

Unreal Development Kit 3
Beginner's Guide

A fun, quick, step-by-step guide to level design and creating
your own game world

Richard Moore

 BIRMINGHAM - MUMBAI

Unreal Development Kit 3
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Production Reference: 1180811

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849690-52-2

www.packtpub.com

Cover Image by Richard Moore (rich.2bdigital@yahoo.co.uk)

Credits

Author
Richard J Moore

Reviewers
Taylor Paschal

Jamie Telford

Dave Voyles

Patrick Coan

Acquisition Editor
Steven Wilding

Development Editor
Meeta Rajani

Technical Editor
Lubna Shaikh

Copy Editor
Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Samantha Lyon

Indexer
Tejal Daruwale

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Richard J Moore graduated in 2009 with a degree in video games design from Hull School
of Art and Design, but has expanded his creativity by working as a web designer/illustrator
in Hull, East Yorkshire, and London for three years. He is very passionate about 3D modeling,
level design, concept drawing, web development, and graphical illustrations.

He has worked on a number of different projects with clients from different industrial
backgrounds, building an impressive collection of stylish web templates, logos, brochures,
business cards, web banners, animated graphics, and e-mail marketing campaigns.

Through the clouds lies his passion for video game development, complete creation of 3D
art including modeling, texturing and high resolution rendering. He also dazzles in game
documentation and conceptual drawings.

He will always take any opportunity to meet as many different people from the game
development community as possible, and as a result he has attended the Games Grads
career fair, participated in the Game Republic 2009 student showcase in Sheffield and
Platform 2010, Hull's 1st Digital and Gaming event where he won the award for best
character and a cheque for £100.

In March 2011, he was involved in Platform Expo's 2011, Hull's second video game expo
where he entered in this year's video game showcase and won 2nd prize for his outstanding
contribution to video game design and is now involved in Platform Expo's 2012.

In July 2011, he volunteered as a marketing assistant/designer for an online-based video
games magazine, assisting the editor-in-chief in designing templates for latest issues of
the magazine, writing reviews on the latest video game titles, and talking to clients about
potential advertising coverage within the magazine and online. In his spare time he focuses
on freelance design and development work with upcoming companies. As a result, Richard
has had some impressive feedback from fellow designers and clients, and is very much
interested in starting up his very own design company, focusing on all the things he loves. He
has the ideas, the drive, and determination to put it together. 2011 is the start of something
big for this video games designer.

I would like to thank all the people at Packt Publishing for producing this
book and allowing me to take part in writing this creative guide to the
Unreal Development Kit.

I would also like to thank the people at Epic Games for allowing me, as a
games designer, to create fantastic 3D environments and brand new game
ideas using their engine.

(Cheers, all I need from you now is a job position.)

Finally, I'd like to thank the people at Adobe, Autodesk, and Pixologic
for letting me show my creativity in creating some amazing game design
artwork, using your software.

(Keep up the good work.)

About the Reviewers

Taylor Paschal grew up surrounded by video games. As the game industry skyrocketed
in the mid-nineties, games like GoldenEye and Zelda consumed his time. Inspired by the
beautiful environments of the games he played, Taylor constantly dreamt of one day being
able to entertain others with levels made by his own design. That dream never left him.

Now over a decade later, Taylor is a senior, expected to graduate from Radford University in
May 2011 with a degree in Software Engineering. Specializing in game development practices
and level design, he works with an upcoming studio of talented individuals, overseeing the
art and level design of their games, which make use of the Mobile UDK. In his spare time, he
does graphic design work, creating logos, ads, and wallpapers on request.

Taylor has over three years of experience with the Unreal 3 Engine. Meeting with developers
from Epic Games to enhance his knowledge of the engine and attending game development
conferences to learn about level design theory, Taylor applies his much sought-after skills to
his work, creating vibrant and exciting worlds for players to explore.

I want to thank Andrew Bains and Demond Rogers at Epic Games for being
great teachers and a great source of inspiration for me. I also want to thank
Alex Meade and Austin De Vinney for convincing me to go to that first
game developer's conference. I don't think I'd be pursuing a career in level
design if it weren't for that trip. Also a shout out to Alex Meade (again) and
Matt Varnell, for helping me make some awesome games in the Mobile
UDK, as well as Michael Thola for letting us test on his iPad. Dr. Jeff Pittges,
too, for giving me the confidence to network myself in the games industry.
Last, and definitely the most important, my family. I wouldn't be here if it
weren't for your patience and your help, so thank you Mom, Dad, James,
Cody, Michaela, and Julie.

Jamie Telford is a Technical Artist in the field of real-time applications and game
development. His primary expertise is in developing robust animation systems for
deployment in modern cutting edge software applications.

Jamie's years of experience in the games and education industry have given him an excellent
insight into current and upcoming methodology and techniques deployed in successful
development environments.

He has worked for Fuzzyeyes Studio and Ksatria Gameworks as an animator and rigger.
In addition to his industry experience, he has worked for several years as a lecturer in
animation and modeling for Ngee Ann Polytechnic of Singapore.

Minazo, the walrus

Dave Voyles is Managing Editor and Podcast Producer for Armless Octopus. He covers Xbox
Live Indie Game, Xbox Live Arcade, and Playstation Network news, reviews, and developer
interviews. He holds a B.S. in Communication Studies from SUNY Oneonta, and is currently
attending the New York Institute of Technology to work on his MBA in Management of
Information Systems.

Dave also builds projects focusing on the Unreal Development Kit. Most notably, he is
founder of the New York City-based UDK meetup group, where he works with other
developers to collaborate on endeavors in a physical environment, as well as provides
tutorials. He is currently developing a third-person adventure title of his own, and plans to
release it on the PC later this year.

You can find more of his work by visiting his site at http://www.DaveVoyles.
wordpress.com or www.ArmlessOctopus.com.

http://www.DaveVoyles.wordpress.com
http://www.DaveVoyles.wordpress.com
http://www.ArmlessOctopus.com

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books. 

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

This book is dedicated to:

My parents, Elizabeth and John, who taught me all that is important,

my brother Adam, and my sister Sarah who taught me to never give up, and

 finally to all my relatives, friends and fellow games designers.

This book would not have been possible without your love and understanding.

Thank you from the bottom of my heart.

(I'll make it up to you all, I promise.)

Table of Contents
Preface	 1
Chapter 1: Level Design HQ	 7

Time for action – UDK download and installation	 7
UDK folder structure	 8
Time for action – launching the editor	 9
Autosave	 11
Content browser	 11
Time for action – movement and rotation	 13

Navigation	 13
UDK	 14
WASD key navigation	 14
MAYA users	 14

BSP	 14
Why use BSP?	 14
Can I use static meshes to create my map without using BSP?	 15
Dominance of static meshes	 15
Brushes only, no static meshes	 16
Brushes and static meshes	 16

Time for action – using BSP brushes and static meshes	 17
Additive and subtractive	 18

Additive	 18
Subtractive	 18

Unreal scale and proportions	 18
Grid snapping	 19
Viewport options	 20
Summary	 24

Chapter 2: Hello UDK	 25
Your first map	 25
Time for action – setup, where to save the file, what to name it	 26

Table of Contents

[ii]

Why CSG?	 27
Time for action – the builder brush and our first cube	 28
Subtractive	 30
Brush Order	 31
Time for action – geometry editing tool	 33
Time for action – building our first room	 36
Time for action – placing lights and a player start	 40
Time for action – creating a hallway and a second room	 42
Time for action – applying materials to CSG surfaces	 47
Surface Properties	 50
Time for action – test map and add bots	 52
Summary	 54

Chapter 3: Applying Lighting Effects	 55
Directional lights	 55
Point lights	 56
Spotlights	 56
Skylights	 56
Time for action – different types of light	 56
Point lights	 56
Spotlights	 58
Directional lights	 61
Skylights	 62
Time for action – lightmaps	 64
Time for action – adjusting lightmaps on CSG surfaces	 66
Time for action – lightmaps on static meshes	 68
Summary	 72

Chapter 4: Battling the Elements	 73
Time for action – the basics	 74
Time for action – add a new particle emitter	 75
Time for action – the smoke example	 76
Time for action – adding height fog	 87

Setting parameters	 88
Uses	 89

Atmospheric haze	 90
Localized fog	 90
Dense haze	 90

Time for action – creating the surface	 92
Time for action – water volumes	 94
Time for action – underwater	 96
Summary	 110

Table of Contents

[iii]

Chapter 5: Movement with Movers	 111
Time for action – a basic elevator/door	 112
Time for action – elevators UT style	 120
Time for action – a continuously looping animation	 122
Time for action – a continuously rotating animation	 122
Time for action – attaching something	 123
Summary	 128

Chapter 6: Terrain	 129
Time for action – your first terrain	 130
Time for action – applying materials	 134
Time for action – light mapping	 138
Summary	 140

Chapter 7: Adding Gameplay Elements into your Map	 141
Adding gameplay elements	 142
Time for action – naming your map	 142
Time for action – adding a player start	 143
Time for action – play in editor	 145
Time for action – placing pickups	 146
Time for action – placing weapons	 148
Time for action – placing jump pads	 153
Time for action – adding other game object types	 156
Bot pathing	 162
Time for action – adding path nodes	 162
Summary	 165

Chapter 8: Complex Event Sequences	 167
Time for action – a simple sequence	 168
Time for action – basic UIScene	 171
Time for action – basic cut scene	 180
Summary	 189

Chapter 9: Materials	 191
What is a material?	 191
Time for action – creating a new material	 192
Time for action – adding textures to a material	 194
Time for action – creating a shiny metal surface	 197
Time for action – adding a normal map	 199
Time for action – seeing your material in the world	 202
Time for action – giving a perfect texture to your material	 203
Time for action – color specular highlight	 209
Time for action – adding a tint to the diffuse color	 213

Table of Contents

[iv]

Time for action – making your material easy to read	 214
Summary	 218

Appendix: Pop Quiz Answers	 219
Chapter 1	 219

Level Design HQ	 219
Chapter 2	 219

Hello UDK	 219
Chapter 3	 219

Applying Lighting Effects	 219
Chapter 4	 220

Battling the Elements	 220
Chapter 5	 220

Movement with Movers	 220
Chapter 6	 220

Terrain	 220
Chapter 7	 220

Adding Gameplay Elements into your Map	 220
Index	 237

Preface
UDK offers a fully integrated editing environment through the renowned Unreal Editor. You
will learn all of the engine's key tools which are accessible through Unreal Editor. You will
learn the basics, from installing to navigating around the editor. You will then start putting
together your first level using step-by-step instructions.

You will then learn how to use UDK's real world features, such as dynamic lighting and
shadows, particle effects, physics, terrain, item placement, and advanced AI/bot pathing.

Finally, you will learn about UDK's cutting edge high level scripting, adding materials followed
by some advanced techniques to boost your skills as a designer, and look beyond UDK with
further development into external content, unreal scripting, and modding.

What this book covers
Chapter 1, Level Design HQ will explain how to download and install UDK. It will show you
how to launch the editor, how to move and rotate around the editor, and finally explain
briefly about BSP brushes and static meshes.

Chapter 2, Hello UDK covers the most essential tools and functions you need to know to
get started with UDK. You'll be able to quickly jump into UDK and begin feeling comfortable
using the most commonly used functions.

Chapter 3, Applying Lighting Effects covers the different types of lighting used in developing
and designing an environment in UDK, and how light maps are used on CSG surfaces and
static meshes to reflect light off objects.

Chapter 4, Battling the Elements looks at UDK's particle editor (Cascade) works. It will quickly
walk you through the interface of the editor and explain how a basic smoke particle, water,
height, and fog can be set up.

Chapter 5, Movement with Movers introduces you to the world of animated level geometry
in UDK, doors, and elevators, which are activated using InterpActors or triggers.

Preface

[2]

Chapter 6, Terrain will explain the reader how to set up and modify terrain in UDK.

Chapter 7, Adding Gameplay Elements into your Map explains how to get all of the basic
gameplay elements into your map. In this section, we'll set up a Deathmatch map, which is
the easiest type to create.

Chapter 8, Complex Event Sequences introduces the reader to UIScenes, for creation of HUD
elements, menus, and things like subtitles and titles.

Chapter 9, Materials will explain the basics of creating a material. We'll build some basic (but
extremely useful) materials from scratch, and in the process, learn how the material
editor works.

What you need for this book
You will need the latest version of Unreal Development Kit.

System requirements:

�� Minimum:

�� Windows XP SP2 or Windows Vista
�� 2.0+ GHz processor
�� 2 GB system RAM
�� SM3-compatible video card
�� 3 GB free hard drive space

�� Recommended for Content Development:

�� Windows 7 64-bit

�� 2.0+ GHz multi-core processor

�� 8 GB System RAM

�� NVIDIA 8000 series or higher graphics card

�� Plenty of free hard drive space

�� Minimum for DX11 Development:

�� Windows Vista

�� 2.0+ GHz processor

�� 2 GB system RAM

�� DX11 Graphics Card such as Nvidia: 400 series or above and ATI: 5000 series
or above

o	 3 GB free hard drive space

Preface

[3]

Who this book is for
This book is for aspiring game developers who want to learn how to create their own levels,
maps, game worlds, and environments. You don't need game design or game development
experience, and no experience of UDK is required

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "To launch the unreal editor,
go to the Start Menu | Unreal Development Kit | UDK Version | Editor".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Level Design HQ

In the first chapter, I'm going to explain how to download and install the Unreal
Development Kit (UDK), show you how to launch the editor, how to move and
rotate around the editor, and finally briefly explain Binary Space Partitioning
(BSP) brushes and static meshes.

In this chapter, we will learn the following:

�� UDK download and installation

�� Launching the editor

�� Movement and rotation

�� Using BSP brushes and static meshes

So let's get on with it. We will first look at downloading the UDK, and install it on your PC.

Time for action – UDK download and installation
1.	 Download the latest version of UDK.

2.	 Log on to www.udk.com and download the latest version of unreal development
kit beta. Once you download the UDK Installer, go ahead and install the UDK. The
default directory for installing UDK is C:\UDK\UDK-VersionRelease.

Version Release will be the month and year that the UDK you downloaded was built.

http://www.udk.com

Level Design HQ

[8]

UDK folder structure
The UDK folder structure looks like the following screenshot:

The UDK folder structure consists of the following four folders:

1.	 Binaries: game/binary executable.

2.	 Development: source code for UDK.

3.	 Engine: engine files.

4.	 UTGame: game files. For level-design and environment creation, the important
folder here is the content folder. The packaged environment's assets such as
models, textures, materials, sounds, and such are stored here.

For environment creation and level design, the most important folder is UTGame
| Content | Environments. It contains all the files you need to create your map, as
shown in the following screenshot:

Chapter 1

[9]

UDK extension is the UDK package's name. This is how the models and
textures are stored in UDK. Think of UDK extension as folders. Inside those
folders are stored all the models, animations, textures, materials, and similar
assets. You can browse the UDK files through the UDK editor.
UDK is the map file extension.

Time for action – launching the editor
1.	 To launch the unreal editor, go to the Start Menu | Unreal Development Kit | UDK

Version | Editor.

2.	 Another way to launch the editor is to create a shortcut. To do this, go to the
installation folder: \UDK\UDK-VersionRelease\Binaries, locate UDKLift.
exe, right-click and select Send To | Desktop (create shortcut), as shown in the
following screenshot:

Level Design HQ

[10]

3.	 Once on you have created the shortcut on your desktop, right-click the shortcut and
select Properties. Then, in the Target box under the Shortcut tab, add editor at
the end of the text. It should look something like the following screenshot:

4.	 Now double-click on the desktop icon and launch the UDK Editor.

Chapter 1

[11]

Autosave
When you first launch the editor, you will have Autosave automatically enabled. This will
save your map at a chosen timed interval. You can set how often it will automatically save
by clicking the Left Mouse Button (LMB) on the arrow on the bottom-right of the Autosave
Interval and choosing the time you want, as shown in the following screenshot:

You will find the Autosave feature at the bottom right of the editor. If you enable Autosave,
there are a few options such as Interval and Type.

Save manually by going up to File | Save As.

Content browser
Content browser is where you will find off the game's assets. Placing static meshes (models),
textures, sounds, and game entities such as player starts, weapons, and so on, can all be
done through the content browser. You will be using the content browser very often. To open
the content browser click on the top menu bar, as shown in the following screenshot:

Level Design HQ

[12]

Packages are where you will find specific items contained within the UDK. Things such as
static meshes are contained within a package. You can search for a package, or just find the
package you want to use and select it as shown in the following screenshot:

The top of the content browser contains a search box as well as a filter box. This is very
useful. You can sort out the content in the browser by animation sets, material instances,
static meshes, sounds, and so on. This helps a lot when looking for items. The next
screenshot lists full names of the items within a selected package. You can sort by clicking on
the Name, Type, Tags, or Path fields, and it will re-arrange the content's preview:

Chapter 1

[13]

The content browser is one of the most commonly used tools in UDK. Get comfortable using
the content browser. Spend some time navigating around it. UDK basics covers the most
essential tools and functions you need to know to get started with UDK. You'll be able to
quickly jump into UDK and begin feeling comfortable using the most commonly used functions.

What just happened?
So we know how to launch the editor, how to use the Autosave function, and where to find
the content browser. We are now going to look at how to move and rotate around the editor.

Time for action – movement and rotation
Time to have a look at movement, rotation, and navigating around the editor.

Navigation
Buttons used to navigate around UDK.

Level Design HQ

[14]

UDK
These are your primary keys for navigating and rotating using the editor:

�� Left Mouse Button (LMB): pan right/left/forward/backward movements

�� Right Mouse Button (RMB): rotate, look around

�� LMB+RMB: up/down

WASD key navigation
The following are other forms of primary keys for navigating and rotating around the editor:

�� Click and hold RMB. As you hold it, use the WASD keyboard keys to move around as
you would in a first person shooter game.

�� WASD movement is great if you are familiar with hammer source mapping.

MAYA users
If you are familiar with Maya, the following will be your primary keys for navigating and
rotating around the editor.

�� Hold down the U key

�� U+ LMB: rotate, look around

�� U+ RMB: forward/backward movements

�� U+ MMB: right/left/up/down movements

What just happened?
Now that you have installed UDK and know what the content browser is, you are ready to
begin. So let's get started.

BSP
The purpose of BSP is to greatly reduce the amount of work the game engine has to perform
in real time—to draw polygons on the player's screen.

Why use BSP?
BSP is a great tool to block in your map with. BSP is often used to quickly create and test
playable space.

Chapter 1

[15]

Can I use static meshes to create my map without using BSP?
Yes. Although, you will need a 3D software application that supports UDK's plug-in, such as
Autodesk Maya, 3Ds Max, XSI.

UDK CSG Operations for Brushes include the following:

�� CSG Add

�� CSG Subtract

�� CSG Intersect

�� CSG Deintersect

Dominance of static meshes
Static meshes are simply the models in your level. If you open up any UDK map, 90 percent
of the map will be static meshes and the rest will be BSP brushes.

Level Design HQ

[16]

Brushes only, no static meshes
We can see only brushes used in the following image:

Brushes and static meshes
We can see both brushes and static meshes used in the following image:

Chapter 1

[17]

Time for action – using BSP brushes and static meshes
The Red Builder Brush creates BSP brushes. It also acts as a template for creating BSP
Geometry and does not show up in the game.

In the previous screenshot you can see that the red builder brush has taken the form of a
square template for creating BSP geometry. You can create different sizes and types of BSP.

Hammer source engine still uses BSP operation to construct the main shell of the level, but
the majority of next-gen engines heavily rely on static meshes. Static meshes is what you
will be using to primarily define how your map looks in UDK. Static meshes are the models
that make up the 90 percent of your level. Creating static meshes requires you to have a 3D
application, such as XSI, Maya or 3Ds Max, and so on.

�� Red builder brush is what you will use to create BSP brushes

�� Static meshes is what you'll be using to detail the environment

Level Design HQ

[18]

Additive and subtractive
When you create a new map by going to File | New, you are presented with two options to
create a map inside UDK: additive and subtractive. The most common and mostly used is the
Additive mode.

Additive
Think of an empty space. In the additive method, you would be adding walls, models, and
the environment assets into the empty space. A real life example of additive map creation
would be constructing a building wall-by-wall.

Subtractive
Think of a solid rock. In the subtractive method, you would be cutting the rooms and
environment out of this solid mass. Subtracting the solid rock, in order to have room, is like
sculpting.

UDK basics covers the most essential tools and functions you need to know to get started
with UDK. You'll be able to quickly jump into UDK and begin feeling comfortable using the
most commonly used functions.

Unreal scale and proportions
The scale of a character in Unreal is 96 units.

�� 128 UU = 8 feet = 243.8 cm

�� 96 UU = 6 feet = 182.9 cm

�� 16 UU = 1 foot = 30.5 cm

�� 1 UU = 2 cm

Chapter 1

[19]

Grid snapping
Grid snapping is extremely important. Always work with grid snaps turned on. There are
three grid snap options: rotation grid, drag grid, and scale grid. The following screenshot
shows the Drag grid option, the Rotation grid option, and the Scale grid option at the
bottom-right corner:

Uncheck/check: turns on/off the drag/rotation/scale grids. I would recommend always
having this turned on. In some cases, for fine detailed work, you may need to turn it off.

[] Bracket keys increase or decrease grid.

Level Design HQ

[20]

Viewport options
The most commonly used viewport is perspective. You will spend most of your time in the
perspective viewport. This includes moving, placing, duplicating, and transformation of static
meshes and most of your environment creation.

If you go up to View | Viewport Configuration, you have options of how you want to set up
your views, which is shown in the following screenshot:

Chapter 1

[21]

In the drop-down menu for the viewport, there are options of what you want to display.
It allows you to hide/unhide specific elements in your perspective viewport, which is very
useful when you are working on a specific element during your level creation:

Real Time Preview (RTP) shows the environment as it would look like in the game, complete
with sound and particle effects. RTP works best when you have the Game Mode (G) enabled,
which turns off the wireframe brush view. This offers the best and most accurate view of
what your level will look like in the game.

Here is a list of the different viewport options you will be using when designing in UDK. Some
of you will use one more than the others:

Level Design HQ

[22]

�� Brush wireframe (Alt+1): Shows wireframe brushes that will allow brush selection

�� Wireframe (Alt+2): Shows wireframe brushes that will not allow brush selection

�� Unlit (Alt+3): No lights; makes navigation inside your perspective viewport a bit
faster

�� Lit (Alt+4): Full-lights preview

�� Lighting only (Alt+5): Lighting only

Chapter 1

[23]

�� Lighting complexity (Alt+6): Your lighting complexity

�� Texture density (Alt+7): How complex are your textures

�� Shader complexity (Alt+8): Shader complexity only

�� Lightmap density (Alt+9): Lightmap density only

�� Lighting only with texel density (Alt+0): Lighting only with texel density

What just happened?
So we know about using the BSP brushes and static meshes, the additive and subtractive
tools, the unreal scale and proportions, the grid snapping, and the different types of
viewport options that we will be using when designing in UDK.

Have a go hero – wireframe brush
So we have light in our small room, what's next? Let's see if you can move the wireframe
brush and create another surface. It is important that you understand the different uses of
the translation and scaling mode options available in this editor.

Pop quiz
What do the following buttons function as?

�� Left Mouse Button (LMB)

�� Right Mouse Button (RMB)

�� LMB+RMB

�� WASD

Level Design HQ

[24]

Summary
So we have covered the UDK basics, which are the most essential tools and functions you
need to know to get started with UDK. You'll be able to quickly jump into UDK and begin
feeling comfortable using the most commonly used functions.

Specifically, we covered:

�� How to download and install UDK

�� How to launch the editor and the Autosave function

�� How to navigate around the engine and how to use the short keys

�� How to use BSP brushes and static meshes

�� How to use the add and subtract operations used in BSP brushes

�� How to scale and grid snap in UDK

�� How to use different viewport options to maximize real time

Now that we've learned about the basics of navigating around the engine and using UDK's
main features, we're ready to start creating our first map, which is the topic of the next
chapter.

2
Hello UDK

UDK basics covers the most essential tools and functions you need to know to
get started with UDK. You'll be able to quickly jump into UDK and begin feeling
comfortable using the most commonly used functions.

In this chapter, we will learn the following:

�� Setup, where to save the file, what to name it

�� The builder brush and our first cube

�� Geometry editing tool

�� Building our first room

�� Placing lights and a player start

�� Creating a hallway and a second room

�� Applying materials to CSG surfaces

�� Test map and add bots

This is where the fun really starts. We will begin the first stages of creating our map by
creating a small room, and then move onto adding features like lighting, materials, textures,
and static meshes. This will be followed by adding a player start and testing our map
with bots.

Your first map
You will build your first level using the unreal in-editor modeling system, Constructive Solid
Geometry (CSG), also referred to as BSP.

Hello UDK

[26]

Time for action – setup, where to save the file, what to name it
1.	 Go to File | New, a window will pop up asking what geometry style you want, select

Additive. Not only is it more appropriate for most level designs, but also I've seen
some weird bugs with Subtractive mode in UDK.

2.	 Before we begin working, let's pick a name and save our file. For the purposes of
this test, we'll use DM-CSGTest01.udk. Unreal figures out what game type you're
making based on the map name. So by choosing DM-, we'll get a Deathmatch map,
and all of the associated gameplay that comes with it as default lead-out. Go to File
| Save. Unreal works best if you put your map in a specific folder, which you may
have to create as follows:

C:\UDK\UDK-VersionRelease\UDKGame\Content\Maps and name it DM-
CSGTest01.udk.

3.	 Let's also do some viewport configuration to make editing easier. Click on View |
Viewport Configuration | 1x2 Split. This will put your perspective view on the left
and your top, and side 2D views on the right.

4.	 Click on Unlit mode in your perspective view. Since we're building a level from
scratch, there won't be any lights yet, so we need to be in Unlit mode to see what
we're doing.

Chapter 2

[27]

What just happened?
So we know how to set up our first level and how to select the addictive tool for our first
attempt at designing our map. We know that it works best to save our level in the folder
provided by UDK, and not set up our own to confuse things. We also know how to arrange
and layout our viewport options. Finally, we know how to select the Unlit icon because we
are creating our first map and there won't be any lighting just yet.

Why CSG?
We're going to use CSG geometry to rough out our level. It's the in-editor 3D modeling tool.
While you could rough out the level in a 3D application such as Maya, Max, or even AutoCad,
CSG gives you an incredibly fast turnaround when you begin working out the gameplay
of your level. It's much easier than going back-and-forth between the different software
packages.

That said, CSG isn't good for anything very detailed. It's expensive, it's hard to work with,
and is prone to errors if the geometry gets too complicated. For this reason, it's great for
prototyping since you don't want to add much detail in the early stages. It's also suitable for
some simple geometry in the final level, as you can see in some of the epic's maps.

Hello UDK

[28]

Time for action – the builder brush and our first cube
At the center of your empty level is a red wireframe cube. This is the builder brush. Think of
it as a rubber stamp. Whatever shape and size it is, that's the shape and size of the geometry
that you're going to stamp down.

1.	 Select the builder brush, then click on the CSG : Add button.

2.	 This stamps a cube down into the world, as shown in the following screenshot:

3.	 If you move the builder brush out of the way, you see that the cube stays in the 2D
views. It appears as a blue wireframe box.

Chapter 2

[29]

4.	 Now select the blue additive brush in one of the 2D views and move it to the side.

5.	 The checkerboard cube didn't move with it. When you modify existing the CSG,
unreal requires you to rebuild for a simple cube move, which is pretty fast. But when
you've got a whole level roughed-out in CSG, you wouldn't want unreal to pause
and re-calculate all the time. Click on Build Geometry for Current Level, towards the
top-right of the screen. You'll get some warnings, which are no big deal—that we'll
discuss later—but the cube appears where it should appear.

Hello UDK

[30]

Subtractive
So say you wanted to create a room. You could place six additive cubes making up the
walls, floor, and ceiling, but there's a better way to do it. In addition to additive, unreal has
subtractive, and it does just what you'd think—it carves a hole in additive. Select the builder
brush, move it so that it's partially intersecting with your additive brush, and click
CSG : Subtract.

If you move the builder brush out of the way, you'll see that there's now a chunk taken out
of your cube, and there's a yellow subtractive cube in the 2D view.

Try moving the subtractive brush around. You will again need to rebuild geometry in order
for the changes to update in the 3D view.

Also, you can clone your additive or subtractive brushes by copying-and-pasting them (ctrl+c,
ctrl+v), or by alt+dragging one of the movement handles. Play around a little more, intersect
some more shapes, and rebuild. Get a feeling for the tools.

Chapter 2

[31]

Brush Order
You may notice that sometimes a subtractive brush cuts into one additive brush, but
not another.

This is because brushes are order dependent, they're like a set of commands such as Build
this, Now cut into it, Now build on top of that, which are shown in the following
screenshot:

Hello UDK

[32]

If we want the subtractive brush to cut into both the additive brushes, we can make it the
last command in the list. Select the subtractive brush, right-click on it, and select
Order | To Last.

Now the brushes are in the order we want.

And if we rebuild geometry, we get the results we want.

Chapter 2

[33]

And yes, you could have also selected the #3 additive brushes and clicked on Order | To
First, to get the same result.

What just happened?
So we know how to use the builder brush tool to create our first cube. Let's go ahead and
look at the geometry editing mode tool.

Time for action – geometry editing tool
Let's face it; it would be tough to build a level solely out of cubes. Let's look at some more
advanced geometry editing. But first, save your work, create a new file, and save it as DM-
CSGTest02.udk.

1.	 Create a new additive brush, then click on the Geometry Mode button at the top-
left corner of the window. This opens up the Geometry Tools dialog box. You can
close it again by clicking on the button to the left, Camera Mode.

Hello UDK

[34]

2.	 Working with edges is the easiest way to get started, so click on the Edge button,
and select your additive cube.

3.	 Make sure you're in the World mode (not Local).

4.	 Then select an edge and try moving it around.

5.	 Now our cube is an elongated rectangular box. Don't forget to rebuild geometry.

Chapter 2

[35]

6.	 You'll notice that when you selected the edge in the 2D view, it actually selected two
edges in the 3D view—in my case, the top and bottom. This is really handy and what
you want most of the time. But you can also make a ramp shape by selecting only
one of the edges in the 3D view and then moving it.

7.	 Editing vertices is also pretty powerful. Switch back to Vertex mode.

Hello UDK

[36]

8.	 You can select any vertex and move it around. You can also ctrl+click to select
multiple vertices, or ctrl+alt+click+drag to make a selection box.

ctrl+alt+drag works for anything in unreal, not just geometry
editing. You can ctrl+alt+right click+drag to deselect.

 Play with your shape some more and get a sense for how to do some serious
geometry editing.

What just happened?
We know how to use the CSG tool to map out a rough outline of our first room. So let's begin
with building our first room.

Time for action – building our first room
Time to create our first room, something we can actually run around in. Save your work,
create a new file, and save it as DM-CSGTest03.udk.

We want our room to be big enough for the player to run around in. The builder brush is
256x256x256 by default, and the player is 88 units tall. That's going to feel a little cramped,
so let's make our cube more like 1024x1024x512 units tall. What we're going to do is create
an additive cube which is the size we want, and then hollow it out by using a slightly smaller
subtractive cube. Select the builder brush and make sure you're in the Geometry mode. Yes,
the geometry editing tools work on the builder brush too.

Chapter 2

[37]

Also, resize your grid to 32 units either by using the controls in the bottom-right corner of
the screen or the bracket [] keys. It's important to build on the grid so that we have an
easier time-judging size, and so that when we expand our level later, everything lines up
nicely. This is also why we're using the Geometry tools to resize the brush instead of non-
uniformly scaling it. Your setup should look like the following screenshot:

So we're going to grab the builder brush's edges and move them around until the brush is big
enough, but how do we tell how big it is? There's nothing that tells us the cube's size directly.
We can use the measure tool to drag in a 2D view and measure distances. Just click-and-drag
with the middle mouse button.

Hello UDK

[38]

Drag the builder brush's edges until it's of the right size. Make sure that you also check the
side view, and make the brush 512 units tall.

Click CSG : Add, and your box will appear in the 3D view.

The checkerboard on the surface, tiles a lot more on a
bigger cube.

Now resize your builder brush in both the top and side views to fit just inside of the additive
brush and hit CSG : Subtract. If you fly the camera inside the cube you can see that
it's hollow.

Chapter 2

[39]

We're almost ready to play, but we need some default lighting and we need to tell unreal
where the player is going to spawn.

What just happened?
We know how to create our first room. Let's go ahead and add some light to our room.

Have a go hero – second floor
So you have a basic room, why not try to create another room? See if you can create another
room on top of the one you just created, subtract a hole in the room, and add a staircase or
maybe a elevator which takes you into the second room.

Hello UDK

[40]

Time for action – placing lights and a player start
In this section, we'll be placing actors, so we'll be mostly working in the 3D view. Close the
Geometry tools window, click on the Camera Mode button, and save your work. First we'll
place a light. It is easy—right-click on the ground, then click on Add Actor | Add Light (Point).

The light should appear where you clicked. Go to Lit mode, and you'll see your room appear
with lighting now, though it looks a little strange, since the light is right on the floor.

Move the light up from the floor so it's in the middle of the room. You can also increase or
decrease the light's radius using the Scale tool. Give it a try.

Chapter 2

[41]

The last thing we need to do before we run is to Bake Lighting. Right now the light is
calculated dynamically, which is expensive and unnecessary. If we bake it, it calculates
texture maps for any light and shadows in the scene, which is much cheaper. Click on the
Build Lighting tool that is right next to Build Geometry. The default settings in the Options
window are fine, so hit OK.

Baking should go pretty fast since this is a really simple scene. But for a finished level, it can
take up to an hour depending on your machine, the size of the level, and the complexity of
the lighting, of course. One last thing before we can play, Create a Player Start—which is the
same as adding a light. Right-click on the floor, then click Add Actor | Add PlayerStart. The
player start should appear at a proper height off the ground.

Hello UDK

[42]

Save your work. To run the level, click on the Play in Editor button in the top-right corner of
the window, it looks like a little joystick.

What just happened?
So we have added some light to our room. Let's now go ahead and create a hallway along
with a second room.

Have a go hero – advanced lighting
We know a little bit about lighting up our room. Why not try to add more lights to your
room, give your room some color by playing around with the light properties, and strengthen
or weaken the light to suit the atmosphere of your room.

Time for action – creating a hallway and a second room
At this point, you should be able to create a second room and a hallway without any more
guidance, but I'll take this opportunity to show a few more tricks. Save your work, and then
save it as a new file, DM-CSGTest04.udk.

We'll create the second room first, and then the hallway.

Instead of building the second room from scratch, let's select the first room and everything
in it, and then clone it over. In one of the 2D views, ctrl+alt+drag a selection box around the
entire room. We want the player start and the light too, which will be useful later.

Chapter 2

[43]

Then alt+drag on the Move tool to copy the room over to the right side.

Hello UDK

[44]

Press the Rebuild Geometry button, go to Unlit mode, and you should see both rooms in
your 3D view. Remember that there are no lights outside, so the outer surfaces will
show up black.

Time to create the hallway. We could clone a room again and shrink it down using the
geometry editor tools, but let's build it from scratch. Clicking on the Cube button on the left
will reset the builder brush to the default 256x256x256 cube.

But if you right-click on it, you get a dialog box where you can type in how big you want the
cube to be. Measure how far apart your rooms are, and fill that into the properties. Mine
were 512 units apart in the Y-dimension. 256 is fine for the corridor's width and height
(X and Z).

Chapter 2

[45]

Click on Build, place the builder brush between your rooms, and click on CSG : Add.

Hello UDK

[46]

Now, like with the rooms, use the geometry tools to resize the builder brush to be just
slightly smaller than the additive brush. Most importantly, make sure it's long enough to
connect the interiors of the rooms. Click on CSG : Subtract.

Go back inside the rooms in the 3D view and turn on the Lit mode. You should see a corridor
connecting your rooms.

Add some extra lights to the hallway. Instead of going through all that right-click nonsense,
you can hold the l key (l for light) and click on the floor. Rebuild lighting, save your work, and
test your level.

What just happened?
We now have a hallway and a second room, but it looks a little bland. Let's see if we can add
some atmosphere and color to our rooms by applying some materials to the surfaces.

Chapter 2

[47]

Time for action – applying materials to CSG surfaces
It's time to get rid of that grey checkerboard pattern covering the walls and floor. You can
apply either a material or a material instance to a surface. We'll discuss the differences later.
Both types of materials show up in the generic browser with a green border.

Let's find a material that we can apply to our CSG surfaces. Open the generic browser, and
in the filter list, check Material and Material Instance Constant. If you have anything else
checked, like Static Mesh, uncheck it.

Click on some packages. Any of them starting with HU_ contain human environment assets,
which is a good start. You'll see that a few materials show up, but not many. This is because
the packages haven't been fully loaded yet.

Hello UDK

[48]

Select a package, right-click on it, and select Fully Load. You can select multiple packages at
the same time by ctrl+clicking on their names, or by shift+clicking to select a block. Select
all of the HU_ packages now, and fully load them. You'll have a lot more materials to choose
from. Applying a material to a surface is really easy. Select the surface (click on it in the 3D
view), then click on a material in the generic browser. The material will appear. Try it now.

One thing to watch out for is that some materials have transparent parts.

Chapter 2

[49]

Now, you could select the surfaces in your level one-by-one and apply materials, but there
are some tools for selecting multiple surfaces at once. First, you can select multiple surfaces
at once by holding the ctrl key and clicking on them one-by-one. Try that now. You can also
ctrl+click a selected face to unselect it. There are also a bunch of options under the
right-click menu.

I won't go into the details, but try a few of these options and see what they do. You might
want to start with Matching Texture, that'll select all checkerboard surfaces. You could also
try Matching Brush to select the entire room, or Adjacent Walls to select all the
connected walls.

Hello UDK

[50]

Take a few minutes now and replace all checkerboard surfaces in your level with appropriate-
looking floors, walls, and ceilings.

Surface Properties
Now let's look at how to change the alignment, rotation, or scale of your material. Select a
face and go to View | Surface Properties (or hit F5).

Chapter 2

[51]

The best way to learn the tool is to try it out for yourself.

Panning and rotating are easy; just click the button you want and the material updates on
the surface. You can shift+click on a button to move or rotate in the opposite direction.
Changing the scale is nearly as easy, but once you select a scale option, you need to press the
Apply button just to the right of the scale. The default scale is 1, and larger numbers mean
that the material will cover a larger area. The other things you can control on this menu are
the surface's lighting properties, but we'll discuss that in detail when we talk about lighting.

Hello UDK

[52]

What just happened?
So our map has a little character to it. Let's now test our map, add some bots, and get an
idea of what our map will play like.

Have a go hero – adding more elements to your level
So we know how to add a player start, but what else can we add to our level? Open up the
content browser and see if you can add weapons, power ups, and special abilities to
your map.

Time for action – test map and add bots
I'll cover this in much more depth later, but it would be fun at this point to add some bots to
the level. Make sure your map name starts with DM- and save your work. In the editor, click
the Build All button to the right of Build Lighting.

Save your game and run it. Open up the console by pressing Tab, and type addbots 1. A bot
should appear, and you can kill it.

To add more bots, add more player start nodes, rebuild all, run the level, and type addbots
[number] in the console. Have fun with it. Try adding some additional rooms, and make a
more interesting layout. See if you can make ramps to rooms at different heights, or raised
platforms inside the room.

Chapter 2

[53]

What just happened?
So we have now tested our map with bots and have an idea of what our map will play like
with these two rooms and a hallway.

Have a go hero – content browser
So we know how to add a player start, but what else can we add to our level. Open up the
content browser and see if you can add weapons, power ups, and special abilities to
your map.

Have a go hero – bot navigation
We can add bots to our level by using the console bar, but as the bots have no navigation
around your map, why not try to add bot pathing? This is reasonably simple but can get
tricky, so make sure that you have alot of time and patience to get it right.

Pop quiz
What viewport configuration did we use when setting up our map?

1.	 2x2 Split

2.	 2x1 Split

3.	 1x1 Horizontal Split

4.	 1x1 Vertical Split

Hello UDK

[54]

Summary
We learned a lot in this chapter.

Specifically, we covered:

�� How to set up our level and configure viewport options and unlit settings

�� How to build a basic room

�� How to add light to our basic room

�� How to add player starts to our level

�� How to create surfaces in our room

�� How to apply a material to a surface

�� Finally, how to test our level and add bots

We know how to create a basic room and add characteristics such as light and materials to
surfaces, we also know how to test our map with bots. We're now ready to look further into
lighting and how to get the most out of it.

3
Applying Lighting Effects

This section covers lighting in UDK. I will be looking at the different types of
lighting used in developing and designing an environment in UDK, and how
light maps are used on CSG surfaces and static meshes to reflect the light of
objects.

In this chapter, we will learn:

�� Different types of lighting

�� Light maps

�� Adjusting lightmaps on CSG surfaces

�� Lightmaps on static meshes

Let's crack on!

To get you started, here are some of the roles that lighting can fill in your scene.

Directional lights
�� The sun

�� Ambient sky light: Try placing multiple lights, all with a low brightness and a bluish
color, facing downward in the four cardinal directions

Applying Lighting Effects

[56]

Point lights
�� Area lights: Dim, filling a corridor with bounce light

�� Highlights: Small radius, probably near the spotlight meshes

�� Bounce lights: If a bright light hits the floor, it will bounce up and light-up the walls
and ceiling a little too

Spotlights
�� Spotlights: A cone of light projecting from a spotlight mesh

�� Fill lights: Blue light pouring in between the arches, hitting mostly the floor

�� Bounce lights: Similar to point lights, but a little more control

Skylights
�� You may want to add some additional ambient light to the scene using a skylight.

Time for action – different types of light
So let's start going into more detail with the different types of lighting used in UDK, starting
with point lights.

Point lights
1.	 Placing a point light is easy—right-click on a surface and choose Add Actor | Add

Light (Point) or just hold down the l key (for light) and click on a surface. A point
light will appear. Go into Lit mode, press F4 to bring up the light's properties, and
then open up the Light category and the LightComponent subcategory.

Chapter 3

[57]

There are some pretty cool controls here, if you know how to look for them. For
instance, if you want to change the brightness of the light, you can type in a new
number in place of 1.000000. Or, if you hold the mouse between the two black
arrows on the right, you'll see it change to a double-arrow icon. Click-and-drag up
and down and you'll change the brightness dynamically.

2.	 Next, to the LightColor field, you can click the magnifying glass to bring up a color
palette display. You can also click on the mouse pointer icon to get a color picker,
click in the scene to sample the surface's color. Try both of those now.

Applying Lighting Effects

[58]

3.	 I'll list the most important properties here. Be sure to try each one on your own.

�� Brightness: Pretty obvious, it's how bright the light appears.

�� FalloffExponent: How sharp or soft the light's fall off appears within its radius.
Move your light close to a wall and adjust this value, and you'll see how it works.

�� LightColor: The color of the light multiplies against the brightness setting. So if
you pick a bright color but a low brightness, it'll look dark in the scene.

�� Radius: The area of the level that is affected by the light. A wireframe sphere is
drawn around the light in the level to help you visualize. You can also adjust this
by using the scale tool on the light in the scene.

Other properties are generally best left at their default values, though we'll discuss
some of them later.

4.	 For now, make your light a rich orange color with a fairly high brightness and a
radius large enough to fill your room.

Spotlights
Placing a spotlight is a little harder than placing a point light—they can be found under the
Actor Classes browser.

1.	 So open your generic browser and go to the Actor Classes tab. Open up the Light
category and select Spot Light. You'll notice two subcategories, SpotLightMovable
and SpotLightToggleable. These are mainly used in animation sequences or hooked
up to gameplay, so ignore them for now.

2.	 Right-click in your scene and select Add SpotLightHere. A white spotlight appears,
pointing down. Move it so that it's casting a circle of light on the ground.

Chapter 3

[59]

3.	 Spotlights have all of the same important properties as point lights (color,
brightness, radius, and falloff), but they have a few additional properties as well.
Make sure your spotlight is selected and opens up its properties. Look for two new
properties.

�� OuterConeAngle: How wide of an angle the cone covers.

�� InnerConeAngle: Controls the hotspot in the middle of the cone. If it's 0, it'll
cast a very soft circle of light. If this is the same radius as the OuterConeAngle,
the spotlight will cast a hard-edged circle of light, but you may lose detail when
you bake lighting.

Applying Lighting Effects

[60]

4.	 You can rotate a spotlight using the standard rotation tool in the editor. You can also
control it in first-person mode (like holding a flashlight) by clicking on Lock Selected
Actors to the Camera on top of your perspective viewport.

5.	 Update your spotlight's cone angle to cover a wider area, and point it at a wall.

Chapter 3

[61]

Directional lights
As I mentioned earlier, a directional light is like the sun. So what's going to happen if I place
one in this room? After all, there are no windows.

1.	 Place a directional light now in the same way you paced a spot light—select it under
the Actor Classes browser.

It doesn't really seem to be affecting the scene, except for a weird shimmering effect
on the walls. And if you bake lighting or rotate the light, the shimmering goes away.

2.	 Even though the icon for the light is inside the room, the light is only affecting the
outside of the level. Much like the sun, the walls of the rooms are casting a shadow
on the interior of the rooms. So a directional light is really only useful in an outdoor
scene. And even then, you have to turn off Cast Shadows on any SkyDome object
you've placed. Rotate the light slightly so that it's not facing straight down.

Applying Lighting Effects

[62]

3.	 Rotating a directional light works the same way as rotating a spot light, but instead
of having a light cone to indicate the direction, you've got a little blue arrow.

Skylights
Skylights are a good way to add a small amount of ambient light to your level. They're also
great during the prototyping phase since they cast light on everything in the scene and they
don't slow down much of your frame rate. Their big disadvantage is that they don't cast
shadows, so even interiors will receive light from a skylight.

1.	 Let's place one now (same method as the other light types)

Chapter 3

[63]

2.	 Immediately the scene gets much brighter except for the ceiling, which is
unaffected. The light is brightening up every surface based on the angle relative
to up. So the floor gets a lot of light, walls get a medium amount of light, and the
ceiling gets no light. We can adjust the brightness and color of this light, and in fact
we can add in bounce light that affects the ceiling as well. Open up the properties
for your skylight now, and play with the settings. There are only two new ones you
haven't seen yet.

�� LowerBrightness: The brightness of the under light (default to 0)

�� LowerColor: The color of the under light

Adjust the skylight's properties so that the color from above is bright red, and the
color from below is bright blue or vice-versa (with a bright enough LowerBrightness
so that it's visible).

Ok, that's pretty hideous, but notice how the red and the blue are combining to
make a purple color on the walls. It should be especially obvious if you delete your
point light.

2.	 One last thing—the icon for that skylight is very small, and it's likely to get lost in a
large level. In the properties, under the Display category, change the DrawScale to
10.000000. It's much easier to find now.

Applying Lighting Effects

[64]

What just happened?
So we know about the different variations of lighting used in UDK. Point lights are used to
light up a room, spotlights focus their light on a certain area of your map, and directional
lighting is like a sun and is used to light up large parts of your map. Skylights focus more on
ambient lighting than world lighting. Let's look into lighting up a room with these different
variations of lighting.

Time for action – lightmaps
1.	 When you bake lighting on your scene, the lighting data gets stored into one or

more images called lightmaps. Open up an existing scene that's a simple CSG room
with a light in it, as shown in the following screenshot:

2.	 Save your scene (call it DM-LightmapTest.udk) and bake lighting. Now look in
your generic browser, and you'll see a package named DM-LightmapTest. If you
select it, you'll see four texture images in it. These are the lightmaps that got baked
for your cube. I won't go into why there are four of them—the reasons are technical
and they won't affect your work. If you create a bigger level, the lightmaps will be
bigger because they cover more surface area.

Chapter 3

[65]

3.	 Now switch back to the main editor window and click the Lighting Only button in
your perspective viewport. The checkerboard goes away and you're left with just the
lighting. But notice that it's a little blotchy. This is because there's not a lot of detail
in the lightmap. After all, those images in the generic browser were pretty small.

4.	 Ok, maybe it's not that obvious. It'll be much clearer if we put a static mesh in the
world that casts a shadow on the wall. In the HU_Deco3 package, there's a fire
hydrant prop (named S_HU_Deco_SM_FireHydrant01). Place that in the world
between your light and the wall. It's a pretty small prop, so scale it larger, at least 4 x
sizes.

Applying Lighting Effects

[66]

If you bake lighting, you'll see a big blurry shadow on the wall. That's the effect of
having a low-detailed lightmap.

What just happened?
So we know what lightmaps are and how they can be assigned to static meshes to create
a blurry shadow effect when light is beamed of the static mesh, but it doesn't look very
realistic. So let's go ahead and look at adjusting the lightmap by going into the surface
properties of the mesh.

Time for action – adjusting lightmaps on CSG surfaces
1.	 Go back into Lit mode and select the wall that has the blurry shadow on it. Open up

the Surface Properties window by going to View | Surface Properties or by hitting
F5.

2.	 We've covered most of these settings in an earlier tutorial, but let's look at the
Lighting section, specifically the Lightmap Resolution parameter.

Chapter 3

[67]

3.	 A setting of 32.0 means that there'll be one lightmap pixel every 32 units. If we
want more detail (and we do!), we can make that number smaller. Set it to 4 and
bake again. You'll notice that the bake takes much longer, but you've got a much
more obvious shadow from the fire hydrant. If you try setting the resolution to 1, it
may take over a minute to bake, but the results look even better.

4.	 Go back to the generic browser and find your map. You'll notice that some new
lightmap textures have been created (and the old ones may still be hanging around
too—UDK will clean those up later). If you look closely at your lightmap, you can see
one big square with a shadow of the fire hydrant on it, and five tiny blurry squares.
That adds up to the six sides of your room.

5.	 And that's about it. If you need more detail, set the Lightmap Resolution to a lower
value, but keep in mind your bake times will suffer.

Applying Lighting Effects

[68]

What just happened?
So we know if we adjust lightmaps on CSG surfaces using the surface properties, specifically
changing the Lightmap Resolution settings, we can adjust shadows to make them look more
realistic when light hits the mesh. The next stage would be to shine the light of
static meshes.

Have a go hero – reduce lightmap resolution on surfaces
If you are up for a challenge, try to optimize BSP surfaces. Set the resolution to 65536,
and uncheck Accepts Lights, Accepts Dynamic Lights, and Force Lightmap. Also apply the
material RemoveSurfaceMaterial from the EngineMaterials package.

Time for action – lightmaps on static meshes
Baking lighting on static meshes is a little more versatile than on CSG geo. By default, all
static meshes use vertex lighting—instead of baking into an image, light values get baked
into the vertices that make up the geometry, and lighting is blended across the surface.

1.	 In my map, there's a kind of a weird hard shadow near the top of the fire hydrant.

2.	 If I overlay the wireframe on the image (Photo-shopped for clarity), you can see that
the shadow falls right along one of the mesh's edges. That's effectively the result
you get from vertex lighting.

Chapter 3

[69]

3.	 But lots of meshes in UDK are set up so that you can put a lightmap on them too,
and this fire hydrant is one of them. Open up the mesh in the generic browser and
look at the LightMapCoordinateIndex value. If it's 1, then the mesh is probably set
up for lightmaps, otherwise it probably isn't.

So how do we actually turn on the lightmap?

4.	 Close the Static Mesh Editor, select the fire hydrant in the scene, and open up its
properties (hit F4). Open up StaticMeshActor, StaticMeshComponent, scroll all the
way to the bottom, and open the StaticMeshComponent subcategory.

Applying Lighting Effects

[70]

5.	 Right now, bOverrideLightMapResolution is checked, and
OverriddenLightMapResolution is set to 0. The 0 means it's using vertex lighting.

6.	 On CSG surfaces, a smaller number meant more detail. This is because the number
specifies how far apart lightmap pixels will be calculated. On a static mesh, you
control the size of the lightmap image directly. If you type 4, it'll calculate a 4x4
image to paint the lighting onto, which definitely isn't enough detail. You'd get
better results with vertex lighting.

Change the number to 64 and also bake lighting. You'll see that the hard lines are
gone, and the lighting generally looks better. You can go higher to get even more
precise results, but again, baking will start to take a lot longer and for an object this
small, it's probably not necessary.

7.	 If you open up the generic browser again and look at your map, you can see that the
lightmap has updated again. It's got the six sides from the room, plus an additional
patch of scattered detail. This is the lightmap for your fire hydrant:

Chapter 3

[71]

What just happened?
So we know that vertex lighting comes as standard when using lightmaps to direct light
of static meshes, but the shadow can leave odd shapes. By using something called bake
lighting, we can adjust the shadow surface properties, so that it completely covers the static
mesh when light hits it, making it far more realistic. The most important thing when being a
level-designer is attention to detail.

Have a go hero – creating lightmaps for custom static meshes
If you create your own environment props, you may want to add lightmaps to them. The best
way to do this is to create the UVs in your 3D package (Max or Maya), but we can also auto-
generate lightmap UVs inside unreal. Let's see how to do this. Create a sphere in your 3D
package and import it. Double-click the mesh to open-up the Static Mesh Editor. Go to View
| UV Overlay, and you'll see the default set of UVs. To create the second UV set, go to Mesh
| Generate Unique UVs. Change the UV Channel… parameter to 1 and hit OK. Now, change
the LightMapCoordinateIndex to 1, and you'll see the result of the auto-UV generation.

Pop quiz
What are the four different types of lighting used in UDK?

Applying Lighting Effects

[72]

Summary
We learned a lot in this chapter about:

�� The different types of lighting used when designing in UDK

�� What lightmaps are and how to apply them

�� How to adjust lightmaps on CSG surfaces

�� Lightmaps on static meshes

So what have we learnt? We have learnt about the different types of lighting used in UDK.
We know the basics of light mapping and how we can apply them to CSG surfaces and static
meshes. In the next chapter, we will be looking at the different particle effects used to bring
depth and character to our level.

4
Battling the Elements

This is a basic chapter on how the effects work using Unreal Engine 3's particle
editor (cascade). It will quickly walk you through the interface of the editor and
explain how a basic smoke particle, water, height, and fog can be set up.

In this chapter, we will cover the following topics:

�� The basics

�� Add a new particle emitter

�� The smoke example

�� Adding height fog

�� Creating the surface

�� Water volumes

�� Underwater

Let's Go!

To start with, we are going to look into the basics of cascade particles. The particle system
in UDK is drastically different to its original UE2 variant. Particles now have a brand-new and
extensive particle editor, and are saved as assets in a package, instead of actors in a level or a
U file.

The ability to save a particle as an asset in a package is great, since all levels can now refer to
the same particle, and if the particle has to be adjusted, it will only have to be done once.

The new particle system is module-based. You add blocks of stuff, if you want to extend a
particle. Each module contains new features and properties. We will get back to that a bit later.

Battling the Elements

[74]

Time for action – the basics
1.	 The cascade Particle Editor can be accessed only through an already existing

particle. Thus, if you want to open the editor, you should either double-click an
existing particle in the generic browser or simply create a brand new one.

2.	 To create a brand new particle, open the generic browser, right-click in some empty
space, and choose New Particle System.

3.	 If all is right, the cascade Particle Editor will open automatically once the new
particle has been created. Particles have a yellow edge in the generic browser. If you
cannot see it, it might be hidden. Enable the Particle Systems in the top-left of the
generic browser to show it, or simply enable the option Show All Resource Types.

Chapter 4

[75]

�� Area 1: This is the preview window and will preview the particle effect.

�� Area 2: This is the list of different particle emitters and all of the modules
that each emitter contains. A Particle System can contain multiple particle
emitters. It is possible to have a water-drip effect and a water-splash effect
in the same Particle System, much like what was possible in UE3. Right now
this space is still black because there are no particle emitters yet.

�� Area 3: This is the property section, and will display the properties of
whichever emitter or module is selected.

�� Area 4: This is the curve editor, which is used to make smooth transitions
from one value to another.

4.	 The top toolbar also has two buttons of interest. The wireframe button A and the
background color button B. The reason why I mention those two buttons is because
it can be very hard to see certain particles, (the smaller ones, especially), in the
viewport, and it often appears as if there's nothing at all. Switching to a wireframe
view might help to reveal where the particles are and how large they are. All other
buttons are not too relevant right now.

Time for action – add a new particle emitter
1.	 Add a new Particle Emitter by right-clicking anywhere in Area 2 and clicking on the

only option given (New ParticleSpriteEmitter). You now have a very basic particle.

2.	 Now, you obviously want to modify the default set up. To do so, you can click on
any of the modules, such as Lifetime or Initial Size. If you need more than the
default settings, you can right-click anywhere in the column and you will get a list of
additional modules that you can add.

What just happened?
So now we know what particle emitters are and that they are used for adding depth and
character to our map. We also know how they can be created using the particle editor. So
what's the next step? Let's go ahead and start by creating a smoke effect.

Battling the Elements

[76]

Time for action – the smoke example
Since an example can best explain it, we will go through all the steps required to make a
basic smoke particle set up that spawns and rotates particles, fades in and out, and grows
in size.

1.	 First of all, you need a cloud material. Create your own cloud texture or use mine.
Right-click this image and save it somewhere. Preferably, convert it to BMP or TGA
before you import it.

Chapter 4

[77]

2.	 Add the texture to a Material and set it up as displayed in the following screenshot:

3.	 The DepthBiasedAlpha will make sure that it is a soft particle. When a particle sprite
intersects with a piece of geometry, the DepthBiasedAlpha will fade-out the sprite
along the edge.

4.	 The Vertex Color expression is really important. All materials that are used in
particles must have a Vertex Color expression because it allows cascade to change
the opacity and color of the particles. Without a Vertex Color, you cannot fade-out a
particle, for example.

Battling the Elements

[78]

5.	 Once the material has been set up it can be applied to the Particle System. Be sure
to have the material selected in the generic browser, then select the Particle Emitter
in Area 2 and assign the material to the marked spot.

Chapter 4

[79]

6.	 In newer versions of the engine, the properties displayed in the previous screenshot
have moved to the sections Spawn and Required instead. Next, open the section
RequiredModule right below the Material input field and modify the following
properties:

�� bUseLocalSpace: Enable bUseLocalSpace. This will enable the particle to
move around more easily, and it adds the possibility of rotating it with the
regular rotation tool.

�� bUseMaxDrawCount: Enable bUseMaxDrawCount. This will cap the
maximum number of particles at the MaxDrawCount number, instead
of keep spawning particles that are dependent on the height of the
SpawnRate number.

�� MaxDrawCount: Set MaxDrawCount to 50. This will limit the maximum
number of particle sprites.

�� SpawnRate Constant: Set SpawnRate Constant to 5.000000. This controls
the number of particles spawned every second.

7.	 Leave all other settings as the default settings for the time being.

If the particle only shows up in wireframe view, don't panic. It may be
normal behavior because of the VertexColor node in the Material editor,
and will be resolved later.

Battling the Elements

[80]

8.	 Select the Lifetime module in Area 2 so that its properties show up in Area 3. In
that module, change Max to 3.0 and Min to 2.5. This controls the maximum time
a particle lives before disappearing again. Click on the next module—which is Initial
Size—and set Max X, Y, and Z to 256.0 each and Min X, Y, and Z to 224 each. This
will give the particle a random size ranging between 224 and 256. Feel free to use
any other kind of number too, of course, so that the difference in size is not big
enough for you.

9.	 After that, select the module Initial Velocity, and set Max X and Y to 8 each, and Z
to 160. Set Min X and Y to -8 each, and Z to 128.

Chapter 4

[81]

Velocity controls the direction and speed. In this case, the smoke will rise with a
speed between 128 and 160, and will have a subtle random movement to either the
left, right, front, or back.

10.	 The next thing you want to do is give a random start location to the smoke, since
you don't want all of the sprites to start exactly at the same location. The default
modules do not allow you to set a random start location, so you will have to add a
new module to the Particle Emitter.

Battling the Elements

[82]

Right-click in the column of the Particle Emitter in Area 2, and choose Location
| Initial Location. Once added, click on it to get to its properties, change all Max
numbers to 2.0 and all Min numbers to -2. This gives you a four unit width box in
any direction, and thus a maximum of four units offset for a particle.

If you click the red crossed box on the module, the viewport will show a
wireframe box to indicate the spawning area.

11.	 Now there are two more things that you want to do before the smoke particle is
done: Fade out and make it grow. Both actions are performed by using the curve
editor.

Chapter 4

[83]

12.	 Let's tackle the fading first. Right-click the particle emitter column and add a new
module: Color | ColorOverLife. If your particle didn't show up in a non-wireframe
view at first, it probably will do so now.

13.	 To add the ColorOverLife module to the curve editor and finally gain some
functionality for it, click the little button on the module. Curves can be hidden by
clicking on the little yellow square in the left column of the curve editor. Do so for
the ColorOverLife curve, since you don't need this at all right now, but it will be
available when working with the alpha curve.

14.	 Now, you may notice that you either can't see the alpha curve or that you can't add
extra control points to it. The reason for this is because the AlphaOverLife curve is
always wrongly configured by default, it is configured as a constant simple number,
and you obviously don't want a simple number, but a whole curve to control it.

15.	 Expand AlphaOverLife in the properties section to the left and click on Distribution
until you get a blue triangle button on the right of it. Click that triangle and choose
DistributionFloatConstantCurve.

16.	 Left-clicking and dragging makes you pan through the curve editor view, the mouse
wheel zooms in and out. If all is right, you will see a flat purple (could have another
color too) line in it. This is the AlphaOverLife curve. The horizontal numbers are
the time, and the vertical ones are the amount. Add a control point by holding the
Ctrl key on your keyboard, and click somewhere on the line. You need two control
points, one at 0 horizontally and the other at 1.0 horizontally.

Battling the Elements

[84]

17.	 You can move a control point by holding the Ctrl key on your keyboard and dragging
the point upwards. Move the first control point up to around 0.25 vertical. Leave
the other one unmodified. You now have a curve that begins at the value 0.25 and
then fades to the value 0. In other words, it begins with 25 percent opacity and goes
to 0 percent throughout its life.

18.	 The smoke now fades out. To make it fade in, you would need to add a third control
point in the middle, and set the first control point back at 0,0.

19.	 The last thing to do is to make the particle grow in size. This too is done with the
curve editor.

20.	 Right-click the Particle Emitter column in Area 2 and choose Size | Size By Life. Then
click on the little scan line button to add the module to the curve editor, like you did
for the ColorOverLife module as well.

21.	 Click the little yellow square of the AlphaOverLife section in the curve editor to
make its curve invisible, as it will only get in your way when working with the size
curve.

Chapter 4

[85]

22.	 The LockedAxis property must be set to EDVLF_XYZ, because that gives you just one
curve to work with, rather than three.

23.	 Also, you may need to set the Distribution to DistributionVectorConstantCurve
again, exactly like you did before with the AlphaOverLife module.

24.	 Once you're done with all of that, add two control points to the curve, one at 0 and
the other at 1. Move the first one slightly up and the second one much further up.

25.	 You're done! Exit cascade. Be sure to have the particle selected in the generic
browser, then right-click a surface in your level and Add Actor | Add Emitter.

Battling the Elements

[86]

26.	 If the particle looks too thin, then add more particles to its SpawnRate. Also, it
may be a good idea to add the module Initial Rotation, just to give each particle a
random rotation, which looks more natural.

What just happened?
We have now created a smoke particle, which can be placed in your map. Be sure to save the
package the particle is in, or you will lose it when you close down UDK. So what's next? What
about adding height fog to give our map atmosphere? Let's go ahead and create a height fog
particle.

Contrary to UE3, particles can now be scaled. You can freely scale the draw
scale of the particle and the particles will scale accordingly.

Chapter 4

[87]

Time for action – adding height fog
Height fog is a great way to add atmosphere to your level. It can help set the mood and make
distant objects really feel like they're at a distance. You can add height fog to your level by
placing a height fog actor as follows:

1.	 Open your level, go to the Actor Classes tab of the generic browser. HeightFog can
be found under the Info category.

2.	 Select HeightFog, then add it to your level (right-click somewhere in the level and
choose Add HeightFog Here).

3.	 You may not notice the effects of the fog right away, especially if you placed the
actor on the floor. That's because the position of the height fog actor you just placed
controls where the fog starts—if you placed it low (or on the floor), the fog starts
too low to affect your level.

Battling the Elements

[88]

4.	 Grab the HeightFog actor and move it up near the ceiling or higher. The fog still isn't
very thick, but you should be able to see its effect on the level as the actor moves.

Setting parameters
1.	 Bring up the properties of the height fog and open up the HeightFog | Component

category. Let's look at some ways to control the look of the fog.

2.	 Try playing with the Density first. This controls how thick the air appears. If you
couldn't see the effects of the fog before, you definitely can now.

3.	 Next, tweak the LightColor parameter. The results should be pretty obvious.
LightBrightness is a multiplier against the LightColor, and can make the fog appear
brighter or darker. Notice that you can add colored fog, or even black fog for a
surreal effect.

Chapter 4

[89]

4.	 StartDistance controls how far away the fog begins to render. Plugin a StartDistance
of 300 with a Density of 0.05, and you'll see right away how this parameter works.

Uses
You can get a variety of effects out of a HeightFog actor. Ultimately, the look you'll want for
your fog is tied closely with the lighting and post processing that you apply to your scene, but
these examples should give you a good starting point.

Battling the Elements

[90]

Atmospheric haze
Use a low Density; a light bluish color, and possibly a high StartDistance to make objects in
the distance appear hazy. Play with the vertical position of the HeightFog actor to tweak the
look—placing it high in the air may yield better results.

Localized fog
Use a high Density combined with a low position to make localized ground fog.

Dense haze
A high Density combined with a high position will fill the whole scene with fog, and you can
tint the color to give the scene an eerie feeling.

Chapter 4

[91]

What just happened?
We have created a height fog, but that isn't always the best way to get atmosphere into your
scene. It tends to have kind of a flat look, and it's applied evenly to the whole level, which
makes it hard to customize for individual areas.

Have a go hero – alternatives to height fog
Spend some time looking at unreal levels that have the kind of atmosphere you want. Open
them in the editor. In a lot of cases, you'll see that localized atmosphere effects are created
by a static mesh with a custom material applied to it. Some levels have some pretty nifty
light beam effects inside. No need to recreate this effect from scratch. Select the mesh and
you can copy and paste it into your own map (Ctrl + C to copy, Ctrl + V to paste).

Battling the Elements

[92]

Look around, and once you know what to look for, you'll see atmospheric meshes
everywhere. Reuse anything that you think will fit your level, but be careful, as the quickest
way to kill performance is to have too many overlapping atmospheric meshes. Make sure
that you can only see through one or two of these meshes at a time, from any camera angle.
In other words, don't make a hallway with 30 haze cards staggered down its length.

Time for action – creating the surface
1.	 Go to the generic browser and find yourself a nice plane. Package UN_

SimpleMeshes (loaded by default), has one.

2.	 Add the plane to the level and position it correctly. You may need to scale it up a lot
to make it fit the area.

3.	 In its properties, expand the section Collision and set CollisionType to NoCollision.

4.	 Next, expand the section StaticMeshActor, then the section Lighting, and disable
everything.

Chapter 4

[93]

5.	 Leave the properties window open and return to the generic browser.

6.	 Find yourself a neat water material. The packages UN_Liquid and UN_Liquid2 would
be a good place to start. I personally used material UN_Liquid.SM.Materials.M_
UN_Liquid_SM_DistortionRiver_01 for this tutorial, even though it is a one-sided
material, it is kind of a problem as you will notice later. It is also possible to create
your own water materials, but this is quite a complex process, explained in detail in
my two water material tutorials. So please refer to those if you plan on doing so.

Battling the Elements

[94]

7.	 Assign the material to the plane using the Material property in the Rendering
section of the properties of the plane.

What just happened?
So we have now created the surface dimension for the water to be placed. Let's now go ahead
and add the water particle, which will also be swimmable for the player to move about.

Time for action – water volumes
1.	 Resize the red builder brush so that it covers everything that you wish to flood. It

is important to match the top face of the red builder brush exactly with the plane
you've just placed, or else the water would actually end at a location other than
what the plane would imply. The plane's only use is to visually represent a body of
water. The real water, however, is entirely independent of the plane. It would be
possible to delete the plane and still have water to swim in, albeit invisible water.

Chapter 4

[95]

2.	 Once you have positioned the red builder brush correctly, right-click the volume
button on the left toolbar and pick UTWaterVolume.

3.	 Now, move the red builder brush away to reveal the pink water volume below. If you
do not see it, you might have toggled volumes off with the O key on the keyboard.
Your water is now swimmable.

What just happened?
So, we have now completed creating our surface for water, which is also swimmable, but
what if we want to make it so that we can swim underwater? Maybe you want to put a
special power up underwater for players to grab. I will now show you how to create this
underwater particle effect.

Battling the Elements

[96]

Time for action – underwater
As things look different underwater, you want to apply different post-process settings to the
area.

1.	 To do so, make your red builder brush roughly the same size as your water volume
and position it at the same location.

It may help to actually make it slightly smaller or larger than the water
volume, as it may be difficult selecting the volume instead, if they are
both at the same location. Once you have positioned the red builder
brush correctly, add a PostProcessVolume.

2.	 You now have two volumes around your body of water. Select the
PostProcessVolume you've just added, and open up its properties.

3.	 Expand the PostProcessVolume section and configure the properties marked in the
following screenshot:

Chapter 4

[97]

4.	 By enabling bEnableDOF, you enabled the depth of field, causing the water to
blur your vision, which you further tweaked with DOF_FocusDistance, DOF_
FocusInnerRadius, and DOF_MaxNearBlurAmount. Also, by changing Scene_
Highlights X to 2.000000 and Z to 0.500000, you gave the water a blue overlay.

5.	 Experiment all you like with these settings, as you can accomplish some great effects
using them.

What just happened?
You are done! Additionally, you can also add a HeightFog actor to simulate depth in the body
of water, but this will work only if the water is at the lowest point of the level, otherwise
the fog would also cover other areas of the level, and you obviously don't want that. A fog
volume might bring relief in such a case (Actor | Info | FogVolumeDensityInfo). Lava, slime,
and the others are all handled in the same way.

Battling the Elements

[98]

Have a go hero – animated cloud shadows
First, you need to create a cloud texture that will work for your scene. For this I used the
clouds option in Photoshop. I know that the Photoshop filters can be terrible; however, I'll
explain why I used this filter instead of creating my own.

�� The clouds filter in Photoshop creates a seamless texture to work with.

�� You can press Ctrl + F on your keyboard until you get the result you want, and it is
fast and easy to do.

�� The way in which we will be using these textures is by adding them together within
the UT3 shader network to achieve the result we are looking for.

�� Every time you create a texture using this, it is soft and gradient. Later on, we will
be controlling the sharp edges and how they fall off, their brightness and their
shadows.

This is the image that I created using Photoshop:

Chapter 4

[99]

Now, to create a light material.

1.	 In the general browser window, right-click and create New Material.

2.	 Bring in your texture and hook it up to the Emissive channel in your material.

3.	 Lights do not lighten the scene with the diffuse map, but rather determine the
strength of the light. Think of any color you can. This color cannot exist unless there
is a light strength value, that is what the Emissive channel does for lights.

4.	 Select the material itself (image, for example, Previewmaterial_6), and under
Lighting model, select MLM_Unlit, scroll down and check off Bused As Light
Function (first option under Usage).

Battling the Elements

[100]

5.	 Next, you will need to plug this material into your light channel. With your light
selected, press F4 on your keyboard, navigate under the Light submenu until you see
Function. To the right, you will see a blue arrow pointing down. Press that and the
Light Function, which drops down after it.

6.	 After selecting Light Function, you should see the following screenshot:

7.	 With your light material selected, click on the green arrow pointing left beside
Source Material. You're done; your material is hooked up.

If you are making an outdoor scene, make sure you plug your material into the light,
which casts the shadows for your scene. The reason for doing this is so that the
shadows of the buildings and the shadows you are creating for the clouds match
exactly.

Chapter 4

[101]

Yes, it will look nothing like clouds, and it will not animate, this is just the first step to
see how the light works with your scene.

8.	 Next, we will be animating the light to get an idea of the speed and angle we want.
We first do this instead of overlaying the clouds, because both the clouds will be
moving in roughly the same direction, with a slightly different speed and angle to
add variation, plus we need to see how the cloud textures play with one another in
the editor when it is being animated, not when it is stationary.

Battling the Elements

[102]

9.	 To animate your texture, add a Panner and TexCoord to your scene.

10.	 The TexCoord is only used to scale up or down your texture in the scene; the Panner
is used to translate the texture.

For the Panner value, I set my angle and speed to SpeedX – 0.01,SpeedY – 0.05.

The settings you plug into Panner is directly related to the rotation of your light,
so if you want the angle of the shadows translation to change, then you can toy
around with the different variables in Panner, or simply rotate your light. Make
sure you rotate it using local settings, so that the global angle does not change
and the shadows fall in the exact same way. Also, for a directional light, the
height of the light itself does not affect the shadows scale.

11.	 Next, you will need to duplicate the texture—Panner and TexCoord nodes in the
material shader—and plug both into an Add node, which then plugs into the
Emissive.

Chapter 4

[103]

12.	 The second texture should have a different setting in TexCoord, and the direction
should be slightly different so that they are not moving in the exact same direction.
With these slight changes, the clouds will soon have much more variation, as well as
a lot less repeating (mainly due to the scale of the textures).

13.	 Do not scale your clouds down by half; find a value that does not go into the size of
your original texture scale. For example, if the first is set to repeat three times, the
second should be around 0.85 or 1.35. They will have to repeat a bit more often to
multiply into each other, resulting in variation.

14.	 As of now, there is more variation. However, we will want to tighten the gaps and
adjust the light and dark areas a bit more to achieve a better result.

To do this, we will need to add a Lerp and two constant variables to the scene. Plug
the Add variable into the alpha of your Lerp, and each constant goes into A and B.
What this will do is, the black-and-white cloud textures will be multiplied by the A
and B values. For this example, I set the constant plugged into the Lerp A channel to
-1, and the constant plugged into Lerp B was set to 3. The Lerp is then plugged into
the Emissive.

Battling the Elements

[104]

However, a problem might come up. When dealing with a Lerp, you can only have a
black-and-white channel to drive the alpha, so you will need to plug the red, green,
or blue channels of the cloud textures into the Add variable, instead of the entire
texture.

15.	 The previous screenshot is the result that you should achieve with these updates. A
lot closer to more realistic clouds. However, there is one big issue. If you look at the
clouds before this last change, there is not a lot of detail; however, it does not glow.
This last step amplified the colors, and the more they are apart from each other
(currently by a total of four) the more extreme they become, and the tighter the
shadows and light areas are.

Chapter 4

[105]

The previous screenshot has the constant variables set to 12 and -4, four times as
high as the last one. As you can see, the clouds are much tighter, but the lit areas are
much brighter.

The shadow color does not change, because you cannot get a shadow
darker than 100 percent black and the fill lights to lighten these areas, so
no matter how dark you make this light, these shadows will always be this
dark. To adjust these, change the fill lights.

Battling the Elements

[106]

16.	 The best way to fix this issue is to balance your constant variables, so the white is
not too bright, but if you want a larger gap between shadows, sometimes there's no
other way, but to set this value high.

17.	 The other way to fix this is to create a Clamp and two more constant variables. The
Lerp should be plugged into the first channel on the Clamp, each constant into the
Min and Max channel, and the Clamp into the Emissive. What this Clamp does is
literally clamp the value to the Min and Max settings. Keep Min at 0, but change the
constant plugged into Max to 1.

Chapter 4

[107]

18.	 When you save the material, you won't see any change right away, but when you
change it to 0.75, 0.5, or 0.25, you notice a big change, especially the lower you go.

Battling the Elements

[108]

19.	 The following screenshot shows how it appears when set to 0.75:

20.	 The following screenshot shows how it appears when set to 0.5:

Chapter 4

[109]

21.	 The following screenshot shows how it appears when set to 0.25:

Since the ground is white and grey to begin with, in this example it is hard to tell exactly
how it will affect your environment, but a good way to see the changes in this image is the
material preview box. As the white color is lowered, it does not lower everything uniformly,
it simply clamps the color at that value based on the texture, so you will lose detail in the
transition from light to shaded, creating a harder shadow edge (usually more pixelated), so
be careful when tweaking this value.

Pop quiz
In the cascade Particle Editor, which area is the property section that will display the
properties of whatever emitter or module is selected in the Particle Editor?

1.	 Area 1

2.	 Area 2

3.	 Area 3

4.	 Area 4

Battling the Elements

[110]

Summary
We learned a lot in this chapter about the following:

�� The basics of the cascade particle editor

�� How to add a new particle emitter

�� How to create a smoke effect using the particle editor

�� How to add height fog

�� Creating a surface

�� How to create water volumes

�� Creating swimmable water

We have learnt how to incorporate different particle systems into your map, such as smoke,
fog, and water. In the next chapter, we will be looking into movement with movers using
triggers, emitters, and volumes to activate elevators and doors when walking past them.

5
Movement with Movers

In this chapter, we will introduce you to the world of animated level geometry
in UDK, doors, elevators, and so on, activated using InterpActors or triggers.
This section will look at creating a basic elevator/door with UT's unique style.
We will look at how to continuously loop and rotate animations, and how to
attach certain objects to the elevator/door.

In this chapter, we shall cover the following topics:

�� A basic elevator/door

�� Elevators UT style

�� A continuously looping animation

�� A continuously rotating animation

�� Attaching something

Lock and Load!

Let's first have a look at creating a basic elevator/door consisting of a moving plateau; call it
an elevator if you want and assign an InterpActor to it.

Movement with Movers

[112]

Time for action – a basic elevator/door
1.	 The first thing you need to do is select the static mesh you wish to use in the content

browser, then right-click somewhere in a viewport, and add it as an InterpActor:

2.	 Next, open up Kismet. A button with a green K in the top toolbar:

3.	 Keep the InterpActor you just made selected in the viewport. Then in the Kismet
window, right-click the large empty gray space in the middle and click New Matinee:

Chapter 5

[113]

4.	 A Matinee block is added. Double-click this block to open the Matinee sub-editor.
Right-click in the dark gray space in the center-left of this window and click Add New
Empty Group:

Movement with Movers

[114]

5.	 Right-click the NewGroup that you just made and then click Add New Movement
Track:

Chapter 5

[115]

6.	 Move the timeline to another position; in my example, it was moved to 3 seconds by
clicking in the dark gray space at the bottom of the timeline. Press Enter to add a key
to the current position. Keys are positions that the engine remembers. Note how
you can increase or decrease the length of the matinee by clicking-and-dragging
the small orange triangle at the bottom right. In my example, it is located at 4.5
seconds:

Movement with Movers

[116]

7.	 Keys are displayed as small dark red triangles. Select the one you just added, if it
is not already, and then while keeping this Matinee window open, go back to your
viewport. Move the InterpActor the normal way, using the movement gizmo, and as
soon as you moved it somewhere and let go of the mouse, you should see a yellow
line appearing. This is the path the InterpActor will follow between its first position
and the new position you just added:

Note how it says Adjust Key 1 at the bottom-left of the viewport. If this does not
show up, you did not select the key in Matinee. Also, if no yellow line shows up,
then the InterpActor may not be properly associated with the Matinee you made.
It is critical that the InterpActor is selected in the viewport throughout the entire
process of creating a Matinee, a new Empty Group, and a New Movement Track.
Delete the Matinee and try again if it does not work.

8.	 Return to the Matinee window, then click-and-drag the timeline around. You should
see the InterpActor in the viewport moving around. You can also press the Play
button at the top of the Matinee window to play your animation.

Chapter 5

[117]

9.	 Next, we are going to add a trigger so the player can activate the animation in-game.
Right-click somewhere and click Add Actor | Add Trigger:

Movement with Movers

[118]

10.	 Select the trigger and go to Kismet. Right-click somewhere near the Matinee and
click New Event Using Trigger_0 | Touch:

11.	 Connect Touched to Play and connect the Completed to its own Reverse in
Matinee. This will make the platform return automatically, as soon as it reaches the
end of its animation. Also note how I set MaxTriggerCount to 0 in the properties of
the Trigger_0 Touch event:

Chapter 5

[119]

12.	 That's it! You are done. As soon as you touch the trigger, the platform will play its
animation.

Movement with Movers

[120]

What just happened?
So, as you can see, we have created a full moving elevator using a basic static mesh and
assigning an InterpActor to it, which is then triggered when someone steps onto the
platform, and it then triggers off the animation lifting you. Let's now go ahead and create a
matinee sequence using the unreal matinee browser, which will animate the elevator,
making it move.

Time for action – elevators UT style
A special setup is available for UT style elevators. This method works without any triggers.

1.	 Select your InterpActor, go to Kismet, and right-click and pick New Event Using
InterpActor_0 | Mover:

2.	 You will now automatically get this pre-made setup:

Chapter 5

[121]

3.	 Simply open up the Matinee window and animate it the regular way, and you
are done.

What just happened?
So, now we have a matinee sequence created in unreal matinee browser, which animates the
elevator to move. But what if want it to loop over and over again? Let's now go ahead and
have a look at how we can continuously loop the matinee animation.

Movement with Movers

[122]

Time for action – a continuously looping animation
1.	 Simply connect Matinee's Completed to its own Reverse and its Reverse to Play.

This will make it go back-and-forth forever, as soon as it is triggered once, by an
external event:

2.	 Another way to create a looping animation is by simply enabling the bLooping
property found in the Matinee block in Kismet. Both approaches will roughly get
you the same result.

What just happened?
So, we now have a continuously looping animation for our elevator, but what if we want a
rotating animation for, say, a door or a drawbridge? Let's now go ahead and have a look at
how we can continuously rotate the matinee's animation.

Time for action – a continuously rotating animation
You could use Matinee to make a rotating animation, but it is usually easier to go with the
old-school approach and simply do it all through the properties of the InterpActor.

1.	 Open up those properties and navigate to the Movement section. Set Physics to
PHYS_Rotating and set a value to RotationRate:

Chapter 5

[123]

2.	 The value set in RotationRate is the degrees it will rotate in 1 second.

What just happened?
So, we now have a continuously rotating animation which can be used to rotate anything
from an elevator, door, or even a drawbridge; so what's next? How about attaching
something, for example, a light? Let's see how we can do this by using a dynamic version of a
InterpActor.

Time for action – attaching something
1.	 If you want to attach, for example, a light to an InterpActor, you first of all need to

make sure that you have a dynamic version of the actor that you wish to attach.
In my example, it can be found in the Actor Browser | Lights | PointLights |
PointLightMovable. Remember that some actors are static and cannot be moved,
and thus cannot be attached.

Movement with Movers

[124]

2.	 Next, open up the properties of whatever actor you want to attach, and navigate to
Attachment. Enter the name of the actor you want to attach to in Base. In my case,
my InterpActor is called InterpActor_0, so I typed that in Base and hit Enter, and I
got something similar to the following screenshot:

What just happened?
So, now we have light on our elevator, which makes it look more ideal. You can pretty much
attach anything to give the mover purpose or meaning, for example, putting a switch on an
elevator, which is then activated/triggered when the player interacts with it.

Chapter 5

[125]

Have a go hero – triggering sounds
The sound cue route requires you to add a play sound action to Kismet.

1.	 Right-click in Kismet | Action | Sound | Play Sound or hold s on the keyboard and
click somewhere. In its properties, you then enter the desired sound cue. Also, you
must set an actor as the target for the sound, or it wouldn't know where it needs
to be located. Failure of specifying an actor, while it will work, can lead to problems
later on. Playing too many sounds on the same actor can also lead to problems.

2.	 Select the actor you wish to use; in my example, it was an Emitter. Right-click in
Kismet, pick New Object Var Using "NameOfActor", and connect it to Target. You're
done. There's not more to it than that.

The following set up plays a sound, once a Matinee sequence (could be an elevator
or a door) has completed. It uses an emitter as its source/target:

Movement with Movers

[126]

3.	 Alternatively, you can also trigger a normal sound through Kismet. To do so, add
an AmbientSoundSimpleToggleable, which is found under AmbientSoundSimple
in the actor browser. Add it to the level and add the sound you want to play to its
properties:

A number of new properties are available in this actor:

�� BAutoPlay: Whether the sound should start by itself or not

�� BFadeOnToggle: Whether the sound should fade in and out

�� Fade Duration and Volume: How fast it should fade in and out

Chapter 5

[127]

4.	 Next, open Kismet and add a Toggle action by clicking on New Action | Toggle |
Toggle or hold t on the keyboard and click somewhere.

5.	 Define the AmbientSoundSimpleToggleable as the Target, and toggle it on and off. If
you don't toggle it off, the sound will continue to play, so toggle it off. For example, if
the sound is 3.45 seconds long, toggle it off after 3.45 seconds:

Pop quiz
What does the button with a green K in the top toolbar stand for?

Movement with Movers

[128]

Summary
We learned a lot in this chapter.

Specifically, we covered the following:

�� How to create a basic elevator/door

�� How to create an elevators UT's style

�� How to continuously loop an animation

�� How to continuously rotate an animation

�� How to attach something

At this point, you now know how to create elevators and doors, which will be activated when
something is triggered, if the player stands on it, or if the player is within a certain radius. You
can also make movers more life-like by adding emitters (water, smoke, and so on)and sounds.
In the next chapter, we will be looking at terrain and the different types of layers used.

6
Terrain

Unreal Engine 3 supports a flexible terrain system that provides a wide variety
of visual styles and uses. Many different landscapes can be realized and various
themes can be achieved utilizing a heightmap based system that can visually
depict hills, valleys, mountains, rivers, roads, and more. It can also depict a
multi-layer terrain material system that supports real-world texture files such
as dirt, rock, sand, and mud.

A multi-layer decoration system provides additional flexibility and realism by
rendering foliage such as grass, weeds, bushes, flowers, and even small rocks
and debris.

Terrain is typically created using one of the two techniques: hand-painting
directly on the terrain mesh to create the hills and valleys, or importing
externally created terrain height maps. Additionally, height map information
can be acquired from Digital Elevation Model (DEM) information. Material
layers that represent dirt, grass, and rocks can be created using terrain alpha
maps that determine where the texture is blended onto the terrain.

In this chapter, we shall cover the following topics:

�� Your first terrain

�� Applying materials

�� Light mapping

So, let's get on with it.

Terrain

[130]

Terrain creation in UDK is a little different than it was in UE2. The process has been simplified
and you no longer need to manually create the alpha maps for the terrain. The terrain
editing mode interface has also been updated, and now it features a whole bunch of new
tools. The terrain now also supports deco layers with collision and lighting, terrain LODing,
light mapping, and automatic texturing based on the angle and height of the surface. For
this section, we will only focus on the basic process of setting up a terrain and a bit of
information on its light mapping.

Time for action – your first terrain
Before you add a terrain to a level, be sure to have saved the level at least once, as the
terrain will attempt to save itself within the level, for which the level has to exist in the
first place.

1.	 Open the generic browser. If it isn't already open, go to the Actors tab, expand
the Uncategorized section and select the actor Terrain, as shown in the following
screenshot:

2.	 In the viewport, hold down a on your keyboard, and click a surface in your level to
add the Terrain actor at that location. Your terrain should show up as shown in the
following screenshot; tiny, and with a default texture applied.

Chapter 6

[131]

3.	 Let's expand it. New for Unreal Engine 3 is the ability to expand a terrain whenever
you want. You are no longer restricted to the original size as you were in Unreal
Engine 2. Double-click the terrain in the viewport to have its properties pop up. You
should preferably also set the viewport to wireframe to get a better view on what's
going on:

NumPatches X and NumPatchesY in the Terrain section control the actual size of the
terrain. Changing those values will increase both the size and the complexity of the
terrain. By default, a terrain is 4×4 patches large or small; you should increase those
values to something like 64×64 or 256×256 for large outdoor levels. You should
consider modifying the drawscale of the terrain if you want to increase the terrain
even further. Simply adding more patches to increase the size is usually a bad idea,
as it can have a significant impact on performance.

Terrain

[132]

As you can see in the following screenshot, my terrain also LODs itself. The
LODing strength is controlled by MaxTesselationLevel, MinTesselationLevel, and
TesselationDistanceScale. A higher Max means more aggressive LODing, whereas
the DistanceScale controls the distance. A higher value in DistanceScale also means
more aggressive LODing.

4.	 Lastly, you may also want to enable LockLocation under the Advanced section, so
as to not accidentally move the terrain while editing the level. This will color the
Terrain actor red.

5.	 Next, open up the Terrain Editing Mode window. This is found on the left toolbar,
right below the standard camera button:

6.	 In the window that pops up, you can find all the tools that you need for modifying
the terrain. I have highlighted the six most important tools:

Chapter 6

[133]

1.	 Let's you extend the edges of the terrain. It basically does the same as
altering NumPatches in the properties window.

2.	 The standard paint tool raises or lowers the terrain and paints or un-paints
texture and foliage layers.

3.	 Flattens the area based on the height of the vertex where the operation
started. Everything is raised or lowered to the height of the vertex where
you started dragging.

4.	 Smoothens the area. Also works for blurring texture layers.

5.	 Flattens an area using its average height.

6.	 Adds noise to either the geometry or texturing of the terrain.

All of these are controlled by the Strength:, Radius:, and Falloff: sliders. Pre-sets are
available in the Brush section, although, I personally find those rather useless.

Any of these tools can be used by holding Ctrl on your keyboard and dragging the
mouse over the terrain while holding the left or right mouse button. A right-click
usually does the opposite of a left-click. For example, left-clicking will raise the
terrain and right-clicking will lower the terrain again.

7.	 If the Strength, Radius, or Falloff sliders are not powerful enough for you, it is also
possible to manually type in a value in the text field next to the sliders, to further
bump up their power. This is especially handy for huge terrains that require large
brushes to get around:

Terrain

[134]

8.	 Another handy tool is the visibility tool, as shown in the following screenshot:

By dragging over the terrain, this tool lets you hide blocks of terrain. This is ideal if
you want to get rid of the terrain in a specific location, for example, if you want to
add a basement to a building, or to optimize the terrain. Areas that can never be
seen by the player should preferably be hidden with this tool.

What just happened?
So, we have created the shape of our terrain using the terrain editing tool. The next step is to
apply a material to the terrain to make it look more atmospheric and life-like. I will now show
you how to apply a material using the terrain editing browser.

Time for action – applying materials
Let's add textures/materials to the terrain.

1.	 Switch the viewport back to a textured view and go to the generic browser. Find
a material that you like, select it in the generic browser, and return to the Terrain
Editing Mode window.

2.	 In the Terrain Editing Mode window, right-click the big empty space at the bottom,
below where it says Height Map, pick New Layer from material (auto-create), and
enter a name.

Chapter 6

[135]

3.	 Select another material in the generic browser, and do this one more time so you
have two layers as shown in the next screenshot. If it asks for a package and layer
name, as some versions do (UT3), ensure that your package name is the same as
your level name, to embed the material information inside the level itself. UDK will
ask for a name twice: one for TerrainLayerSetup and one for Terrain Material. Enter
two different names for the two, but the same package name. If your level is named
Layouttest754, your package too should be named the same. The layer name
itself doesn't matter a lot. Pick anything, but remember that names must be unique
and without spaces and all:

4.	 The first layer will automatically display on the terrain as it is the first, therefore
always visible. The second layer, however, will remain invisible until you paint it.

Select the second layer by clicking it (it turns yellow as shown in the previous
screenshot), and select the standard paint tool with which you modified the
geometry of the terrain, and start painting away.

Terrain

[136]

If the editor refuses to let you paint materials on the terrain, it might help to
move the entire terrain a bit, or to expand it, or to restart the editor. After
you've moved it at least once, it seems to wake up and allow painting. You may
need to temporarily disable LockLocation

5.	 If your terrain turns funky after you've added several different layers, you need to
replace the materials with simpler materials. You can add as many materials as
you want.

Any additional layer will impact performance. Adding dozens of layers is
therefore not really advised. Four to six or so, should do for most large
and outdoor levels.

6.	 Options of additional materials can be found in the properties of every layer. To get
to these, go to the generic browser and find the package that has the same name
as your level. If your level is named DM-Forest, you should look for a package with
that name. In my case, my level was not saved yet, and it generated a Package_0
name. You should have a better name than my example.

7.	 Also, be sure to have Show All Resource Types enabled at the top-left.

8.	 In the package of your level, which is effectively your level itself (think of it as a
package inside a level—Mylevel for those familiar with UE1 and 2), you should see
all kinds of assets related to your terrain:

Chapter 6

[137]

9.	 Open a Terrain Material asset by right-clicking Properties to get to the
MappingScale option, which controls the scale of the material. Other neat options
are MappingPan U and MappingPanV, which allow you to offset a material, and
Rotation, allowing you to rotate-offset the material. MappingType allows you to
change the axis of the mapping; you may need to change this, if you have a very
vertical terrain.

Terrain Layer Setup assets gives you options to enable automatic texturing, based
on the angle and height of a surface.

10.	 If you want to change the material applied to a terrain later on, you can do so by
altering Material in Terrain Material, or by right-clicking an expanded layer in the
Terrain Editing Mode window, and picking Use Selected.

Your change may not show up immediately, and may require you to restart
the editor, or use the RM button in the Terrain Editing Mode window (right
side, below the Wire and Solid buttons) to force the engine to reload the
terrain.

Terrain

[138]

What just happened?
So, we have now applied a material to our terrain using the terrain browser. So what is next
in terms of terrain? What about lighting? The terrain is already light-mapped in UDK; so,
using the terrain properties, I will now show you how to add lighting to your terrain.

Have a go hero – deco layers
Deco Layers are set up in a similar fashion.

1.	 Open up the properties of the terrain itself by simply double-clicking its surface
anywhere in the level, and navigate to Terrain | Deco layers.

2.	 Add an item to it and then add yet another item to decorations. Then add
StaticMeshComponentFactory to it, and correctly set the StaticMesh and other
relevant properties.

3.	 Just like the foliage layers, you are not required to add materials to the Deco layers.
If you do not enter any material, it will use the one assigned to StaticMesh. The
properties also give you access to some obvious properties such as CastShadow,
Hidden, and several collision properties. The Min and MaxScale, Density, and
SlopeRotationBlend are also very similar to the ones found in foliage layers, as is the
RandSeed (Seed).

The density should be set quite high, a number like 20 should do. Also, a
name can be entered at the top of the Deco layers section, if you desire so.

4.	 Once you've set that up, open the Terrain Edit window, select the Deco layer in the
layers list, and start painting it as if it were a regular terrain material.

It should show up wherever you paint it.

Time for action – light mapping
1.	 Unlike Unreal Engine 2, terrain is light mapped now. However, if the quality of

the light map is not satisfactory enough, it is possible to bump up its quality.
To do so, open up the properties of the terrain and expand the Lighting
section. Enable bIsOverridingLightResolution, and enter a higher value under
StaticLightingResolution.

This can have quite a performance impact; so again, use it wisely.

Chapter 6

[139]

What just happened?
We have assigned a light map to the terrain so when static meshes are introduced to our
map and light hits the meshes, we will get dynamic shadowing, giving a more atmospheric
approach to our map.

Have a go hero – foliage layers
Foliage layers are embedded into regular terrain material layers, and are thus linked to the
material. Paint another material over the one that contains the foliage layer, and the foliage
layer too will disappear.

1.	 In the generic browser, browse to the terrain material of the layer of choice, usually
found within the Mylevel package of the level, and double-click it to get to its
properties. Expand Foliage and add an item to FoliageMeshes using the little plus
button. The following properties would be found:

�� StaticMesh: What static mesh it will use for the foliage layer. A grass mesh
would do well.

�� Material: This property is optional. If you leave it empty, it will use the
material specified in the properties of StaticMesh. If you fill something, it
will override it.

�� Density: How many times StaticMesh is instanced. A number like 3 would
be a good start.

Terrain

[140]

�� MaxDrawRadius: At what distance the foliage meshes should start
disappearing, for performance reasons. A couple of thousand should do.

�� MinTransitionRadius: Until what distance the foliage meshes should be
displayed in full scale. The bigger the difference between MaxDrawRadius
and MinTransitionRadius, the softer the fade out. Can be left at 0.

�� Min and MaxScale: The size of the foliage meshes.

�� Seed: Can be left at 0. Other numbers will randomize the placement of the
foliage meshes differently.

�� SwayScale: In combination with the WindDirectionalSource actor (see
Foliage Volume tutorial), this controls the amount of influence the wind has
on the foliage meshes.

�� AlphaMapThreshold: A higher value will make it spawn less or no foliage
meshes at all near the edges of the painted area.

�� SlopeRotationBlend: The rotation of the foliage meshes, dependent on the
angle of the terrain quad below.

2.	 If you did all of this correctly, the meshes should show up wherever the material is
painted. In my test scenario, it got me a beautiful landscape of springs.

Pop quiz
What are the several different types of properties for refining your mover?

Summary
We learned a lot in this chapter about the following:

�� Creating a terrain in our map

�� Applying materials to our terrain

�� Adding a light map to our terrain

We have learnt how to build a basic terrain, how to apply materials to that terrain, making
it more atmospheric and giving it character. We also know how to add light mapping to our
terrain, which give us dynamic shadowing when static meshes are introduced to our map. In
the next chapter we will start adding items and look into bot placement.

7
Adding Gameplay Elements into

your Map

This section explains how to get all of the basic gameplay elements into your
map. In this example, we'll set up a Deathmatch map, which is the easiest type
to create. Capture the Flag, Warfare maps, and vehicle variants, which have a
couple of additional node types that you need to add, are discussed at the end
of this tutorial.

In this chapter, we will cover:

�� Naming your map

�� Adding a player start

�� Play in editor

�� Placing pickups

�� Placing weapons

�� Placing jump pads

�� Adding other game objective types

�� Adding path nodes

So let's get on with it…

Let's start by looking into gameplay elements.

Adding Gameplay Elements into your Map

[142]

Adding gameplay elements
When starting a level, no matter what the game-type is, it is always best to shell out the
gameplay before you start on any visual work. With BSP and very few static meshes, quickly
flush out the entire level to a point where you can play the level and see how much fun it
is. If it's not fun before visual work, it's not going to be fun after, and since visual work in
UDK can take the bulk of the level work time, you want to be sure that you get to your level
as much fun as possible before you start. So you don't waste a lot of time re-meshing and
lighting to accommodate game-play changes.

Time for action – naming your map
First off, naming conventions are important. They're the primary way that UDK knows what
type of map you're playing.

1.	 Start your map name with one of the following tags, depending on the intended
gameplay type:

�� Deathmatch, Team Deathmatch, Duel (DM)

�� Capture the Flag (CTF)

�� Vehicle Capture the Flag (VCTF)

�� Warfare (WAR)

So, if you want to make a Warfare map called FirePits, you'd name it WAR-
FirePits.udk.

2.	 For this tutorial, we'll create a Deathmatch map. Start by creating a new map or
opening an existing map you've created. Save it as DM-GameplayTest01.udk in
the following folder:
C:\UDK\UDK-VersionRelease\UDKGame\Content\Maps

This is the official place where Unreal likes to look for maps, so get into the habit
of saving everything there. If you put the map somewhere else, especially if you're
streaming or loading separate packages, Unreal won't be able to find it. If you want
to make a subfolder, that's fine too.

3.	 Build-up your map so that it has at least three rooms connected by hallways, and
that they're not in a straight line, as shown in the following screenshot:

Chapter 7

[143]

If you name it properly, Unreal will recognize this as a Deathmatch map, and once we place
the proper actors, Unreal will let you play it as a Deathmatch, Team Deathmatch, or
Duel map.

What just happened?
So, we know what the convention is for naming the different types of maps, for example,
we know that if we wanted to create a death match level, we would call up our DM and if we
wanted a Capture the Flag level, we would name it CTF and if you wanted a Vehicle Capture
the Flag, it would be named VCTF. Let's move on and look at adding player starts to
our map.

Time for action – adding a player start
1.	 If you've been following the chapters so far, you may have noticed a lot of errors

that look like the following:

Adding Gameplay Elements into your Map

[144]

2.	 Unreal supports up to 16 players in Deathmatch, so we need to have at least 16
PlayerStart actors. Normally, your level will be big enough so that placing all of these
spawn points will make sense and you may place some more, but it probably seems
kind of silly right now. That's ok; we still want to place 16. You can place a new
PlayerStart node by right-clicking on the ground, selecting Add Actor, and clicking
on Add PlayerStart:

3.	 If you've already placed one, you can clone it around by alt+click+dragging on one of
the move tool's handles. Do this until you have 16 nodes spread all over your level.
Try to make sure they're at least 128 units apart:

Remember you can middle+click+drag in a 2D view to use the
measure tool.

Chapter 7

[145]

4.	 Also, see the little blue wireframe arrow pointing out of the nodes. That's the
direction in which the player will be facing when he/she spawns. You may want to
rotate some of your PlayerStart nodes so that they're facing in a sensible direction:

What just happened?
So, we know how to add player starts using the Actors tab in the content browser. Let's now
test our map by playing it in the editor, and see what happens when we add bots to our map
using the Tab key to bring up the in-game console.

Time for action – play in editor
1.	 We'll cover this in more detail in another tutorial, but you can test your map by

clicking the Play in Editor button (the little black joystick at the top-right corner of
the window):

Adding Gameplay Elements into your Map

[146]

2.	 If your map shows up black, or just generally isn't doing what you expect, you may
have to hit Build All and try again:

3.	 Once you're up and running properly, press the Tab key to bring up the console, and
type addbots 1. A bot should appear somewhere in your level:

You can, of course, add as many bots as you want with that command, up to 16.

What just happened?
So, we have added our player starts to the map and have now tested them within the editor
using the in-game command Tab. You may or may not know, but the bots are all over the
place at the moment; we will come to that later by adding something called bot pathing,
which will pinpoint where the bots are allowed or not allowed to go in your map. For now,
let's have a look at placing pickups in our level.

Time for action – placing pickups
So you can run around your level and shoot stuff, but without weapon pickups, health, and
armor, the level feels kind of dull. We can get at all of the weapon pickups and a lot of other
good stuff through the Actor Class browser.

1.	 Open up your generic browser and click on the tab labeled Actor Classes at the top
of the window:

Chapter 7

[147]

2.	 Finding pickups in the list is hard unless you know where to look. They're all hidden
under the Navigation point. That's because, from a code standpoint, they're all based-
off of the code that knows how to create paths. Open up Navigation point, then
Pickup Factory, then UTPickupFactory. You'll start to see some of the things you're
looking for, such as a Weapon Pickup Factory. You can open up subfolders to get at
other object types, such as Ammo, Armor, Health, Powerups, and Weapon Lockers:

3.	 Select one of the bold items (say, UTPickupFactory_HealthVial):

4.	 Now right-click in the world, and then click on Add UTPickupFactory_HealthVial
Here:

Adding Gameplay Elements into your Map

[148]

5.	 As you'd expect, a health vial appears.

If you generate paths and run your map, you'll be able to pick up the health vial to heal
yourself, and bots will pick it up as well.

What just happened?
So, we know how to place pickups into our map from the Actors tab in the content browser.
So what's next? Guns, lots of guns. Let's now have a look at placing weapons in our map
again using the Actors tab in the content browser. Remember that all weapons and inventory
are located in the Actors tab.

Time for action – placing weapons
Most pickups, such as the health vial, just require you to place them in the world and you're
good to go. But for weapon pickups and weapon lockers, you need to specify what kind of
weapons will be available.

1.	 Place an UTWeaponPickupFactory in your level in the same way you placed the
health vial. Make sure that the object is selected in the world, then click on View |
Actor Properties or double-click on the object, or press F4.

Chapter 7

[149]

2.	 Every object, even static meshes and brushes, have properties that you can set.
There are lots of categories in the properties window, and most of those categories,
such as Display, Movement, and Object are used by every type of actor. In most
cases, you only care about the properties for the specific type of actor you're
working on. In this case, we want to set the weapon pickup factory properties, so
click on the UTWeaponPickupFactory category. It may already be open.

3.	 You can now pick what type of weapon you want by clicking on the word None to
the right of WeaponPickupClass and choosing one of the weapon options, as shown
in the following screenshot:

Adding Gameplay Elements into your Map

[150]

4.	 If you run the game, the weapon shows up, as shown in the following screenshot:

5.	 Weapon lockers are a little more complicated to configure. Add an
UTWeaponLocker_Content to your level, the same way you added the
UTWeaponPickupFactory. Open up its properties and open the UTWeaponLocker
category.

6.	 It looks like we can have a whole list of weapons, but right now there's nothing
in the list. Click the little black arrow; you'll see that there's nothing. To add more
weapons to the locker, click the little green dot on the right side of the window.
You'll see that a new line appears underneath.

Chapter 7

[151]

7.	 Open that up, and you can set the WeaponClass, just like you did earlier.

8.	 Clicking the green dot multiple times lets you add lots of weapons to the locker.
Mouse over the other icons too, as they let you do some neat stuff, for example,
they help you delete a weapon from the list:

9.	 One final note about pickups. When you build paths, is you'll probably notice
warnings, as shown in the following screenshot:

Adding Gameplay Elements into your Map

[152]

10.	 Don't even worry about figuring out what pickup lights are, or placing them
manually. Just go to Tools | Add Pickup Lights:

11.	 Lights will automatically be created over every pickup. If you've moved or deleted a
pickup, the old light will be updated properly.

Chapter 7

[153]

What just happened?
So, now we have an arsenal of weapons to choose from in our map, but what else can we
incorporate into our map? Why not jump pads. If you have more than one level in your map,
it might be ideal to have a couple of jump pads floating around, so how do we do that?

Time for action – placing jump pads
Jump pads launch the player into the air, ultimately to come down at a specified location.

1.	 To create a jump pad, you need to place a jump pad base and then tell it where the
player is supposed to land. But first, modify your level so that one of the rooms has
a ledge or a platform that is big enough to run around on.

2.	 Placing a jump pad is the same as placing any pickup. It's in the Actor Classes
browser under Navigation point. It's called UTJumpPad. Create one next to your
ledge, about 128 units out.

Adding Gameplay Elements into your Map

[154]

3.	 Also place a navigation point on top of the ledge; the jump pad will eventually lead
here:

4.	 We specify the jump pad's target in its properties window, similar to how we
specified what weapon a weapon pickup will spawn.

Open up the jump pad's properties window, and open up the UTJumpPad category.
Aha! There's a box labeled Jump Target and a few other controls, which I'll let you
explore on your own, once the whole thing is hooked up.

What we need to do is plug our pathnode into the Jump Target box. We need to
select the pathnode and then click on the little green arrow to the right of Jump
Target, but selecting the pathnode would bring up its properties instead of the jump
pad's properties. So, while you still have the jump pad selected, click on the lock
icon in the top-left of the window. This locks the properties on the jump pad, no
matter what you select.

Chapter 7

[155]

5.	 Now select the path node and click the green arrow next to the Jump Target
property; the path node name should fill in.

6.	 Now build paths. With any luck, you'll see a curved line going from the jump pad to
the path node. If you're like me though, you got an error saying the jump can't be
made.

Adding Gameplay Elements into your Map

[156]

7.	 In my case, my ceiling was too low. I raised it and the jump pad works fine now. You
might also run into problems if the jump pad is too close to the ledge, or if the path
node is too far from the edge of the ledge.

What just happened?
So now we have jump pads in our map, which will let us navigate easier around levels, but is
there anything else that we can do with our map? What if we want teleporter or vehicles?
How do we go about adding them to our map? I'm going to show you how.

Time for action – adding other game object types
Now that you know how to create pickups and jump pads, you should be able to figure out
any other gameplay object type. I'll give a rough overview of some of the common ones
here, without going into full detail. This section is meant to be more of a reference guide, but
if you want to add some of these object types to your level now, it'll be a good practice.

Chapter 7

[157]

Let us begin with the teleporter.

A teleporter is something that transfers matter from one point to another, more or less
instantaneously.

1.	 To place a teleporter pad, select Navigation | Teleporter | UTTeleporter and place
one in your level. You'll also need an exit point for your teleporter. You can create
another UTTeleporter, which will spawn with a base in the level.

2.	 Under the Teleporter properties, there's a field called URL. This is the Tag of the
teleporter destination. Select the teleport destination, bring up its properties, and
open up object. In the Tag field, give it a name like TeleDest01. Go back to your
original teleporter, and fill in the destination's Tag under URL:

Adding Gameplay Elements into your Map

[158]

3.	 You can also easily make the teleporter two-way, by giving both a unique tag and
setting each UTTeleporter URL to the other. You can even make a chain or loop of
teleporters that all go to each other in order:

Next, let us look at the UTDefense point.

The UTDefense point helps bots to make more intelligent choices in a CTF or Warfare game.

1.	 Place UTDefense points around your flags or power cores, or any place where
defense is important.

2.	 Point the DefendedObjective parameter at the specific flag or power node that you
want the bots to defend.

3.	 You can also type a name in the DefenseGroup field, and bots in defend mode will
move between defend nodes that have a matching DefenseGroup name.

There are a few other parameters as well, but they should be self-explanatory.

Next, let us look at the UTTranslocatorDest.

Building paths will automatically create some translocator jump paths, but sometimes you'll
want to force them to a specific location to a power-up on a high ledge.

1.	 Create an UTTranslocatorDest where you want the translocator to land. In the
properties, open up the UTTranslocatorDest.

Chapter 7

[159]

2.	 You can now click the green button to add multiple start point slots, and then
connect them to path node using the Point parameter, just like you did with the
Jump Target on the jump pad.

Next, let us look at the Lift (LiftCenter/LiftExit)

Basically, the lift pad is an InterpActor controlled by a matinee sequence, so that it moves
up and down on a timer, or it could be triggered through Kismet to move when the player
steps on it. A LiftCenter is a part of the path network that lets bots actually use your lift. It's
attached to the InterpActor (under the LiftCenter properties, Attachment | Base). Attaching
the LiftCenter makes it follow the InterpActor's movement. LiftExits are the other important
part of the path network. They have a MyLiftCenter variable, which you need to point at
the LiftCenter:

Next, let us look at the Vehicles.

Vehicles are very easy to add to a map.

1.	 Go into the Actor Classes window and open up Vehicles. Select the vehicle type you
want, right-click and add it to the level.

�� In a VCTF or War game, the vehicle's team will automatically be determined
by who owns the objective node it's closest to. So, if it's placed closest to
the blue team's flag, it'll belong to the blue team.

�� In a Deathmatch game, any bot will attempt to use the vehicle.

Of course, you need to make sure your level has spaces wide enough for the vehicle
to pass through.

2.	 If you want to place a vehicle boost pad, select UTVehicleBoostPad from the main
Actor Classes menu (not under Navigation point) and add it to the level like normal.
A semi-transparent box with a scrolling texture will appear. You can non-uniformly
scale it to get it to fit the area you need.

Remember to make it extra tall if you want it to affect flying vehicles.

Adding Gameplay Elements into your Map

[160]

3.	 Under the object's properties, you can control which types of vehicles are affected
by it (like limiting it to the hover board). You can also control how much power the
boost has.

Next, let us look at the Capture the Flag maps.

CTF maps are easy to create. There are only a few things that differentiate them from
Deathmatch maps.

1.	 Name the file CTF-[mapname] for a standard Capture the Flag map, or name it VCTF
for Vehicle Capture the Flag.

2.	 Add a flag base for each team. Find them in the Actor Classes browser under
NavigationPoint | Objective | UTGameObjective | UTCTFBase | UTCTFBase_
Content. Add them like you would add any other gameplay object.

3.	 You also need to place a special kind of player start node and tag it with the team
that will spawn from it. You can place a Team PlayerStart node, by selecting
UTTeamPlayerStart in the ActorClasses browser under Common | PlayerStart |
UDKTeamPlayerStart | UTTeamPlayerStart.

Chapter 7

[161]

4.	 Place one in the world, open up its properties, and open up the UTTeamPlayerStart
category. Set the TeamNumber field to 0 for the red team and 1 for the blue team.

5.	 You may also want to set up some UTDefensePoints, as described in the previous
section.

What just happened?
So these are the gameplay elements thrown into your map player starts, pick-ups, weapon
placing, jump pads, lifts, teleporter, vehicles, and flags along with testing of your map in-
game. We can now look at controlling where the bots are allowed to go and where not to go
by adding bot pathing around our map.

Have a go hero – adding music to your map
It is really essential to add music to the level. Music nowadays is also responsible for certain
gameplay sounds, such as the tune played when someone captures the flag, so it is really
essential that you set it up, otherwise the game would sound very dull.

Music isn't just a single track anymore in UDK. You actually assign about ten sound samples
to the level, each for other circumstances. These ten or so samples are held by a music
arrangement asset. It is the music arrangement that you assign to a level, and not the
individual tracks.

1.	 Go to the generic browser, and open the package A_Music_Arrangements.upk
found in the folder UDK version | UTGame | Content | UT3 | Sounds | Music.

2.	 Pick the one you like most, and while having it selected in the generic browser, go to
the top menu of the editor View | World Properties.

3.	 Extend World Info in the window that pops up, and add an item to My MapInfo
using the blue arrow on the right.

4.	 Enter the desired music set to the MapMusicInfo property.

Adding Gameplay Elements into your Map

[162]

Bot pathing
I've done bot pathing before for my maps, and after watching some tutorial videos, it's not
really that hard. I'll try to explain it as simply as possible.

Time for action – adding path nodes	
Bots are stupid. All they know to do is point at the nearest target and shoot, or run for the
nearest pickup that's in sight. They're great at getting to things they can see. But how do
they get from room to room? If their health is low, how do they find their way to a health
pickup? Well, Unreal generates a path network that connects everything in your level. That
way, if a bot has no one to shoot, or is low on health, they know how to run through hallways
to different rooms where there are goodies for them to pick up.

1.	 To start, click on the Build Paths button at the top of the screen:

2.	 Paths are automatically generated, connecting every player start in the level. You
can view your path network by clicking on the black arrow that's at the top of a
viewport and clicking on Paths, or you can just press the hotkey P.

Chapter 7

[163]

3.	 Any player starts that are in view of each other should now have a line connecting
them.

4.	 But what do we do in a situation where PlayerStart nodes can't see each other? We
definitely don't want to move the PlayerStart, or add more.

Adding Gameplay Elements into your Map

[164]

5.	 Unreal has an actor called a PathNode, which does exactly what we want—we can
place it in the hallway, and Unreal will connect our rooms together. Right-click on
the floor, then select Add Actor | Add PathNode, or better yet use the shortcut—
hold down the key and click on the floor:

6.	 An apple icon appears. Click the Build Paths button and you should see some more
connections. You may have to move the PathMode around and rebuild paths to get
it to connect up, or you may need to add more than one PathNode.

7.	 Add a few PathNodes to your map now and make sure every room is connected by
paths. Run the game and add a few bots, and you'll see they're now able to traverse
the whole space.

Chapter 7

[165]

What just happened?
So we know how bot pathing works and how to place path nodes around the map. This will
not only show the bots how to navigate around certain areas of your map, but also show
them where they cannot go.

Pop quiz
What are the four different types of naming convention?

Summary
We learned a lot in this chapter about:

�� Naming the different types of map convention

�� Adding a player start to our map

�� Placing pickups in our map

�� Placing weapons in our map

�� Placing jump pads in our map

�� Adding other game objective types to our map

�� Placing path nodes in our map

So that's how you add gameplay elements such as player starts, special pickups, weapons,
jump pads, and other gameplay elements such as teleporter and vehicles. We also have
learnt how to use path nodes to create a path where the bots will navigate around our map.
In the next chapter, we will be looking at basic Kismet scripting.

8
Complex Event Sequences

Upon first glance, a blank Kismet page can be quite daunting. After some
practice, you'll find yourself eager to fill it. Kismet is where the user can create
movers, script events, turn particles on and off, perhaps even change some AI,
and even more. Kismet can be thought of as a Graphical User Interface (GUI) that
brings code accessibility to those who want to manipulate the engine and create
something new. Friendly little circles and rectangles allow the user to construct
simple or complex sequences to enhance the game's impact on the player.

In this chapter we shall be looking at the following:

�� A simple sequence

�� Basic UIScene

�� Basic cut scene

So let's begin...

Complex Event Sequences

[168]

Time for action – a simple sequence
The simple sequence is going to be a single message that fires off when the level starts. I'm
assuming that my dear reader will know how to set up a simple piece of BSP and add a light
and PlayerStart to it (and rebuild). This needs to be done so that the player can survive long
enough to see the message.

1.	 Anywhere in the Kismet browser, right-click | New Event | Level Startup:

2.	 Then right-click | New Action | Misc | Log:

Chapter 8

[169]

3.	 Link them together by making a line between the Out of the Level Startup and the
In of the Log:

Complex Event Sequences

[170]

4.	 Alter the properties of the Log. Simply left-click on the Log to select it. Add an Obj
Comment (object comment), in this case Tutorial!. Then, to ensure we know that
the Log gets fired off, we're going to output the object comment to the screen by
adding a checkmark to the box to the right of bOutputObjCommentToScreen:

And that's about it. When the map is launched, the player will spawn and a Tutorial!
will appear in text at the bottom left of the screen.

If object comments and Logs don't work, your engine may be set to disable these
debug messages in game. To fix this, you may need to try several things.

The following involves changing .ini files for the games. This can cause
things to go horribly awry in some cases, so back up the files first.

5.	 Find your DefaultEngine.ini file. This file will be located at different places
for different engines/games. Open it and do a search for Kismet. One of the first
results will be bOnScreenKismetWarnings=FALSE. You'll need to change this to
bOnScreenKismetWarnings=TRUE. Save the .ini and see if it works.

6.	 If this does not work, after the bOnScreenKismetWarnings=FALSE line add this
line: bEnableKismetLogging=TRUE.

7.	 This may work, but is generally not recommended since it may very well be a cooked
file depending on the game. Look for the game-specific xxxengine.ini where xxx
is the game, and enable the same two settings there.

Chapter 8

[171]

8.	 If it still does not work, you'll need to rely only on logs while in Play In Editor (PIE)
mode and not the game itself. You can add logs or instructions below, however,
you'll only be able to view them in the generic browser's Log tab, and only if you set
the bIncludeObjComment boolean to true. The text will appear in the generic
browser's Log, but not on the screen.

9.	 If even this does not work, then there's one route left. Instead of using a log, grab an
emitter and place it where you can see it. Use a toggle action to turn it on when you
would want the log to go off. Thus, if the emitter goes off, you'll know that portion is
working. Remember to turn off the AutoActivate property in the emitter.

What just happened?
So we know how to create a single message sequence using simple basic kismet scripting,
which will be triggered off when the player starts the level. Let's take this further by looking
at basic UIScenes and creating a clip, which will run for 5 seconds just before the
match begins.

Have a go hero – preview screenshot
Why not have a go hero at creating a preview screenshot for your level? Take a screenshot of
your level and crop/resize it to a resolution of 512 pixels width, 256 pixels high. Save it as a
TGA file, preferably name it Screenshot, and import it into the package of your level.

Time for action – basic UIScene
1.	 Start by creating a new UIScene, somewhere in the generic browser. So make a

new package add it to an existing package, or embed it into your level (by naming
the package exactly the same as your level). Whatever you pick, right-click in that
package and pick New UIScene:

Complex Event Sequences

[172]

2.	 The UIScene editor should open automatically. If it does not, simply double-click the
UIScene in the generic browser.

The UIScene editor is navigated much like the others Sub editors. Left or right mouse
pans the view. Holding both zooms in and out. Zoom out until you see the blue
frame. This is the edge of the screen, so whatever you do, make sure it is inside this
frame.

3.	 Right-click somewhere in an empty space and pick the Place Widget and then
Label at the top of the list. A label now shows up at the top-left of the screen. Drag
it somewhere else holding the Ctrl key and dragging the mouse. Scale it up if you
want:

4.	 On the right side is a Properties section. If you do not see this section, go to the
top menu and click Window | Properties. In Properties, go to Data | DataSource |
MarkupString. This is the text displayed, so change this to whatever you want:

Chapter 8

[173]

5.	 Further down below in Data, there is the StringRenderComponent. In there is
StyleOverride. This bit holds a few interesting properties that allow you to quickly
alter the appearance of the text. In my example, I changed the color, assigned a
different (and higher quality) font, and scaled it up:

In UT3, fonts can be found in the packages UI_Fonts and UI_Fonts_Final. If
you want to display big text, make sure you pick a high quality and large font. Unlike
most other programs, not every font can be scaled up to whatever size you want.
The fonts are actually images, so the quality depends on the resolution of the image.
Therefore, if you want big text you need a high resolution font. So choose wisely.

Complex Event Sequences

[174]

Let's now have a look at adding an image to our basic UIScene.

1.	 Right-click again somewhere in an empty space, place a widget, and go for image
this time, also near the top of the list. Again, move and expand the image frame it
creates. Notice how it covers up the text if you place over it. If you want the image
to appear behind the text, then you must give the text a higher priority.

2.	 Right-click the image | Reorder Widget | Move to Bottom:

3.	 Next, assign an actual image to the frame. Select the image frame and in its
properties, navigate to Image | ImageComponent | StyleOverride | ImageRef. Add
a texture here:

And note that it must be a texture, not a material.

I applied a screenshot of the game and my test scene appears as shown in the
following screenshot:

Chapter 8

[175]

Let's now have a look at docking and how we can make our image and text cover the
entire screen.

4.	 Next up is docking. At the top left of the UIScene Editor, you can see a drop-down
menu with resolutions. Change this to some other number and see what happens to
your text and image. Try a very low resolutions, such as 640×480. It probably doesn't
look all that nice on all these resolutions. Unless what you made is very small, it likely
goes out of the blue frame on low resolutions, and that is really bad.

Complex Event Sequences

[176]

You need to tell the editor to correctly scale and move the elements inside the
UIScene along with the resolution that was set.

5.	 Select either the text or the image, and notice the big four orange dots in the middle
of each side. These allow you to hook up that side to some other element and
basically lock it.

Select one of these and start dragging. Notice how red dots appear on the blue
frame. Drag it to these to make it connect. Connect all sides to the corresponding
sides of the blue frame.

This will make your image or your text cover the entire screen. Scale the resolution
up or down and notice how the text and/or the image now do correctly scale along.

6.	 Next we are going to make sure that it doesn't cover the entire screen, but has some
empty space around it. Right-click the image or the text, dependent what you linked
to the blue frame, and open the Docking Editor:

Chapter 8

[177]

7.	 This little sub-sub editor gives you some more control over how elements are locked
together:

Complex Event Sequences

[178]

�� A: The Left side locks to exampleUIScene, which is the blue frame. The blue
frame has the name that you gave to the UIScene in the generic browser.

�� B: My Left side locks to the Left side of that blue frame. So this property
identifies what side of the target it should connect to; usually you want to select
the same side here.

�� C: It is using Pixels for measurement.

�� D: Here you can enter the number of pixels it should be offsetted to, from that
edge. Upon entering 128 here, it offsets the image to 128 pixels from the blue
frame, creating an empty space in between.

Do be careful with this, however. 128 pixels on 640×480 obviously covers a whole
lot more of the screen than on some very high resolution. For that reason, it is
usually a better idea to change Pixels to one of the other options given, such as
Percentage of Screen.

You can also enter negative numbers, if you want, to offset it into the other
direction. If you would have entered 128 pixels on the right side, it would
offset the element away from the screen. The center of the scene is in the
middle of the screen, so if you want to bring something away from the edge
on the left side, you would need +128, but -128 on the right side. The
same goes for top and bottom.

Let's now look at the different types of properties that can improve our UIScene.

Click onto some empty space to get the properties section to display the main properties of
the entire UIScene. In there, a number of interesting options can be found, which are listed
as follows:

�� Disable World Rendering: Handy for UIScenes that cover the entire screen.

�� bDisplayCursor: To display the mouse cursor or not. By default it's set to on, which is
not a good thing to have for cut scene text, for example.

�� bPauseGameWhileActive: Also set to on by default, and is usually not really
desirable.

The final part is to add the Kismet script, which will make our UIScene appear at the start of
the level and decide how long it will appear for.

Finally, the last thing left is to make Kismet display the UIScene during the game.

1.	 Open Kismet and add New Event | Level Startup. Next, New Action | UI, and add
both Open Scene and Close Scene. It would also be a good idea to add a Delay in
between, found in New Action | Misc | Delay.

Chapter 8

[179]

2.	 Hook it up as shown in the screenshot, and be sure to fill in the UIScene you made in
both the Open Scene and Close Scene properties, otherwise it will not work.

3.	 Upon starting the level, this set up will display your scene for five seconds and then
close it again. If you want to display multiply scenes, continue adding Open Scene
and Close Scene nodes.

Complex Event Sequences

[180]

What just happened?
So we have just created a basic UIScene, which will appear as soon as we start our level in-
game and will last for 5 seconds before the game starts. We know to create the scene from
scratch, which will be used, followed by adding an image, and will appear in the UI scene.
We also know how to dock the UIScene so that it fits the entire screen, and finally adding
the kismet scripting, which will make the scene appear at the start of a match and how it
will stay up for before it disappears. Let's now have a look at creating a basic cut scene that
utilizes two cameras, fades in and out, and triggers an event along the way.

Time for action – basic cut scene
The first Camera:

1.	 Go to the Actor Classes browser, and find the Camera Actor at the top of the list.
Place this actor in your level on the desired location. It is a good idea to point it into
the right direction already, though you could also do this later.

2.	 Once the Camera Actor has been placed, open Kismet and add a Matinee:

Chapter 8

[181]

3.	 Open that Matinee by double-clicking it. Make sure the Camera Actor is selected in
the viewport when you do this.

4.	 Right-click the dark gray space and pick Add New Director Group:

Complex Event Sequences

[182]

5.	 Now right-click the dark gray space again and pick Add New Camera Group. You
now have two items in Matinee:

6.	 The camera group controls the camera. Each camera will have its own group, the
director controls when which camera is active. So the first thing we should do is tell
the director to start using your single camera. To do this, make sure the timeline
is currently set at 0.0 (which is the case by default), click on Director, so it turns
orange, and then click the Add Key button at the top left.

It then pops up a box that asks you what to cut to; select your camera group:

Chapter 8

[183]

7.	 Next, we want to animate the camera itself. Click on Movement, which is part of
your camera group, and then click the Add Key button once more, to add a first
position/key to the timeline.

Matinee should now preview the position and angle of the camera in your viewport.
If it does not cut to the camera in your viewport, it may help to close matinee and
open it again. Alternatively, you can mess with the little camera button on the right
of Director Group, which actually toggles viewport camera previewing on and off.

8.	 When Matinee previews your camera in the viewport, it will also record your moves
in it. This way you can position cameras by simply adding a key, and then fly or
rotate the camera how you want in the viewport, and it will remember this. It will,
however, not remember the path you took to fly to that location, but only the final
position.

Complex Event Sequences

[184]

And that is what we are going to do. So, make sure the viewport previews the
camera and add another key to the camera group. Make sure you have Movement
selected in the camera group; put the timeline on some other time, and hit the Add
Key button again:

9.	 Without doing anything else, fly the camera in the viewport to where you want it to
go (while keeping matinee open), when you are done, put the timeline in Matinee
back to 0.0, and hit Play. The cut scene should now preview in the viewport.

10.	 Close Matinee, and in Kismet add New Event | Level Startup, and connect it to play
the Matinee.

You now have a very basic cut scene that starts as soon as the level starts.

The second Camera:

1.	 Go to the Actor Classes browser again and add a second camera actor. Continue by
opening Kismet and then Matinee again, and add a NewCameraGroup below your
first one.

2.	 Then, select the Director and put the timeline to when you want the Director to
switch to the second camera. Add a key and be sure to select the second camera,
grouping the menu that pops up:

Chapter 8

[185]

3.	 Animate this camera as well, and you are done!

You now have a basic cut scene that makes use of two different cameras.

More on Cameras:

1.	 If the camera rotates strangely while flying around, select the Movement track
of that camera in Matinee and have a look at the properties that show up at the
bottom of the window. Enable bUseQuatInterpolation.

2.	 There are some other interesting properties as well. The ones I personally use most
are LinCurveTension and AngCurveTension. They control how smooth the
camera flies through the world. A value of 1.00000 would create very blocky yet
precise movement, whereas the default value of 0.000000 smooths the movement
out, but that may also cause the camera to fly through geometry every now and
then.

3.	 As those two settings still offer only limited control over how the camera moves, it's
well recommended to manually tweak the paths of your cameras. To view the paths,
disable Camera Previewing in the viewport by clicking that little (yellow) camera on
the right of the Director Group.

Complex Event Sequences

[186]

4.	 You should now see colored lines with little dots on. This is the path it follows. Now,
if you click on a key in Matinee, you will see that two white lines show up, one on
either side of the position. These control the curves:

5.	 Click on the little square at the end of one of these lines and drag it. Notice how the
entire line changes. You can also hold both mouse buttons to drag it around, as that
gives more freedom of movement. It is a bit cumbersome to tweak the paths like
this, but if done right, it will greatly improve the quality of your cut scene.

6.	 Lastly, in the regular properties of your Camera Actor itself (regular properties being
the F4 one), you are able to configure the AspectRatio and the Field Of View in
the section CameraActor. If you disable bConstrainAspectRatio, it will not render
these black borders. These black borders only show up when the ratio of the screen
does not match the AspectRatio set there. And as you can see, you are also able to
change the post process settings here, on a per camera basis.

Fading and events:

7.	 Adding a fade in and out is fairly easy. In Matinee, right-click DirGroup and pick Add
New Fade Track:

Chapter 8

[187]

8.	 Now add keys where you want a fade to start and where it should end. If we want to
have a fade in and out, we would thus have to have 4 keys.
Add a key at 0.0, a key at 1.0, and a key at 1.00 second before the end of your cuts
cene, and finally the last key at the very end of your cut scene.

9.	 Then click the tiny black square on the right of fade.
This adds the fade track to the curve editor at the top of the window.

10.	 In the curve editor, you are going to create the curves that control the fading. You
should now see a horizontal line in that window, with four squares, corresponding the
locations of your keys. Right-click the first square, and select Set Value; enter 1.0:

Complex Event Sequences

[188]

1.0 is black or thus fully faded out. 0.00 means no fade at all. You thus want the first
and the last key to be 1.0, and the ones in between 0.00. Now set the last square to
1.0 as well.

11.	 Your curve may be going below 0.00 in the middle, and thus will be negative. To fix
this, select the second square and hit the button with the diagonal line at the top:

You are now done with the fading part.

If you want to trigger an external event during the cut scene, you can add an event
track. On this event track, every key represents an event that can trigger something
else in Kismet.

12.	 To add one, right-click DirGroup again, and pick New Event Track this time. Now add
a key for it somewhere and enter the name:

Chapter 8

[189]

13.	 Exit Matinee and you should see that the event showed up on the Matinee node in
Kismet. You can now hook that one up to whatever you want; in my case it is healing
the Player:

What just happened?
So we know how to create a basic cut scene with two different cameras, an event triggered
along the way, and a fade in and out. You now have basic knowledge of the editor and
Matinee browsers.

Summary
We learned a lot in this chapter. Specifically, we covered the following:

�� How to create a simple text sequence that will appear at the beginning of the level

�� How to create a basic UIScene with an image and text that will appear before the
match begins

�� How to create a basic cut scene with two different cameras, an event triggered along
the way, and a fade in and out

So we have a basic understanding of complex event sequences, like creating text that
appears at the beginning of a player spawn, or creating a UIScene, which displays images and
text before the game commences. UIScene is a sub editor that is responsible for everything
to do with the interface, all menus, the HUD, text displayed during the game, and so on. In
the final chapter, we will be looking at materials and how to create our own materials.

9
Materials

This chapter will explain the basics of creating a material. We'll build some
basic (but extremely useful) materials from scratch, and in the process learn
how the material editor works.

In this chapter we shall be looking at the following topics:

�� Creating a new material

�� Adding textures to a material

�� Creating a shiny metal surface

�� Adding a normal map

�� Seeing your material in the world

�� Giving a perfect texture to your material

�� Color specular highlight

�� Adding a tint to the diffuse color

�� Making your material easy to read

So let's begin...

What is a material?
A material, in essence, is a small computer program that describes how a surface looks.
There's a lot we can do with our surfaces. Look around you; the world isn't just covered with
flat paint.

Materials

[192]

Effects are easy to achieve with the Unreal material system, for instance, here's the material
for a metal barrel. You can see in the preview on the left that it has a base color, shiny
highlights, and ridges and bumps that bring out details in the surface. The node network in
the middle is what describes how the surface looks, and that's what you're going to learn
to build.

Time for action – creating a new material
Before you create a new material you'll need a place to test it.

1.	 Create a new level that's a simple BSP room with a light in it, build lighting, and save
it as DM-MaterialTest.udk.

Chapter 9

[193]

2.	 Open the generic browser, right-click in the blank gray space of the browser window
to the right, and select New Material. Name your new material BasicMaterial
and fill in a package name (either create a new package or fill in an existing one).
Hit OK.

Materials

[194]

3.	 The material editor opens up. We haven't hooked up any nodes yet, so our material
preview on the left is black. Let's fix that.

What just happened?
So, we have everything set up to create our first material. Let's start by finding a texture and
applying that texture to our material.

Time for action – adding textures to a material
Practically every material you see in UDK gets its look from texture maps. Let's add one now.

1.	 Leave your Material Editor window open and switch to the generic browser.

2.	 Find the package labeled HU_Deco, right-click, and fully load it. Look for a texture
labeled M_HU_Deco_SM_Vent. Look for it alphabetically, or you can filter by type
to make your job easier.

Chapter 9

[195]

3.	 Select the texture and switch back to your material editor. What we want to do is
create a node representing the texture. In the Material Expressions list on the right,
scroll down until you see Texture Sample. Select it, then click-drag it into the gray
viewport to the left, and a Texture Sample node should appear. If the node turns out
black, you may not have had the texture selected in the generic browser. Delete it
and try again.

Materials

[196]

4.	 Now let's hook the texture node up so that it shows up on the surface. The black dot
at the top-left of the texture node is the output. If you click-and-drag on that dot, a
line will appear; drag a line to the Diffuse input of the big box to the left.

5.	 The line connects, and you should see a preview of your material on the left. Diffuse
is the input that allows a texture to display on a surface. It's the basis for just about
every material.

Chapter 9

[197]

6.	 If you need to, you can move your Texture Sample node around by
ctrl+click+dragging it. Give this a try now.

What just happened?
So, we have now created our first textured material, but at the moment it is looking pretty
basic. So what can we do to make our material stand out more? I will now explain some
steps to make your material realistic and stand out when used in your environment. Let's
start by adding a shiny surface to our material.

Time for action – creating a shiny metal surface
This texture is supposed to represent a metal surface, so let's make the material shiny.
There are a couple ways to do it, but let's use this opportunity to learn about a new node
type—a Constant.

1.	 Find the word Constant in the Material Expressions list, and drag it into the editor
viewport.

2.	 Connect the new Constant node to the Specular rendering terminology for shininess
input on the left.

Materials

[198]

3.	 It didn't seem to have any effect. Right now, the constant has a value of 0, which
means no specularity. Select the constant, and then at the bottom of the window,
in the properties window, you'll see it has an R value of 0.000000. Change it to
2.000000:

4.	 Rotate the Preview cube around and you'll see that now it's much shinier.

Chapter 9

[199]

What just happened?
So, as you can see, we have applied Specular map to our material, which will give the texture
a glossy finish, but as you can see in the previous image, it still doesn't look great. So what
can we do to improve the quality of the specular map? We will now add a normal map,
which will increase the divine characteristics of our texture. Normal mapping is used to
bring the best out of your materials, which will make your environment look sharper and
more atmospheric.

Time for action – adding a normal map
Right now, lighting affects the surface as if it were completely flat. We can add a normal map to
make the material appear to have depth. You've probably noticed that for almost every diffuse
texture, there's a pale blue texture with similar sorts of details. Those are normal maps.

1.	 Go back to the generic browser and search for T_HU_Deco_SM_Vent_N.

Materials

[200]

2.	 Select it, go back to your Material Editor, and drag another Texture Sample node
into the editor. Hook it up to the Normal input of the box on the left.

3.	 Now there's a lot more depth to the lighting and reflections.

Chapter 9

[201]

4.	 Your node network should now look as shown in the following screenshot:

What just happened?
So, we have now added a normal map to our material, and as you can see from the images,
it stands out a lot more than without the normal map. So what does it look like when we
import it into our world; why not have a look. Let's now go ahead and apply the material to
our map, and see what the results are.

Materials

[202]

Time for action – seeing your material in the world
1.	 You'll see that the material's thumbnail in the generic browser has updated.

2.	 You can apply it to a surface in the world—you can see here that the floor is
reflecting the light in the middle of the room.

Chapter 9

[203]

What just happened?
As you can see from the image above, this is what the material will look like when imported
into our level, but it still doesn't look like metal; so how can we improve this? Let's go ahead
and add some more maps to create the perfect material.

Time for action – giving a perfect texture to your material
1.	 So, as you can see from the image above, the material really doesn't look like metal.

It's too bright for one thing, but it's also too uniformly shiny. The diffuse texture has
lots of darker rusty areas that shouldn't be as shiny. You can hook the diffuse texture
sample directly into the Specular input, and the color of the texture will control the
specularity. Do that now.

The highlight definitely looks better, but now it's probably too subtle. Let's look at
how to brighten it up.

Materials

[204]

We can multiply the colors in the texture by a larger value so that they
appear brighter.

2.	 Find a Multiply node in the Material Expressions list and drag it into the window.

The Material node (as you'd expect) multiplies two numbers together (the inputs A
and B) and outputs the result on the left. What do we want for inputs? How about
our texture, and that constant with a value of 2 that we created earlier?

3.	 Connect up your network as follows. You may have to rearrange the nodes (by
Ctrl+click+dragging them). Once you hook everything up, you'll see the Specular
highlight gets twice as bright.

Chapter 9

[205]

You can, of course, make it even brighter by selecting the Constant node and typing
in a larger number. Change the value to 5.

4.	 Now, let's look at one more way to change the specularity of the material. Click on
the Sphere icon at the top of the window; this changes the preview mesh from a
cube to a sphere.

5.	 As you can see from the image below, we have changed the preview from a cube to
a sphere. This will make it easier to see our changes.

Materials

[206]

That highlight looks a little strange for metal. It's too wide of a spot, which kind of
makes it look like a soft plastic surface. We can adjust the sharpness of the highlight
by plugging a constant into the SpecularPower input.

6.	 Create a new Constant node, give it a value of 100, and plug it into SpecularPower.
You'll see the highlight gets a lot sharper, though it's just as bright as it used to be.

Play with the number and get a sense for the effect it has. Low numbers make the
highlight really wide. High numbers make it sharper. Anything less than 1 looks kind
of broken.

Chapter 9

[207]

7.	 When you're happy with the results, hit the leftmost green checkmark to apply your
changes, and check out your material in the scene.

Materials

[208]

8.	 Your network should now look as shown in the following screenshot:

What just happened?
So, as you can see, the material is looking far better than before. How did we do this? As
you can see from the image above, we now have 4 different types of mapping. We have the
Diffuse map, Specular map, SpecularPower map, and a Normal map, which together have
created a more realistic material for our environment, but were not finished yet. We are now
going to look at color specular highlights.

Chapter 9

[209]

Time for action – color specular highlight
Often times, reflections in metal take on a slightly bluish tone. So let's look at a new node
type—a Constant3Vector, which is essentially a node that allows us to specify a color.

1.	 Click-and-drag a Constant3Vector into the Material Editor window. While a
Constant has only one value that we can edit, a Constant3Vector has three values,
R, G, and B (for red, green, and blue). By combining R, G, and B, we can make any
color that your monitor can display.

2.	 Here you will see a box with R, G, B, and Desc options, and numbers opposite
each option:

3.	 Type in a value of 1 for R; this will make the output of our node pure red. You can
click the little black box at the top of the node to get a real-time. preview; notice the
box turns yellow when the real-time preview is turned on.

Materials

[210]

4.	 Alright, let's hook this up to our specularity. We currently have a Constant multiplied
against our texture. Let's replace it with this Constant3Vector.

5.	 Ok, the highlight is definitely red, but it's pretty dim again. We could add another
Multiply node and multiply in the Constant, but instead, we can just change the R
value of the Constant3Vector to 5, and we'll get the same result.

Chapter 9

[211]

6.	 Now, all we need to do is pick a number for the Constant3Vector that looks good.
I found 4, 4.5, or 5 looks good, but play with it yourself and come up with
something you like. You can also delete that extra Constant node, since we're
not using it anymore.

Materials

[212]

7.	 Your network should now look as shown in the following screenshot:

What just happened?
So, as you can see from the images above, the color specular highlight highlights certain
areas of our material, making it look even more polished. So are there anymore tweaks that
we can do; how about adding a tint to our Diffuse Color map.

Chapter 9

[213]

Time for action – adding a tint to the diffuse color
Let's go through one more exercise, just to make sure you've got the basics. I won't walk you
through it this time, but let's add a tint to the diffuse color.

1.	 Create a new Multiply node and a Constant3Vector node, and hook them up just
like you did for the Specular color. Pick a nice rusty orange color for the tint (1, 2).
You should end up with something that looks like the following screenshot:

What just happened?
So, as you can see from the image above, we have added an orange tint diffuse color to
our material, which is the finishing touch and now our material is ready to be used in our
environment. The final section is to make our material easier to read in the Material Editor.
So let's go ahead and polish things up.

Materials

[214]

Time for action – making your material easy to read
Almost over, but we've got one very important topic to cover—clean-up and commenting.
You may be able to read your material just fine now, but when you come back in a week, or a
month, an organized material with some useful comments will be a lot easier to understand.

1.	 The first step is good organization. As we've seen, data in the Material Editor flows
right to left (the inputs of our nodes are on the right, and the spit out data to the
left). Take some time now and organize your nodes so that there's no backtracking
(the Texture and Constant nodes should be on the right, and the Multiply nodes
should be to their left). Also organize things to minimize crisscrossing lines—the
nodes controlling Diffuse should go on top, with the ones controlling Specular
below. Try to get a network that looks like the following screenshot:

Chapter 9

[215]

2.	 The next thing we can do to organize our network is label the nodes. For
instance, what if you decided at some point that you didn't like the color of the
Specular highlight? It would be a lot easier to figure out what to change, if that
Constant3Vector node had a label on it. Select the node, and in the properties at
the bottom, fill in the Desc field with a label for the node as Specular Tint.

3.	 The node now has text floating over it, saying what it does.

4.	 Label all of your input nodes this way. A good rule is, if it's a node you'd want to
tune at some point (such as the Texture inputs and Constant), give it a label. If it's
just a functional node (such as the Multiply), don't bother.

Materials

[216]

5.	 One more thing we can do is select a bunch of nodes and put a comment box
around them. This groups them together in a logical way, and we can remind
ourselves of what a whole cluster of nodes is supposed to achieve.

This network isn't really complex enough that comment boxes are critical, but let's
add some anyway, so that you know how they work.

Select the Diffuse Tint node and the Multiply node it feeds into (Ctrl+click to select
them, and right-click to add a comment box).

6.	 In the Comment Text window, add some useful text, such as Tint the Diffuse.

7.	 You now have a box grouping your nodes. If you drag it around, anything inside of it
will be dragged along. Add another comment box labeling the Specular Tint nodes,
hit the green checkmark, and save your package.

Chapter 9

[217]

Believe it or not, this is an extremely powerful node network, and in fact does more than you
need to produce a full-quality asset.

What just happened?
So, what we have done is added floating text underneath each map to show you what each
one does, and that it doesn't get too confusing when you next create a new material.

Materials

[218]

Summary
We learned a lot in this chapter. Specifically, we covered the following:

�� How to create a material

�� How to add textures to our material

�� How to create a shiny metal surface

�� How to add normal mapping

�� Seeing our material in our world

�� How to use the perfect texture for our material

�� How to create color specular highlights

�� How to add a tint to our diffuse

�� Making the material easy to read

So we have learnt how the Material Editor works, and how to create a material from scratch.

Pop Quiz Answers

Chapter 1

Level Design HQ
�� Left Mouse Button (LMB): Pan. right/left/forward/back movements

�� Right Mouse Button (RMB): Rotate, look around

�� LMB+RMB: Up/down movements

�� WASD: Movement hot keys

Chapter 2

Hello UDK
2.	 2x1 Split

Chapter 3

Applying Lighting Effects
1.	 Point light

2.	 Spot light

3.	 Directional light

4.	 Sky light

Pop Quiz Answers

[220]

Chapter 4

Battling the Elements
3.	 Area 3

Chapter 5

Movement with Movers
Kismet

Chapter 6

Terrain
1.	 Untouch

2.	 Objects

3.	 Double team

4.	 Disabler

5.	 Collision and lighting

6.	 Timing

7.	 Radios

8.	 Rewind

9.	 Untouch

Chapter 7

Adding Gameplay Elements into your Map
1.	 Deathmatch

2.	 Capture the flag

3.	 Vehicle capture the flag

4.	 Warfare

Index
Symbols
3Ds Max 15

A
additive method 18
Additive mode 18
AlphaOverLife curve 83
ambient sky light 55
animated cloud shadows 98-109
animated level geometry, UDK

basic elevator, creating 112-120
UT style elevators 120, 121

area lights 56
atmospheric haze effect 90
AutoCad 27
Autodesk Maya 15
Autosave feature 11

B
Bake Lighting 41
basic cut scene

about 180
creating, with camera group 182-186
events 186-189
fade in effect 186, 188

basic elevator
continuously looping animation 122
continuously rotating animation 122, 123
creating 112-120
light, attaching to InterpActor 123, 124

Binary Space Partitioning. See BSP

blue additive brush 29
blue wireframe box 28
bot pathing

about 146, 162
path node, adding 162-165

bots 162
bounce lights 56
brushes

using 16
brush order, CSG 31-33
BSP

about 14
need for 14

BSP brushes
using 17

BSP Geometry 17
builder brush 28

C
camera group 182
Camera Mode 33
Capture the Flag maps 160
cascade particles 73
checkerboard cube 29, 38
ColorOverLife module 83
color specular highlight 209-212
Constructive Solid Geometry. See CSG
content browser

about 11-13
opening 11

content folder 8
continuously looping animation 122

[238]

continuously rotating animation 122, 123
cooked file 170
CSG

about 25
actors, placing in room 40-42
brush order 31-33
geometry editing tool 33-36
hallway, creating 44-46
lights, placing in room 40-42
map, creating 26, 27
need for 27
room creation example 36-39
second room, creating 42-44
subtractive brush 30

CSG surfaces
bots 52
lightmaps, adjusting on 66, 67
materials, applying to 47-49
panning 51
properties 50, 51
rotating 51
test map 52

curve editor 75
custom static meshes

lightmaps, creating for 71

D
Deathmatch map

about 26, 141
creating 142

debug messages 170
deco layers

about 138
setting up 138

DEM 129
dense haze 90, 91
diffuse color

tint, adding to 213
Digital Elevation Model. See DEM
directional lights 55, 61, 62
downloading

UDK 7

E
effects 192

F
fill lights 56
FirePits 142
folder structure, UDK

about 8
binaries 8
development 8
engine 8
UTGame 8

foliage layers 139

G
game object types

adding 156-161
gameplay elements

adding, to map 142
geometry editing tool

about 33
working 34-36

Geometry tools window 40
Graphical User Interface. See GUI
grid snapping

about 19
drag grid option 19
rotation grid option 19
scale grid option 19

GUI 167

H
hallway creation example 44, 46
Hammer source engine 17
height fog

about 87
alternatives 91
parameters, setting 88, 89

height fog, uses
atmospheric haze 90
dense haze 90, 91
localized fog 90

highlights 56

I
image

adding, to UIScene 174-178

[239]

installation, UDK 7
installing

UDK 7
InterpActor

about 112
light, attaching to 123, 124

J
jump pads

about 153
creating 153
placing 153-156

K
Kismet

about 112-167
play sound action, adding to 125-127

kismet scripting
single message sequence, creating with 168-

171

L
launching

UDK editor 9, 10
Left Mouse Button (LMB) 11, 14
lift pad 159
light

attaching, to InterpActor 123, 124
light map

assigning, to terrain 138, 139
lightmaps

about 64, 65
adjusting, on CSG surfaces 66, 67
adjusting, on static meshes 68-70
creating, for custom static meshes 71

light material
creating 99-103

lights
types 56

lights, types
directional lights 61, 62
point lights 56-58
spotlights 58-63

Lit mode 40

LMB+RMB 14
localized fog 90
LockedAxis property 85

M
map

game object types, adding 156-161
gameplay elements, adding to 142
jump pads, placing 153-156
music, adding to 161
naming 142, 143
naming conventions 142, 143
pickups, placing 146-148
player start, adding 143-145
testing, with Play in Editor button 145, 146
vehicles, adding to 159
weapons, placing 148-152

MappingScale option 137
material

about 191
applying, to CSG surfaces 47-49
applying, to terrain 134-138
color specular highlight 209-212
creating 192, 194
making, easy to read 214-217
normal map, adding to 199-201
perfect texture, applying to 203-208
shiny metal surface, adding to 197, 198
specular map, applying to 197, 198
textures, adding to 194-197
viewing 202, 203

material editor 194
Material Expressions list 197
Max 27
Maya 27
Move tool 43
multi-layer decoration system 129
music

adding, to map 161
music arrangement asset 161

N
naming conventions, for map 142, 143
normal map

adding, to material 199-201

[240]

O
object comment 170

P
packages 12
particle editor, UDK

basics 74, 75
height fog 87, 88
smoke effect 76-86
surface, creating 92-94
underwater setings 96, 97
water volumes 94, 95

particle emitter
adding 75

path node
adding 162-165

perfect texture
applying, to material 203-208

perspective viewport 20, 21
PlayerStart 168
Play in Editor button 145
Play In Editor (PIE) 171
play sound action

adding, in Kismet 125-127
point lights

about 56, 57
properties 58

R
Real Time Preview (RTP) 21
Rebuild Geometry button 44
Red Builder Brush 17
red wireframe cube 28
Right Mouse Button (RMB) 14
room creation example 36-39

S
scale tool 40, 58
shiny metal surface

adding, to material 197, 198
creating 197, 198

Show All Resource Types option 74
simple sequence 168
single message sequence

creating, basic kismet scripting used 168-171
SkyDome object 61
skylights 56, 62, 63
smoke effect

creating 76-86
specular map

applying, to material 197, 198
spotlights

about 56-60
properties 59

static meshes
about 15
lightmaps, adjusting on 68-70
using 17

subtractive brush 30
subtractive method 18

T
teleporter 157
terrain

about 129
creating 130-134
light map, assigning to 138, 139
material, applying to 134-138

Terrain Editing Mode window 132
textures

adding, to material 194-197
tint

adding, to diffuse color 213

U
UDK

downloading 7
folder structure 8
installing 7
particle emitter, adding 75
terrain, creating 130-134

UDK CSG operations
about 15
CSG Add 15
CSG Deintersect 15
CSG Intersect 15
CSG Subtract 15

UDK editor
about 9
autosave feature 11

[241]

content browser 11
launching 9, 10
Maya navigating keys 14
navigating 13
navigating keys 14
WASD key navigation 14

UDK extension 9
UIScene

creating 172, 173
displaying, during game 178, 179
image, adding to 174-178
properties 178

UIScene editor 172
Unlit mode 26, 44
Unreal Development Kit. See UDK
UTDefense point 158
UT style elevators setup 120, 121
UTTranslocatorDest 158

V
vehicles

adding, to map 159
Vertex Color expression 77
Vertex mode 35
viewport options

about 20

Brush wireframe (Alt+1) 22
Lighting complexity (Alt+6) 23
Lighting only (Alt+5) 22
Lit (Alt+4) 22
Shader complexity (Alt+8) 23
Texture density (Alt+7) 23
Unlit (Alt+3) 22
Wireframe (Alt+2) 22

visibility tool 134

W
WASD key navigation 14
weapon lockers 150
wireframe brush view 21
World mode 34

X
XSI 15, 17

Y
yellow subtractive cube 30

Thank you for buying
Unreal Development Kit 3: Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3D Game Development by
Example Beginner's Guide
ISBN: 978-1-849690-54-6 Paperback:384 pages

A seat-of-your-pants manual for building fun, groovy little
games quickly

1.	 Build fun games using the free Unity 3D game
engine even if you've never coded before

2.	 Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3.	 Deploy your games to the Internet so that your
friends and family can play them

4.	 Stay engaged with fresh, fun writing that keeps
you awake as you learn

XNA 4.0 Game Development by
Example: Beginner's Guide
ISBN: 978-1-849690-66-9 Paperback: 428 pages

Create exciting games with Microsoft XNA 4.0

1.	 Dive headfirst into game creation with XNA

2.	 Four different styles of games comprising a puzzler,
a space shooter, a multi-axis shoot 'em up, and a
jump-and-run platformer

3.	 Games that gradually increase in complexity
to cover a wide variety of game development
techniques

4.	 Focuses entirely on developing games with the free
version of XNA

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Level Design HQ
	Time for action – UDK download and installation
	UDK folder structure
	Time for action – launching the editor
	Autosave
	Content browser
	Time for action – movement and rotation
	Navigation
	UDK
	WASD key navigation
	MAYA users

	BSP
	Why use BSP?
	Can I use static meshes to create my map without using BSP?
	Dominance of static meshes
	Brushes only, no static meshes
	Brushes and static meshes

	Time for action – using BSP brushes and static meshes
	Additive and subtractive
	Additive
	Subtractive

	Unreal scale and proportions
	Grid snapping
	Viewport options
	Summary

	Chapter 2: Hello UDK
	Your first map
	Time for action – setup, where to save the file, what to name it
	Why CSG?
	Time for action – the builder brush and our first cube
	Subtractive
	Brush Order
	Time for action – geometry editing tool
	Time for action – building our first room
	Time for action – placing lights and a player start
	Time for action – creating a hallway and a second room
	Time for action - applying materials to CSG surfaces
	Surface Properties
	Time for action – test map and add bots
	Summary

	Chapter 3: Applying Lighting Effects
	Directional lights
	Point lights
	Spotlights
	Skylights
	Time for action – different types of light
	Point lights
	Spotlights
	Directional lights
	Skylights
	Time for action – lightmaps
	Time for action – adjusting lightmaps on CSG surfaces
	Time for action – lightmaps on static meshes
	Summary

	Chapter 4: Battling the Elements
	Time for action – the basics
	Time for action – add a new particle emitter
	Time for action – the smoke example
	Time for action – adding height fog
	Setting parameters
	Uses
	Atmospheric haze
	Localized fog
	Dense haze

	Time for action – creating the surface
	Time for action – water volumes
	Time for action – underwater
	Summary

	Chapter 5: Movement with Movers
	Time for action – a basic elevator/door
	Time for action – elevators UT style
	Time for action – a continuously looping animation
	Time for action – a continuously rotating animation
	Time for action – attaching something
	Summary

	Chapter 6: Terrain
	Time for action – your first terrain
	Time for action – applying materials
	Time for action – light mapping
	Summary

	Chapter 7: Adding Gameplay Elements into
your Map
	Adding gameplay elements
	Time for action – naming your map
	Time for action – adding a player start
	Time for action – play in editor
	Time for action – placing pickups
	Time for action – placing weapons
	Time for action – placing jump pads
	Time for action – adding other game object types
	Bot pathing
	Time for action – adding path nodes	
	Summary

	Chapter 8: Complex Event Sequences
	Time for action – a simple sequence
	Time for action – basic UIScene
	Time for action – basic cut scene
	Summary

	Chapter 9: Materials
	What is a material?
	Time for action – creating a new material
	Time for action – adding textures to a material
	Time for action – creating a shiny metal surface
	Time for action – adding a normal map
	Time for action – seeing your material in the world
	Time for action – giving a perfect texture to your material
	Time for action – color specular highlight
	Time for action – adding a tint to the diffuse color
	Time for action – making your material easy to read
	Summary

	Appendix: Pop Quiz Answers
	Chapter 1
	Level Design HQ

	Chapter 2
	Hello UDK

	Chapter 3
	Applying Lighting Effects

	Chapter 4
	Battling the Elements

	Chapter 5
	Movement with Movers

	Chapter 6
	Terrain

	Chapter 7:
	Adding Gameplay Elements into your Map

	Index

