.
Name that rig FinalRig.
Now adjust the bone sizes for your character and skin the character to the rig.5.
Enter Pose Mode and click on both shoulders. Enable their Y axis rotation (it is6.
locked by default). This step is important for making the final animation.
Import your BVH file (File | Import | BVH). You may want to adjust the size of7.
the rig in import settings.
Scale the imported BVH rig to roughly match the size of your character. Name8.
the BVH rig ImportedRig for better clarity.

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/

Miscellaneous

[290]

Now we will create a control rig that we will use to correct any errors. To do so,9.
create an empty object in Blender and name it Hips. Create another empty object
and name it HipsTarget. Make sure both objects have exactly the same position
and rotation.
Parent HipsTarget to Hips.10.
To make the objects more visible, set the Display of Hips to Cube and11.
the Display of HipsTarget to Sphere.
A pair of those empties is our bone node—we will create one for each bone of the 12.
character:

Bone node—a pair of two empties

Select the Hips object and add the Copy Transforms constraint to it.13.
Select the ImportedRig as the Target and its Hips bone as the Bone.14.
Repeat steps 9-14 for every bone of the FinalRig (you can omit the fingers as not15.
many motion capture files have data for fingers anyway). After completing this
process, you should have a list of empties reflecting the structure of the FinalRig.
It should look similar to the following:

Hips (and HipsTarget parented to it)
Spine (and SpineTarget parented to it)
Chest (and ChestTarget parented to it)
Neck (and NeckTarget parented to it)
Head (and HeadTarget parented to it)
Shoulder.L (and ShoulderTarget.L parented to it)
Shoulder.R (and ShoulderTarget.R parented to it)
LegUp.L (and LegUpTarget.L parented to it)

Miscellaneous

[291]

LegUp.R (and LegUpTarget.R parented to it)
Leg.L (and LegTarget.L parented to it)
Leg.R (and LegTarget.R parented to it)
Foot.L (and FootTarget.L parented to it)
Foot.R (and FootTarget.R parented to it)
ArmUp.L (and ArmUpTarget.L parented to it)
ArmUp.R (and ArmUpTarget.R parented to it)
Arm.L (and ArmTarget.L parented to it)
Arm.R (and ArmTarget.R parented to it)
Hand.L (and HandTarget.L parented to it)
Hand.R (and HandTarget.R parented to it)

Sometimes our ImportedRig has a different structure, for instance it may have16.
more spine bones (three or more). In such case, we should choose the most
suitable bone in the Copy Transform constraints or add two Copy Rotation
constraints and interpolate the final rotation of two neighboring bones by setting
the Influence slider:

Control rig with Copy Transform constraints

Now we need to set the IK for feet. Select the FinalRig and go to Edit Mode.17.
Copy both foot bones and change their names to footTarget.L and footTarget.R.18.
Remove their parents and unselect the Deform option (they shouldn't deform the19.
mesh).

Miscellaneous

[292]

Go to Pose Mode.20.
Select the shin.L bone and add an Inverse Kinematics constraint. Set the Chain21.
Length to 2 and choose the FinalRig as Target, and footTarget.L as the Bone.
Select the foot.L bone and add a Copy Rotation constraint to it. Choose22.
the FinalRig as the Target, and the footTarget.L as the Bone.
Repeat steps 21 and 22 for the right leg.23.
Select the hips bone and add the Copy Rotation and Copy Location constraints24.
to it. In both constraints, set the Target to HipsTarget empty.
Select the Offset option in the Copy Location constraint and move the hips bone25.
(in Pose Mode) to roughly match the position of the HipsTarget empty in the
scene.
Select the footTarget.L bone. Add the Copy Location and Copy Rotation26.
constraints to it. In both constraints, choose the FootTarget.L empty as the Target.
Select the Offset option in the Copy Location constraint and move27.
the footTarget.L bone (in Pose Mode) to roughly match the position of the
footTarget.L empty in the scene.
Repeat steps 26 and 27 for the right foot target.28.
Add a Copy Rotation constraint to every other bone (including those with29.
the Inverse Kinematics constraint). Set the Target for each such constraint to a
corresponding empty (for the shin.L bone, choose the LegTarget.L empty, and so
on).
You should see the motion of the ImportRig being transferred to the FinalRig.30.
Additionally, you can move the hips bone and the footTarget.L and footTarget.R
bones to adjust the animation.
If you see any errors on the mesh, especially if the limbs of the character are31.
rotated in a weird way, you can rotate the target empties to fix this.
You can also rotate the target empties to change the overall pose of the character32.
easily.
To finish the retargeting process, save your file as a new one. Select all the bones33.
in the FinalRig (in Pose Mode), press the space bar, type Bake Action, and
press Enter.
In the Bake Action window, choose Visual Keying and Clear Constraints. You34.
can also provide a name for the newly created action. If you click on OK, all
constraints will be removed and the final animation will be baked.
Remember to select the small F symbol near this action in the Action Editor (this35.
will save the data even if the rig doesn't use it).

Miscellaneous

[293]

Remove all the empties and the ImportedRig (you may also need to remove its36.
action manually). Save the file.
Import the file into Unity and set the rig to Humanoid. The animation should37.
work as intended. You may also choose to export the file to FBX first. If you
experience any problems, try with the 6.1 version of the FBX format as it may
help:

FinalRig on the left and ImportedRig and the empties (control rig) on the right

How it works…
Problems with importing motion capture data can be very frustrating. The most common
errors are connected with an inappropriate T-POSE of the BVH rig. This T-Pose depends on
the software the animation was recorded in and exported from. Additionally, BVH rigs can
have arbitrary bone hierarchies, with more than two spine bones for instance. A proper
Unity Humanoid rig hierarchy was covered in the Configuring Generic and Humanoid rigs
recipe in Chapter 1, Working with animations.

In Blender, the Rigify rig has a proper T-Pose. Thus, the best solution is to retarget the
animation from the ImportRig to the FinalRig (the Rigify one). In theory, we could omit
creating the control rig (the empties) but those give us more control. The (…)Target empties
are not constrained to the ImportRig bones—they are only parented to the empties that are
constrained. This way we can rotate or move the (…)Target empties to correct any rotation
errors or adjust a pose.

We also use Inverse Kinematics for the feet in this setup. This, combined with the Offset
option in the Copy Location constraints (set for the footTarget.L, footTarget.R, and hips
bones), allows us to adjust the feet and hips positions. This way we can move the character
to the center of the scene quite easily. We can even make it crouch while moving.

Miscellaneous

[294]

See also
If you are on a budget and want to use motion capture data, you can find a lot of free
motions on the Carnegie Mellon University's website at h t t p : / / m o c a p . c s . c m u . e d u /.
Another good option is to invest in the Perception Neuron solution (h t t p s : / / n e u r o n m o c a
p . c o m /)—it is a project successfully founded on Kickstarter. Perception Neuron seems
affordable for most indie studios or even individuals. It is a suit with a set of sensors
(gyroscopes, magnetometers, and accelerometers) that the actor puts on. It works similar to
standard motion capture solutions based on markers. I must say the quality of the recorded
motions is mostly very good (it has some problems with rapid motions though). You also
have to watch out for large metal objects, speakers, and other sources of magnetic fields in
the room. But if you can't afford a motion capture studio session and want to use mocap for
your project, it can be a good bet.

Adding behaviors to Mecanim states
In this last recipe, we will cover behaviors. These are scripts that can be attached to
Mecanim states. You can use them to turn standard Animator Controllers into logic graphs
such as AI trees, quests, and so on.

Getting ready
We are going to create this recipe from scratch and we don't need any special assets. You
can download the example project and go to the Chapter 10 Miscellaneous\Recipe
05 Adding behaviors to Mecanim states directory. Open the Example.unity scene
there and play the game. If you play the game, you can press the space bar to change the
states in the Animator Controller attached to the Controller game object. The cycle starts in
the NoBehaviors state—this is simply an empty state with no additional behavior. If we
press the space bar, we transition to Light1Random. This state changes the color of
the Light1 light in the scene. If we press the space bar again, the state will change
to WaitAndSwitch. This state waits for a given time and switches to the next
state: Light2Random. This one changes the color of the Light2 light. If we press the space
bar again, we will transition to the RotateObject state, which rotates an object visible in the
scene. Pressing the space bar yet again transitions the controller to the Light1Random state
again. See the following screenshot for reference:

http://mocap.cs.cmu.edu/
https://neuronmocap.com/
https://neuronmocap.com/

Miscellaneous

[295]

Finished controller

How to do it…
To use behaviors with Mecanim states, follow these steps:

First we need to prepare the example scene. Create a Cube in the scene.1.
Create two lights and name them Light1 and Light2. Place them near the cube so2.
you can see their effect.
Create an empty game object and name it Controller.3.
Create a new Animator Controller and name it LogicController.4.
Add an Animator component to the Controller game object and assign5.
the LogicController to it.
Open the LogicController.6.
Create an empty state and name it NoBehaviors. Make it the default state.7.
Create a Trigger parameter and name it Switch.8.
Create four empty states and name9.
them Light1Random, WaitAndSwitch, Light2Random, and RotateObject.

Miscellaneous

[296]

Create the following listed transitions. All of them have the same10.
condition: Trigger Switch parameter and Has Exit Time set to false.

NoBehaviors | Light1Random
Light1Random | WaitAndSwitch
WaitAndSwitch | Light2Random
Light2Random | RotateObject
RotateObject | Light1Random

Select the Light1Random state and click the Add Behaviour button in11.
the Inspector, as shown in the following screenshot:

Adding a behavior to a Mecanim state

A list with all the available behaviors will appear. Type LightColorChange in the12.
search field and press Enter. A Create and add button will appear. If you click on
it, the LightColorChange.cs script will be created in the Assets folder.
Move the script to your script's destination folder.13.
Open the script. Add three global variables to the script: public string14.
lightGameObjectName, public Color color, and public bool
randomColor.

Miscellaneous

[297]

The script contains several commented out functions. Uncomment the override15.
public void OnStateEnter() function. In it we first try to find the game
object whose name we store in the lightGameObjectName variable. If we find it,
we try to get its Light component and set the light color to a random value or to a
specified value, depending on the randomColor flag:

 GameObject go = GameObject.Find(lightGameObjectName);
 if (go != null)
 {
 Light light = go.GetComponent<Light>();
 if (light != null)
 {
 if (randomColor)
 {
 light.color = Random.ColorHSV();
 }
 else
 {
 light.color = color;
 }
 }
 }

In the Animator Controller, select the Light1Random state. In its Inspector, set16.
the Light Game Object Name to Light1 and check the Random Color checkbox.
Select the WaitAndSwitch state and add a WaitAndSwitch behavior.17.
The WaitAndSwitch.cs script will be created. This time add four global
variables (with default values): public string triggerName =
"Switch", public float waitTime = 5f, bool switched = false,
and float startTime. Uncomment the override public void
OnStateEnter()function, check the time we've entered the state in, and store it
in the startTime variable. We also set the switched flag to false:

 startTime = Time.time;
 switched = false;

Uncomment the override public void OnStateUpdate() function and18.
check whether the current time is greater than our startTime plus waitTime. If
so, we set the Trigger to transition between states. We also set the switched
flag to true to prevent sending multiple Triggers:

 if (Time.time >= startTime + waitTime && !switched)
 {
 switched = true;

Miscellaneous

[298]

 animator.SetTrigger(triggerName);
 }

Select the Light2Random state in the controller and add19.
the LightColorChange.cs behavior to it. Set the Random Color checkbox to
true and the Light Game Object Name to Light2.
Create a new C# script and call it LogicController.cs. This script has three20.
global variables: public string switchTriggerName = "Switch", public
Transform activeObject, and Animator anim. The anim variable is set in
the Start() function. In the Update() function of this script, we set
the Trigger in the Animator Controller when the player presses the space bar.
The Trigger name is stored in the switchTriggerName variable.
Assign the script to the Controller game object. Then drag and drop the Cube21.
game object to the Active Object field of the script.
Select the RotateObject state and add a RotateObject.cs behavior to it (you22.
need to create a new one). Move the created script to your destination folder.
Open the RotateObject.cs script. Add four global variables: public float23.
rotationSpeed = 45f, public Vector3 rotationAxis =
Vector3.up, public Space rotationSpace = Space.World,
and LogicController controller. The first three are used to rotate the object
and the last one is a reference to the LogicController script. Uncomment
the override public void OnStateEnter()function and set the reference to
the LogicController in it:

 controller =
 animator.gameObject.GetComponent<LogicController>();

Uncomment the override public void OnStateUpdate() function and24.
rotate the object that is stored in the LogicController.activeObject variable:

 if (controller == null)
 {
 return;
 }
 if (controller.activeObject == null)
 {
 return;
 }
 controller.activeObject.Rotate(rotationAxis * rotationSpeed *
Time.deltaTime, rotationSpace);

Miscellaneous

[299]

Make sure the Animator component of the Controller game object is set25.
to Always Animate.
Play the game and press the space bar to see the effect. You will need to press the26.
space bar several times to go through the whole cycle.

How it works…
State behaviors can be used to create logic graphs—these graphs use Animator Controller as
a state machine. Animator Controller can work without any Animation Clips—empty states
can have behaviors as well.

Mecanim state behaviors are scripts that derive from the StateMachineBehavior class
instead of the MonoBehavior class. They have a number of functions we can override. The
most useful ones are as follows:

OnStateEnter(): This function is called when the Animator Controller enters
this state.
OnStateUpdate(): This function is called every frame when this state is active
(is playing). It will be called after OnStateEnter() and before OnStateExit().
OnStateExit(): This function is called when the Animator Controller exits this
state.

We can still manage the state transitions from a normal MonoBehavior script (in our
example, it is the LogicController.cs script).

Animator Controllers are assets, so they cannot reference objects in the scene. We can work
around this by either finding the game objects by name (or tag) or by creating another
MonoBehavior script that can reference objects in the scene. Our LogicController.cs
script has an example of this: the public Transform activeObject variable. We can get
the LogicController.cs script component in the behavior (as long as the Animator
component is on the same game object). This way we can get to its activeObject variable
and do an action on this transform.

Index

1
180 degrees turn animation
 creating, with root motion 123, 124, 126

2
2D sprite animation
 exporting, from 3D package 75, 76, 77, 78

3
3D package
 cutscene, importing 236, 237
 object animation, importing 39
 used, for exporting 2D sprite animation 75, 76,

77, 79

A
Action Points
 about 152
 creating 152, 153, 155, 156
actions
 Looped-Action 156
 Post-Action 156
 Pre-Action 156
additive Mecanim layers
 used, for adding motion 211
animated moving platform
 assigning 49
 creating 48, 49
 key elements 50, 51
Animation Events
 used, for drawing weapon 182, 185
 used, for triggering script functions 170, 171,

172
 used, for triggering sound and visual effects

203, 206

 working 174
animation flow
 controlling, with parameters 27, 28
animation transitions
 creating, in Animator Controller 23
 working 24, 25
Animation View
 about 41
 camera shakes, creating 206, 208
 curves 45
 day and night cycle, creating 224, 225, 227
 Dope Sheet 45
 light colors, blending 46, 47
 particle system's properties, animating 220,

221, 222
 public script variables, animating 208, 209, 211
 used, for animating camera 229
 used, for changing camera shots 230, 232
 used, for creating flickering light 42, 43, 44
 used, for creating frame by frame sprite

animation 80
animation, of multiple objects
 synchronizing 233
animation-driven behavior
 background characters, creating 142, 143, 144
animations
 creating, for better transitions 120, 121, 122,

123
 looping 33, 34
 mirroring 33, 34
 offsetting 34
 playback speed, adjusting 35, 36
 setting, to loop 33
 sound waveforms, using 222, 224
 synchronizing 156, 157, 159
 using, from multiple assets 31, 32, 33
Animator Controller

[301]

 about 19, 23
 Any state 26
 Apply Root Motion 22
 assigning 20, 21
 camera shakes, creating 206, 207, 208
 creating 20, 21
 Entry and Exit 26
 light colors, blending 46, 47
 state transition, creating 23
 Sub-State Machine, using 167
 working 21, 22
Animator state
 active status, checking 180
Animator.SetLookAtPosition() method
 used, for making character to follow object 148,

149, 151, 152
Any State transitions
 used, for playing hit reaction 174
 using 175
 working 176
appear/disappear animations
 creating 140, 141, 142
automatic doors
 creating 52, 53, 54, 55, 56, 57, 59
 key elements 58
Avatar Masks and Layers
 using 186, 188

B
background characters
 creating, with animation-driven behavior 142,

143, 144
Blend Shapes
 used, for animating facial expressions 162, 163,

165
 used, for morphing objects 214, 215
Blend Tree, settings
 1D 108
 2D Freeform Cartesian 108
 2D Freeform Directional 108
 2D Simple Directional 108
 Direct 108
 Mirror 109
 Time Scale 109
Blend Trees

 about 104
 methods, used for aiming 192, 196
 randomized actions, creating 145, 146
 used, for blending walk and run animations 104,

106, 107

C
camera shakes
 creating 206, 207, 208
character joints
 parameters 264
 used, for creating generic ragdoll 262, 263,

264
character
 animating 51, 52
 edge, grabbing 134, 135, 137
 following, at gaze 148, 149, 151, 152
 jumping 127, 129, 130
 steering, with root motion 115, 117, 118, 119
cloth simulation
 creating 248, 249, 250, 251
critters
 creating, with animation-driven behavior 142,

143, 144
CutsceneIdle animation 246
cutscenes
 about 228
 importing, from 3D package 236, 237
 playing, in gameplay with root motion 242
 working 238

D
day and night cycle
 creating, with Animation View 224, 225, 227
death trap
 creating 62, 63, 65, 66
destructible objects
 creating 255, 256, 258, 259
dismemberment effect
 creating 267, 268, 269, 270, 271
Dodge animation 179
Double Sided Standard Mobile Legacy Shaders

package 251

[302]

E
elevator triggered
 creating, player input used 68, 69, 70, 71, 72

F
facial expressions
 animating, with Blend Shapes 162, 163, 165
flickering light
 creating, with Animation View 42, 43
frame by frame sprite animation
 creating, with Animation View 80

G
generic ragdoll
 creating, with character joints 262, 263, 264
generic rig
 about 12
 configuring 13, 15, 16

H
Hierarchy
 Planet2 61
 used, for animating local rotation 59, 61
Hinge Joints
 parameters 254
 using 253, 254
hit location, character
 detecting 196, 197, 199
hit reaction 174
Humanoid 238
humanoid characters
 motion capture files, preparing 288, 289, 290,

292
humanoid ragdolls
 creating 258, 259, 260, 261
humanoid rig
 additional bones 17
 advanced animation settings 17
 automatic retargeting 17
 configuration options 14
 configuring 12, 13, 15, 16, 18, 19
 inverse kinematics 17
 look at feature 17

I
IK
 used, for interacting with scene objects 159,

160, 162

J
jump animation
 about 130
 Jump 130
 Land 130

K
Kinematic 244

L
Lerp() function
 Color.Lerp() function 285
 continuous method 285
 Mathf.Lerp() function 285
 Quaternion.Lerp() function 285
 standard method 285
 used, for animating object 282, 283, 284, 285
 Vector3.Lerp() function 285
LookAt() method
 using 191
 working 191

M
math
 used, for animating object 279, 280, 282
Mecanim states
 behaviors, adding 294, 295, 296, 297, 299
motion capture files
 preparing, for humanoid characters 288, 289,

290, 292, 293, 294
multiple animations
 blending, with Blend Trees 104

N
Nav Mesh Agent component
 character, driving with root motion 130, 131,

132, 133

[303]

O
object animation
 importing, from 3D package 39
object
 local position, animating 52, 53, 54, 55, 56, 58
 morphing, with Blend Shapes 214, 215
orbiting planets
 creating 59
Override Animator Controller
 used, for animating different types of characters

37
 using 37
 working 38

P
parameters, animation flow
 bool 30
 float 29
 int 29
 trigger 29
parameters, Animator Controller
 Avatar 22
 controller 21
 Culling Mode 22
 Update Mode 22
parameters
 used, for controlling animation flow 27, 28
particle system
 properties, animating with Animation View 220,

221, 222
particles
 animating, with sprite sheets 218, 219, 220
physics engine 247
playback speed, animation
 adjusting 35, 36
player input
 used, for creating elevator triggered 68, 69, 70,

71, 72
public script variables
 animating, with Animation View 208, 209, 211

Q
Quaternion.LookRotation() method
 used, for making character to follow object 148,

149, 151, 152

R
ragdoll
 force, applying 264, 265, 267
 standing up animation, implementing 271, 272,

274, 276, 278
randomized actions
 creating, with Blend Trees 145, 146
rig configurations, Unity
 generic rig 11
 humanoid rig 11
 legacy 11
 none 11
Rigid Body character
 driving, with root motion 109, 110, 111, 112,

114, 115
rigid body joints
 using 252, 253, 254, 255
root motion
 pros and cons 113
 used, for character dodge 178
 used, for creating 180 degrees turn animation

123, 124, 126
 used, for creating dodge move 177
 used, for driving character with Nav Mesh Agent

component 130, 131, 132
 used, for driving Rigid Body characters

movement 109, 110, 111, 112, 114, 115
 used, for steering character 115, 117, 118,

119
Rotate() function
 used, for animating object 286, 287, 288

S
scene objects
 interacting, IK used 159, 160, 162
skeletal animation
 importing 8, 9, 10, 11, 12
sound and visual effects
 triggering, with Animation Events 203, 206
sound waveforms
 used, for animations 222, 224
SpiderIdle 177
sprite sheets

 used, for animating particles 218, 219, 220
Sub-State Machines
 creating 167, 168
 using, in Animator Controller 167
 working 169
subtitles
 synchronizing, with animations 239, 240
Sync option 190

T
trigger position
 animating 62, 63, 65, 67

Turret game object 192

U
Unity
 about 7
 Hierarchy 200

W
wind emitters
 used, for creating realistic effects for foliage 216
 used, for creating realistic effects for particle

systems 216

	Cover
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Animations
	Introduction
	Importing skeletal animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Configuring generic and humanoid rigs
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating and assigning an Animator Controller
	Getting ready
	How to do it…
	How it works…
	See also

	Creating animation transitions in Animator Controller
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using parameters to control the animation flow
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using animations from multiple assets
	Getting ready
	How to do it…
	How it works…

	Looping, mirroring and offsetting the animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adjusting the playback speed of animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using override animator controllers to animate different types of characters
	Getting ready
	How to do it…
	How it works…

	Importing object animation from a 3D package
	Getting ready
	How to do it…
	How it works…

	Chapter 2: Working with the Animation View
	Introduction
	Using the Animation View to create a flickering light
	Getting ready
	How to do it…
	How it works…
	There's more…

	Blending light colors with the Animation View and the Animator Controller
	Getting ready
	How to do it…
	How it works…

	Animating an object's world position – creating a moving platform
	Getting ready
	How to do it…
	How it works…
	There's more…

	Animating object's local position – creating automatic doors
	Getting ready
	How to do it…
	How it works…
	See also

	Using the Hierarchy to animate local rotation – creating an orbiting planet
	Getting ready
	How to do it…
	How it works…
	There's more…

	Animating triggers – creating a death trap
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating an elevator triggered by player input
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 3: 2D and User Interface Animation
	Introduction
	Exporting a 2D sprite animation from a 3D package
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a frame-by-frame sprite animation with the Animation View
	Getting ready
	How to do it…
	How it works…

	Creating a 2D sprite doll animation with the Animation View
	Getting ready
	How to do it…
	How it works…

	Using the Animator Controller to play sprite animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating a fade out – fade in transition with the Animation View
	Getting ready
	How to do it…
	How it works…

	Creating a swipe transition with the Animation View
	Getting ready
	How to do it…
	How it works…

	Using filled images for creating animated progress bars
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Mecanim states for animating UI button states
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 4: Character Movement
	Introduction
	Using Blend Trees to blend walk and run animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using root motion to drive Rigid Body characters' movement with animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using root motion to steer a character
	Getting ready
	How to do it…
	How it works…

	Using animations for better looking transitions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using root motion for a 180 degrees turn
	Getting ready
	How to do it…
	How it works…
	There's more…

	Making a character jump with 3-phase animation
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using root motion to drive a NavMesh Agents' movement with animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using triggers to grab an edge while jumping
	Getting ready
	How to do it…

	Chapter 5: Character Actions and Expressions
	Introduction
	Creating an appear or a disappear animation
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating background characters and critters with animation-driven behavior
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Blend Trees to create randomized actions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Quaternion.LookRotation() and Animator.SetLookAtPosition() methods to make characters follow an object with their gaze
	Getting ready
	How to do it…
	How it works…
	There's more…

	Action Points – performing an action in a specified spot
	Getting ready
	How to do it…
	How it works…
	There's more…

	Synchronizing an animation with objects in the scene
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using IK for interacting with scene objects
	Getting ready
	How to do it…
	How it works…
	See also

	Animating facial expressions with Blend Shapes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 6: Handling Combat
	Introduction
	Using Sub-State Machines in Animator Controller
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Animation Events to trigger script functions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using transitions from Any State to play hit reactions
	Getting ready
	How to do it…
	How it works…

	Using root motion to create a dodge move
	Getting ready
	How to do it…
	How it works…
	There's more…

	Checking what Animator state is currently active to disable or enable player actions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Animation Events to draw a weapon
	Getting ready
	How to do it…
	How it works…

	Using Avatar Masks and animator controller layers to walk and aim
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using the LookAt() method to aim
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using Blend Trees to aim
	Getting ready
	How to do it…
	How it works…
	There's more…

	Detecting the hit location on a character
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 7: Special Effects
	Introduction
	Using Animation Events to trigger sound and visual effects
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating camera shakes with the Animation View and the Animator Controller
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using the Animation View to animate public script variables
	Getting ready
	How to do it…
	How it works…

	Using additive Mecanim layers to add extra motion to a character
	Getting ready
	How to do it…
	How it works…

	Using Blend Shapes to morph an object into another one
	Getting ready
	How to do it…
	How it works…

	Using wind emitters to create motion for foliage and particle systems
	Getting ready
	How to do it…
	How it works…

	Using sprite sheets to animate particles
	Getting ready
	How to do it…
	How it works…

	Animating properties of a particle system with the Animation View
	Getting ready
	How to do it…
	How it works…

	Using waveform of a sound clip to animate objects in the scene
	Getting ready
	How to do it…
	How it works…
	See also

	Creating a day and night cycle with the Animation View
	Getting ready
	How to do it…
	How it works…
	There's more…

	Chapter 8: Animating Cutscenes
	Introduction
	Using the Animation View to animate the camera
	Getting ready
	How to do it…
	How it works…
	There's more…

	Changing cameras with animation
	Getting ready
	How to do it…
	How it works…

	Synchronizing animation of multiple objects
	Getting ready
	How to do it…
	How it works…
	There's more…

	Importing a whole cutscene from a 3D package
	Getting ready
	How to do it…
	How it works…
	There's more…

	Synchronizing subtitles
	Getting ready
	How to do it…
	How it works…

	Using root motion to play cutscenes in gameplay
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Physics and Animations
	Introduction
	Using cloth
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using rigid body joints
	Getting ready
	How to do it…
	How it works…

	Destructible objects
	Getting ready
	How to do it…
	How it works…

	Creating a humanoid ragdoll with the ragdoll wizard
	Getting ready
	How to do it…
	How it works…

	Creating a generic ragdoll with character joints
	Getting ready
	How to do it…
	How it works…

	Applying force to a ragdoll
	Getting ready
	How to do it…
	How it works…
	There's more…

	Dismemberment
	Getting ready
	How to do it…
	How it works…
	There's more…

	Getting up from a ragdoll
	Getting ready
	How to do it…
	How it works…
	There's more…

	Miscellaneous
	Introduction
	Using math to animate an object
	Getting ready
	How to do it…
	How it works…

	Using the Lerp() function to animate an object
	Getting ready
	How to do it…
	How it works…
	See also

	Using the Rotate() function to animate an object
	Getting ready
	How to do it…
	How it works…
	There's more…

	Preparing motion capture files for humanoid characters
	Getting ready
	How to do it…
	How it works…
	See also

	Adding behaviors to Mecanim states
	Getting ready
	How to do it…
	How it works…

	Index

