
www.allitebooks.com

http://www.allitebooks.org

Unreal Development Kit Game
Programming with UnrealScript
Beginner's Guide

Create games beyond your imagination with the Unreal
Development Kit

Rachel Cordone

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unreal Development Kit Game Programming with
UnrealScript
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1081211

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-192-5

www.packtpub.com

Cover Image by Tom Mooney (tomofnz@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Rachel Cordone

Reviewers

Edward Davies

Dave Voyles

Acquisition Editor

Wilson D'Souza

Development Editor

Meeta Rajani

Technical Editors

Pramila Balan

Kavita Iyer

Llewellyn Rozario

Project Coordinator

Kushal Bhardwaj

Proofreaders

Mario Cecere

Chris Smith

Indexer

Hemangini Bari

Graphics

Manu Joseph

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rachel Cordone is a designer and self-taught UnrealScript programmer, who has been
working with the Unreal Engine since 1999. She has worked for various game and simulation
companies since 2003, including Pipeworks Software and Parsons Brinkerhoff, and has
started up her own game company, Stubborn Horse Studios, to make independent games
with the Unreal Development Kit. Stubborn Horse's first project, Prometheus, won several
awards in Epic Games' Make Something Unreal Contest.

I would like to thank my crazy goat for his love and support while writing
this book!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Edward Davies is in the final year of his Game Art and Animation degree at the University
of Glamorgan. He has a strong interest in game design, particularly the Unreal Development
Kit, concept art, and 3D modeling and texturing. More of Edward's work may be seen at
www.kungfoowiz.deviantart.com/gallery.

Dave Voyles is a Managing Editor and Podcast Producer for Armless Octopus. He covers
Xbox LIVE Indie Game, Xbox Live Arcade, and Playstation Network news, reviews, and
developer interviews. He holds a BS in Communication Studies from SUNY Oneonta,
and is currently attending the New York Institute of Technology to work on his MBA in
Management of Information Systems. His additional work within the gaming community
includes working as the Coordinator of the Indie Games Summer Uprising, which looks to
promote the most outstanding titles on the Xbox LIVE Indie Games platform. Dave is also an
Unreal Script programmer for two titles that will be released on PC and iOS, at the end of
2011. Most notably, he is the founder of the New York City-based UDK meetup group, where
he works with other developers to collaborate on endeavors in a physical environment,
as well as provide tutorials. You can find more of his work by visiting his sites
http://www.DaveVoyles.wordpress.com or http://www.ArmlessOctopus.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1

Chapter 1: Project Setup and Test Environments	 7
System requirements	 8

Minimum requirements:	 8
Time for action – Installing the UDK	 8
Directory overview	 10

Binaries	 10
Development	 11
Engine	 11
UDKGame	 11

Using external programs to code	 12
ConTEXT	 12

Time for action – Installing ConTEXT	 13
Time for action – Configuring ConTEXT	 14

UnCodeX	 19
Time for action – Installing UnCodeX	 19
Time for action – Configuring UnCodeX	 20

nFringe	 23
WOTgreal	 23

Setting up a project	 23
Time for action – Setting up AwesomeGame	 24
Compiling and testing	 30
Time for action – Compiling and testing AwesomeActor	 30

A quick note about comments	 37
Summary	 38

Chapter 2: Storing and Manipulating Data	 39
Variables and arrays	 39

Booleans	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – Using booleans	 40
Integers and floats	 43

Time for action – Using integers	 43
Time for action – Using floats	 45

Strings	 46
Time for action – Using strings	 46

Enums	 47
Time for action – Using enums	 48

Arrays	 50
Time for action – Using arrays	 51

Dynamic arrays	 53
Time for action – Using dynamic arrays	 53

Structs	 56
Time for action – Using structs	 57

Vectors	 60
Time for action – Using vectors	 60

Rotators	 63
Time for action – Using rotators	 64
Variable properties	 67

Default properties	 67
Time for action – Using the default properties block	 67

Editable variables	 70
Time for action – Editable variables	 70

Config variables	 71
Time for action – Creating config variables	 71
Common operators	 73

Standard arithmetic	 73
Time for action – Math!	 73

Modulo	 75
Time for action – Using modulo	 75

Comparisons	 76
Time for action – Comparisons	 76

Logical operators	 79
Time for action – Using logical operators	 80

Concatenation	 81
Time for action – Concatenation	 82

Variable functions	 83
Ints	 83
Floats	 83
Strings	 84
Vectors	 84
Rotators	 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Flow control	 85
If else	 85

Time for action – Using if/else	 86
For	 87

Time for action – Using the for statement	 87
While	 88

Time for action – Something	 88
Do until	 90
Switch	 90

Time for action – Using switches	 90
Return	 92
Goto	 92

Summary	 93

Chapter 3: Understanding the Class Tree	 95
What is a class?	 96
Time for action – All classes are created equally	 96
Inheritance	 98
Time for action – Examining inheritance	 99
Time for action – Making a custom weapon	 100
Time for action – Experiments with inheritance	 102
Function overriding	 104
Time for action – Creating a custom GameInfo and PlayerController	 104
Time for action – Experiments with function overriding	 106
Actors as variables	 116
Time for action – Experiments with Actors as variables	 116
Casting	 124
Time for action – Casting Actor variables	 124
Time for action – A practical example of casting for our game	 129
Summary	 134

Chapter 4: Making Custom Classes	 135
Creating a class	 135

Awesome Game quicky design document	 136
Class breakdown	 137

Time for action – Creating the weapon branch	 137
Class modifiers	 147

Placeable	 147
Notplaceable	 147
Abstract	 148

Time for action – Using abstract	 148
Native	 150

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Config	 151
Hidecategories	 151

Time for action – Hidecategories	 152
Hidedropdown	 153

Actors versus objects	 153
Common UnrealScript classes	 154

The GameInfo	 154
Time for action – Expanding AwesomeGame	 154
Time for action – SHOOT NOW!	 157
Time for action – Customizing the Pawn class	 160

The Controller	 162
Time for action – Expanding the Controller	 163
Time for action – No, my left!	 169

The Pawn	 172
Time for action – Detecting collisions to give our Pawn damage	 172
Time for action – Making the TestEnemies move	 174

The HUD	 178
Time for action – Using the HUD	 178
Summary	 182

Chapter 5: Using Functions	 183
What's your function?	 184
Creating and calling functions	 187
Time for action – Writing a function	 188
Time for action – Calling custom functions	 191
Time for action – What's your malfunction?	 194
Local versus instance variables	 196

Local Variables	 196
Time for action – Using local variables	 197

Actors as local variables	 202
Time for action – Using Actors as local variables	 202
Time for action – Modifying the projectile	 204
Function parameters and modifiers	 205

Function parameters	 206
Time for action – Using function parameters	 206
Time for action – Out parameters	 210

Return values	 212
Time for action – I'd like to return this please	 212

Function modifiers	 216
Native	 216
Const, NoExport, latent, and iterator	 216
Event	 216

Table of Contents

[v]

Simulated, server, client, reliable, and unreliable	 217
Singular	 217
Exec	 218

Time for action – Filthy cheater	 218
Static	 219

Time for action – Using static functions	 220
The super	 221
Using timers	 221
Time for action – Just five more minutes mom	 222
Putting it all together	 224
Time for action – Expanding Awesome Game	 224
Summary	 232

Chapter 6: Using States to Control Behavior	 233
It's a state of mind	 233

Creating a state	 234
Time for action – Writing a state	 234

Switching between states	 239
Time for action – Switching states	 240
Function overriding in states	 243

Red state, blue state, no state, new state?	 243
Time for action – Multiple personalities	 243

Non-state functions	 248
Time for action – Calling non-state functions	 248
Time for action – Non-state functions from inside a state	 250
State changes and detection	 252

BeginState	 252
Time for action – BeginState	 252

EndState	 254
Time for action – EndState	 254

State detection	 256
Time for action – Using state detection functions	 257
Subclassing states	 259
Time for action – Subclassing the Seeking state	 259
Keywords, labels, and latent functions	 260

Keywords	 260
Time for action – Using ignores	 260

Labels and latent functions	 261
Time for action – Do we really need to give labels to everything?	 261
Like a boss	 263

The cleanup job	 263

Table of Contents

[vi]

Time for action – Reverting our code	 263
Attack of Schellenberg	 264

Time for action – Creating the abstract base class	 264
Time for action – Creating and spawning the boss	 271
Time for action – I like you, I kill you last	 275
Time for action – Rage mode activate	 279
Summary	 282

Chapter 7: Working with Kismet	 283
Overview of Kismet	 283

A simple introduction	 284
Time for action – Using Kismet	 284

Building complexity	 288
Time for action – A more complex Kismet sequence	 288
Time for action – Bug fixing time!	 291
Kismet actions	 295

Creating Kismet actions	 295
Time for action – Creating Kismet actions	 295

Using variables in Kismet actions	 299
Time for action – Using variables in Kismet	 299

Kismet handler functions	 303
Time for action – Using handler functions	 303
Time for action – Differentiating Kismet inputs	 306
Kismet conditions	 308
Time for action – What condition my condition was in	 309
Kismet events	 311
Time for action – The cleanup job	 311

Creating and triggering a Kismet event	 312
Time for action – Our first Kismet event	 312

Giving the event some meaning	 313
Time for action – Moving functionality into Kismet	 313

Further expanding our Kismet	 316
Time for action – Setting the wave size	 316

Supported events	 321
Time for action – Using SupportedEvents	 322
Time for action – Creating a custom SupportedEvent	 322
Latent actions	 325
Time for action – Creating a latent action	 325
Summary	 329

Chapter 8: Creating Multiplayer Games	 331
The server-client relationship	 331

Table of Contents

[vii]

One state to bind us all	 332
Testing network code	 333

Setting up the server	 333
Time for action – The server batch file	 333

Setting up the client	 334
Time for action – The client batch file	 334

Fixing Awesome Game	 335
Time for action – Unbreaking the player	 336
Time for action – Unbreaking the game	 337

The GameReplicationInfo class	 341
Time for action – Making the GameReplicationInfo	 341

Fixing enemy fleeing	 346
Time for action – RUN AWAY!	 346
Time for action – Bossing around	 349
Replicating function calls	 351

Replication function modifiers	 351
Reliable versus Unreliable	 351
Client functions	 351

Time for action – Setting up for the client function	 352
Time for action – Using the client function	 354

Server functions	 355

Time for action – Using a server function	 356
Simulated functions	 357

Time for action – Setting up the map	 358
Time for action – Using simulated functions	 359
Time for action – COMBO BREAKER!	 360
Role and authority	 362

Role and RemoteRole	 362
Time for action – Examining Role and RemoteRole	 363
Time for action – Respect my authority!	 364

NetMode	 365
Time for action – Checking the level's NetMode.	 365
Replicating variables	 366

The replication block	 366
Time for action – Replicating a variable	 367

Replication variables	 368
ReplicatedEvent	 369

Time for action – Using ReplicatedEvent	 370
Summary	 372

Chapter 9: Debugging and Optimization	 373
Compiler errors	 374
Time for action – Preparing for brokenness	 374
Time for action – A new script package	 374
Time for action – Breaking the class itself	 376
Time for action – Breaking some more code	 377
Time for action – Misleading errors	 380
Time for action – Captain obvious to the rescue!	 381
Time for action – Setting up a twofer	 382
Time for action – Mal-function	 384
Time for action – Taking care of other function errors.	 386
Time for action – Actor variable errors	 387
Time for action – Other variable errors	 390
Debugging	 392

Accessed none	 392
Time for action – Dealing with Accessed None	 392
Time for action – Fixing an Accessed None	 394
Time for action – Accessed None in function parameters	 396

Using the log	 397
Time for action – Setting up a scenario	 397
Time for action – Debugging using the log	 400
Optimization	 404

The profiler	 404
Time for action – Using the profiler	 404

Clock / UnClock	 409
Time for action – Using Clock and UnClock	 409

Best practices	 410
Summary	 412

Chapter 10: Odds and Ends	 413
Using Components	 413

Creating Components	 414
Time for action – Adding a Component to an Actor	 414
Time for action – Component compiler error	 419

Interacting with Components	 420
Time for action – Components as variables	 421

A practical example	 424
Time for action – Creating a toggleable flashlight	 424
DLLBind	 426
Time for action – Using DLLBind	 426

Table of Contents

[ix]

Final Thoughts	 428
Other Resources	 428

Summary	 429

Appendix: Pop Quiz Answers	 431
Chapter 1, Project Setup and Test Environments	 431
Chapter 2, Storing and Manipulating Data	 431
Chapter 3, Understanding the Class Tree	 432
Chapter 4, Making Custom Classes	 432
Chapter 5, Using Functions	 432
Chapter 6, Using States to Control Behavior	 432
Chapter 7, Working with Kismet	 433
Chapter 8, Creating Multiplayer Games	 433
Chapter 9, Debugging and Optimization	 433
Chapter 10, Odds and Ends	 433

Index	 435

Preface
Welcome to Unreal Development Kit Game Programming with UnrealScript! This book
teaches you how to program using the UnrealScript language so you can create your own
game projects using the UDK. Instead of using dry, hypothetical code you will use the topics
learned in each chapter to build an actual working game. By the end of the book, you will be
comfortable enough with the language to start working on projects of your own.

What this book covers
Chapter 1, Project Setup and Test Environments, guides you through the installation and
setup of the Unreal Development Kit as well as ConTEXT and UnCodeX, two programs that
we will use to write our code. We also examine the directory structure of the UDK and take a
look at the configuration files.

Chapter 2, Storing and Manipulating Data, covers the different types of variables we can
use in the UDK as well as the flow control statements we can use to react to our changing
environment.

Chapter 3, Understanding the Class Tree, examines the class tree so we can understand
the relationship between objects in the world. We learn about inheritance and function
overriding to customize our object's behavior.

Chapter 4, Making Custom Classes, focuses on the creation of classes of our own. The core
classes for any UDK project are discussed, and we create our own versions of them for our
game. We change how the camera works, what the rules of the game are, and how the
player is controlled.

Chapter 5, Using Functions, covers the use of functions to expand our game. Here we learn
how to pass information from one object to another, and how to manipulate that data
and return it to the original object. Custom functions are created for our objects to create
functionality that didn't exist in the original UDK classes.

Preface

[2]

Chapter 6, Using States to Control Behavior, covers states and how they can be used to
organize and control complicated behavior such as enemy classes for our game. Creating
states, changing states, and working with functions within states are discussed.

Chapter 7, Working with Kismet, discusses the use of Kismet in UDK games as well as the
creation of custom actions and events. These are used to demonstrate the power of Kismet
to tailor the gameplay to each individual level's needs.

Chapter 8, Creating Multiplayer Games, covers running a server and a client on a single
machine for multiplayer testing. We also cover the fundamentals of networking code and
how to design your game with multiplayer in mind.

Chapter 9, Debugging and Optimization, discusses common errors encountered when
compiling and running UnrealScript as well as solutions to these problems. Different ways of
optimizing code to make your game run faster are also discussed.

Chapter 10, Odds and Ends, covers the use of Components to customize the visual look of
objects in our game. The use of DLLBind to communicate with programs outside of the UDK
is also discussed.

What you need for this book
A computer capable of running the UDK is required for this book, see
http://udn.epicgames.com/Three/DevelopmentKitFAQ.html for the
minimum requirements. ConTEXT and UnCodeX are included in the files with the book.
See http://www.packtpub.com/ for downloading code files.

Who this book is for
This book is for people who are new to the Unreal Development Kit and who wish to
create their own game projects using UnrealScript. The information here is also useful
to programmers having experience in another language and who wish to expand their
knowledge by learning UnrealScript.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Preface

[3]

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can play the example game that comes
with it to get an idea of what the UDK can do by going into C:\UDK\UDK-AwesomeGame\
Binaries\Win32 (or Win64 if we have a 64-bit operating system) and running UDK.exe"

A block of code is set as follows:

Class AwesomeActor extends Actor
 placeable;
defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
HiddenGame=True
End Object
Components.Add(Sprite)

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Let's click on Return to
Desktop for now."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Project Setup and Test Environments

Introducing the Unreal Development Kit (UDK)

Epic Games' Unreal Development Kit is a powerful tool, but like any complicated
piece of software it can be overwhelming at first. This book will guide you
through the structure of the UDK and the basic principles of UnrealScript, and
by the end you will have the skills you need to start making your own games.
Let's get started!

It's a great time to get into the UDK and UnrealScript. With the release of the UDK, Epic
Games has opened up a great way for indie developers to make high quality games without
high quality budgets. With hard work and dedication even a small team of people can make
a great game in their spare time, and with digital distribution platforms such as Steam, it's
become much easier to self-publish and build a community of fans, and being able to sell
your game doesn't hurt either.

With constant updates to the UDK, Epic provides the latest features of the Unreal Engine for
free if you're just looking at game development as a hobby. If you're aiming to start up your
own development studio, the licensing terms for the UDK fit even in the smallest of budgets.
If you're looking for AAA quality, the UDK is where you'll find it.

Being an UnrealScript programmer is the most important job in a UDK project. Even without
artists you can build prototypes and demonstrate your gameplay using UnrealScript and
placeholder artwork using the assets included with the UDK. As they say, actions speak
louder than words, and having a fun game which people can play will help attract the art
talent to give your project the visual quality you need.

So with that, let's take a look at the Unreal Development Kit!

Project Setup and Test Environments

[8]

Before we start cooking let's set the table. There are a few things we need to do before we
write our first line of code.

In this chapter we will:

�� Install the UDK and take a look at its directory structure.

�� Learn what external programs we can use to code UnrealScript.

�� Set up our first project.

�� Compile and test a Hello World program.

Let's see what our computer needs to run the UDK.

System requirements
It doesn't take a top of the line computer to work with the UDK, but like any software
there are system requirements that we need to meet. According to the UDK website they
are as follows:

Minimum requirements:
�� Windows XP SP2 or Windows Vista

�� 2.0+ GHz processor

�� 2 GB system RAM

�� SM3-compatible video card

�� 3 GB free hard drive space

Make sure the computer we're working on meets these requirements, and then we can
install the UDK!

Time for action – Installing the UDK
Epic's official UDK website is the best place to stay up to date with the latest UDK releases
and features, so we'll be heading there for the download.

1.	 Go to http://udk.com/download and get the latest release.

2.	 Run the installer. It will ask us to accept the license agreement and where we want
to install the UDK. By default, it will use the UDK version for the installation, but to
help keep things organized it's better to use a project name. This helps if you have
more than one project using the same UDK version. In this book we will be calling
our project Awesome Game, so let's change the installation directory.

http://udk.com/download
http://udk.com/download

Chapter 1

[9]

3.	 After installing the prerequisites and the UDK, the installer will ask us what to do
next. Let's click on Return to Desktop for now.

What just happened?
Now we have a working copy of the UDK installed on our computer. We can play the example
game that comes with it to get an idea of what the UDK can do by going into C:\UDK\
UDK-AwesomeGame\Binaries\Win32 (or Win64 if we have a 64 bit operating system)
and running UDK.exe. Take a few minutes and look through the game's menus and play the
Deathmatch map DM-Deck to get an idea of what the UDK is capable of.

Now we're ready to take a peek under the hood of the UDK. Where are the files that the
UDK uses to make our game work?

Project Setup and Test Environments

[10]

Directory overview
Let's take a look at the folders in the UDK install to see how everything is organized.

Binaries
The first folder, Binaries, holds the game executables and tools for artists and animators.
We won't be working with the art tools in this book, but it's helpful to know what they do.

�� ActorX: Provides plugins to export static and animated game objects from 3D
modeling programs like 3ds Max and Maya.

�� FaceFXPlugins: Lip syncing and facial animation tools for characters.

�� GFx: Tools used to make Scaleform menus for the interface and player HUD.

�� SpeedTreeModeler: Used to quickly make trees and other vegetation to fill
game environments.

Chapter 1

[11]

Development
The next folder, Development, is where most of our work will take place. You may have
heard people talk about a game's source code before. The Development\Src folder is
where our game's source code will go. If we look in the Src folder we see that it isn't empty,
there are a lot of folders already in there. Epic provides the source UnrealScript files for
reference, to make it easier to learn how to make our own code. As Indiana Jones might say
if he were a programmer, "Seventy percent of programming is reading the source code." One
important thing to remember: NEVER ALTER EPIC'S SOURCE CODE! A lot of the files have C++
code behind the scenes, and altering these files could break them since we don't have access
to the C++ code. All the work we do will be creating our own files to work with.

Engine
The Engine folder holds resources and configuration files for the game and editor, and will
rarely need to be touched even by experienced UnrealScript programmers.

UDKGame
The next folder is where the heart of a UDK project resides. UDKGame is where all of the
content for our game is found, where the configuration files are, even where the splash
screen is. Let's take a look at each folder individually. The next two folders are:

�� Autosave: This folder doesn't exist when you first install the UDK. When you open
the editor and start creating a level, the editor will periodically save a copy of your
map to this folder. If the editor freezes up or your computer crashes, you would be
able to retrieve a recent version of the map you had been working on without losing
a lot of work.

�� Config: We use the INI files in here to change settings that the game uses to
run, as well as giving the player a way to change settings for our custom game. The
game's resolution and keyboard settings are in here as an example. INI files can be
opened with any plain text editor such as Notepad. Here is an example of keybinds
that can be found in the DefaultInput.ini file:

.Bindings=(Name="E",Command="GBA_Use")

.Bindings=(Name="LeftMouseButton",Command="GBA_Fire")

.Bindings=(Name="RightMouseButton",Command="GBA_AltFire")

.Bindings=(Name="C",Command="GBA_Duck")

.Bindings=(Name="Escape",Command="GBA_ShowMenu")

Project Setup and Test Environments

[12]

�� Content: Maps, sounds, characters, environment art, it's all here. The directory
structure inside this folder is divided up to create separate areas for mobile content
if we were working on an iOS project, to keep it separate from the normal PC
content. The exact directory structure here doesn't matter much, we can organize
our content however we like. As long as it's in the Content folder the game will be
able to find it.

�� Flash: This folder holds the source files for our Scaleform menus and any HUDs our
game uses.

�� Localization: If we were releasing our game in different languages, this is where
we would put all of our translated text. As with INI files, INT files can be opened
with a plain text editor.

�� Logs: The files here record game events and any debugging code that we put in,
and are very helpful when trying to fix broken code. The LOG files can be opened
with a plain text editor.

�� Movies: Any cutscene videos we create would go in here, as well as the game
loading and level loading movie files.

�� Script: Once our source code is compiled, the .u file ends up here. These are the
files that the game uses and the ones that are distributed with our game, the source
code is only used to create these and aren't included.

�� Splash: In addition to the images that are shown when the game or editor are
starting up, there are links to the Epic forums and the Unreal Developer Network in
here. Both are valuable resources for learning how to use the UDK.

Not too complicated! In this next section we'll be taking a closer look at the Development
folder by installing and setting up a few programs we can use to making coding in
UnrealScript easier. Let's get to it!

Using external programs to code
There are two things we need to look at when deciding what programs to use to help us
write UnrealScript code. The first, obviously, would be something we can use to write the
code itself. Script files can be opened and written in a plain text editor like Notepad if we
prefer, but there are free programs out there we can use to make our lives easier.

ConTEXT
ConTEXT is a freeware text editor designed to make working with various programming
languages easier. It has text highlighting to make reading code quicker, and tools to make
compiling code as easy as pressing a button. Let's install it so we can use it in our project.

Chapter 1

[13]

Time for action – Installing ConTEXT
Find the installer included with this book, or go to http://www.contexteditor.org and
download the latest version.

1.	 Run the installer. It will ask what language to use.

2.	 The installer will ask where we want to install the program. The location doesn't
matter, choose a convenient location or leave it at the default.

3.	 The installer will ask if you would like to add shortcuts or Replace Windows
Notepad. Let's leave this at the default for now unless you don't need the shortcuts.

4.	 Review the settings and click on Install to finish the installation.

www.allitebooks.com

http://www.contexteditor.org/
http://www.allitebooks.org

Project Setup and Test Environments

[14]

5.	 After ConTEXT is finished installing, let's run it!

What just happened?
With ConTEXT installed we have a simple, but powerful tool to make our coding lives easier.
We can drag files from the Development\Src folder directly onto ConTEXT to open them,
or use the File Explorer pane on the left to browse through the directories. However, before
we're ready to use it for programming, we need to configure a few things.

Time for action – Configuring ConTEXT
Now we'll set up ConTEXT to make reading UnrealScript easier, and use it to compile scripts
with a single button press.

1.	 Click on Options in the top toolbar, then Environment Options. In the first tab,
General, set When started to Open last file/project. That way any files that we're
working on will automatically open the next time we use ConTEXT.

2.	 Make sure that Remember editing positions is checked. This makes the files we're
working with open in the same position the next time we open ConTEXT. This saves
a lot of time remembering where we left off.

Chapter 1

[15]

3.	 In the Editor tab, uncheck Allow cursor after end of line. This will keep our code
clean by preventing unnecessary spaces all over the place.

4.	 Uncheck Smart tabs. Part of writing clean code is having it lined up, and Smart
tabs tends to move the cursor to the beginning of words instead of a set number
of spaces.

5.	 Make sure that Line numbers is checked. When we start compiling, any errors
that show up will give us a line number which makes them easier to find and fix.
This also helps when we search through our code as the searches will also give us
line numbers.

Project Setup and Test Environments

[16]

6.	 Finally for this tab, set Block indent and C/Java Block Indent to 4. This comes down
to personal preference but having four spaces instead of two makes it easier to
quickly scan through code and find what you're looking for.

7.	 Now we're going to set up ConTEXT to compile code. On the Execute Keys tab, click
on Add, then type .uc into the Extensions field that comes up.

Chapter 1

[17]

8.	 Once that's done four keys, F9 through F12, will show up in the User Exec Keys
window. Let's click on F9 to make it convenient. Once clicked the options on the
right become available.

9.	 For the Execute line, click on the button to the right of the field and navigate to our
UDK installation's Binaries\Win32 folder, and select UDK.exe. For Start In, copy
the Execute line but leave out UDK.exe.

10.	 In the Parameters field, type "make" without the quote marks. This tells UDK.exe
that we want to compile code instead of opening the game.

11.	Change Save to All Files Before Execution. This makes sure that all of our changes
get compiled if we're working in more than one file.

12.	Check Capture Console Output and Scroll Console to the Last Line. This lets you see
the compile progress at the bottom of ConTEXT, and any compiler errors will show
up there as well.

Project Setup and Test Environments

[18]

13.	Now we're going to set up an UnrealScript highlighter. Highlighters make code
easier to read by color coding keywords for a programming language. Since each
language has different keywords, we need a highlighter specific to UnrealScript.
Close ConTEXT and find the UnrealScript.chl file included with this book, or
head to http://wiki.beyondunreal.com/ConTEXT and follow the instructions
for the UnrealScript highlighter. Once you have your .chl file, place it in ConTEXT's
Highlighters folder.

14.	Open ConTEXT again. In the top toolbar there is a drop-down menu, and our
UnrealScript highlighter should show up in the list now. Select it and we're done
setting up ConTEXT!

What just happened?
ConTEXT is now set up to compile our UnrealScript files; all we have to do is press F9.
The first time we do this it will also recompile Epic's UnrealScript files, this is normal. The
compiler may also show up in a separate window instead of at the bottom of ConTEXT, this is
also normal.

Starting to feel like a programmer yet? Now that we're able to compile code we just need an
easy way to browse through Epic's UnrealScript source code, and to do that we're going to
install another small program, UnCodeX.

http://wiki.beyondunreal.com/ConTEXT

Chapter 1

[19]

UnCodeX
We can write our own code with ConTEXT, but now we need something to make sense of
the Development\Src folder. There are over 2,000 files in there! This is where UnCodeX
comes in. UnCodeX organizes the files into a class tree so that we can easily browse through
them and see their relationship to each other. It also allows us to quickly search through
the source code, which is where the line numbers in ConTEXT come in handy when we're
searching through our own code.

Time for action – Installing UnCodeX
Find the installer included with this book, or head to http://sourceforge.net/
projects/uncodex and download the latest version of UnCodeX.

1.	 Run the installer. It will ask you to accept the agreement. Read through it and accept.

2.	 Choose where you want to install the program. The location doesn't matter so
choose a place convenient for you.

3.	 The default setting for the components is fine, so let's use a Full Installation. This
will give us a graphical interface and some extra help files if we need them.

4.	 UnCodeX will ask whether you would like to add a Start Menu folder. Select your
options and continue.

5.	 Select where you would like shortcuts placed and click on Next.

http://sourceforge.net/projects/uncodex/
http://sourceforge.net/projects/uncodex/

Project Setup and Test Environments

[20]

6.	 Review the installation settings and click on Install!

7.	 When the installation finishes, exit without running UnCodeX.

What just happened?
With UnCodeX installed we have a great way to browse through and search Epic's source
code, as well as our own when we start creating it. UnCodeX is also very useful for debugging
broken code. Now that it's installed, we need to set it up to work with our UDK directory.

Time for action – Configuring UnCodeX
UnCodeX needs to know where our source code is before we can search through it. Let's set
up UnCodeX now.

1.	 Open UnCodeX. It will automatically detect that this is the first time we've run it and
ask if we want to edit the settings. Choose Yes.

Chapter 1

[21]

2.	 The UnCodeX window will pop up with the Source Paths tab open. This is where we
will add our source code directory. Click on Add.

3.	 Navigate to our UDK installation's Development\Src folder and select it.

4.	 The directory will show up in the window below the Add button. That's all we
need to do here, so click on Ok. UnCodeX will ask if we want to scan the directory.
Click on Yes.

5.	 That's all we need to do! UnCodeX will scan and organize all of the files in the Src
folder and display them.

Project Setup and Test Environments

[22]

What just happened?
UnCodeX is now configured and ready for us to use. Let's take a look at what it's showing us.

�� The left window shows each package and the classes in them, which is basically like
a folder in Windows. The middle window shows the class tree, which organizes all
of the files to show their relationship to each other. The right window shows the
contents of the file we have selected. You'll notice that some words are highlighted.
Clicking on them takes you to the file or function with that name. This is convenient
for finding out how things interact with each other in UnrealScipt.

�� Changing projects in UnCodeX is easy. Simply go to Tree, click on Settings, and Add
or Remove directories as needed. Later, go to Tree and click on Rebuild and Analyse
or use the keyboard shortcut Ctrl + B. It will rebuild the package and class tree the
same as our initial setup.

�� We will be using ConTEXT and UnCodeX in this book, but there are other programs
we could use when working with UnrealScript. Let's briefly discuss them, and then
start setting up our own project!

Chapter 1

[23]

nFringe
nFringe is an IDE (Integrated Development Environment) that allows programmers to work
with UnrealScript in Microsoft Visual Studio 2005 or 2008. It includes a debugger that allows
us to stop the game while it is running to see what is happening in script. There is a free
version available for non-commercial work, but if you'd like to use it for commercial projects
there is a licensing fee. If you have Visual Studio and would like to try it out, head over to
http://pixelminegames.com and get the latest version!

WOTgreal
WOTgreal was originally created by Dean Harmon for the Unreal Engine based Wheel of Time
game. The program works with all Unreal Engine games though, and is like ConTEXT and
UnCodeX combined. There is a small licensing fee for the standard or professional version of
the program. Head over to http://www.wotgreal.com to check it out!

For the most part the choice of program to use when working with UnrealScript comes down
to personal taste. The Unreal Editor itself will detect changes in the source code and ask if
you want to compile when it opens. Some programmers use Notepad to write and a DOS
prompt to compile, using the same make command that ConTEXT uses. Try out the various
programs to see what works best for you.

Setting up a project
Now we have the programs, we need to start working on our own project, but where do we
start? Looking back at the UDK directory structure, there are really only three folders we
would need to create. The first would be our own folder in the UDKGame\Content directory
to contain any assets our project needs. Any artists or animators on the project would put
their files in that directory. The second would be a folder in UDKGame\Content\Maps for our
project's levels. This keeps everything organized and separated from Epic's assets so we know
what's ours. For programmers though, there is only one folder we really need to worry about.

http://pixelminegames.com/
http://www.wotgreal.com/

Project Setup and Test Environments

[24]

Time for action – Setting up AwesomeGame
The last folder we need for our own games is the one we'll be doing most of our work in as
programmers. It's the place we'll be keeping all of our source code.

1.	 In the Development\Src folder, create a folder called AwesomeGame. Inside that,
create a folder called Classes. This is where all of our source code will go.

When code is compiled, the final .u file's name is the same as the folder, so in
our case when we compile a file called AwesomeGame.u, it will show up in the
UDKGame\Script folder. Empty folders are ignored, so let's create our first class so
we have something to work with. We'll create a simple class we can place in a level
to have the game run the code that we write.

2.	 Create a text file and name it AwesomeActor.uc (make sure file extensions are
shown in your folders so you don't accidentally name it AwesomeActor.uc.txt).

Open the file in ConTEXT and type the following code into it.

Class AwesomeActor extends Actor
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

Chapter 1

[25]

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Make sure all of the punctuation is correct, particularly the opening and closing
brackets after defaultproperties. The compiler is very particular about
those brackets; they have to be on their own lines for anything inside them
to work correctly.

The first line of our class defines the name of our object and its relationship to
other objects in the game. The name of the file has to be the same as the name
we type here; otherwise the compiler will give us an error. In this case both are
AwesomeActor. The extends Actor part makes our AwesomeActor a child of
Actor. In a way the class tree can be seen as a family tree, with classes inside the
tree being children of the ones further up the chain.

The second line makes it so our class can be placed in the editor. Things like lights,
path nodes, vehicles, all of these have placeable in their .uc file so the editor will
let us place them. Other things like projectiles or explosions wouldn't be set as
placeable since they are created while the game is running.

The section in the default properties creates a sprite so that we can see the actor in
the editor and in the game.

Now, before we compile we need to let the game know about our AwesomeGame
folder.

3.	 Open UDKGame\Config\DefaultEngine.ini and add our package
AwesomeGame to the end of the EditPackages list.

[UnrealEd.EditorEngine]
+EditPackages=UTGame
+EditPackages=UTGameContent
+EditPackages=AwesomeGame

4.	 Save DefaultEngine.ini and close it.

Project Setup and Test Environments

[26]

What just happened?
Now we've created a folder for our code to go in called AwesomeGame, which is in the
Development/Src folder. In it we've created our first code file, AwesomeActor.uc. We
then edited DefaultEngine.ini so the game would recognize our new code package.

The folders in the Development\Src directory aren't automatically detected. The main
reason for this is that in some cases we may not want or need the classes inside it. For
instance, we may have different folders for a PC project and an iOS project. Both of them
would be in the Development\Src folder, but the PC version of our game wouldn't need
the iOS code and vice versa. Remember when we went over the directory structure and we
talked about the Config folder? That folder contains all of the settings for our game. Let's
take a look.

The file we added to, DefaultEngine, contains things like the game's resolution and
texture detail. It also contains the EditPackages list we added to, which tells the game which
packages to compile and in what order.

[UnrealEd.EditorEngine]
+EditPackages=UTGame
+EditPackages=UTGameContent

Chapter 1

[27]

As you can see, the names in this list can also be found as folders in the Development\Src
directory:

The list in DefaultEngine.ini seems kind of short though, doesn't it? Well, much like the
class we created is a child of Actor, DefaultEngine.ini also has a parent. If we look at the
top of DefaultEngine we can see this:

[Configuration]
BasedOn=..\UDKGame\Config\DefaultEngineUDK.ini

This .ini file is actually based on another one, its parent DefaultEngineUDK.ini. Let's
close DefaultEngine.ini and take a look at DefaultEngineUDK.ini's EditPackages list.

[UnrealEd.EditorEngine]
EditPackagesOutPath=..\..\UDKGame\Script
FRScriptOutputPath=..\..\UDKGame\ScriptFinalRelease
+EditPackages=UDKBase
+EditPackages=UTEditor
;ModEditPackages=MyMod
AutoSaveDir=..\..\UDKGame\Autosaves
InEditorGameURLOptions=?quickstart=1?numplay=1

Project Setup and Test Environments

[28]

That's a bit better. UDKBase and UTEditor are two more folders in our Development\Src
directory. But there are a lot more folders there, so what's the deal? Let's see if we can go
higher up the ini tree to find out. At the top of DefaultEngineUDK.ini we see that this
file also has a parent:

[Configuration]
BasedOn=..\Engine\Config\BaseEngine.ini

Let's close DefaultEngineUDK.ini and take a look at BaseEngine.ini, which is in the
Engine\Config directory.

EditPackages=Core
EditPackages=Engine
EditPackages=GFxUI
EditPackages=GameFramework
EditPackages=UnrealEd
EditPackages=GFxUIEditor
EditPackages=IpDrv
EditPackages=OnlineSubsystemPC
EditPackages=OnlineSubsystemGameSpy
EditPackages=OnlineSubsystemLive
EditPackages=OnlineSubsystemSteamworks

That's better! It looks like all of the folders are accounted for now, except for MyMod which
is an empty example folder. And if we look at the top of BaseEngine.ini we can see that
this is the end of the chain, BaseEngine doesn't have a parent.

So how does the game use these files? If you haven't run the game or compiled the code
when we installed ConTEXT, run the game real quick and exit out of it at the main menu. The
first time the game is run, it uses all of the Default and Base ini files to generate the ones the
game actually uses in the UDKGame\Config directory:

Chapter 1

[29]

So the obvious question is why are there so many files? Well, let's take another look inside
BaseEngine.ini to see why. About two-thirds of the way down the file we can see a list of
system settings:

MotionBlur=True
MotionBlurPause=True
MotionBlurSkinning=1
DepthOfField=True
AmbientOcclusion=True
Bloom=True
bAllowLightShafts=True
Distortion=True

These settings control some of the visual effects in the game like motion blur and bloom.
What would happen if we changed them? It would change the game's visual effects of
course, but here's another question. While playing the game, in the Settings we're able to
revert back to the defaults. If we changed the settings in these files, how would the game
know what the default was? The game uses the Base and Default ini files to create the UDK
ones, that way the player can change things like the resolution or keybinds, but the game
will still have the known safe default settings available if it needs them. It may seem a bit
complicated but it's pretty easy to work with. As the game's developer we would work in the
Default and Base ini files to make the game work the way we want by default, and the player
can change the settings if they want to.

Now that AwesomeGame has been added to the EditPackages list we'll be able to compile
it. But why did we have to add AwesomeGame to the very end of the list? The way the
compiler works is that it goes down the EditPackages list in order and looks for any changes
to the files in the Development\Src directory. If any .uc files are changed it recompiles
that package. It's also important to know that any package that our classes are dependent
on has to be compiled before ours. As an example, let's take a look at DefaultEngine.ini
again. One of the EditPackages listed is UTGameContent. In the UTGameContent folder we
can see a class called UTJumpBoots. If we wanted to make our own jump boot class with
UTJumpBoots as its parent, we have to make sure that UTGameContent is compiled before
our package, otherwise the compiler won't know about that class yet and will give us an
error saying our class' parent doesn't exist.

Have a go hero – More editing of ini files
Among the settings in DefaultGame.ini are the default time limits for maps. See if you
can find and change it from 20 minutes to 15 minutes.

That takes care of our initial project setup! Now that everything is in place, we can start
compiling and testing some code. Let's get to it!

Project Setup and Test Environments

[30]

Compiling and testing
We'll be using ConTEXT to compile the code we wrote, and to test it we'll be using the Unreal
Editor. Don't worry if you have no knowledge of the editor, we don't need to be experts to be
able to use it to test our code.

Time for action – Compiling and testing AwesomeActor
1.	 Open ConText and press F9, which we set up earlier to compile our code. If we typed

everything in correctly, it should give us a Success message at the end!

If there are any warnings or errors, look over the code again to make sure everything
is spelled correctly and the punctuation is correct. The error message itself should
provide a clue as to where to look. It will also give you a line number where the
error happened.

2.	 Now that our code is compiled, let's add our AwesomeActor to a level. If you don't
have an editor shortcut or can't find it in your Start menu, it's easy to make one. Go
into UDK-AwesomeGame\Binaries\Win32 and right-click on UDK.exe. Click on
Send To and then Desktop (create shortcut). Right-click on the shortcut it created
and click on Properties. In the Target field, add editor to the end without quotes:

Chapter 1

[31]

3.	 Now let's open the editor!

Project Setup and Test Environments

[32]

4.	 Close the Welcome Screen and Content Browser, and let's take a look at the editor
real quick. To try out our code we're going to need a test map, so go to File, and click
on Open, and select ExampleMap.udk to open it.

One thing we'll notice immediately is that there seems to be a lot of strange objects
floating around the level. These are Actor classes that are normally invisible in game,
but have sprites that can be seen in the editor. Remember the sprite we added to
the default properties of our AwesomeActor? This is where it gets used.

Now let's add our AwesomeActor.

5.	 Click on the Content Browser button to open it up again.

Chapter 1

[33]

6.	 The Content Browser will show the tab with game assets like textures and meshes
at first, but we need to take a look in the Actor Classes, so select that tab in the top.

7.	 This looks a lot different than the class tree in UnCodeX though. Classes can be put
into Categories so they're more organized in the editor, but right now we just need
to see a normal class tree, so uncheck Show Categories.

There's our AwesomeActor class!

www.allitebooks.com

http://www.allitebooks.org

Project Setup and Test Environments

[34]

8.	 Select AwesomeActor and close the Content Browser. In the 3D viewport, right-click
on the floor and near the bottom click on Add AwesomeActor Here.

There's the AwesomeActor, showing the sprite that we put in the default properties
of our class! Normally these sprites won't show up in the game, but we didn't put any
restrictions on the one in our default properties so we'll be able to see it for now.

9.	 Click on the Play button to run the game in a new window.

10.	After you're done checking out the AwesomeActor in the level, close the
game window.

11.	Now let's save the map so we can keep using it to test. We don't want to save
over ExampleMap so let's save it in our own folder. Create a new folder in the
Content\Maps directory called AwesomeGame, and in the editor save the map as
AwesomeMap.udk inside that folder.

Chapter 1

[35]

12.	Close the editor.

So we have our class set up, but is there anything more we can do with it? Usually
the first task when learning a new programming language is to make a Hello World
program, so let's do that now. Open up our AwesomeActor.uc file in ConTEXT. Let's
add some more code.

The first thing we'll do while we're here is make it so our actor doesn't show up in
the game but still shows in the editor. We can do this with a simple one line addition
to our default properties.

13.	Add a new line in the default properties and write the following:

Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'

 HiddenGame=True

End Object
Components.Add(Sprite)

14.	Now let's add our Hello World. This will go before the default properties section.

function PostBeginPlay()
{
 `log("Hello World! ==========");
}

PostBeginPlay is a function that is run when an Actor is first created, so it's a
good place for our Hello World. The log line we put inside that function will output
to a text file so we can see that our class is running correctly. So now, our class
should look like this:

class AwesomeActor extends Actor
 placeable;

function PostBeginPlay()
{
 `log("Hello World! ==========");
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

Project Setup and Test Environments

[36]

Before we compile, make sure the editor is closed. The compiler can't delete the old
.u file if it's still in use by the editor and we'll get an error.

15.	With the editor closed, compile the code by hitting F9 in ConTEXT.

16.	Now open the editor, and open AwesomeMap.udk.

We don't need to do anything to our AwesomeActor, changes we make to our
compiled classes automatically affect any of the actors we've placed in our levels.

17.	Run the game by clicking on the Play button in the top as before. We'll see that our
AwesomeActor is invisible now, so the line we added to the default properties is
working. But where's our Hello World?

18.	Close the game window and exit the editor. Go into the UDKGame\Logs folder and
take a look at the files in there.

There should be Launch.log, Launch2.log, and any number of backups
depending on how many times the game, editor or compiler has run. When they
run, they create a backup of the existing Launch.log file and start a new one.
Whenever more than one is run at the same time, as in the case of us running a
game window from the editor, it creates a second file called Launch2.log and so
on. So, since we were testing our code from a game window in the editor, let's take
a look at Launch2.log.

19.	Open Launch2.log in the UDKGame\Logs folder.

[0008.05] Log: Game class is 'UTGame'
[0008.24] Log: Primary PhysX scene will be in software.
[0008.24] Log: Creating Primary PhysX Scene.
[0008.26] Log: Bringing World UEDPCAwesomeMap.TheWorld up for
play (0) at 2011.05.19-15.15.52
[0008.28] ScriptLog: Hello World! =========
[0008.28] Log: Bringing up level for play took: 0.193269

Towards the end of the file we can see our Hello World shows up!

Now you can see why we added a bunch of equal signs in our code. It's pretty easy for our
logs to get buried with everything else that's going on, so using some kind of unique marker
like we did makes them easier to find.

Chapter 1

[37]

A quick note about comments
One of a programmer's essential tools are comments. They serve two purposes. First, since
they're ignored by the compiler, they can be used to write notes to yourself in your code.
Doing this lets you remember what your code does, which can be helpful when you come
back to it months later. If you're working with other programmers, writing comments is good
programming practice so others can see what your code does.

Second, comments are a quick way to remove sections of your code without permanently
deleting it or relying on undo, since you may have to make changes over several days or
weeks and repeatedly close and open the files.

There are two ways to write comments. The first way is to write to slash marks, which
comments out a line or part of a line:

// This entire line is a comment.
SomeCode(); // This is a comment at the end of a line.
4 + 5; // + 6; We've commented out "+ 6;" here to test something.

The second way to write comments is to use a slash and asterisk. This comments out entire
sections of code.

/* This line is commented out.
This line is commented out as well.
The slash and asterisk at the end of this line end the comment. */

Note that these cannot be nested as it will break the code. For example, this works:

/* Commenting out some code.
// Having a double slash comment inside here is fine.
Ending the comment. */

While this would not work:

/* A comment.
/* A comment inside a comment like this would not work. */
Ending the comment. */

As you're working on your own projects, don't forget to comment your code! It makes it
easier to read and understand.

Project Setup and Test Environments

[38]

Pop quiz – Files and directories
1.	 Which folder in the UDKGame directory does a game's level go in?

a.	 Build

b.	 Content

c.	 Localization

d.	 Src

2.	 What file is the highest in the chain of DefaultEngine.ini?

a.	 DefaultEngineUDK.ini

b.	 BaseEngine.ini

c.	 UDKEngine.ini

3.	 What does placeable do in a class file?

Summary
We learned a lot in this chapter about how the UDK works and how to set up our own
game project.

Specifically, we covered:

�� The UDK directories and what goes into each folder. We know which folders we'll
be working in as programmers as well as the ones any artists or designers on the
project would be using.

�� Which programs we can use to work with UnrealScript. We know that there are
two aspects to programming, writing the code and being able to easily browse the
existing source code.

�� How to set up our own project and compile and test code that we've written. We
know how to use UnrealEd and the Logs folder to help us test and make sure our
code is running correctly.

Now that we've learned about the UDK, we're ready to start learning more about the
UnrealScript language by taking a look at variables and operators—which is the topic of the
next chapter.

2
Storing and Manipulating Data

Variables are a Programmer's Best Friend

If someone asked if it were raining, or which bag had more apples in it, it would
be a pretty simple conversation. But how do you have that same conversation
with a computer? In this chapter we're going to take a look at how to use
variables and flow control to get our code to react to what's going on in the
game.

In this chapter we will:

�� Discuss different types of variables including booleans, structs, enums, and arrays.

�� Learn how to set default properties for variables and how to let level designers
change them.

�� Use operators on variables to add, subtract, and more.

�� Learn about using flow control to do different things under different circumstances.

Let's get started by learning about the different types of variables!

Variables and arrays
There are many different types of variables. Choosing which one we want to use depends
on what we want to do with it. Knowing whether it's raining or not (true/false) is different
from say, knowing a character's name ("Big McLargeHuge"). Let's take a look at some of the
variables we can use and what they're used for.

Storing and Manipulating Data

[40]

Booleans
Quick, is it raining? Boolean variables, or bool for short, are your basic true/false questions.
They're used for everything from asking if the player is driving a vehicle, to if the game has
started, to whether or not an object can collide with anything.

It's standard for boolean variables' names to start with a lower case "b". This isn't required,
but it's good to follow the guidelines to keep code consistent and easily readable.

Let's take a look at how we can use booleans in our code by adding to our AwesomeActor class.

Time for action – Using booleans
The first thing we need to do is tell the game about our variable. This is called declaration.
Variables need to be declared before they can be used. Our declaration tells the game what
type of variable it is as well as its name.

We'll continue with our "is it raining?" scenario for this experiment. In a game we might want
to use this variable to check whether we should spawn rain effects or make changes to the
lights, and so on.

Variable declaration in UnrealScript happens after the class declaration line, and before any
functions. Let's add a variable to AwesomeActor.uc to see if it's raining or not.

1.	 Open up our AwesomeActor.uc class in ConTEXT and add this line after our class
declaration:

var bool bIsItRaining;

The var tells the game that we're declaring a variable. After that, is the variable
type, in this case bool for boolean. After that, we tell the game our variable's name,
bIsItRaining. Spaces can't be used in variable names, but underscore characters
(_) are allowed. The semicolon finishes the line. It's important never to forget the
semicolon at the end of the line. Without it the compiler will think any lines after it
are part of this line and will look at us confused, as well as give us an error.

2.	 Now let's add a log to our PostBeginPlay function to see our variable in action.
Change the PostBeginPlay function to this (don't forget the tilde):

function PostBeginPlay()
{
 'log("Is it raining?" @ bIsItRaining);
}

Chapter 2

[41]

This will output our text as well as tell us the value of bIsItRaining. The @
operator combines the text with the value of the variable into one sentence which
the log uses. This is known as concatenation and will be discussed later in the
chapter.

Our AwesomeActor class should look like this now:

class AwesomeActor extends Actor
 placeable;

var bool bIsItRaining;

function PostBeginPlay()
{
 'log("Is it raining?" @ bIsItRaining);
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

3.	 Now let's compile it. If we get any errors go back and make sure everything is
spelled correctly and that we haven't missed any semicolons at the end of lines.

Open the editor and open our test map with the AwesomeActor placed, and run
the game. Nothing obvious will happen, but let's close the game and see what our
Launch2.log file looks like:

[0008.59] ScriptLog: Is it raining? False

Our variable is working! As we can see, even without doing anything to it our
variable has a default value. When created, booleans automatically start out false.
This is a good thing to know when creating variables, especially booleans. It's best
to avoid words like Not or No in boolean names to avoid having double negatives.
For example, if we had a bool named bIsNotActive, and it was False, would the
object be active or not? In this case it would be active, but to avoid confusion it
would be better to have a variable named bIsActive so it would be easier to tell
what it means when it's true or false.

Storing and Manipulating Data

[42]

4.	 Now that we have our bool, how do we change it? Let's add a line to our
PostBeginPlay function.

bIsItRaining = true;

Now our function should look like this:

function PostBeginPlay()
{
 bIsItRaining = true;
 'log("Is it raining?" @ bIsItRaining);
}

5.	 Compile and run the game again, and we should see the change in the log:

[0007.68] ScriptLog: Is it raining? True

There we go!

6.	 We can also change it back just as easily. Let's add a line after our log to change it to
false, and then add another log to see the change.

bIsItRaining = false;
'log("Is it raining?" @ bIsItRaining);

Now our PostBeginPlay function should look like this:

function PostBeginPlay()
{
 bIsItRaining = true;
 'log("Is it raining?" @ bIsItRaining);
 bIsItRaining = false;
 'log("Is it raining?" @ bIsItRaining);
}

7.	 Let's compile and test out the changes!

[0007.65] ScriptLog: Is it raining? True
[0007.65] ScriptLog: Is it raining? False

What just happened?
There isn't much to use in booleans; they're the simplest type of variable in UnrealScript.
Don't underestimate them though, they may be simple, but a lot of the variables we'll be
working with will be bools. Anything where we only need a simple true/false answer will fall
under this category.

Chapter 2

[43]

Integers and floats
Next in our tour of UnrealScript variables are integers and floats. Both store numbers,
but the difference is that integers (int for short) store whole numbers without a decimal
point like 12, while floats can store fractions of numbers, like 12.3. Let's take a look at how
to use them.

Time for action – Using integers
Let's make an Int.

1.	 Declaring an integer is similar to what we did with bools, so let's replace our bool
declaration line with this:

var int NumberOfKittens;

We can see that we have the same var text that declares our variable, and then
we tell the game that our variable is an int. Finally, we set the name of our int to
NumberOfKittens.

The name of the variable should give a hint as to the difference between ints and
floats, and why we need ints to begin with instead of using floats for everything.
Since we don't want to hurt any defenseless kittens we should only be using whole
numbers to represent the number of them. We don't want to have half of a kitten.

2.	 As with our bool variable ints have a default value, in this case zero. We can check
this by changing our PostBeginPlay function:

function PostBeginPlay()
{
 'log("Number of kittens:" @ NumberOfKittens);
}

Now our AwesomeActor.uc class should look like this:

class AwesomeActor extends Actor
 placeable;

var int NumberOfKittens;

function PostBeginPlay()
{
 'log("Number of kittens:" @ NumberOfKittens);
}

defaultproperties
{

Storing and Manipulating Data

[44]

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

3.	 Let's compile and run the game to test it out!

[0007.63] ScriptLog: Number of kittens: 0

Notice there is no decimal place after the 0; this is what makes an int an int. We use
this type of variable for things that wouldn't have fractions, like the number of kills a
player has made in deathmatch or the number of people in a vehicle.

4.	 Now let's see what happens when we change the variable. At the beginning of our
PostBeginPlay function add this:

NumberOfKittens = 5;

Now the function should look like this:

function PostBeginPlay()
{
 NumberOfKittens = 5;
 'log("Number of kittens:" @ NumberOfKittens);

}

5.	 Let's compile and test!

[0008.07] ScriptLog: Number of kittens: 5

6.	 What would happen if we tried to add a fraction to our int? Only one way to find
out! Change the line to this and compile:

NumberOfKittens = 5.7;

7.	 Well, it compiles, so the engine obviously doesn't care about that .7 of a kitten, but
what actually happens? Run the game and then check the log to find out.

[0007.99] ScriptLog: Number of kittens: 5

Interesting! We can see that not only did it ignore the fraction, but also truncated it
instead of trying to round it up to 6. This is important behavior to remember about
ints. Ints will also act this way when we use math on them.

Chapter 2

[45]

8.	 Change the line to this:

NumberOfKittens = 10 / 3;

This should end up as 3.333333, but with the truncation, we can see that it ignores
the fraction.

[0007.72] ScriptLog: Number of kittens: 3

What just happened?
Ints are one of the ways the game stores numbers, and we use it when we don't need to
worry about fractions. Usually we use them when we're just trying to count something and
not trying to perform complex math with them. For that, we would use floats. Let's take a
look at those now.

Time for action – Using floats
Floats are used when we need something that doesn't have nice neat values, like how far
away something is or how accurate a weapon is. They're declared the same way as our bools
and ints, so let's make one now.

1.	 Replace our int declaration with this:

var float DistanceToGo;

2.	 Floats have a default value of 0.0. Let's change our PostBeginPlay function to
check this.

function PostBeginPlay()
{
 'log("Distance to go:" @ DistanceToGo);

}

3.	 Compile and test, and our log should look like this:

[0007.61] ScriptLog: Distance to go: 0.0000

4.	 We can see that unlike ints, floats will log with a decimal place. Let's see if we can
change the value. Add this line to the beginning of our PostBeginPlay function:

DistanceToGo = 0.123;

5.	 Compile and test, and we should see the fraction show up in the log:

[0007.68] ScriptLog: Distance to go: 0.123

Storing and Manipulating Data

[46]

6.	 Let's see what happens when we use the same line we did for our int. Change the
line to this:

DistanceToGo = 10 / 3;

7.	 Compile and test, and our log should look like this:

[0007.68] ScriptLog: Distance to go: 3.3333

What just happened?
Floats are used when we need precision in our numbers, such as calculating the distance
between two points or the time remaining in a game. We also use them for complex math
since they can have fractions.

Strings
No, these are not strings for our kittens to play with. In programming, strings store a series
of characters, be it letters, numbers, symbols, or a combination of them. We can use them
to hold the name of our character, messages to display on the screen, or the name of the
weapon we're holding. Let's take a look at how to use them.

Time for action – Using strings
Well, by now we know the drill, so let's declare a string!

1.	 Change our float declaration to this:

var string DeathMessage;

2.	 By default, strings are empty. We can see this... or not see this, rather, by changing
our PostBeginPlay function:

function PostBeginPlay()
{
 'log("Death message:" @ DeathMessage);
}

3.	 Compile and test to see that nothing shows up:

[0007.74] ScriptLog: Death message:

Well that doesn't help much. Let's change that.

Chapter 2

[47]

4.	 Add this line to our PostBeginPlay function:

DeathMessage = "Tom Stewart killed me!";

Now it looks like this:

function PostBeginPlay()
{
 DeathMessage = "Tom Stewart killed me!";
 'log("Death message:" @ DeathMessage);
}

5.	 Compile and run the code, and check the log.

[0007.67] ScriptLog: Death message: Tom Stewart killed me!

What just happened?
There's not much to strings either, and they're not used nearly as much as other types of
variables. They're mostly used for things that need to be made readable to the player like
character or weapon names, or messages on the HUD. A few are used for other things like
telling the game which level to load.

Enums
Enumerations (enums for short) are an odd variable type. They function as a list of possible
values, and each value can be represented by its name or number. This allows them to be
put in an order and compared with other values much like integers. As an example, if we had
an enum called Altitude, we might write it like this:

enum EAltitude
{
 ALT_Underground,
 ALT_Surface,
 ALT_Sky,
 ALT_Space,
};

As we can see from the order these are in, ALT_Space would be "greater than" ALT_
Surface if compared to it. Sometimes we might use enums where we don't care about the
order. An example of this would be the EMoveDir enum from Actor.uc:

enum EMoveDir
{
 MD_Stationary,
 MD_Forward,
 MD_Backward,

Storing and Manipulating Data

[48]

 MD_Left,
 MD_Right,
 MD_Up,
 MD_Down
};

This enum describes the directions an actor can be moving, but in this case we only care that
the variable can only have one value. The order of the elements doesn't matter in this case.

Enum values can also be used as bytes. If we looked at our example enum, this means that
they would have the following values:

ALT_Underground = 0
ALT_Surface = 1
ALT_Sky = 2
ALT_Space = 3

Now the order makes sense, and we know why we can compare them to each other like
integers. But then why not just use ints instead of enums to represent the values? For
readability, mostly. Would you rather see that an actor's Altitude variable has been set to
ALT_Sky, or 2?

Time for action – Using enums
That's all well and good, but how do we use them? Let's set one up in our AwesomeActor
class.

1.	 Add the enum below our class line.

enum EAltitude
{
 ALT_Underground,
 ALT_Surface,
 ALT_Sky,
 ALT_Space,
};

The E isn't necessary, but it helps to follow standard guidelines to make things easier
to read.

2.	 Now we need to declare a variable as that enum type. This is similar to declaring
other variables.

var EAltitude Altitude;

Chapter 2

[49]

3.	 Now we have a variable, Altitude, that's been declared as the enum type
EAltitude. Enums default to the first value in the list, so in this case it would be
ALT_Underground. Let's see if we can change that in our PostBeginPlay function.

function PostBeginPlay()
{
 Altitude = ALT_Sky;
 'log("Altitude:" @ Altitude);
}

Now our class should look like this:

class AwesomeActor extends Actor
 placeable;

enum EAltitude
{
 ALT_Underground,
 ALT_Surface,
 ALT_Sky,
 ALT_Space,
};

var EAltitude Altitude;

function PostBeginPlay()
{
 Altitude = ALT_Sky;
 'log("Altitude:" @ Altitude);
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

4.	 Compile and test, and we'll see the enum show up in the log:

[0007.69] ScriptLog: Altitude: ALT_Sky

Storing and Manipulating Data

[50]

5.	 To see how they compare to each other, let's add another log after our first one:

'log("Is ALT_Sky greater than ALT_Surface?");
'log(EAltitude.ALT_Sky > EAltitude.ALT_Surface);

6.	 Doing a comparison like this will come back with a boolean true or false for the
answer, which we'll see in the log when we compile and test:

[0007.71] ScriptLog: Altitude: ALT_Sky
[0007.71] ScriptLog: Is ALT_Sky greater than ALT_Surface?
[0007.71] ScriptLog: True

There we go!

What just happened?
Enums aren't normally something you'd start using when you're new to UnrealScript, but
knowing how they work can definitely save time and jumbled code later on. If you were
making a card game for example, representing the four different suits as an enum would
make it a lot easier to read than if you had numbers representing them. They're not used
often, but when they are they're a great help.

Arrays
Now let's take a look at some more complicated uses of variables. Let's say we have several
baskets full of kittens, and we wanted to keep track of how many were in each basket. We
could make a variable for each basket like this:

var int Basket1;
var int Basket2;
var int Basket3;

But that would get really messy if we had dozens to keep track of. How about if we put them
all on one line like this?

var int Basket1, Basket2, Basket3;

UnrealScript lets us put more than one variable declaration on one line like that, as long as
they're the same type. It saves space and keeps things organized. But in this case we'd run
into the same problem if we had dozens of baskets. For something like this, we'd need to use
an array.

Chapter 2

[51]

Time for action – Using arrays
Arrays act as a collection of variables, and when we declare one you'll see why.

1.	 Change our variable declaration line to this:

var int Baskets[4];

This will create an array of four baskets. That's easy enough, but how do we change
their values?

2.	 In our PostBeginPlay function, add these lines:

Baskets[0] = 2;
Baskets[1] = 13;
Baskets[2] = 4;
Baskets[3] = 1;

One important thing to remember about arrays is that they start at 0. Even though
we have 4 elements in our array, since it starts at 0 it only goes up to 3. If we tried to
add a line like this to our function:

Baskets[4] = 7;

We would get an error.

3.	 Let's go ahead and add the line to see what happens. It will compile just fine, but
when we test it in the game we will see the error in the log file:

[0007.53] ScriptWarning: Accessed array 'AwesomeActor_0.Baskets'
out of bounds (4/4)
 AwesomeActor UEDPCAwesomeMap.TheWorld:PersistentLevel.
AwesomeActor_0
 Function AwesomeGame.AwesomeActor:PostBeginPlay:0046

The out of bounds error lets us know that we tried to access an element of the
array that doesn't exist. It takes a bit of getting used to; just remember that the first
element of our array will always be 0.

4.	 Let's take that line out of our function, and change the log line to look like this:

'log("Baskets:" @ Baskets[0] @ Baskets[1] @ Baskets[2] @
Baskets[3]);

Now our PostBeginPlay function should look like this:

function PostBeginPlay()
{
 Baskets[0] = 2;
 Baskets[1] = 13;
 Baskets[2] = 4;

Storing and Manipulating Data

[52]

 Baskets[3] = 1;
 'log("Baskets:" @ Baskets[0] @ Baskets[1] @ Baskets[2] @
Baskets[3]);
}

5.	 Let's compile and test. In our log file we should see this:

[0007.53] ScriptLog: Baskets: 2 13 4 1

Success!

6.	 Now for something a bit more complicated. We can also access the elements of our
array with an int. Let's see if we can do that. Let's declare an int:

var int TestNumber;

7.	 Then set it at the beginning of PostBeginPlay:

TestNumber = 2;

8.	 Now let's access the array with it and log the result.

'log("Test Basket:" @ Baskets[TestNumber]);

So now our class should look like this:

class AwesomeActor extends Actor
 placeable;

var int Baskets[4];
var int TestNumber;

function PostBeginPlay()
{
 TestNumber = 2;

 Baskets[0] = 2;
 Baskets[1] = 13;
 Baskets[2] = 4;
 Baskets[3] = 1;

 'log("Test Basket:" @ Baskets[TestNumber]);
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite

Chapter 2

[53]

 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

9.	 Now compile and test, then look at the log.

[0007.99] ScriptLog: Test Basket: 4

We can see that it logged the value of Basket[2], which is 4.

What just happened?
We can start to see how powerful arrays can be. We can make an array out of any variable
type except for booleans, but there are ways around that. If we used an array of ints and
used 0 for false and 1 for true, it could act as a boolean array.

Now we know how to make an array with a specific number of elements, but what if we
don't know the number of baskets, or want to change how many baskets there are while the
game is running? In that case we'll want to use a dynamic array.

Dynamic arrays
Dynamic arrays sound complicated, but they're pretty easy to work with. They're simply an
array that we can change the size of when we need to. Let's take a look at how they're used.

Time for action – Using dynamic arrays
Dynamic arrays are declared a bit differently than static arrays. Let's declare one now.

1.	 Change our variable declaration line to this:

var array<int> Baskets;

As we can see, with dynamic arrays we don't put a number anywhere in it; it can
be whatever size we need it to be. By default they're completely empty, so if we
tried to log any of its values we would get an out of bounds warning similar to our
experiment with static arrays.

2.	 We can, however, assign values any time we want, so let's add this line to our
PostBeginPlay function:

Baskets[3] = 9;

Storing and Manipulating Data

[54]

3.	 Then log the value like this:

'log("Baskets:" @ Baskets[3]);

Now our function should look like this:

function PostBeginPlay()
{
 Baskets[3] = 9;

 'log("Baskets:" @ Baskets[3]);
}

4.	 Compile and test, and we can see that the value logs fine, and we didn't get any
warnings.

[0007.82] ScriptLog: Baskets: 9

When we assign a value, the size of the array automatically changes to that value.
As with before, if we tried to access Baskets[4] we would get an out of bounds
warning.

Now that we have our dynamic array, there are a few things we need to know about
so we can use them properly. The first thing that would be nice to know is the size
of the array. Just how many baskets are there anyway? To find out we can use the
length of the array.

5.	 Change our log line to look like this:

'log("Basket array length:" @ Baskets.length);

Now our function looks like this:

function PostBeginPlay()
{
 Baskets[3] = 9;

 'log("Basket array length:" @ Baskets.length);
}

6.	 Compile and test, and check the log file.

[0007.67] ScriptLog: Basket array length: 4

Remember that arrays start out at 0, so when we assigned a value to Basket[3] it's
the fourth element in the array.

Now that we know the length of the array, we can use it to add values to the end of
it. In our example, the length of the array is 4, with Baskets[3] being the last one.
If we wanted to add another one to the array, it would be Baskets[4]. Since 4 is
the length of our array right now, we would simply put that in the index.

Chapter 2

[55]

7.	 Let's add these three lines to the end of our function:

Baskets[Baskets.length] = 23;
'log("Basket array length:" @ Baskets.length);
'log("Last basket:" @ Baskets[Baskets.length - 1]);

Our function should look like this now:

function PostBeginPlay()
{
 Baskets[3] = 9;
 'log("Basket array length:" @ Baskets.length);

 Baskets[Baskets.length] = 23;
 'log("Basket array length:" @ Baskets.length);
 'log("Last basket:" @ Baskets[Baskets.length - 1]);
}

The value 23 will now be assigned to the next element in the array, which now
expands to five elements.

Remember that the length is one higher than the last index, so to see what the last
value is we need to subtract 1 from the array length. In this case the length would
be 5, so to check the last one, Basket[4], we need to use 5-1.

8.	 Compile and test, then check the log.

[0008.46] ScriptLog: Basket array length: 4
[0008.46] ScriptLog: Basket array length: 5
[0008.46] ScriptLog: Last basket: 23

And it works! The first line in our function changes the array length to 4 by giving Basket[3] a
value of 9. Next we assign a value of 23 to Baskets.length, which is 4, making Baskets[4]
= 23. This also increases the size of the array to 5 which is shown in the log.

What just happened?
Dynamic arrays are very useful when we don't know how many elements we need ahead
of time, or the number of elements in the array needs to change during gameplay. As an
example, the player's weapons could be held in an array of Actor classes, since they may pick
up or lose some during the game.

Storing and Manipulating Data

[56]

Have a go hero – Copy an array
Let's say we had an array and PostBeginPlay set up like this:

var int TestArray[3];
var array<int> CopyArray;

function PostBeginPlay()
{
 TestArray[0] = 9;
 TestArray[1] = 5;
 TestArray[2] = 6;
}

Without using numbers, how would we copy the TestArray values into the CopyArray?
Think about our experiment on adding to the end of arrays for hints, and when you are
ready; check the following code for the answer.

var int TestArray[3];
var array<int> CopyArray;

function PostBeginPlay()
{
 TestArray[0] = 9;
 TestArray[1] = 5;
 TestArray[2] = 6;

 CopyArray[CopyArray.length] = TestArray[CopyArray.length – 1];
 CopyArray[CopyArray.length] = TestArray[CopyArray.length – 1];
 CopyArray[CopyArray.length] = TestArray[CopyArray.length – 1];
}

If you tried TestArray[CopyArray.length] at first, you probably noticed an out of
bounds error in the log. Why is that? Well, an important thing to know about dynamic arrays
is that assigning a value to the end of the array increases the size of the array first, before
assigning the value. By the time the code reaches the right-hand side of the equals sign, the
array's length has already increased by 1.

Structs
The best way to describe a struct would be to call it a variable holding a bunch of other
variables. It can be called a collection of variables. As an example, let's take a look at one
from Object.uc:

struct Cylinder
{
 var float Radius, Height;
};

Chapter 2

[57]

As we can see, this struct contains two floats, Radius, and Height. Structs themselves can be
used as variables, like this:

var Cylinder MyCylinder;

To change variables inside a struct, we would use a period in between the struct name and
the variable name like this:

MyCylinder.Radius = 50;

Structs can contain variables, arrays, and even other structs. Let's take a closer look and
make our own struct to learn more about them.

Time for action – Using structs
Going back to our basket of kittens example, what if there were other things in the basket
besides kittens? How would we represent them?

1.	 Let's create a struct at the top of our AwesomeActor class and put a few things in it.

struct Basket
{
 var string BasketColor;
 var int NumberOfKittens, BallsOfString;
 var float BasketSize;
};

Now we have two types of items in the basket as well as some variables to describe
the basket itself.

2.	 Now we need a variable of that struct so we can use it:

var Basket MyBasket;

3.	 Now we can change the values in our PostBeginPlay function.

function PostBeginPlay()
{
 MyBasket.NumberOfKittens = 4;
 MyBasket.BasketColor = "Yellow";
 MyBasket.BasketSize = 12.0;
 MyBasket.BallsOfString = 2;
}

That seems easy enough to handle. Let's try something a bit more complex.

Storing and Manipulating Data

[58]

4.	 I heard you like structs, so we'll Inception-ize it by adding a struct inside a struct.

struct SmallBox
{
 var int Chocolates;
 var int Cookies;
};

5.	 Now let's put a box inside our basket struct.

struct Basket
{
 var SmallBox TheBox;
 var string BasketColor;
 var int NumberOfKittens, BallsOfString;
 var float BasketSize;
};

Now our class should look like this:

class AwesomeActor extends Actor
 placeable;

struct SmallBox
{
 var int Chocolates;
 var int Cookies;
};

struct Basket
{
 var SmallBox TheBox;
 var string BasketColor;
 var int NumberOfKittens, BallsOfString;
 var float BasketSize;
};

var Basket MyBasket;

function PostBeginPlay()
{
 MyBasket.NumberOfKittens = 4;
 MyBasket.BasketColor = "Yellow";
 MyBasket.BasketSize = 12.0;
 MyBasket.BallsOfString = 2;
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite

Chapter 2

[59]

 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

6.	 Now we're getting somewhere. How would we access the struct inside a struct?
Using the same method as before, we would access the box like this:

MyBasket.TheBox

So accessing variables inside the box struct would look like this:

MyBasket.TheBox.Chocolates = 2;

7.	 Easy enough. It would work the same way with arrays. Let's say we added a
static array of fortune cookie messages to our basket. Our new struct would look
something like this:

struct Basket
{
 var string Fortunes[4];
 var SmallBox TheBox;
 var string BasketColor;
 var int NumberOfKittens, BallsOfString;
 var float BasketSize;
};

8.	 To assign a value to one of them, we would use the same method as before:

MyBasket.Fortunes[2] = "Now you're programming!";

What just happened?
Structs are a powerful tool in UnrealScript, and they're used extensively in the source code.
A lot of the code you'll make will involve structs. As an example, think about the one thing
that every actor in the game has: A location. How is an actor's location stored? A variable
appropriately called Location, which is declared as a 3D position using a Vector variable. If
we look in Actor.uc, we can see how a Vector is defined:

struct immutable Vector
{
 var() float X, Y, Z;
};

This leads nicely into our next topic...

Storing and Manipulating Data

[60]

Vectors
Simply put, a vector is a 3D coordinate. It may be used to represent an actor's location, velocity,
or even the angle of a surface. They're used a lot in UnrealScript, so even though they're just a
struct, there are a lot of things we can do with them on their own. Let's take a look.

Time for action – Using vectors
Since we already know that an actor's Location is a vector, let's play around with our
AwesomeActor's location.

1.	 First we'll declare a vector of our own at the top of our class.

var vector LocationOffset;

2.	 Vectors have their X, Y, and Z values set to 0.0 by default. We'll give ours a new value
and add that to our actor's current location in our PostBeginPlay function.

function PostBeginPlay()
{
 LocationOffset.Z = 64.0;
 SetLocation(Location + LocationOffset);
}

When used as a location, the Z float inside a vector represents the up and down
axis. Making the values of Z greater means moving it up, lower or more negative
means moving it down. In our example we're going to move the actor up 64 units.
We use the function in the second line, SetLocation, to tell the game to move
our AwesomeActor. Since we already know its current location with the Location
variable, we just add our LocationOffset to move it up 64 units.

3.	 There's one thing we need to do before we test this out. When we first created our
AwesomeActor, we made it invisible in game. Let's change that so we can see what
happens. In the default properties of our actor, delete this line:

HiddenGame=False

Now our AwesomeActor should look like this:

class AwesomeActor extends Actor
 placeable;

var vector LocationOffset;

function PostBeginPlay()
{
 LocationOffset.Z = 64.0;

Chapter 2

[61]

 SetLocation(Location + LocationOffset);
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

4.	 Let's compile and test! In the editor, we can see our AwesomeActor still halfway
stuck in the floor:

5.	 Run the game from the editor, and we can see that our code has worked! The
AwesomeActor has moved up:

Storing and Manipulating Data

[62]

6.	 That seems like a bit too much code just to add two vectors together. Luckily, there's
a much simpler way to use vectors to do what we want here. Vectors can be created
and assigned a value at the same time that we're using it in code, like this:

vect(X value, Y value, Z value)

So if we just wanted to move our actor up 64 units, we could do it all on one line.

7.	 Let's get rid of our LocationOffset variable line and change our PostBeginPlay
to look like this:

function PostBeginPlay()
{
 SetLocation(Location + vect(0,0,64));
}

8.	 Compile and test, and we get the same result!

Another useful function we can use with vectors is called VSize. If you remember
your old geometry lessons, Pythagoras' Theorem lets us find the hypotenuse of a
triangle by using the two sides. We can use a 3D version of the same equation to
find the length of our vector.

Vector

Z

X
Y

With that diagram, the length of Vector would be expressed as this:

Length = √(X² + Y² + Z²)

With VSize, all of that is done for us:

Length = VSize(Vector)

So with that in mind, let's find out how far our AwesomeActor is from the world
origin (0,0,0).

Chapter 2

[63]

9.	 Let's change our PostBeginPlay function to this:

function PostBeginPlay()
{
 'log("Distance:" @ VSize(Location));
}

10.	Compile and test, and the answer shows up in the log!

[0007.88] ScriptLog: Distance: 2085.2571

If we wanted to find out the distance between two actors, we would use their locations
like this:

Distance = VSize(A.Location – B.Location);

The order doesn't matter inside the VSize, we could also find the distance like this:

Distance = VSize(B.Location – A.Location);

What just happened?
Vectors are the struct we'll be using the most in UnrealScript, especially since they're used
to hold an actor's Location. As we can see from the VSize and vect examples, vectors go
beyond being just a struct and have their own functions dedicated exclusively to them.

One other variable to discuss also has functions dedicated to it.

Rotators
In the same way vectors are defined as a struct, rotators are as well.

struct immutable Rotator
{
 var() int Pitch, Yaw, Roll;
};

Rotators define a rotation in 3D space. To visualize it it helps to think of an airplane flying in
the sky.

Roll

Pitch

Yaw

Storing and Manipulating Data

[64]

Pitch would be the airplane tilting forwards and backwards to climb or descend. Roll would
be the plane tilting sideways, and Yaw would be the plane rotating horizontally, like a
spinning frisbee.

In addition to a Location vector, every actor in the game has a rotator variable called Rotation
that tells the game what direction it's facing. Rotating a wall in the editor changes that static
mesh's rotation value. The player's view rotation is held in a rotator. They're not used as
often as vectors, but they're obviously still important. Let's take a look at them.

Time for action – Using rotators
Before we use rotators on our AwesomeActor, we need to add some visual clue to let us
know that it's actually rotating. To do that we're going to add another bit to our default
properties like the sprite, but this time it will be an arrow we'll be able to see in the editor.

1.	 Below the sprite in the default properties, add this:

Begin Object Class=ArrowComponent Name=Arrow
End Object
Components.Add(Arrow)

2.	 We're going to log our actor's current rotation, so inside our PostBeginPlay
add this:

'log("Rotation:" @ Rotation);

Our class should now look like this:

class AwesomeActor extends Actor
 placeable;

function PostBeginPlay()
{
 'log("Rotation:" @ Rotation);
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)

 Begin Object Class=ArrowComponent Name=Arrow
 End Object
 Components.Add(Arrow)
}

Chapter 2

[65]

3.	 Compile and take a look in the editor. Our actor now has an arrow to indicate its
current rotation.

4.	 By default we know its current rotation is going to be (0,0,0), so let's rotate it in the
editor. Click on the AwesomeActor to select it, and then press the Space bar once
to change to the rotation tool.

Storing and Manipulating Data

[66]

5.	 Now click and hold anywhere on the blue part of the rotation tool. We're going
to change our actor's Yaw, so move it as close to 90 degrees as you can get. Don't
worry if it's not perfect.

6.	 Save our map, and then run it in the game. Exit and check the log for our
rotation value.

[0008.33] ScriptLog: Rotation: 0,16160,0

It's logging, but why is the value so high? That's definitely not 90. Internally, the ints that
make up rotators are 32 bits and have a range of 0 to 65535. Therefore, in Unreal's unit
system, 360 degrees = 65536. That would make 90 degrees = 16384, which is close to what
was logged.

Rotators can be created the same as we did with vectors. You can make a var like this:

var rotator MyRot;

And then change the individual components in the PostBeginPlay function.

MyRot.Yaw = 2000;

You could also create a rotator as it's being used, like we did with vectors. The names of the
functions we use for this are specific to rotators though:

SetRotation(Rotation + rot(0,0,4000));

Chapter 2

[67]

What just happened?
Rotators, like vectors, are important structs to be examined on their own. Every actor in the
game has a rotation, and the most noticeable use of rotators is in the player's camera, to tell
the game where we're looking.

We've talked a lot about variables in this chapter. Next we're going to discuss ways we can
change how they work.

Variable properties
Now we know what different types of variables are available to us and how to work with
them. There are a few different variable properties that we need to know about to be able to
use them to their fullest, first up, default properties.

Default properties
We know how to change a variable's value in our PostBeginPlay function, and that
integers for example start out at 0 by default. But is there a better way to set an initial value?
We've used it before, so you may have guessed that the default properties block at the end
of our class is where we do this. Let's take a look at an example.

Time for action – Using the default properties block
1.	 Let's start by defining some variables in our AwesomeActor class.

var string MyName;
var int NumberOfKittens;
var float DistanceToGo;

2.	 In our default properties block, we can give these variables initial values. These are
assigned before any of the code is run.

Defaultproperties
{
 MyName="Rachel"
 NumberOfKittens=3
 DistanceToGo=120.0
}

Storing and Manipulating Data

[68]

3.	 In our PostBeginPlay function, instead of changing the values we'll just log them
to see the default properties in action.

function PostBeginPlay()
{
 'log("MyName:" @ MyName);
 'log("NumberOfKittens:" @ NumberOfKittens);
 'log("DistanceToGo:" @ DistanceToGo);
}

Now our class should look like this:

class AwesomeActor extends Actor
 placeable;

var string MyName;
var int NumberOfKittens;
var float DistanceToGo;

function PostBeginPlay()
{
 'log("MyName:" @ MyName);
 'log("NumberOfKittens:" @ NumberOfKittens);
 'log("DistanceToGo:" @ DistanceToGo);
}

defaultproperties
{
 MyName="Rachel"
 NumberOfKittens=3
 DistanceToGo=120.0

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

4.	 Now let's look at the log.

[0008.73] ScriptLog: MyName: Rachel
[0008.73] ScriptLog: NumberOfKittens: 3
[0008.73] ScriptLog: DistanceToGo: 120.0000

Chapter 2

[69]

5.	 Arrays have a slightly different syntax in the default properties. When used in code
we use brackets to define the index, like MyArray[2]. In the default properties, we
use parentheses instead.

MyArray(0)=3
MyArray(1)=2

You'll also notice that none of the lines in the default properties block have a
semicolon at the end. The default properties block is the only place where we
don't use them. You'll also notice that there are no spaces before or after the
equal sign. This is also a quirk of the default properties block. If the formatting isn't
correct you may get a compiler error or even worse, it may compile but ignore
your default properties altogether. Make sure to follow these guidelines for the
formatting, including having the curly brackets on their own lines. Some programmers
like to have the opening curly bracket on the same line, but with UnrealScript's
defaultproperties block, this would cause it to ignore all of the default properties.

6.	 Moving on! For structs, we define the default properties right inside the struct, not
in the defaultproperties block. So taking our example struct from earlier, we
would define the defaults for it like this:

struct Basket
{
 var string BasketColor;
 var int NumberOfKittens, BallsOfString;
 var float BasketSize;

 structdefaultproperties
 {
 BasketColor="Blue"
 NumberOfKittens=3
 BasketSize=12.0
 }
};

You may notice that I didn't define a default for BallsOfString, and that's perfectly fine.
Any variable you don't make a default for, will use that variable type's default; in that case
BallsOfString would default to 0.

This is good for structs of our own making, but what about predefined ones like vectors and
rotators? Once we declare a variable of those types we can change their default properties
in our default properties block, all on the same line. If we had a vector called MyVector for
example, the syntax for the default property would look like this:

MyVector=(X=1.0,Y=5.3,Z=2.1)

This is true for any struct where we've declared a variable of that struct type.

Storing and Manipulating Data

[70]

What just happened?
The defaultproperties block is a convenient place to keep the defaults for our variables,
we could use functions like PostBeginPlay to set values, but it's cleaner and more
convenient to have them all in one place. In addition, even if we change the variable during
play we can always find out the default value by using this code:

'log(default.BasketSize);

If we wanted to get rid of any changes we've made, we would just reset the variable to
its default.

BasketSize = default.BasketSize;

Editable variables
Now we know how to set defaults for variables, so how do we let the level designer change
them in the editor?

Time for action – Editable variables
1.	 This one's simple. To make a variable changeable in the editor, add a set of

parentheses after var, like this:

var() int MyEditableInt;

2.	 Add that variable to our class, then compile and open the editor. Double-click on the
AwesomeActor to open up its properties, and we'll see the variable show up.

3.	 We can also put it in a specific category if we wanted to separate our variables into
groups. Let's see what it would look like in the Physics tab.

var(Physics) int MyEditableInt;

Chapter 2

[71]

4.	 Let's compile and take a look.

What just happened?
The level designers don't need to know about every variable an actor has, but some may
need to be exposed this way. This is how lights have their brightness and color changed,
for instance. When creating an actor class, it's best to give some thought to what a level
designer might need to change and give them access to it.

Config variables
That's good for the level designer, but what about the player? Sometimes we want to let
the player themselves change a variable. For instance, which hand the character holds the
weapon in or the amount of bob as the player walks. We briefly discussed this in the first
chapter, but now we'll cover it more in depth. Remember the INI files in the Config folder?

Time for action – Creating config variables
1.	 To let the game know that our class needs to save config variables, first we need to

let it know which file to use.

class AwesomeActor extends Actor
 placeable
 config(Game);

This tells the game that our class' config variables will be defined in the Game ini
files as opposed to Engine or Input and so on.

2.	 Now, let's make a config variable.

var config int MyConfigInt;

Config vars can have parentheses to let level designers change them, but they can
NOT be put in the default properties block. Doing so will give a compiler error.
Instead, we define their default properties in the INI file we specified. Since we used
Game, we would put the default in DefaultGame.ini. Let's open that up now.

Storing and Manipulating Data

[72]

3.	 In DefaultGame.ini we can see a bunch of different sections, starting with a line
surrounded by brackets. The inside of these brackets specifies the package and class
that the section is defining defaults for, like this:

[Package.Class]

4.	 In our case our package name is AwesomeGame, and the class we need to define is
AwesomeActor. At the end of DefaultGame.ini, make a new section surrounded
by brackets.

[AwesomeGame.AwesomeActor]

5.	 Right after that we can define any default values we need.

MyConfigInt=3

Once we're done, our section should look like this:

[AwesomeGame.AwesomeActor]
MyConfigInt=3

6.	 Let's see if it works! In AwesomeActor.uc, change PostBeginPlay to log
MyConfigInt.

var config int MyConfigInt;

function PostBeginPlay()
{
 'log("MyConfigInt:" @ MyConfigInt);
}

7.	 Compile and run, then check the log file.

[0008.66] ScriptLog: MyConfigInt: 3

Have a go hero – Editable configurable variable?
Knowing what you know about different ways to define default values for variables, what
do you think would take precedence: The config file or a value set by the level editor? Try
adding a variable that's both configurable and editable and logging the result.

Chapter 2

[73]

What just happened?
If we look in UDKGame.ini, we can see that the variable has shown up there as well.
Remember that the UDK.ini files are built from the Default.ini files, and instead of
changing the Default.ini files, the player and the game work with the UDK.ini ones.
That way the game always has a fail safe with the Default.ini files. If the player or a
setting menu in the game changed MyConfigInt to 5 for example, then the player changed
their mind and used a settings menu to reset everything to the default value, we would be
able to do that by using the Default.ini value for that variable.

Now that we've learned about the different types of variables and ways to set their values,
let's take a look at some common operators we can use on our variables.

Common operators
Beyond simple arithmetic there are many ways of dealing with our variables, each with
its own syntax and effects on the different variable types. Let's discuss some of the most
commonly used operators and variable functions.

Standard arithmetic
Addition (+), subtraction (-), multiplication (*), and division (/) work on all of the variable
types we discussed, but have different effects on them. For floats and ints they work as we'd
expect, but with multiplication and division, keep in mind the truncating that happens when
working with ints.

It's also possible to use floats and ints together.

Time for action – Math!
1.	 As an example, take a look at this code.

var float Float1, Float2;
var int Int1;

function PostBeginPlay()
{
 Float2 = Int1 / Float1;
 'log("Float2:" @ Float2);
}

defaultproperties
{
 Int1=5
 Float1=2.0
}

Storing and Manipulating Data

[74]

2.	 We can divide an int by a float or vice versa, and we get the result we expect:

[0008.10] ScriptLog: Float2: 2.5000

However, if we divide an int by an int and assign it to a float, what would we expect
the result to be?

3.	 Let's take a look at this code:

var float Float1;
var int Int1, Int2;

function PostBeginPlay()
{
 Float1 = Int1 / Int2;
 'log("Float1:" @ Float1);
}

defaultproperties
{
 Int1=5
 Int2=2
}

With that it looks like we'd expect the same result. Let's take a look at the log:

[0007.66] ScriptLog: Float1: 2.0000

When dividing ints, the truncating happens before assigning the result, even if it's
a float. Depending on what we're doing this may be what we want, but it's good to
keep that in mind.

4.	 Two other operators that can be used for simple math are increment (++) and
decrement (–).

Int1 = 5;
Int1++;
'log("Int1" @ Int1);

This would give us 6 in the log.

5.	 For vectors and rotators, the arithmetic works with each element of the struct
individually. For example, with the following code:

var vector Vect1, Vect2, VectResult;

function PostBeginPlay()
{
 VectResult = Vect1 + Vect2;

Chapter 2

[75]

 'log("VectResult:" @ VectResult);
}

defaultproperties
{
 Vect1=(X=1.0,Y=4.5,Z=12.0)
 Vect2=(X=2.0,Y=4.0,Z=8.0)
}

We get the following result in the log:

[0007.74] ScriptLog: VectResult: 3.00,8.5,20.00

As we can see, each individual element has been worked with separately. X added to
X, Y to Y, and Z to Z.

6.	 Vectors can also be multiplied or divided by floats and ints. This has the effect of
changing the vector's VSize while keeping the direction the same.

What just happened?
The basic arithmetic operators are simple stuff, but when working with different types of
variables it's important to remember how they'll respond to the operators.

Modulo
Modulo (%) returns the remainder after division. It's a pretty obscure and not commonly
used operator, but when needed it can save many lines of code.

Time for action – Using modulo
1.	 Let's look at an example.

var int Int1, Int2, IntResult;

function PostBeginPlay()
{
 IntResult = Int1 % Int2;
 'log("IntResult:" @ IntResult);
}

defaultproperties
{
 Int1=28
 Int2=5
}

28 divided by 5 is 5 with a remainder of 3.

Storing and Manipulating Data

[76]

2.	 Let's look at the log:

[0008.12] ScriptLog: IntResult: 3

What just happened?
You may be asking yourself, when will this ever come in handy? Let's say you wanted to
know how many bullets a player had in their gun, but you only had the gun's clip size and the
player's total number of bullets to work with. A line of code like this would work:

CurrentBullets = TotalBullets % ClipSize;

Instead of having to do any complicated math to figure it out you would be able to use
modulo to save some headaches.

Comparisons
Comparing one variable to another is one of the essential tools of any programming
language, and UnrealScript is no different. Comparisons give you a boolean true or false. If
we wanted to know if two variables were the same, we would use a double equal sign.

Variable1 == Variable2

Why a double equal sign? What does it mean? Well, UnrealScript needs a way to assign
variables as well as compare them. Using a single equal sign denotes assignment, like this:

Variable1 = 5;

We need a different operator for comparison, so UnrealScript uses the double equal sign.
Let's write some example code.

Time for action – Comparisons
1.	 Let's take a look at two ints and the various comparison operators we can use

on them.

var int Int1, Int2;

function PostBeginPlay()
{
 'log(Int1 == Int2);
}

defaultproperties
{
 Int1=5
 Int2=5
}

Chapter 2

[77]

Setting both of them to the same value and using the equal comparison gives us
True in the log:

[0007.79] ScriptLog: True

If the variables weren't exactly the same, we would get False.

2.	 The opposite of this comparison is "Not Equal", which is denoted by an exclamation
point followed by an equal sign. If we wanted to know if two variables weren't the
same, we would use this.

var int Int1, Int2;

function PostBeginPlay()
{
 'log(Int1 != Int2);
}

defaultproperties
{
 Int1=3
 Int2=5
}

Since they have different values, we'll get True in the log again:

[0007.70] ScriptLog: True

Equal or not equal also apply to vectors and rotators. Each element in those structs
is compared to each other, and it will return False if any of them are different.

3.	 For greater than or less than, we would simply use those symbols.

var int Int1, Int2;

function PostBeginPlay()
{
 'log(Int1 < Int2);
 'log(Int1 > Int2);
}

defaultproperties
{
 Int1=3
 Int2=5
}

And the log:

[0007.60] ScriptLog: True
[0007.60] ScriptLog: False

Storing and Manipulating Data

[78]

4.	 The same works for "greater than or equal to" and "less than or equal to", we simply
follow it with an equal sign:

var int Int1, Int2;

function PostBeginPlay()
{
 'log(Int1 <= Int2);
 'log(Int1 >= Int2);
}

defaultproperties
{
 Int1=5
 Int2=5
}

The log for this:

[0007.45] ScriptLog: True
[0007.45] ScriptLog: True

Greater than or less than do not apply to vectors or rotators and the compiler will
give an error if we try to use them.

5.	 A special comparison operator for floats and strings is the "approximately equal to"
operator, denoted by a tilde followed by an equal sign (~=). For floats, it returns
true, if they are within 0.0001 of each other, useful for making sure complicated
equations don't have to return the exact same result, just close enough to account
for rounding errors.

var float Float1, Float2;

function PostBeginPlay()
{
 'log(Float1 ~= Float2);
}

defaultproperties
{
 Float1=1.0
 Float2=1.000001
}

This returns True in the log:

[0007.94] ScriptLog: True

Chapter 2

[79]

6.	 For strings, the "approximately equal to" operator is a case-insensitive comparison.

var string String1, String2;

function PostBeginPlay()
{
 'log(String1 ~= String2);
}

defaultproperties
{
 String1="STRING TEST"
 String2="string test"
}

The log:

[0007.74] ScriptLog: True

As long as the letters are the same it will return true even if different letters are capitalized.

What just happened?
Comparisons, like arithmetic operators, are one of the basic things to know about a
programming language. They'll be used all the time, and like arithmetic it's good to know
how they interact with each variable type.

Logical operators
In logical operators, AND is expressed by two "and" signs (&&), OR by two vertical bar or
"pipe" characters (||), and NOT is expressed using an exclamation point (!). To understand
logical operators, think about how we use those words in sentences. As an example, take a
look at this sentence:

If it's not raining and we have enough money...

Expressing this in code with logical operators would look like this:

!bRaining && CurrentMoney > RequiredMoney

We can see the use of the NOT and AND logical operators. NOT raining AND current money >
required money. Let's take a look at another example:

Tuesday or Thursday

In code that would look like this:

Day == "Tuesday" || Day == "Thursday"

Storing and Manipulating Data

[80]

Time for action – Using logical operators
1.	 Let's put our first example in code.

var bool bRaining;
var float CurrentMoney, RequiredMoney;

function PostBeginPlay()
{
 'log(!bRaining && CurrentMoney > RequiredMoney);
}

defaultproperties
{
 CurrentMoney=20.0
 RequiredMoney=15.0
}

Remembering that bools are false by default, let's take a look at the log:

[0007.94] ScriptLog: True

Even though bRaining is False, we're asking the code if it's NOT raining, which
is True. You can see why naming booleans is important now. If our variable were
called bNotRaining, working with logical operators would get messy pretty quickly.

2.	 Let's look at our second example.

var string Day;

function PostBeginPlay()
{
 'log(Day == "Tuesday" || Day == "Thursday");
}

defaultproperties
{
 Day="Monday"
}

Since the day variable is neither of those two, we'll get False in the log:

[0007.79] ScriptLog: False

Chapter 2

[81]

3.	 One final operator to discuss is the EXCLUSIVE OR, denoted by two carets (^^).
This will return true if one and only one of our statements is true. Let's look at the
following code:

var string Day, Month;

function PostBeginPlay()
{
 'log(Day == "Tuesday" ^^ Month == "January");
}

defaultproperties
{
 Day="Tuesday"
 Month="January"
}

If we were using a normal OR, this would return true, but since both of them are
true, an EXCLUSIVE OR returns false:

[0007.60] ScriptLog: False

What just happened?
We can see how intertwined logical operators are with normal comparisons. We used the
equal and greater than comparisons in our examples. When working with them, the best
way to figure out how to write a statement is to say it out loud first and take note of words
like AND, NOT, and OR in your sentence. This will help you figure out how to construct a
logical operator statement.

Have a go hero – Writing logical statements
How would you write the following statement with logical operators?

If the sun is shining and we're not wearing sunblock...…

Answer: The operator would look something like this:

if(bSunShining && !bWearingSunblock)

Concatenation
Concatenation is a fancy word for "join two strings together". There are two concatenation
operators, let's take a look at them.

Storing and Manipulating Data

[82]

Time for action – Concatenation
The good news is we've been using concatenation for awhile now, in our log lines. The two
operators are the at symbol (@) and the dollar sign ($). The only difference between the two
is whether or not we want a space in between the strings we're joining.

1.	 Let's write some code.

var string String1, String2, AtSign, DollarSign;

function PostBeginPlay()
{
 AtSign = String1 @ String2;
 DollarSign = String1 $ String2;
 'log("At sign:" @ AtSign);
 'log("Dollar sign:" @ DollarSign);
}

defaultproperties
{
 String1="This is"
 String2="a test."
}

Looking at the log shows us the minor difference between the two:

[0007.77] ScriptLog: At sign: This is a test.
[0007.77] ScriptLog: Dollar sign: This isa test.

The choice between them is as simple as the space between the joined strings.

2.	 The concatenation operators can also be used with equal signs to shorten the
code and get rid of the need for extra variables. The @ code could also be written
like this:

var string String1, String2;

function PostBeginPlay()
{
 String1 @= String2;
 'log("String1:" @ String1);
}

defaultproperties
{
 String1="This is"
 String2="a test."
}

Chapter 2

[83]

The log ends up the same:

[0007.56] ScriptLog: String1: This is a test.

What just happened?
Concatenation is specific to strings and easy to remember. There are instances when you'd
want to use the dollar sign and ones where the @ symbol is needed, it just depends on what
we're trying to do with the string. As an example, death messages often use the @ symbol
to join the player name to the death message so there is a space in between them, while
strings that tell the game which level to load use the dollar sign specifically to avoid spaces.

Variable functions
There are many other variable functions we can use; some of them are handy to know. Let's
go over a few.

Ints
�� Rand(int Max): Returns a random int between 0 and the maximum number

specified. Note that this will never return Max itself. As an example, Rand(10)
would return a random number 0-9.

�� Min(int A, int B): Returns the smaller of the two ints. Min(5, 2) would
return 2.

�� Max(int A, int B): Returns the higher of the two numbers. Max(3, 8) would
return 8.

�� Clamp(int V, int A, int B): Clamps V to be between A and B. If V is lesser
than A it would return A, if it were greater than B it would return B. If it were
already in between, V would stay the same. Clamp(3, 5, 8) would return 5 while
Clamp(5, 2, 9) would return 5.

Floats
�� FRand(): The same as Rand, but returns a random float between 0.0 and 1.0.

�� FMin(float A, float B): The float version of Min.

�� FMax(float A, float B): The float version of Max.

�� FClamp(float V, float A, float B): The float version of Clamp. Floats and
ints can be used in either version of these three depending on whether or not we
want the result to be truncated.

www.allitebooks.com

http://www.allitebooks.org

Storing and Manipulating Data

[84]

Strings
�� Len(string S): Returns the length of the string as an int. This includes spaces and

any symbols.

�� InStr(string S, string T): Returns the position of string T in string S, or -1 if
T can't be found in S. This is useful for figuring out if a string has a certain word in it,
since we can check if the result is >= 0 to indicate that the word is there.

�� Left(string S, int I): Returns the left I number of characters.
Left("Something", 3) would return "Som".

�� Right(string S, int I): Returns the right I number of characters.
Right("Something", 3) would return "ing".

�� Mid(string S, int I, optional int J): Returns a string from position I.
Mid("Something", 2, 3) returns "met". If J isn't specified this has the same
effect as Right.

�� Caps(string S): Returns the string in all caps.

�� Locs(string S): Returns the string in all lowercase.

�� Repl(string S, string Match, string With, optional bool
bCaseSensitive): Replaces Match with With in string S. Repl("Something",
"Some", "No") would return "Nothing". The optional bool specifies if you only
want it to replace With if letters have the same case as Match.

Vectors
�� Vsize(vector A): Returns the size of the vector as a float.

�� Normal(vector A): Returns the same vector, except scaled to be exactly 1.0
unit in length. This is useful when we only want a direction and want to use
multiplication to come up with our own size.

�� VRand(): Returns a random vector.

Rotators
�� RotRand(): Returns a random rotator.

This list is by no means complete, other variable operators can be found by reading through
Object.uc in the Core\classes folder.

Chapter 2

[85]

Flow control
We learned about comparisons and logical operators earlier. Now what do we do if we
want different things to happen depending on the results of those comparisons? Flow
control helps us do exactly that. Let's learn how we can specify what happens under
different circumstances.

If else
If/else is the basic flow control statement. Let's look at this sentence:

If it's raining I'll take an umbrella.

Using an if statement, that sentence would be written like this:

if(bRaining)
{
 bUmbrella = true;
}

We could also add an else statement to it:

If it's raining I'll take an umbrella, otherwise I'll wear short
sleeves.

That would be written like this:

if(bRaining)
{
 bUmbrella = true;
}
else
{
 bShortSleeves = true;
}

We can also use Else If for other conditions.

If it's raining I'll take an umbrella, or if it's cold I'll wear a
coat, otherwise I'll wear short sleeves.

We could write that like this:

if(bRaining)
{
 bUmbrella = true;
}
else if(Temperature < ComfortableTemperature)

Storing and Manipulating Data

[86]

{
 bCoat = true;
}
else
{
 bShortSleeves = true;
}

The important thing to remember about else/if is, that only one of these conditions will run.
If it's raining and cold, only the bRaining section of the code will run, not bRaining and
Temperature < ComfortableTemperature.

Time for action – Using if/else
Let's write some code to see if/else in action for ourselves.

1.	 Take the following code:

var int Int1, Int2;

function PostBeginPlay()
{
 if(Int1 > Int2)
 'log("Int1 is greater than Int2");
 else if(Int1 == Int2)
 'log("Int1 is equal to Int2");
 else
 'log("Int1 is less than Int2");
}

defaultproperties
{
 Int1=5
 Int2=2
}

2.	 What would we expect the result to be? Let's look at the log for the answer:

[0007.72] ScriptLog: Int1 is greater than Int2

Chapter 2

[87]

What just happened?
We can see that the if statement is executed and not the else if or else statements.
Notice that in this example we didn't use the curly brackets in our statements. If there is only
one line after the if, else if, or else statements brackets aren't necessary. However, if there
are two or more lines, we would need to use brackets.

For
For is a different kind of control statement called an iterator. It will execute the code we write
a specific number of times until a condition is met. Let's take a closer look at it.

Time for action – Using the for statement
1.	 Let's examine the following code:

var int m;

function PostBeginPlay()
{
 for(m = 0; m < 3; m++)
 {
 'log("Stop hitting yourself." @ m);
 }
}

This is a simple way of writing the following code:

m = 0;
'log(m);
m = 1;
'log(m);
m = 2;
'log(m);

It might not seem like it's saving much time in this simple example, but consider a case
where we would want to run the loop a hundred times. Putting it in a for loop would save a
lot of unnecessary code!

If we write the PostBeginPlay function above into our AwesomeActor.uc class and
compile it, then take a look at the log, we can see that it executed the code inside the for
loop three times:

[0007.57] ScriptLog: Stop hitting yourself. 0
[0007.57] ScriptLog: Stop hitting yourself. 1
[0007.57] ScriptLog: Stop hitting yourself. 2

Storing and Manipulating Data

[88]

What just happened?
The first part of the for statement lets us set a variable to an initial value. Most of the time it
will be 0, but there may be times when we need a different value, for example if we wanted
to count down instead of up. The second part of the statement tells the for loop when to
stop. Once the condition is false the loop exits, in this case once m reaches 3. The third part
of the statement runs every time a loop finishes. In this case, the ++ operator is used to
increment m by 1 each time.

While
While is similar to a for loop, but there is no initializing or incrementing. While loops are
dangerous; if used improperly, it could lead to an infinite loop which crashes the game.

Time for action – Something
1.	 As an example of what NOT to do, let's take this code.

var int Int1;

function PostBeginPlay()
{
 Int1 = 5;

 While(Int1 > 0)
 {
 Int1 = 5;
 }
}

2.	 When we run the game with this code, it will crash.

It is EXTREMELY IMPORTANT to always make sure the "while" condition will be met
to avoid infinite loop crashes.

Chapter 2

[89]

3.	 Let's take a look at the right way to use it:

var int Int1;

function PostBeginPlay()
{
 While(Int1 < 5)
 {
 'log("Int1" @ Int1);
 Int1++;
 }
}

In this case, Int1 will keep incrementing until it reaches 5, and the While loop
will exit.

4.	 We could also use a statement called break to exit the loop:

var int Int1;

function PostBeginPlay()
{
 While(Int1 < 5)
 {
 'log("Int1" @ Int1);
 Int1++;
 if(Int1 == 3)
 break;
 }
}

In this case, the loop will exit when Int1 reaches 3 instead of continuing until it
hits 5.

5.	 Another statement we can use is called continue. Instead of exiting the loop
completely, it just skips to the next cycle.

var int Int1;

function PostBeginPlay()
{
 While(Int1 < 5)
 {
 'log("Int1" @ Int1);
 Int1++;

 if(Int1 == 3)
 continue;

 'log("This will not log if Int1 is 3");
 }
}

Storing and Manipulating Data

[90]

In this case, the loop will keep going until Int1 hits 5, but when it's equal to 3 the
continue statement will cause it to skip the rest of the code for that loop and move on
to the next loop.

What just happened?
Using while statements can be handy when you don't know the number of loops you'll need
beforehand, or if it would change during play. You always have to make sure the loop will be
able to finish though; crashing the game is a very real concern when using while loops.

Do until
Do until is basically another way of using a while loop, and it carries the same concerns of
infinite loops. An example of how to write one would be this:

do
{
 'log("Int1" @ Int1);
 Int1++;
} until (Int1 > 5);

Switch
Switch is used as a more complex form of the if/else statement, and in certain cases it
can lead to cleaner code. It also has the ability to execute more than one statement
for a condition.

Time for action – Using switches
1.	 Let's take a look at an example of a Switch statement.

var int Int1;

function PostBeginPlay()
{
 Int1 = 2;

 switch(Int1)
 {
 case 1:
 'log("Int1 == 1");
 case 2:
 'log("Int1 == 2");
 case 3:

Chapter 2

[91]

 'log("Int1 == 3");
 default:
 'log("Int1 isn't any of those!");
 }
}

2.	 Running the code, the log looks like this:

[0007.97] ScriptLog: Int1 == 2
[0007.97] ScriptLog: Int1 == 3
[0007.97] ScriptLog: Int1 isn't any of those!

What just happened?
Why did the other lines log? Unlike if/else statements, switches will continue executing the
next steps after the condition is met. Sometimes we'll want it to do that, but if not we can
use the break statement here too.

var int Int1;

function PostBeginPlay()
{
 Int1 = 2;

 switch(Int1)
 {
 case 1:
 'log("Int1 == 1");
 break;
 case 2:
 'log("Int1 == 2");
 break;
 case 3:
 'log("Int1 == 3");
 break;
 default:
 'log("Int1 isn't any of those!");
 }
}

The log file for this would have our desired behavior.

[0007.69] ScriptLog: Int1 == 2

Storing and Manipulating Data

[92]

Return
Return simply exits out of a function. This is most commonly combined with other flow
control statements like if/else. Take the following code:

var int Int1;

function PostBeginPlay()
{
 if(Int1 == 5)
 {
 'log("Int1 equals 5");
 return;
 }

 'log("This will not log");
}

defaultproperties
{
 Int1=5
}

We can see what happens in the log:

[0007.83] ScriptLog: Int1 equals 5

Once the code reaches the return statement, it stops running any more code in that function.

Goto
Goto jumps to a specific place in a function. If we had the following code:

function PostBeginPlay()
{
 'log("PostBeginPlay");

 goto EndOfFunction;

 'log("This will not log");

EndOfFunction:
 'log("This will log.");
}

Chapter 2

[93]

The log would look like this:

[0007.55] ScriptLog: PostBeginPlay
[0007.55] ScriptLog: This will log.

Like Return, Goto isn't really useful on its own and is more commonly combined with other
flow control statements.

Pop quiz – Variable madness!
1.	 What is the difference between an integer and a float?

2.	 What type of variable is a vector?

3.	 How do we make a variable changeable in the editor?

a.	 Add it to a config file.

b.	 Add parentheses after var.

c.	 Add it to the default properties.

4.	 How would we write "If there's no water we will be thirsty" using logical operators?

Summary
We learned a lot in this chapter about the different types of variables and how to use them.

Specifically, we covered:

�� The different types of variables including ints and floats, strings, vectors,
and rotators.

�� How structs and arrays are created and how to use them.

�� How to set default properties for variables and use config files.

�� Common operators used with variables.

�� The various flow control statements to do different things under different
circumstances.

Now that we've learned about variables, we're ready to start learning about the class tree
and the commonly used classes in a UDK project. By the end of the next chapter we will be
running our own custom game!

3
Understanding the Class Tree

Who is your daddy and what does he do?

In the last two chapters we've been using classes to write and test our code. But
what is a class exactly? What is the importance of the class tree, why use one at
all? In this chapter we're going to take a closer look at what it means when we
say that UnrealScript is an object-oriented programming language.

In this chapter we will:

�� Discuss the class tree and the principles of object-oriented programming

�� Talk about inheritance and what it means to the class tree

�� Use function overriding to change the behavior of our classes

�� Talk about casting and how to use it on our classes

�� Go over the different class properties that can be used

�� Discuss the difference between Actors and Objects

Let's start by talking about classes, what they are and how to use them.

Understanding the Class Tree

[96]

What is a class?
If you were coming out with a new line of cars, you would want every one of them to
be exactly the same, that way you'd know what to expect. To do that you would need a
schematic. It's no different in programming. We want each instance of a projectile, vehicle,
or weapon to start out exactly the same as any other, and to do that we use classes as our
blueprints. Each class contains the variables, functions and other properties that define
that object's behavior. Like cars, objects created from a class can be changed after they are
created, but the starting point is always the same.

Time for action – All classes are created equally
What does this mean for us in practical terms? Let's take a look at our friend AwesomeActor
to see if he can help demonstrate.

1.	 Write the following code in our AwesomeActor class:

class AwesomeActor extends Actor
 placeable;

var() int MyInt;

function PostBeginPlay()
{
 `log(self @ MyInt);
}

defaultproperties
{
 MyInt=4

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

We'll use an editable MyInt variable to see class behavior.

Chapter 3

[97]

2.	 Compile the class and open up the editor. Next to our existing AwesomeActor,
place another one.

3.	 Save the map and run it from the editor, then close out the game and editor.

4.	 Now let's take a look at our Launch2.log file:

[0010.61] ScriptLog: AwesomeActor_0 4
[0010.61] ScriptLog: AwesomeActor_1 4

We can see that class instances are created with the class name and then a number
added to the end. Remembering that in programming everything starts with 0,
in our case we have AwesomeActor_0 and AwesomeActor_1. Since we haven't
changed anything about them yet, both have the default value of MyInt, 4.

5.	 How do we know which one's which? A handy bar at the bottom of the editor can
help us. Reopen the editor and click on one of the AwesomeActors to select it. At
the bottom of the editor we can see that instance's name.

Understanding the Class Tree

[98]

6.	 From our log we can see that each instance of AwesomeActor has been created in
the same manner. Now let's change one of them. Double-click on one to open up its
properties, and change MyInt to 23.

7.	 Save the map and run the game, then exit and take a look at Launch2.log.

[0007.76] ScriptLog: AwesomeActor_0 4
[0007.76] ScriptLog: AwesomeActor_1 23

What just happened?
We can see that even though both instances were created from the same class blueprint,
we can change them after they have been created. This is an important principle of object-
oriented programming. Having classes lets us quickly create objects of the same type
without having to have a separate file or code for each instance we're going to use. An object
is created from the class with all of that class' properties, and then we can change them after
they have been created.

Inheritance
Another important principle of object-oriented programming is inheritance. Let's say our
game had four different kinds of weapons: Pistols, machine guns, sniper rifles, and laser
cannons. A lot of the functionality of those guns would be the same. They would each have
ammo, damage, accuracy, and so on. Instead of having to duplicate all that code, they could
all inherit the basic functionality of a weapon and change the properties they needed to to
get their specific functionality.

Chapter 3

[99]

Time for action – Examining inheritance
1.	 We can see an example of this by taking a look at the class tree in UnCodeX, under

Actor | Inventory | Weapon | UDKWeapon. Expanding UTWeapon we can see the
different types of weapons provided as examples in the UDK:

We can see that UTBeamWeapon (like the plasma gun we start with when running
the game), UTWeap_RocketLauncher, and UTWeap_ShockRifleBase are
amongst our weaponry. Each of these behaves differently, but all of them have
common functionality.

2.	 Clicking on UTWeapon, we can see some of its variables.

/** Initial ammo count if in weapon locker */
var int LockerAmmoCount;

/** Max ammo count */
var int MaxAmmoCount;

/** Holds the amount of ammo used for a given shot */
var array<int> ShotCost;

What just happened?
Things like MaxAmmoCount and ShotCost are common to all of the weapons, so instead
of having to duplicate the variables to all of the subclasses, they're declared in all of
the weapons' parent class, UTWeapon. Indeed, if we look at UTWeapon's subclasses like
UTWeap_RocketLauncher, we won't find MaxAmmoCount or any of UTWeapon's other
variables declared in any of them.

Speaking of weapons, I think it's time we started having a little fun with our code.
AwesomeActor has been good to us so far, but he doesn't really do a lot besides sit there and
send out log messages. Let's make a weapon.

Understanding the Class Tree

[100]

Time for action – Making a custom weapon
The best way to learn about inheritance is to see it in action, and the most basic way to see
it is through a game's weapons. They're easy to modify and are a good starting point for
learning about the UDK's classes.

1.	 Create a new .uc file in our AwesomeGame/Classes folder and call it
AwesomeGun.uc. Write the following code in it:

class AwesomeGun extends UTWeap_RocketLauncher_Content;

defaultproperties
{
 FireInterval(0)=0.1
 ShotCost(0)=0
}

2.	 Compile our class. Now here's where we would ask, "How did it compile? I didn't
declare any variables, but we're putting some in our default properties!" This is how
inheritance works. We already saw the ShotCost variable in UTWeapon on line 27:

/** Holds the amount of ammo used for a given shot */
var array<int> ShotCost;

If we look higher up in the class tree at Weapon, we can see FireInterval on line
44 (as of the October 2011 build):

/** Holds the amount of time a single shot takes */
var() Array<float> FireInterval;

When we create our class, any variables, properties, and functions of the classes
higher in the tree are automatically created inside our class. This saves a lot of
duplicated code, as anything that's going to be common to all of the subclasses
only needs to be declared once. Remember when I said that a lot of programming
is reading through the source code? This is why. To understand what functionality is
already there and what variables we can already use, it's important to read through
the classes higher up in the tree to see what they can do. This also prevents us from
reinventing the wheel as it were, writing code to do something that already exists.

In our case, using the already existing FireInterval and ShotCost keeps us from
having to write any code at all to change the way our gun works. We can just change
the default properties in our class.

Chapter 3

[101]

3.	 Open up the editor. To use our new weapon, we're going to need to place a
weapon factory. In the Actor Classes browser, make sure Categories is unchecked,
then browse down to NavigationPoint | PickupFactory | UDKPickupFactory |
UTPickupFactory | UTWeaponPickupFactory. Place a UTWeaponPickupFactory on
the floor where our AwesomeActors are, and delete our AwesomeActors.

4.	 Double-click on the factory to open its properties, and change its Weapon Pickup
Class to our AwesomeGun.

5.	 One minor thing to do, unrelated to our programming. Since the weapon
factory we placed is a navigation point, we need to rebuild paths in the editor to
prevent us from getting warnings about it when we open up the map again later.
Click on the build paths icon in the top toolbar, and then close the window that
comes up afterwards.

Understanding the Class Tree

[102]

6.	 Save the map and test it out. Run over to the weapon factory to pick up our custom
gun, and then spray the level down with rockets.

What just happened?
Boosh! And/or kakow! The changes we made were simple, but we can easily see how they
affected the game. Changing the ShotCost to 0 effectively gave us infinite ammo, since
firing a rocket consumes 0 ammo. Changing the FireInterval to 0.1 made it so that we
fire ten rockets per second.

It's important to remember that variables and functions that are inherited only come from
classes directly above ours in the class tree. As an experiment, let's create a subclass of our
AwesomeGun.

Time for action – Experiments with inheritance
Let's add a variable to our AwesomeGun class and see how it works with another class
we'll create.

1.	 Add an int to our AwesomeGun class called MyInt. Our code should now look
like this:

class AwesomeGun extends UTWeap_RocketLauncher_Content;

var int MyInt;

Chapter 3

[103]

defaultproperties
{
 FireInterval(0)=0.1
 ShotCost(0)=0
}

2.	 Now create another class in our AwesomeGame/Classes folder called
AnotherGun.uc. Type the following code into it:

class AnotherGun extends AwesomeGun;

defaultproperties
{
 MyInt=4
}

3.	 Compile the code. We'll see that it compiles fine as our AnotherGun is inheriting
MyInt from AwesomeGun.

4.	 Now let's change the class we're extending from to be the same as AwesomeGun's
parent class:

class AnotherGun extends UTWeap_RocketLauncher_Content;

defaultproperties
{
 MyInt=4
}

5.	 Now when we compile, we'll get a warning:

Warning, Unknown property in defaults: MyInt=4

What just happened?
Even though the classes extend off of the same class, inheritance only happens when the
class we want to use the variable in is inside the one that declares the variable in the class
tree. We can change the default property of the variable for our class, and this is how we get
different functionality out of them such as our example with the firing rate.

Understanding the Class Tree

[104]

Function overriding
In addition to variables, functions declared in parent classes are also inherited by their
children. This lets us change behavior that goes beyond simple variable changes. For
example, two pickups under Inventory | UTInventory | UTTimedPowerup in the class tree,
UTBerserk and UTUDamage, have the same function called GivenTo which is inherited
from Inventory. Even though the function name is the same, they give the inventory items
their unique behavior. UTBerserk's GivenTo function calls a function that increases the
player's weapon firing rate, while UTUDamage's GivenTo function increases the player's
DamageScaling variable. These functions also set different sound effects and overlays for
the two different items.

To experiment with function overriding we're going to expand our AwesomeGame classes to
include a custom GameInfo and PlayerController class. The GameInfo controls the
rules of the game and is what makes Deathmatch different from "Capture the Flag" for
example. A custom GameInfo is one of the most important classes when creating our own
game, and most of the time it is the first class created in a new project.

The PlayerController is the brain behind the player's character running around on
screen. It processes our input, controls the player's viewpoint, and passes and receives
messages to and from other players among many other things. It is another important class
in a custom game, and taking the time to read through it will help you understand how a lot
of things are done in a UDK game.

So with that, let's make a custom game!

Time for action – Creating a custom GameInfo and
PlayerController

Creating a custom GameInfo class is simple enough; it's just knowing where to let the game
know that you want to run it. First up, let's create the class.

1.	 Create a new file in our AwesomeGame/Classes folder called AwesomeGame.uc.
Type the following code into it:

class AwesomeGame extends UTDeathmatch;

defaultproperties
{
}

UTDeathmatch is a good place to start for a custom GameInfo, even for games
that don't involve killing anyone, or for single player games. UTDeathmatch and
its parent classes have a lot of functionality in common with those types of games
including the player spawn behavior.

Chapter 3

[105]

2.	 Now let's create a custom PlayerController. Create a new file in our
AwesomeGame/Classes folder called AwesomePlayerController.uc. Type the
following code into it:

class AwesomePlayerController extends UTPlayerController;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 `log("AwesomePlayerController spawned!");
}

defaultproperties
{
}

We are almost done with the code part. One other thing that a GameInfo class
does is control what type of PlayerController is spawned. If you wanted
to have a class-based game you could do it by creating more than one custom
PlayerController class and using your custom GameInfo to spawn the one the
player selects.

3.	 For AwesomeGame we're only using one type of PlayerController, so let's set
that in the default properties.

class AwesomeGame extends UTDeathmatch;

defaultproperties
{
 PlayerControllerClass=class'AwesomeGame.
AwesomePlayerController'
}

Remember that the first part of the property, AwesomeGame, depends on what you
named your folder under Development\Src.

PlayerControllerClass is a variable declared in GameInfo and inherited by all
subclasses of GameInfo including our AwesomeGame.

4.	 Compile the code.

5.	 The map we've been using up until now has been fine for our purposes, but we're
going to need something with a little more room to experiment from now on. If
you're familiar with the editor then create a simple flat map with a player start at
the center and lights so we can see. If you'd rather just get to the programming,
place the file called AwesomeTestMap.udk included with the book into the
UDKGame/Content/Maps/AwesomeGame folder that we created in Chapter 1.

Understanding the Class Tree

[106]

6.	 Time to run our game! Since the editor can't be open while we compile, and starting
up the editor takes a bit of time, I prefer to use batch files to run test maps. It saves
a lot of time and they're easy to set up. Create a text file anywhere that's convenient
for you and call it Awesome Test Map.txt. Write the following in it:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe AwesomeTestMap?GoalS
core=0?TimeLimit=0?Game=AwesomeGame.AwesomeGame -log

Make sure all the punctuation is correct, there are only two spaces after UDK.
exe and before -log. If you've installed the UDK in a different location or under a
different name, be sure to write down your correct path to UDK.exe. This file is also
included with the book if you're unsure of the format. Once again remember that
the first part of AwesomeGame.AwesomeGame refers to the name of the .u file you
have compiled.

7.	 Save the text file, and then rename it to change the extension from .txt to .bat.

8.	 Double-click on the file to run the test map. You'll notice that the DOS window that
pops up looks really familiar. Adding -log to the end of our batch file makes it so
that we can see the log being written as it happens. If we look carefully at it, or shut
down the game and open Launch.log (not Launch2.log, we're not running the
editor now), we can see our log show up:

[0005.67] ScriptLog: AwesomePlayerController spawned!

Awesome!

What just happened?
Now we know that our code is working correctly. The batch file is telling the game to use our
custom GameInfo class, which is telling the game to use our custom PlayerController.
When setting up a new UDK project these are usually the first two classes that get created,
so now we have a good starting point for creating a custom game. So what can we do now?

Time for action – Experiments with function overriding
Let's get to our experiment with function overriding by changing the way the player's
camera works. If you've ever played any overhead view games like Gauntlet you'll know
what we're going to do. In games like that, the camera stays in a fixed position high above
the player's head, looking down towards the player. To do that, we're going to override the
GetPlayerViewPoint function.

1.	 We know from our look at vectors in the previous chapter that we can get the
location of actors in the world. If we wanted to move our camera away from the
player, we'll need the player's location and an offset that we can use to make sure the
camera stays in the same location relative to the player, like in the following diagram:

Chapter 3

[107]

Camera location

Player location

We could just directly add the values in the function, but to keep things organized
it's usually a good idea to keep variables like that in the default properties where
they can easily be found and changed if desired. We may also want to use this value
for other purposes, so it's good to keep it all in one variable instead of having to
track down and change each time we use it.

Let's add our offset and its default property to our code.

class AwesomePlayerController extends UTPlayerController;

var vector PlayerViewOffset;

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

The Z value will make it, so our camera is above the player. You can set this value to
whatever feels right to you, but for now I'm using 1024. We've also put a value in
for X to make it so the camera is moved to the side a bit and not completely straight
down. But why is it negative? This value was chosen so that the radar on the default
HUD stays aligned with our current direction. Other than that it's really arbitrary,
there's no reason it couldn't be positive or even moved to the Y value if we wanted.

2.	 Now for the GetPlayerViewPoint function. Looking at where it's declared in
Controller.uc, we see it needs to be written like this:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)

Understanding the Class Tree

[108]

So let's place the function in our AwesomePlayerController to override it.

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
}

3.	 The first thing we need to do is call the parent class' version of the function. We'll
cover the super, more in the next chapter, but basically when we're overriding
functions, calling the super makes the code in our parent class' version of the
function we're overriding to be also executed. For GetPlayerViewPoint this is
important because otherwise the camera wouldn't work at all. Let's add the line to
our function:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);
}

4.	 At this point nothing has changed, if we compiled now and ran the game it would
still be a first person viewpoint. Now we'll apply our offset. Add these lines after the
call to the super:

 if(Pawn != none)
 {
 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }

This is a fair bit of code, so let's go through it one step at a time. The if statement
you should recognize from the section in the last chapter about flow control. In this
case we're checking to see if our PlayerController has a Pawn.

In the UDK, a Pawn is the physical representation of the player, the actual
object in the world, with the PlayerController being its brain in a sense.
In the game the PlayerController doesn't move, and indeed if we log our
AwesomePlayerController's location in the GetPlayerViewPoint function
we'll see that once spawned it stays at the same location. In order for our camera to
follow the player, we need to follow the Pawn since that is the actual visual actor of
the player.

Inside the if statement, the first line gets our Pawn's location and adds our
PlayerViewOffset variable to it. Wherever the Pawn is, the camera will stay
locked to it with this offset.

Chapter 3

[109]

The next line is a bit of math to figure out the camera's rotation. We want it to
always point toward the player, so we subtract our camera's location from the
Pawn's to get a vector that points toward the player, and then turn that vector into
a rotator that the function can use. This is a handy vector equation. The best way
to remember it is to visualize two vectors, A and B. If we wanted to figure out what
vector C was in the following diagram:

A

B

C

If we only have A and B, we can figure out what C is, by moving backwards along A,
and then forwards along B as in the following diagram:

-A

B

C

Understanding the Class Tree

[110]

This would give us C = -A + B, or C = B – A. In our code B would be the Pawn's
location and A would be the camera's, giving us our line of code:

out_Rotation = rotator(Pawn.Location - out_Location);

5.	 Compile the code and run it.

What in the world is going on here? We seem to be invisible except for a floating
gun, and we're shooting at the ground. A big part of programming is knowing that
your code isn't going to work perfectly the first time you write it. I call this process
"breaking it towards completion". It might be broken right now, but it's a lot closer
to what we wanted than when we first started. Let's see if we can make it better,
starting with the invisible player.

6.	 By default you can't see your own Pawn. This might not make sense at first. We can
see our arms and the gun in our hands, so what am I talking about? The things we
see in first person view are actually different actors attached to us, usually cut off
above the elbows so we only see the arms and the weapon in our hands. If we were
able to see our own Pawn, the animation of it running would frequently obscure the
camera's view and make it look like a polygon factory exploded on our monitor. To
prevent this, meshes have a variable called bOwnerNoSee. When that's set to True,
the owner of that actor can't see it. This is what we'll change in our function. Add a
new line to the top of our if statement:

Pawn.Mesh.SetOwnerNoSee(false);

Chapter 3

[111]

Our function should now look like this:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

7.	 Compile and run the code.

That's better. We can see our Pawn now. We're a bit obscured by the crosshair, but
we can ignore that for a minute. We have a bigger problem right now. If anyone
attacked us we'd be totally screwed because we're shooting at the ground. Let's fix
that next.

Understanding the Class Tree

[112]

8.	 In a normal FPS game on the UDK, when a weapon fires it asks the
PlayerController which direction we're facing so it knows what to shoot
at. Normally the PlayerController tells the weapon to use our camera's
rotation. This isn't going to work in our case, as we've changed it, so the camera
is always pointing toward the ground. To fix this we're going to override another
function called GetAdjustedAimFor. Write the following code after our
GetPlayerViewPoint function:

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

This tells the weapon to use our Pawn's rotation instead of the camera's rotation.
Since the Pawn never changes its pitch value (otherwise when we looked up it
would look like we were lying on our back), this will make sure that we always shoot
straight ahead. Our class should now look like this:

class AwesomePlayerController extends UTPlayerController;

var vector PlayerViewOffset;

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

Chapter 3

[113]

9.	 Compile and run the game again.

Much better! Now let's see if we can take care of that crosshair.

10.	Whether or not to show the crosshair is stored as a config bool in the
PlayerController class. This means we can't just change it in the default
properties, since we can't set config variables in the defaults. This means we can
change it one of three ways. We can remove the crosshair from the Scaleform HUD
file, but Scaleform is a bit out of the scope of this book. We can change the config
value in the INI files, but if the player were to change it the crosshair would appear
again. For a more permanent solution, we can change the bNoCrosshair variable
in an overridden PostBeginPlay.

11.	Change our PostBeginPlay function to look like this:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;
}

Our class should now look like this:

class AwesomePlayerController extends UTPlayerController;

var vector PlayerViewOffset;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;

Understanding the Class Tree

[114]

}

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

12.	Compile and run the code.

Chapter 3

[115]

Almost there! Now what's with that giant gun? Remember when I talked about the
first person view, and how the arms and weapon we see are different than the ones
everyone else sees. The giant floating gun is what we would normally see in first
person view, so let's hide it.

13.	 In our GetPlayerViewPoint's if statement, let's add this bit of code:

 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

Now our code will check if we're holding a weapon and if so, hide it. Our function
should now look like this:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);
 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

14.	Compile and run.

Perfect!

Understanding the Class Tree

[116]

What just happened?
We've overridden a few functions in our quest to get things how we want. Overriding
functions allows us to take the functionality that already exists and tweak it to fit our
purposes. We could do a lot of different things with the GetPlayerViewPoint function
for instance. With the right code it could be turned into an RTS click-to-move type of camera
that isn't focused on our Pawn, or a sidescroller, or a third person over the shoulder camera.

Function overriding is the main reason why I say it's important to read through the source
code. Knowing what already exists will help you figure out what you need to change to
get the functionality you want out of the game. The two classes we've already subclassed,
GameInfo and PlayerController, are good places to start reading, as well as Actor and
Object for general functions available to all classes.

Next up we're going to take a look at how to use actor classes themselves as variables.

Actors as variables
In our discussion of variables in the last chapter, I purposely left out the one that's used most
often, but now that we've had a chance to take a look at how classes work and are created,
we can talk about how to use Actor classes themselves as variables. We've poked around a
little bit in it when we made our Pawn visible and hid the giant floating gun, but let's explore
it further.

Time for action – Experiments with Actors as variables
For this experiment we're going to bring back our old friend the AwesomeActor. We'll use
him as a variable in our AwesomePlayerController.

1.	 For this experiment we'll need AwesomeActor to be visible, so let's make sure our
default properties are set up for that. Our AwesomeActor class should look like this:

class AwesomeActor extends Actor;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

Since we'll be spawning AwesomeActor during gameplay we don't need it to be
placeable, and we're not going to do anything more with it once it's spawned so we
don't need the PostBeginPlay function for now.

Chapter 3

[117]

2.	 In our AwesomePlayerController, we're going to use the function that's called
when we click the left mouse button to fire, called StartFire. Let's add that to
our class:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
}

The FireModeNum in this function is used for weapons that have more than one
firing mode, like the plasma bolts versus the beam of the Link Gun. We don't need
to worry about that variable for our experiment though, let's just make sure it calls
the super so we don't completely override the function and our gun still works.

3.	 Now let's declare a variable of our AwesomeActor type at the top of our
AwesomePlayerController class.

var AwesomeActor MyAwesomeActor;

4.	 We talked about the defaults of all of the other variables in the previous chapter, but
what is the default for a variable of an Actor class? Only one way to find out! Let's
log it in the AwesomePlayerController's PostBeginPlay function.

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;

 `log(MyAwesomeActor @ "<-- Default for MyAwesomeActor");
}

5.	 Our AwesomePlayerController should now look like this.

class AwesomePlayerController extends UTPlayerController;

var AwesomeActor MyAwesomeActor;

var vector PlayerViewOffset;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;

 `log(MyAwesomeActor @ "<-- Default for MyAwesomeActor");
}

Understanding the Class Tree

[118]

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
}

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);
 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

Now you can see how code can get long and complicated, we're only doing simple
stuff so far and look at all the code in this class! This is why it helps to have variables
and functions with very descriptive names. A lot of the time you can get an idea of
what's going on in the code just by reading it out loud to yourself. A descriptive name
also makes it easier to search in UnCodeX to find out where things are being used.

6.	 Compile our code and run it. In Launch.log we can find out what the default for
Actor variables is.

[0008.17] ScriptLog: None <-- Default for MyAwesomeActor

Chapter 3

[119]

7.	 As we can see, the default for Actor variables is None. Where have we seen that
before? We already have an example of how to use Actor variables in flow control
statements in our code right here!

if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

In this case, our Pawn has an Actor variable called Weapon. If we look at where
that's declared in the Pawn class:

/** Weapon currently held by Pawn */
var Weapon Weapon;

So the Pawn's Weapon is a variable of the Actor type of Weapon. It can be
confusing when you're looking at code to see whether something's referring to a
variable or a class, especially when the variable has the same name as the class
it's a type of, so I wouldn't recommend doing this in your own code. That's why we
named our AwesomeActor as MyAwesomeActor. It still lets us easily tell what type
of Actor it is while avoiding the confusion of the exact same name as the class.

In the flow control statement using the Pawn's Weapon variable, we can see that
we're checking to see that it's not equal to none. For Actor variables, this checks
if this variable is referencing any Actor. If it is, then it won't be none and the flow
control statement can continue.

One important thing to remember is that this does not mean that every Actor in the
game is a variable or is assigned to one, or that declaring a variable of an Actor type
automatically creates that Actor in the world. Actor variables are simply a way for
us to store a reference to an Actor in the world. An Actor can be referenced by more
than one variable in any number of different classes, or it may not be referenced by
any variables. For instance, when we were first testing our AwesomeActor class, we
were placing them directly in the level in UnrealEd. There was no AwesomeActor
variable in any other class that was referencing them.

8.	 So how DO we assign things to our Actor variables? There are a few different ways
of doing that. The first is by copying it from another variable that already has
the reference stored. Let's say we created a variable of the type Weapon in our
AwesomePlayerController:

var Weapon AnotherWeaponVariable;

Understanding the Class Tree

[120]

9.	 PostBeginPlay is a bit too soon in the game's start up sequence to try and assign
a reference to our weapon, so let's do it when we fire the gun. Let's change our
StartFire function to look like this:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
 AnotherWeaponVariable = Pawn.Weapon;
 `log(AnotherWeaponVariable);
}

10.	Compile the code and run it. While in game, fire the gun (more than once is fine, it
won't hurt anything). Exit and let's take a look at the log.

[0005.79] ScriptLog: UTWeap_LinkGun_0

The format may look familiar, the underscore with a number after it also showed up
in the editor during our AwesomeActor tests in the first chapter.

Another thing that we'll notice is that even though the variable is declared as the
Weapon class, a UTWeap_LinkGun actor was logged. Actor variables can reference
either an actor of the variable type or any of its subclasses. This makes writing code
more convenient, since we only need one variable to hold the player's Weapon
instead of a different variable for every weapon class.

Now that we have the reference, we can manipulate it the same way we would
Pawn.Weapon. For instance, our if statement in GetPlayerViewPoint:

if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

Could be changed to this:

if(AnotherWeaponVariable != none)
 AnotherWeaponVariable.SetHidden(true);

One important thing to remember about this though is that even though we
assigned AnotherWeaponVariable to Pawn.Weapon, we only did it once. If
Pawn.Weapon changed, AnotherWeaponVariable wouldn't automatically change
to match it. For example, say your favorite color was purple. If I said my favorite
color was your favorite color, mine would be purple as well. If you changed your
favorite color to blue, mine would still be purple unless I said my favorite color was
your favorite color again. Make sense?

Chapter 3

[121]

11.	The second way of getting a reference to an Actor is by spawning that Actor
ourselves. Using our AwesomeActor as an example, let's change our StartFire
code to this:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
 MyAwesomeActor = spawn(class'AwesomeActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");
}

If we look at where the spawn function is declared in Actor.uc we can see how
it's used:

native noexport final function coerce actor Spawn
(
 class<actor> SpawnClass,
 optional actor SpawnOwner,
 optional name SpawnTag,
 optional vector SpawnLocation,
 optional rotator SpawnRotation,
 optional Actor ActorTemplate,
 optional bool bNoCollisionFail
);

The function line may look confusing, but the important part for us right now are
the parameters. We tell it what class to spawn and the rest is optional. The only
thing we're giving it for now is a location, which is our Pawn's location to make it
easy to tell when the AwesomeActor has been spawned.

12.	Compile the code and test it out. When we fire our weapon, an AwesomeActor
should appear in game as well as the log. Fire the weapon a few times while moving
around so we can see what happens.

Understanding the Class Tree

[122]

Our AwesomeActors are spawning! Now let's take a look at the log:

[0007.76] ScriptLog: AwesomeActor_0 <-- MyAwesomeActor
[0008.11] ScriptLog: AwesomeActor_1 <-- MyAwesomeActor
[0008.52] ScriptLog: AwesomeActor_2 <-- MyAwesomeActor
[0008.81] ScriptLog: AwesomeActor_3 <-- MyAwesomeActor
[0021.36] ScriptLog: AwesomeActor_4 <-- MyAwesomeActor

We can see that as each AwesomeActor was spawned, it was assigned to our
MyAwesomeActor variable, but when a new one was spawned the reference was
replaced with the new one. We can also see that this doesn't mean the old one was
destroyed just because MyAwesomeActor's reference changed.

13.	Another way we can get a reference to an Actor is by using what's called an iterator.
There are a few functions in Actor.uc we can use that will cycle through all of
the actors currently in the level and let us sort through them to find what we want.
Before we do this we need to place an AwesomeActor in the level ourselves so we
can see if we can get a reference to it. Change AwesomeActor's code to read the
placeable keyword:

class AwesomeActor extends Actor
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 End Object
 Components.Add(Sprite)
}

14.	Compile the code, then open our test map in the editor and place an
AwesomeActor near the player start. Save the map and close the editor.

15.	Now for the iterator function. We can do this in PostBeginPlay, so let's put it
there:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;

 foreach DynamicActors(class'AwesomeActor', MyAwesomeActor)
 break;

 `log(MyAwesomeActor @ "<-- MyAwesomeActor");
}

Chapter 3

[123]

The way iterators work is that for every Actor in the map it finds that is either the
class we specify (AwesomeActor in this case) or a subclass of that class, it will assign
it to the variable we specify (MyAwesomeActor) so we can do things to it or check
things about it. The break line right afterward makes it exit the loop after the first
one it finds, but the MyAwesomeActor variable will keep the reference to it. Let's
try it out.

16.	Compile the code and test. Close the game and take a look at the log:

[0004.62] ScriptLog: AwesomeActor_0 <-- MyAwesomeActor

The code found it!

What just happened?
Using Actors as variables is an important concept to grasp in UnrealScript. Without them
objects in the world would have a hard time interacting with each other and it would be
difficult to have any kind of complexity without them. As with any other type of variable
we can use logical operators on them such as == or != to test if two variables are the same
or not. They can also be made editable, since Actors placed in the world already exist and
getting a reference to another one is as simple as typing its name into the property. They
can't however be used in the default properties, since our classes are just blueprints for
objects that haven't been created yet.

Before we move on to our next subject, let's try a challenge.

Have a go hero – Keeping references to spawned actors
In our experiment with getting a reference to an Actor as we spawned it, every time a new
one was spawned the reference was replaced. But, if we had an array of our class declared
like this:

var array<AwesomeActor> MyAwesomeActors;

How would we rewrite the StartFire function to keep a reference to every
AwesomeActor that we spawned instead of just the latest one?

Hint – Remember our lessons on adding elements to
dynamic arrays.

Understanding the Class Tree

[124]

Casting
Another important principle in object-oriented programming in UnrealScript is typecasting, or
casting for short. We know that when creating subclasses we can add functions or variables
that don't exist in the parent class. We also know that when we have an actor variable that
it can reference a subclass of that actor. So if we have a subclassed actor referenced in our
variable, how do we use the variables or functions that are unique to that subclass?

Time for action – Casting Actor variables
The answer of course is casting. Let's set up a subclass of AwesomeActor and see how we
can use it.

1.	 Create a new file in our AwesomeGame/Classes folder and call it UberActor. Type
the following code into it:

class UberActor extends AwesomeActor
 placeable;

function UberFunction()
{
 `log("UberFunction was called!");
}

defaultproperties
{
}

We're extending off of AwesomeActor and adding a function called UberFunction
that will log when it is called. Remembering our inheritance, we don't need the
sprite in the default properties because we will inherit it from AwesomeActor.

2.	 Compile the code and open the editor. If we take a look in the Actor browser we'll
see our UberActor underneath AwesomeActor in the class tree.

Close the editor for now; we'll be spawning the UberActor directly so we can get
an easy reference to it.

Chapter 3

[125]

3.	 In our AwesomePlayerController class, add the StartFire function again and
spawn an UberActor into our MyAwesomeActor variable:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
 MyAwesomeActor = spawn(class'UberActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");
}

And since we've made a lot of changes these past few pages, let's make sure our
AwesomePlayerController classes match:

class AwesomePlayerController extends UTPlayerController;

var AwesomeActor MyAwesomeActor;

var vector PlayerViewOffset;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;
}

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
 MyAwesomeActor = spawn(class'UberActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");
}

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);
 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }

Understanding the Class Tree

[126]

}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

4.	 Compile and run the code, shoot the gun a few times, then shut down the game and
take a look at the log:

[0007.73] ScriptLog: UberActor_0 <-- MyAwesomeActor
[0008.52] ScriptLog: UberActor_1 <-- MyAwesomeActor
[0009.52] ScriptLog: UberActor_2 <-- MyAwesomeActor

As expected, even though MyAwesomeActor has been declared as an
AwesomeActor type, our subclass can still be used and referenced by
MyAwesomeActor.

5.	 Now what do we do if we want to call UberFunction? Let's try calling it directly in
our StartFire function:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);

 MyAwesomeActor = spawn(class'UberActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");

 if(MyAwesomeActor != none)
 MyAwesomeActor.UberFunction();
}

That should work, right? Since our MyAwesomeActor variable references an
UberActor, we should be able to just call the function right?

6.	 Compile the code.

Error, Unrecognized member 'UberFunction' in class 'AwesomeActor'

Chapter 3

[127]

Well that's no good. Since we declared MyAwesomeActor as an AwesomeActor
type, the game will treat it as one when we try to call functions and variables
directly on it. Any functions and variables in the subclass won't be available to us.
This is where casting comes in handy.

7.	 Let's change the StartFire function a little bit.

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);

 MyAwesomeActor = spawn(class'UberActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");

 if(UberActor(MyAwesomeActor) != none)
 UberActor(MyAwesomeActor).UberFunction();
}

8.	 Now let's try compiling:

Success – 0 error(s), 0 warning(s)

That's better!

9.	 Now let's run the game, fire the weapon, and see what happens in the log:

[0006.59] ScriptLog: UberActor_0 <-- MyAwesomeActor
[0006.59] ScriptLog: UberFunction was called!

There we go, our UberFunction was called successfully! But what happens if we
run this code with a MyAwesomeActor that isn't an UberActor? Let's try that out.

10.	Let's change the StartFire function again to spawn a normal AwesomeActor
instead of an UberActor:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);

 MyAwesomeActor = spawn(class'AwesomeActor',,, Pawn.Location);
 `log(MyAwesomeActor @ "<-- MyAwesomeActor");

 if(UberActor(MyAwesomeActor) != none)
 UberActor(MyAwesomeActor).UberFunction();

 else
 `log("MyAwesomeActor is not an UberActor.");

}

Understanding the Class Tree

[128]

We've also added an else to our flow control statement, if it's not able to call UberFunction
the log will let us know.

1.	 Compile and run the code, fire the weapon, and then exit and take a look at the log.

[0008.80] ScriptLog: AwesomeActor_1 <-- MyAwesomeActor
[0008.80] ScriptLog: MyAwesomeActor is not an UberActor.

The code went through to our else statement, so it's working correctly. Our
MyAwesomeActor isn't an UberActor now. But what's going on with the
MyAwesomeActor variable exactly?

2.	 Let's change StartFire again. This time we'll add two logs, one normal and one
with casting.

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);

 MyAwesomeActor = spawn(class'AwesomeActor',,, Pawn.Location);

 `log(MyAwesomeActor @ "<-- MyAwesomeActor");
 `log(UberActor(MyAwesomeActor) @ "<--
UberActor(MyAwesomeActor)");
}

What do you think the typecast log is going to show? Let's find out.

3.	 Compile and run the game, fire the gun, and exit to look at the log:

[0008.65] ScriptLog: AwesomeActor_1 <-- MyAwesomeActor
[0008.66] ScriptLog: None <-- UberActor(MyAwesomeActor)

That makes sense. An actor variable can either reference an object that actually
exists in the level, or else it will be "none". When we're casting a variable, if the
actor referenced by our variable isn't the class that we're casting to or any of its
subclasses, the cast will give us "none" to let us know.

What just happened?
In addition to letting us use functions and variables that only exist in subclasses of our
variable's class, casting gives us a way to react differently to a variable depending on what
class it is. As an example, take the following code. Don't write this down; trust me it's not
going to compile:

var Pet MyPet;

function ReactToPet()

Chapter 3

[129]

{
 if(Cat(MyPet) != none)
 Sneeze();
 else if(Dog(MyPet) != none)
 PetTheDog();
 else
 `log("What are you, pet?");
}

Next let's see if we can get a practical example of casting for our game.

Time for action – A practical example of casting for our game
Let's change the way our Pawn reacts to the weapon he's carrying. We'll make him invisible
when he picks up a rocket launcher, and make him visible for a bit after he fires it. Sure
why not!

1.	 For this example we don't need to do anything to the rocket launcher class itself,
all of our work will be in our AwesomePlayerController. Let's strip out all
of our AwesomeActor/UberActor experimentation and get back to our basic
AwesomePlayerController:

class AwesomePlayerController extends UTPlayerController;

var vector PlayerViewOffset;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;
}

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);
}

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);

Understanding the Class Tree

[130]

 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

Well, maybe not so basic, but as far as code goes we're just getting started!

2.	 There's a function that's called on Controllers when they switch weapons, called
NotifyChangedWeapon. Let's use that to find out if the player is using a rocket
launcher and make our Pawn invisible if they are:

function NotifyChangedWeapon(Weapon PrevWeapon, Weapon NewWeapon)
{
 super.NotifyChangedWeapon(PrevWeapon, NewWeapon);

 if(Pawn == none)
 return;

 if(UTWeap_RocketLauncher(NewWeapon) != none)
 Pawn.SetHidden(true);
 else
 Pawn.SetHidden(false);
}

First thing we do is call the super. Next, if we don't have a Pawn then we can't make
it invisible, so exit out of the function if our Pawn is none (which can happen when
we're dead or in spectator mode and so on). Finally, we cast NewWeapon, which is a
Weapon variable, to UTWeap_RocketLauncher. If it is that class or a subclass, then
we make our Pawn invisible. If it isn't, we know the player has switched to another
weapon and we make them visible again.

Chapter 3

[131]

3.	 Compile the code. Before we can test it out, we need to place a rocket launcher
spawner in our test level. Open AwesomeTestMap in the editor, and in the
Actor Browser select NavigationPoint | PickupFactory | UDKPickupFactory |
UTPickupFactory | UTWeaponPickupFactory and place one near the player start.
Double-click it to open up its properties and set its Weapon Pickup Class to UTWeap_
RocketLauncher_Content. Remember to Build Paths in the top toolbar of the
editor, then save and close the editor.

4.	 Run our batch file and walk to the weapon spawner to pick up the rocket launcher.
We'll see our Pawn turn invisible, and we can still fire the weapon. Now use the
mouse wheel to switch back to the Link Gun and we'll see the Pawn become
visible again.

Ok, I am totally making this up as I go along and even I'll admit that's pretty
awesome. Only one thing left to do, let's make the Pawn visible for a bit after we fire
the rocket launcher!

5.	 To do that, we'll alter our StartFire function and use another cast:

exec function StartFire(optional byte FireModeNum)
{
 super.StartFire(FireModeNum);

 if(Pawn != none && UTWeap_RocketLauncher(Pawn.Weapon) != none)
 {
 Pawn.SetHidden(false);
 SetTimer(1, false, 'MakeMeInvisible');
 }
}

Understanding the Class Tree

[132]

Now when we fire whatever weapon our Pawn is holding, we check if it's a UTWeap_
RocketLauncher and if it is, show our Pawn. We also use a function called
SetTimer to make a one second delay before calling a function we'll write next,
called MakeMeInvisible. Don't compile yet, we need to write that function first.

6.	 The function we're going to write now, MakeMeInvisible, doesn't
exist anywhere else, it's something we're making up specifically for our
AwesomePlayerController.

function MakeMeInvisible()
{
 if(Pawn != none && UTWeap_RocketLauncher(Pawn.Weapon) != none)
 Pawn.SetHidden(true);
}

A simple function, all we do is make sure we have a Pawn and are still holding our
rocket launcher (the player might have switched weapons during the delay), and if
so make our Pawn invisible.

7.	 Now our AwesomePlayerController should look like this:

class AwesomePlayerController extends UTPlayerController;

var vector PlayerViewOffset;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;
}

function NotifyChangedWeapon(Weapon PrevWeapon, Weapon NewWeapon)
{
 super.NotifyChangedWeapon(PrevWeapon, NewWeapon);

 if(Pawn == none)
 return;

 if(UTWeap_RocketLauncher(NewWeapon) != none)
 Pawn.SetHidden(true);
 else
 Pawn.SetHidden(false);
}

exec function StartFire(optional byte FireModeNum)
{

Chapter 3

[133]

 super.StartFire(FireModeNum);

 if(Pawn != none && UTWeap_RocketLauncher(Pawn.Weapon) != none)
 {
 Pawn.SetHidden(false);
 SetTimer(1, false, 'MakeMeInvisible');
 }
}

function MakeMeInvisible()
{
 if(Pawn != none && UTWeap_RocketLauncher(Pawn.Weapon) != none)
 Pawn.SetHidden(true);
}
simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);
 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

function Rotator GetAdjustedAimFor(Weapon W, vector StartFireLoc
)
{
 return Pawn.Rotation;
}

defaultproperties
{
 PlayerViewOffset=(X=-64,Y=0,Z=1024)
}

Now we're getting somewhere! Compile the code and test it out. When we pick up
the rocket launcher and switch to it, we become invisible, and when we fire it our
Pawn becomes visible for a second before turning invisible again. Awesome! If we
switch to the Link Gun we become visible again and stay visible even after we fire it.

Understanding the Class Tree

[134]

What just happened?
As we can see, using casting on Actor variables lets us get really specific with our
functionality, right down to reacting differently to subclasses of our variable's class.

Pop quiz – Chopping down the class tree
1.	 True/False: When we change a variable in an actor in the editor, the change applies

to all actors of that class.

2.	 We can use casting to treat an actor variable as if it were a:

a.	 Parent class

b.	 Subclass

c.	 Any Actor class

3.	 True/False: When a cast fails it will return 'none'.

Summary
We learned a lot in this chapter about the class tree.

Specifically, we covered:

�� What classes are and how the game uses them

�� What inheritance means and how to change inherited variables and functions

�� Using function overriding to change a subclass' behavior

�� Casting actor variables to use a subclass' functions and tell subclasses apart

Now that we've learned about how classes relate to each other in the class tree, we're ready
to start learning more about classes themselves and expand our game's arsenal of classes to
give us more functionality.

4
Making Custom Classes

Time to expand the game.

In the last chapter, we learned a lot about how classes work, how each subclass
inherits the variables and functions of its parents, and how to use this to our
advantage to get the functionality we want. Where do we go from here? In this
chapter we're going to start creating more of our own classes to expand our
custom game.

In this chapter we will:

�� Discuss when and why we would want to create our own classes

�� Talk about class modifiers and what they do for our classes

�� Discuss the difference between Actors and Objects

�� Talk about the most commonly used classes in UnrealScript

First up, we're going to talk about when and where to make custom classes for our game.

Creating a class
In my work with UnrealScript, one of the most common questions I see is "I understand how
the language works, but I have no idea where to start writing my own code. What do I do?"
For any project, before you start writing code it's best to have an idea of what you want your
game to be. For most games this involves a design document. Let's see if we can come up with
a quick one for our Awesome Game that we'll refer to when making programming decisions.

Making Custom Classes

[136]

Awesome Game quicky design document
Most design documents have a detailed description of the game, from the storyline right
down to the control scheme. However, we're going to keep things a little simplified for this.
First of all we need to decide what type of game this will be.

�� Awesome Game is a top-down shooter like Alien Swarm or Nation Red.

Having examples of other games in the style that you want helps define what programming
needs your game will have. Let's see if we can expand this further:

�� Enemies will spawn off screen and move toward the player. The player will have to
shoot them before they get close or they will take damage.

There are a lot of programming tasks in that brief description. Let's see if we can
break it down:

�� Enemies will spawn off screen and move toward the player: This is actually
three tasks if we think about it. First, we need them to spawn. This will
involve a placeable Actor class we'll create that will handle spawning of
enemies. The second task is getting them to spawn off screen. We don't
want them randomly spawning, otherwise one could suddenly appear right
next to the player which would be terribly frustrating. We'll need some
code to handle this. The third task is the major one, the creation of the
enemies themselves. Do we want more than one type? Maybe one type
moves faster but has a weaker attack. These are things to think about when
preparing a programming task list.

�� The player will have to shoot them before they get close...: There are a few
things to consider here. How many different types of weapons are there?
How does the player get them? Maybe we'll want the player to start with
a default weak weapon, and have others be picked up in the level. Some of
this functionality can already be found in the UDK classes, but we'll need
our own subclasses to handle some specific things we want to do. We could
also have the enemies drop pickups that can upgrade our weapons. That
would involve creating a group of classes for the dropped pickups as well as
some code in the enemy classes that creates them when they die.

�� … or they will take damage: This will involve some code in the enemy class
to handle attacking. Am I close enough to the player to attack? What kind of
attack do I want to use? This will also involve some interaction between our
enemy class and the player to handle taking damage.

As we can see, even with short descriptions there are a lot of decisions that need to be made
and programming tasks that can come out of it. It might seem overwhelming at first, but
breaking the entire game down into a list of tasks makes it easier to figure out what classes
will be needed as well as making it easier to keep track of our progress.

Chapter 4

[137]

Let's see if we can go a bit further in our description of our game:

�� Enemies will attack in waves, with each wave having more and stronger enemies.

For this we'll need some code that will keep track of the number of waves and
enemies, how many enemies still need to be spawned, and how strong the current
wave of enemies is.

Class breakdown
That seems like a good start for our example game, so let's see if we can figure out a few
classes that we'll need for the game, and where to put them in the class tree.

Weapons

We've worked with weapons a bit in the last chapter, so this is a good place to start.
Remembering our lessons on inheritance, if there is any common functionality we want out of
our classes they should all have a common superclass. For instance, if we want our weapons
to be upgradable through pickups, we should have some common functions in our main
weapon class that any subclasses can change if we need them to. Let's set them up now.

Time for action – Creating the weapon branch
Looking in the class tree with UnCodeX, under Actor | Inventory | Weapon | UDKWeapon
| UTWeapon, we can see the rocket launcher, shock rifle, and link gun are all subclasses. It
might seem like we should subclass off of these since they're already made, but in order for
us to be able to use inheritance with our classes we'll need to create a different branch here
for our own weapons. Let's do that now.

1.	 Create a new file in our Development/Src/AwesomeGame/Classes folder called
AwesomeWeapon.uc. While we're here, let's delete AwesomeGun, AnotherGun,
and UberActor if they're still there. Now we should have AwesomeActor,
AwesomeGame, AwesomePlayerController, and now AwesomeWeapon.

2.	 Type the following code into it:

class AwesomeWeapon extends UTWeapon;

var int CurrentWeaponLevel;

function UpgradeWeapon()
{
 CurrentWeaponLevel++;
}

defaultproperties
{
}

Making Custom Classes

[138]

We're adding an int to keep track of our weapon's level, and putting a function in
so we can increase the level. Now you might wonder why don't we just increase
the level ourselves from our pickup class instead of having a function do it? For the
most part it's best to keep all variable changes in the class that has the variables,
that way it's easier to track down problems when they happen. Also, if we wanted to
change the way things worked it's better to be able to find everything affecting the
class inside the class itself instead of having to look in other classes to find places we
changed variables. Other classes would just call UpgradeWeapon(), and everything
else is handled in our AwesomeWeapon class.

3.	 We're not going to use the AwesomeWeapon class itself in our test level, it's just
going to be the base for all of our other weapons. Let's create an actual weapon
that we can place and test with. Create a new file in Development/Src/
AwesomeGame/Classes called AwesomeWeapon_RocketLauncher.uc and type
the following code into it:

class AwesomeWeapon_RocketLauncher extends AwesomeWeapon;

defaultproperties
{
 Begin Object Name=PickupMesh
 SkeletalMesh=SkeletalMesh'WP_RocketLauncher.Mesh.SK_WP_
RocketLauncher_3P'
 End Object

 AttachmentClass=class'UTGameContent.UTAttachment_
RocketLauncher'

 WeaponFireTypes(0)=EWFT_Projectile
 WeaponFireTypes(1)=EWFT_Projectile

 WeaponProjectiles(0)=class'UTProj_Rocket'
 WeaponProjectiles(1)=class'UTProj_Rocket'

 AmmoCount=30
 MaxAmmoCount=30
}

For now this is all default properties setting up the rocket launcher's visuals and
functionality. We're increasing the default ammo from nine to 30 from the UDK's
rocket launcher.

Chapter 4

[139]

4.	 Compile the code and open up the editor. Open our AwesomeTestMap and change
the weapon pickup's properties to add our rocket launcher.

5.	 Save the map and close the editor, then run the game using our batch file. It works
the same as before, except now we have 30 rockets instead of nine to start with.

That's good so far, but now we need a way to upgrade the weapon. Let's create a
pickup class that can do this. The functionality of this class will be pretty simple, so
we don't need to extend off of any UDK classes like Inventory or UDKInventory.
Let's simply extend off of our AwesomeActor. Why AwesomeActor and not just
Actor? To keep things organized. If we had several of these types of classes that we
only needed to extend off of Actor, they'd end up all over the place in the class tree
depending on their names. By using a common superclass, even if it's empty, we can
keep all of our stuff in one place.

6.	 Let's make sure our AwesomeActor class is emptied out:

class AwesomeActor extends Actor;

defaultproperties
{
}

7.	 Now, using that as a parent class for our pickup, let's create a new class called
AwesomeWeaponUpgrade.uc in our Development/Src/AwesomeGame/Classes
folder and type the following code into it:

class AwesomeWeaponUpgrade extends AwesomeActor
 placeable;

event Touch(Actor Other, PrimitiveComponent OtherComp, vector
HitLocation, vector HitNormal)
{
 if(Pawn(Other) != none && AwesomeWeapon(Pawn(Other).Weapon) !=
none)
 {
 AwesomeWeapon(Pawn(Other).Weapon).UpgradeWeapon();
 Destroy();

Making Custom Classes

[140]

 }
}

defaultproperties
{
 bCollideActors=True

 Begin Object Class=DynamicLightEnvironmentComponent
Name=MyLightEnvironment
 bEnabled=TRUE
 End Object
 Components.Add(MyLightEnvironment)

 Begin Object Class=StaticMeshComponent Name=PickupMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_Y'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.125,Y=0.125,Z=0.125)
 End Object
 Components.Add(PickupMesh)

 Begin Object Class=CylinderComponent Name=CollisionCylinder
 CollisionRadius=16.0
 CollisionHeight=16.0
 BlockNonZeroExtent=true
 BlockZeroExtent=true
 BlockActors=true
 CollideActors=true
 End Object
 CollisionComponent=CollisionCylinder
 Components.Add(CollisionCylinder)
}

A pretty sizable chunk of code, but pretty simple. Here we're using an event called
Touch that is called when two actors run into each other. Inside it, we check
if the Actor that touched us is a Pawn and if so, check to see if it's holding an
AwesomeWeapon. Remembering our lessons about typecasting, here we're using
two of them at the same time so it might look a bit confusing at first.

The first typecast is here:

Pawn(Other)

Chapter 4

[141]

Since the event gives us an Actor to work with called Other, we need to typecast
it to see if it's a Pawn. If this typecast works, we know the Actor that touched us is a
Pawn and we can continue the check:

Pawn(Other).Weapon

Since the Weapon variable doesn't exist in Actor, only in Pawn, we need to keep
the Pawn(Other) typecast to be able to access the Weapon variable. Finally, we
typecast that weapon to see if it's one of our custom classes:

AwesomeWeapon(Pawn(Other).Weapon)

This checks whether the weapon, which is of the Weapon class, is an
AwesomeWeapon or subclass of AwesomeWeapon. If it is, then the if statement is
true and we can execute some code inside it:

AwesomeWeapon(Pawn(Other).Weapon).UpgradeWeapon();

We keep the typecast here so we can call our custom UpgradeWeapon function. You
can see why having functions instead of variables is preferred. If we wrote it like this:

AwesomeWeapon(Pawn(Other).Weapon).CurrentWeaponLevel++;

If we wanted to change how the leveling system works, for example, to add a
maximum level, we would have to search through all of our code to see where we
changed it, and add more code there. This could leave us with a lot of duplicated,
messy code.

The bCollideActors in the default properties lets this actor receive Touch calls
when something runs into it.

We then add a static mesh; in this case, a plain cube with a green material on it,
with a light environment to make sure it's properly lit up.

Finally we give it some collision.

Before we test our code, let's add a log to our weapon class so we can see that it's
working.

function UpgradeWeapon()
{
 CurrentWeaponLevel++;
 `log("Current Weapon Level:" @ CurrentWeaponLevel);
}

Making Custom Classes

[142]

8.	 Compile the code, and then open up the editor. In the Actor Browser select
our AwesomeWeaponUpgrade, if Show Categories is checked it will be under
Uncategorized | AwesomeActor. If Show Categories is unchecked it will be
under Actor | AwesomeActor. Right-click in the level and place one near our
weapon spawner.

9.	 Click on the Rebuild All button to build the map, then save and exit the editor.
Run the game with the batch file and walk over to the AwesomeWeaponUpgrade
WITHOUT picking up the weapon first. You can see that no matter what you do,
the pickup stays there and we don't get anything in the log. Why is that? Well,
the default inventory we start with gives us a link gun, which isn't a subclass of
our AwesomeWeapon. In the if statement on our AwesomeWeaponUpgrade, the
typecasting fails and the code inside it never executes.

10.	Now walk over to the weapon spawner and pick up the rocket launcher. Once we
have it, run over to the weapon upgrade again. This time it disappears, and checking
the log file we can see this:

[0009.47] ScriptLog: Current Weapon Level: 1

Remembering that ints start at 0, incrementing CurrentWeaponLevel leaves us
with 1.

11.	Now that we have the upgrades working, let's make them affect the weapons in
some way. First we need to make a maximum level for the weapons so we don't get
too crazy with them. Let's add a few things to our AwesomeWeapon class:

class AwesomeWeapon extends UTWeapon;

const MAX_LEVEL = 5;

Chapter 4

[143]

var int CurrentWeaponLevel;

function UpgradeWeapon()
{
 if(CurrentWeaponLevel < MAX_LEVEL)
 CurrentWeaponLevel++;
 `log("Current Weapon Level:" @ CurrentWeaponLevel);
}

defaultproperties
{
}

A const is a special type of variable that cannot be changed (constant). They're
declared slightly different from other variables because we set their value on the
same line they're declared. In this case we're creating one called MAX_LEVEL and
setting it to 5.

Why would we want to use a const instead of just 5? Let's say for some reason
we wanted to change it. If we used the number 5 in our code, we would have to
go through it line by line to find everywhere we used it and change the number.
We could easily miss one, or worse change one that was only the same number
by coincidence. Using a const, we would only have to change the value where it's
declared and all the code that uses it would be changed.

12.	Let's go into the editor and add some more AwesomeWeaponUpgrade actors so
that we have at least 6 in the level.

Making Custom Classes

[144]

13.	Save the map and exit the editor, then run the game. Pick up our rocket launcher
and run around picking up the weapon upgrades. Exit the editor and take a look at
the log:

[0008.29] ScriptLog: Current Weapon Level: 1
[0008.60] ScriptLog: Current Weapon Level: 2
[0008.87] ScriptLog: Current Weapon Level: 3
[0010.24] ScriptLog: Current Weapon Level: 4
[0011.76] ScriptLog: Current Weapon Level: 5
[0012.55] ScriptLog: Current Weapon Level: 5

There we go, once we reach 5, our weapon can't be upgraded any further. Now that
we have that in place, let's make it affect the gameplay in some way.

14.	Let's add some more code to our AwesomeWeapon class. We're going to make the
weapon fire faster as we upgrade it. First we'll add an array of firing rates:

var float FireRates[MAX_LEVEL];

You'll notice that we're using our MAX_LEVEL const here to define the array size.
This is another difference between consts and regular variables. Consts can be used
in other variable declarations to define array sizes while normal variables cannot.
If MAX_SIZE were declared as an int and set in the default properties, using it here
would give us a compiler error.

15.	Now let's set the array in the default properties, making the max level really fast:

 FireRates(0)=1.5
 FireRates(1)=1.0
 FireRates(2)=0.5
 FireRates(3)=0.3
 FireRates(4)=0.1

That should do it. The number is the time between shots, so the lower the number
the faster the weapon fires. The fastest firing rate is the same that we used before in
our first experiment with weapons.

16.	Now to change the firing rate in our UpgradeWeapon function:

 FireInterval[0] = FireRates[CurrentWeaponLevel – 1];

Remembering our arrays, when we increase CurrentWeaponLevel we need
to access the array element that's 1 less. When the weapon is level 1 we
want FireRates[0], and when it's 5 we want the last element in the array,
FireRates[4].

Chapter 4

[145]

17.	There is another little bit of code we need to add to make sure our weapon
functions properly. If we're holding down the fire button while we pick up an
upgrade, we want the firing timer to reset to the new value. Let's add this bit of
code to the function:

 if(IsInState('WeaponFiring'))
 {
 ClearTimer(nameof(RefireCheckTimer));
 TimeWeaponFiring(CurrentFireMode);
 }

I know you wouldn't be able to just figure that out instantly, which is why I keep
stressing the importance of reading through the source code. Using UnCodeX to
track down what functions get called where, what variables are used to do what, it
definitely helps to read through the source. You don't even have to memorize any
of it. I forget most of it when I stand up from my computer. The important thing is
knowing how to find it, by reading through the functions that get called and being
able to search through the source code to trace the chain of events.

In this case, we're checking to see if the weapon is currently firing and if so we clear
the refire timer and reset it to the new value.

18.	Now just for some icing on the explosive tipped cake we'll refill the weapon's ammo
when we pick up an upgrade.

 AddAmmo(MaxAmmoCount);

With this line we don't need to worry about overfilling the weapon, if we look at the
AddAmmo function in UTWeapon.uc:

 AmmoCount = Clamp(AmmoCount + Amount,0,MaxAmmoCount);

We can see that it uses the Clamp function to limit the AmmoCount to between 0
and MaxAmmoCount.

19.	Now our AwesomeWeapon class should look like this:

class AwesomeWeapon extends UTWeapon;

const MAX_LEVEL = 5;
var int CurrentWeaponLevel;
var float FireRates[MAX_LEVEL];

function UpgradeWeapon()
{
 if(CurrentWeaponLevel < MAX_LEVEL)
 CurrentWeaponLevel++;

Making Custom Classes

[146]

 FireInterval[0] = FireRates[CurrentWeaponLevel - 1];

 if(IsInState('WeaponFiring'))
 {
 ClearTimer(nameof(RefireCheckTimer));
 TimeWeaponFiring(CurrentFireMode);
 }

 AddAmmo(MaxAmmoCount);
}

defaultproperties
{
 FireRates(0)=1.5
 FireRates(1)=1.0
 FireRates(2)=0.5
 FireRates(3)=0.3
 FireRates(4)=0.1
}

Almost done, let's just set some defaults in our rocket launcher class.

20.	Let's give our rocket launcher a default FireInterval that's higher than the fire
rates for our upgrades.

 FireInterval(0)=1.75
 FireInterval(1)=1.75

21.	Compile the code and run the test map. After picking up the rocket launcher we can
pick up the upgrades and see our weapon firing faster and faster as it gains levels!

Chapter 4

[147]

What just happened?
Now that we've created a few of our own classes, we can start to see how a design
document can be turned into tasks that can be broken down into the classes we need to
finish those tasks. Sometimes the functionality we need in our classes can already be found
in the UDK source, as with our weapons, but sometimes we'll want to create our own branch
in the class tree so we can fully control what happens, as with our upgrade pickups.

Next we'll take a look at some class modifiers we can use to control how our classes
are used.

Class modifiers
Class modifiers change the way a class behaves in the editor and in the engine. Two of them
we have seen before, but let's go through them to see how they're used.

Class modifiers are always specified at the top of our class in the class declaration line.

Placeable
This one we've used before, it tells the editor that this class can be placed in the editor. This
is useful for most objects such as lights, player starts, weapon spawners, and so on. Some
things don't need to be placed in the editor such as our PlayerController or Pawn,
since those are spawned by the game during play. Some things wouldn't make sense to be
placeable, such as a HUD. Things like that aren't level-specific, they're spawned and assigned
to the player during the game. Generally, placeable classes are only those things that are
level-specific and need to be put in a specific place in the level.

We can see an example right in our own code with our AwesomeWeaponUpgrade class:

class AwesomeWeaponUpgrade extends AwesomeActor
 placeable;

In the editor actors declared as placeable will appear bold in the Actor Browser.

Notplaceable
The opposite of placeable, this tells the editor that we don't want this actor to be able to be
placed in the levels. By default, an actor class is not placeable; but say we had a subclass of
our AwesomeWeaponUpgrade like this:

class AwesomeWeaponUpgrade_MaxAmmo extends AwesomeWeaponUpgrade;

defaultproperties
{
}

Making Custom Classes

[148]

Even though we haven't put the placeable modifier in this class, if we compile and open
the editor, this class will appear in bold and be placeable. The placeable modifier has been
inherited from our parent class.

So why would we use this modifier? Say we had a group of a few different weapon upgrade
classes that had a lot of common functionality and we wanted to use a common parent for
them underneath our main AwesomeWeaponUpgrade class. If the common parent didn't
have any specific functionality itself, we wouldn't want it to be placed in the editor, just its
subclasses. In this case we would put the notplaceable modifier in our class.

Take the following example:

In this case we're making a group of upgrades under an AwesomeWeaponUpgrade_
AmmoType class. The AmmoType class itself wouldn't have any specific functionality, it would
just have functions and variables common to all of its subclasses. We wouldn't want the
generic AmmoType class itself to be placed, so we use the notplaceable modifier to let the
editor know.

Abstract
This one's related to notplaceable, except this doesn't allow the class to be spawned or
referenced at all. We would use this for similar reasons as we would use notplaceable, this
class itself isn't useful, and all of the specific functionality is in its subclasses.

Let's take a look at how we can use this in our own classes.

Time for action – Using abstract
We'll use this modifier in our AwesomeWeapon branch to see how it's useful.

1.	 Before we change anything, open up our test map in the editor and take a look at
the weapon spawner properties. We can change the weapon it spawns to be an
AwesomeWeapon instead of an AwesomeWeapon_RocketLauncher:

Chapter 4

[149]

But if we look in our AwesomeWeapon class compared to the rocket launcher
subclass, the AwesomeWeapon class by itself is pretty useless. It doesn't have a static
mesh specified, no firing modes or projectile classes or ammo count. If we change
the spawner to use AwesomeWeapon, in game we immediately get switched back to
our default link gun.

So with this in mind, why would we want AwesomeGun to show up in this list or be
spawned in game at all? This is where the abstract modifier comes in handy.

2.	 Change the top of our AwesomeWeapon class to the following:

class AwesomeWeapon extends UTWeapon
 abstract;

3.	 Now compile and take a look at the spawner properties.

Now the class doesn't even show up in the list.

4.	 As a test, let's add the following code to our AwesomePlayerController:

var AwesomeWeapon AW;

simulated function PostBeginPlay()

Making Custom Classes

[150]

{
 AW = spawn(class'AwesomeWeapon');
 `log(AW);

 super.PostBeginPlay();
 bNoCrosshair = true;
}

We'll try to spawn an AwesomeWeapon directly to see what happens.

5.	 Compile and test.

[0004.58] Warning: SpawnActor failed because class AwesomeWeapon
is abstract
[0004.58] ScriptLog: None

6.	 Remove the test code from the AwesomePlayerController. The
PostBeginPlay should look as it did before and the variable declaration should be
removed:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 bNoCrosshair = true;
}

What just happened?
With abstract classes, we can't even spawn them through code. And for our
AwesomeWeapon class, this is exactly what we want. This class doesn't do anything by itself;
it's only the common parent class for all of our weapon classes. The abstract modifier is not
inherited by subclasses, which is why our rocket launcher still showed up in the weapon
spawner's list.

Native
A quick word about the native modifier. As UDK users we'll never be using this, so even
though you may see it in the source code, do NOT put this in your own classes. This keyword
tells the engine that there is C++ code behind the class, which as UDK users we don't have
access to. The engine code is only available to full licensees. We can do almost anything we
want without it though, so don't fret.

Chapter 4

[151]

Config
We've used this one before in our experiments with variables. This one comes with
parentheses after it which tells the game which configuration file in the UDKGame\Config
folder to look in for this class' config variables. As a recap, with the following code:

class AwesomeActor extends Actor
 config(Game);

var config int Something;

defaultproperties
{
}

The game would look in the UDKGame.ini file for our default. Since UDKGame.ini is
generated from DefaultGame.ini, we would place our default value in there:

[AwesomeGame.AwesomeActor]
Something=4

Following the standard format of:

[Package.Class]
VariableName=Value

The Package is the name of our folder in Development\Src, and Class is the .uc file inside
that folder that has the config values.

The config modifier is inherited, so any subclasses can use config variables without having
the config modifier or file name specified. Each subclass needs to have its own section in the
INI file though:

[Package.Subclass]
VariableName=ADifferentValue
AnotherVariable=SomeDefault

Hidecategories
In our discussion of variables, we learned how we could put editable variables in certain
categories by putting the name of the category in parentheses like this:

var(MyCategory) int MyInt;

Making Custom Classes

[152]

And if we take a look at our AwesomeWeaponUpgrade actor's properties in the editor, we
can see that there are a lot of categories already applied to it:

For organizational purposes, if we wanted to hide some of these categories that we're not
going to need, we would use the hidecategories modifier.

Time for action – Hidecategories
Let's take a look at our AwesomeWeaponUpgrade actor.

1.	 Let's change the top line of our AwesomeWeaponUpgrade actor to the following:

class AwesomeWeaponUpgrade extends AwesomeActor
 hidecategories(Attachment,Physics,Debug,Object)
 placeable;

Note that the class declaration line doesn't end until the semicolon, and it's
perfectly fine to spread it across a few lines to keep it readable.

2.	 Compile the code and take a look at the properties in the editor again.

There are a lot less this time!

Chapter 4

[153]

What just happened?
The hidecategories modifier should only be used when you're sure that a level designer isn't
going to need to change any variables in that category. It doesn't get rid of any variables;
it just hides them from the editor. This modifier is inherited, and if we wanted to reverse a
hidecategories modifier in a subclass we would use the showcategories modifier, for example
this hypothetical subclass:

class SomeOtherUpgrade extends AwesomeWeaponUpgrade
 showcategories(Attachment,Physics);

This would override the hidecategories modifier in AwesomeWeaponUpgrade for those
two categories.

Hidedropdown
This one acts in a similar way to the abstract modifier, except this only hides the actor from
drop-down lists like the one in the weapon spawner. However, using this keyword will still
allow the actor to be spawned through code.

Actors versus objects
This will be a short topic, but an important one. Object.uc is the highest class in the class
tree; all other scripts are subclasses of it. The most important subclass of Object is Actor.
When working with UnrealScript, almost all of your work will be under Actor in the class
tree. Actor contains code that gives classes a position in the world, lets them easily interact
with each other and affect the game in some way. All of the other subclasses of Object can
be thought of as more "informational" classes. For instance, if we take a look at InterpTrack
and its subclasses, we can see that these classes define the tracks we can use in a Matinee
such as movement or animation. The classes themselves have no useful purpose in the game
world itself as, say, a projectile would.

Only Actor classes can be spawned, and indeed if we search through Actor.uc we can find
the place where that function is declared:

native noexport final function coerce actor Spawn
(
 class<actor> SpawnClass,
 optional actor SpawnOwner,
 optional name SpawnTag,
 optional vector SpawnLocation,
 optional rotator SpawnRotation,
 optional Actor ActorTemplate,
 optional bool bNoCollisionFail
);

Making Custom Classes

[154]

There are ways of creating non-Actor object classes during gameplay, but this will rarely be
needed. Nearly 100% of your time will be spent under Actor in the class tree. The only real
exception to that is Kismet classes, which will be discussed in a later chapter and fall under
SequenceObject in the class tree.

Simply put, when creating new classes, they will almost always be subclasses of Actor,
not Object.

Common UnrealScript classes
Our final topic for this chapter will be a long one. We're going to go through the most
commonly used classes in UnrealScript and take a look at how we can change them for
our game. We'll expand their functionality and see if we can get something resembling our
Awesome Game's design document. First up, let's take a look at the GameInfo class.

The GameInfo
The GameInfo class handles all of the rules for our game. It logs people in and out, tells the
game when to start, keeps track of the time limit and score and decides when the game is
over and who won. It also handles a few default properties like the PlayerController and
HUD class the game uses.

Let's expand ours to see if we can make a game we can win.

Time for action – Expanding AwesomeGame
We'll start with something simple. Usually when you're working on a project you might not
want to go straight toward your goal, but instead you'd use a process like the one we're
about to use to slowly work your game towards your desired goal. This helps to break down
tasks even further and make sure your code is working each step of the way.

Let's start by making it so we win the game by collecting all of our AwesomeWeaponUpgrade
actors.

1.	 The first thing we need to do is count the number of AwesomeWeaponUpgrade
actors and set our goal to that number. We'll use the foreach iterator to find them.
Let's add a PostBeginPlay function to our AwesomeGame class:

simulated function PostBeginPlay()
{
 local AwesomeWeaponUpgrade AW;

 super.PostBeginPlay();

Chapter 4

[155]

 GoalScore = 0;

 foreach DynamicActors(class'AwesomeWeaponUpgrade', AW)
 GoalScore++;
}

GoalScore is a variable declared in GameInfo that holds the score limit for the
game. When this number is reached, the game ends. It could be number of kills for
Deathmatch, number of flags captured for Capture the Flag, or in our case we're
temporarily using it to hold the number of AwesomeWeaponUpgrade actors we
need to collect.

2.	 Since we're extending from UTDeathmatch, there is a variable we need to change
for the default properties. Since Deathmatch by default scores by number of kills,
we need to change that so we don't get messages like "double kill" or "m-m-m-
monster kill!"

 bScoreDeaths=false

bScoreDeaths is declared in UTGame.

That's it for our AwesomeGame class for now, let's see what it should look like:

class AwesomeGame extends UTDeathmatch;

simulated function PostBeginPlay()
{
 local AwesomeWeaponUpgrade AW;

 super.PostBeginPlay();

 GoalScore = 0;

 foreach DynamicActors(class'AwesomeWeaponUpgrade', AW)
 GoalScore++;
}

defaultproperties
{
 bScoreDeaths=false
 PlayerControllerClass=class'AwesomeGame.
AwesomePlayerController'
}

Making Custom Classes

[156]

3.	 Now we need to change our AwesomeWeaponUpgrade class a bit. In our Touch
event, let's add a bit of code so it looks like this:

event Touch(Actor Other, PrimitiveComponent OtherComp, vector
HitLocation, vector HitNormal)
{
 if(Pawn(Other) != none && AwesomeWeapon(Pawn(Other).Weapon) !=
none)
 {
 if(Pawn(Other).Controller != none && Pawn(Other).
Controller.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective(Pawn(Other).Controller.
PlayerReplicationInfo, 1);

 AwesomeWeapon(Pawn(Other).Weapon).UpgradeWeapon();
 Destroy();
 }
}

Now we're checking if the Pawn that touched us has a Controller, and if so does that
Controller have a PlayerReplicationInfo. PlayerReplicationInfo is a class
created for every Controller that holds the number of deaths, our score, our team
number, even our ping for multiplayer games. It is mainly an informational class that
stores variables other players will need to know about. When we tell the GameInfo
that a player scored, instead of telling the GameInfo which Controller or Pawn it
was, we pass the PlayerReplicationInfo reference instead.

On the next line is where we tell the game about the score. WorldInfo.Game
holds a reference to the GameInfo class, which in our case is our AwesomeGame.
ScoreObjective is a function declared in GameInfo which handles things like
figuring out if the game has ended because of this score. For this, we tell the
GameInfo that the player that touched us receives 1 to their score. Since we set the
goal to the number of AwesomeWeaponUpgrade actors, this makes it so that we
have to collect all of them to end the game.

4.	 Compile the code and test. Pick up the rocket launcher and then run around
collecting all of the weapon upgrades. When you pick up the last one the game
should stop and you will hear "Flawless Victory!"

What just happened?
This is a small example of how to work with a class to slowly expand the game. Starting from
something simple, we can work toward what we want the game to be while making sure
we don't majorly break anything along the way. Next, let's make it so we have something to
shoot at instead of ending the game by picking stuff up.

Chapter 4

[157]

Time for action – SHOOT NOW!
Once again, instead of jumping right in and creating enemies with AI and attacks and health
and long complicated pieces of code, let's start with something simple: A box we can shoot
at and kill.

1.	 Create a new file in our Development/Scr/AwesomeGame/Classes folder and
call it TestEnemy.uc. This way we'll know it's not a class we'll be keeping. Copy the
following code into it:

class TestEnemy extends AwesomeActor
 placeable;

event TakeDamage(int DamageAmount, Controller EventInstigator,
vector HitLocation, vector Momentum, class<DamageType> DamageType,
optional TraceHitInfo HitInfo, optional Actor DamageCauser)
{
 Destroy();
}

defaultproperties
{
 bBlockActors=True
 bCollideActors=True

 Begin Object Class=DynamicLightEnvironmentComponent
Name=MyLightEnvironment
 bEnabled=TRUE
 End Object
 Components.Add(MyLightEnvironment)

 Begin Object Class=StaticMeshComponent Name=PickupMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_X'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.25,Y=0.25,Z=0.5)
 End Object
 Components.Add(PickupMesh)

 Begin Object Class=CylinderComponent Name=CollisionCylinder
 CollisionRadius=32.0
 CollisionHeight=64.0
 BlockNonZeroExtent=true
 BlockZeroExtent=true
 BlockActors=true

Making Custom Classes

[158]

 CollideActors=true
 End Object
 CollisionComponent=CollisionCylinder
 Components.Add(CollisionCylinder)
}

The TakeDamage function is a biggie, there are a lot of parameters that are
passed in. For now we don't need to worry about them though, we only care
that it gets called.

Also notice the default properties. It may look the same as our weapon
upgrades, but we've changed the collision and cube mesh sizes and added
bBlockActors=True. This makes it so we can't run through our fake enemies.

2.	 Compile the code and open up the editor. Select our TestEnemy class in the
Actor Browser and place a few around the level close to our weapon spawner and
weapon upgrades.

Kinda creepy actually.

3.	 Run the game with our batch file and shoot at the test enemies. You'll notice that
they disappear when shot, so our TakeDamage function is working! Time to change
our AwesomeGame class.

Chapter 4

[159]

4.	 Change the PostBeginPlay of our AwesomeGame class to this:

simulated function PostBeginPlay()
{
 local TestEnemy TE;

 super.PostBeginPlay();

 GoalScore = 0;

 foreach DynamicActors(class'TestEnemy', TE)
 GoalScore++;
}

This changes it so our goal is based on the number of enemies in the map instead of
the weapon upgrades. Getting there!

5.	 Now let's get rid of the code in our weapon upgrades that gives us a score when
they're picked up. The Touch function in AwesomeWeaponUpgrade should now
look like this:

event Touch(Actor Other, PrimitiveComponent OtherComp, vector
HitLocation, vector HitNormal)
{
 if(Pawn(Other) != none && AwesomeWeapon(Pawn(Other).Weapon) !=
none)
 {
 AwesomeWeapon(Pawn(Other).Weapon).UpgradeWeapon();
 Destroy();
 }

6.	 And lastly, we need to move the goal scoring code into our TestEnemy class. The
TakeDamage function there should now look like this:

event TakeDamage(int DamageAmount, Controller EventInstigator,
vector HitLocation, vector Momentum, class<DamageType> DamageType,
optional TraceHitInfo HitInfo, optional Actor DamageCauser)
{
 if(EventInstigator != none && EventInstigator.
PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective(EventInstigator.
PlayerReplicationInfo, 1);
 Destroy();
}

Making Custom Classes

[160]

You'll notice that the if statement has changed a bit. Since TakeDamage already
gives us a Controller in the form of the EventInstigator variable, we can just
check that instead now.

7.	 Compile the code and run the game. Now when we shoot all of our TestEnemy
actors, the game ends. Nice!

8.	 While we're here, let's make another small change to our AwesomeGame class. We
start out with the Link Gun, but in our game we only want to use our own weapon
classes. Let's start the player out with no weapon for now. We can do this with a
simple change to the AwesomeGame default properties:

DefaultInventory(0)=None

9.	 Compile and test.

What just happened?
We've created a new class, TestEnemy, which will react to our weapon fire through its
TakeDamage function. When destroyed they report to AwesomeGame, which has a tally
of how many of the TestEnemy actors are in the map. When that number is reached, the
game ends.

Now, what in the world are those two things around our player? To find out, we're going to
need to investigate another class that we're soon going to need for our game, our own Pawn.

Time for action – Customizing the Pawn class
We're going to get more into the Pawn class in a bit, but since the GameInfo class tells the
game which Pawn class to use, we'll create it now and investigate what those two things
around our player are, now that we start with no weapon.

1.	 Create a new file in our Development/Src/AwesomeGame/Classes folder called
AwesomePawn.uc. As always, we'll put some test code in PostBeginPlay to make
sure our class is working:

class AwesomePawn extends UTPawn;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 `log("AwesomePawn spawned! =====");
}

defaultproperties
{
}

Chapter 4

[161]

That's it for this class for the moment; now let's tell the game to use our class.

2.	 In AwesomeGame.uc, let's set our Pawn class in the default properties:

 DefaultPawnClass=class'AwesomeGame.AwesomePawn'

3.	 Compile the code and run the game, and we'll see our log show up:

[0006.55] ScriptLog: AwesomePawn spawned! =====

4.	 Now to get rid of the floaty thingies. As with our giant floating gun awhile back,
the two floating things are supposed to be used for our first person view. They're
the arms that you see holding whatever weapon you have. Since we now have no
weapon by default, we need to hide these arms.

5.	 Let's change our AwesomePawn's PostBeginPlay function to look like this:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();

 if(ArmsMesh[0] != none)
 ArmsMesh[0].SetHidden(true);
 if(ArmsMesh[1] != none)
 ArmsMesh[1].SetHidden(true);
}

We can see the ArmsMesh array declared in UDKPawn (don't put this anywhere):

var UDKSkeletalMeshComponent ArmsMesh[2];

Then they're set in the default properties of UDKPawn's subclass, UTPawn (don't
write this either):

 Begin Object Class=UDKSkeletalMeshComponent
Name=FirstPersonArms
 PhysicsAsset=None
 FOV=55
 Animations=MeshSequenceA
 DepthPriorityGroup=SDPG_Foreground
 bUpdateSkelWhenNotRendered=false
 bIgnoreControllersWhenNotRendered=true
 bOnlyOwnerSee=true
 bOverrideAttachmentOwnerVisibility=true
 bAcceptsDynamicDecals=FALSE
 AbsoluteTranslation=false
 AbsoluteRotation=true
 AbsoluteScale=true
 bSyncActorLocationToRootRigidBody=false

Making Custom Classes

[162]

 CastShadow=false
 TickGroup=TG_DuringASyncWork
 bAllowAmbientOcclusion=false
 End Object
 ArmsMesh[0]=FirstPersonArms

At this point I shouldn't need to say it but yep, reading through the source code
definitely helps find things like this. The Pawn branch of the class tree is another one
that should be added to your must-read list.

6.	 Compile and test. The floating arms are gone now!

What just happened?
Now we've seen a bit about how the GameInfo class works and what it controls. Using the
functions there we can set the end game condition to whatever we want. Using a system
similar to the weapon upgrades, we could make it so that the player has to reach a certain
level before the game ends.

Have a go hero – A different end condition
Now that you know more about how the game comes to an end, let's see about changing
it a bit. How would you rewrite the code so that you don't have to kill all of the TestEnemy
actors, but instead a fixed amount, say 10 of them?

Solution: Rewrite AwesomeGame's PostBeginPlay function to look like this:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 GoalScore = 10;
}

The Controller
The Controller is a class we've already messed around with a bit, and is obviously
very important to a custom UDK game. It's the puppet master to our Pawn, it controls
the camera and processes player input, and also handles other functions such as
muting players on a server. We've done some simple stuff with the camera for our
AwesomePlayerController, but let's see if we can expand it a bit to make it work better.

Chapter 4

[163]

Time for action – Expanding the Controller
Right now we have a pretty simple setup for our camera. It stays at a fixed position over our
player and never moves from that relative position. Let's change it so that it's focusing on a
point a bit ahead of our player, that way it will let them see more of what's in front of them
while leaving their backs exposed to a surprise attack.

1.	 Let's take a look at our GetPlayerViewPoint function:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 Pawn.Mesh.SetOwnerNoSee(false);
 if(Pawn.Weapon != none)
 Pawn.Weapon.SetHidden(true);

 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

Well some of this looks more familiar now that we have our own Pawn class. We
can move the first two parts of our if statement out of this function, so let's do that
real quick.

2.	 Delete the first two parts of our if statement:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

Making Custom Classes

[164]

3.	 Now let's put the first part in our AwesomePawn class instead. Add this function to
our AwesomePawn:

simulated function SetMeshVisibility(bool bVisible)
{
 super.SetMeshVisibility(bVisible);
 Mesh.SetOwnerNoSee(false);
}

This will let us keep seeing our Pawn.

4.	 As for the weapon hiding, we can move that to our AwesomePlayerController's
NotifyChangedWeapon function. Add this line after the call to the super:

 NewWeapon.SetHidden(true);

Here's what the function should look like now:

function NotifyChangedWeapon(Weapon PrevWeapon, Weapon NewWeapon)
{
 super.NotifyChangedWeapon(PrevWeapon, NewWeapon);

 NewWeapon.SetHidden(true);

 if(Pawn == none)
 return;

 if(UTWeap_RocketLauncher(NewWeapon) != none)
 Pawn.SetHidden(true);
 else
 Pawn.SetHidden(false);
}

We'll leave the rocket launcher invisibility code in there for now.

5.	 Now we've cleaned out our GetPlayerViewPoint function, and it should look
like this:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 out_Location = Pawn.Location + PlayerViewOffset;
 out_Rotation = rotator(Pawn.Location - out_Location);
 }
}

Chapter 4

[165]

6.	 Now let's change it so it focuses on a position ahead of the player. Change our
PlayerViewOffset in the default properties to this:

 PlayerViewOffset=(X=384,Y=0,Z=1024)

We've just changed the value of X; we'll use this in a moment to keep the camera
ahead of the player.

7.	 Change the if statement in our GetPlayerViewPoint function to this:

 if(Pawn != none)
 {
 out_Location = Pawn.Location + (PlayerViewOffset >> Pawn.
Rotation);
 out_Rotation = rotator((out_Location * vect(1,1,0)) - out_
Location);
 }

There are a few changes that we should walk through so you know what the new
code is doing. First we're changing the out_Location part by changing this:

+ PlayerViewOffset

To this:

+ (PlayerViewOffset >> Pawn.Rotation)

Using the >> operator effectively converts our PlayerViewOffset into our Pawn's
local coordinates. In other words, instead of our X value of 384 always being in a
certain direction in the world (say North), no matter which direction the Pawn was
facing, it would make the offset change with the Pawn's rotation to always be 384
units in a certain direction according to the Pawn's viewpoint. In this case, it will
always be in front of our Pawn no matter what direction it's facing.

Let's take a look at the following diagram to see how this works:

+ PlayerViewOffset
+ PlayerViewOffset
>>Pawn.Rotation

Making Custom Classes

[166]

Without the >> operator, the PlayerViewOffset is always 384 units along the X
axis of the world, no matter what direction our Pawn is facing. With the >> operator,
PlayerViewOffset is 384 units along the X axis relative to the Pawn, so as the
Pawn rotates the >> operator makes the PlayerViewOffset move with it.

For our out_Rotation, we've changed this:

rotator(Pawn.Location – out_Location)

To this:

rotator((out_Location * vect(1,1,0)) – out_Location)

Remembering our vector lessons, we subtract the start (A) from the destination
(B), so B-A would give us a vector pointing from A to B. When we multiply the out_
Location variable by vect(1,1,0), all we're doing is making the Z value 0. The
X and Y are unchanged since we multiplied them by 1. We do that to get a location
that's directly below our camera, and then have the camera point in that direction.
This makes the camera always point down.

8.	 Compile the code and test. It works ok, but yeesh that's some ugly twitching going
on. Let's keep going with our camera code to smooth that out.

9.	 Let's add some smoothing to the camera so it doesn't immediately set its location.
To do this we'll store the current location code as a desired position that the camera
will constantly move towards. At the top of our AwesomePlayerController let's
add two vectors:

var vector CurrentCameraLocation, DesiredCameraLocation;

We'll use DesiredCameraLocation to store the position we want the camera to
be at, and interpolate CurrentCameraLocation towards that continuously.

10.	Now let's change our GetPlayerViewPoint function.

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 out_Location = CurrentCameraLocation;
 out_Rotation = rotator((out_Location * vect(1,1,0)) - out_
Location);
 }
}

Chapter 4

[167]

We won't change our rotation code, but now the location will use
our saved CurrentCameraLocation variable. Now we need to set
DesiredCameraLocation and move CurrentCameraLocation towards it. To do
this we'll use a function we haven't talked about yet, PlayerTick.

11.	PlayerTick is a function that's run every frame during the game, so it's important
to avoid putting any really slow pieces of code in it. For example, when we were
learning about using actor classes as variables we used a ForEach iterator to find
actors in the world. Using a ForEach here in PlayerTick would be really slow
since it would be running every frame.

12.	Add the following to our AwesomePlayerController class:

function PlayerTick(float DeltaTime)
{
 super.PlayerTick(DeltaTime);
 `log(DeltaTime);
}

The variable in the function, DeltaTime, tells us how much time has passed
between frames. For example, if our game were running at 60 frames per second,
DeltaTime would be 1 / 60 = 0.016667. We'll take a look for ourselves with the log.

13.	Compile the code and run the game. Exit the game and take a look at the log:

[0005.34] ScriptLog: 0.0169
[0005.36] ScriptLog: 0.0169
[0005.37] ScriptLog: 0.0169
[0005.39] ScriptLog: 0.0169

That seems about right!

14.	One of the important uses of DeltaTime is to make sure code we write here runs
at the same speed no matter how fast our computer is or how bad our framerate
gets. For instance, if we had an integer that we were adding 1 to every time
PlayerTick ran, it would count much faster at 60 frames per second than at 30
since PlayerTick is run every frame. To compensate for this, we use DeltaTime.
If we had a float that we were adding DeltaTime to, it would count at the same
speed no matter what our framerate was, since the lower the framerate the higher
DeltaTime would be since more time would be passing in between frames.

15.	Knowing this, we'll use DeltaTime to make sure our camera moves at the same
speed no matter what our framerate. Let's change our PlayerTick function:

function PlayerTick(float DeltaTime)
{
 super.PlayerTick(DeltaTime);

Making Custom Classes

[168]

 if(Pawn != none)
 {
 DesiredCameraLocation = Pawn.Location + (PlayerViewOffset
>> Pawn.Rotation);
 CurrentCameraLocation += (DesiredCameraLocation -
CurrentCameraLocation) * DeltaTime * 3;
 }
}

As we can see, now we're setting our DesiredCameraLocation based on the old
code we were using to set out_Location in GetPlayerViewPoint.

We're also moving CurrentCameraLocation towards DesiredCameraLocation
in the next line. The first part gets the vector pointing from
CurrentCameraLocation towards DesiredCameraLocation (remember, B
– A?), then we multiply it by DeltaTime. If we think about it, this makes sense. If
our framerate drops this function won't be called as often, so DeltaTime increases
and this line of code makes our camera move faster to "make up for lost time".
Multiplying it by 3 just speeds it up a bit more and is completely arbitrary. This can
be changed if you want a slower or faster camera.

The following diagram illustrates what's happening with the camera now:

CurrentCameraLocation

DesiredCameraLocation

We're calculating where we want the camera to be with
DesiredCameraLocation, and constantly moving the CurrentCameraLocation
towards it every frame. This causes the camera movement to smooth out.

16.	Compile the code and test it out. Much better, the camera lost the jerkiness it
had before!

Chapter 4

[169]

What just happened?
Now we've played around a bit more with the player's camera and learned about the
PlayerTick function. But the PlayerController class can't all be about camera,
camera, camera can it? The key word here is Controller, right? Earlier I mentioned that the
PlayerController also processes the player's input, so let's see if we can change the way
that works for our game.

Time for action – No, my left!
As a top down game, our control scheme is pretty terrible. When we press any of the
direction keys on the keyboard, it's pretty tough to tell where the player is going to go. Right
now our movement is based on our Pawn's rotation, so if we're facing the bottom of the
screen, pressing left will actually make the pawn move to our right. Let's fix that.

1.	 To do this we're going to need a Rotator variable. We can't just pull out_Rotation
from the GetPlayerViewPoint function, so we'll do the same thing we did with
our DesiredCameraRotation and create a variable to store it.

var rotator CurrentCameraRotation;

2.	 Now let's add a line to the end of our GetPlayerViewPoint function to store our
out_Rotation:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 out_Location = CurrentCameraLocation;
 out_Rotation = rotator((out_Location * vect(1,1,0)) - out_
Location);
 }

 CurrentCameraRotation = out_Rotation;
}

3.	 So why do we need that variable? We're going to use it to make our Pawn move in
the direction we want it to. For this we'll use the ProcessMove function inside the
PlayerWalking state. States will be covered in depth in Chapter 6, but for now it's
enough to know that the player has many states it can be in, like walking, falling, or
dead. For now we're only concerned with the PlayerWalking state.

Making Custom Classes

[170]

4.	 Let's add this code to our AwesomePlayerController:

state PlayerWalking
{
 function ProcessMove(float DeltaTime, vector newAccel,
eDoubleClickDir DoubleClickMove, rotator DeltaRot)
 {
 super.ProcessMove(DeltaTime, AltAccel, DoubleClickMove,
DeltaRot);
 }
}

As we can see this is another function that gets called every frame, we're getting
a DeltaTime variable here too. We don't need to worry about using it this time
though. Instead, let's intercept the newAccel variable. This is what's making our
movement completely wrong, so let's replace it with our own vector and set it to
what it should be.

5.	 Type the following code for our ProcessMove function:

state PlayerWalking
{
 function ProcessMove(float DeltaTime, vector newAccel,
eDoubleClickDir DoubleClickMove, rotator DeltaRot)
 {
 local vector X, Y, Z, AltAccel;

 GetAxes(CurrentCameraRotation, X, Y, Z);
 AltAccel = PlayerInput.aForward * Z + PlayerInput.aStrafe
* Y;
 AltAccel.Z = 0;
 AltAccel = Pawn.AccelRate * Normal(AltAccel);
 super.ProcessMove(DeltaTime, AltAccel, DoubleClickMove,
DeltaRot);
 }
}

And now it's story time! In the first line we're declaring a few vectors to use in the
function. AltAccel is the one we'll be using to replace newAccel.

The second line, GetAxes, is declared in Object.uc. We feed it a rotator, and
it gives us three vectors pointing forward, to the right, and up from that rotator's
perspective. Normally ProcessMove uses the Pawn's rotation for this, but here
we're using our CurrentCameraRotation variable instead so we can base our
movement on our camera.

Chapter 4

[171]

In the next line, we're pulling aForward and aStrafe from the PlayerInput,
which is the class that gets all of the keyboard and mouse input and sends it to
the PlayerController. aForward is either positive or negative depending on
whether we're pressing forward or backward on the keyboard, and the same with
aStrafe being dependent on left/right presses.

From our camera's perspective, forward and backward are up and down, so we use
the Z vector we got from GetAxes and multiply it by aForward. Left and right are
left and right for our camera, so we use the Y vector and multiply it by aStrafe.
These two added together give us the direction we want to move in.

Remembering our talk about vectors, in the next line we use Normal to get
AltAccel to be one unit in length but still in the same direction. We multiply that
by our Pawn's acceleration rate to get the final AltAccel value, the direction we
want the player to move.

Finally we call ProcessMove's super, substituting newAccel with our own
AltAccel value.

The following diagram illustrates what's going on:

newAccel AltAccel

Back

RightForward

Left
Back

Right

Forward

Left

While newAccel is relative to the player, we've made AltAccel relative to
the camera.

6.	 That was a long talk, so let's compile the code and test it out. Now the player moves
like we would expect it to! The rotation and camera still work, so we're done here!

What just happened?
Now we've seen how we can change the way input is processed in the PlayerController
classes. It seems we've done most of our work so far in this class, and looking at all of the
code we have we can see how easily it can grow just from doing simple tasks.

Making Custom Classes

[172]

We're done with AwesomePlayerController for now, so let's see what we can do with
another of the UDK's common classes, the Pawn.

The Pawn
The Pawn is our physical representation in the world, with the PlayerController being its
brain. The Pawn interacts with other objects in the world, has our health, speed, and jump
height among other things. It also obviously has the visual mesh for our player, which we've
experimented with when we made ourselves invisible.

For our experiment with the Pawn class, let's see if we can get our fake enemies to hurt us.

Time for action – Detecting collisions to give our Pawn damage
As the physical representation of the player, the Pawn class uses the function TakeDamage
to subtract from our health, give us any momentum the weapon used has (such as rockets
pushing us away when they explode), and tells the game what type of damage it was so it
can play the appropriate effects and send the right death messages. We'll call that function
from another function we're going to use, Bump.

1.	 While in the real world using Bump resurrects old forum threads, in the UDK it
lets us know when two actors that have bBlockActors set to true run into each
other. First, let's set a damage amount in our TestEnemy class. Add this variable to
TestEnemy:

 var float BumpDamage;

And give it a value in the default properties:

 BumpDamage=5.0

2.	 Now let's add the Bump function to our AwesomePawn:

event Bump(Actor Other, PrimitiveComponent OtherComp, vector
HitNormal)
{
 `log("Bump!");
 if(TestEnemy(Other) != none)
 TakeDamage(TestEnemy(Other).BumpDamage, none, Location,
vect(0,0,0), class'UTDmgType_LinkPlasma');
}

Here we test if the actor that bumped into us was a TestEnemy, and if so call
TakeDamage and use its BumpDamage as the amount of damage we receive.

Chapter 4

[173]

3.	 Compile the code and test it out. Wow, what just happened? Seems like we took a
lot of damage and died pretty quick when we ran into a TestEnemy. Let's take a
look at the log:

[0008.05] ScriptLog: Bump!
[0008.05] ScriptLog: Bump!
[0008.06] ScriptLog: Bump!
[0008.06] ScriptLog: Bump!

It seems like it gets called a lot while we're running into something. Well this is no
good. Let's see if we can add an invulnerability timer to prevent constantly taking
damage.

4.	 We'll use a bool and a float for this. Let's add these variables to the top of our
AwesomePawn:

var bool bInvulnerable;
var float InvulnerableTime;

We'll set bInvulnerable to true for a bit after we take damage.

5.	 Let's give InvulnerableTime a value in our default properties:

InvulnerableTime=0.6

That should be long enough. Now for the Bump function.

1.	 Let's change the Bump function to look like this:

event Bump(Actor Other, PrimitiveComponent OtherComp, vector
HitNormal)
{
 if(TestEnemy(Other) != none && !bInvulnerable)
 {
 bInvulnerable = true;
 SetTimer(InvulnerableTime, false, 'EndInvulnerable');
 TakeDamage(TestEnemy(Other).BumpDamage, none, Location,
vect(0,0,0), class'UTDmgType_LinkPlasma');
 }
}

Now we've added a check to our if statement to make sure we aren't invulnerable.
If we're not, we set ourselves to be invulnerable and start a timer, and then do the
TakeDamage call.

Making Custom Classes

[174]

2.	 Now let's write the EndInvulnerable function we're calling from our timer. This
one's pretty simple:

function EndInvulnerable()
{
 bInvulnerable = false;
}

3.	 Now let's compile and test out this new code. Much better! We still take damage if
we stand against a TestEnemy, but it isn't instantly killing us.

What just happened?
We've used the Bump function to identify what's running into us, and giving damage to the
player if it was a TestEnemy. When hit we make the player invulnerable for 0.6 seconds to
avoid rapid Bump calls from instantly killing the player.

This was just a simple experiment with our Pawn class, but now we can start to see the
difference between it and the PlayerController. With the Pawn being our physical
representation it is the thing that takes damage in the game.

Now that we're taking damage from our TestEnemy class let's have a little fun with
TestEnemy. They're not much of a challenge just sitting there, so let's make them move
towards us if we get too close.

Time for action – Making the TestEnemies move
Since TestEnemy is only a temporary class, we won't get too complex with its behavior.
We'll just use some simple math and adapt some of our camera movement code to get
them working.

1.	 The first thing we need to do in TestEnemy.uc is get a reference to the
AwesomePawn that's running around shooting at us. Since the player doesn't spawn
right away, we can't do this in PostBeginPlay. Instead, we're going to constantly
check if we have a reference, and if not try to find one until we do.

2.	 Let's add a Pawn variable to our TestEnemy class:

 var Pawn Enemy;

Chapter 4

[175]

3.	 Now let's see if we can get a reference to the player after they've spawned. Let's use
the Tick function for this:

function Tick(float DeltaTime)
{
 local AwesomePlayerController PC;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(class'AwesomePlayerControll
er', PC)
 {
 if(PC.Pawn != none)
 {
 Enemy = PC.Pawn;
 `log("My enemy is:" @ Enemy);
 }
 }
 }
}

For non-Controller actors the function is called Tick instead of PlayerTick, but
it is still run once every frame. Now, if our Enemy variable isn't referencing any
Pawn, we use the LocalPlayerControllers iterator to run through all of the
AwesomePlayerControllers in the game and see if they have a Pawn. If so, set
our Enemy variable and log it.

4.	 Compile the code and let's test it out. Close out the game and take a look at the log:

[0008.99] ScriptLog: My enemy is: AwesomePawn_0
[0008.99] ScriptLog: My enemy is: AwesomePawn_0
[0008.99] ScriptLog: My enemy is: AwesomePawn_0
[0008.99] ScriptLog: My enemy is: AwesomePawn_0

Four TestEnemy actors in our test level, four enemies set to AwesomePawn_0. It's
almost as if they want to kill us or something.

5.	 Now we need to expand on our Tick function. First, let's add a float variable to
the top to set a distance we'll check:

 var float FollowDistance;

And give it a default value:

 FollowDistance=512.0

Making Custom Classes

[176]

6.	 Now for the movement code. Let's change our Tick function to the following:

function Tick(float DeltaTime)
{
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(class'AwesomePlayerControll
er', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }
 else if(VSize(Location - Enemy.Location) < FollowDistance)
 {
 NewLocation = Location;
 NewLocation += (Enemy.Location - Location) * DeltaTime;
 SetLocation(NewLocation);
 }
}

Now we've added an else if to our if statement. If our Enemy is None it will execute
the code in the if statement, but if we have an enemy set it will go through the else
if code. There, we check if the distance between us and our Enemy is less than our
FollowDistance, and if so we use our newly declared NewLocation variable to
move us closer to our Enemy. The second line there should look familiar; we used
the same code to move our camera towards DesiredCameraLocation earlier.

7.	 Compile the code and test it out. Well that's pretty frightening. But something's
wrong. If we just stand still the enemies run right through us and don't cause any
more damage. The way we're moving our TestEnemy class seems to be causing
problems, so let's make them stop and deal damage directly when they get close
enough.

8.	 Let's add another float to our TestEnemy class:

 var float AttackDistance;

And add a value to our default properties:

 AttackDistance=96.0

Chapter 4

[177]

Now let's change our Tick function:

function Tick(float DeltaTime)
{
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(class'AwesomePlayerControll
er', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }
 else if(VSize(Location - Enemy.Location) < FollowDistance)
 {
 if(VSize(Location - Enemy.Location) < AttackDistance)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));
 }
 else
 {
 NewLocation = Location;
 NewLocation += (Enemy.Location - Location) *
DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

9.	 Compile the code and test it out. Nice! Now when the TestEnemy actors get close
enough they'll stop moving and start damaging us.

What just happened?
Now inside our else if statement, we check if we're close enough to attack, and if so we call
the Bump function on our enemy ourselves. With the invulnerability code in place it will still
prevent us from taking damage too fast.

If we're not close enough to attack, we go into the else statement and continue moving
towards our enemy.

Making Custom Classes

[178]

This is starting to look more and more like an actual game. We didn't have a whole lot
to start with, but adding more and more code with each task gets us closer to where we
want to be.

The next class we'll talk about is the HUD, which we can use to display information for
the player.

The HUD
Although the traditional HUD has been replaced with Scaleform, we can still use the old style
for prototyping. Scaleform is beyond the scope of this book, but we'll take a look at how we
can use the HUD to help us in our UnrealScript programming.

Time for action – Using the HUD
We're going to use our HUD to display some useful information, such as our weapon level
and the number of enemies we have left to kill. First we need to create our own HUD class.

1.	 Create a new file in our Development/Src/AwesomeGame/Classes folder called
AwesomeHUD.uc. Type the following code into it:

class AwesomeHUD extends UTGFxHUDWrapper;

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
 `log("AwesomeHUD spawned!");
}

defaultproperties
{
}

2.	 Now we're going to replace the default HUD with our own class. In our
AwesomePlayerController, add the following function:

reliable client function ClientSetHUD(class<HUD> newHUDType)
{
 if(myHUD != none)
 myHUD.Destroy();

 myHUD = spawn(class'AwesomeHUD', self);
}

Now our HUD will be the only type that can be spawned for our
AwesomePlayerController.

Chapter 4

[179]

3.	 Compile the code and run the game. Nothing looks different, but close the game and
check the log:

[0004.37] ScriptLog: AwesomeHUD spawned!

At least we know it's working!

1.	 We're not going to use Scaleform, but there are still some functions we can use for
our prototype game. We'll use a function called DrawText to write our weapon's
current level on the screen. Let's add the DrawHUD function to our AwesomeHUD:

event DrawHUD()
{
 super.DrawHUD();

 if(PlayerOwner.Pawn != none && AwesomeWeapon(PlayerOwner.Pawn.
Weapon) != none)
 {
 Canvas.DrawColor = WhiteColor;
 Canvas.Font = class'Engine'.Static.GetLargeFont();
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.9);
 Canvas.DrawText("Weapon Level:" @
AwesomeWeapon(PlayerOwner.Pawn.Weapon).CurrentWeaponLevel);
 }
}

PlayerOwner is a variable referencing our Controller, so all we need to do is check
if the Controller's Pawn is there and if it's holding an AwesomeWeapon. If so, we can
move into the if statement.

First, we set the Canvas' DrawColor and Font. The Canvas is the part of the
HUD we actually draw on. Next, we set the position we want to draw at. ClipX
will give us the horizontal size of the screen in pixels, so multiplying it by 0.1 will
make us draw at a location 10% from the left side of our screen. We do a similar
multiplication with ClipY, making it 90% down from the top of the screen (or 10%
up from the bottom).

2.	 Let's compile the code and take a look at the game. The text will only draw if
we're holding an AwesomeWeapon, so run to our weapon spawner and pick up
the rocket launcher. The text should now show up, and it will change as we pick up
the weapon upgrades:

Nice!

Making Custom Classes

[180]

3.	 What other information could we put here? Let's make it so we can tell how many
enemies are left to kill. In our AwesomeGame class, add a new variable:

var int EnemiesLeft;

Now let's change our PostBeginPlay function to set its value to the initial number
of TestEnemy actors:

simulated function PostBeginPlay()
{
 local TestEnemy TE;

 super.PostBeginPlay();

 GoalScore = 0;

 foreach DynamicActors(class'TestEnemy', TE)
 GoalScore++;

 EnemiesLeft = GoalScore;
}

Finally, let's add the ScoreObjective function and subtract from EnemiesLeft
every time it's called:

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);
}

4.	 Now let's change our DrawHUD function to add the new info. We'll move the font
and color lines outside our weapon level's if statement since we'll be using it for
both now:

event DrawHUD()
{
 super.DrawHUD();

 Canvas.DrawColor = WhiteColor;
 Canvas.Font = class'Engine'.Static.GetLargeFont();

 if(PlayerOwner.Pawn != none && AwesomeWeapon(PlayerOwner.Pawn.
Weapon) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.9);

Chapter 4

[181]

 Canvas.DrawText("Weapon Level:" @
AwesomeWeapon(PlayerOwner.Pawn.Weapon).CurrentWeaponLevel);
 }

 if(AwesomeGame(WorldInfo.Game) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.95);
 Canvas.DrawText("Enemies Left:" @ AwesomeGame(WorldInfo.
Game).EnemiesLeft);
 }
}

Compile the code and run the game to check it out.

Perfect!

What just happened?
Although we wouldn't want this for our finished game, using the HUD in this way helps us
quickly prototype our game and put useful information up for the player to see. We could
also use this for debugging, since we can get access to pretty much any variable we want and
put it up on the HUD so we can see it in real time.

Have a go hero – Kills on the HUD
Now that we've played around with the HUD a bit, see if you can get it to display the number
of enemies that we've killed instead of the number that are left.

Solution - Change the last section of the DrawHUD function to look like this:

 if(AwesomeGame(WorldInfo.Game) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.95);
 Canvas.DrawText("Enemies Killed:" @ AwesomeGame(WorldInfo.
Game).GoalScore - AwesomeGame(WorldInfo.Game).EnemiesLeft);
 }

Making Custom Classes

[182]

We've done a lot in this chapter. We've gone from messing around with weapons to having
an almost fully functional game. While these are the most common classes in UnrealScript,
it would still be very helpful to read through the class tree to see how everything is arranged
and what classes already exist so we don't reinvent the wheel when we're working on our
own project. As always, I will say that reading through the source code will give you a great
insight into how the UDK's classes work and interact with each other.

Pop quiz – Figuring out Functions
1.	 What class is the puppet master behind our Pawn?

2.	 What function is called when two actors that have bBlockActors set collide with
each other?

1.	 Touch

2.	 PostBeginPlay

3.	 Bump

3.	 What formula do we use to get a vector pointing from actor A to actor B?

Summary
We learned a lot in this chapter about the UDK's classes and how we can use them to
customize our own game.

Specifically, we covered:

�� Breaking down a game's design document into programming tasks

�� When and where to create custom classes for our game

�� Class modifiers and what each of them does

�� How to change the functionality of the UDK's classes by using our own subclasses

�� The most common UDK classes and what they do

Now that we've learned about creating classes, it's time to start learning more about
functions. We've been using them a lot so far, but what are they and how do they work
exactly? In the next chapter, we'll take a closer look at what we can do with them.

5
Using Functions

Down to the nitty-gritty

In the last chapter we took a good look at creating our own classes for
our game. We know from our talk about inheritance that we can override
functions of our superclasses, and we've done a bit of that already. But what
are functions exactly, and how do we know when and where to use ones that
already exist or when to create our own? In this chapter we're going to expand
on our Awesome Game by taking a closer look at functions.

In this chapter we will:

�� Talk about what functions are and with what parameters and modifiers we can use
with them

�� Discuss local versus instance variables

�� Take a look at commonly used functions and create our own as well

�� Talk about using the super, and also when NOT to use it

�� Take a look at delegates and how they are used

So with that, let's talk about functions.

Using Functions

[184]

What's your function?
In a nutshell, a function is a block of code written to perform a specific task that can be
called as many times as we need from other parts of our program. As an example, if we had
a function called EatAnApple, it would be like this:

var int i, NumberOfSlices;

function EatAnApple()
{
 WashApple();
 NumberOfSlices = SliceApple();
 for(i=0; i<NumberOfSlices; i++)
 ChewAppleSlice();
 ThrowAwayAppleCore();
}

Instead of having to write out each line every time we want to eat an apple, we just call the
EatAnApple() function. As a more practical example from our own code, let's take a look
at our AwesomeWeapon:

function UpgradeWeapon()
{
 if(CurrentWeaponLevel < MAX_LEVEL)
 CurrentWeaponLevel++;

 FireInterval[0] = FireRates[CurrentWeaponLevel - 1];

 if(IsInState('WeaponFiring'))
 {
 ClearTimer(nameof(RefireCheckTimer));
 TimeWeaponFiring(CurrentFireMode);
 }

 AddAmmo(MaxAmmoCount);
}

Instead of having all of these lines written out wherever we wanted to upgrade the weapon,
we group them all into the UpgradeWeapon function. But we're only calling it from our
upgrade pickup; why not just write it out there? Using this function as our example, let's say
we wanted to make it so that the weapon could be upgraded by other means besides the
upgrade pickups. Let's say we were making an RPG, and for each 50 enemies we killed with
the weapon its level would go up and it would be upgraded. Having all of the code grouped
into the UpgradeWeapon function makes it really easy to do this, and prevents us from
having duplicate code scattered around in our classes.

Chapter 5

[185]

For the most part, function names are completely arbitrary. We can use whatever name we
like, but inside the same class no two functions can have the same name. If we do that we'll
get a compiler error. Also remembering our lessons on inheritance, if a function has the
same name as a function in one of our superclasses we will override that function instead
of creating a new one; so when you're new to UnrealScript and are creating a function of
your own, it helps to run a quick search in UnCodeX to make sure it's not already being used
by your class's superclasses. As an example, say we were creating our own Pawn class and
wanted to create a function called JumpOffPawn(). If we look at Pawn.uc we can see that
this function has already been defined:

function JumpOffPawn()
{
 Velocity += (100 + CylinderComponent.CollisionRadius) * VRand();
 if (VSize2D(Velocity) > FMax(500.0, GroundSpeed))
 {
 Velocity = FMax(500.0, GroundSpeed) * Normal(Velocity);
 }
 Velocity.Z = 200 + CylinderComponent.CollisionHeight;
 SetPhysics(PHYS_Falling);
}

If we run a search in UnCodeX we can see that this function is being called from a few
different places. For our custom function we might not want it to be called when Pawn's
version is supposed to be called instead, so we'll rename it to avoid it being called because of
inheritance.

When a function is called, the game will execute all of the code inside of that function
and then return to where it left off and continue. Let's take a look at our UpgradeWeapon
function again:

function UpgradeWeapon()
{
 if(CurrentWeaponLevel < MAX_LEVEL)
 CurrentWeaponLevel++;

 FireInterval[0] = FireRates[CurrentWeaponLevel - 1];

 if(IsInState('WeaponFiring'))
 {
 ClearTimer(nameof(RefireCheckTimer));
 TimeWeaponFiring(CurrentFireMode);
 }

 AddAmmo(MaxAmmoCount);
}

Using Functions

[186]

Towards the end of this function we call TimeWeaponFiring. That's defined in Weapon.uc:

simulated function TimeWeaponFiring(byte FireModeNum)
{
 // if weapon is not firing, then start timer. Firing state is
responsible for stopping the timer.
 if(!IsTimerActive('RefireCheckTimer'))
 {
 SetTimer(GetFireInterval(FireModeNum), true,
nameof(RefireCheckTimer));
 }
}

The code in here executes to set a timer, and then execution returns to the previous position
in UpgradeWeapon(). The next line is AddAmmo, which is defined in UTWeapon:

function int AddAmmo(int Amount)
{
 AmmoCount = Clamp(AmmoCount + Amount,0,MaxAmmoCount);
 // check for infinite ammo
 if (AmmoCount <= 0 && (UTInventoryManager(InvManager) == None ||
UTInventoryManager(InvManager).bInfiniteAmmo))
 {
 AmmoCount = MaxAmmoCount;
 }

 return AmmoCount;
}

The program then returns to the UpgradeWeapon function to finish.

It's a minor thing to keep in mind, but it does help figure out what's going on in the code.
UnrealScript doesn't run more than one thing simultaneously. It doesn't matter how many
cores your computer has, or what you've read about multithreading. Remember when we
used the Tick function, and how it runs every frame? When Tick is called it isn't run on
all actors at the exact same time, the game goes through the list of all of the actors in the
level and calls Tick on each and every one of them, one at a time. This might sound slow,
but with UnrealScript operating at millions of instructions per second it's not something we
generally have to worry about.

With this in mind, let's take a look at these two hypothetical functions using a variable:

var int MyInt;

function Something()
{

Chapter 5

[187]

 DoSomethingElse();
 `log(MyInt);
}

function DoSomethingElse()
{
 MyInt = 5;
 MyInt = 2;
 MyInt = 13;
 MyInt = 9;
}

Knowing that code doesn't execute simultaneously, it doesn't matter how many lines of code
are in DoSomethingElse(), it will still execute all of it before returning to where it left off
in Something() and the next line will log 9.

This is helpful to know when working with functions. The first three lines in the
DoSomethingElse function above are meaningless, all that matters is the end result.
When writing code we can use intermediate steps in long equations or call other
functions to manipulate the variables we're working with as much as we need to, as long
as the end result is what we want. We can see an example of this in our own code, in
AwesomePlayerController:

 function ProcessMove(float DeltaTime, vector newAccel,
eDoubleClickDir DoubleClickMove, rotator DeltaRot)
 {
 local vector X, Y, Z, AltAccel;

 GetAxes(CurrentCameraRotation, X, Y, Z);
 AltAccel = PlayerInput.aForward * Z + PlayerInput.aStrafe * Y;
 AltAccel.Z = 0;
 AltAccel = Pawn.AccelRate * Normal(AltAccel);
 super.ProcessMove(DeltaTime, AltAccel, DoubleClickMove,
DeltaRot);
 }

We manipulate AltAccel a few times before the end of the function, but the only value
that matters is the final one in this line:

AltAccel = Pawn.AccelRate * Normal(AltAccel);

Creating and calling functions
Now we know what functions are and how they work, but how do we write and call them?
We've done a bit of it already, but let's take a closer look.

Using Functions

[188]

Time for action – Writing a function
For this we're going to need another custom class, an enemy spawner. We'll replace our
current placed TestEnemy actors with this new actor, and have it spawn the enemies for us.

1.	 We're going to create the enemy spawner as a subclass of AwesomeActor, so let's
make sure AwesomeActor looks like this:

class AwesomeActor extends Actor;

defaultproperties
{
}

2.	 Create a new file in our Development\Src\AwesomeGame\Classes folder called
AwesomeEnemySpawner.uc.

3.	 Write the following code in it:

class AwesomeEnemySpawner extends AwesomeActor
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

We're adding a sprite to it so that we can see it when we place it in the editor.

4.	 Now, in order for this thing to spawn an enemy, we're going to need to write a
function to do it. Let's make up a function called SpawnEnemy:

function SpawnEnemy()
{
 `log("SpawnEnemy called!");
}

For now we'll just have it log when it's called.

5.	 Now the function is created, but where do we call it from? Thinking back to our
classes, the one that controls what's going on in the game is the GameInfo class, in
our case our custom AwesomeGame.

Chapter 5

[189]

6.	 Before we can call the function however, we need references to all of our
AwesomeEnemySpawners. Since we don't know ahead of time how many there will
be, we'll use a dynamic array and find all of them with the foreach iterator. First
add the variable to the top of AwesomeGame:

var array<AwesomeEnemySpawner> EnemySpawners;

7.	 Now let's find them all in our PostBeginPlay function. Rewrite it to look like this:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = EnemiesLeft;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 `log("Number of spawners:" @ EnemySpawners.length);
}

8.	 We've gotten rid of the old TestEnemy code in PostBeginPlay from the last
chapter, but we still need to set a number for it so the game doesn't end as soon as
we shoot one. Let's set a value for that in the default properties:

 EnemiesLeft=10

Our AwesomeGame class should now look like this:

class AwesomeGame extends UTDeathmatch;

var int EnemiesLeft;
var array<AwesomeEnemySpawner> EnemySpawners;

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = EnemiesLeft;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

Using Functions

[190]

 `log("Number of spawners:" @ EnemySpawners.length);
}

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);
}

defaultproperties
{
 EnemiesLeft=10
 bScoreDeaths=false
 PlayerControllerClass=class'AwesomeGame.
AwesomePlayerController'
 DefaultPawnClass=class'AwesomeGame.AwesomePawn'
 DefaultInventory(0)=None
}

9.	 Let's test this out real quick before we continue. Compile the code, then open
AwesomeTestMap in the editor and delete all of the TestEnemy actors.

10.	Now add several AwesomeEnemySpawner actors to the map. Save and close, then
run the game with our batch file.

11.	Now let's take a look at the log:

[0004.46] ScriptLog: Number of spawners: 4

What just happened?
There's that log, but where's the log from the spawners themselves? Since we haven't called
our SpawnEnemy function yet, we wouldn't expect this log to show up.

But why does our number of spawners log show? We never called PostBeginPlay! For
this we have to understand something else about UnrealScript. A lot of functions are called
by the engine itself, and those calls are made from native C++ code that we can't see. Things
like PostBeginPlay, Tick, and the Bump function we've used before are called this way.

As a rule of thumb, functions that begin with "event" instead of "function" are called from
native code, and are usually reactions to things happening in the world, like Bump which is
originally declared in Actor and lets us know when two actors run into each other.

If we look at the original declarations for Tick and PostBeginPlay in Actor.uc, we can
see that they use event instead of function.

Since any completely custom functions we create aren't going to be called from anywhere
else, we need to call them ourselves. Let's continue working on our enemy spawners.

Chapter 5

[191]

Time for action – Calling custom functions
We have our SpawnEnemy function, and now we have an array of AwesomeEnemySpawner
actors in our AwesomeGame class. Let's call SpawnEnemy.

1.	 Let's add a new function to AwesomeGame called ActivateSpawners:

function ActivateSpawners()
{
 local int i;

 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].SpawnEnemy();
}

2.	 This will iterate through the EnemySpawners array and call SpawnEnemy on each
of them.

3.	 Let's call our ActivateSpawners function from PostBeginPlay:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 ActivateSpawners();
}

Now, PostBeginPlay is getting an array of all of the spawners, and then calling the
function that activates them.

4.	 Compile the code and test. Now the log in AwesomeEnemySpawner's
PostBeginPlay should show up:

[0004.73] ScriptLog: SpawnEnemy called!
[0004.73] ScriptLog: SpawnEnemy called!
[0004.73] ScriptLog: SpawnEnemy called!
[0004.73] ScriptLog: SpawnEnemy called!

There we go!

Using Functions

[192]

5.	 Logs are good, but let's make this function do something useful, like... spawn an
enemy. Let's change the SpawnEnemy function in AwesomeEnemySpawner to this:

function SpawnEnemy()
{
 spawn(class'TestEnemy',,, Location);
}

6.	 Now let's compile and test. The enemies are spawning! But wasn't this how the
code worked before? This seems like a lot of work for nothing. Or is it? Now that
we have spawners in place with our own SpawnEnemy function, we can do some
interesting things. Let's see if we can get the spawners to spawn a new enemy when
the old one dies. Let's change the SpawnEnemy function to this:

function SpawnEnemy()
{
 spawn(class'TestEnemy', self,, Location);
}

"Self" is a special variable that always refers to the object that's using it. Be sure not
to miss it in the spawn call above! Let's look at the Spawn function in Actor.uc:

native noexport final function coerce actor Spawn
(
 class<actor> SpawnClass,
 optional actor SpawnOwner,
 optional name SpawnTag,
 optional vector SpawnLocation,
 optional rotator SpawnRotation,
 optional Actor ActorTemplate,
 optional bool bNoCollisionFail
);

When we use self in our spawn call, we're setting SpawnOwner to be the
AwesomeEnemySpawner. Looking at Actor.uc, this will show up in the
Owner variable:

var const Actor Owner; // Owner actor.

Another place where this variable is used is in Projectiles. When spawned, projectiles
have their owner set to the weapon that spawned them, that way if the projectile
kills someone the game knows who caused the damage so it can award points.

In our case, we'll use the Owner variable to let the AwesomeEnemySpawner know
that the enemy that it spawned has been killed so it can spawn a new one.

Chapter 5

[193]

7.	 Let's add two new lines to the TakeDamage function in TestEnemy:

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

Remembering our casting, since Owner is declared as an Actor we need to cast to
our AwesomeEnemyClass so we can call the custom function we're going to create,
EnemyDied.

TestEnemy class's TakeDamage function should look like this now:

event TakeDamage(int DamageAmount, Controller EventInstigator,
vector HitLocation, vector Momentum, class<DamageType> DamageType,
optional TraceHitInfo HitInfo, optional Actor DamageCauser)
{
 if(EventInstigator != none && EventInstigator.
PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective(EventInstigator.
PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 Destroy();
}

8.	 We're calling EnemyDied from there, but it's not a function that exists yet so let's
create it in our AwesomeEnemySpawner class:

function EnemyDied()
{
 SpawnEnemy();
}

9.	 Compile the code and test it out. Now we see that whenever we kill an enemy, a
new one spawns at the AwesomeEnemySpawner class's location. Nice!

What just happened?
So why did we use a separate EnemyDied function when all it does is call SpawnEnemy?
For this we have to think in human terms a bit. It's the difference between letting us know
something happened so we can make our own decision, and just telling us what to do.
Remember when I said that variables shouldn't be manipulated from other classes? The
same principle applies here. It's better to call a function that lets the class itself decide
what to do than doing it ourselves from the other class. In our example, eventually we're
going to add some checks to the EnemyDied function to see if we're able to spawn another
enemy. Something like that is better done in the AwesomeEnemySpawner class than in the
TestEnemy class. The TestEnemy just tells the AwesomeEnemySpawner, "Hey, I died." The
AwesomeEnemySpawner then figures out what it should do next.

Using Functions

[194]

Time for action – What's your malfunction?
One bug we'll notice playing around with this new enemy spawner code is that even after
the match is over, the enemies keep moving toward us. There's no "pause" button being hit
so this is normal behavior, but it's not what we want. Having them vanish wouldn't look quite
right either, so let's just have them stop like the player does. To do this we'll have to start in
our AwesomeGame class.

1.	 We know the ScoreObjective function can tell us when the number of
enemies reaches zero, so that's a good place to start. Let's add a bit of code to
ScoreObjective:

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 local int i;

 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);

 if(EnemiesLeft == 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].FreezeEnemy();
 }
}

Now if EnemiesLeft is 0, it will iterate through the EnemySpawners array and tell
all of them to freeze their enemies.

2.	 The next step is to create the FreezeEnemy function in AwesomeEnemySpawner,
but first we need to get a reference to the enemy that we've spawned. We can
do that through our call to Spawn. First let's add the variable to the top of our
AwesomeEnemySpawner class:

var TestEnemy MySpawnedEnemy;

3.	 Now change the SpawnEnemy function slightly:

function SpawnEnemy()
{
 MySpawnedEnemy = spawn(class'TestEnemy', self,, Location);
}

This will give us our reference.

Now we can create the FreezeEnemy function:

function FreezeEnemy()

Chapter 5

[195]

{
 if(MySpawnedEnemy != none)
 MySpawnedEnemy.Freeze();
}

Remember to check that it's not none first, or we may get errors in the log if we
don't have a valid reference before trying to call Freeze() on it.

4.	 Almost done! Now we can create the Freeze function in our Test Enemy class.
Add a bool variable to the top:

var bool bFreeze;

5.	 Now create the Freeze function:

function Freeze()
{
 bFreeze = true;
}

Simple enough.

6.	 Finally, let's use the bFrozen variable to stop the enemy from moving. We'll add it
to the else if statement in our Tick function:

function Tick(float DeltaTime)
{
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(class'AwesomePlayerControll
er', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }
 else if(!bFreeze && VSize(Location - Enemy.Location) <
FollowDistance)
 {
 if(VSize(Location - Enemy.Location) < AttackDistance)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));
 }
 else
 {

Using Functions

[196]

 NewLocation = Location;
 NewLocation += (Enemy.Location - Location) *
DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

7.	 There, that should stop it. Compile and test, then kill the last enemy while another
one is near you. It should stop in its tracks.

What just happened?
We can see from this daisy-chain of function calls that it's good to keep the function calls
separate. Instead of going all the way through to the TestEnemy from our AwesomeGame
class, we just call FreezeEnemy on the AwesomeEnemySpawner and let it figure out what
to do. This keeps our code clean, and also makes it easier to change in the future if we want
to add more functionality or change the way things work. We can see the advantage to this
from our modification to the ScoreObjective function. If some other function somewhere
just changed the score itself instead of calling ScoreObjective, it would be a lot harder to
track down where it was happening and change it to suit our purposes.

Local versus instance variables
Most of our work so far has involved instance variables, that is, variables in a class that are
accessible from any function in that class and even from other classes. Instance variables
persist until that object is destroyed, so they're used for things we need to know about that
object all the time, like Health for our Pawn class or the amount of ammo we have in our
weapon. We've also used a few when we needed to store a variable until a different function
needed to use it, like the CurrentCameraLocation and CurrentCameraRotation in
our AwesomePlayerController class, which were processed in PlayerTick and used in
GetPlayerViewPoint.

Sometimes, however, we'll want "throwaway" variables that we only need while we're in a
function, and we don't need to keep them or access them from anywhere else. For this, we
use local variables.

Local Variables
Let's try some experiments with local variables in our AwesomeGame class.

Chapter 5

[197]

Time for action – Using local variables
1.	 We'll use a function we haven't used yet for this so we can keep it easily readable. In

addition to PostBeginPlay, all Actor classes have a PreBeginPlay event that is
called before PostBeginPlay during startup. We'll use this for our experiments.

2.	 Local variables are declared like instance variables, except we use local in the
declaration line. Local variables can only be declared inside a function, and must be
at the top of the function before any other lines of code. To see for ourselves, let's
make a PreBeginPlay function in our AwesomeGame class:

function PreBeginPlay()
{
 super.PreBeginPlay();

 local int i;
 i = 5;
 `log("This is i:" @ i);
}

3.	 If we try to compile this, we'll get a compiler error:

Error, 'Local' is not allowed here

4.	 Let's try rearranging the PreBeginPlay function to move the variable declaration
to the top:

function PreBeginPlay()
{
 local int i;

 super.PreBeginPlay();

 i = 5;
 `log("This is i:" @ i);
}

5.	 It compiles fine this time, and shows up in our log:

[0004.53] ScriptLog: This is i: 5

6.	 What happens if we move the variable outside of the class? At the top of
AwesomeGame, create a new local variable:

class AwesomeGame extends UTDeathmatch;

local int MyInt;

Using Functions

[198]

7.	 Try to compile, and we get this error:

Error, Local variables are only allowed in functions

Well that settles that!

8.	 Delete the MyInt line. Let's try something else. What happens if we try to declare a
normal variable inside a function? Let's try it in PreBeginPlay():

function PreBeginPlay()
{
 var int MyInt;
 super.PreBeginPlay();
}

9.	 Compile and we get this error:

Error, Instance variables are only allowed at class scope (use
'local'?)

10.	As we can see from these experiments, variable declaration has to happen in very
specific places. Using a hypothetical class it would happen like this:

class MyActor extends Actor;

var int MyInstanceVariable;

function Something()
{
 local int MyLocalVariable;
 DoSomeStuff();
}

Instance variables are declared after the class line and before any functions, while
local variables are declared inside functions before any other code.

11.	Let's rewrite PreBeginPlay a bit. Change it to this:

function PreBeginPlay()
{
 local int MyInt;
 MyInt = 5;
}

Now let's add this line to the bottom of our PostBeginPlay function (not
PreBeginPlay):

 `log(MyInt);

Chapter 5

[199]

12.	Try to compile the code, and we'll get an error and a warning:

Error, Bad or missing expression for token: MyInt, in Call to
'LogInternal', parameter 1
Warning, 'MyInt' : unused local variable

13.	What's going on here? First, the error. Local variables can only be used inside the
class they're declared in. After the function ends, the variable is thrown away. We
can't use it in any other function, so let's delete the log line from PostBeginPlay.

14.	Now for the warning. These aren't as severe as errors. Code will still compile and
work with warnings, the compiler is just letting us know that we declared MyInt,
but we're not doing anything with it. So why have it? Deleting unused local variables
helps keep code clean and frees up memory and processing power. Not much, but
getting into good programming habits will help us later.

15.	One thing we'll notice about local variables, and we've already done this in our
AwesomeGame class, is that local variables in different functions can have the
same name. This can get a bit confusing since you might mistake them for instance
variables if you use them in a lot of functions, but for simple things like our for
loops it's convenient to use the same variable name so you can immediately
recognize what it's being used for. Let's take a look at our ActivateSpawners and
ScoreObjective functions:

function ActivateSpawners()
{
 local int i;

 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].SpawnEnemy();
}

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 local int i;

 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);

 if(EnemiesLeft == 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].FreezeEnemy();
 }
}

Using Functions

[200]

Both functions are declaring a local variable called i, and we're not getting any
compiler errors. Since local variables are thrown away after a function is finished, it
doesn't matter that these two have the same name. They'll never conflict with each
other. And in these instances, we're using them in our for loops to iterate through
the EnemySpawners array. We just need the variable to count up from 0 to the
length of the array so we can call some functions on those actors, but after that we
don't really need the variable anymore so declaring it as a local variable makes sense
in this case. Wham bam, thank you... variable?

16.	Since local variables are only used in the functions where they're declared, and they
are thrown away afterward, there are a few more experiments we need to run so we
know for sure how they work. Let's rewrite our PreBeginPlay function:

function PreBeginPlay()
{
 local int MyInt;

 super.PreBeginPlay();

 MyInt = 5;
 TryLoggingLocal();
}

Now we'll write the TryLoggingLocal function:
function TryLoggingLocal()
{
 local int MyInt;
 `log("MyInt:" @ MyInt);
}

17.	When we compile, we'll get two warnings.

Warning, 'MyInt' : local variable used before assigned a value
Warning, 'MyInt' : unused local variable

The second one we've seen before, it's just letting us know we're not using the
MyInt we declared in PreBeginPlay. The first one is new though. Local variables
have the same default properties as instance variables, in an int's case it defaults
to 0. This warning is just letting us know that we haven't assigned a value to the
variable before trying to use it. It's not a major problem, but it's something we'll
want to avoid after this experiment.

Chapter 5

[201]

18.	So now we have our two functions:

function PreBeginPlay()
{
 local int MyInt;

 super.PreBeginPlay();

 MyInt = 5;
 TryLoggingLocal();
}

function TryLoggingLocal()
{
 local int MyInt;
 `log("MyInt:" @ MyInt);
}

Knowing what we know about local variables, what would we expect the log to be?
Let's find out.

19.	Compile the code and ignore the warning messages for now. Run the game, then
exit and check the log:

[0004.38] ScriptLog: MyInt: 0

That makes sense. The MyInt from PreBeginPlay is set to 5, but that has no
effect on the MyInt that's declared in TryLoggingLocal.

20.	Let's get rid of the TryLoggingLocal function and rewrite our PreBeginPlay
function:

function PreBeginPlay()
{
 local int MyInt;

 super.PreBeginPlay();

 MyInt = 5;
 `log("MyInt:" @ MyInt);
}

21.	Now let's add an instance variable with the same name to the top of our class:

var int MyInt;

Using Functions

[202]

22.	When we compile, we get the following warning:

Warning, Variable declaration: 'MyInt' conflicts with previously
defined field in 'AwesomeGame'

Even though local variables in different functions can have the same name, a local variable
can't have the same name as an instance variable.

What just happened?
Knowing the difference between local and instance variables helps us figure out which type
we need to use for a given situation. Local variables are helpful for calculations where we
need a temporary variable to store information while we work with it, for example, if we
were making more complicated calculations with our camera location we might use a local
variable to store additional information while we manipulated it.

Sometimes we may need to use an actor class as a local variable. Let's take a look at an
example of that using the foreach iterator.

Actors as local variables
We've used this in our search for all of the AwesomeEnemySpawners in the map, so let's see
how it works.

Time for action – Using Actors as local variables
Let's take a look at the PostBeginPlay function from our AwesomeGame class:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = EnemiesLeft;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 ActivateSpawners();
}

Chapter 5

[203]

Here we're declaring a local variable of type AwesomeEnemySpawner and giving it a name
of ES (short for Enemy Spawner). Near the end of the function we use the foreach iterator
to find all of the AwesomeEnemySpawners in the map. The way the iterator works is that it
gives us a reference to all of those actors it can find, as well as subclasses of that class, one at
a time instead of in an array. To be able to sort through them we need to store the reference
in a variable, so it makes sense to use a local variable here. We then take that temporary
reference and assign it to the end of our more permanent array. Let's see exactly what's
going on here.

1.	 Before we do anything, let's delete the PreBeginPlay function so it doesn't
interfere with our experiments.

2.	 Now let's change the foreach section of our PostBeginPlay to this:

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 {
 `log("ES:" @ ES);
 EnemySpawners[EnemySpawners.length] = ES;
 }

We'll log our local variable each time the iterator executes and see what happens.

3.	 Make sure there are more than one AwesomeEnemySpawner actors placed in our
test map, then run the game and check the log:

[0008.46] ScriptLog: ES: AwesomeEnemySpawner_1
[0008.46] ScriptLog: ES: AwesomeEnemySpawner_2
[0008.46] ScriptLog: ES: AwesomeEnemySpawner_3
[0008.46] ScriptLog: ES: AwesomeEnemySpawner_0

What just happened?
As we can see, each time the iterator executed, the AwesomeEnemySpawner actor it found
was assigned to our local variable, which we then added to the end of our array. In this case,
the local variable was just a middleman for our purposes, so the fact that it's thrown away
after the function is done executing is just fine. There are other instances where using an
actor as a local variable is useful; let's take a look.

Using Functions

[204]

Time for action – Modifying the projectile
For this experiment we're going to intercept the projectile that's being spawned from
our rocket launcher and modify it before sending it on its way. We'll do this in our
AwesomeWeapon_RocketLauncher class.

1.	 Open AwesomeWeapon_RocketLauncher and add the ProjectileFire
function:

simulated function Projectile ProjectileFire()
{
 local Projectile MyProj;

 MyProj = super.ProjectileFire();
 `log(MyProj);

 return MyProj;
}

ProjectileFire is originally declared in Weapon.uc. Additionally, if we take
a look at the FireAmmunition function, we can see the effect that the default
property of our rocket launcher here has:

 WeaponFireTypes(0)=EWFT_Projectile
 WeaponFireTypes(1)=EWFT_Projectile

In the FireAmmunition function we can see that it uses a Switch statement
to call ProjectileFire when we're using EWFT_Projectile for our
WeaponFireTypes. Another piece to the puzzle!

In our ProjectileFire function, we're using a Projectile as a local variable,
and getting a reference to it by calling the super. We then log it and let it continue
on its way.

Let's see what happens when we compile and test it by firing the weapon a few
times:

[0008.39] ScriptLog: UTProj_Rocket_0
[0010.09] ScriptLog: UTProj_Rocket_1
[0012.06] ScriptLog: UTProj_Rocket_2

Great, we're logging the references just fine! We don't really need a permanent
reference to the projectiles, since they will be destroyed soon anyway and we really
only need access to them while they're being spawned. Using a local variable for this
is perfect.

Chapter 5

[205]

2.	 Now that we have the reference, let's see if we can change something about the
projectiles as they're being spawned. How about the damage and damage radius?
As a goof, let's have the rockets use a crazy radius for their explosions and deal a lot
of damage. The normal way to do this would be to subclass the projectile class itself
and change the default properties there, but in our example game we may want
them to change gradually as the weapon is upgraded so doing it here would be fine.
Let's add these lines to our ProjectileFire function right before the return line
at the end:

 MyProj.DamageRadius = 10000;
 MyProj.Damage = 1000;

Ooh this is going to hurt isn't it?

3.	 Compile the code and test. Ouch.

What just happened?
Yeah maybe that wasn't such a good idea. No matter how far we try to get from the enemies,
when we hit one with a rocket we die too. Let's delete the entire ProjectileFire function
from our rocket launcher class.

This experiment did give us some insight into ways we can use actors as local variables
though! Once we've changed the damage and radius of our rocket we no longer need the
reference to it, so local variables are perfect for things like this.

We've discussed instance and local variables, but there is another way to use variables that
we haven't discussed yet. Since local variables can only be used inside the function they're
declared in, and instance variables stick around until the actor is destroyed, what do we do
when we just want to pass variables around to other functions? We COULD use instance
variables for that, but that would easily become a mess. A lot of the variables wouldn't be
things we cared about for long, so using instance variables wouldn't make sense anyway.

To figure this out, we need to talk about function parameters and modifiers.

Function parameters and modifiers
While writing the code in this and previous chapters we've seen plenty of functions that have
more than just our plain function declaration here:

function Something()
{
}

Using Functions

[206]

There's bools and simulateds and a huge mess of stuff inside the parentheses sometimes,
but what does it all mean? Let's take a look at what we can add to our function declarations
and what they do. First up are function parameters.

Function parameters
Function parameters are variables that are given to a function so that it can use them for
what it needs to do. If we're going to add ammo, we need to know how much to add. If we
get shot, we want to know who shot us! To do this we add parameters to our function.

Adding parameters to our functions is pretty simple. We just need to let the game know
what type of variable each is, and give it a name. The name is arbitrary; it doesn't need to
match the name of the variable we're passing into the function. The only restriction is that
it can't have the same name as any instance variable in our class, just like the restriction on
local variables. In a sense, function parameters act as local variables, because they're only
used in the function in which they're defined.

Let's take a look at them.

Time for action – Using function parameters
Time to pass some variables around! Let's start with the PostBeginPlay function in our
AwesomeEnemySpawner class.

1.	 We haven't defined the PostBeginPlay function for our AwesomeEnemySpawner
class, so let's do it now, and let's add an int to the function parameters:

function PostBeginPlay(int MyInt)
{
}

Compile the code. Uh oh, an error right out of the gate:

Error, Redefinition of 'function PostBeginPlay' differs from
original; different number of parameters

This is the most important thing to remember about function parameters. Once
a function is defined, if it's ever used in a subclass, then it must have the exact
same number and type of parameters as the original. The names of the variables
don't have to be the same, but if the original function has a bool and an int, any
subclasses must have a bool and an int in their parameters.

Chapter 5

[207]

2.	 Let's take a look at an example of this. We've been using the Tick function a lot.
If we look in Actor.uc where it's declared, we can see the parameter it uses
is a float:

event Tick(float DeltaTime);

For our subclasses the only thing that matters is the variable type.

3.	 To prove this, let's overrride the Tick function in AwesomeEnemySpawner:

function Tick(float RandomName)
{
}

This compiles fine.

4.	 Also, since we changed the name of the parameter, we wouldn't be able to use its
original name. We have to use the name we gave it. If we tried a log inside Tick
like this:

function Tick(float RandomName)
{
 `log(DeltaTime);
}

We would get a compiler error.

5.	 For multiple parameters, simply separate them with a comma. Let's delete the Tick
function and make up a function in our AwesomeEnemySpawner class.

function DoSomething(float MyFloat, bool MyBool)
{
}

That's compiling fine.

6.	 So how do we call DoSomething? With a plain function with no parameters we
would simply do this:

DoSomething();

But since our function has parameters, we need to supply it with values for those
parameters. Let's call DoSomething from a PostBeginPlay function:

function PostBeginPlay()
{
 super.PostBeginPlay();
 DoSomething(4.0, true);
}

Using Functions

[208]

Let's also add a log to DoSomething:

function DoSomething(float MyFloat, bool MyBool)
{
 `log(MyFloat @ MyBool);
}

7.	 Compile the code and run the game. Now let's look at the log:

[0005.96] ScriptLog: 4.0000 True

8.	 We can also pass variables' values to functions. Let's try this in PostBeginPlay:

function PostBeginPlay()
{
 local float SomeFloat;

 super.PostBeginPlay();

 SomeFloat = 34.0;
 DoSomething(SomeFloat, true);
}

9.	 Compile and test:

[0004.38] ScriptLog: 34.0000 True

Note that in this case we're simply passing the VALUE of the variable, not the variable
itself. We can't use SomeFloat in DoSomething(), since it's a local variable only of use to
PostBeginPlay. We're simply passing the value of 34.0 along, which is then assigned to
the MyFloat parameter of DoSomething.

What just happened?
Any variable can be used as a parameter in a function. For example, let's take a look at the
TakeDamage function we've used in our TestEnemy class:

event TakeDamage(int DamageAmount, Controller EventInstigator, vector
HitLocation, vector Momentum, class<DamageType> DamageType, optional
TraceHitInfo HitInfo, optional Actor DamageCauser)

This function has a lot of parameters, including an int, two vectors, even an actor variable of
the Controller class. All of these are things the TakeDamage event needs to know before
it can do anything.

Chapter 5

[209]

We'll also notice two parameters at the end that have optional written before them. These
are exactly what they mean, parameters that we don't need to pass if we don't want to use
them. If we changed our DoSomething function to this:

function DoSomething(float MyFloat, optional bool MyBool)
{
}

We could call DoSomething a few different ways:

 DoSomething(5.0, true);
 DoSomething(5.0, false);
 DoSomething(5.0);

The last line works, and it's because of the optional declaration. When DoSomething
executes it will simply use the default value for that type of variable, in this case false. Why
have optional parameters? Sometimes we don't have all the information a function would
need, or sometimes it doesn't need all of the information. As an example we can take a look
at the massive Spawn function again:

native noexport final function coerce actor Spawn
(
 class<actor> SpawnClass,
 optional actor SpawnOwner,
 optional name SpawnTag,
 optional vector SpawnLocation,
 optional rotator SpawnRotation,
 optional Actor ActorTemplate,
 optional bool bNoCollisionFail
);

There are a LOT of parameters for this function, but we're not going to need all of them
every time we call Spawn. Sometimes as in the case of our enemy class we'll need
to give it a SpawnLocation, but for some actors, say, informational actors such as
PlayerReplicationInfo or even the GameInfo, we really don't care where they're
spawned so specifying the parameters makes it quicker and cleaner to spawn them. If they
weren't optional, this:

spawn(class'GameInfo');

Would turn into this:

spawn(class'GameInfo', none, '', vect(0,0,0), rot(0,0,0), none,
false);

That's just unnecessary and harder to read.

Using Functions

[210]

One thing we'll notice if we take a look at the spawn call we used in
AwesomeEnemySpawner:

MySpawnedEnemy = spawn(class'TestEnemy', self,, Location);

For optional parameters, you can skip over them by simply adding a comma. In this case we
skipped over the SpawnTag parameter since we don't need to use it, but we did need to give
it a SpawnLocation, which was the next parameter.

In addition to optional parameters, we can also specify "out" parameters. Let's take a look at
those now.

Time for action – Out parameters
Passing parameters to functions lets us do things with the values that are passed, but what
if we need to modify the variables themselves and pass them back? For this we would use
out parameters.

1.	 Let's change the DoSomething function in our AwesomeEnemySpawner class:

function DoSomething(out float MyFloat, out int MyInt)
{
 MyFloat = 5.0;
 MyInt = 18;
}

We've declared two out parameters, one int, and one float. In the function we
change their values, and that's it.

2.	 Now let's rewrite our PostBeginPlay function to call it:

function PostBeginPlay()
{
 local float MyF;
 local int MyI;

 super.PostBeginPlay();

 DoSomething(MyF, MyI);
 `log(MyF @ MyI);
}

We'll use two local variables, and then call DoSomething using them. Afterward
we'll log their values.

3.	 Compile the code and test. Now let's look at the log:

[0004.54] ScriptLog: 5.0000 18

Chapter 5

[211]

4.	 It's important to remember that the values aren't passed back to the function that
called us unless our parameters use the out modifier. To test this, let's remove the
out modifiers like this:

function DoSomething(float MyFloat, int MyInt)
{
 MyFloat = 5.0;
 MyInt = 18;
}

Now let's try it.

5.	 Compile the code. We'll get warnings about using the local variables in
PostBeginPlay without giving them values first, but let's ignore that for a second.
Run the game and then check the log:

[0004.73] ScriptLog: 0.0000 0

This time the values weren't changed, because DoSomething wasn't able to pass them back
to PostBeginPlay without the out modifiers.

What just happened?
Function parameters are obviously extremely important concepts in UnrealScript and any
other programming language. The vast majority of functions you'll see in the source code will
use parameters. It's the essential way functions communicate information to each other.

Out variables are useful for functions that need to pass more than one variable back to the
function that called them. As an example of two out variables that we've been using for awhile,
let's take a look at our GetPlayerViewPoint function in AwesomePlayerController:

simulated event GetPlayerViewPoint(out vector out_Location, out
Rotator out_Rotation)
{
 super.GetPlayerViewPoint(out_Location, out_Rotation);

 if(Pawn != none)
 {
 out_Location = CurrentCameraLocation;
 out_Rotation = rotator((out_Location * vect(1,1,0)) - out_
Location);
 }

 CurrentCameraRotation = out_Rotation;
}

Using Functions

[212]

Functions that call GetPlayerViewPoint need to know our current location and rotation,
and to do that they hand us a vector and rotator for us to fill in, and in this case we've named
them out_Location and out_Rotation. We give those variables values, and they're
passed back to the function that called us. GetPlayerViewPoint is called from a few
different places in UnrealScript. It's called in Actor.uc to figure out if we'll be able to see
an effect being spawned so it can avoid spawning ones we won't see anyway. It's called from
UTVehicle.uc to get the aim for the vehicle's weapon. It's even used in a single player
cheat command to teleport the player to the location they're looking at.

There's another way for functions to pass information, and that is by returning a value to the
function that called them. Let's take a look at that next.

Return values
Return values are a simpler, more commonly used method of passing information back to a
function than using out parameters. A function can only return one value, which most of the
time is all we need anyway. Let's try some experiments.

Time for action – I'd like to return this please
To have a function that uses a return value, first we need to tell the code what type of
variable it's going to return.

1.	 If we still have DoSomething in our AwesomeEnemySpawner class, delete that
function. We'll make a new one called CanHasCheeseburger with a Boolean for a
return value:

function bool CanHasCheeseburger()
{
 return true;
}

The return type is declared after function and before the function name.

2.	 Now let's call our function from PostBeginPlay. There are two different ways we
can use the function. The first would be to create a variable and let the function
assign a value to it:

function PostBeginPlay()
{
 local bool bCheeseburger;

 super.PostBeginPlay();

 bCheeseburger = CanHasCheeseburger();
 `log(bCheeseburger);
}

Chapter 5

[213]

This will give bCheeseburger whatever value the function returns us.

3.	 Compile the code and test:

[0004.86] ScriptLog: True

4.	 The second way to use it would be to use the function itself as the variable. Since it
returns a Boolean, we can use CanHasCheeseburger() itself as a Boolean without
needing a variable to assign it to:

function PostBeginPlay()
{
 super.PostBeginPlay();

 `log(CanHasCheeseburger());
}

This gives us the same result.

5.	 Using functions as variables this way is useful when we're dealing with complex
statements where we need clean code to keep it readable. Take the following
hypothetical code:

 if(CanHasCheeseburger() && AmHungry())
 EatCheeseburger();

Instead of using Boolean variables in the if statement, we simply use the function
calls themselves as the variables. We'll see this used a lot in the UnrealScript source
code. It keeps us from having to create a bunch of local variables and assign their
values with function calls and THEN use those variables in other statements. If we
had to write the preceding code without using the function calls as variables, it
would look like this:

 local bool bCheeseburger, bHungry;

 bCheeseburger = CanHasCheeseburger();
 bHungry = AmHungry();

 if(bCheeseburger && bHungry)
 EatCheeseburger();

That's a lot more complex than what we had before.

Using Functions

[214]

6.	 Since we're returning a bool, we can use comparison statements as our return
value as well. Let's add an int to our class:

 var int NumberOfCheeseburgers;

And give it a default value:

 NumberOfCheeseburgers=4

Now let's rewrite our function:

function bool CanHasCheeseburger()
{
 return NumberOfCheeseburgers > 0;
}

7.	 Compile the code and test it out:

[0004.70] ScriptLog: True

We could use even more complex statements using and (&&), or (||), and so on if
we wanted.

8.	 Any type of variable can be used as a return value. Let's write a new function to
return an int data type:

function int HowManyCheeseburgers()
{
 return NumberOfCheeseburgers;
}

And add this line to PostBeginPlay:

 `log(HowManyCheeseburgers());

9.	 Now compile and test:

[0004.54] ScriptLog: 4

What just happened?
When we only need to pass one variable, using a return value is the way to do it. Using
values in this way fits right in with the good programming practice of not accessing variables
directly, but letting the class itself do it. As a crazy real-world example, it would be like me
asking how much money you have with you as opposed to just opening your wallet and
looking for it myself. If we wanted to change the way things worked in the class, changing
one function would be a lot easier than trying to track down all the places we've accessed
the variables.

Chapter 5

[215]

Actors themselves can also be used as return values. We've used it a few times already with
the Spawn function:

native noexport final function coerce actor Spawn
(
 class<actor> SpawnClass,
 optional actor SpawnOwner,
 optional name SpawnTag,
 optional vector SpawnLocation,
 optional rotator SpawnRotation,
 optional Actor ActorTemplate,
 optional bool bNoCollisionFail
);

As we can see, right before the word Spawn we have actor, which is this function's
return type (we'll get to all the other gobbledegook in the next topic). When we've used
Spawn here:

 MySpawnedEnemy = Spawn(class'TestEnemy', self,, Location);

We were assigning the actor returned by Spawn to our MySpawnedEnemy variable.

We also used an actor as a return value in our earlier experiment with Projectiles:

simulated function Projectile ProjectileFire()
{
 local Projectile MyProj;

 MyProj = super.ProjectileFire();
 `log(MyProj);

 return MyProj;
}

Our local MyProj had the actor returned by the superclass assigned to it, and we were
manipulating it before passing it on in our own return value.

Similar to parameters, functions with a return value must always be written with that type
of variable as the return value, and the function must always have a return statement in
it. However, we can have more than one return statement when we're using flow control
statements. As an example, let's take a look at a section of UTBot.uc's GetOrders function:

 if (UTHoldSpot(DefensePoint) != None)
 {
 return 'Hold';
 }
 else if (UTSquad == None)
 {
 return 'Attack';
 }

Using Functions

[216]

GetOrders is declared with a name as the return type. Using flow control statements like
this lets us return different values based on certain conditions in our class.

Now, that crazy wall of text in the Spawn function's declaration? Let's take a look at that now.

Function modifiers
Just as variables have modifiers that can make them configurable, editable, and so on,
functions also have modifiers that we can use to change the way they work. Let's take a look
at them. First we'll cover the ones that we're not likely to use ourselves but will still see often
enough in the source code that we'll want to know what they do.

Native
The Native modifier means that an UnrealScript function has C++ running under the hood.
Many of Epic's classes use this, and a lot of them won't have any UnrealScript code inside
them. Unless you're working with a full Unreal Engine license as opposed to just the Unreal
Development Kit, you will never use this modifier in either class or function declarations.
Don't use it even if the superclass's version of the function uses it. To go along with Native...

Const, NoExport, latent, and iterator
These are all modifiers that only apply to native functions, so we will never use these either.
The first two control how the function behaves in C++. Latent has some small meaning to
us as UnrealScript programmers; it tells us that the function can only be used in state code,
which will be covered in the next chapter. Iterator is one we've seen and used before when
we were searching for all of the AwesomeEnemySpawner actors in the map. These functions
are executed as loops.

None of those four are modifiers that we can declare ourselves.

Event
Functions declared as events have C++ code behind them that calls the function. This is
usually for engine-related notifications such as two actors colliding with each other through
Bump or Touch or startup events like Pre and PostBeginPlay. We'll never use Event ourselves,
but when we're overriding an Event we will write it as a normal function instead. We've been
doing that with PostBeginPlay.

Chapter 5

[217]

Simulated, server, client, reliable, and unreliable
These ones we actually will use, but not yet. All of these are network-related modifiers used
for multiplayer games. That's a huge topic that we'll devote an entire chapter to. If we were
making a single player game we wouldn't have to worry about these modifiers at all, except
for the occasional complaint by the compiler that one of our overridden functions needs to
be simulated. For now it's enough to recognize these as network-related modifiers.

Singular
The singular modifier prevents infinite loops by keeping the functions it's calling from calling
the singular function. Take the following hypothetical code:

function DoSomething()
{
 DoWhatever();
}

function DoWhatever()
{
 DoSomeOtherStuff();
 DoSomething();
}

That last line is what would get us into trouble. It would cause an infinite loop of
DoSomething and DoWhatever function calls. If, however, we wrote it like this:

singular function DoSomething()
{
 DoWhatever();
}

function DoWhatever()
{
 DoSomeOtherStuff();
 DoSomething();
}

When the code is run, it would ignore the DoSomething call at the end since it's running
as part of the original DoSomething's DoWhatever call. An example of where this would
happen would be two actors running into each other and calling Touch on each other in an
infinite loop. The Touch event uses the singular modifier to prevent this. It's extremely rare
that you'd have to use this, in my time with UnrealScript I've never used it, but it's always
good to know what it does when you see it in the source or need to use it for yourself.

That leaves us with two other modifiers that we'll see occasionally, ones which we can use
on our own functions if we want to. Let's use them now!

Using Functions

[218]

Exec
Exec functions are ones we can interact with as players. They're used for player input like
jumping, crouching, or firing a weapon, and they can also be used through the console that
shows up when we press the tilde key (~) in game. Exec functions can only be used in a
few classes, most notably the PlayerController and CheatManager. Let's see if we can
make one in our own AwesomePlayerController class.

Time for action – Filthy cheater
Declaring an exec function is easy enough; using it is almost as easy. Let's make a function
that will make it easier to test our game by upgrading our weapon when we call it. Exec
functions can only be used in a few places, mostly Controller, Pawn, GameInfo,
and CheatManager (which can be subclassed and put in the default properties of a
PlayerController). For this experiment we'll put ours in AwesomePlayerController.

1.	 First, let's delete all of the cheeseburger functions and related variables and default
properties from AwesomeEnemySpawner so we don't get logs from that class
anymore.

2.	 Now for the function declaration. Add the following function to
AwesomePlayerController:

exec function Upgrade()
{
 if(Pawn != none && AwesomeWeapon(Pawn.Weapon) != none)
 AwesomeWeapon(Pawn.Weapon).UpgradeWeapon();
}

This will test if we have a Pawn and it's holding an AwesomeWeapon, and if so
upgrade it. Easy!

3.	 That's all we need to do in the classes, so let's compile the code.

4.	 Now for the first test. Run the game and pick up the weapon. Now open the console
by pressing the tilde (~) key. Type upgrade without quotes into it (you should see
it try and auto-complete as you're typing) and press Enter. On our HUD we'll see the
weapon's level increase!

Chapter 5

[219]

5.	 Now we'll see if we can make that a keybind. This is really pretty simple, but opening
the config file can be confusing at first. Open UDKGame\Config\DefaultInput.
ini and search for the section with this label:

[Engine.PlayerInput]

It should be the third section down. Right below that, add a line so it looks like this:

[Engine.PlayerInput]
Bindings=(Name="U",Command="Upgrade")

If we scroll down further in the file we can see that this is where all of the keyboard
and mouse inputs are defined. With the line that we've added, pressing U will call
our Upgrade exec function. Let's test it out.

6.	 Save DefaultInput.ini and run the game. Now when we press U we can see the
weapon's level increase on the HUD!

What just happened?
Exec functions are useful when we want to add custom functionality to the player's input, or
when we want to add easy-to-use debug functions for our game as in the case of us typing
it in the console. Searching the UnrealScript source for "exec" will show you the commands
that are defined this way such as the standard "god" and "fly", as well as non-cheat execs like
"jump" and "throwweapon".

Static
Static functions are a bit of an oddity. The difference between a static function and other
functions is that we don't need a reference to an object to be able to call a static function.
For instance, when we're calling UpgradeWeapon on our AwesomeWeapon class, we have
a valid reference to that actor in the world when we call it. That makes sense; otherwise
there would be no object in the world to change. With a static function we wouldn't need
the reference. They're used mostly for informational purposes. Static functions can access
the default properties of instance variables, but since there is no instance of the object none
of the variables will have changed. Additionally, static functions can only call other static
functions, not normal ones.

Let's see if we can use a static function of our own.

Using Functions

[220]

Time for action – Using static functions
For this experiment let's use our AwesomeWeapon class.

1.	 The first thing we need to do is delete the weapon spawner from our test level. We
don't want any instances of an AwesomeWeapon class in the game. This will help us
better understand what the static function is doing.

2.	 Now let's write a static function in our AwesomeWeapon class:

static function float GetDefaultFireRate()
{
 return default.FireRates[0];
}

We're also giving this function a return value, which will tell us what the default
firing rate of the weapon class is.

3.	 Now let's call the function from our Upgrade exec function in
AwesomePlayerController:

exec function Upgrade()
{
 local float f;
 f = class'AwesomeWeapon_RocketLauncher'.static.
GetDefaultFireRate();
 `log(f);

 if(Pawn != none && AwesomeWeapon(Pawn.Weapon) != none)
 AwesomeWeapon(Pawn.Weapon).UpgradeWeapon();
}

Remembering inheritance, our rocket launcher inherits the static function so we can
call it on that class as well.

4.	 Compile the code and run the game. Press U to call the Upgrade function and take
a look at the log:

[0009.07] ScriptLog: 1.5000

What just happened?
Now we can see, even without any instances of the actor in the game, we can still call static
functions on that class. As an example of how static functions can be useful, let's take a look
at one from Actor.uc:

static function ReplaceText(out string Text, string Replace, string
With)

Chapter 5

[221]

Replacing text is a function we may want to use, but would it really make sense to have to
have a reference to an actor to be able to do it? We could call it on whatever class is making
the call, but what if it's not a subclass of actor? Most of the UI stuff isn't, which is mainly
where this function would come in handy. Having static functions lets us execute code that
really doesn't need a valid object reference to be able to do so.

The super
From our lessons on inheritance, we know that when we override a function we completely
change the functionality of it. But what if we still want the functionality of the superclass, we
just want to add to it? We've used it before, so let's talk about the super real quick.

Calling the super executes the function in the superclass. When we used PostBeginPlay in
AwesomeGame for instance, we started by writing it like this:

simulated function PostBeginPlay()
{
 super.PostBeginPlay();
}

Instead of completely overriding it and emptying it out, this has the same effect of not
having PostBeginPlay in our class at all since all we're doing is calling the superclass's
version. With that in place we started to add more functionality.

There are instances where we wouldn't want the superclass's version of the function to run
at all, so we wouldn't use the call to the super. If, for example, we had a Projectile class,
the event called HitWall calls the Explode function. But what if this particular Projectile
were a listening device we were shooting at a wall? We wouldn't want it to call the Explode
function, so in our overriding of HitWall we wouldn't call the super.

Very rarely it will happen where we want a class higher up in the hierarchy to run its version
of the function, but not our immediate superclass. In cases like this we can skip up the class
tree by specifying a superclass in parentheses when we call the super, like this:

super(WhateverClass).SomeFunction();

If there were any classes in between us and WhateverClass in the hierarchy, their
versions of SomeFunction wouldn't be executed, but WhateverClass class's
SomeFunction would.

Using timers
Another short but important lesson, timers! Sometimes we don't want functions to run right
away, rather we want them to run after a certain amount of time has passed. For this we
would use a timer. Let's see how they work.

Using Functions

[222]

Time for action – Just five more minutes mom
Let's say instead of spawning enemies straight away when the game started, we wanted
them to spawn after say, 10 seconds. That should give us enough time to start running.

1.	 Let's create a new function in AwesomeEnemySpawner called TimedEnemySpawn.
We'll create the timer here:

function TimedEnemySpawn()
{
 SetTimer(10, false, 'SpawnEnemy');
}

The parameters for the SetTimer function are pretty easy. The first one is the
amount of time for the timer. The second is an optional bool that controls whether
or not we want the timer to run in a loop, in this case it would run every 10 seconds
if we set it to true. The third parameter is the name of the function we want the
timer to call when the time runs out. In this case, it will call the function that
actually spawns the enemy.

2.	 With this new functionality, we're going to need to keep a closer eye on the enemies
we're spawning. If the spawner has already spawned an enemy, we don't want it
to spawn another one until the current one is killed. Let's change the SpawnEnemy
function a bit:

function SpawnEnemy()
{
 if(MySpawnedEnemy == none)
 MySpawnedEnemy = spawn(class'TestEnemy', self,, Location);
}

Now a TestEnemy will only be created if we don't already have one.

3.	 Now to call the function with the timer. In AwesomeGame, let's change our
ActivateSpawners function to call the new function:

function ActivateSpawners()
{
 local int i;

 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].TimedEnemySpawn();
}

4.	 Now compile the code and test. We'll notice right away that the enemies don't
spawn immediately, but if we wait for 10 seconds they'll all spawn. That's great, but
let's see if we can randomize it a bit.

Chapter 5

[223]

5.	 Let's use FRand to get a random float and make it so the enemies spawn between 5
and 10 seconds after the game starts:

function TimedEnemySpawn()
{
 SetTimer(5.0 + FRand() * 5.0, false, 'SpawnEnemy');
}

Since FRand() gives us a value between 0.0 and 1.0, using it in this equation will
give us a time between 5.0 and 10.0.

6.	 Compile and test. Now, instead of all of them spawning at once, they'll spawn
randomly. Nice!

7.	 Let's change the EnemyDied function to call this timed version now. This way when
we kill an enemy its replacement will take a bit before spawning:

function EnemyDied()
{
 TimedEnemySpawn();
}

8.	 One thing we may notice with this new timed functionality is that even after a
game ends, if a timer was started, it will still spawn an enemy after the time runs
out. Let's see if we can stop it from doing that. For this we'll add a line to our
FreezeEnemy function:

function FreezeEnemy()
{
 if(MySpawnedEnemy != none)
 MySpawnedEnemy.Freeze();

 ClearTimer('SpawnEnemy');
}

9.	 Compile and test. Now enemies won't spawn after the game has finished!

What just happened?
As we can see, timers are very useful. Running a search for SetTimer in UnCodeX
will reveal hundreds of instances of it. There are a few more timer-related functions in
Actor.uc; finding the original declaration of SetTimer there will lead you to the right
section of code. Some of the more useful ones are ClearAllTimers, PauseTimer, and
GetRemainingTimeForTimer.

Using Functions

[224]

Putting it all together
Let's use some of the knowledge we've gained about functions to expand our Awesome Game
a bit. The spawners are working well right now, but let's see if we can refine their behavior.

Time for action – Expanding Awesome Game
We're going to change the way the spawners work so that enemies will only spawn off
screen. That way they won't suddenly appear in our view. This experiment is a bit long, so
you may want to read through it real quick before diving in, and go slow so you don't miss
any of the steps!

1.	 First thing's first! Let's get rid of the restriction on the TestEnemy class that makes
them wait until we're in range before they start moving toward us. When they
spawn, we want them to immediately start moving toward us. Change this line:

 else if(!bFreeze && VSize(Location - Enemy.Location) <
FollowDistance)

To this:

 else if(!bFreeze)

Now the enemies will move toward us no matter how far away from us they are.
Since we don't need the FollowDistance variable anymore, let's change its name
and refine our movement behavior a bit. At the top of TestEnemy, rename the
FollowDistance variable like this:

var float MovementSpeed;

And rename and change the default property:

 MovementSpeed=256.0

2.	 Now let's change the movement equations a bit. We'll notice that right now, as the
enemies get closer to us they slow down, and this is because they're only moving
a percentage of their current distance towards us, so as that distance gets shorter
they move less and less until they're in range to attack us. Let's rewrite that section
of our code to look like this:

 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }

Chapter 5

[225]

Now we're using our new MovementSpeed variable. We get a one unit long
vector pointing towards the player, then multiply it by the MovementSpeed and
DeltaTime to compensate for the framerate.

Our TestEnemy's Tick function should look like this now:

function Tick(float DeltaTime)
{
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(class'AwesomePlayerControll
er', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }
 else if(!bFreeze)
 {
 if(VSize(Location - Enemy.Location) < AttackDistance)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));
 }
 else
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

3.	 Compile the code and test. Now we'll see that the enemies move at a constant
speed toward us when they spawn, so now it's actually possible to outrun them!

Using Functions

[226]

4.	 This next functionality is a bit of a doozy, so let's take it one step at a time. We're
going to make it so enemies always spawn off screen. First off, we need to move the
timer functionality from the AwesomeEnemySpawner into the AwesomeGame class.
Let's rewrite the AwesomeEnemySpawner class to get rid of the timer:

class AwesomeEnemySpawner extends AwesomeActor
 placeable;

var TestEnemy MySpawnedEnemy;

function SpawnEnemy()
{
 if(MySpawnedEnemy == none)
 MySpawnedEnemy = spawn(class'TestEnemy', self,, Location);
}

function EnemyDied()
{
 SpawnEnemy();
}

function FreezeEnemy()
{
 if(MySpawnedEnemy != none)
 MySpawnedEnemy.Freeze();
}

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_NavP'
 HiddenGame=True
 End Object
 Components.Add(Sprite)
}

Let's also change the ActivateSpawners function in AwesomeGame to get rid of
the timer call:

function ActivateSpawners()
{
 local int i;

 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].SpawnEnemy();
}

Chapter 5

[227]

5.	 Compile the code we have now and open the editor. Place
AwesomeEnemySpawners around the map until there are dozens of them. It
doesn't matter if any are close to the player start, we'll make sure no enemies spawn
too close to us. Just make sure there are spawners far enough away from the player
so that there will always be some off screen. If you just feel like getting to the code,
I've provided a map with spawners scattered everywhere that works great for me.
Check the files that came with the book for it.

6.	 Now for some code. In my tests with logging distances, I found that with the
camera values we're using the enemy spawners will be off screen at a distance of
about 1700 units. We also don't want them to be too far out of range, so let's set a
maximum distance of about 3000 units. That gives us a 1300 unit range to look for
spawners. First, let's define these variables in AwesomeGame:

 var float MinSpawnerDistance, MaxSpawnerDistance;

As well as defining default values for them:

 MinSpawnerDistance=1700.0
 MaxSpawnerDistance=3000.0

These distances may need to be adjusted depending on the size of your test map.
These values work for the test map included with the book though. To help you find
the right distance, you can click and hold the middle mouse button in any of the
editor's 2D viewports to measure.

7.	 Now for some real fun. We already have a dynamic array of all of the spawners
on the map, so let's create a local one in our ActivateSpawners function in
AwesomeGame where we'll put the ones that are in the right range. Empty out the
ActivateSpawners function and add the local variable:

function ActivateSpawners()
{
 local array<AwesomeEnemySpawner> InRangeSpawners;
}

8.	 Next, we need to make sure the player has a Pawn that we can measure the distance
against. If not we'll just set a timer and exit out of the function:

function ActivateSpawners()
{
 local int i;
 local array<AwesomeEnemySpawner> InRangeSpawners;
 local AwesomePlayerController PC;

 foreach LocalPlayerControllers(class'AwesomePlayerController',
PC)
 break;

Using Functions

[228]

 if(PC.Pawn == none)
 {
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }
}

A bit complicated looking but easy to figure out. First we declare a local variable for
the AwesomePlayerController that we can use in the foreach iterator. Then
we look for all of the AwesomePlayerControllers in the level. If we find one, we
break out of the iterator. Then we check to see if it has a Pawn. If not, set a 1 second
timer and exit out of the function. The timer will call this same function again in 1
second so we can recheck until we find a Pawn. The player won't have a Pawn until a
little bit into the game's startup as well as after they die, so we need to make sure.

9.	 Now let's add the code that will populate the local AwesomeEnemySpawner array:

 for(i=0; i<EnemySpawners.length; i++)
 {
 if(VSize(PC.Pawn.Location - EnemySpawners[i].Location) >
MinSpawnerDistance && VSize(PC.Pawn.Location - EnemySpawners[i].
Location) < MaxSpawnerDistance)
 {
 if(EnemySpawners[i].CanSpawnEnemy())
 InRangeSpawners[InRangeSpawners.length] =
EnemySpawners[i];
 }
 }

Here we're using a for loop to go through all of the spawners. We test the
distance between them and the PC's Pawn to make sure it's within range.
Then we check if it can spawn an enemy with the CanSpawnEnemy function in
AwesomeEnemySpawner, which we're going to write right now.

10.	Switch over to the AwesomeEnemySpawner class and write our CanSpawnEnemy
function:

function bool CanSpawnEnemy()
{
 return MySpawnedEnemy == none;
}

This will make it so we return true if we don't already have a spawned enemy.

Chapter 5

[229]

11.	Now, if we've done all of these checks and the InRangeSpawners array turned up
empty, let's log it so we know, then set a timer and exit the function:

 if(InRangeSpawners.length == 0)
 {
 `log("No enemy spawners within range!");
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }

12.	 If there are spawners in the array, randomly pick one and spawn an enemy:

 InRangeSpawners[Rand(InRangeSpawners.length)].SpawnEnemy();

13.	Finally, set a timer so that we can spawn a new one between 1 and 4 seconds later:

 SetTimer(1.0 + FRand() * 3.0, false, 'ActivateSpawners');

Our ActivateSpawners function should look like this now:

function ActivateSpawners()
{
 local int i;
 local array<AwesomeEnemySpawner> InRangeSpawners;
 local AwesomePlayerController PC;

 foreach LocalPlayerControllers
 (class'AwesomePlayerController', PC)
 break;
 if(PC.Pawn == none)
 {
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }

 for(i=0; i<EnemySpawners.length; i++)
 {
 if(VSize(PC.Pawn.Location - EnemySpawners[i].Location) >
 MinSpawnerDistance && VSize(PC.Pawn.Location -
 EnemySpawners[i].Location) < MaxSpawnerDistance)
 {
 if(EnemySpawners[i].CanSpawnEnemy())
 InRangeSpawners[InRangeSpawners.length] =
EnemySpawners[i];
 }
 }

Using Functions

[230]

 if(InRangeSpawners.length == 0)
 {
 `log("No enemy spawners within range!");
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }

 InRangeSpawners[Rand(InRangeSpawners.length)].SpawnEnemy();

 SetTimer(1.0 + FRand() * 3.0, false, 'ActivateSpawners');
}

14.	 Just a few minor things and we'll be done. Instead of spawning the first enemy right
away, let's give the player 5 seconds before the first one spawns. Change the line at
the end of PostBeginPlay that calls ActivateSpawners to this:

 SetTimer(5.0, false, 'ActivateSpawners');

15.	One more thing left. Once the game ends we don't want any more enemies
spawning, so let's change our ScoreObjective function:

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 local int i;

 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);

 if(EnemiesLeft == 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].FreezeEnemy();
 ClearTimer('ActivateSpawners');
 }
}

All we've done here is add the ClearTimer call to prevent any more enemies
from spawning.

16.	Finally! Compile the code and run the map to test it. It's working great! None of the
enemies are spawning on screen, and it seems to be pretty random as far as the
direction they come from. And when the game ends, the enemies freeze in place
and no more are spawned. Awesome!

Chapter 5

[231]

What just happened?
In this expansion of AwesomeGame we've reinforced some of the concepts we've learned
in this chapter, including function creation, return values, and timers. We've also used local
variables where instance variables wouldn't have made sense, specifically for the array of
enemy spawners that are in the right range.

Have a go hero – Displaying a timer
In our discussion on timers, I mentioned a function called GetRemainingTimeForTimer.
With the code we've made the player has 5 seconds until the first enemy is spawned. See if
you can use that function to show the time the player has left on the HUD. Don't worry if you
can't figure this one out, we'll be adding this functionality soon!

Hint – Add a new instance variable called bFirstEnemySpawned to AwesomeGame:

var bool bFirstEnemySpawned;

Set it to true at the beginning of ActivateSpawners in AwesomeGame:

function ActivateSpawners()
{
 local int i;
 local array<AwesomeEnemySpawner> InRangeSpawners;
 local AwesomePlayerController PC;

 bFirstEnemySpawned = true;
… (the rest of the ActivateSpawners code) ...
}

Then in AwesomeHUD, check the timer if bFirstEnemySpawned is false:

 if(AwesomeGame(WorldInfo.Game) != none && !AwesomeGame(WorldInfo.
Game).bFirstEnemySpawned && AwesomeGame(WorldInfo.Game).IsTimerActive(
'ActivateSpawners'))
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.85);
 Canvas.DrawText("Time Left To First Spawn:" @
AwesomeGame(WorldInfo.Game).GetRemainingTimeForTimer('ActivateSpawne
rs'));
 }

Using Functions

[232]

Pop quiz – All about functions
1.	 What does the function modifier static do?

2.	 Which of these functions would return a Boolean?

a.	 function bool Something()

b.	 function Something(out bool bMyBool)

3.	 How would you skip over an optional function parameter if you wanted to use a
later one?

Summary
Well this was a pretty major chapter. We learned a lot about how functions work, how to
write them and how to use them. We've also expanded our Awesome Game a bit using the
knowledge we've gained here.

Specifically, we covered:

�� What functions are and how to write them

�� When to use local variables as opposed to instance ones

�� How to use parameters when creating functions

�� The different types of function modifiers we can use

�� When to call the super and when not to

�� The use of timers

Now that we've learned about functions, it's time to learn about how to use state code to
define sets of functions to be used at different times. On to the next chapter!

6
Using States to Control Behavior

When Functions aren't enough

Functions can get a lot of what we want done, but what if our classes need
more complex behavior? We could use a lot of Booleans and flow control
statements to get the functionality we need, but for something as complex as
say, Artificial Intelligence (AI), it would start to get messy in a hurry. To really
take advantage of UnrealScript, we'll need to learn how to use states.

In this chapter, we will:

�� Learn what a state is and how to create them

�� Learn how functions behave inside and outside of states

�� Switch between states to change the way our classes operate

�� Use a few functions and statements that are unique to states

So with that, let's take a look at what we can do with state code.

It's a state of mind
We can think of a state as a collection of functions that are only used when an actor is in
that state. If we have an NPC in our game, then having it be "Wandering" would create very
different behavior than if it were "Attacking". It's perfectly possible to have an NPC do all of
this without using states, but using them makes the code a lot easier to write and change.

Using States to Control Behavior

[234]

Creating a state
The syntax for writing a state looks a lot like a function, so it isn't much work to create them.
Let's write our first state now.

Time for action – Writing a state
The best place to learn about writing states is in our enemy class. Up until now we've been
using TestEnemy.uc for our enemy code, but now it's time to develop this class more.

1.	 Rename TestEnemy.uc to AwesomeEnemy.uc.

2.	 At the top of the renamed class, change the class declaration line to this:

class AwesomeEnemy extends AwesomeActor;

Notice that we're also removing the placeable keyword. Our enemies are handled
entirely by the AwesomeEnemySpawner class now.

3.	 Speaking of the spawner class, we need to change the class reference in our spawn
function there. Open up AwesomeEnemySpawner and change the SpawnEnemy
function and variable declaration to look like the following code snippet:

var AwesomeEnemy MySpawnedEnemy;

function SpawnEnemy()
{
 if(MySpawnedEnemy == none)
 MySpawnedEnemy = spawn(class'AwesomeEnemy', self,,
 Location);
}

4.	 We'll also need to change the references in our AwesomePawn class's Bump function:

event Bump(Actor Other, PrimitiveComponent OtherComp, vector
 HitNormal)
{
 if(AwesomeEnemy(Other) != none && !bInvulnerable)
 {
 bInvulnerable = true;
 SetTimer(InvulnerableTime, false, 'EndInvulnerable');
 TakeDamage(AwesomeEnemy(Other).BumpDamage, none, Location,
 vect(0,0,0), class'UTDmgType_LinkPlasma');
 }
}

Chapter 6

[235]

Why didn't we just name it AwesomeEnemy in the first place? Another one of my sneaky
lessons. As we can see, changing a class's name can involve a lot of tracking down code, or
running an UnCodeX search, or trying to compile to see what classes and lines give us errors.
Before creating a class it's really important to think about its name, if a group of actors
will need a common custom superclass, and where in the class tree it needs to be before
creating it. Renaming a class is easy enough, but rearranging classes after creation can turn
ugly quickly if functions we're calling in its old superclass aren't available in the new one. It's
something to think about when planning your game.

1.	 Now that that's out of the way, we can start writing our states. Right now our enemy
is always moving toward the player and attacking. Let's see if we can split those two
behaviors up into separate states. Let's start by creating a Seeking state where the
enemy will chase down the player.

state Seeking
{
}

Well that's easy enough. Now let's see what we can add to it.

1.	 If we take a look at the functions in our AwesomeEnemy class, we can see
TakeDamage, Freeze and Tick. Thinking about what the Seeking state should
be, TakeDamage and Freeze don't seem specific to a Seeking state. Those
functions' behaviors won't change while this class is Seeking, so we'll leave those
out of it. The only one we're concerned about right now is Tick.

2.	 Let's start by copying the entire Tick function into the Seeking state. It should
look like the following code snippet:

state Seeking
{
 function Tick(float DeltaTime)
 {
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers(
 class'AwesomePlayerController', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }
 else if(!bFreeze)

Using States to Control Behavior

[236]

 {
 if(VSize(Location - Enemy.Location) < AttackDistance)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));
 }
 else
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }
 }
}

For readability's sake, functions inside states are usually indented.

1.	 Now, let's take a look at the Tick function. Thinking about it from the perspective of
something that's Seeking, we don't want any attack code in here, we'll handle that
in another state. We also don't care if we're frozen, that will be handled in another
state as well. Let's trim it down a bit so it looks like the following code snippet:

state Seeking
{
 function Tick(float DeltaTime)
 {
 local AwesomePlayerController PC;
 local vector NewLocation;

 if(Enemy == none)
 {
 foreach LocalPlayerControllers
 (class'AwesomePlayerController', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
 }

 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
}

Chapter 6

[237]

Already we've gotten rid of an else if, if, and an else. It's starting to get cleaner already!
Let's see if there's anything else we can do here.

1.	 The foreach iterator we're using here seems like it would be a handy function to
have, separate from any state code. We might want to use it somewhere else, so
let's move it out of the Seeking state. We'll name it something like GetEnemy.
First, let's write the function outside of the Seeking state:

function GetEnemy()
{
 local AwesomePlayerController PC;

 foreach LocalPlayerControllers(class'AwesomePlayerController',
 PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
}

2.	 Now let's further rewrite our Seeking state's Tick function:

state Seeking
{
 function Tick(float DeltaTime)
 {
 local vector NewLocation;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

Using States to Control Behavior

[238]

Comparing this to our original Tick function, it's a lot more compact and easier to read. This
Tick function has one purpose and one purpose only: to find our enemy and move towards
it. We're done with the Seeking state for now, so let's move on to Attacking.

1.	 We'll start the Attacking state the same way as Seeking:

state Attacking
{
}

2.	 This time, instead of copying the original Tick function into our state, we're going
to move it there. Our original Tick function was only concerned with seeking
and attacking, so we don't need it outside of these two states for now. The Tick
function for Attacking is going to be really small. Let's prune it down to the
following code snippet:

state Attacking
{
 function Tick(float DeltaTime)
 {
 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));
 }
}

One thing we'll notice is that we're not using an else statement here. It may seem odd as
it would seem like we should use it here; either Enemy is none or it has a value. If we think
about it though, then it makes sense to write it like this in this instance. If we come into this
function and Enemy doesn't have a value, then we'll call GetEnemy to give it a chance to
find one. After that we check if Enemy has a value and if so call Bump on it. If we were using
an else statement here, then the Bump call would get skipped over after GetEnemy was
called. It might not seem like it matters with a function such as Tick that's going to be
called the next frame anyway, but this is one of those cases where we have to think about
what we want to have happen very carefully. If our enemy class only had once chance to
attack before moving to another state, then Bump might never be called if we had it behind
an else statement.

1.	 We're almost done splitting up our Tick function. The only thing we haven't
taken into account is the bFreeze variable that stops it from moving or attacking.
Instead of using bFreeze in the Attacking and Seeking states, we'll get rid of it
completely and make a Frozen state instead. First, let's create the state:

state Frozen
{
}

Chapter 6

[239]

2.	 As we still don't want the enemy moving or attacking while frozen, let's empty out
the Tick function in our new state:

state Frozen
{
 function Tick(float DeltaTime)
 {
 }
}

3.	 Before we delete the bFreeze variable, let's remove the reference to it in our
Freeze function:

function Freeze()
{
}

4.	 Now delete this line from the top of our class:

var bool bFreeze;

What just happened?
Now we've separated out the functionality of our enemy class into specific states. We can
see how compact and clean the code becomes without the extra if/else statements. If we
wanted to expand the way this class worked, it would be a lot easier as the code in the states
is pretty self contained now.

If we compiled the code now, then we'd find that the enemies would still spawn, but they
won't do anything other than sit there. Even though we've created the states, none of the
code inside them will execute until we tell the actor to use those states. Let's do that next.

Switching between states
An actor can only be in one state at a time. In order for us to use the new functionality we've
created, we need to tell our actor which state to go to and when. Let's take a look at how to
do that.

Using States to Control Behavior

[240]

Time for action – Switching states
Three states, Seeking, Attacking, and Frozen. The first thing we need to do is tell our
actor which state to start in.

1.	 To do that, we'll simply add the auto keyword to the beginning of our Seeking state:

auto state Seeking

Only one state can be declared with the auto keyword, and this state is the default state
for that actor. We want ours to do the same thing it did before, automatically start moving
toward the player when it spawns.

1.	 Now that we're in the Seeking state, we need to tell the actor when to move into
the Attacking state. We'll do this in the Tick function by comparing the distance
between the actor and its enemy:

function Tick(float DeltaTime)

{
 local vector NewLocation;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);

 if(VSize(NewLocation - Enemy.Location) < AttackDistance)
 GoToState('Attacking');
 }
}

Moving from one state to another is as simple as using the GoToState function with the
name of the new state.

1.	 Now we're attacking! We don't want to get stuck in this state though, so let's reverse
the less than sign in our Attacking state's Tick function to get us back out of it:

function Tick(float DeltaTime)
{
 if(Enemy == none)

Chapter 6

[241]

 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
}

2.	 Almost done! We still have to use the Frozen state at the end of the game, so let's
put a new line of code in our Freeze function:

function Freeze()
{
 GoToState('Frozen');
}

3.	 Now let's compile the code and test it. The enemies still act the same way they
normally do, so we haven't broken anything!

4.	 Let's see if we can change the functionality a bit. What if, instead of freezing at the
end, the enemies ran away like the red boxed cowards they are? First, let's rename a
few things, starting with the Frozen state. Change it to the following:

state Fleeing

5.	 Now let's rename the Freeze function and change the line inside it:

function RunAway()
{
 GoToState('Fleeing');
}

6.	 The only place we were calling the Freeze function was from the
AwesomeEnemySpawner class, so let's change its FreezeEnemy function:

function FreezeEnemy()
{
 if(MySpawnedEnemy != none)
 MySpawnedEnemy.RunAway();
}

Using States to Control Behavior

[242]

7.	 Having this function named FreezeEnemy doesn't quite fit anymore, so let's change
that as well:

function MakeEnemyRunAway()
{
 if(MySpawnedEnemy != none)
 MySpawnedEnemy.RunAway();
}

8.	 We were calling the FreezeEnemy function from our AwesomeGame class, so let's
change that line:

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 local int i;

 EnemiesLeft--;
 super.ScoreObjective(Scorer, Score);

 if(EnemiesLeft == 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();
 ClearTimer('ActivateSpawners');
 }
}

9.	 Now that we've cleaned up the code, let's change the Tick function inside the
AwesomeEnemy's Fleeing state:

function Tick(float DeltaTime)
{
 local vector NewLocation;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation -= normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
}

Chapter 6

[243]

10.	Compile the code and test. Shoot your way down to 1 enemy left, then let a few
gather around you before shooting the last one. We'll see the other ones start
moving away once you have won!

What just happened?
Moving between states is easy, and we can see how easy it would be to change the
functionality of a single one without affecting the others or worrying about breaking any of
the other functionality with complicated if/else statements. With the state code all self
contained, it makes it a lot easier to manage.

Function overriding in states
One question we might ask at this point is how can we have more than one Tick function
in our class? Don't they interfere with each other? With states, each one can have functions
operate differently, as with our use of Tick and how it changes depending on what state
we're in. Functions can be changed in each state or ignored completely. We left TakeDamage
alone, for instance, although we could have made an empty version inside the Fleeing
state to keep the enemies from taking damage as they fled.

Taking a look at our updated AwesomeEnemy class, we can also see that functions don't
even need to be in a state. With our TakeDamage function, as it's not in a state and not
overridden in any state, it will operate the same way no matter what state the actor is in.

Red state, blue state, no state, new state?
Let's take a look at function overriding in states so we can understand how it works.

Time for action – Multiple personalities
Let's add a bit of code to our various Tick functions so we can see exactly what happens as
we change states. Normally, we wouldn't want to put logs in the Tick function as it's called
at every frame, but sometimes it's good for testing purposes.

1.	 First, we'll add a Tick function outside of the states so we can get a complete
picture of what's going on.

function Tick(float DeltaTime)
{
 log("Non-State Tick");
}

Using States to Control Behavior

[244]

2.	 Now let's add logs to our other Tick functions. First, the Seeking Tick:

function Tick(float DeltaTime)
{
 local vector NewLocation;

 `log("Seeking Tick");

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);

 if(VSize(NewLocation - Enemy.Location) < AttackDistance)
 GoToState('Attacking');
 }
}

3.	 Next, the Attacking Tick:

function Tick(float DeltaTime)
{
 ``log("Attacking Tick");

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
}

Chapter 6

[245]

4.	 Finally, the Fleeing Tick:

function Tick(float DeltaTime)
{
 local vector NewLocation;

 `log("Fleeing Tick");

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation -= normal(Enemy.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
}

5.	 To test this we're going to need the game to only have one enemy, so the log that
we'll get will only be one actor. To do this, let's first make the AwesomeEnemy class
placeable:

class AwesomeEnemy extends AwesomeActor
 placeable;

6.	 Instead of deleting the spawners, we'll simply disable them by removing the timer
from our AwesomeGame's PostBeginPlay function:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = EnemiesLeft;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;
}

7.	 Now for a little trick. To test the fleeing code, we'll need to do a few things. First,
let's change the EnemiesLeft default property in AwesomeGame to 1:

 EnemiesLeft=1

Using States to Control Behavior

[246]

8.	 Then, change the TakeDamage function inside our AwesomeEnemy so that it won't
destroy itself when we kill it:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();
}

9.	 With this change, the enemy will still report to AwesomeGame that it was killed, but
it will stay on the map so we can see the Fleeing state working.

10.	One last thing we need to do. This placed enemy doesn't have a spawner, so the
normal code we're using to make it run away isn't going to be called. Instead, as we
know there's only one enemy on the map, let's call RunAway ourselves from our
TakeDamage function:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 RunAway();
}

Chapter 6

[247]

Sometimes while testing out new code, we'll need to bypass the normal operation of
the game. It can get a bit tricky to keep track of all of the changes, but it's necessary to
make sure we can track down any problems with the code without having other things
interfering with what we're testing. In this case, if we were having trouble getting our
AwesomeEnemy class working, what we're doing would be a good way to single out one
enemy so that we can figure out what's going wrong without having logs from all of the
other AwesomeEnemies getting mixed up with it.

1.	 Now let's compile the code. Then, open the editor and place an AwesomeEnemy
actor a little away from the weapon so we have time to pick it up.

2.	 Save the map and close the editor, then run the game.

3.	 Let's take a look at the log:

[0008.45] ScriptLog: Seeking Tick

[0010.24] ScriptLog: Attacking Tick

[0012.08] ScriptLog: Fleeing Tick

We can see that the three state ticks being logged are fine, and that only one of them is
being logged at any one time. The actor automatically starts in the Seeking state as we
specified. However, what about the non-state Tick? We know how to switch between
states, but can we tell the actor to go into no state?

1.	 Well, of course we can. Let's do that now! We'll give the AwesomeEnemy a few
seconds to flee, then we'll tell it not to use any of the states. First, let's add a timer
to the RunAway function:

function RunAway()
{
 GoToState('Fleeing');
 SetTimer(2.0, false, 'NoState');
}

2.	 Now let's make the NoState function:

function NoState()
{
 GoToState('');
}

Using States to Control Behavior

[248]

That's all there is to it, an empty name in our GoToState call.

1.	 Now let's run the game, kill the enemy, and wait for it to stop. Exit the game and
take a look at the log:

[0011.03] ScriptLog: Non-State Tick
[0011.05] ScriptLog: Non-State Tick

What just happened?
There we go, now our non-state Tick function is being called! If we wanted the
AwesomeEnemy to start like this, we would simply remove the auto keyword from our
Seeking state. If no state is declared as auto, then none of the states and none of the
functions in those states will be used until we tell the actor to go into one of the states.

We can see from this that even though the non-state Tick function seems like it would be
called all the time, being in a state tells the actor to use the state's functions instead. If a
function isn't declared in the state we're in, then the code will look for the non-state version of
that function. There's a better word for those functions though, which we'll take a look at next.

Non-state functions
Non-state functions are kind of similar to calling Super, except that calling Global will make
sure that the non-state version of a function is called. Let's take a look.

Time for action – Calling non-state functions
Before we get into this experiment, there's a small cleanup job we have to do. We'll leave the
single-enemy code intact; we'll just take out our Tick logging stuff.

1.	 Delete the non-state Tick function as well as the NoState function.

2.	 Take the NoState timer out of the RunAway function:

function RunAway()
{
 GoToState('Fleeing');
}

3.	 Delete the log lines from the Seeking, Attacking, and Fleeing states'
Tick functions.

Chapter 6

[249]

4.	 There we go, now we're ready to start our next experiment. First, let's set up a
repeating timer by adding a PostBeginPlay function:

function PostBeginPlay()
{
 SetTimer(1.0, true, 'LogTimer');
}

Every second we'll be calling this new function.

1.	 Now let's create the LogTimer function:

function LogTimer()
{
 `log("========================");
 `log("Global call:");
 Global.LogMe();
 `log("Non-Global call:");
 LogMe();
}

A lot of stuff here, but it's simple. First, we call Global.LogMe, then a normal LogMe. We'll
see the difference soon.

1.	 Let's first make the LogMe function outside of the states:

function LogMe()
{
 `log("Non-state LogMe");
}

2.	 Now let's add one to the Seeking state:

function LogMe()
{
 `log("Seeking LogMe");
}

3.	 Now, the Attacking state:

function LogMe()
{
 `log("Attacking LogMe");
}

Using States to Control Behavior

[250]

4.	 And finally, the Fleeing state:

function LogMe()
{
 `log("Fleeing LogMe");
}

5.	 Now let's compile the code and run the game. Exit and take a look at the log:

[0008.90] ScriptLog: ========================
[0008.90] ScriptLog: Global call:
[0008.90] ScriptLog: Non-state LogMe
[0008.90] ScriptLog: Regular call:
[0008.90] ScriptLog: Seeking LogMe
[0009.85] ScriptLog: ========================
[0009.85] ScriptLog: Global call:
[0009.85] ScriptLog: Non-state LogMe
[0009.85] ScriptLog: Regular call:
[0009.85] ScriptLog: Attacking LogMe

What just happened?
We can see that no matter what state we're in, calling Global.LogMe always calls the
non-state version of the function. This applies even when we're using it inside a state's
function. Let's take a look at that now.

Time for action – Non-state functions from inside a state
Before we start this experiment, another cleanup job.

1.	 Delete the LogMe, LogTimer, and PostBeginPlay functions.

2.	 Make sure the LogMe functions in all three states are deleted as well.

3.	 We're going to write a new version of TakeDamage inside the Seeking function.
This will stop the non-state function from being called:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 `log("Seeking TakeDamage");
}

Chapter 6

[251]

4.	 Let's also add a log to the non-state TakeDamage function:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 `log("Global TakeDamage");

 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 RunAway();
}

5.	 Now let's compile and test.

6.	 Oh God, the AwesomeEnemy doesn't feel pain, it can't be reasoned with! Let's take a
look at the log to find out why:

[0008.64] ScriptLog: Seeking TakeDamage
[0010.49] ScriptLog: Seeking TakeDamage

7.	 Now that we've declared TakeDamage inside the Seeking state, the non-state
one isn't being called anymore. However, what if we wanted to? Calling Super here
would just call the superclass's version of the function, which isn't what we need.
Time to use Global. Let's add a line to the Seeking state's TakeDamage function:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 `log("Seeking TakeDamage");
 Global.TakeDamage(DamageAmount, EventInstigator, HitLocation,
 Momentum, DamageType, HitInfo, DamageCauser);
}

8.	 Now let's compile and test.

Using States to Control Behavior

[252]

9.	 Shoot the enemy, then shut down the game and take a look at the log:

[0008.21] ScriptLog: Seeking TakeDamage
[0008.21] ScriptLog: Global TakeDamage

Much better.

What just happened?
Using non-state functions can come in handy. If you had some functionality that needed to
be used in quite a few states, then it might be better to move it to the non-state version of
the function and call Global from the states' versions. Conversely, if you had a state that
needed to add a bit of functionality to the non-state version, then you could easily do it
without duplicating all of the non-state version's code.

Before we move on, let's clean up the code a bit.

1.	 Delete the TakeDamage function from the Seeking state.

2.	 Remove the log from the non-state TakeDamage function.

Now to take a closer look at what happens and what we can do when we change states.

State changes and detection
We know how to change states now. However, what if we need a bit of setup when an actor
enters a state, or we need to do a few things before it leaves that state? There are two
functions we can use for this that we'll take a look at now, BeginState and EndState.

BeginState
First, let's take a look at BeginState.

Time for action – BeginState
BeginState and EndState are both declared in Object.uc, and like other functions, they
don't necessarily have to be used inside a state, although that's where they are most useful.
BeginState is called when an actor enters any state, before any of that state's code is run.
This makes it useful for running any set-up code that the state needs. EndState is run right
before an actor leaves a state and lets us do any cleanup or other changes we need to at
that point. Both of these functions are called during the chain of events when GoToState is
called. EndState is called on the state that's being left and BeginState on the state that
the actor is going into.

Chapter 6

[253]

Let's see how we can use these functions in our AwesomeEnemy class.

1.	 The easiest thing we could do to try out these functions is change the enemy's
appearance based on what state it's in, so let's try that. First, let's declare a few
materials to use for the various states:

var Material SeekingMat, AttackingMat, FleeingMat;

2.	 Now let's set some values in the default properties:

 SeekingMat=Material'EditorMaterials.WidgetMaterial_X'
 AttackingMat=Material'EditorMaterials.WidgetMaterial_Z'
 FleeingMat=Material'EditorMaterials.WidgetMaterial_Y'

These are simple red, blue, and green materials normally used by the movement/rotation
widget in the editor, but I like to use them for testing.

1.	 Now, we'll need to give the AwesomeEnemy's mesh a variable so we can edit it. Let's
add this to the top of our class:

var StaticMeshComponent MyMesh;

2.	 Now let's change the section of the default properties to set MyMesh variable's value:

 Begin Object Class=StaticMeshComponent Name=EnemyMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_X'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.25,Y=0.25,Z=0.5)
 End Object
 Components.Add(EnemyMesh)
 MyMesh=EnemyMesh

The last line is the important one, it assigns the mesh to the MyMesh variable.

1.	 Now that we have everything set up, let's write our BeginState functions. First,
we'll write one in the Seeking state:

function BeginState(Name PreviousStateName)
{
 MyMesh.SetMaterial(0, SeekingMat);
}

Using States to Control Behavior

[254]

The SetMaterial function is declared in MeshComponent; it allows us to change the
materials a mesh uses. The first parameter is an int corresponding to the material index
(if you double-click a mesh in the content browser in the editor, you can see a list of the
materials and indices under the LODInfo property). The second parameter is the material
we want it to use. In this case, when the AwesomeEnemy enters the Seeking state we want
it to use its normal red material, which we've set as SeekingMat.

1.	 Now let's write a BeginState function for the Attacking state:

function BeginState(Name PreviousStateName)
{
 MyMesh.SetMaterial(0, AttackingMat);
}

2.	 And finally, one for the Fleeing state:

function BeginState(Name PreviousStateName)
{
 MyMesh.SetMaterial(0, FleeingMat);
}

3.	 Now let's compile the code and test it out. The enemy starts out at its normal red
color, turns blue while it's attacking us, and turns green when we shoot it to win the
match and make it flee. Nice!

What just happened?
We can see how BeginState can be useful to us. If it didn't exist, then we'd have to use
some trickery with Tick to figure out when we've changed states.

EndState
Now let's see what we can do with EndState.

Time for action – EndState
Let's use EndState to stop the enemies from moving for a second after they've attacked
us. That will give us a little bit of time to get away from them, so they're not constantly
swarming around us.

1.	 First, let's add a bool to the top of our class:

var bool bAttacking;

Chapter 6

[255]

We'll use this variable to keep the enemy from moving during an attack.

2.	 This will only really apply to the Seeking state, we don't want to stop the enemy
from fleeing just because they were attacking us. Let's change the Tick function in
the Seeking state:

function Tick(float DeltaTime)
{
 local vector NewLocation;

 if(bAttacking)
 return;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);

 if(VSize(NewLocation - Enemy.Location) < AttackDistance)
 GoToState('Attacking');
 }
}

Now if bAttacking is true, then none of the movement code will run.

3.	 Now to figure out where to set bAttacking to true. We'll do this in Attacking's
Tick function:

function Tick(float DeltaTime)
{
 bAttacking = true;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
}

Using States to Control Behavior

[256]

4.	 That takes care of setting it to true, but where do we set it to false? To do this,
we'll create a timer in the Attacking state's EndState function:

function EndState(name NextStateName)
{
 SetTimer(1, false, 'EndAttack');
}

Now when the enemy leaves the Attacking state, a one-second timer will start to
call EndAttack. If during this time the enemy re-enters the Attacking state, then
bAttacking will be kept true by that state's Tick function, and the timer will be reset to
one second after the attack ends again.

1.	 Now to create the EndAttack function. This one contains a single line and should
be created outside of all of the states:

function EndAttack()
{
 bAttacking = false;
}

2.	 Now let's compile and test. When the enemies attack us they freeze for a second
before continuing. Nice!

What just happened?
BeginState and EndState are extremely useful when dealing with states. They provide
convenient places to do some setup or cleanup when entering and leaving different states.
As an example, in PlayerController BeginState is used to set the Pawn's physics when
necessary, like entering water or flying while spectating a match.

State detection
There is one more thing we need to discuss while talking about entering and leaving various
states. How do we know what state we're in at any given time? Sometimes we'll want to
know. For an example of this, one of the states in UTPawn is FeigningDeath, where you
pretend to be dead to confuse the enemy. We don't want the player to be able to use objects
while in this state, so in UTPlayerController's PerformedUseAction function we check
that they're not in that state. Let's see if we can use the state detection functions to help us
with AwesomeEnemy.

Chapter 6

[257]

Time for action – Using state detection functions
The first thing that would be handy to know is: what state are we in? We can use a function
called GetStateName to find this out.

1.	 Let's put a PostBeginPlay function back in our AwesomeEnemy class, and use it to
start a repeating timer:

function PostBeginPlay()
{
 SetTimer(0.5, true, 'WhatState');
}

2.	 Now, let's create the WhatState function:

function WhatState()
{
 `log(GetStateName());
}

3.	 Now we're ready to test. Compile the code and run the game, then exit and check
the log:

[0009.81] ScriptLog: Seeking
[0010.30] ScriptLog: Seeking
[0010.76] ScriptLog: Attacking
[0011.25] ScriptLog: Attacking

Working great!

1.	 Now how can we use this to our advantage? Well, let's take a look at the
material-changing functionality we're using in AwesomeEnemy. It seems a bit
inconsistent with what's going on with that actor's movement. It turns blue when
attacking, then back to red for seeking. However, as we added that one-second delay
before it starts moving again, it's frozen but still red. Let's see if we can change that.

2.	 First, let's delete the PostBeginPlay and WhatState functions that we've created.

3.	 Now what we need to do is stop the actor from automatically turning red when it
enters the Attacking state. If bAttacking is still true, then we don't want to
change the material. Let's rewrite the Attacking state's BeginState function:

function BeginState(Name PreviousStateName)
{
 if(!bAttacking)
 MyMesh.SetMaterial(0, SeekingMat);
}

Using States to Control Behavior

[258]

4.	 We don't want to do the same thing in Fleeing, we want it to keep turning green
and running away no matter what else is going on, so we'll leave that state alone.

5.	 Now in the EndAttack function, we'll check what state we're in. If we're Seeking,
then we'll change our material to the SeekingMat:

function EndAttack()
{
 bAttacking = false;

 if(GetStateName() == 'Seeking')
 MyMesh.SetMaterial(0, SeekingMat);
}

6.	 Now let's compile the code and test. We can see that when the enemy attacks, it will
stay blue until it begins to move again. Perfect!

What just happened?
Another function that serves the same purpose is IsInState. We could rewrite our
EndAttack function like the following code snippet and it would behave the same:

function EndAttack()
{
 bAttacking = false;

 if(IsInState('Seeking'))
 MyMesh.SetMaterial(0, SeekingMat);
}

Have a go hero – Rewriting the SetMaterial calls
We seem to be using MyMesh.SetMaterial a lot. See if you can move it into a non-state
function that the states and other functions pass a material parameter to instead.

Hint – Think about how we're calling the SetMaterial function and if a
material could be used as a function parameter.

One other state detection function we can use is called IsChildState. Much like classes,
states themselves can be subclassed. It's rare that you'd ever need to use it, but we'll discuss
it a bit now.

Chapter 6

[259]

Subclassing states
Subclassing a state is pretty easy to do; it's just a matter of figuring out when you need to
use it. Say we had a state called Moving. We could create states that extend Moving and
call them Running, Walking, and so on. These would all have functionality in common with
Moving, but would have slight alterations. It wouldn't make sense to duplicate all of the
functions that would be in the Moving state just to slightly change them, so subclassing the
Moving state would make sense in this instance. Let's try it out with a simple experiment.

Time for action – Subclassing the Seeking state
We'll use an extension of the Seeking state to make our enemy move faster.

1.	 First, delete the auto keyword from our Seeking state. We'll make our new state
the auto state.

2.	 Now let's create our new state and call it FastSeeking:

auto state FastSeeking extends Seeking
{
}

Don't let the name throw you, the new state's name doesn't have to contain the old state's
name or be related to it at all, we could call it Fiddlesticks if we wanted to.

Be sure to place this state AFTER the Seeking state, otherwise the compiler will give you an
error telling you that it cannot find the state we're extending from.

1.	 Now let's create a BeginState function inside our new state and change it slightly
from the regular Seeking state's version:

function BeginState(Name PreviousStateName)
{
 MovementSpeed = default.MovementSpeed * 2.0;

 if(!bAttacking)
 MyMesh.SetMaterial(0, SeekingMat);
}

We're using default.MovementSpeed here instead of just MovementSpeed, otherwise
every time we entered this state our speed would double. We just want it to stay at twice
the default speed.

1.	 Compile the code and test. We can't even run away from it now.

Using States to Control Behavior

[260]

What just happened?
Even without a Tick function in our new state, it inherits all of the functions declared in the
state we're extending from. Now we can see how helpful this can be if we have a lot of states
with similar functionality. As I said it's rare that you'd ever need to use this, but it can save a
lot of unnecessary code when it can be used.

Before we continue, let's delete the FastSeeking state and put the auto keyword back in
our Seeking state.

Keywords, labels, and latent functions
Just a few other things we need to discuss about states, keywords, labels, and latent
functions. Let's start by going over the keywords we can use in states.

Keywords
One keyword that we've already been using is auto; it designates the state as the one the
actor will start in when it is created. Only one state can have the auto keyword, but if we
wanted to we could have no states with it. In that case, the actor will only use the non-state
functions until it enters one of the states.

The other keyword we can use with states is ignores. Unlike auto, ignores goes inside
the state at the top, before any functions are declared. Using ignores tells the state not to
use the functions we tell it to while it's in this state. It has the same effect as declaring the
function and leaving it empty, but it's a lot cleaner to use ignores. Let's see if we can use it
in our AwesomeEnemy class.

Time for action – Using ignores
This will be a simple experiment; we're just going to have AwesomeEnemy not take any
damage while it's fleeing.

1.	 At the top of AwesomeEnemy's Fleeing state, add the following line:

ignores TakeDamage;

2.	 This one's pretty hard to test, but adding this line will make AwesomeEnemy ignore
calls to TakeDamage while it is in the Fleeing state.

Chapter 6

[261]

What just happened?
If we had more than one function that we wanted to ignore, then we would separate them
with commas. For example, if we wanted it to ignore the EndAttack function as well, we
would write it like this:

ignores TakeDamage, EndAttack;

Labels and latent functions
States can have special functions that can only be executed from within that state, code that
can't be called from normal functions. These are called latent functions. In addition, states
can use labels to control the flow of state code. Let's take a look.

Time for action – Do we really need to give labels to everything?
One label is special and indicates where state code should start executing; this one is
called Begin. Let's take a look at a few things we can do with state code, labels, and
latent functions.

1.	 At the bottom of our Seeking state, underneath all of the functions, but before the
closing } symbol, let's write the following code:

Begin:
 `log("Man I'm tired, I'm going to sleep.");
 Sleep(3.0);
 `log("French toast please!");
SomeOtherLabel:
 `log("You ever have a deja vu Joel?");
 Sleep(3.0);
 GoTo('SomeOtherLabel');

When state code starts, it starts at the Begin label. First we log something, then we use a
latent function called Sleep. Usually when code is running, it will prevent any other code
from running until it's finished. This doesn't apply to latent functions, which won't stop other
code from running while it's waiting on whatever function it's performing to finish.

Using States to Control Behavior

[262]

After it's done sleeping, we log something else, then the code automatically moves down
past the SomeOtherLabel label into the code down there. We set this up to loop by calling
GoTo('SomeOtherLabel').

1.	 We can also specify which label a state should start at during our call to GoToState.
Let's change the Attacking state's Tick function:

function Tick(float DeltaTime)
{
 bAttacking = true;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking', 'SomeOtherLabel');
 }
}

2.	 Compile the code and test. When the AwesomeEnemy leaves the Attacking state
and returns to Seeking, it will start at the SomeOtherLabel instead of the default
Begin now.

3.	 Let's change the Attacking state's Tick function to what it was before:

function Tick(float DeltaTime)
{
 bAttacking = true;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
}

4.	 Finally, let's remove the labels and latent functions at the bottom of our
Seeking state.

Chapter 6

[263]

What just happened?
This only briefly touched on labels and latent functions. It can get pretty advanced and
complicated quickly. The most important place these are used is in the Controller classes,
specifically for the AI. Two latent functions, MoveTo and MoveToward, are used a lot there
to cause the bots to move towards a specific location while still allowing other code to run
in the meantime. I'd recommend searching through UTBot to see how labels and latent
functions are used there.

Like a boss
Oh man, what a mess. Must have been some party. Let's clean up our code so we can get our
game working right again.

The cleanup job
Before we get into some fun stuff, we need to get our game back in shape by removing the
test code that let us have only one enemy.

Time for action – Reverting our code
Now let's get the test code out of here!

1.	 The first thing we need to do is open the AwesomeTestMap and delete the placed
AwesomeEnemy there. Save the map and exit the editor.

2.	 Next, let's take out the placeable keyword from the top of AwesomeEnemy:

class AwesomeEnemy extends AwesomeActor;

3.	 Now let's change AwesomeEnemy's TakeDamage function back to what it was
before we started these experiments:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 Destroy();
}

Using States to Control Behavior

[264]

4.	 Now in AwesomeGame, let's change the EnemiesLeft default property back to 10:

EnemiesLeft=10

5.	 Finally, let's add the timer back to AwesomeGame's PostBeginPlay:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = EnemiesLeft;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 SetTimer(5.0, false, 'ActivateSpawners');
}

6.	 Compile the code and test. The game should be working as before, with our
improvements from the AwesomeEnemy states still intact.

What just happened?
We've cleaned up the code to get the game working again so we can further expand on it.
Our experiment with states is completed, and now it's time to put that knowledge to use!
We'll also be using the concepts we've learned in previous chapters to keep that knowledge
fresh too.

Let's get started!

Attack of Schellenberg
The next step in expanding our game is making a boss at the end of the enemy wave. He will
be a giant version of the normal enemies, and we will call him...Schellenberg.

Time for action – Creating the abstract base class
This boss class will have a few things in common with AwesomeEnemy, so there are a few
things we'll want to separate out into a common parent class.

1.	 Create a copy of AwesomeEnemy.uc and name it AwesomeEnemy_Minion.
uc. AwesomeEnemy will now be the parent class for all of our enemies, and
AwesomeEnemy_Minion will take on the functionality of the enemies we've seen so
far in our game.

Chapter 6

[265]

2.	 We're going to change a lot in AwesomeEnemy and AwesomeEnemy_Minion
to get the functionality separated, so let's start with AwesomeEnemy. As the
boss and minion will both be subclassed of AwesomeEnemy, but we won't want
AwesomeEnemy spawned directly anymore, let's declare it as abstract. Change
the declaration in AwesomeEnemy to this:

class AwesomeEnemy extends AwesomeActor
 abstract;

3.	 The variables in this class are fine, so now let's examine the non-state functions.
TakeDamage is going to have different functionality for both subclasses, so let's
delete TakeDamage from AwesomeEnemy.

4.	 RunAway really only applies to the minions, but to make sure we don't need to do
any unnecessary typecasting let's leave the function in AwesomeEnemy, but empty it
out:

function RunAway()
{
}

5.	 The states and default properties for AwesomeEnemy are fine, we'll change those for
the boss, but if we decide to make different minion classes it will be convenient for
all of them to have the same functionality available by default.

6.	 Our new AwesomeEnemy class should look like this huge wall of text, and I apologize
in advance, but we need to make sure we're both on the same page:

class AwesomeEnemy extends AwesomeActor
 abstract;

var float BumpDamage;
var Pawn Enemy;
var float MovementSpeed;
var float AttackDistance;
var Material SeekingMat, AttackingMat, FleeingMat;
var StaticMeshComponent MyMesh;
var bool bAttacking;

function GetEnemy()
{
 local AwesomePlayerController PC;

 foreach LocalPlayerControllers(class'AwesomePlayerController',
 PC)
 {

Using States to Control Behavior

[266]

 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }
}

function EndAttack()
{
 bAttacking = false;

 if(GetStateName() == 'Seeking')
 MyMesh.SetMaterial(0, SeekingMat);
}

function RunAway()
{
}

auto state Seeking
{
 function BeginState(Name PreviousStateName)
 {
 if(!bAttacking)
 MyMesh.SetMaterial(0, SeekingMat);
 }

 function Tick(float DeltaTime)
 {
 local vector NewLocation;

 if(bAttacking)
 return;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);

 if(VSize(NewLocation - Enemy.Location) < AttackDistance)
 GoToState('Attacking');

Chapter 6

[267]

 }
 }
}

state Attacking
{
 function BeginState(Name PreviousStateName)
 {
 MyMesh.SetMaterial(0, AttackingMat);
 }

 function Tick(float DeltaTime)
 {
 bAttacking = true;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
 }

 function EndState(name NextStateName)
 {
 SetTimer(1, false, 'EndAttack');
 }
}

state Fleeing
{
 ignores TakeDamage;

 function BeginState(Name PreviousStateName)
 {
 MyMesh.SetMaterial(0, FleeingMat);
 }

 function Tick(float DeltaTime)
 {

Using States to Control Behavior

[268]

 local vector NewLocation;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation -= normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

defaultproperties
{
 SeekingMat=Material'EditorMaterials.WidgetMaterial_X'
 AttackingMat=Material'EditorMaterials.WidgetMaterial_Z'
 FleeingMat=Material'EditorMaterials.WidgetMaterial_Y'
 AttackDistance=96.0
 MovementSpeed=256.0
 BumpDamage=5.0
 bBlockActors=True
 bCollideActors=True

 Begin Object Class=DynamicLightEnvironmentComponent
 Name=MyLightEnvironment
 bEnabled=TRUE
 End Object
 Components.Add(MyLightEnvironment)

 Begin Object Class=StaticMeshComponent Name=EnemyMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_X'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.25,Y=0.25,Z=0.5)
 End Object
 Components.Add(EnemyMesh)
 MyMesh=EnemyMesh

 Begin Object Class=CylinderComponent Name=CollisionCylinder
 CollisionRadius=32.0
 CollisionHeight=64.0

Chapter 6

[269]

 BlockNonZeroExtent=true
 BlockZeroExtent=true
 BlockActors=true
 CollideActors=true
 End Object
 CollisionComponent=CollisionCylinder
 Components.Add(CollisionCylinder)
}

7.	 Now to deal with AwesomeEnemy_Minion. As most of the functionality has been
kept in the AwesomeEnemy superclass, this one will be small. Let's start with the
class declaration:

class AwesomeEnemy_Minion extends AwesomeEnemy;

8.	 All of the variables have been kept in the superclass, so make sure there are no
variables declared in AwesomeEnemy_Minion.

9.	 For non-state functions, the only two we need to keep are TakeDamage
and RunAway:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 Destroy();
}

function RunAway()
{
 GoToState('Fleeing');
}

Using States to Control Behavior

[270]

10.	The state code and default properties are handled by the AwesomeEnemy superclass
now, so the default property block should be empty and there shouldn't be any
other code. The AwesomeEnemy_Minion class should look like the following
code snippet:

class AwesomeEnemy_Minion extends AwesomeEnemy;

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);

 if(AwesomeEnemySpawner(Owner) != none)
 AwesomeEnemySpawner(Owner).EnemyDied();

 Destroy();
}

function RunAway()
{
 GoToState('Fleeing');
}

defaultproperties
{
}

11.	 IMPORTANT: As we're reordering our classes, we need to change the reference in
the AwesomeEnemySpawner. Otherwise, it will try to spawn our abstract class,
which will fail. Change the SpawnEnemy function to the following:

function SpawnEnemy()
{
 if(MySpawnedEnemy == none)
 MySpawnedEnemy = spawn(class'AwesomeEnemy_Minion', self,,
 Location);
}

12.	Compile the code.

Chapter 6

[271]

What just happened?
We're going to take a small break here to talk about what we've done. We've used our
lessons on inheritance, function overriding, and class modifiers to set up a new structure
for our enemy classes. AwesomeEnemy is now an abstract base class for all of our game's
enemies, and contains common functionality that all of our enemies will use.

As AwesomeEnemy is now abstract, we've created a subclass, AwesomeEnemy_Minion,
which has the same functionality as the enemies we've been using throughout this book.

Next, we're going to create the boss class. It will have simple functionality at first, but
creating it will let us alter AwesomeGame to get the boss to spawn after the enemies have
been defeated.

Let's get started on that.

Time for action – Creating and spawning the boss
Let's start by creating the boss class:

1.	 Create a new file in Development\Src\AwesomeGame\Classes called
AwesomeBoss.uc.

2.	 Let's write the class declaration:

class AwesomeBoss extends AwesomeEnemy;

3.	 We'll change two default properties to make him bigger and slower than the
minions:

defaultproperties
{
 MovementSpeed=128.0

 Begin Object Name=EnemyMesh
 Scale3D=(X=1.0,Y=1.0,Z=2.0)
 End Object

 Begin Object Name=CollisionCylinder
 CollisionRadius=128.0
 CollisionHeight=256.0
 End Object
}

Using States to Control Behavior

[272]

This will make him pretty huge.

1.	 Now that we have the basic boss class created, let's integrate him into the game.
As we don't want the game to end when the minions are defeated, let's change
the way their deaths are reported. First, delete the EnemyDied function from
AwesomeEnemySpawner.

2.	 Now, let's rewrite the TakeDamage function in our AwesomeEnemy_Minion class:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 if(AwesomeGame(WorldInfo.Game) != none)
 AwesomeGame(WorldInfo.Game).EnemyKilled();

 Destroy();
}

Instead of calling ScoreObjective, we'll call EnemyKilled in our AwesomeGame.

1.	 Now let's write that function in AwesomeGame:

function EnemyKilled()
{
 local int i;

 if(bSpawnBoss)
 return;

 EnemiesLeft--;
 if(EnemiesLeft <= 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();
 ClearTimer('ActivateSpawners');
 bSpawnBoss = true;
 ActivateSpawners();
 }
}

Chapter 6

[273]

Now the enemies will run away as usual, and we'll use bSpawnBoss to make the boss spawn
in ActivateSpawners.

1.	 Now as we're using it, let's declare bSpawnBoss at the top of AwesomeGame:

var bool bSpawnBoss;

2.	 This variable will be used by ActivateSpawners to spawn the boss, so let's rewrite
that function:

function ActivateSpawners()
{
 local int i;
 local array<AwesomeEnemySpawner> InRangeSpawners;
 local AwesomePlayerController PC;

 foreach LocalPlayerControllers(class'AwesomePlayerController',
 PC)
 break;
 if(PC.Pawn == none)
 {
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }

 for(i=0; i<EnemySpawners.length; i++)
 {
 if(VSize(PC.Pawn.Location - EnemySpawners[i].Location) >
 MinSpawnerDistance && VSize(PC.Pawn.Location -
 EnemySpawners[i].Location) < MaxSpawnerDistance)
 {
 if(EnemySpawners[i].CanSpawnEnemy())
 InRangeSpawners[InRangeSpawners.length] =
 EnemySpawners[i];
 }
 }

 if(InRangeSpawners.length == 0)
 {
 `log("No enemy spawners within range!");
 SetTimer(1.0, false, 'ActivateSpawners');
 return;
 }

 if(bSpawnBoss)
 InRangeSpawners[Rand(InRangeSpawners.length)].SpawnBoss();

Using States to Control Behavior

[274]

 else
 {
 InRangeSpawners[Rand(InRangeSpawners.length)].SpawnEnemy();
 SetTimer(1.0 + FRand() * 3.0, false, 'ActivateSpawners');
 }
}

3.	 Before we leave AwesomeGame, let's fix the scoring system. First, we'll change
PostBeginPlay:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = 1;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 SetTimer(5.0, false, 'ActivateSpawners');
}

4.	 Finally, let's empty out ScoreObjective and just leave a call to the super. We may
want to use this function later:

function ScoreObjective(PlayerReplicationInfo Scorer, Int Score)
{
 super.ScoreObjective(Scorer, Score);
}

5.	 Now for the AwesomeEnemySpawner class. We're calling SpawnBoss on it, so let's
create that function now:

function SpawnBoss()
{
 spawn(class'AwesomeBoss', self,, Location);
}

6.	 Now let's compile the code and test the game out.

Chapter 6

[275]

What just happened?
Now when the enemies have been defeated, Schellenberg spawns. Right now, we can't
defeat him because we haven't written the TakeDamage function there, and he only has
simple Seeking behavior and the normal attack. Now that we have the game rules set up,
we can work on the boss's behavior.

Time for action – I like you, I kill you last
First, let's start by writing the boss's version of the Seeking state. This will be a bit different
than the minions, as the boss won't move into a separate Attacking state.

1.	 First, the state declaration:

auto state Seeking
{
}

2.	 Now the Tick function. We're altering this slightly from the minions; the boss won't
stop while attacking and we're adding a line to make him strafe around the player a
bit:

function Tick(float DeltaTime)
{
 local vector NewLocation;

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
 MovementSpeed * DeltaTime;
 NewLocation += normal((Enemy.Location - Location) cross
 vect(0, 0, 1)) * MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
}

3.	 Now let's add a timer in the BeginState function to make him attack every
four seconds:

function BeginState(Name PreviousStateName)
{
 SetTimer(4.0, true, 'Attack');
}

Using States to Control Behavior

[276]

4.	 For the boss' attack, we'll just have him spawn minions:

function Attack()
{
 spawn(class'AwesomeEnemy_Minion',,, Location);
 MyMesh.SetMaterial(0, AttackingMat);
 SetTimer(1, false, 'EndAttack');
}

5.	 Now we just need a way to kill him. Let's make him stronger than the minions.
Let's add a health int to AwesomeEnemy so we can use it in the other classes as
well later:

var int Health;

6.	 Now back in AwesomeBoss, let's set it in the default properties:

Health=30

7.	 Now for the TakeDamage function:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 Health--;
 if(Health == 0 && EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);
}

8.	 Almost done! If we compiled and tested the code now, then we'd notice that the
boss and any enemies it spawned would keep moving after the match was over. Let's
fix that in the TakeDamage function of AwesomeBoss:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 local AwesomeEnemy AE;

 Health--;

 if(Health == 0 && EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)

Chapter 6

[277]

 {
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);
 foreach DynamicActors(class'AwesomeEnemy', AE)
 {
 if(AE != self)
 AE.RunAway();
 }

 Destroy();
 }
}

Now, when defeated, the smaller minions will run away and the boss will be destroyed.

1.	 There's one last thing we need to do for now. Games usually have the boss's health
displayed on the HUD, so let's go ahead and do that. We'll start by making a variable
to reference the boss actor in AwesomeGame:

var AwesomeEnemy TheBoss;

2.	 Now we'll rewrite the section of ActivateSpawners that calls the SpawnBoss
function:

if(bSpawnBoss)
 TheBoss = InRangeSpawners[Rand
 (InRangeSpawners.length)].SpawnBoss();
else
{
 InRangeSpawners[Rand(InRangeSpawners.length)].SpawnEnemy();
 SetTimer(1.0 + FRand() * 3.0, false, 'ActivateSpawners');
}

We'll use a return value to assign the actor to the variable.

1.	 Now let's rewrite the SpawnBoss function in AwesomeEnemySpawner to return the
actor spawned:

function AwesomeEnemy SpawnBoss()
{
 return spawn(class'AwesomeBoss', self,, Location);
}

Using States to Control Behavior

[278]

We're using AwesomeEnemy here, so we don't have to do any typecasting.

1.	 Now for the HUD. Let's rewrite the last section of the DrawHUD function in our
AwesomeHUD class:

event DrawHUD()
{
 super.DrawHUD();

 Canvas.DrawColor = WhiteColor;
 Canvas.Font = class'Engine'.Static.GetLargeFont();

 if(PlayerOwner.Pawn != none &&
 AwesomeWeapon(PlayerOwner.Pawn.Weapon) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.9);
 Canvas.DrawText("Weapon Level:" @
 AwesomeWeapon(PlayerOwner.Pawn.Weapon).CurrentWeaponLevel);
 }

 if(AwesomeGame(WorldInfo.Game) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.95);
 if(!AwesomeGame(WorldInfo.Game).bSpawnBoss)
 Canvas.DrawText("Enemies Left:" @
 AwesomeGame(WorldInfo.Game).EnemiesLeft);
 else if(AwesomeGame(WorldInfo.Game).TheBoss != none)
 Canvas.DrawText("Boss Health:" @
 AwesomeGame(WorldInfo.Game).TheBoss.Health);
 }
}

2.	 Now let's compile the code and test it out. Now when the boss spawns, we can see
his health on the HUD!

What just happened?
Now we've used our lessons about states to create the boss and abstract base class for the
enemies. Is there any way we can use state subclassing in our game? I think there is! Let's
power up the boss a bit.

Chapter 6

[279]

Time for action – Rage mode activate
A lot of games have the boss change into a different form as it gets weaker, or use stronger
attacks. Let's do the same thing with our boss by having him switch from spawning minions
to shooting rockets right at your face. That'll teach you.

1.	 To do this, we'll create a subclass of the Seeking state in AwesomeBoss and call it
StageTwo:

state StageTwo extends Seeking
{
}

2.	 Now let's rewrite the Attack function here:

function Attack()
{
 local UTProj_Rocket MyRocket;
 MyRocket = spawn(class'UTProj_Rocket', self,, Location);
 MyRocket.Init(normal(Enemy.Location - Location));
 MyMesh.SetMaterial(0, AttackingMat);
 SetTimer(1, false, 'EndAttack');
}

The Init function for the projectile tells it which direction to travel.

1.	 Now to tell it when to move into this state. We'll do this in TakeDamage:

event TakeDamage(int DamageAmount, Controller EventInstigator,
 vector HitLocation, vector Momentum, class<DamageType>
 DamageType, optional TraceHitInfo HitInfo, optional Actor
 DamageCauser)
{
 local AwesomeEnemy AE;

 Health--;

 if(Health == 0 && EventInstigator != none &&
 EventInstigator.PlayerReplicationInfo != none)
 {
 WorldInfo.Game.ScoreObjective
 (EventInstigator.PlayerReplicationInfo, 1);
 foreach DynamicActors(class'AwesomeEnemy', AE)
 {
 if(AE != self)
 AE.RunAway();

Using States to Control Behavior

[280]

 }

 Destroy();
 }

 if(Health == 10)
 GoToState('StageTwo');
}

2.	 We'll also add an indicator to the HUD to let us know we're about to get a rocket to
the face:

if(AwesomeGame(WorldInfo.Game) != none)
{
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.95);
 if(!AwesomeGame(WorldInfo.Game).bSpawnBoss)
 Canvas.DrawText("Enemies Left:" @
 AwesomeGame(WorldInfo.Game).EnemiesLeft);
 else if(AwesomeGame(WorldInfo.Game).TheBoss != none)
 {
 Canvas.DrawText("Boss Health:" @
 AwesomeGame(WorldInfo.Game).TheBoss.Health);
 if(AwesomeGame(WorldInfo.Game).TheBoss.Health <= 10)
 {
 Canvas.SetPos(Canvas.ClipX * 0.4, Canvas.ClipY * 0.7);
 Canvas.DrawText("BOSS SUPER RAGE MODE");
 }
 }
}

3.	 Only one minor issue remains to be fixed, and then we're done! As we're now in a
subclass of Seeking, the EndAttack code doesn't reset the boss' material to red
after it attacks while in StageTwo. We can fix this by adding another check to our
if statement in EndAttack in the AwesomeEnemy class:

function EndAttack()
{
 bAttacking = false;

 if(GetStateName() == 'Seeking' || IsChildState(GetStateName(),
 'Seeking'))
 MyMesh.SetMaterial(0, SeekingMat);
}

4.	 Compile the code and we're done!

Chapter 6

[281]

What just happened?
Don't stand still when you get the boss's health down or you'll get rockets to the face.

Now our game is really starting to shape up!

Have a go hero – Subclassing
This one will challenge you, but if you've been paying attention to all of the chapters so
far it should be easy. See if you can create another subclass of AwesomeEnemy that's
smaller and faster than the normal minion, and rewrite the SpawnEnemy function in
AwesomeEnemySpawner to have a random chance of spawning one.

Hint – Think about how the Minion class was created and how
another subclass of AwesomeEnemy could be created. Furthermore,
think about where we spawn them from and how it could be altered
to work with a random chance.

Pop quiz – Using states
1.	 When calling a function, what is the order of priority that UnrealScript uses when

looking for it?

a.	 Non-state, Super, State

b.	 State, Non-state, Super

c.	 Super, Non-state, State

2.	 What is the function used to switch between states?

3.	 What types of functions can only be used in state code?

Using States to Control Behavior

[282]

Summary
We learned a lot in this chapter about states. We learned how to use them to create
different behavior in our actors without needlessly complicated if/else statements and
Booleans. In our game, we used states to change the way the enemies work.

Specifically, we covered:

�� What a state is, how to create them, and how to switch between them

�� How functions behave when used with states and the use of non-state functions

�� Functions specific to states and how to find out what state we're in

•	 How to subclass states

�� The keywords, labels, and latent functions associated with states

Now that we've learned about states, we're ready to start working with Kismet to get some
level-specific functionality out of our game!

7
Working with Kismet

Dual-classing as a programmer/designer.

As a programmer working within a team, or even as a lone wolf creating a
game by yourself, knowing how to use Kismet can be an essential tool when
working with the UDK. Instead of relying solely on the Kismet events and
actions that come with the UDK, we can expand on them by creating and using
our own.

In this chapter we will do the following:

�� Take a look at what Kismet is and what it is used for

�� Create our own Kismet events and actions

�� Learn how to use latent Kismet actions

So with that, let's take a look at Kismet!

Overview of Kismet
While UnrealScript can cover fundamental game mechanics, Kismet works with level-specific
functionality such as opening doors or reacting to game events, such as the death of the
player, in ways specific to that level.

As an example, in our game, if we wanted to have the weapon upgrades spawn in specific
locations when we killed a boss, we would use UnrealScript to create generic Kismet actions
and events. Some of the events and actions we would need for this purpose already exist, so
in the end we would have a mix of stock and custom Kismet in our game.

Working with Kismet

[284]

A simple introduction
Before we start getting into the UnrealScript side of things, let's take a look at some things
we can do with the Kismet that's already present.

Time for action – Using Kismet
This section is mostly going to take place in the editor, so let's fire it up and get to work!

1.	 Start up the editor, then open AwesomeTestMap.

2.	 We'll start with some simple Kismet at first, so let's open up the Kismet window by
pressing the green K button in the top toolbar:

3.	 The Kismet window will open. Let's see what's going on here:

Chapter 7

[285]

The main gray area with the binary on the right side is the workspace where the Kismet
actions and events are placed and linked together. At the bottom left, we have the Properties
panel where the editable variables of the actions and events can be changed, exactly the
same way we've done with Actor classes. Finally to the bottom right is the Sequences
panel. If we had multiple streamed levels or groups of Kismet actions combined into sub-
sequences, we would select the different Kismet sequences here.

1.	 Let's start with something simple. We can create the Kismet version of the Hello
World program pretty easily, so let's do that. Right-click in the main workspace and
select New Event | Player | Player Spawned. You should see the event show up
where you clicked:

In Kismet, events have the diamond shape and are triggered by UnrealScript classes. In
this case, the GameInfo class triggers this event when a player spawns. We could have
more than one of these events in our Kismet sequence, if we wanted; all of them would be
triggered when a player spawns. That decision is mainly up to aesthetics and organization
within the Kismet window.

1.	 The pink spikes at the bottom of this event let us get variable references from that
event if we need them. In this case, we have the option to get the PlayerController
in the form of the Instigator, and the PlayerStart in the form of the Spawn Point
variable. We could use these if, for example, we only wanted certain things to
happen to a specific player, or any player that spawns at a particular spawn point.

Working with Kismet

[286]

2.	 The black node labeled Out is used to connect to other Kismet actions, and these
connections define the flow of this Kismet sequence. To see this, let's add an action
to our sequence. Right-click off to the right of the Player Spawned event and select
New Action | Misc | Log:

3.	 The Log action works the same as the log command that we've been using in
UnrealScript, which makes Log actions a convenient tool for debugging Kismet
sequences. These also have the option of displaying the log on the screen, which makes
them even more helpful. If we click on the Log action and take a look at the SeqAct_Log
section of the Properties in the lower-left window, we can see the following:

The Properties panel might look more familiar now. In our work with variables in Chapter 2,
Storing and Manipulating Data, we created editable variables that showed up in an Actor's
properties in a similar way. Kismet is no different; when actions and events are created in
UnrealScript, we can define editable variables and their default properties, just like the
Actor classes.

1.	 For anything to show up, we need to tell it what to log. Let's open up the Sequence
Object section and type Player has spawned! into the Obj Comment property:

Chapter 7

[287]

The Obj Comment property is available to all Kismet actions and events, and is normally
used to write notes to ourselves so we know what the sequence is doing. In the Log action's
case, this is what is written to the log and shown on screen.

1.	 Before we test, we need to link the Event to the Action, so let's do that now. Click
and hold on the black Out node of the Player Spawned event, then drag the line
over to the In node of the Log action. When you release the mouse, the connection
should be made:

Now we can see how the flow works in Kismet. When the Player Spawned event is activated,
it in turns activates the Log action. We could connect the Out node of the Log action to
more actions. We could also connect the Out node of the Player Spawned event to more
than one action. By adding more events and actions, we could create some complex Kismet
sequences.

1.	 Save the map, but we can keep the editor open for this. Let's fire up the game with
our batch file and see what happens. We'll notice the log show up on the screen
right as the game starts:

2.	 Exit the game and take a look at the log. We can see it show up there as well:

[0005.71] Log: Kismet: Player has spawned!

What just happened?
This was a pretty simple introduction to Kismet, but it's enough to get us started. Next, let's
see if we can use it to do something useful.

Working with Kismet

[288]

Building complexity
I've never liked the way our weapon upgrades worked. They're just sitting there, waiting
for the player to pick them up. Even trained birds have to poke a button to get some food.
Actually, that sounds like a good idea. Let's make the player do a bit of work to get a weapon
upgrade, the lazy robot.

Time for action – A more complex Kismet sequence
The idea sounds simple in theory: the player walks over a trigger, and a weapon upgrade
appears. In reality, we'll see that simple ideas can get complicated pretty quickly, even
in Kismet:

1.	 We should still have the editor open, if not, open it and open our AwesomeTestMap.
Delete the Kismet from the last experiment by clicking on each action and event and
hitting Delete on the keyboard.

2.	 Delete all of the AwesomeWeaponUpgrade actors, we'll be placing them in the map
through Kismet.

3.	 The first thing we'll need is the trigger. Open up the Content Browser and select
the Actor Classes tab. Make sure Show Categories is unchecked, and select Actor
| Trigger (Not the subclasses, just Trigger). In the level, right-click somewhere near
the start player and hit Add Trigger Here.

4.	 The trigger we've added won't be visible in game by default, so let's fix that real
quick. Double-click on the trigger to open its properties, and under Display, uncheck
Hidden. Close the trigger's properties.

5.	 We don't want the upgrade weapon to spawn in the same place as the trigger, so
we need to add an actor that we'll use in Kismet to set the spawn location. I like
to use TargetPoints for this, although any placeable actor will work. Select Actor |
Keypoint | TargetPoint, and right-click near the trigger and hit Place TargetPoint
Here. Use the blue arrow of the movement widget to raise it up off of the ground
a bit.

6.	 OK, we're ready for some Kismet. We know from the Player Spawned event that
UnrealScript triggers Events. That one was triggered by the GameInfo class, but
actors placed in the level can also trigger Events in reaction to things happening in
the game. In this case, the Trigger actor can fire an Event whenever it is touched.

Chapter 7

[289]

7.	 To use Kismet events this way, we need to select the Trigger in the level by clicking
on it. Now open the Kismet window and right-click in the main workspace. This time
instead of going under New Event, below this we should see an option for New
Event Using Trigger_0. If not, make sure the Trigger is selected in the level. Under
New Event Using Trigger_0, select Touch:

We can see this Event has three outputs, Touched, UnTouched and Empty. The first two
are self-explanatory. The third one acts the same as the UnTouched output, except that
UnTouched fires whenever any actor that was touching this trigger moves away from it, and
Empty only fires when ALL actors that were touching it aren't touching it anymore.

1.	 By default this Trigger event is only set up to fire once. To get it to work an infinite
number of times, we need to change one property. Select the Event, and in the
Properties panel open up the Sequence Event section. Set Max Trigger Count to 0.
This will let this event fire an unlimited number of times.

2.	 Now we have the Trigger's event set up, so we need the Action that's going to spawn
the AwesomeWeaponUpgrade. For this, right-click to the right of the Trigger event
and select New Action | Actor | Actor Factory:

Working with Kismet

[290]

Right now, we're only concerned about two of the nodes, the Spawn Actor input
and the Spawn Point property. Let's take care of the Spawn Point property first.

3.	 Select the TargetPoint in the level, and in the Kismet window, right-click under the
Actor Factory action and hit New Object Var Using TargetPoint_0. We'll see a circle
show up with the TargetPoint inside it:

In Kismet, variables are represented as circles and act the same way they do in
UnrealScript. We can change their value or read their value to do what we need to
do. In this case, we're going to use the target point's location as the spawn point for
our weapon upgrades.

4.	 Click and hold on the Spawn Point node on the Actor Factory action, and drag the
line to the TargetPoint variable. When you let go, the connection should be made.

5.	 Now click and hold on the Touched output of the Trigger event, and drag the line
over to the Spawn Actor input on the Actor Factory action.

6.	 One last thing we need to do: tell the Actor Factory what to spawn. Select the
action in the main workspace, and in the Properties panel open up the SeqAct_
ActorFactory section. In the Factory property, there should be a blue arrow pointing
down. Click it, and in the pop-up list select ActorFactoryActor at the top. Once that's
selected, a new property should show up under Factory called Actor Class. Set Actor
Class to AwesomeWeaponUpgrade.

7.	 For debug purposes, while we're in the Actor Factory action's properties, under
the Sequence Object section let's check Output Obj Comment To Screen, and set
ObjComment to Upgrade Spawned!

8.	 That's it! Our Kismet sequence should now look like this:

Chapter 7

[291]

6.	 Save the map and start up the game. We can see that the Kismet is working fine,
whenever we run over the trigger, a weapon upgrade spawns! Remember that to
pick the upgrade up, we have to hold a weapon.

What just happened?
One thing we'll notice is that if we just run back and forth over the trigger, it will keep
spawning weapon upgrades. What if we only wanted it to be able to spawn one at a time?
This is where the complex part comes in, but thinking like a programmer it should be easy to
figure out. Let's give it a shot.

Time for action – Bug fixing time!
If we were writing this Kismet sequence as code, we might use a Boolean to keep
track of whether a weapon upgrade has been spawned or not. If we hit the trigger and
bUpgradeSpawned was false, we'd set it to true and spawn one. Once it was picked
up, we'd set the Boolean back to false. We already know how to do that in code, but how
about Kismet?

There are a few different ways we could do this, but to keep it relatively simple we'll just use
another trigger:

1.	 Open AwesomeTestMap and delete the TargetPoint that we're using as the upgrade
spawn location. Since it's referenced by Kismet, the editor will ask you if you're sure.
Click on Continue. Now if we open our Kismet editor, we'll see that the variable that
held our TargetPoint now has ??? written on it. This lets us know that the variable
doesn't have an actor associated with it. If this were UnrealScript, it would be the same
as a variable being none. Don't delete this Kismet variable, we'll use it in a second.

Working with Kismet

[292]

2.	 Go into the Actor Classes tab of the Content Browser and select Actor | Trigger, and
add one where the TargetPoint used to be.

3.	 With the new Trigger selected, go into the Kismet editor and right-click on the ???
variable. Press Assign Trigger_1 To Object Variable(s) and the trigger should now
show up in the variable.

4.	 Now for the Boolean. Right-click underneath the current sequence and hit New
Variable | Bool. It will show up as a red circle with False written inside it. We'll use
this to indicate whether or not a weapon upgrade has been spawned.

5.	 Right-click on either end of the connection between the Trigger event and the Actor
Factory action and hit Break All Links. The link should be broken. Now move the
Trigger event away from the Actor Factory action so we can add more actions in
between them. To move it, select it, then hold Ctrl, then click and drag it.

6.	 If we were writing this as code, this part might look like:

if(!bUpgradeSpawned)
{
 bUpgradeSpawned = true;
 SpawnUpgrade();
}

7.	 The SpawnUpgrade() function would be the Actor Factory action, so that leaves us
with two lines of code. Each one can be represented by a Kismet action, so there are
two that we need to add. Let's do the bool comparison first.

8.	 Right-click between the Trigger event and the Actor Factory action and hit New
Condition | Comparison | Compare Bool. This will show up as a blue box.

9.	 The variable we want to check needs to be hooked up to the Bool node at the bottom
of this action, so click on the Bool node and drag the line to our Bool variable.

10.	Now connect the Touched node of our Trigger event to the In node of the Compare
Bool action.

11.	That takes care if the if statement in our hypothetical code, so let's do the second
line where we set the bool to True. Right-click next to the Compare Bool action and
hit New Action | Set Variable | Bool.

Chapter 7

[293]

12.	For this new Action to work, we need to connect it to our Bool variable. Connect the
Target node at the bottom of the Bool action to the Bool variable.

13.	With the new action selected, open up the SeqAct_SetBool section of its properties
and check Default Value so that it will set the bool to True.

14.	Now connect the False node of the Compare Bool action to the In node of the Bool
action, and the Out node of the Bool action to the Spawn Actor node of the Actor
Factory action. Our Kismet sequence should look like this:

15.	Almost there. Now we need to set that Bool back to False when the upgrade is
picked up. Since we're spawning it on a Trigger, we can simply use its Touch event as
a quick way to do this.

16.	Select Trigger_1 in the editor, and go back into the Kismet window. Right-click below
the first triggered event and hit New Event Using Trigger_1 | Touch.

17.	 In the new Touch event's properties set Max Trigger Count to 0.

18.	Next to the Touch event, right-click and add a New Action | Set Variable | Bool. We
don't need to change its properties, so next let's connect everything.

19.	Connect the Touched node of the new Trigger event to the In node of the new
Bool action.

20.	Connect the Target node of the new Bool action to the Bool variable.

Working with Kismet

[294]

21.	That's it! The sequence should now look like this:

22.	Save the map and run the game. Now when we run over the first trigger, it will only
spawn one upgrade until we pick it up!

What just happened?
We can easily see how complicated Kismet can get. This was only a simple sequence and
it took eight Kismet objects to create it. Creating more complex sequences would require
even more Kismet actions and events, and a lot of time and testing to make sure they
functioned properly.

We can also see a brief glimpse at Kismet's power. Looking at the list, there are a lot of
actions and events at our disposal, and with clever use of them it's entirely possible to create
a game with nothing but Kismet.

It does have limitations though. Since the sequences only exist in levels, any changes need
to be copied to all levels or used in a persistent level with other levels streamed in. Since
it's running as a layer on top of UnrealScript, it's not as fast. Dealing with arrays or structs
is extremely complicated, and Kismet can be incredibly hard to debug with any sort of
complexity. Core gameplay mechanics should be left to UnrealScript, and Kismet should only
be used for level-specific functionality of your game.

Chapter 7

[295]

With that said, it is incredibly useful. Long sequences of events, such as a tutorial level
would be tedious to create with UnrealScript, but easy to make and tweak with Kismet.
Simple sequences like doors opening and closing, spawning actors at specific locations,
and triggering effects and sounds would require entire Actor classes dedicated for those
purposes without Kismet, and would clutter up a project's class folder. For teams with
separate programmers and designers, it would also be difficult for designers to make changes
without programmer support. Kismet makes a level designer's life easier while freeing up
programming time for more important core gameplay tasks.

Next, we're going to look behind the scenes at the UnrealScript in the Kismet actions and
events, and learn how to create and use our own, or simply modify our classes to work with
existing Kismet.

Kismet actions
As far as the class tree goes, Kismet classes are not created under Actor. In UnCodeX, if we
take a look way down under Object we'll see a class called SequenceObject. This is where
all of the Kismet classes are created. Underneath SequenceObject, we can see SequenceOp
where Actions, Events, and Conditions are, and SequenceVariable where the Bools, Floats,
and other data types are located.

Creating Kismet actions
For this section of the chapter, we're going to look at the SequenceAction, how it works, and
how to create our own.

Time for action – Creating Kismet actions
As far as creating a custom class goes, Kismet should be pretty easy for us by now. For our
first experiment, let's disable the default spawning of enemies in our game and create a
Kismet action to do it instead. That will give us more control over when the enemies spawn
in our Awesome Game.

1.	 Make sure the editor is closed.

2.	 Open AwesomeGame.uc in ConTEXT. At the bottom of our PostBeginPlay
function, let's take out the timer that activates the spawners. The function should
now look like this:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

Working with Kismet

[296]

 super.PostBeginPlay();

 GoalScore = 1;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;
}

3.	 Now we're ready to create the Kismet action that will handle the spawning. In
our Development\Src\AwesomeGame\Classes folder, create a new file called
AwesomeSeqAct_SpawnerActivation.uc.

4.	 Write the following code in this new file:

class AwesomeSeqAct_SpawnerActivation extends SequenceAction;

defaultproperties
{
 ObjName="Spawner Activation"
 ObjCategory="Awesome Game"
}

5.	 This will do for a moment; let's take a look. Compile the code, then open up the
editor. Open the Kismet editor. When we right-click in the main workspace and look
under New Action, we can see our new category, Awesome Game, and underneath
it is our Spawner Activation action. Place one and let's see what it looks like:

6.	 Nice! What's that Target variable node though? Kismet actions use this node to call
functions on the object or objects connected to the node. For example, connecting
an object variable to the Target node of a SeqAct_Destroy would destroy that actor
when the SeqAct_Destroy action is activated. We don't need this node for this action
though, since we'll be calling a function in our AwesomeGame class and we can't
make a Kismet variable for it. To get rid of it, we'll add a line to our default properties:

defaultproperties
{
 ObjName="Spawner Activation"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
}

Chapter 7

[297]

This will clear out the variable nodes at the bottom of our action, in this case just the
Target node.

7.	 Now for the heart of our Kismet action. When a Kismet action is activated, an event
called, oddly enough, Activated is called. Let's add it to our custom action:

event Activated()
{
}

8.	 For this event, there isn't any code in our parent class, so we don't need to worry
about calling the super. We only need two more lines of code to finish this part of
the experiment:

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).ActivateSpawners();
}

In other classes, we've simply used WorldInfo.Game, but since Kismet classes
aren't subclasses of Actor we need to use the special GetWorldInfo() function.
We cast our AwesomeGame class, then call ActivateSpawners on it.

9.	 We're done! Well that was easy. Our class should look like this now:

class AwesomeSeqAct_SpawnerActivation extends SequenceAction;

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).ActivateSpawners();
}

defaultproperties
{
 ObjName="Spawner Activation"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
}

As far as our custom classes go, this one's tiny.

10.	Compile the code and open up AwesomeTestMap in the editor. If the previous
Spawner Activation action is still there, delete it. Keep the weapon upgrade Kismet
though, we'll use that later.

Working with Kismet

[298]

11.	Now, since we've broken the default behavior of our game to move the spawner
activation into Kismet, let's set it up so our game works again. Open the Kismet
editor, right-click in the main workspace and add a New Event | Player | Player
Spawned event. Next to it, add our New Action | Awesome Game | Spawner
Activation action. Connect the Out node of the Player Spawned event to the In
node of our Spawner Activation action.

12.	We had a five seconds delay earlier, so let's put that back in. Right-click on the
Out node of the Player Spawned event, and click Set Activate Delay. Set it to 5
and click on OK.

13.	 As a bonus, let's select our Spawner Activation action and check Output Obj
Comment To Screen in its properties, and set the Obj Comment to Enemies Incoming!

14.	Our Kismet sequence should now look like the following:

15.	Save the map and run the game. After five seconds, the message should pop
up on the screen, and then enemies should start spawning and heading toward
you. Awesome!

What just happened?
We can see how much flexibility Kismet has already added to our game. By giving the level
designer control over the spawner activation, we can keep the core gameplay mechanic of
the enemies spawning while easily changing when it happens. If we wanted to change the
amount of time before they started spawning, or wait until the player walked through a door
and hit a trigger, we could easily do that in Kismet now instead of having it always be five
seconds after the game starts. Doing something like that in UnrealScript would get messy.

Chapter 7

[299]

Using variables in Kismet actions
For our next experiment, we're going to take a look at variables in Kismet and see how we
can use them.

Time for action – Using variables in Kismet
One thing we might want to know from Kismet is the current level of the weapon the player
is holding. We could use this information to control the spawning of weapon upgrades, for
instance. Let's see if we can do that:

1.	 To do this, we'll create a new file in our Development\Src\AwesomeGame\
Classes folder called AwesomeSeqAct_GetWeaponLevel.uc.

2.	 Write the following code in the new file:

class AwesomeSeqAct_GetWeaponLevel extends SequenceAction;

event Activated()
{
}

defaultproperties
{
 ObjName="Get Weapon Level"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
}

3.	 Now we'll need an UnrealScript variable to store the weapon level as well as a node
that we can use in Kismet for it. First let's add the variable:

var int WeaponLevel;

4.	 Now let's add the variable link node. If we look in SequenceOp in UnCodeX, we can
see that VariableLinks is an array of the SeqVarLink struct. Inside that struct
are a lot of variables, but we're only concerned about a few of them. Let's use them
to define a new variable link in our default properties:

VariableLinks(0)=(ExpectedType=class'SeqVar_Int',LinkDesc="Weapon
Level",PropertyName=WeaponLevel,bWriteable=true)

Working with Kismet

[300]

Here we're setting the ExpectedType to use an Int variable, giving it a description,
and then setting the PropertyName to the name of our UnrealScript variable we
added in the last step. Finally we set it to bWriteable so this action can change the
linked Kismet variable (otherwise, it would only be able to read it, which isn't what
we need).

5.	 Now we need to get the player's weapon level and set our WeaponLevel variable to
it in our Activated event.

event Activated()
{
 local PlayerController PC;

 PC = GetWorldInfo().GetALocalPlayerController();

 if(PC != none && PC.Pawn != none && AwesomeWeapon(PC.Pawn.
Weapon) != none)
 WeaponLevel = AwesomeWeapon(PC.Pawn.Weapon).
CurrentWeaponLevel;
}

We're doing a lot of checking here to get all the way down to the AwesomeWeapon,
we need to make sure it actually exists before trying to access the
CurrentWeaponLevel variable.

6.	 That does it for the UnrealScript side of things. Here's what the class should look
like now:

class AwesomeSeqAct_GetWeaponLevel extends SequenceAction;

var int WeaponLevel;

event Activated()
{
 local PlayerController PC;

 PC = GetWorldInfo().GetALocalPlayerController();

 if(PC != none && PC.Pawn != none && AwesomeWeapon(PC.Pawn.
Weapon) != none)
 WeaponLevel = AwesomeWeapon(PC.Pawn.Weapon).
CurrentWeaponLevel;
}

defaultproperties
{
 ObjName="Get Weapon Level"

Chapter 7

[301]

 ObjCategory="Awesome Game"
 VariableLinks.Empty
 VariableLinks(0)=(ExpectedType=class'SeqVar_
Int',LinkDesc="Weapon Level",PropertyName=WeaponLevel,bWriteable=t
rue)
}

7.	 Compile the code, then open up AwesomeTestMap in the editor. Time to add our
new Action.

8.	 Open the Kismet editor. Our big mess of Kismet from our weapon upgrade
experiments should still be there. Right-click on the Spawn Actor input of the Actor
Factory action and hit Break Link | Compare Bool. We're going to put our custom
action in between.

9.	 Move the Actor Factory action off to the right, then right-click in between it and the
rest of this sequence and hit New Action | Awesome Game | Get Weapon Level:

10.	To the right of that, right-click and hit New Condition | Comparison | Compare Int.

11.	We're going to need an Int Kismet variable, so let's add it. Right-click below the
actions we've just added and hit New Variable | Int | Int. We don't need to change
the value, that will be done by our Get Weapon Level action.

12.	Connect the Int variable to the Weapon Level node of our Get Weapon Level action,
and to the A node of the Compare Int action.

13.	 Select the Compare Int action, and in its properties open the SeqCond_CompareInt
section and change Value B to 5. If we're less than this, we still want to spawn upgrades.

14.	Now for the connection between actions. Connect the Out node of the Bool action
to the In node of our Get Weapon Level action.

15.	Now connect the Out node of our Get Weapon Level action to the In node of the
Compare Int action.

16.	Finally, connect the A < B output node of the Compare Int to the Spawn Actor input
of the Actor Factory action.

Working with Kismet

[302]

17.	Our Kismet sequence should now look something like the following (I'm breaking it
into two parts so it's clearer):

That section should connect to this:

Chapter 7

[303]

18.	We're done with the Kismet, unless you want to temporarily break the link to the
Spawner Activation action to make it easier to test without being attacked—another
advantage to moving that to Kismet!

19.	 Save the level and run the game. Now when the player's weapon reaches level 5, the
upgrades stop spawning when the player runs over the trigger. It's working perfectly!

What just happened?
We can see that variables in Kismet are really just an outer layer for variables in UnrealScript.
They're easy to work with in Kismet, but require a bit of setting up in UnrealScript to make
them useful. We could use any type of Kismet variable with these links, all we would have
to do is change the variable type in our Kismet class and its associated VariableLinks
default property.

Kismet handler functions
For our last experiment with Kismet actions, we're going to talk about how to use handler
functions in our non-Kismet classes. Handlers let us create specific functionality if an Actor
class is acted upon by a Kismet action. Let's take a look.

Time for action – Using handler functions
We're going to take a rocket ship to goofy town on this one. The easiest way to learn about
handler functions is to use an already existing Kismet action, so we're going to use the Toggle
action on our AwesomeWeaponUpgrade actors to see how they work. To let us know that
it's working, we're going to make the weapon upgrade actors change the size and color when
the toggle's handler function is called on them:

1.	 Open AwesomeWeaponUpgrade.uc in ConTEXT.

2.	 The first thing we need to do is give ourselves access to the static mesh so we can
change its size and color. Let's add a variable to reference it:

var StaticMeshComponent MyMesh;

3.	 Now let's change the static mesh part of the default properties to add a line:

 Begin Object Class=StaticMeshComponent Name=PickupMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_Y'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.125,Y=0.125,Z=0.125)
 End Object
 Components.Add(PickupMesh)
 MyMesh=PickupMesh

Working with Kismet

[304]

4.	 Now some setup for the color change. Add a new material variable at the top:

var Material BigMaterial;

5.	 And set its default property to the blue material:

BigMaterial=Material'EditorMaterials.WidgetMaterial_Z'

6.	 Now we're ready for the handler function. These have a specific naming convention,
and it explains the underscore used in the action name. For example, if we had
a Kismet action called SeqAct_Whatever, the handler function for it would be
called OnWhatever. The Kismet action itself is passed into the function as its only
parameter. So for the Kismet action SeqAct_Toggle, the handler function for it
would be written like this:

function OnToggle(SeqAct_Toggle Action)
{
}

As a hypothetical example with one of our own Kismet actions, if we wanted to use the
Target variable link with our AwesomeSeqAct_SpawnerActivation action, the handler
function for any of our Actor classes would look like this:

function OnSpawnerActivation(AwesomeSeqAct_SpawnerActivation Action)
{
}

That's just hypothetical code though, for this experiment we're going to use the
OnToggle function.

1.	 Now for the code inside the OnToggle function:

function OnToggle(SeqAct_Toggle Action)
{
 MyMesh.SetScale(2.0);
 MyMesh.SetMaterial(0, BigMaterial);
}

2.	 Compile the code, then open up the editor.

3.	 Away from all of our other experiments, place a few AwesomeWeaponUpgrade
actors near a new Trigger. In the Trigger properties, change Display | Hidden to
false (uncheck it).

4.	 Now for the Kismet. Hold Ctrl and click on the AwesomeWeaponUpgrade actors
to select all of them. In the Kismet editor, right-click and hit New Object Vars Using
AwesomeWeaponUpgrade_0... This will create multiple Kismet variables, one for
each AwesomeWeaponUpgrade actor selected.

Chapter 7

[305]

5.	 Back in the level, select the Trigger near the AwesomeWeaponUpgrade actors. In
the Kismet editor, right-click to the left of the new object variables and hit New Event
Using Trigger_2 | Touch (the number may be different for you, it doesn't matter).

6.	 Now right-click above the object vars and hit New Action | Toggle | Toggle.

7.	 Connect the Touched output of the Trigger event to the Turn On input of the
Toggle action.

8.	 Connect the Targets variable link of the Toggle action to each of the
AwesomeWeaponUpgrade object variables.

9.	 The Kismet sequence should now look like the following:

10.	Save the level and run the game. When we hit the trigger the
AwesomeWeaponUpgrade actors should get bigger and turn blue. It's working!

What just happened?
Using Kismet actions on object variables will only work if the Actor we're using it on has
a handler function defined. As an experiment, delete the OnToggle function from our
AwesomeWeaponUpgrade class, compile, and run the game again. This time hitting the
trigger will give us log warnings that will also show up on screen:

[0006.77] Warning: Obj AwesomeWeaponUpgrade_0 has no handler for
SeqAct_Toggle_0
[0006.77] Log: Obj AwesomeWeaponUpgrade_0 has no handler for SeqAct_
Toggle_0

Working with Kismet

[306]

This is a useful warning to let you know that you need to add a handler function, or that
you're using the wrong Kismet action on the object variable.

One thing we'll notice with our current setup is that, it doesn't matter what Toggle input
node we connect the Trigger event to, the AwesomeWeaponUpgrade actors will do the
same thing, regardless. What if we wanted them to act differently depending on the
input activated?

Time for action – Differentiating Kismet inputs
That's pretty easy to do actually, so let's do it! We'll have the Turn On input do what it's
doing now, and the Turn Off input return the AwesomeWeaponUpgrade actors to their
normal size and color.

1.	 We only need to change our OnToggle function to make this work, using the
InputLinks array:

function OnToggle(SeqAct_Toggle Action)
{
 if(Action.InputLinks[0].bHasImpulse)
 {
 MyMesh.SetScale(2.0);
 MyMesh.SetMaterial(0, BigMaterial);
 }
 else if(Action.InputLinks[1].bHasImpulse)
 {
 MyMesh.SetScale(MyMesh.default.Scale);
 MyMesh.SetMaterial(0, MyMesh.default.Materials[0]);
 }
}

2.	 That's easy enough, but where do we get the numbers from for the InputLinks
array index? If we look at the SeqAct_Toggle class, we can see the answer:

InputLinks(0)=(LinkDesc="Turn On")
InputLinks(1)=(LinkDesc="Turn Off")
InputLinks(2)=(LinkDesc="Toggle")

3.	 Compile the code with our new OnToggle function, then open the editor.

4.	 Time for the Kismet. Add another Trigger near the first one that we added for this
experiment, and uncheck its Hidden property so we can see it.

5.	 Select the Trigger, then add a Touch event for it in the Kismet editor.

Chapter 7

[307]

6.	 Hook the Touched output of this new event to the Turn Off input of the
Toggle action.

7.	 In both of the Touched events, make sure their Max Trigger Count properties are set
to 0.

8.	 The Kismet sequence should now look like the following:

9.	 Save the map and run the game. Now running back and forth between the two
triggers will cause the AwesomeWeaponUpgrade actors to switch between large
blue and green and normal size.

What just happened?
Working with multiple inputs is easy, and as we can see from the default properties of
SeqAct_Toggle, creating them for our own classes is easy as well. We can also check the
bHasImpulse variable on them in the Action's own Activate function to do different
things within the Action class itself.

Working with Kismet

[308]

Have a go hero – The toggle input
Using a Boolean in the AwesomeWeaponUpgrade class, see if you can have it store the
status of the actor so that the OnToggle function could be rewritten to work with the Toggle
input on the SeqAct_Toggle action. Make the actor switch back and forth when this input is
repeatedly activated.

Hint: A new variable would be added to the AwesomeWeaponUpgrade class:

var bool bLargeBlue;

And the OnToggle function would look like this:

function OnToggle(SeqAct_Toggle Action)
{
 if(Action.InputLinks[0].bHasImpulse)
 bLargeBlue = true;
 else if(Action.InputLinks[1].bHasImpulse)
 bLargeBlue = true;
 else
 bLargeBlue = !bLargeBlue;

 if(bLargeBlue)
 {
 MyMesh.SetScale(2.0);
 MyMesh.SetMaterial(0, BigMaterial);
 }
 else
 {
 MyMesh.SetScale(default.MyMesh.Scale);
 MyMesh.SetMaterial(0, default.MyMesh.Materials[0]);
 }
}

Kismet conditions
For the most part Actions and Events will cover everything you need to do with custom
Kismet, but sometimes you'll want to create your own Condition to check for various things.
To see how we can use these, we'll create one that has multiple outputs and activate a single
one based on the condition we're checking.

Chapter 7

[309]

Time for action – What condition my condition was in
We already have a Kismet action to check the level of the player's weapon, but what if we
had a custom Condition to check whether the player's weapon was at max level or not? Let's
do it!

Create a new file in our Development\Src\AwesomeGame\Classes folder called
AwesomeSeqCond_IsWeaponMaxLevel.uc.

Now open the new file in ConTEXT. First we'll declare the class and write up a few default
properties:

class AwesomeSeqCond_IsWeaponMaxLevel extends SequenceCondition;

defaultproperties
{
 ObjName="Is Weapon Max Level"
 ObjCategory="Awesome Game"

 OutputLinks(0)=(LinkDesc="True")
 OutputLinks(1)=(LinkDesc="False")
}

By default SequenceCondition classes don't have any variable links, so we don't need to
empty out that array or add any of our own.

You will notice though that we're adding two OutputLinks. Normally all SequenceOp
classes have the first one defined by that class's default properties:

OutputLinks(0)=(LinkDesc="Out")

Here we're overriding the default description in our own OutputLinks(0) and setting it
to True. We're also adding another output and setting that to False. We could add more
outputs if we wanted to, but in this case we only need two. We could also rename and add
inputs for our Kismet actions by using the InputLinks array in the same way.

Working with Kismet

[310]

By default Kismet SequenceOp classes activate their output links automatically once
any Activated function is finished executing. This is done through a bool called
bAutoActivateOutputLinks in SequenceOp, which is set to True in the default
properties of that class. SequenceConditions however set this to False. Since
SequenceConditions have more than one output, we want to decide for ourselves which
one(s) to activate. We can do that in our Activated function.

1.	 We use a variable called bHasImpulse to activate an output link. Let's check the
player's weapon level and set it to True for the output we want to activate:

event Activated()
{
 local PlayerController PC;

 PC = GetWorldInfo().GetALocalPlayerController();

 if(PC != none && PC.Pawn != none && AwesomeWeapon(PC.
Pawn.Weapon) != none && AwesomeWeapon(PC.Pawn.Weapon).
CurrentWeaponLevel == class'AwesomeWeapon'.const.MAX_LEVEL)
 OutputLinks[0].bHasImpulse = true;
 else
 OutputLinks[1].bHasImpulse = true;
}

If the weapon is at max level, activate the True output, otherwise activate the False
output. Note that we're setting the bool to true both times, don't let the names of
the outputs confuse you.

2.	 Now let's compile the code and open our map in the editor.

3.	 In the Kismet editor, delete the Get Weapon Level, Compare Int, and the Int
variable. We're going to add our new condition here instead. Right-click where
the deleted actions were and hit New Condition | Awesome Game | Is Weapon
Max Level.

4.	 Connect the output of the Bool action from our old Kismet to the In node of our
condition. Now connect the False output of our condition to the Spawn Actor input
of the Actor Factory action.

5.	 Right-click above the Actor Factory action and hit New Action | Misc | Log.

6.	 Give the Log action an Obj Comment of Weapon At Max Level! The Log action
has its own Output To Screen property, so we don't need to worry about checking
Output Obj Comment To Screen unless we want two messages to show up. And I'm
not just saying that because I forgot about that while I was writing this.

Chapter 7

[311]

7.	 Connect the True output of our Is Weapon Max Level condition to the input of the
Log action.

8.	 Save the map, then run the game. Pick up the weapon, then run over the trigger
and collect the upgrades a few times until the weapon reaches level 5. Now run over
the trigger again and we should see our log message. After that the Boolean checks
before our condition prevent it from activating again, so we don't get any more
messages or pickups.

What just happened?
Conditions aren't the only classes that can have multiple outputs, if we look at
SeqAct_CameraFade we can see that actions can also use multiple outputs if we set its
bAutoActivateOutputLinks to False. And from our use of the Trigger event we can
see that Events can have them as well. And although it's not generally used in Conditions,
Actions can have multiple inputs. We can see an example of how to do that in UTSeqAct_
ToggleAnnouncements.

Kismet events
The last main topic we'll discuss is the use of Events. As we've seen from our use of the
Trigger event, something has to start the chain of activations that make up a Kismet
sequence, and Events are it. They have no input nodes, only outputs, and are called directly
from within UnrealScript. To discuss how to create and use events, we'll be expanding on our
AwesomeGame instead of running random experiments, so let's get to it!

Time for action – The cleanup job
We've made a bit of a mess in our map file again, so let's clean it up in preparation for this
section of the chapter.

1.	 Open AwesomeTestMap in the editor.

2.	 We'll be starting fresh with our Kismet, so open the Kismet editor and delete all
of it.

3.	 In the level, delete all of the Trigger actors and AwesomeWeaponUpgrades but
leave the weapon spawner, enemy spawners, and player start.

What just happened?
Now we're ready to start working with Kismet events.

Working with Kismet

[312]

Creating and triggering a Kismet event
For our game there are a few things we might want to know about in Kismet. One thing that
comes to mind is when all of the enemies have been killed. We could use this event to do
certain things in Kismet, for example, if we wanted to spawn a weapon upgrade as a reward
for the player before the boss showed up. Let's see if we can do it!

Time for action – Our first Kismet event
We're going to make it so that we can spawn as many waves of enemies as we want, so
instead of calling this event something like EnemiesDefeated, we'll use something like
WaveComplete.

1.	 Create a new file in our Development\Src\AwesomeGame\Classes folder called
AwesomeSeqEvent_WaveComplete.uc.

2.	 The code for this one is going to be really simple:

class AwesomeSeqEvent_WaveComplete extends SequenceEvent;

defaultproperties
{
 ObjName="Wave Complete"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
 bPlayerOnly=false
}

Yep, that's it. We don't have an instigator so we don't need to have any variable
links. The bPlayersOnly variable lets classes other than PlayerControllers
trigger the event.

3.	 The event is created, so now we need to trigger it. Open up AwesomeGame in
ConTEXT and add a line to our EnemyKilled function:

function EnemyKilled()
{
 local int i;

 if(bSpawnBoss)
 return;

 EnemiesLeft--;
 if(EnemiesLeft <= 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();

Chapter 7

[313]

 ClearTimer('ActivateSpawners');
 bSpawnBoss = true;
 ActivateSpawners();

 TriggerGlobalEventClass(class'AwesomeSeqEvent_
WaveComplete', self);
 }
}

Calling this function will make the game find all of the Wave Complete actions in
Kismet and trigger them.

4.	 Now we need to add the Kismet to our level, so open it up in the editor.

5.	 First we need the enemies to spawn, so add a New Event | Player | Player Spawned
and hook its output to the input of a New Action | AwesomeGame | Spawner
Activation. You can add a delay if you want (right-click on either node of the
connection and hit Set Activate Delay).

6.	 Below that, right-click and add a New Event | Awesome Game | Wave Complete.
Connect the output to a New Action | Misc | Log.

7.	 In the Log's properties, give it an Obj Comment of Wave Complete!

8.	 Save the map and run the game.

What just happened?
Now when the enemies have been defeated and the boss is spawned, we get our Log's
comment, letting us know our custom Event is working!

Giving the event some meaning
Having a custom event is good, but right now it seems too passive. It's letting us know
the wave is complete, but then the boss immediately spawns. What if we moved that
functionality into Kismet to give the level designers some control over when the boss spawns
after a wave is complete?

Time for action – Moving functionality into Kismet
To do this we're going to create a new action that will spawn the boss, and also alter an
existing action to give us more control over the waves of enemies:

1.	 Create a new file in Development\Src\AwesomeGame\Classes called
AwesomeSeqAct_SpawnBoss.uc.

Working with Kismet

[314]

2.	 Let's write the following code in it:

class AwesomeSeqAct_SpawnBoss extends SequenceAction;

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).SpawnBoss();
}

defaultproperties
{
 ObjName="Spawn Boss"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
}

3.	 The SpawnBoss function doesn't exist in AwesomeGame yet, so let's create it. Open
up AwesomeGame.uc and add this function:

function SpawnBoss()
{
 bSpawnBoss = true;
 ActivateSpawners();
}

4.	 Now to keep the game from automatically spawning the boss, let's delete those two
lines from EnemyKilled so it looks like this:

function EnemyKilled()
{
 local int i;

 if(bSpawnBoss)
 return;

 EnemiesLeft--;
 if(EnemiesLeft <= 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();
 ClearTimer('ActivateSpawners');
 TriggerGlobalEventClass(class'AwesomeSeqEvent_
WaveComplete', self);
 }
}

Chapter 7

[315]

5.	 Ok, we're done code side, so compile the code and open our map in the editor.

6.	 Now let's give the player a weapon upgrade and a bit of time before the boss spawns.
Open up the Kismet editor and add a New Action | Actor | Actor Factory. Connect the
Wave Complete! log's output to the Spawn Actor input of the Actor Factory.

7.	 In the Actor Factory's properties, select ActorFactoryActor from the list that pops
up when you click the blue arrow for the Factory property.

8.	 In the Actor Class property that shows up, select AwesomeWeaponUpgrade.

9.	 Now we need a place for it to spawn. To keep it easy we'll use the player start, so
select it in the level and go back to the Kismet editor.

10.	Right-click under the Actor Factory action and hit New Object Var Using
PlayerStart_0. Hook the Spawn Point variable link under the Actor Factory
action to it.

11.	Ok that's done! Now to spawn the boss. Right-click above the Actor Factory action
and hit New Action | Awesome Game | Spawn Boss.

12.	 Instead of hooking it to the output of the Actor Factory, hook the output of the Log
action to the input of Spawn Boss. We want the boss to spawn even if something
goes wrong with the Actor Factory and the Finished output never activates.

13.	Now to give us some delay, right-click the input of the Spawn Boss action and hit Set
Activate Delay, and give it a delay of 5.

14.	Finally, add another New Action | Misc | Log and hook it to the output of Spawn
Boss. Give the new Log action an Obj Comment of Boss Incoming!

15.	Our Kismet sequence should now look like the following:

Working with Kismet

[316]

16.	Save the map and run the game. Now when we defeat the enemies, a weapon
upgrade spawns at the player start, and five seconds later the boss spawns and the
log message shows. Nice!

What just happened?
Now we can see how moving parts of our gameplay into Kismet actions and events can help
make our game more flexible. We can take this even further, however.

Further expanding our Kismet
There are some more things we could do to really expand the possibilities of our game's
Kismet. One thing we could do is give the level designer control over the size of the wave
that's spawned.

Time for action – Setting the wave size
For this we'll need to modify our Spawner Activation action as well as our AwesomeGame.
Let's get to it!

1.	 Let's start with the Kismet action. We'll need to add an int that the level designer
can change to set the size of the wave, and then pass that on to the AwesomeGame.
Open up AwesomeSeqAct_SpawnerActivation in ConTEXT.

2.	 Let's add an editable int variable to the top of the class:

var() int WaveSize;

Then give it a default property:

WaveSize=10

3.	 To give some added flexibility, let's hook it up to a variable link so we can set it that
way as well if we wanted to. Add this line to the default properties:

VariableLinks(0)=(ExpectedType=class'SeqVar_Int',LinkDesc="Wave
Size",PropertyName=WaveSize)

Chapter 7

[317]

Note that this variable link is optional, we don't have to hook an Int Kismet variable
to it, the action will still work fine with the editable property.

4.	 Now to pass this along to the game. Let's call a new function that we'll create in
AwesomeGame. Change the Spawner Activation's Activated function to this:

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).StartWave(WaveSize);
}

The AwesomeSeqAct_SpawnerActivation class should look like the following:
class AwesomeSeqAct_SpawnerActivation extends SequenceAction;

var() int WaveSize;

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).StartWave(WaveSize);
}

defaultproperties
{
 WaveSize=10
 ObjName="Spawner Activation"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
 VariableLinks(0)=(ExpectedType=class'SeqVar_
Int',LinkDesc="Wave Size",PropertyName=WaveSize)
}

The VariableLinks.Empty line might be confusing, but we're using it to clear out
the Targets link that was there before adding our own.

5.	 We're done with the Kismet action, so let's open up AwesomeGame and create the
StartWave function that we're calling from Kismet:

function StartWave(int WaveSize)
{
 local AwesomeEnemy AE;

 foreach DynamicActors(class'AwesomeEnemy', AE)
 AE.Destroy();

 EnemiesLeft = WaveSize;
 bSpawnBoss = false;
 ActivateSpawners();
}

Working with Kismet

[318]

This might seem a bit more complicated than we were expecting, but we need to
make sure that any fleeing enemy left behind from a previous wave is properly
destroyed before we start a new one. We also need to set bSpawnBoss to false to
make sure we spawn normal minions for the wave.

6.	 That's it for the UnrealScript side! Compile the code and open AwesomeTestMap in
the editor.

7.	 We'll notice in the Kismet editor that our Wave Size variable link shows up on our
Spawner Activation action now, and if we look at its properties we can change it
there too.

8.	 Now let's change our level's Kismet so we have two waves and then a boss. First set
our Spawner Activation's Wave Size to 5. Also right-click on its input and set the
activation delay to 5.

9.	 Hook an Enemies Incoming! log action to the output of our Spawner Activation.

10.	Open up our Wave Complete event's properties and set Max Trigger Count to 0. We
want it to be able to trigger more than once this time.

11.	Now right-click on the input of our Spawn Boss action and hit Break All Links. We're
going to put some stuff in between.

12.	Add a New Action | Misc | Gate. We use Gates to control the flow of Kismet. If the
Gate is closed the output won't activate until we send a signal to its Open input.

13.	 In the Gate's properties, set Auto Close Count to 1. This way the Gate will close after
it has been activated once.

14.	Hook the output of the Wave Complete log action to the In input of the Gate. Right-
click on the gate's In input and set the activation delay to one second. This will
become important in a bit.

15.	Hook the output of the Gate up to the input of our Spawner Activation. Now when
the first wave is complete, a second wave will start after another five seconds. The
Gate will close to prevent any more waves from spawning.

16.	Add another New Action | Misc | Gate. In its properties, set SeqAct_Gate | Open to
unchecked. This will close it.

17.	Hook the output of the first Gate to the Open input of this new one. Now when the
second wave spawns, it will open the Gate so the next Wave Complete call can pass
through it. The one-second delay we added earlier is to prevent both signals from
hitting it at the same time and activating the output before we want it to.

Chapter 7

[319]

18.	Hook the output of the Wave Complete log action to the In input of the new Gate.

19.	Hook the output of the new Gate to the input of the Spawn Boss action.

20.	The Kismet sequences should now look like the following. Here is the first wave:

The line coming from the bottom is from the second wave and boss Kismet here:

21.	That's it! Save the map and run the game.

What just happened?
Now we can definitely see the effect that moving functionality into Kismet has had. We can
really customize each level of our game, add more waves, change the size of the waves, and
do things in between the waves.

Working with Kismet

[320]

Have a go hero – Expanding the Kismet
Now that we've separated the minion spawning into Kismet actions and events, see if you
can do the same thing with the boss spawning. Create a Boss Defeated event and Game
Complete action so that you can have more than one boss per level.

Hint:The Boss Defeated event would look like this:

class AwesomeSeqEvent_BossDefeated extends SequenceEvent;

defaultproperties
{
 ObjName="Boss Defeated"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
 bPlayerOnly=false
}

With the following changes to AwesomeBoss:

event TakeDamage(int DamageAmount, Controller EventInstigator, vector
HitLocation, vector Momentum, class<DamageType> DamageType, optional
TraceHitInfo HitInfo, optional Actor DamageCauser)
{
 local AwesomeEnemy AE;

 Health--;

 if(Health == 0 && EventInstigator != none && EventInstigator.
PlayerReplicationInfo != none)
 {
 // Delete this line:
 WorldInfo.Game.ScoreObjective(EventInstigator.
PlayerReplicationInfo, 1);
 foreach DynamicActors(class'AwesomeEnemy', AE)
 {
 if(AE != self)
 AE.RunAway();
 }

 TriggerGlobalEventClass(class'AwesomeSeqEvent_BossDefeated',
self);
 Destroy();
 }

 if(Health == 10)
 GoToState('StageTwo');
}

Chapter 7

[321]

The Game Complete action would look like this:

class AwesomeSeqAct_GameComplete extends SequenceAction;

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).ScoreObjective(GetALocalPlaye
rController().PlayerReplicationInfo, 1);
}

defaultproperties
{
 ObjName="Game Complete"
 ObjCategory="Awesome Game"
 VariableLinks.Empty
}

Supported events
In addition to general events that can be triggered globally from any class, Actors have an
array of Event classes called SupportedEvents. We've used this before with Triggers.
When you have an Actor selected in the level, right-clicking in the Kismet editor will reveal
the SupportedEvents of that class under New Event Using (Actor's Name). If we look at
Actor's default properties, we can see the list:

SupportedEvents(0)=class'SeqEvent_Touch'
SupportedEvents(1)=class'SeqEvent_Destroyed'
SupportedEvents(2)=class'SeqEvent_TakeDamage'
SupportedEvents(3)=class'SeqEvent_HitWall'
SupportedEvents(4)=class'SeqEvent_AnimNotify'

And under Trigger, a new one is added:

SupportedEvents.Add(class'SeqEvent_Used')

If we had any custom events that we wanted to be used in this way, that's how we would add
them. We can also empty out the SupportedEvents array the same way we did with the
variable links of our Kismet actions. Taking a look at the TriggerVolume class we can see an
example of that:

SupportedEvents.Empty
SupportedEvents(0)=class'SeqEvent_Touch'
SupportedEvents(1)=class'SeqEvent_TakeDamage'

Here, the array is emptied, and then the two desired events are added back in.

Let's see if we can take advantage of these in our game.

Working with Kismet

[322]

Time for action – Using SupportedEvents
Let's see if we can change the beginning of our game. Instead of automatically triggering the
first wave when the player spawns, let's make it so they have to pick up the weapon and a
weapon upgrade first as a kind of tutorial:

1.	 Open AwesomeTestMap in the editor.

2.	 Place an AwesomeWeaponUpgrade in the level near the weapon.

3.	 With the AwesomeWeaponUpgrade selected, open the Kismet editor.

4.	 Right-click above the Player Spawned event and hit New Event Using
AwesomeWeaponUpgrade_0 | Touch.

5.	 Hook the Touched output of the event to the input of the Spawner Activation action.

6.	 Delete the Player Spawned event.

7.	 Save the map and run the game.

What just happened?
We can see the problem with this setup pretty quickly. Even if we don't actually
pick it up, simply running over it triggers the first wave. The problem is that the
AwesomeWeaponUpgrade receives touches and triggers its Touch events regardless of what
we're doing inside the UnrealScript class's Touch function. We'll need to create our own
event for this.

Time for action – Creating a custom SupportedEvent
We'll create a custom event called Picked Up.

1.	 Create a new file in Development\Src\AwesomeGame\Classes called
AwesomeSeqEvent_PickedUp.uc.

2.	 Write the following code in the new file:

class AwesomeSeqEvent_PickedUp extends SequenceEvent;

defaultproperties
{
 ObjName="Picked Up"
 ObjCategory="Awesome Game"
 bPlayerOnly=false
}

Chapter 7

[323]

3.	 Simple enough. Now we need to add this to the SupportedEvents of our
AwesomeWeaponUpgrade class's default properties. In AwesomeWeaponUpgrade
add this to the defaults:

SupportedEvents.Add(class'AwesomeSeqEvent_PickedUp')

4.	 Now we can use it in the editor, but we need to trigger it. Let's rewrite our Touch
function to add a new line. Change AwesomeWeaponUpgrade's Touch function to
look like the following:

event Touch(Actor Other, PrimitiveComponent OtherComp, vector
HitLocation, vector HitNormal)
{
 if(Pawn(Other) != none && AwesomeWeapon(Pawn(Other).Weapon) !=
none)
 {
 AwesomeWeapon(Pawn(Other).Weapon).UpgradeWeapon();
 TriggerEventClass(class'AwesomeSeqEvent_PickedUp', self);
 Destroy();
 }
}

The function TriggerEventClass is defined in Actor, and triggers all of the events
that are linked to this Actor. Those events are automatically added to that actor's
GeneratedEvents array when we create them in the Kismet editor.

5.	 Compile the code and open up the editor.

6.	 In the Kismet editor, delete the Touch event we were using before.

7.	 Select the AwesomeWeaponUpgrade in the level, then right-click in the Kismet
editor and hit New Event Using AwesomeWeaponUpgrade_0 | Picked Up.

8.	 Hook the output of this event to the input of the Spawner Activation action.
That takes care of the functionality, but let's see if we can spice it up a bit with
instructions for the player.

9.	 Right-click above this sequence and hit New Event | Player | Player Spawned.

10.	Next to it, add a New Action | Misc | Log. Give it an Obj Comment of Pick up
the weapon.

11.	Connect the Player Spawned event to the Log.

12.	Now select the weapon spawner in the level, and right-click in the Kismet Editor and
hit New Event Using UTWeaponPickupFactory_0 | Pickup Status Change. This is a
SupportedEvent added to weapon factories to let us know when it changes.

Working with Kismet

[324]

13.	Next to that, add another Log action with an Obj Comment of Now pick up the
weapon upgrade.

14.	Connect the Pickup Status Change event's Taken output to this new Log action.

15.	Now add a new Log next to the Picked Up event for the AwesomeWeaponUpgrade,
and give it an Obj Comment of Prepare yourself!

16.	Hook up the Picked Up event to the Log.

17.	This is what the Kismet sequence should look like now:

18.	Save the map and run the game. Now we have a small tutorial for the game before
the enemies start spawning. Nice!

Chapter 7

[325]

What just happened?
Using SupportedEvents we can have Kismet events that are specific to an actor placed
in the level as opposed to a global event that could be triggered by any actor. Each has its
use, and as we can see they're incredibly helpful when trying to create Kismet with flexibility
in mind.

Latent actions
The last topic of this chapter is dealing with latent Kismet actions. Normally Kismet actions
are activated, some code is run, and their outputs are sent out immediately, but sometimes
we'll want to delay an output until some condition has been met. For example, if we take a
look at SeqAct_PlaySound, we can see this in the default properties:

OutputLinks(1)=(LinkDesc="Finished")

This obviously isn't an output that activates immediately; it waits until the sound is finished
playing and then activates this output. But how do we do that for our own actions?
Let's find out!

Time for action – Creating a latent action
Latent actions have their own section under the SequenceAction tree, under SeqAct_Latent.
Instead of creating an entirely new action, we'll move our Spawner Activation action here.
We'll do this so we can create a timer instead of having to use delays on the inputs and
outputs. Let's get started!

1.	 First we need to create the timer. Let's do this in AwesomeGame. We'll start with
the int variable at the top:

var int NextWaveTimer;

2.	 Now let's change the StartWave function:

function StartWave(int WaveSize, int WaveTimer)
{
 local AwesomeEnemy AE;

 foreach DynamicActors(class'AwesomeEnemy', AE)
 AE.Destroy();

 EnemiesLeft = WaveSize;
 NextWaveTime = WaveTimer;

 Broadcast(self, NextWaveTime);
 SetTimer(1, true, 'WaveCountdown');
}

Working with Kismet

[326]

We've added a new parameter to take the desired countdown time, then set it to
our new variable and called a repeating timer for WaveCountdown, which we'll
write next. We also broadcast the time left, similar to how the Log action shows its
Obj Comment on screen.

3.	 Now we'll write the WaveCountdown function:

function WaveCountdown()
{
 NextWaveTime--;

 if(NextWaveTime <= 0)
 {
 ClearTimer('WaveCountdown');
 bSpawnBoss = false;
 ActivateSpawners();
 }
 else
 Broadcast(self, NextWaveTime);
}

In this function, if the time has reached 0, we'll clear the repeating timer and start
the spawning. If not, we'll broadcast the time left.

4.	 Now let's give NextWaveTime a default property.

NextWaveTime=5

This will get overridden the first time the wave is called, but it's good to have a
default for it.

5.	 Before we get to the Spawner Activation action, let's fix a small bug we've been
getting with our HUD. We don't want the number of enemies left to display until the
wave starts, so let's change the DrawHUD function of AwesomeHUD. Find this line:

if(!AwesomeGame(WorldInfo.Game).bSpawnBoss)

And change it to this:

if(!AwesomeGame(WorldInfo.Game).bSpawnBoss &&
AwesomeGame(WorldInfo.Game).NextWaveTime == 0)

Now the number of enemies will only show once the wave has spawned. To get
the number to stop showing after the wave has ended, let's add a line to our
EnemiesKilled function in AwesomeGame:

function EnemyKilled()
{
 local int i;

Chapter 7

[327]

 if(bSpawnBoss)
 return;

 EnemiesLeft--;
 if(EnemiesLeft <= 0)
 {
 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();
 ClearTimer('ActivateSpawners');
 TriggerGlobalEventClass(class'AwesomeSeqEvent_
WaveComplete', self);
 NextWaveTime = -1;
 }
}

Since we're checking if NextWaveTime is equal to zero in the HUD, setting it to -1
here will make sure it doesn't display after the wave is over, while still letting us set
it to an appropriate number whenever we call the next wave.

6.	 Now for the Spawner Activation action. First we need to change the class we're
extending from:

class AwesomeSeqAct_SpawnerActivation extends SeqAct_Latent;

7.	 Now we need to add the wave time variable here:

var() int WaveSize, WaveTimer;

And give it a default property:

WaveTimer=5

8.	 We'll also add a variable link for it:

VariableLinks(1)=(ExpectedType=class'SeqVar_Int',LinkDesc="Wave
Timer",PropertyName=WaveTimer)

9.	 Now let's change our outputs and make sure they don't automatically activate:

OutputLinks(0)=(LinkDesc="Out")
OutputLinks(1)=(LinkDesc="Finished")
bAutoActivateOutputLinks=false

Working with Kismet

[328]

10.	We want the Out output to activate immediately, so let's change our Activated
function:

event Activated()
{
 if(AwesomeGame(GetWorldInfo().Game) != none)
 AwesomeGame(GetWorldInfo().Game).StartWave(WaveSize,
WaveTimer);
 OutputLinks[0].bHasImpulse = true;
}

11.	And now for the Update function. This is what keeps the Kismet action going until
we're ready to deactivate it. Returning true from this function tells the game that
we're not done, that we want to keep calling Update on this action until we return
false. Here, we'll check the time in the AwesomeGame and keep updating until it
reaches 0:

event bool Update(float DT)
{
 if(AwesomeGame(GetWorldInfo().Game) != none &&
AwesomeGame(GetWorldInfo().Game).NextWaveTime > 0)
 return true;

 OutputLinks[1].bHasImpulse = true;
 return false;
}

12.	That's it for the UnrealScript, so compile the code and open the editor.

13.	We're going to delete the old Spawner Activation action, but before we do, right-
click on its input link and hit Copy Connections. That will make the next step easier.

14.	Delete the Spawner Activation action and add a new one. Right-click on its input
link and hit Paste Connections. This saves us a bit of time.

15.	Connect the Finished output link to the Enemies Incoming in the Log action.

16.	Delete the Prepare yourself! in the Log action. The countdown timer will
replace that.

17.	Save the map and run the game. Now we have a nice countdown before the
enemy spawn, and the number of enemies doesn't show on the HUD until the
wave starts. Nice!

Chapter 7

[329]

What just happened?
Latent actions are useful when you need to wait for something beyond Kismet's control to
happen before you end the execution of an action. It's used for camera fades to wait until
the fade is complete before activating an output. Matinee is a huge example of latent actions
since it's used to create in-game movies and object movement. Knowing how to use latent
actions will help you create Kismet that's specifically tailored to your needs.

Pop quiz – Kismet craziness!
1.	 What are the four types of Kismet objects?

2.	 What type of Kismet does not have input links?

3.	 What does TriggerEventClass do?

Summary
We learned a lot in this chapter about using and creating Kismet in our game.

Specifically, we covered the following:

�� How to use existing Kismet

�� How to create our own Kismet actions and use them to interact with other
UnrealScript classes

�� How to create and use conditions to control the flow of Kismet

�� How to create and trigger Kismet events

�� How to use latent Kismet actions to delay activation of outputs

Now that we've learned about Kismet, we're ready to start playing our game on a server,
which can run on our own computer!

8
Creating Multiplayer Games

What you see is just a Simulation.

Working with networking code is probably the most difficult part of creating
a game with the Unreal Development Kit. It requires you to think about the
code that's running not as a single set of actors, functions, and variables, but
rather as a master set with the clients trying to simulate it as best they can. It's
not an easy skill to master and it takes longer to create and debug functional
multiplayer code, but as an UnrealScript programmer it will be an essential tool
in your arsenal.

In this chapter we will:

�� Discuss the server-client relationship and how each of them views the game world

�� Set up for testing in a network environment using a single computer

�� Learn about the different variables and functions associated with networking

�� Replicate our own variables and functions from the server to the client and
vice versa

So with that, let's start working in multiplayer!

The server-client relationship
When talking about multiplayer games, people will talk about the server. "I'm going to join
the server." But what does that mean exactly? How do the different computers involved in
the game connect to one another?

Creating Multiplayer Games

[332]

One state to bind us all
In the world of Unreal, the server is king. It holds the one true game state, while the clients
connected to it simulate it as best they can. The clients run the same code and predict
where objects in the game world are by using their last known location and velocity, until
the server updates the client with their actual positions. If you've ever experienced heavy lag
while playing online and had the characters seemingly teleport around, then you know what
happens when this prediction model goes too far out of sync.

SERVER

CLIENT
CLIENT

CLIENT

In the client-server model each player (client) connects to the server and is unaware of
other clients connected to that server. That might not make sense at first, but if you think
about it each player in the game is represented by an actor class, a Pawn, whose short term
movements can be predicted as with all other actors in the game by using their current
location and velocity. The client doesn't care what other clients are doing, what keys
they're pressing, whether or not they're firing their weapon. The server has control over
the state of the game, so the client doesn't need to communicate with other clients to get
that information. It only needs to communicate with the server. When we move, we send
that information to the server, which in turn sends that information to each of the clients
connected to it. When we fire our rocket launcher, the server tells the other clients that a
projectile has been spawned at this location and heading in this direction.

In an ideal world the server would send the exact state of all objects in the game world
to each client after every tick. Unfortunately modems just aren't fast enough to do that.
Instead, the server only sends information when something changes. If our character were
holding a flashlight and we had a Boolean bFlashlightOn variable to keep track of it, we
wouldn't want the server sending its state to other clients all the time, only when it changes.
The same is true for all actors and variables in the game world.

Additionally, there is some information we don't need to send to other clients at all. Our
Pawn's health, for instance, is really only useful to the server and the client who owns that
Pawn. When other clients shoot us, the server calculates our new health value and tells us
what it is so we can display it on our HUD. Other clients don't use our Pawn's health value at
all. If they do enough damage to kill our Pawn, the server will let all of the clients know that
we have died as well as the killing client's new score. Their knowing our actual health value
would be an unnecessary waste of bandwidth.

Chapter 8

[333]

The process that the server goes through to determine what information to send to clients is
called replication. The goal of replication is for the clients to have as close a representation
of the server's game state as possible given bandwidth limitations. Sometimes we don't care
if the information arrives at the client at all. For instance, particle effects are pretty and are
an important part of a game's visuals, but for network games if we had the choice between
replicating a particle effect or another player's location, we would choose the player position
every time. To that end there are ways to prioritize network traffic within UnrealScript and
we'll take a look at them.

Alright, enough yammering, time to start networking!

Testing network code
Even though we've been talking about a server and a client, it is possible for both of those
entities to exist on the same computer. We'll be using a different method for running our
game to do this. Let's set it up now!

Setting up the server
Since we're already using a batch file to run our game, this part will be easy. All we need to
do is change the batch file a bit.

Time for action – The server batch file
We may still want to run our game in a single player environment, so instead of editing our
existing batch file we'll duplicate it.

1.	 Make a copy of the batch file we use to run the game. Name it Awesome Test
Server.bat.

2.	 Right-click on the new batch file and click on Edit.

3.	 We only need to add one word to the batch file, here:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe server AwesomeTestMa
p?TimeLimit=0?Game=AwesomeGame.AwesomeGame -log

The server keyword tells the game to run as a server.

4.	 Save and close the file.

Creating Multiplayer Games

[334]

What just happened?
That was easy, but what does this mysterious "server" thing look like? Double-click on the file
and we'll find out. After starting up, the DOS window will just kind of... sit there. Yep, this is a
running server:

Where's the game window? Well, if we think about it, a server doesn't really need one. It's
running code and keeping track of the actors, functions, and variables in our game, but all
that's done in code. There isn't a need to render anything. In all likelihood a server running
our game would be in a box in a room with dozens of other servers, none of which would
even have a monitor connected. The game window is a human need; the server can run the
game just fine without one.

Shut down the server by closing the DOS window.

Setting up the client
Now that we have the server set up, we need to connect to our server. To do this we'll be
running another instance of the game as a client.

Time for action – The client batch file
When we run a game and connect to a server, we give the game an IP address to connect to.
When it's the same computer there's only one number we need to know.

1.	 Create a new batch file called Awesome Test Client.bat.

Chapter 8

[335]

2.	 Write the following in it:

R:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe 127.0.0.1 -log

When connecting to the same computer, the IP address will be 127.0.0.1. This is the
IP we'll use to connect to our server.

3.	 Save the file and close it.

What just happened?
We're about to learn a very tough lesson here, so get ready. Double-click on the server batch
file to start the server up, then once you see it say "Initializing Game Engine Complete",
double-click on the client batch file to start up the client. If everything goes well, you should
see some more lines being logged by the server as the client connects, starting with this:

[0009.17] NetComeGo: Open TheWorld 08/15/11 19:43:35 127.0.0.1

But now what's happening? Instead of starting into our game, we get a first person view with
the message "Waiting for other players". If we wait a few seconds the game will start, and
the server window will start being spammed with error messages:

[0029.44] ScriptWarning: Accessed None 'PlayerInput'
 AwesomePlayerController AwesomeTestMap.TheWorld:PersistentLevel.
AwesomePlayerController_0
 Function AwesomeGame.AwesomePlayerController:PlayerWalking.
ProcessMove:003C

Also, we can't move! Well then, this is a pretty frustrating foray into multiplayer game
making. This also brings us to the most important lesson in this book:

If you are going to make a multiplayer game, test it on a server from the beginning.

I can't stress this enough. Seeing how broken our game is on the server should be enough of
a reason for that. It can be extremely difficult to rewrite a game's code to work in multiplayer
if it wasn't written that way in the first place. It requires a lot of planning ahead of time
and different ways of thinking about the variables and functions in a game to get it to work
properly on a server. If our game were more complicated it would take awhile to get it
functioning; luckily it's relatively simple.

Fixing Awesome Game
Let's see if we can get it working on the server.

Creating Multiplayer Games

[336]

Time for action – Unbreaking the player
We'll start with the most game-breaking problem first, the fact that we can't move. If we
take a look in the PlayerController class in UnCodeX, we can see a huge comment
starting with this line:

Here's how player movement prediction, replication and correction
works in network games:

Reading this section we can see that we've put our code too far down the chain of events.
The ProcessMove function isn't used for network games. We need to move it up to
PlayerMove instead. Let's do that now.

1.	 Create the PlayerMove function in our AwesomePlayerController's
PlayerWalking state:

 function PlayerMove(float DeltaTime)
 {
 local vector X, Y, Z, AltAccel;
 local rotator OldRotation;

 GetAxes(CurrentCameraRotation, X, Y, Z);
 AltAccel = PlayerInput.aForward * Z + PlayerInput.aStrafe
* Y;
 AltAccel.Z = 0;
 AltAccel = Pawn.AccelRate * Normal(AltAccel);

 OldRotation = Rotation;
 UpdateRotation(DeltaTime);

 if(Role < ROLE_Authority)
 ReplicateMove(DeltaTime, AltAccel, DCLICK_None,
OldRotation - Rotation);
 else
 ProcessMove(DeltaTime, AltAccel, DCLICK_None,
OldRotation - Rotation);
 }

Now the code should work correctly.

2.	 Delete the ProcessMove function from our PlayerWalking state.

3.	 Compile and test the game.

Chapter 8

[337]

What just happened?
When the player couldn't move and the server's logs were being spammed with errors,
it was due to the fact that the server doesn't have a PlayerInput actor. They're
only spawned on the clients. The clients use the PlayerInput and functions like
ReplicatedMove to send information to the server about where we want to move, but the
server doesn't have our keyboard attached to it so it doesn't need a PlayerInput actor of
its own.

With this new function, we're processing our own PlayerInput data into acceleration, and
sending that along with our rotation data to the server through ReplicateMove.

That fixes our movement problem, but now in addition to the "Waiting for other players"
message we can see a few more problems. We can pick up the weapon, but when the game
tells us to pick up the weapon upgrade we can't see it. We can run over to where it should
be and the timer will start counting down though. After the timer runs out and we get the
"Enemies incoming!" message, errors start showing up in the log:

[0019.51] ScriptWarning: Accessed None 'PC'
 AwesomeGame AwesomeTestMap.TheWorld:PersistentLevel.AwesomeGame_0
 Function AwesomeGame.AwesomeGame:ActivateSpawners:0040

Plus, no enemies spawn, looks like we have a bit more work to do.

Time for action – Unbreaking the game
The delayed start is easy enough to take care of, so let's start with that. We simply need to
add a line to AwesomeGame's default properties to tell it not to wait for other players.

1.	 Add the following line to AwesomeGame's default properties:

bDelayedStart=false

That's it! If we compiled now and tested, the game would start up like we're used to,
with the player immediately spawning.

2.	 Now for the next step. We're missing the "Pick up the weapon" message. This is
due to the Log Kismet action being called directly from the Player Spawned
event. There are a lot of things happening all at once when the player is spawned,
so we need to give the game a few ticks before everything is ready for the player
to receive messages on their HUD. For simplicity's sake we'll just wait a second, so
open AwesomeTestMap's Kismet and add a one second delay to the output of the
Player Spawned event.

Creating Multiplayer Games

[338]

3.	 Now that's working, but the weapon upgrade doesn't appear! We can walk over
it and continue the sequence though. Right now, the AwesomeWeaponUpgrade is
only being spawned on the server. We need to tell the game that we want the client
to spawn it too. We'll add two default properties for this:

 RemoteRole=ROLE_SimulatedProxy
 bAlwaysRelevant=true

The first property, RemoteRole, tells the game what control the clients have over
the actor. In this case we're using SimulatedProxy, essentially saying "the client
has a local copy of the actor that represents what the server has". The second
variable makes sure that the AwesomeWeaponUpgrade stays relevant to the player.

4.	 Now if we compile our code and test, the AwesomeWeaponUpgrade spawns, but
when we pick it up our weapon's level stays at 0. To fix this we're going to have to
let the game know that we want the server to tell the client when the variable has
changed. To do this we'll add it to the replication block. We'll discuss the replication
block in more detail in the next section of this chapter, but for now let's open up
AwesomeWeapon.uc and add this code in between the variables and the functions:

replication
{
 if(bNetDirty)
 CurrentWeaponLevel;
}

bNetDirty is set to true whenever any variable changes, and we add the weapon
level variable to tell the game: "If any variable changes, make sure the clients have
the right value for CurrentWeaponLevel."

5.	 Now when we compile and test the weapon upgrade functions properly, of course,
we can't see the enemies. They're obviously there since after we run over the
weapon upgrade and sit still for a bit we'll start taking damage. Looks like we're
having the same problem we were having with the AwesomeWeaponUpgrade
not being there, so let's add those same two variables to the default properties of
AwesomeEnemy:

 RemoteRole=ROLE_SimulatedProxy
 bAlwaysRelevant=true

6.	 In addition, our enemy spawning function is broken, but this is an easy fix. If we take
a look at the ActivateSpawners function in AwesomeGame, we can see these
two lines:

 foreach LocalPlayerControllers(class'AwesomePlayerController',
PC)
 break;

Chapter 8

[339]

A server does not have any local player controllers, but it does have access to
the player controllers through the dynamic actor iterator. Let's change the lines
as follows:

foreach DynamicActors(class'AwesomePlayerController', PC)
 break;

This isn't the only place we're doing this though. We also need to open
AwesomeEnemy.uc and look in the GetEnemy function. Let's change this:

 foreach LocalPlayerControllers(class'AwesomePlayerController',
PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }

To this:

 foreach DynamicActors(class'AwesomePlayerController', PC)
 {
 if(PC.Pawn != none)
 Enemy = PC.Pawn;
 }

7.	 If we compile and test, it seems like they're still not spawning, but if we run around
a bit we'll see that they're there, they're just not moving on the client. Normally,
when we write functions they only run on the server, but if we use the simulated
keyword on them they'll also be able to run on clients. Let's take a look at our
AwesomeEnemy's Tick function inside the Seeking state. All of the movement
code is in there, so let's rewrite the function declaration:

 simulated function Tick(float DeltaTime)

8.	 If we compile now we'll get a warning:

[0003.78] Warning: R:\UDK\UDK-AwesomeGame\Development\Src\
AwesomeGame\Classes\AwesomeBoss.uc(35) : Warning, Superclass
version is simulated so 'Tick' should be!

Since we've changed the function declaration in AwesomeEnemy, we'll also have to
change it in AwesomeBoss to make sure the boss class works too. So let's add the
simulated keyword to the AwesomeBoss's Tick function in its Seeking state.

9.	 Still not working! What could be going wrong now? Let's add a line to the top of the
AwesomeEnemy's Seeking state's Tick function, right below the local variable:

`log(Enemy);

Creating Multiplayer Games

[340]

10.	We'll get a lot of log spam with this, but it will let us know what's going on. Compile
and test, and we'll see this on the server:

[0023.02] ScriptLog: AwesomePawn_0

But if we take a look at the client, we'll see this:

[0015.80] ScriptLog: None

Looks like the Enemy variable isn't being replicated.

11.	We've dealt with this problem with the weapons being upgraded, so we know what
to do here. Let's add a replication block to the top of AwesomeEnemy between the
variables and functions:

replication
{
 if(bNetDirty)
 Enemy;
}

12.	Compile and test. Yes, they're finally moving! But we'll see another problem with
them; when they attack they never go back to the seeking state on the client. To
fix this we'll also need to let the client know about changes in the bAttacking
variable, so let's add that to our replication block:

replication
{
 if(bNetDirty)
 Enemy, bAttacking;
}

In addition, the client will also need to run the Attacking state's Tick function, so
let's add the simulated keyword there:

 simulated function Tick(float DeltaTime)

13.	Now let's compile and run. OK, we're getting there! Another problem we'll see is
the enemies don't change colors when they're attacking us. To fix that the client will
need to run the BeginState functions for our states, so let's add the simulated
keyword to BeginState in the Seeking, Attacking, and Fleeing states.
Since the Attacking state runs a timer to call EndAttack, we'll also need to set
EndAttack to simulated as well so that function will run to change the color.

14.	To make sure the Fleeing state works properly, let's also add the simulated
keyword to its Tick function. We want to make sure the enemies get the call to
enter the Fleeing state as well, so add the simulated keyword to the RunAway
function in both AwesomeEnemy and AwesomeEnemy_Minion (and any other
subclasses of AwesomeEnemy that you may have made).

Chapter 8

[341]

15.	Now let's see what we have left. We'll notice that no wave information is being
displayed on the HUD. If we take a look at our code there:

 if(AwesomeGame(WorldInfo.Game) != none)

All of the wave information is dependent on the GameInfo being there. But if we look at
GameInfo's superclass, Info, we'll see this in the default properties:

RemoteRole=ROLE_None

This means that the GameInfo class doesn't exist on the client at all. We're going to have to
come up with a new way to get that information.

What just happened?
We've fixed a lot of our code to work on a server. It's a hard lesson, but when you're going
to make a game for multiplayer you need to write your code to work online from the very
beginning. We've almost got our game working, so let's see if we can finish that.

The GameReplicationInfo class
For online games, since the GameInfo itself doesn't exist on the clients, it uses the
GameReplicationInfo class to let the players know any game relevant information such
as the score and time limit. In our case, we need to let the player know about the waves of
enemies as well as information about the boss when it spawns. Let's do that now.

Time for action – Making the GameReplicationInfo
One of the things a GameInfo does when it spawns is create its GameReplicationInfo, so
it can send information to the players. The class to use is specified in its default properties,
so let's create our own and set it there.

1.	 Create a new file in our Development\Src\AwesomeGame\Classes folder called
AwesomeGameReplicationInfo.uc. Type the following code into it:

class AwesomeGameReplicationInfo extends UTGameReplicationInfo;

var bool bSpawnBoss;
var float NextWaveTime;
var int EnemiesLeft;
var AwesomeEnemy TheBoss;

replication
{
 if(bNetDirty)
 bSpawnBoss, NextWaveTime, EnemiesLeft, TheBoss;

Creating Multiplayer Games

[342]

}

defaultproperties
{
}

This will be all the information we need to pass to the player.

2.	 Now we need the GameInfo to use this class as its GameReplicationInfo, so
let's add a line to AwesomeGame's default properties:

 GameReplicationInfoClass=class'AwesomeGame.
AwesomeGameReplicationInfo'

3.	 Now we need to pass the information from AwesomeGame to
AwesomeGameReplicationInfo. Let's start with the EnemiesLeft property. First
we need to set its initial value; let's do this in PostBeginPlay:

simulated function PostBeginPlay()
{
 local AwesomeEnemySpawner ES;

 super.PostBeginPlay();

 GoalScore = 1;

 foreach DynamicActors(class'AwesomeEnemySpawner', ES)
 EnemySpawners[EnemySpawners.length] = ES;

 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 AwesomeGameReplicationInfo(GameReplicationInfo).
EnemiesLeft = EnemiesLeft;
}

4.	 Now we need to let it know when it changes; we do that in EnemyKilled:

function EnemyKilled()
{
 local int i;

 if(bSpawnBoss)
 return;

 EnemiesLeft--;

 if(EnemiesLeft <= 0)
 {

Chapter 8

[343]

 for(i=0; i<EnemySpawners.length; i++)
 EnemySpawners[i].MakeEnemyRunAway();
 ClearTimer('ActivateSpawners');
 TriggerGlobalEventClass(class'AwesomeSeqEvent_
WaveComplete', self);
 NextWaveTime = -1;
 }

 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 AwesomeGameReplicationInfo(GameReplicationInfo).
EnemiesLeft = EnemiesLeft;
}

5.	 Since we've also added a function for the wave size to be set through Kismet, we
need to set it there too:

function StartWave(int WaveSize, int WaveTimer)
{
 local AwesomeEnemy AE;

 foreach DynamicActors(class'AwesomeEnemy', AE)
 AE.Destroy();

 EnemiesLeft = WaveSize;
 NextWaveTime = WaveTimer;

 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 AwesomeGameReplicationInfo(GameReplicationInfo).
EnemiesLeft = EnemiesLeft;

 Broadcast(self, NextWaveTime);
 SetTimer(1, true, 'WaveCountdown');
}

6.	 Now for the NextWaveTime. The player uses this information to know whether it
should display the information on the HUD, so it's not displaying when there isn't a
wave of enemies attacking. First up, PostBeginPlay. Since we already have the if
statement for the EnemiesLeft we'll just alter it a bit there:

 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 {
 AwesomeGameReplicationInfo(GameReplicationInfo).
EnemiesLeft = EnemiesLeft;
 AwesomeGameReplicationInfo(GameReplicationInfo).
NextWaveTime = NextWaveTime;
 }

Let's make the same alteration to the one at the bottom of the EnemyKilled function.

Creating Multiplayer Games

[344]

7.	 Let's make the same changes as in step 6 to the StartWave function.

8.	 Now we just need to add it to the bottom of WaveCountdown:

function WaveCountdown()
{
 NextWaveTime--;

 if(NextWaveTime <= 0)
 {
 ClearTimer('WaveCountdown');
 bSpawnBoss = false;
 ActivateSpawners();
 }
 else
 Broadcast(self, NextWaveTime);

 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 AwesomeGameReplicationInfo(GameReplicationInfo).
NextWaveTime = NextWaveTime;
}

9.	 Now for bSpawnBoss. The first place we'll set it is in the SpawnBoss function:

function SpawnBoss()
{
 bSpawnBoss = true;
 if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
 AwesomeGameReplicationInfo(GameReplicationInfo).bSpawnBoss
= bSpawnBoss;
 ActivateSpawners();
}

10.	Next, we'll alter the if statement in WaveCountdown to set it back to false:

if(AwesomeGameReplicationInfo(GameReplicationInfo) != none)
{
 AwesomeGameReplicationInfo(GameReplicationInfo).NextWaveTime =
NextWaveTime;
 AwesomeGameReplicationInfo(GameReplicationInfo).bSpawnBoss =
bSpawnBoss;
}

Chapter 8

[345]

11.	Now for TheBoss. We only need to change this at the bottom of the
ActivateSpawners function:

 if(bSpawnBoss)
 {
 TheBoss = InRangeSpawners[Rand(InRangeSpawners.length)].
SpawnBoss();
 if(AwesomeGameReplicationInfo(GameReplicationInfo) !=
none)
 AwesomeGameReplicationInfo(GameReplicationInfo).
TheBoss = TheBoss;
 }
 else
 {
 InRangeSpawners[Rand(InRangeSpawners.length)].
SpawnEnemy();
 SetTimer(1.0 + FRand() * 3.0, false, 'ActivateSpawners');
 }

12.	To get the boss's health displaying correctly, we'll need to make sure that variable
gets replicated. Add that to AwesomeEnemy's replication block:

replication
{
 if(bNetDirty)
 Enemy, bAttacking, Health;
}

13.	Now that we have it out of the way, we need to change the AwesomeHUD class to get
the variables from the AwesomeGameReplicationInfo instead of the GameInfo.
Let's rewrite that section of AwesomeHUD's DrawHUD function:

 if(AwesomeGameReplicationInfo(WorldInfo.GRI) != none)
 {
 Canvas.SetPos(Canvas.ClipX * 0.1, Canvas.ClipY * 0.95);
 if(!AwesomeGameReplicationInfo(WorldInfo.GRI).bSpawnBoss
&& AwesomeGameReplicationInfo(WorldInfo.GRI).NextWaveTime == 0)
 Canvas.DrawText("Enemies Left:" @ AwesomeGameReplicati
onInfo(WorldInfo.GRI).EnemiesLeft);
 else if(AwesomeGameReplicationInfo(WorldInfo.GRI).TheBoss
!= none)
 {
 Canvas.DrawText("Boss Health:" @ AwesomeGameReplicatio
nInfo(WorldInfo.GRI).TheBoss.Health);
 if(AwesomeGameReplicationInfo(WorldInfo.GRI).TheBoss.
Health <= 10)
 {

Creating Multiplayer Games

[346]

 Canvas.SetPos(Canvas.ClipX * 0.4, Canvas.ClipY *
0.7);
 Canvas.DrawText("BOSS SUPER RAGE MODE");
 }
 }
 }

14.	Now let's compile and test the game. Alright, looks like the HUD's working again!

What just happened?
The GameReplicationInfo class is helpful when you need clients to know certain
information that the GameInfo has control of, since the GameInfo only exists on the server.
There's a lot of information that's irrelevant to the player. They don't need the array of enemy
spawners or the min and max spawner distances, they only care about when an enemy is
spawned, and that's taken care of by the enemy itself through its replication properties.

There is a similar Info class that players have access to, so they know relevant
information about other players such as their team numbers, names, and scores called the
PlayerReplicationInfo. An array of PlayerReplicationInfo actors can be accessed
through the GameReplicationInfo in the PRIArray variable. For our own player, we
would access it through the PlayerController's PlayerReplicationInfo variable.

Fixing enemy fleeing
Our game is almost working again, but one thing still seems to be broken: The enemy
Fleeing state. Let's see if we can figure out what's going wrong and fix it.

Time for action – RUN AWAY!
The first thing we need to do is figure out if the enemies are running away at all. Is what
we're seeing happening on both the server AND the client?

1.	 Let's change the RunAway function of AwesomeEnemy_Minion:

simulated function RunAway()
{
 `log("Run away!");
 GoToState('Fleeing');
}

This will let us know if this function is getting called.

Chapter 8

[347]

2.	 Let's also change the AwesomeEnemy class's Fleeing state:

 simulated function BeginState(Name PreviousStateName)
 {
 `log("Begin fleeing state!");
 MyMesh.SetMaterial(0, FleeingMat);
 }

3.	 We should have our bases covered for debugging this, so let's see what happens.
Compile the code and run it. Looks like we're getting the logs, but only on the
server:

[0050.61] ScriptLog: Run away!
[0050.61] ScriptLog: Begin fleeing state!

4.	 So the client is never receiving the RunAway function call, even though we changed
it to simulated. The reason for this is that the RunAway function call is coming
from the enemy spawner, which we haven't made relevant to the client. Since the
spawner doesn't exist on the client, none of its functions are being called, including
function calls to other classes. We don't want to make the enemy spawners relevant
to the client since it's not really necessary, so instead let's change the way our
fleeing state works. First let's add a Boolean to the top of AwesomeEnemy:

var bool bFleeing;

5.	 Let's also add it to our replication block so we can let the client know when it has
changed:

replication
{
 if(bNetDirty)
 Enemy, bAttacking, Health, bFleeing;
}

6.	 Now in our subclass AwesomeEnemy_Minion, let's change the RunAway function:

simulated function RunAway()
{
 `log("Run away!");
 bFleeing = true;
}

Creating Multiplayer Games

[348]

7.	 Now we need to use this variable to enter the Fleeing state. We can do this in the
Tick functions of the other two states. First the Seeking state:

 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

 if(bAttacking)
 return;

 if(bFleeing)
 {
 GoToState('Fleeing');
 return;
 }

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 NewLocation = Location;
 NewLocation += normal(Enemy.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);

 if(VSize(NewLocation - Enemy.Location) <
AttackDistance)
 GoToState('Attacking');
 }
 }

8.	 Now for the Attacking state:

 simulated function Tick(float DeltaTime)
 {
 if(bFleeing)
 {
 GoToState('Fleeing');
 return;
 }

 bAttacking = true;

Chapter 8

[349]

 if(Enemy == none)
 GetEnemy();

 if(Enemy != none)
 {
 Enemy.Bump(self, CollisionComponent, vect(0,0,0));

 if(VSize(Location - Enemy.Location) > AttackDistance)
 GoToState('Seeking');
 }
 }

9.	 Compile the code and test. They're fleeing now!

What just happened?
We'll notice something interesting when we check the logs now. This is what we'll see on
the server:

[0049.25] ScriptLog: Run away!
[0049.27] ScriptLog: Begin fleeing state!

And this is what we'll see on the client:

[0041.00] ScriptLog: Begin fleeing state!

Even though the client never receives the RunAway function call, using the variable and making
sure it's replicated makes sure that the client enters the Fleeing state anyway. Rewriting the
classes to get the RunAway function called would have been more than necessary.

Now, just one more thing! Our boss needs a bit of work to get him fully functional, and then
we're done!

Time for action – Bossing around
Alright, let's get this going! We'll be working in AwesomeBoss.uc for this.

1.	 The first thing we'll need to do is make sure the states are working properly, so make
sure we have the simulated keyword on all of the functions in the Seeking and
StageTwo states.

2.	 The Attack functions in those two states both call EndAttack, but if we look in
AwesomeEnemy that function isn't simulated. Let's add the simulated keyword to it.

Creating Multiplayer Games

[350]

3.	 As it is now, the boss won't enter the StageTwo state on the client because the call
to do that is in the TakeDamage function, which isn't simulated. We don't want the
client running that function since it's the server's job to keep track of that, so instead
let's add a variable we can use in a similar way to what we did with the minions to
get them to flee. Add this variable to AwesomeBoss:

var bool bStageTwo;

4.	 Now let's add that to a replication block for AwesomeBoss:

replication
{
 if(bNetDirty)
 bStageTwo;
}

5.	 Now let's alter the TakeDamage function. Change this:

 if(Health == 10)
 GoToState('StageTwo');

to this:

 if(Health == 10)
 bStageTwo = true;

6.	 Now we'll use that variable to change states. Let's add this to the bottom of the
Seeking state's Tick function:

 if(bStageTwo && GetStateName() != 'StageTwo')
 GoToState('StageTwo');

Normally, we'd only need the variable check, but since StageTwo extends off of the
Seeking state we don't want the actor getting caught in an infinite loop of entering
the StageTwo state every Tick.

7.	 Compile and test. Now the boss is working properly!

What just happened?
Now we're starting to see the relationship between the server and the client a bit better.
Certain things the client needs to know about, such as our boss's health for our HUD or
the color changes of the enemies. Some things the client isn't concerned with, such as the
enemy spawners. Stuff like that is taken care of by the server, with the end result of the
enemy being replicated to the client.

Now that we've played around with replication in our game, let's take a look at how we can
use functions to communicate between the server and the client.

Chapter 8

[351]

Replicating function calls
We've been using variables and functions a bit with our replication experiments, but we
haven't quite talked about how to use functions to their fullest extent with replication. First
up we're going to talk about the function modifiers we can use and how they affect when
and where the functions are called.

Replication function modifiers
We talked briefly about these back in Chapter 5, insert Using Functions, and now it's time
to take a closer look. These function modifiers only apply when we're working in an online
environment; if we were making a single-player game these wouldn't matter.

Reliable versus Unreliable
The meaning of these is pretty self explanatory. Functions designated as reliable will always
be sent across the network. Even if bandwidth is saturated these function calls will eventually
be replicated. On the other hand, unreliable function calls aren't guaranteed to make it to
their destination. In a lot of cases we're not worried about this as the function calls serve no
gameplay purpose, for example ReceiveBotVoiceMessage or the ClientPlaySound
function. In other cases they're sent so often that we're not worried about them getting
lost, rather we're worried that by making them reliable they will saturate the server's
bandwidth and it will encounter severe lag. These can be seen in functions like ServerMove,
which contains information about movement the client is trying to send to the server, and
ClientAdjustPosition where the server is trying to send information to the client.

Overall, you want to keep the number of reliable function calls to a minimum unless they're
absolutely necessary to gameplay. However, in this chapter we'll be using reliable functions
so we can be sure our experiments work.

Client functions
When the server needs to call a function on a client, it will do it through a client function.
Client functions are ONLY run on the clients, never on the server. As an example, in
PlayerController there is a function called GivePawn, which is declared as a client
function, and has a Pawn as a parameter. On the server, when a client requests a Pawn (on
game start, or when going from spectator to player for example), the server will spawn the
Pawn at a PlayerStart it chooses, and then set any initial information it needs to. It then
calls the client function GivePawn to tell the client "here is your Pawn". The client will then
do what it needs to do with it, such as setting its view to that Pawn.

We're going to run some experiments using our own AwesomeActor on a new map to see
for ourselves how this type of function replication works.

Creating Multiplayer Games

[352]

Time for action – Setting up for the client function
The first thing we need to do is create a new map we can test with. The one we have is fine
enough, but we need to change it a bit.

1.	 Open AwesomeTestMap in the editor.

2.	 Delete the entire Kismet.

3.	 Optionally, delete all of the AwesomeEnemySpawners, TargetPoints, and other
actors on the map. Be sure to leave the player start, the ground, and the lights.

4.	 Save the map as AwesomeReplicationMap.udk and close the editor.

5.	 Now we can start programming. Open AwesomePawn.uc in ConTEXT.

6.	 We'll be using a Toggle Kismet action on our AwesomePawn, so we need to add the
OnToggle function. For this experiment we don't need to worry about which input
is being activated. For now, let's just put a log in the function:

function OnToggle(SeqAct_Toggle InAction)
{
 `log("I have been toggled!");
}

7.	 Compile the code and open AwesomeReplicationMap in the editor.

8.	 Add a trigger near the player start.

9.	 Double-click on the Trigger to open up its properties, and uncheck Display | Hidden.

10.	With the Trigger still selected, open up the Kismet editor. Right-click and hit New
Event Using Trigger_0 | Touch.

11.	 In the Touch event's properties, set Sequence Event | Max Trigger Count to 0.

12.	Next to the Touch event, add a New Action | Toggle | Toggle.

13.	Right-click below the event and action and click on New Variable | Object | Object.
It will have question marks to indicate it's blank.

14.	Connect the Touched output of the Touch event to any input on the Toggle action.

Chapter 8

[353]

15.	Connect the Instigator variable link on the Touch event to the blank variable. When
the Trigger is touched, it will set the blank variable to the instigator, which in our
case will be our AwesomePawn.

16.	Now connect the Target variable link of the Toggle action to the blank variable.

The Kismet sequence should now look like this:

17.	Save the map and close the editor.

18.	Now we need to rewrite our server batch file a bit. Change the Awesome Test
Server.bat file to reference the new map:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe server AwesomeReplic
ationMap?GoalScore=0?TimeLimit=0?Game=AwesomeGame.AwesomeGame -log

19.	The client batch file doesn't need to be changed, so it's fine.

20.	Double-click to start up the server, and then start the client.

21.	Walk over and hit the trigger and we'll see our log show up on the server:

[0013.86] ScriptLog: I have been toggled!

22.	We'll see that this log does not show up on the client.

Creating Multiplayer Games

[354]

What just happened?
Now we have a setup that you might encounter when making your own game. The server
would like to pass some information to the client from a function that's only running on the
server. Now we can use a client function to do this.

One important thing to know about client functions is that they only work when a client
owns the actor where they're being called. We can figure out who owns an actor through
its Owner variable. Some things like the PlayerController, Pawn, and weapons are
owned by the client who's using them. Most actors are not owned by any client, such
as objects placed in the level. As an example, if we tried using a client function on our
AwesomeEnemySpawner it wouldn't work, as no client owns those actors. They're running
on the server and are not even relevant to the clients.

Time for action – Using the client function
Now we're ready to write the client function and call it from the server.

1.	 Make sure that the game and the server are shut down.

2.	 Open AwesomePawn in ConTEXT.

3.	 We're going to write our client function now:

reliable client function CallTheClient()
{
 `log("Reliable client function called!");
}

One thing to note is that these modifiers go together; you can't have a client
function without specifying whether it's reliable or unreliable. If you try, the
compiler will give you an error.

4.	 Now that we have that function written, we need to call it from our OnToggle function:

function OnToggle(SeqAct_Toggle InAction)
{
 `log("I have been toggled!");
 CallTheClient();
}

5.	 Now let's see what happens. Compile the code, then run the server and the game.
Run over to the trigger.

6.	 We'll see this log show up on the server:

[0015.35] ScriptLog: I have been toggled!

Chapter 8

[355]

7.	 And we'll see this log show up on the client:

[0009.81] ScriptLog: Reliable client function called!

We'll notice that the client function was not called on the server.

8.	 We can also pass parameters to the client inside client functions. Let's rewrite our
Toggle function a bit:

function OnToggle(SeqAct_Toggle InAction)
{
 `log("I have been toggled!");
 CallTheClient(4.0);
}

9.	 And the CallTheClient function:

reliable client function CallTheClient(float MyFloat)
{
 `log("Reliable client function called:" @ MyFloat);
}

10.	Compile the code and run the server and game. We'll see the parameter show up in
the client's log:

[0012.21] ScriptLog: Reliable client function called: 4.0000

What just happened?
This is of course different than the modifications we made to our own game to get it to work
on the server. We'll talk about simulated functions in a bit, but first we need to figure out
how to send function calls in the other direction using server functions.

Server functions
Just like client functions, server functions are used to send function calls across the network.
The difference is that server functions are called from the client when it needs to send a call
to the server. As an example, when you press the Use key it calls an exec function, which is
only executed on the client. Since the server controls the game state, we need to send that
function call across the network so the server can figure out what if anything will change
because of that. Let's take a look.

Creating Multiplayer Games

[356]

Time for action – Using a server function
With the Use functionality we already have a function we can test this with, so
let's try it out. Since exec functions aren't called on Pawn classes, we'll need to use
AwesomePlayerController.

1.	 Open AwesomePlayerController in ConTEXT.

2.	 First let's write the Use function:

exec function Use()
{
 `log("I have been used!");
}

3.	 Compile the code, and then run the server and the client.

4.	 Press the Use key (default: E). We should see the log show up on the client:

[0011.44] ScriptLog: I have been used!

5.	 Close the client and the server.

6.	 Now that we can see the Use function is only called on the client, let's send a
function call to the server. Let's change our Use function a bit:

exec function Use()
{
 `log("I have been used!");
 CallTheServer();
}

7.	 Now let's write our server function:

reliable server function CallTheServer()
{
 `log("Reliable server function called!");
}

8.	 Compile the code and run the server and the client.

9.	 Press the Use key and we should see the logs. On the client we get the same one,
and now on the server we see this:

[0014.17] ScriptLog: Reliable server function called!

Chapter 8

[357]

10.	And as with client functions, we can also use these to send information to the
server. For example, if we were making a class-based multiplayer game, we might
want to send our desired class as an int to the server. Let's send an int now. We'll
start by changing our Use function:

exec function Use()
{
 `log("I have been used!");
 CallTheServer(3);
}

11.	Now we'll change our CallTheServer function:

reliable server function CallTheServer(int MyInt)
{
 `log("Reliable server function called:" @ MyInt);
}

12.	Compile the code.

13.	Run the server and the client. Press the Use key and now we should see this on
the server:

[0014.43] ScriptLog: Reliable server function called: 3

What just happened?
Client and server functions aren't used all of the time. Most of the information that needs
to be passed between them doesn't apply to just one client. For example, when a vehicle in
the map spawns, the server would need to let everyone know. But if you wanted to enter
that vehicle, a server function would be sent to let the server know, and if the server's game
logic said that you could enter it, the server would send a client function back to you so your
client could run any code it needed to for that (changing camera view, changing control from
your Pawn to the vehicle, and so on).

Next we're going to take a look at the final function modifier that applies for replication.

Simulated functions
Let's face it, the server can't do everything. We don't have fiber optic connections of bridge
cables' size, so the server isn't going to be able to send us the exact state of the game every
tick. The client is going to have to do some of the work itself. To do this, we use simulated
functions. Since the client and the server have the exact same code in their files, it stands to
reason that the client could do a pretty good job of predicting what's going on on the server.
Simulated functions are what let the client predict what's going on on the server. Let's take
a look.

Creating Multiplayer Games

[358]

Time for action – Setting up the map
We're going to use our old friend AwesomeWeaponUpgrade to help us here. First we need
to set up a little Kismet.

1.	 Open AwesomeReplicationMap in the editor.

2.	 In the Kismet editor, delete the Toggle action and the blank object variable linked
to it.

3.	 Next to the Trigger's Touch event, right-click and click on New Action | Actor |
Actor Factory.

4.	 In the Actor Factory action's properties, click on the blue down arrow at the end of
Seq Act Actor Factory | Factory and select ActorFactoryActor.

5.	 In the Actor Class property that appears, select AwesomeWeaponUpgrade.

6.	 In the level, select the player start.

7.	 Right-click in the Kismet editor and click on New Object Var Using PlayerStart_0.

8.	 Connect the Touched output of the Touch event to the Spawn Actor input of the
Actor Factory action.

9.	 Connect the Spawn Point variable link of the Actor Factory action to the Player Start
object variable. The Kismet should now look like this:

10.	Save and close the editor.

Chapter 8

[359]

What just happened?
Now we're set up for some coding. We're going to spawn an AwesomeWeaponUpgrade
while the game is running so we can see what happens when we experiment with the
simulated function modifier.

Time for action – Using simulated functions
We'll be using PostBeginPlay for this, which is why we're spawning the
AwesomeWeaponUpgrade with Kismet instead of just placing one directly in the editor.
PostBeginPlay is called when an actor is first created, but our client won't connect to the
server until that's already happened. This is an important thing to note when dealing with
replication for editor-placed actors.

1.	 Open AwesomeWeaponUpgrade in ConTEXT.

2.	 To start, we're going to write a non-simulated version of PostBeginPlay.

function PostBeginPlay()
{
 `log("PostBeginPlay====================");
}

We'll add some equal signs to the end of our log to make it easier to spot.

3.	 Compile the code.

4.	 Run the server and the client, and then run over to the trigger. We'll see the log
show up on the server:

[0013.84] ScriptLog: PostBeginPlay====================

We won't see this on the client.

5.	 Now let's see what happens when we add the simulated function modifier:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay====================");
}

6.	 Compile the code.

7.	 Run the server and the client again, and then run over to the trigger. This time we'll
see the log show up on the client as well:

[0017.31] ScriptLog: PostBeginPlay====================

Creating Multiplayer Games

[360]

What just happened?
In a network environment, only exec functions, client functions, and simulated functions
are called on the client. If a function doesn't have any of those modifiers, it will only run on
the server. Additionally, for a simulated function to be called on the client, it must either be
called from another simulated function or from native C++ code. We'll know it's one of those
if it uses the word "event" instead of "function" in its initial declaration. As an example,
PostBeginPlay is initially declared in Actor.uc like this:

event PostBeginPlay();

It's called from native code right after gameplay begins.

For our next experiment we're going to see this for ourselves.

Time for action – COMBO BREAKER!
We're going to chain a few events together and see what happens on the server and on the
client. We'll start with PostBeginPlay.

1.	 Let's add a line to our PostBeginPlay function:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay====================");
 NumberOne();
}

2.	 Now let's write the NumberOne function. We'll use the simulated modifier on it
and have it call the next function in the chain:

simulated function NumberOne()
{
 `log("NumberOne========================");
 NumberTwo();
}

3.	 Now for NumberTwo, we'll leave out the simulated modifier:

function NumberTwo()
{
 `log("NumberTwo========================");
 NumberThree();
}

Chapter 8

[361]

4.	 And finally, that non-simulated function will call a simulated NumberThree:

simulated function NumberThree()
{
 `log("NumberThree========================");
}

5.	 Compile the code.

6.	 Now, before we run it, what is your guess as to what will show on the client and
what will show on the server? We know that simulated functions will only run on
the client if they're called from other simulated functions, and that non-simulated
functions won't run on the client at all. Let's see if you're right.

7.	 Run the server and the client.

8.	 Hit the trigger and take a look at the logs. On the server we'll see this:

[0015.22] ScriptLog: PostBeginPlay====================
[0015.22] ScriptLog: NumberOne========================
[0015.22] ScriptLog: NumberTwo========================
[0015.22] ScriptLog: NumberThree========================

That's what we were expecting; knowing that all but client functions will run on
the server.

9.	 Now take a look at the client log:

[0009.92] ScriptLog: PostBeginPlay====================
[0009.92] ScriptLog: NumberOne========================

What just happened?
It looks like our combo breaker was after NumberOne was called. We didn't expect
NumberTwo to get called since it wasn't simulated, and knowing that simulated functions
only run on the client when called from other simulated functions, it makes sense that
NumberThree wouldn't get called since it was called from the non-simulated NumberTwo.

The use of simulated functions is a bit tricky. We want the client to stay as much in sync with
the server as possible, and using simulated functions helps us to do that. Running a function
on both the server and the client saves bandwidth that would have had to have been used
sending client functions or variables.

We don't want all functions to be simulated though. The client doesn't have access to all of
the actors in the level all of the time, so there are a lot of functions it just wouldn't be able to
run. Looking at our own game, we never changed the functionality of the enemy spawners,
and indeed they don't exist on the client (you can put a log in a simulated PostBeginPlay
to test that if you'd like). Any functions that deal with them wouldn't work on the client, so
we wouldn't make them simulated.

Creating Multiplayer Games

[362]

Even when running simulated functions, there may be parts of them that we don't want to
run on the client, or parts that we don't want the server to execute. Next up we're going to
take a look at roles and their effect on actors.

Role and authority
We know that non-simulated functions don't run on clients. But when we're in a simulated
function, how do we tell the server and the client apart? For that matter, how do we know
we're running the game in a network environment at all? There are a few variables we can
use to help us out. The first, and most important, are Role and RemoteRole.

Role and RemoteRole
These two variables are declared in Actor as an enum and tell the game how the server and
client should treat this actor. Let's take a look at the list:

enum ENetRole
{
 ROLE_None, // No role at all.
 ROLE_SimulatedProxy, // Locally simulated proxy of this actor.
 ROLE_AutonomousProxy, // Locally autonomous proxy of this actor.
 ROLE_Authority, // Authoritative control over the actor.
};
var ENetRole RemoteRole, Role;

By default, Role will always be ROLE_Authority on the server. This makes sense, since
the server needs to have the last word on the state of all actors in the game. While writing
actors, RemoteRole tells us how we want the client to treat them:

�� ROLE_None: This actor has no role on the clients and is never replicated to them.
The GameInfo class is an example of this, as it only exists on the server. In our own
game, the AwesomeEnemySpawner had a RemoteRole of ROLE_None, since all of
its logic was handled by the server.

�� ROLE_SimulatedProxy: Almost all replicated actors use this role. Projectiles,
Vehicles, anything that the client will need to predict physics and other behavior on.

�� ROLE_AutonomousProxy: Used only in two places, for the client's own Pawn
and DemoRecSpectators. Actors with this role behave similarly to ROLE_
SimulatedProxy, except that they're not limited to simulated functions and states.

�� ROLE_Authority: Not used for RemoteRole. ROLE_Authority means the actor
is running on the server or in a single player environment.

And you probably saw this coming, so let's take a look for ourselves!

Chapter 8

[363]

Time for action – Examining Role and RemoteRole
We'll use AwesomeWeaponUpgrade for this.

1.	 Let's delete the combo breaker functions, but leave PostBeginPlay.

2.	 Let's rewrite PostBeginPlay a bit so we can take a look at Role and RemoteRole:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay====================");
 `log("Role =" @ Role);
 `log("RemoteRole =" @ RemoteRole);
}

3.	 Compile the code.

4.	 Run the server and the client, and then run over to the trigger to spawn the
AwesomeWeaponUpgrade.

5.	 Let's take a look at what we see on the server:

[0020.03] ScriptLog: PostBeginPlay====================
[0020.03] ScriptLog: Role = ROLE_Authority
[0020.03] ScriptLog: RemoteRole = ROLE_SimulatedProxy

This is what we'd expect.

6.	 Now let's take a look at the client:

[0011.66] ScriptLog: PostBeginPlay====================
[0011.66] ScriptLog: Role = ROLE_SimulatedProxy
[0011.66] ScriptLog: RemoteRole = ROLE_Authority

What's going on there?

What just happened?
If you think about it, it makes sense that the variables are switched on the client. As a client,
code running on us wouldn't have a Role of ROLE_Authority, and the RemoteRole
wouldn't be ROLE_SimulatedProxy, they'd be the opposite of what they are on the server.

Knowing this, we now have a way to differentiate them while running functions!

Creating Multiplayer Games

[364]

Time for action – Respect my authority!
Once again, back to AwesomeWeaponUpgrade.

1.	 Let's change the PostBeginPlay function a bit:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay====================");

 if(Role == ROLE_Authority)
 `log("I am running on the server!");
 else
 `log("I am running on the client!");
}

2.	 Compile the code.

3.	 Run the server and the client. Now let's take a look at what happens.

4.	 Run to the trigger, then take a look at the server's log:

[0014.57] ScriptLog: PostBeginPlay====================
[0014.57] ScriptLog: I am running on the server!

5.	 Now let's take a look at the client:

[0010.53] ScriptLog: PostBeginPlay====================
[0010.53] ScriptLog: I am running on the client!

What just happened?
This is useful when we want both the client and the server to run a function, but we want
them to have different responses to that function. As an example, since particle effects don't
need to be spawned on the server since they'd just waste processing power, we'd check
Role and only spawn them on clients. We might also have some gameplay-related code that
we only want the server to run, so we would differentiate it the same way.

Knowing that enums can be treated as ints in if statements, we can also find out if we're
not running on a server by checking:

if(Role < ROLE_Authority)

Sometimes, we need to know if the game is being run in a network environment, but using
Role to do this wouldn't help because it would still be ROLE_Authority offline. For this, we
would use a different variable.

Chapter 8

[365]

NetMode
The other variable that we can use to check our network environment is called NetMode. It's
declared in the WorldInfo class:

var enum ENetMode
{
 NM_Standalone, // Standalone game.
 NM_DedicatedServer, // Dedicated server, no local client.
 NM_ListenServer, // Listen server.
 NM_Client // Client only, no local server.
} NetMode;

Let's see what each one means:

�� NM_Standalone: A non-server game. All of the previous chapters of this book ran
the game this way.

�� NM_DedicatedServer: Running on a server where clients connect to it separately.

�� NM_ListenServer: The local client is also acting as the server for other clients.
Think "Host Game" where other players connect to you, instead of everyone
connecting to a remote machine.

�� NM_Client: Running as a client connected to a server.

Time to test!

Time for action – Checking the level's NetMode.
Let's change our AwesomeWeaponUpgrade actor to check for our level's NetMode.

1.	 Let's rewrite the PostBeginPlay function:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay====================");
 `log("NetMode:" @ WorldInfo.NetMode);
}

2.	 Compile the code.

3.	 Now run the server and client. Let's see what shows up in the server's log:

[0019.97] ScriptLog: PostBeginPlay====================
[0019.97] ScriptLog: NetMode: NM_DedicatedServer

Creating Multiplayer Games

[366]

4.	 And now for the client:

[0013.26] ScriptLog: PostBeginPlay====================
[0013.26] ScriptLog: NetMode: NM_Client

What just happened?
So why don't we just use NetMode instead of Role and RemoteRole? As a server, NetMode
can either be NM_DedicatedServer or NM_ListenServer, but Role will always be
ROLE_Authority.

So when WOULD we use this? In the discussion of Role, one example we used was not
spawning effects on the server. However, with NM_ListenServer we WOULD want the
effect to spawn, since the server is also a local client.

Next up we're going to discuss our last topic, replication of variables.

Replicating variables
Variable replication is probably the most important part of working in a network
environment. From variables like an actor's Location and Rotation to the amount of
ammo a weapon has, the server has a lot of variables to keep track of and keep the clients
in sync with. Unlike functions, variables are always reliable and will always reach the clients
regardless of bandwidth saturation or packet loss. It may just take a bit of time, as replicated
function calls take priority.

When dealing with replication, it's important to realize that all types of variables can be
replicated EXCEPT dynamic arrays. Static arrays work just fine, but if you need to replicate
a dynamic array the only way you'll be able to do that is by passing the individual elements
of the array through a replicated function one at a time, which can get messy. If possible
it's best to avoid having dynamic arrays that the client needs to know about. For our
game, if we wanted to replicate the GameInfo's array of enemy spawners to a client's
PlayerController, for example, it would take some work to do that.

First up we're going to talk about the place where we determine what variables get
replicated and when, the replication block.

The replication block
We've used this a bit while we were fixing our game to work online, so we know what it
looks like at least. Let's take a closer look.

Chapter 8

[367]

Time for action – Replicating a variable
Let's keep working with AwesomeWeaponUpgrade, and add in some variable replication.

1.	 First let's add a new variable to the class:

var int TestInt;

2.	 Now let's write the replication block. We've already discussed bNetDirty, which
we'll be using here. If any replicated property is changed, bNetDirty will be set
to true. We need to let the game know that our variable needs to be replicated in
that case.

replication
{
 if(bNetDirty)
 TestInt;
}

3.	 Now for PostBeginPlay. We'll leave it as simulated, but we'll call different
functions for the client and the server.

simulated function PostBeginPlay()
{
 if(Role == ROLE_Authority)
 SetTimer(1.0, true, 'ServerTest');
 else
 SetTimer(1.0, true, 'ClientTest');
}

4.	 Now for ServerTest:

function ServerTest()
{
 TestInt++;
 `log("ServerTest:" @ TestInt);
}

5.	 And ClientTest:

simulated function ClientTest()
{
 `log("ClientTest:" @ TestInt);
}

Creating Multiplayer Games

[368]

6.	 Now compile the code.

7.	 ServerTest will only be called on the server, and will increment the variable and
log the new value. On the client, we use ClientTest to log the value so we can see
if it gets replicated properly. Let's take a look.

8.	 Run the server and the client, and hit the trigger. Now let's take a look at the
server's log:

[0017.29] ScriptLog: ServerTest: 1
[0018.26] ScriptLog: ServerTest: 2
[0019.19] ScriptLog: ServerTest: 3
[0020.16] ScriptLog: ServerTest: 4

9.	 Ok, looking good there. Now let's take a look at the client:

[0011.37] ScriptLog: ClientTest: 1
[0012.33] ScriptLog: ClientTest: 2
[0013.28] ScriptLog: ClientTest: 3
[0014.23] ScriptLog: ClientTest: 4

What just happened?
And there we go! Variable replication is a lot easier to deal with than functions. If you keep
an eye on the log for a bit you might notice the numbers don't match up every once in
awhile. This is mostly due to the fact that the timers we start aren't running perfectly in
synch, so the server may change and replicate the variable after the client has already logged
the old value again. In reality it wouldn't take that long for the variable to replicate. If you
wanted, you could keep track of the changes using Tick instead, to get a more real-time
view of it.

That's pretty much all there is to variable replication, but there are some conditional
variables we need to take a look at that we can use to specify when and where variables
get replicated.

Replication variables
Let's take a look at some of the variables that affect how replication is handled.

�� NetPriority: Giving this a higher value will make sure that this actor gets higher
priority than others when figuring out what to replicate. Note that this is relative to
other actors' NetPriority values, so giving it a value of one billion won't make it
replicate any faster.

�� bNetDirty: As discussed, this gets set to true whenever any replicated variable's
value changes.

Chapter 8

[369]

�� bNetInitial: True until the initial replication of all values has been completed.

�� bNetOwner: This is true if the local client's PlayerController owns this actor.

�� bAlwaysRelevant: If this is set to true, this actor is always relevant to all clients on
the network. This shouldn't be overused, as you don't necessarily want actors that
the client can't even see to have their properties updated all the time.

�� bReplicateInstigator: If this actor has an Instigator (Pawn responsible for
damage caused by this actor), replicate that to clients.

�� bReplicateMovement: Replicate location and movement variables (like velocity).

�� bSkipActorPropertyReplication: Don't replicate properties for this actor.

�� NetUpdateFrequency: How often to consider this actor for replication. Use lower
values for low priority actors.

Some of these are set in the default properties of the actor; some are set at run time and can
be used to control replication conditions. If we take a look at Actor.uc's replication block
we can see a lot of examples of the usage of these variables. For instance, the Instigator:

 if ((!bSkipActorPropertyReplication || bNetInitial) &&
(Role==ROLE_Authority)
 && bNetDirty && bReplicateInstigator)
 Instigator;

Reading it, this tells us that if we're not skipping property replication or we're still initializing,
and we're the server, and a replicated property has changed, and we want to replicate the
instigator, then replicate the Instigator variable. These replication statements can seem
confusing at first, but examining what each variable does and taking a look at other examples
in the source code will give you an understanding of when they should be used.

Lastly we're going to take a look at ReplicatedEvent, which tells us when a property has
been replicated so we can execute any specific code we need to when that happens.

ReplicatedEvent
There is one last variable modifier that we haven't discussed, repnotify. Using this
on a variable causes ReplicatedEvent to be called on the actor when that variable is
replicated. Let's take a look at how we can use it.

Creating Multiplayer Games

[370]

Time for action – Using ReplicatedEvent
We need to make some changes to AwesomeWeaponUpgrade for this to work.

1.	 Delete ClientTest, but we're still going to use ServerTest so leave that for now.

2.	 Let's rewrite the PostBeginPlay function:

simulated function PostBeginPlay()
{
 if(Role == ROLE_Authority)
 SetTimer(3.0, false, 'ServerTest');
}

This time we're using a non-repeating timer with a longer delay.

3.	 ServerTest doesn't need to be changed for this, so let's leave it as it is.

4.	 Now we need to let the game know that we want ReplicatedEvent called when
TestInt is replicated, so let's put the variable modifier in:

var repnotify int TestInt;

5.	 Now let's write the ReplicatedEvent function:

simulated event ReplicatedEvent(name VarName)
{
 if(VarName == 'TestInt')
 `log("TestInt was replicated!");
}

6.	 Compile the code.

7.	 Run the server and the client, and hit the trigger.

8.	 Now let's take a look at what happened on the server:

[0016.42] ScriptLog: ServerTest: 1

We'll notice that ReplicatedEvent wasn't called here.

9.	 Now let's look at the client:

[0011.39] ScriptLog: TestInt was replicated!

Chapter 8

[371]

What just happened?
Now, if there were any specific code we needed to run whenever this variable was
replicated, we could do that. If, for example, that int were used as an index to an array of
materials for an object, if that int changed we could use ReplicatedEvent to change the
object's material in response.

Have a go hero – The Replication, The!
Take replication and throw it in a fire please.

Personally, I hate it. It is the most frustrating part of working with UnrealScript, but with
enough practice and experience it gets easier to deal with. Just remember that if you're
going to be working on a multiplayer project, you ABSOLUTELY MUST incorporate replication
from the very beginning. If not you may end up rewriting vast sections of your code and even
rearranging entire classes to get it to work. You will save yourself a lot of time and effort if
you constantly test your code in a network environment to detect and fix replication issues
early on. Getting in the mindset of thinking about the server and the client separately will
help you make sure your game works properly online.

Pop quiz – Replication
1.	 What function modifier is used to let a client execute code inside that function?

a.	 replicated

b.	 simulated

c.	 server

2.	 What two function modifiers are used to let the game know whether or not we care
if the function call is ever replicated?

3.	 What variable modifier is used to call ReplicatedEvent whenever that variable
is replicated?

Creating Multiplayer Games

[372]

Summary
We learned a lot in this chapter about replication and working with UnrealScript in a
network environment.

Specifically, we covered:

�� How to run the game with a server and a client on a single machine

�� The differences in how the server and client interact with the game world

�� Using function modifiers to change the way functions are called on the server and
the client

�� How to use Role, RemoteRole, and Netmode to differentiate the server from
clients and network games from single-player games

�� How to replicate variables and use ReplicatedEvent

Now that we've learned about replication, we're ready to start learning about some of
the common pitfalls of UnrealScript, and how to fix compiler and log errors so our game
runs smoothly.

9
Debugging and Optimization

PC Load Letter? What does that mean?

The problem with computers is that they're not psychics. They have no idea
what you're trying to accomplish. With any programming language, my mantra
has always been this: Computers will never do what you want them to do. They
will do exactly what you tell them to do. A lot of the time what you're telling
them to do isn't what you want them to do, which causes unexpected bugs,
errors, even crashes. Knowing a programming language is one thing, but the
most important skill in programming is having the critical thinking skills to
figure out why a program is broken and being able to fix it. Most of the code
you write will not work correctly the first time. Things will break. A lot!

In this chapter we will:

�� Cover some of the most common errors that you'll encounter while compiling
UnrealScript

�� Take a look at some broken code to see if we can fix it

�� Use the log to debug and further clean up our code

�� Use the profiler to minimize performance hits from our code

So with that, let's break stuff!

Debugging and Optimization

[374]

Compiler errors
While getting used to any programming language, you will inevitably encounter a lot of
errors trying to compile or run your code, most often from syntax errors. Write the code
slightly wrong and nothing will work, even if it compiles. In this section, we'll take a look at
some of the most common errors you'll encounter working with UnrealScript, what they
mean, and how to fix them. Let's get started!

Time for action – Preparing for brokenness
Before we break anything, we need to set up a new map and a new script folder specifically
for these experiments. We're not going to use AwesomeGame because we want to focus
specifically on the errors we create, and we don't want any interference from other code:

1.	 Create a copy of AwesomeTestMap.udk in the UDKGame\Content\Maps\
AwesomeGame folder and call it BrokenMap.udk.

2.	 Open BrokenMap.udk in the editor.

3.	 Delete all of the Kismet, plus all of the AwesomeEnemySpawners and other actors
on the map apart from PlayerStart, the ground, and the lights.

4.	 Save and close the map.

What just happened?
Now we have the map set up for testing. Next we're going to create a new script folder
specifically for these tests.

Time for action – A new script package
It's been awhile since we set up a script folder, so let's go through the steps again:

1.	 Create a new folder in the Development\Src folder called BrokenGame.

2.	 Create a folder inside BrokenGame called Classes.

3.	 In the BrokenGame\Classes folder, create a new file called BrokenActor.uc.

4.	 In BrokenActor.uc, write the following code:

class BrokenActor extends Actor
 placeable;

defaultproperties
{

Chapter 9

[375]

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorMaterials.TargetIcon'
 Scale=0.35
 HiddenGame=true
 End Object
 Components.Add(Sprite)
}

5.	 Before we can compile, we need to add our new package to DefaultEngine.ini.
Open UDKGame\Config\DefaultEngine.ini, and at the end of the [Engine.
ScriptPackages] section add our new package:

[Engine.ScriptPackages]
+NonNativePackages=UTGame
+NonNativePackages=UTGameContent
+NonNativePackages=AwesomeGame
+NonNativePackages=BrokenGame

6.	 Also at the end of the [UnrealEd.EditorEngine] section:

[UnrealEd.EditorEngine]
+EditPackages=UTGame
+EditPackages=UTGameContent
+EditPackages=AwesomeGame
+EditPackages=BrokenGame

7.	 Save and close DefaultEngine.ini.

8.	 Back in ConTEXT, compile our code.

9.	 Once it compiles successfully, open BrokenMap in the editor.

10.	Select BrokenActor in the Actor Classes tab of the Content Browser (it will be in
the Uncategorized section if you have Show Categories checked), and place one in
the map near the player start.

11.	Save the map, but don't close the editor yet.

12.	Let's add a PostBeginPlay function to our class:

simulated function PostBeginPlay()
{
 `log("BrokenActor PostBeginPlay!");
}

13.	Compile the code.

Debugging and Optimization

[376]

What just happened?
Wow that's ugly. Here we have our first compiler error, but luckily it's also the easiest to fix.

[0005.15] Log: Warning/Error Summary
[0005.15] Log: ---------------------
[0005.15] Log: Error, Error deleting file 'R:\UDK\UDK-AwesomeGame\
Binaries\Win32\..\..\UDKGame\Script\BrokenGame.u' (GetLastError:
32)
[0005.15] Log: Error, Error saving '..\..\UDKGame\Script\
BrokenGame.u'
[0005.15] Log: Warning, Failed to delete ..\..\UDKGame\Script\
BrokenGame.u
[0005.15] Log: Warning, DeleteFile was unable to delete 'R:\UDK\
UDK-AwesomeGame\Binaries\Win32\..\..\UDKGame\Script\BrokenGame.u',
retrying... (GetLastE-r-r-o-r: 32)
[0005.16] Log:
[0005.16] Log: Failure - 3 error(s), 3 warning(s)

A lot of references to being unable to delete BrokenGame.u. If you ever get an error like
this, make sure the editor is closed and no instances of the game are running before you
compile. With any of those running, BrokenGame.u will be in use and the compiler won't be
able to delete the old .u file so it can replace it with the new one. With that in mind, close
the editor and compile the code again.

[0004.11] Log: Success - 0 error(s), 0 warning(s)

Much better. It's a bit of a pain, but while you're working on your game you will have to close
the editor before you compile. Luckily for us this is the scariest looking error to encounter
while working with UnrealScript. Most of them will be simple and pretty self-explanatory.

Time for action – Breaking the class itself
Another common mistake is a class name mismatch. Let's take a look.

1.	 At the top of our class, let's change the class declaration:

class Borked extends Actor
 placeable;

2.	 Now try to compile the code. We'll get this in the log:

[0004.13] Log: R:\UDK\UDK-AwesomeGame\Binaries\..\Development\Src\
BrokenGame\Classes\BrokenActor.uc : Error, Script vs. class name
mismatch (BrokenActor/Borked)

Chapter 9

[377]

What just happened?
The names of the classes in each file must match the file name. In our case, since the file is
called BrokenActor.uc, the class must be declared as BrokenActor. Let's change it back:

class BrokenActor extends Actor
 placeable;

It's a minor error, but you may encounter it from time to time. It's easy to forget to rename a
class if you've copied it from another of your projects, for example.

Another common error that breaks the class file itself is saving the text file in the wrong
format. If you ever encounter an error such as this:

[0004.03] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(1) : Error, Unexpected 'ï'

The i with the umlaut is part of the UTF-8 file encoding, so if you get an error like this make
sure your .uc files are saved with ANSI encoding. You can double-check this by opening the
file in Notepad and looking at the Encoding drop-down list in the Save As dialogue.

Now that we've broken the class, let's break some code!

Time for action – Breaking some more code
Let's take a look at two more common errors when working with UnrealScript. We'll add a bit
more to our BrokenActor.

1.	 Let's change our BrokenActor to look like this:

class BrokenActor extends Actor
 placeable;

var int MyInt;

simulated function PostBeginPlay()
{
 if(MyInt > 5)
 {
 `log("MyInt is greater than 5! MyInt is:" @ MyInt);
 }
 else
 {
 `log("MyInt is less than or equal to 5! MyInt is:" @
MyInt);
 }

Debugging and Optimization

[378]

defaultproperties {
 MyInt=13

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorMaterials.TargetIcon'
 Scale=0.35
 HiddenGame=true
 End Object
 Components.Add(Sprite)
}

2.	 Compile the code. We'll see this error pop up:

[0003.94] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(13) : Error, Unexpected end of file at end
of Class

3.	 Whenever this error shows up, it means we've missed a closing } bracket
somewhere. In this case, we haven't properly ended our PostBeginPlay function
with one, so let's add it:

simulated function PostBeginPlay()
{
 if(MyInt > 5)
 {
 `log("MyInt is greater than 5! MyInt is:" @ MyInt);
 }
 else
 {
 `log("MyInt is less than or equal to 5! MyInt is:" @
MyInt);
 }
}

Now let's compile the code. It works this time!

4.	 Since we already have BrokenActor placed in our map, we don't need to open the
editor for this next step. Instead let's create a copy of our Awesome Test Map.bat
batch file and name it Broken Map.bat.

5.	 Open Broken Map.bat and change it to look like this:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe BrokenMap?GoalScore=
0?TimeLimit=0 -log

Chapter 9

[379]

The map name has changed, but also note that we're not running it with
AwesomeGame anymore. Goodbye AwesomeGame! You have served us well.

6.	 Save and close Broken Map.bat.

7.	 Double-click the batch file to run the game. While it's loading think about what we
should see in the log. We've set MyInt to 13 in the default properties, so we should
see the first log in our script show up. We'll see this isn't the case though:

[0005.20] ScriptLog: MyInt is less than or equal to 5! MyInt is:
0

8.	 Well what happened there? Let's change our default properties block. Right now it
looks like this:

defaultproperties {
 MyInt=13

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorMaterials.TargetIcon'
 Scale=0.35
 HiddenGame=true
 End Object
 Components.Add(Sprite)
}

Let's move the first bracket down to the next line, so it looks like this instead:

defaultproperties
{
 MyInt=13

 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorMaterials.TargetIcon'
 Scale=0.35
 HiddenGame=true
 End Object
 Components.Add(Sprite)
}

9.	 Now let's compile the code and run the game again:

[0005.40] ScriptLog: MyInt is greater than 5! MyInt is: 13

Much better!

Debugging and Optimization

[380]

What just happened?
Misplacing or missing brackets, that is. { } are fairly common for new programmers. To avoid
this problem, it's best to create both of them at the same time, before you start writing code
inside them.

The second problem with the default properties is more common among programmers
who are used to other languages and who format their code differently. The rest of an
UnrealScript class can be written with the opening bracket on the same line as the function
declaration:

function Something() {
 SomeCode();
}

The default properties block is the only place where you can't do this, the opening bracket
has to be on a new line, like this:

defaultproperties
{
 SomeVariable=2
}

Time for action – Misleading errors
Sometimes error messages might seem a little misleading, as we'll see in this next experiment:

1.	 Let's rewrite our PostBeginPlay function. We'll leave in our MyInt variable and
use it for this experiment:

simulated function PostBeginPlay()
{
 if(UTGame(WorldInfo.Game != none)
 MyInt = UTGame(WorldInfo.Game).DefaultMaxLives;
}

2.	 Seems fine, but when we try to compile we get this error:

[0004.84] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(8) : Error, Bad or missing expression for
token: UTGame, in 'If'

What could this mean? It seems to be telling us that it doesn't know what UTGame
is, even though it's a valid class. If we take a closer look at our if statement, we can
see the problem:

 if(UTGame(WorldInfo.Game != none)

Chapter 9

[381]

I'm counting two open parentheses, but only one closed one. If we take the if part
out of this line and examine it separately:

 UTGame(WorldInfo.Game != none)

To the compiler, it looks like we're trying to call a function called UTGame and that
we're trying to send this function a bool (WorldInfo.Game != none). Since it can't
find a function called UTGame, it gives us this error:

[0004.84] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(8) : Error, Bad or missing expression for
token: UTGame, in 'If'

So the error message might seem misleading, but to the compiler it makes
perfect sense.

3.	 Let's fix the error by adding the closing parenthesis:

simulated function PostBeginPlay()
{
 if(UTGame(WorldInfo.Game) != none)
 MyInt = UTGame(WorldInfo.Game).DefaultMaxLives;
}

4.	 Now it compiles just fine.

What just happened?
It would be nice if the compiler just said You're missing a closing parenthesis here, but
remember the mantra: The computer is just doing exactly what you told it to do. You're trying to
typecast to UTGame, but without the parenthesis you've told the code to try to call a function.

As with brackets, when working with parentheses it's best to write both of them at the same
time, and then fill them in afterward. This can be especially important when working with
complicated math equations.

Sometimes the errors are easy to figure out, as we'll see in our next experiment.

Time for action – Captain obvious to the rescue!
Sometimes we'll get lucky and the compiler error message will trigger an Oh, durhey
moment the second we see it.

1.	 Let's rewrite PostBeginPlay function again:

simulated function PostBeginPlay()
{
 MyInt = class'UTGame'.default.CountDown
}

Debugging and Optimization

[382]

2.	 Now let's try to compile.

[0003.91] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(9) : Error, Missing ';' before '}'

3.	 Oh, duh, we forgot the semicolon at the end of the line.

simulated function PostBeginPlay()
{
 MyInt = class'UTGame'.default.CountDown;
}

4.	 Now it compiles!

What just happened?
Sometimes compiler errors are really self explanatory. Let's take a look at another one.

Time for action – Setting up a twofer
Another obvious error, with a twist!

1.	 Let's rewrite our PostBeginPlay function:

simulated function PostBeginPlay()
{
 var int AnotherInt;

 AnotherInt = class'UTGame'.default.CountDown;
}

2.	 Looks fine this time, we have our brackets, parentheses, and semicolons in place.
What could go wrong?

[0003.93] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(8) : Error, Instance variables are only
allowed at class scope (use 'local'?)

3.	 Oh, right. Inside functions we're only allowed to use local variables. Let's fix that real
quick:

simulated function PostBeginPlay()
{
 local int AnotherInt;

 AnotherInt = class'UTGame'.default.CountDown;
}

Chapter 9

[383]

4.	 Now it should work, so let's compile it:

[0004.08] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(10) : Warning, 'AnotherInt' : unused local
variable

5.	 Well this is new, a warning this time instead of an error! Unused local variable.
We're assigning a value to it, but we're never actually using it anywhere. Warnings
aren't game breaking and they won't prevent the code from compiling, they're
more helpful hints. In this case it's saying hey, if you're not doing anything with
this variable do you really need it at all? We can delete it and the line assigning it a
value, but instead let's just use it in a log:

simulated function PostBeginPlay()
{
 local int AnotherInt;

 AnotherInt = class'UTGame'.default.CountDown;
 `log("AnotherInt is:" @ AnotherInt);
}

6.	 This time it compiles fine, no errors, and no warnings.

What just happened?
 Missing semicolons is another easy error to fix. You also have to watch out for extra
semicolons. Take a look at the following code:

var int MyInt;

simulated function PostBeginPlay()
{
 if(MyInt < 5);
 MyInt = class'UTGame'.default.CountDown;

 `log("MyInt is:" @ MyInt);
}

defaultproperties
{
 MyInt=13
}

It seems like it should be logging 13 since MyInt is greater than 5 and the assignment inside
the if statement shouldn't execute, but running it gives us this:

[0009.32] ScriptLog: MyInt is: 4

Debugging and Optimization

[384]

The default value for CountDown in UTGame is 4, so that part is being executed. But why?
The problem is in our if statement:

 if(MyInt < 5);

The semicolon at the end completes the if statement, essentially making it do nothing. The
code treats the next line as separate from the if statement, so it will always execute with
this code. Written correctly it should look like this:

 if(MyInt < 5)
 MyInt = class'UTGame'.default.CountDown;

Next we'll take a look at some things that can go wrong when working with functions.

Time for action – Mal-function
First, we'll take a look at what can go wrong in function declarations.

1.	 Let's add a new function to our class:

simulated function HitWall()
{
}

2.	 Compile the code and we'll get this error:

[0003.93] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(4) : Error, Redefinition of 'function
HitWall' differs from original; different number of parameters

3.	 If we look at Actor.uc we can see the original declaration of this function:

event HitWall(vector HitNormal, actor Wall, PrimitiveComponent
WallComp)

4.	 When overriding a function, you must use the same parameters as the original. You
can change the names if you want, for instance this would work:

simulated function HitWall(vector Norm, actor HitActor,
PrimitiveComponent Prim)
{
}

The number and type of parameters must stay the same though.

This type of error usually results from misreading the parameters when overriding a
function, or accidentally making up a function that already exists in a superclass.

Chapter 9

[385]

5.	 The same thing can happen with return values. Let's rewrite our HitWall function
to look like this:

simulated function bool HitWall(vector Norm, actor HitActor,
PrimitiveComponent Prim)
{
}

6.	 Compile the code and we'll get this error:

[0003.84] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(4) : Error, Redefinition of 'function
HitWall' differs from original: return value mismatch

This is most commonly caused by not including the return value when you write
your function.

7.	 Along the same lines, we can accidentally leave out the return value for a function.
Let's delete HitWall and add this made up function:

function bool AmIAwesome()
{
 return;
}

8.	 If we try to compile the preceding code we'll get this error:

[0003.82] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Bad or missing expression in
'Return'

When working with functions that have a return value, always make
sure you're returning the right type of variable.

9.	 Let's change the function to look like this:

function bool AmIAwesome()
{
 return 5;
}

10.	Trying to compile this code would give us a different error stemming from the same
problem of the wrong type of return value:

[0003.84] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Type mismatch in 'Return'

Debugging and Optimization

[386]

What just happened?
These types of errors are pretty obvious, and easy to fix. Just make sure to take careful note
of any parameters and the return type of functions you're using.

We also need to be careful when we're calling other functions, to make sure that we're
passing the correct number and type of variables. If we had this code:

simulated function PostBeginPlay()
{
 TakeDamage(5.0);
}

we would get this error when we compiled:

[0003.89] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Call to 'TakeDamage': missing or
bad parameter 2

Taking a look at the original declaration of TakeDamage in Actor, we can see the correct
number and type of variables that we need to pass to this function:

event TakeDamage(int DamageAmount, Controller EventInstigator, vector
HitLocation, vector Momentum, class<DamageType> DamageType, optional
TraceHitInfo HitInfo, optional Actor DamageCauser)

The last two are optional, but the first five need to be included in our call to this function.

There are a few other errors that we need to watch out for when dealing with functions.

Time for action – Taking care of other function errors.
Let's take a look at some more function errors:

1.	 Say we had the following code:

simulated function PostBeginPlay()
{
 `log("PostBeginPlay!");
}

simulated function PostBeginPlay()
{
 local int SomeInt;
 SomeInt = 5;
 `log("SomeInt is:" @ SomeInt);
}

Chapter 9

[387]

2.	 The code seems fine, but if we compile it we get:

[0003.86] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(9) : Error, 'PostBeginPlay' conflicts with
'Function BrokenGame.BrokenActor:PostBeginPlay'

3.	 This one's easy to avoid. Classes can only have one function with any one name;
trying to have more than one with the same name will give us an error.

4.	 This next one's a bit obscure, since static functions aren't used that much.
Suppose we had this code:

static function float GetRadius()
{
 local float Radius, Height;

 GetBoundingCylinder(Radius, Height);
 return Radius;
}

5.	 Trying to compile that would give us this error:

[0003.87] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(7) : Error, Can't call instance functions
from within static functions

What just happened?
Remembering that static functions are called on the class without the need for the actor
to exist in the world, it makes sense that we wouldn't be able to call normal functions in
them. Static functions are only able to call other static functions, but normal functions can
call static functions.

Now let's take a look at some errors that can result when typecasting Actor variables.

Time for action – Actor variable errors
Errors of this type are common when you're getting used to UnrealScript. Knowing when and
how to use typecasting and dealing with Actor variables takes some time to get used to. Let's
see some of the errors we can come across when doing this:

1.	 Let's say this Actor killed anyone who touched it while holding a weapon. We might
have a function that looked something like this:

event Bump(Actor Other, PrimitiveComponent OtherComp, Vector
HitNormal)
{

Debugging and Optimization

[388]

 if(Other.Weapon != none)
 Other.Suicide();
}

2.	 Compiling this code gives us an error:

[0003.90] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Unrecognized member 'Weapon' in
class 'Actor'

3.	 What's causing this error? If we search Actor.uc we won't find a Weapon variable;
what we meant to do is check if the actor bumping us is a Pawn, and check if that
Pawn has a weapon. Let's rewrite the function a bit:

event Bump(Actor Other, PrimitiveComponent OtherComp, Vector
HitNormal)
{
 if(Pawn(Other) != none && Pawn(Other).Weapon != none)
 Other.Suicide();
}

Now we're checking if Other is Pawn and if it is, if it has Weapon.

4.	 If we try to compile now we'll receive another error message:

[0003.87] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(7) : Error, Unrecognized member 'Suicide'
in class 'Actor'

5.	 We're running into the same problem here, Actor doesn't have a function called
Suicide, but Pawn does. Let's change the function again:

event Bump(Actor Other, PrimitiveComponent OtherComp, Vector
HitNormal)
{
 if(Pawn(Other) != none && Pawn(Other).Weapon != none)
 Pawn(Other).Suicide();
}

6.	 Compiling this time works fine.

7.	 Of course, the opposite problem is also true. Let's take a look at this function:

function KilledBy(Pawn EventInstigator)
{
 if(Pawn(EventInstigator) != none)
 Pawn(EventInstigator).Suicide();
}

Chapter 9

[389]

8.	 If we compile that, we get this error:

[0003.88] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Cast from 'Pawn' to 'Pawn' is
unnecessary

9.	 We don't need to typecast if the variable is already the type of variable we need. If
we rewrote it like this:

function KilledBy(Pawn EventInstigator)
{
 if(Actor(EventInstigator) != none)
 Actor(EventInstigator).Suicide();
}

We would get the same error:

[0003.89] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Cast from 'Pawn' to 'Actor' is
unnecessary

10.	The correct way to write this particular function would be:

function KilledBy(Pawn EventInstigator)
{
 if(EventInstigator != none)
 EventInstigator.Suicide();
}

What just happened?
Typecasting is only necessary when you need to access variables and functions of a subclass
of an Actor variable, otherwise you already have access to them because of inheritance, so
typecasting is unnecessary.

Another thing to look out for when typecasting is that the class you're casting to is a subclass
of the one you have. If it's somewhere else in the class tree you'll get another error. Let's
look at this code:,

function KilledBy(Pawn EventInstigator)
{
 if(UTGame(EventInstigator) != none)
 EventInstigator.Suicide();
}

Debugging and Optimization

[390]

Since UTGame is not a subclass of Pawn, and is nowhere near it on the class tree, we'll get
this error when we compile:

[0003.84] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(6) : Error, Cast from 'Pawn' to 'UTGame' will
always fail

What this is telling us is that since the class we're trying to cast to isn't a subclass of Pawn,
the cast will always return none.

Time for action – Other variable errors
There are a few more errors we need to take a look at before we move on. These ones have
to do with the declaration and use of variables.

1.	 Let's take a look at this PostBeginPlay function:

simulated function PostBeginPlay()
{
 local int Int1, Int2;

 Int1 = 3;
 Int2 = 5;
 Int1 + Int2;
}

2.	 If we try to compile that, we'll get this error message:

[0003.77] Error: R:\UDK\UDK-AwesomeGame\Development\Src\
BrokenGame\Classes\BrokenActor.uc(11) : Error, ';': Expression has
no effect

3.	 The source of that error is in this line:

 Int1 + Int2;

We're not assigning the result of that to any variable, and we're not using it as a
comparison or anything like that. If we wrote it like the following we wouldn't get
the error:

Int1 = Int1 + Int2;

Not something you'd come across often, but it's good to know what the error
message means.

Chapter 9

[391]

4.	 You would also get the same error message if a function parameter had the same
name as another function, and you tried calling that function as in the following code:

function bool UsedBy(Pawn Bump)
{
 Bump(none, none, vect(0,0,0));
}

In this case we're naming the parameter Bump, which is the same name as a
function that already exists for Actor classes. When we try calling Bump the function,
it thinks we're trying to typecast the variable, giving us an error.

5.	 Variable declarations themselves are pretty simple as long as we remember when
to use var and when to use local. There is one special case that you may come
across. If we wanted to make an array of class variables, we would want to write it
like the following:

var array<class<Projectile>> ProjectileClasses;

This is different than having an array of actual Projectile actors, here we're just
specifying class names.

6.	 If we compiled that code, we would get this error:

[0003.87] Log: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(4) : Error, Missing '>' in 'class limitor'

7.	 The reason that error comes up is that the compiler thinks that the two greater-than
signs (>>) are bitwise or vector rotating operator. To fix this, we would put a space
in between them:

var array<class<Projectile> > ProjectileClasses;

What just happened?
There aren't many instances where variable declaration and its use would give you compiler
errors, as long as you're careful with the names and typecasting.

This is by no means is an exhaustive list of compiler errors you may encounter when working
with UnrealScript. Most of them will be self-explanatory, and the error will always have a line
number associated with it:

[0003.77] Error: R:\UDK\UDK-AwesomeGame\Development\Src\BrokenGame\
Classes\BrokenActor.uc(11) : Error, ';': Expression has no effect

The number in parentheses tells us what line to look at in the class, in this case 11. Keep in
mind that although the compiler encountered the error on that line, the actual error may
not be on that line. Missing brackets or parentheses often cause the compiler to give a line
number that is after the actual error.

Debugging and Optimization

[392]

Just remember, when you get a compiler error, don't panic! Read what the compiler is
telling you, and carefully examine your code. Most compiler errors are very simple to fix.
Are you trying to use a variable or function that hasn't been declared or doesn't exist for the
class you're working in? Are all your brackets, parentheses, and semicolons in place? With
experience you will quickly be able to find and fix any errors that the compiler is giving you.

Debugging
Just because code compiles, however, doesn't mean it's going to work. There are a lot
of things that can go wrong that the compiler won't complain about, but will break your
game nonetheless. In this section of the chapter,we're going to talk about some debugging
techniques you can use to figure out why the code isn't doing what you want it to do. We'll also
keep an eye on the log to catch and fix any errors that happen while the game is running.

Accessed none
By far the most common problem you will run into while debugging your code is the
Accessed None. It is also the easiest to avoid, as long as you make no assumptions about
Actor variables in your code. Let's take a look.

Time for action – Dealing with Accessed None
To test this we need to purposely create an Accessed None, so let's do that now. We'll add a
PostBeginPlay function to our BrokenActor.

1.	 Let's say we wanted to know the speed of a Projectile. We could add a variable and
write a function like this in our PostBeginPlay:

var Projectile MyProjectile;

simulated function PostBeginPlay()
{
 local float ProjectileSpeed;

 ProjectileSpeed = MyProjectile.Speed;
 `log("ProjectileSpeed:" @ ProjectileSpeed);
}

2.	 Compile the code and run the game.

Chapter 9

[393]

3.	 Exit the game and check the log:

[0004.99] ScriptWarning: Accessed None 'P'
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:PostBeginPlay:004F
[0004.99] ScriptLog: ProjectileSpeed: 0.0000

4.	 We're getting an Accessed None warning and the speed is logging as 0. That doesn't
seem right, especially when the default for the Projectile class is 2000. Let's add
another log to see what's going on:

var Projectile MyProjectile;

simulated function PostBeginPlay()
{
 local float ProjectileSpeed;

 `log("Projectile:" @ P);
 ProjectileSpeed = P.Speed;
 `log("ProjectileSpeed:" @ ProjectileSpeed);
}

5.	 Compile the code and run the game.

6.	 Exit the game and check the log again:

[0005.03] ScriptLog: Projectile: None
[0005.03] ScriptWarning: Accessed None 'P'
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:PostBeginPlay:004F
[0005.03] ScriptLog: ProjectileSpeed: 0.0000

What just happened?
Accessed None warnings happen when you try to access variables or functions in an Actor
variable that isn't referencing an actor, in other words:

SomeActorVariable = none

This could happen if you never assign a reference to an Actor variable, as happened here.
We declared a variable of the type Projectile, but we never assigned it a value. By default
Actor variables are None, so we're trying to access a variable in an actor that doesn't exist,
which gives us the error.

Let's see if we can fix this by assigning a value to it.

Debugging and Optimization

[394]

Time for action – Fixing an Accessed None
Our Projectile variable doesn't have anything assigned to it, so let's try to fix that. We'll use
the foreach iterator to find one and assign it to our MyProjectile variable.

1.	 Let's add the lines to our PostBeginPlay function:

var Projectile MyProjectile;

simulated function PostBeginPlay()
{
 local float ProjectileSpeed;

 foreach DynamicActors(class'Projectile', MyProjectile)
 break;

 `log("Projectile:" @ MyProjectile);
 ProjectileSpeed = MyProjectile.Speed;
 `log("ProjectileSpeed:" @ ProjectileSpeed);
}

2.	 Now the code will search for a Projectile and assign it to our MyProjectile
variable.

3.	 Compile the code and run the game.

4.	 Exit the game and take a look at the log:

[0005.14] ScriptLog: Projectile: None
[0005.14] ScriptWarning: Accessed None 'MyProjectile'
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:PostBeginPlay:004F
[0005.14] ScriptLog: ProjectileSpeed: 0.0000

5.	 Well that didn't work, and if we think about it it's obvious why. PostBeginPlay is
run as soon as the game starts, so there aren't going to be any Projectile actors on
the map.

6.	 In addition to the warning, when we try to access any variables or functions, we can
also get another error if we try to assign any values to variables in a non-existent
actor. If we changed our function to this, for instance:

var Projectile MyProjectile;

simulated function PostBeginPlay()
{
 foreach DynamicActors(class'Projectile', MyProjectile)

Chapter 9

[395]

 break;

 MyProjectile.Speed = 1000.0;
}

7.	 Instead of just accessing the Speed variable, we're trying to assign a value here.
Let's compile the code and run the game.

8.	 Exit the game and take a look at the log:

[0005.15] ScriptWarning: Accessed None 'MyProjectile'
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:PostBeginPlay:0029
[0005.16] ScriptWarning: Attempt to assign variable through None
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:PostBeginPlay:003D

9.	 That second line is new, and is caused by the following line:

 MyProjectile.Speed = 1000.0;

The game is letting us know that we're trying to assign a value to a variable in an
actor that doesn't exist.

10.	These warnings are helpful, but how do we avoid Accessed None warnings? Let's
use a conditional statement to check if our actor variable has anything assigned to it
before we try to use it:

var Projectile MyProjectile;

simulated function PostBeginPlay()
{
 foreach DynamicActors(class'Projectile', MyProjectile)
 break;

 if(MyProjectile != none)
 MyProjectile.Speed = 1000.0;
 else
 `log("MyProjectile == none, not doing anything.");
}

11.	Compile the code and run the game.

12.	Exit and take a look at the log:

[0005.06] ScriptLog: MyProjectile == none, not doing anything.

Debugging and Optimization

[396]

What just happened?
Using conditional statements to check if an actor has a variable will prevent you from getting
an Accessed None warning, and can help you do different actions based on whether or not
it has a value. For instance, if we wanted to have the player do a different action based on
whether they were holding a weapon or not, we might use the StartFire function in our
PlayerController like this:

exec function StartFire(optional byte FireModeNum)
{
 if(Pawn.Weapon != none)
 FireWeapon();
 else
 DoSomeOtherAction();
}

The important thing is, before you try to access any variables or functions in an actor,
ALWAYS check to see if it exists before you do. This also applies to function parameters, as
we'll see next.

Time for action – Accessed None in function parameters
Even when we're using functions, we have to be careful about Accessed None warnings. Just
because a function is passing an actor in doesn't mean it's a valid reference.

1.	 Let's remove our MyProjectile variable and rewrite the PostBeginPlay function:

simulated function PostBeginPlay()
{
 AdjustProjectile(none);
}

2.	 Now let's write the custom AdjustProjectile function:

function AdjustProjectile(Projectile MyProj)
{
 `log("MyProj:" @ MyProj);
 MyProj.Speed = 1000.0;
}

3.	 Compile the code and run the game.

4.	 Exit and take a look at the log. We're getting the same warnings as before:

[0005.09] ScriptWarning: Accessed None 'MyProj'
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:AdjustProjectile:0024

Chapter 9

[397]

[0005.09] ScriptWarning: Attempt to assign variable through None
	 BrokenActor BrokenMap.TheWorld:PersistentLevel.BrokenActor_0
	 Function BrokenGame.BrokenActor:AdjustProjectile:0038

What just happened?
In PostBeginPlay we're calling AdjustProjectile with none. It may not seem logical
but it's perfectly valid. To see how something like this could happen with actual code, let's
take a look at the Died function in Pawn:

function bool Died(Controller Killer, class<DamageType> DamageType,
vector HitLocation)

Useful information is used in the preceding function, like Killer. That variable is passed
along to the GameInfo so it can give our killer a score for killing us, among other things. But
what if there was no Killer? It can happen sometimes, for instance when we change teams
our Pawn is killed, but no one was the Killer:

function PlayerChangedTeam()
{
	 Died(None, class'DamageType', Location);
}

When writing and using variables, even as function parameters, we have to write our code
knowing that they might not always have a value. ALWAYS check that your actor variables are
not None before trying to use them.

Using the log
More than anything else, the log is your main tool to figure out why your code isn't working.
Using it to log values of variables, or at the beginning of functions to let you know they're
being called, even just throwing one in PostBeginPlay to make sure your actor classes are
being used at all, the log is an incredibly useful debugging tool. Let's take a look at a problem
and see if we can figure out what's going wrong using the log.

Time for action – Setting up a scenario
Before we start debugging, we need something that's broken that we can use to test our
skills. The first thing we need to do is get our own PlayerController class working.

1.	 Remembering that our PlayerController class is specified in the GameInfo,
that is where we need to start. Let's add a new file to our Development\Src\
BrokenGame\Classes folder called BrokenGame.uc.

Debugging and Optimization

[398]

2.	 Write the following code into BrokenGame.uc:

class BrokenGame extends UTDeathmatch;

defaultproperties
{
 PlayerControllerClass=class'BrokenGame.BrokenPlayerController'
 bDelayedStart=false
 bUseClassicHUD=true
}

3.	 Now we need to create the BrokenPlayerController class. Start by
creating a new file in Development\Src\BrokenGame\Classes called
BrokenPlayerController.uc.

4.	 Write the following code in BrokenPlayerController.uc:

class BrokenPlayerController extends UTPlayerController;

defaultproperties
{
}

5.	 Now we're going to change BrokenActor a bit. We'll borrow some code from the
AwesomeEnemy class to turn it into a kind of pet that will follow us around. Open
BrokenActor.uc and type the following code into it:

class BrokenActor extends Actor
 placeable;

var Pawn Master;
var float MovementSpeed;
var float StopDistance;

simulated function PostBeginPlay()
{
 foreach DynamicActors(class'Pawn', Master)
 break;
}

auto state Following
{
 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

Chapter 9

[399]

 if(Master != none && VSize(Location - Master.Location) >
StopDistance)
 {
 NewLocation = Location;
 NewLocation += normal(Master.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }
}

defaultproperties
{
 MovementSpeed=256.0
 StopDistance=128.0
 bBlockActors=true
 bCollideActors=true

 Begin Object Class=DynamicLightEnvironmentComponent
Name=MyLightEnvironment
 bEnabled=true
 End Object
 Components.Add(MyLightEnvironment)

 Begin Object Class=StaticMeshComponent Name=PetMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_Y'
 LightEnvironment=MyLightEnvironment
 Scale3D=(X=0.125,Y=0.125,Z=0.25)
 End Object
 Components.Add(PetMesh)

 Begin Object Class=CylinderComponent Name=CollisionCylinder
 CollisionRadius=32.0
 CollisionHeight=64.0
 BlockNonZeroExtent=true
 BlockZeroExtent=true
 BlockActors=true
 CollideActors=true
 End Object
 CollisionComponent=CollisionCylinder
 Components.Add(CollisionCylinder)
}

Debugging and Optimization

[400]

6.	 Compile the code.

7.	 Before we test the code, let's open BrokenMap in the editor and make sure a
BrokenActor is still placed somewhere near the player start. Once that's done save
the map and close the editor.

8.	 For the final step, we have to change our batch file to use our BrokenGame so our
BrokenPlayerController will be used. Change Broken Map.bat to this:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe BrokenMap?GoalScore=
0?TimeLimit=0?Game=BrokenGame.BrokenGame -log

9.	 Save and close the batch file.

10.	Run the game with the changed batch file.

What just happened?
Our pet doesn't seem to be following us. What's going on? Let's see if we can use the log to
find out why it's not working and fix the problem.

Time for action – Debugging using the log
The first question we need to ask is: are our classes being used in the first place? Let's put a
few logs in to find out.

1.	 We'll start with BrokenActor. Even though we see it in the map when we run the
game, we shouldn't make any assumptions about what's going on. We'll add a log in
PostBeginPlay:

simulated function PostBeginPlay()
{
 `log("BrokenActor PostBeginPlay!");

 foreach DynamicActors(class'Pawn', Master)
 break;
}

2.	 We'll also add one in BrokenGame:

function PostBeginPlay()
{
 `log("BrokenGame PostBeginPlay!");
}

Chapter 9

[401]

3.	 And finally one in BrokenPlayerController:

simulated function PostBeginPlay()
{
 `log("BrokenPlayerController PostBeginPlay!");
}

4.	 Compile the code and run the game.

5.	 Exit and take a look at the log. We'll see that all three actors are logging their
PostBeginPlay functions:

[0005.44] ScriptLog: BrokenActor PostBeginPlay!
[0005.44] ScriptLog: BrokenGame PostBeginPlay!
[0005.44] Log: Bringing up level for play took: 0.032277
[0005.44] ScriptLog: BrokenPlayerController PostBeginPlay!

5.	 Now that we know our actors are indeed being used, we need to debug further.
We know the movement code for our BrokenActor takes place in its Following
state's Tick function, so let's add some logs there:

 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

 `log("BrokenActor Tick!");

 if(Master != none && VSize(Location - Master.Location) >
StopDistance)
 {
 `log("BrokenActor Calculating new location!");
 NewLocation = Location;
 NewLocation += normal(Master.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }

6.	 Let's compile the code and see what happens when we run the game.

7.	 Exit the game and take a look at the log:

[0005.88] ScriptLog: BrokenActor Tick!
[0005.92] ScriptLog: BrokenActor Tick!
[0005.94] ScriptLog: BrokenActor Tick!
[0005.95] ScriptLog: BrokenActor Tick!

Debugging and Optimization

[402]

8.	 The code doesn't seem to be getting into our if statement. Let's see if we can figure
out why. Let's log the conditions to see which one is failing. We'll start with Master:

 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

 `log(Master);

 if(Master != none && VSize(Location - Master.Location) >
StopDistance)
 {
 `log("BrokenActor Calculating new location!");
 NewLocation = Location;
 NewLocation += normal(Master.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }

9.	 Compile the code and run the game.

10.	Exit and take a look at the log:

[0005.68] ScriptLog: None
[0005.73] ScriptLog: None
[0005.75] ScriptLog: None

11.	Well that would explain it. Master is never getting set. Let's see why. If we take a
look a bit earlier in the log we'll see our PostBeginPlays:

[0005.35] ScriptLog: BrokenActor PostBeginPlay!
[0005.35] ScriptLog: BrokenGame PostBeginPlay!
[0005.36] Log: Bringing up level for play took: 0.035747
[0005.36] ScriptLog: BrokenPlayerController PostBeginPlay!

12.	 It looks like the BrokenActor is being initialized first, so we're not going to be able
to get our Master there. Let's try checking it in Tick and assigning it if it doesn't
exist. First we'll rename PostBeginPlay to GetMaster:

function GetMaster()
{
 `log("BrokenActor GetMaster!");

 foreach DynamicActors(class'Pawn', Master)
 break;
}

Chapter 9

[403]

13.	Now we'll add the function call in Tick:

 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

 if(Master == none)
 GetMaster();

 if(Master != none && VSize(Master.Location - Location) >
StopDistance)
 {
 `log("BrokenActor Calculating new location!");
 NewLocation = Location;
 NewLocation += normal(Master.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }

14.	Now let's compile the code and check if it works.

15.	Run the game and we'll see that the BrokenActor is now following us around! And
if we check the log we'll see we're finally getting into the if statement:

[0007.66] ScriptLog: BrokenActor Calculating new location!
[0007.67] ScriptLog: BrokenActor Calculating new location!
[0007.69] ScriptLog: BrokenActor Calculating new location!

16.	Close the game and remove all of the log lines from our classes.

What just happened?
This was a simple example of debugging, but we can see how using the log can help us figure
out where our code is going wrong and give us clues to what we need to do to fix it. Knowing
how we think the code should act, we can put logs in places where it's breaking and follow
the chain of events written to the log file. This helps us narrow it down to the specific line,
function, or variable that's causing the issue.

Sometimes we'll want to debug a class that has several instances running at the same time.
With all of them logging it can be difficult to figure out what's going on. Ideally we would
only want one of the Actors in the level, but if that's not feasible there are ways around it.
One method we can use to filter down the log is to use the Actor's name variable in an if
statement. That way only one of the Actors will write to the log. If the Actors are placed in
the level, selecting one will show the Actor's name at the bottom of the editor:

Debugging and Optimization

[404]

We can use that in an if statement like this:

if(Name == 'BrokenActor_0')
 `log(Master);

This also works for Actors that are spawned during gameplay. The first instance will start
with 0 as its suffix, and increase by 1 with every instance spawned, so BrokenActor_0,
BrokenActor_1, BrokenActor_2, and so on. This would be helpful if we were trying to debug
the AwesomeEnemy class from the previous chapters, for instance.

Next we're going to discuss a few ways we can optimize our code for performance, and a few
things to avoid when writing code to keep it running fast.

Optimization
We've gotten through the compiler errors. We've fixed all of the Accessed None warnings.
We've used the log to debug our broken code. What else can go wrong? Well, if we're using
inefficient code we can start to take hits to our game's frame rate as well. There are a few
things we need to avoid doing, as well as a few tools to help us keep our code running
quickly. The most important of these is the profiler.

The profiler
Something we might not think about when we start programming is how fast our code is
running, and which classes or functions are taking the most time to run. So how do we find
out? This is where the profiler comes in handy. It can give us an organized view of exactly
where UnrealScript is spending its time. Let's take a look at it.

Time for action – Using the profiler
To use the profiler we don't need to do anything in UnrealScript itself; we'll use a built-in
function of the Unreal engine for it.

1.	 Double-click on the batch file to run BrokenMap.

2.	 Hit the tilde key (~) to bring up the console.

Chapter 9

[405]

3.	 Type profilegame start into the console and hit Enter. We'll see this message
on screen:

PROFILING WITH AI LOGGING ON!

As well as this message in the log:

[0009.46] Log: GameplayProfiler STARTING capture.

4.	 Run around for a little bit to give the profiler time to collect information. Around ten
seconds is good.

5.	 When you're ready, hit tilde (~) to bring up the console again, and type
profilegame stop and hit Enter. The message on screen will go away and we'll
see this message in the log:

[0036.62] Log: GameplayProfiler STOPPING capture.

6.	 Exit the game.

7.	 If we look in the UDKGame folder, we'll see a new folder has appeared called
Profiling. If we look in that folder, we'll see a file with the time that we ran the
profiler in its file name: UDK-2011.09.22-14.46.15.gprof

8.	 To open this file, go into the UDK-AwesomeGame\Binaries folder and run
GameplayProfiler.exe. We'll see the program start up looking like this:

Debugging and Optimization

[406]

9.	 Press Open File, and navigate to the UDKGame\Profiling folder and select the
.gprof file:

10.	The top panel of the profiler shows us the frame by frame performance of our
game. If there are any spikes you know that those are the areas to focus on. Clicking
anywhere on this graph will set the profiler to that frame. If your graph extends out
that far, click somewhere near 200 so we can take a look at the performance a little
bit into the game.

11.	The bottom-left panel of the profiler will show us the time taken for scripts to run,
broken down by actor. If we expand our BrokenActor we can see the performance
of it:

Chapter 9

[407]

12.	For our BrokenActor, calculating the dynamic lighting on it is taking the most time,
followed by our Tick function with the movement calculations. Overall not a lot of
time. What would we see if we really screwed things up?

13.	Close the profiler for now and open BrokenActor in ConTEXT.

14.	What if we rewrote our Tick function to run the search for Master every time?

 simulated function Tick(float DeltaTime)
 {
 local vector NewLocation;

 foreach AllActors(class'Pawn', Master)
 break;

 if(Master != none && VSize(Location - Master.Location) >
StopDistance)
 {
 NewLocation = Location;
 NewLocation += normal(Master.Location - Location) *
MovementSpeed * DeltaTime;
 SetLocation(NewLocation);
 }
 }

Debugging and Optimization

[408]

15.	 If we compiled that code and ran the game, then recorded with the profiler for a few
seconds, we might see something like this when we took a look at the .gprof file:

16.	We can see that our Script Time has increased. It might seem like a small increase,
but with enough BrokenActors on the map a small increase like this could really
impact performance.

What just happened?
With our relatively simple game the profiler might seem useless. There isn't a whole lot
going on, obviously. But as an example, take a look at a typical profile from a normal UDK
Deathmatch with a few bots running around:

With a profile like this we can see how it can become useful. Spikes like that in the graph
can easily start to impact performance, making the game stutter in places. As you're
developing a game it's a good idea to run the profiler every once in a while even if your
performance seems fine. It will help you catch problems before they start hurting your
game's performance.

Chapter 9

[409]

Clock / UnClock
The profiler is useful for seeing the overall picture of your game's performance, but what if
you just want to know how fast a certain piece of code is executing? You might want to see
if a certain way of writing an iterator is faster than another, for instance, or you might just
want to go further than the profiler and figure out which part of a slow running function
is impacting your game's performance. An easy way to do this is to use the Clock and
UnClock functions defined in Actor.uc.

Time for action – Using Clock and UnClock
Let's run a little test with BrokenActor to see how to use these two functions.

1.	 Open BrokenActor.uc in ConTEXT.

2.	 We'll use PostBeginPlay for this. Let's write it like this:

function PostBeginPlay()
{
 local int i;
 local float StopWatch, Size;
 local vector A, B;

 Clock(StopWatch);

 for(i=0; i<1000; i++)
 {
 A = VRand() * 1000;
 B = VRand() * 1000;
 Size = VSize(A - B);
 }

 UnClock(StopWatch);
 `log("Time taken to execute:" @ StopWatch);
}

3.	 What we're doing here is running a loop 1000 times. Each time we take two vectors,
A and B, and randomize them. Then we calculate the distance between them with
VSize. We use a float called StopWatch in the Clock and UnClock functions,
then log the value so we can see how long it took to run the loop.

4.	 Compile the code. We'll get a warning about Size, but we'll ignore it for this test.

5.	 Run the game, then exit and take a look at the log:

[0005.32] ScriptLog: Time taken to execute: 0.6553

Debugging and Optimization

[410]

What just happened?
The value used by Clock and UnClock is given in milliseconds, so running that loop took a
little over half a millisecond. It might not seem like a lot of time, but if we remember that for
a game running 60 frames per second, each frame is taking 16.667 milliseconds, it can add
up quick especially if there are a lot of these actors on the map.

Best practices
When creating a game you absolutely must keep performance in mind when writing your
scripts. Even though most of your game's performance will be focused on the art side of
things with polygon counts and texture usage, unoptimized scripts can have a bad effect on
your game. Here are a few things to look out for:

�� Avoid using too much code in Tick:

Since Tick is run every frame, any code inside it must be carefully considered. Avoid
iterators like foreach and other slow functions like Trace unless they're absolutely
necessary. When possible, store the results of a foreach in an array, which can be
iterated through faster. Also consider using a repeating Timer instead of Tick if
your code needs to run often but doesn't necessarily need to run every frame.

�� Let the engine handle it:

Collision, movement, physics... some things are best left to the engine to handle.
Native engine code runs faster than UnrealScript, so when possible use functions
that are already provided, instead of writing your own. For example, it would be
easy to calculate gravity for an actor and set its velocity yourself, but letting the
engine deal with the physics lets you avoid unnecessary performance hits from it.

�� Create and destroy actors only when necessary:

This is doubly important for online games, where replication of new actors takes
up valuable bandwidth. As an example, it would be horribly inefficient to create
a gun that ejected shell casings in the form of actual actors when a particle effect
would suffice.

�� Optimize your variable usage:

In addition to making your code easier to read, keeping variable usage to a minimum
saves memory and calculations. If you're constantly calculating a local variable's
value for use in equations or as an actor reference, consider if it should be moved to
an instance variable for that class. For example, the EyeHeight variable in the Pawn
class is used in a few different functions, but only one function changes its value.

Chapter 9

[411]

�� Optimize your conditional statements:

When writing conditional statements such as if, write them in a way that will exit
the statement as soon as possible. For example, if you wanted to check if a Pawn's
health was less than 25/100 and it had a weapon, which would be the least likely?
For the most part you're always going to have a weapon, so writing it like the
follwoing would exit the if statement sooner:

if(Health < 25 && Weapon != none)
	 DoSomething();

Most of the time your Pawn's Health will be greater than 25, so the if statement
will read the first part of your statement and exit immediately. If it were written the
other way around, most of the time the if statement would check the Weapon, see
that it exists, and then continue to the second part where it would exit. Writing it as
above will save the execution of one of the statements.

The opposite is true when using OR instead of AND. You would want to examine the
most likely thing first.

The exception to this is when you need to write the conditional statement to avoid
Accessed None warnings. Speaking of which...

�� Fix log errors as you find them:

Don't let Accessed None warnings and other errors accumulate in your log. The log
is there to help you, so fix any errors that show up from your code! Also, don't forget
to remove any debugging code you have added. Writing to the log creates a small
but noticeable performance hit, especially when used in a function like Tick.

Pop quiz – Errors and conditions
1.	 What does this compiler error mean?

Error, Unexpected end of file at end of Class

2.	 If this line were giving us an Accessed None, how would we fix it?

if(SomeActor.SomeVariable > 8)

3.	 When writing an AND conditional statement, which check should go first?

Most likely to return true.

Most likely to return false.

Debugging and Optimization

[412]

Summary
We learned a lot in this chapter about debugging and optimizing our code.

Specifically, we covered:

�� Common compiler errors, what they mean, and how to fix them

�� How to avoid Accessed None warnings

�� How to use the log to debug code

�� How to use the Profiler and Clock/UnClock

Now that we've learned about code optimization, we can cover a few other random topics to
finish our course in UnrealScript!

10
Odds and Ends

Random knick knacks

We're pretty much done with our lessons in UnrealScript. By now you should
have enough confidence to start poking around in the scripts on your own to
learn how things work. There are a few other random topics I wanted to discuss
though, ones that didn't really fit with any of the other chapters.

In this chapter we will:

�� Discuss the use of Components in our Actor classes

�� Interact with code outside the UDK (Unreal Development Kit) with DLLBind

�� Discuss other resources for UnrealScript

So with that, let's take a look at Components!

Using Components
Components let us add objects to our Actors through its default properties. We can think of
it like a weapon-upgrade system in a game: You can add a silencer, laser sight, a bigger clip
to a weapon. With an Actor, we could add a static mesh, a directional light, or an ambient
sound using Components. Let's take a look.

Odds and Ends

[414]

Creating Components

Time for action – Adding a Component to an Actor
For these experiments, we'll go back to our AwesomeGame classes, specifically our
AwesomeActor. We'll take a look at how to add and remove Components and how to
manipulate them through our functions.

1.	 We'll need a blank map for our experiments, so open AwesomeTestMap in the
editor and delete all of the Kismet, AwesomeEnemySpawners, the look target, and
the weapon spawner. All that should be left is the ground, the player start, and the
lights.

2.	 Save the map and close the editor.

3.	 Open AwesomeActor.uc in ConTEXT.

4.	 Components are found under Object in the class tree. The one we're most
concerned with for this is ActorComponents, which is the one that will be used
most when working with UnrealScript. We'll start by adding a SpriteComponent to
a new class we'll create, AwesomeComponentActor. SpriteComponents are most
commonly used to give the Actor a physical representation in the editor. First let's
create a new file called AwesomeComponentActor.uc in Development/Src/
AwesomeGame/Classes and write the following code in it:

class AwesomeComponentActor extends Actor;

defaultproperties
{
}

5.	 Let's add a SpriteComponent to the default properties and also make this class
placeable:

class AwesomeComponentActor extends Actor
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=MySprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 End Object
 Components.Add(MySprite)
}

Chapter 10

[415]

6.	 Anything can be used as the Name of the Component, just make sure the name is
the same in the Components.Add() line.

7.	 Compile the code and open up AwesomeTestMap in the editor.

8.	 Select AwesomeComponentActor in the Actor tab of the content browser and place
one in the map. We'll see the sprite on it:

9.	 Save and close the map. If you deleted the batch file to run the game or don't have
one, then create a new file called Awesome Test Map.bat and write the following
in it:

C:\UDK\UDK-AwesomeGame\Binaries\Win32\UDK.exe AwesomeTestMap?GoalS
core=0?TimeLimit=0?Game=AwesomeGame.AwesomeGame -log

10.	Run the game and we'll also see the sprite in game.

11.	Good so far, but we usually don't see the sprites of Actor classes in game. If we take
a look at SpriteComponent's parent class, PrimitiveComponent, then we can
see a few properties we may find useful:

var(Rendering) const bool HiddenGame;
var(Rendering) const bool HiddenEditor;

/** If this is True, this component won't be visible when the view
 actor is the component's owner, directly or indirectly. */
var(Rendering) const bool bOwnerNoSee;

/** If this is True, this component will only be visible when the
 view actor is the component's owner, directly or indirectly. */
var(Rendering) const bool bOnlyOwnerSee;

/** If true, bHidden on the Owner of this component will be
 ignored. */
var(Rendering) const bool bIgnoreOwnerHidden;

Odds and Ends

[416]

12.	These options control when the Component is visible. For this Actor, we want it
to be visible in the editor, but not in game, so let's add that to the Component's
properties:

defaultproperties
{
 Begin Object Class=SpriteComponent Name=MySprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 HiddenGame=true
 End Object
 Components.Add(MySprite)
}

13.	Now when we compile the code, we can see the Component in the editor, but not
in game.

14.	Sprites are nice, but let's see if we can find something more useful. We'll add a
SkeletalMeshComponent to our AwesomeComponentActor. Start by deleting
SpriteComponent.

15.	Now let's add a SkeletalMeshComponent to the default properties:

defaultproperties
{
 Begin Object Class=SkeletalMeshComponent Name=AwesomeMesh
 SkeletalMesh=SkeletalMesh
 'CH_IronGuard_Male.Mesh.SK_CH_IronGuard_MaleA'
 End Object
 Components.Add(AwesomeMesh)
}

16.	Compile the code and open AwesomeTestMap in the editor. We can see the skeletal
mesh, but it's all dark!

Chapter 10

[417]

17.	 In order for our Component to be able to receive light, we also need to add a
DynamicLightEnvironmentComponent. Any subclass of PrimitiveComponent
can have a light environment assigned to its LightEnvironment
variable, but they're mainly only used for StaticMeshComponents and
SkeletalMeshComponents. Sprites and other components don't really need
lighting calculations.

18.	Let's add a DynamicLightEnvironmentComponent to our
AwesomeComponentActor:

Begin Object Class=DynamicLightEnvironmentComponent
 Name=AwesomeLightEnvironment
End Object
Components.Add(AwesomeLightEnvironment)

19.	As we're not changing any of the variables in the light environment declaring one is
as simple as those three lines. However, if for example, we didn't want our mesh to
cast shadows, we could write it like this if we wanted:

Begin Object Class=DynamicLightEnvironmentComponent
 Name=AwesomeLightEnvironment
 bCastShadows=false
End Object
Components.Add(AwesomeLightEnvironment)

20.	Now that we have the light environment, we can assign it in our
SkeletalMeshComponent:

Begin Object Class=SkeletalMeshComponent Name=AwesomeMesh
 SkeletalMesh=SkeletalMesh
 'CH_IronGuard_Male.Mesh.SK_CH_IronGuard_MaleA'
 LightEnvironment=AwesomeLightEnvironment
End Object
Components.Add(AwesomeMesh)

21.	Our AwesomeComponentActor class should look like the following code snippet:

class AwesomeComponentActor extends Actor
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=MySprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 HiddenGame=true
 End Object

Odds and Ends

[418]

 Components.Add(MySprite)

 Begin Object Class=DynamicLightEnvironmentComponent
 Name=AwesomeLightEnvironment
 End Object
 Components.Add(AwesomeLightEnvironment)

 Begin Object Class=SkeletalMeshComponent Name=AwesomeMesh
 SkeletalMesh=SkeletalMesh
 'CH_IronGuard_Male.Mesh.SK_CH_IronGuard_MaleA'
 LightEnvironment=AwesomeLightEnvironment
 End Object
 Components.Add(AwesomeMesh)
}

22.	Compile the code and open AwesomeTestMap in the editor. Now we can see him!

What just happened?
As we can see, Components are primarily used to give our Actors a physical representation. It
could just be a sprite whose only use is to let us know where our Actor is in the editor so we
can select it, or it could be a character or vehicle mesh that's used in game.

Components are inherited from parent classes just as variables and functions are. But what
if we don't want a Component from our parent class? With a function we could just override
it in the subclass and empty it out, but with Components there is a function that we can use
in the default properties to do this. Taking our example SpriteComponent:

defaultproperties
{

Chapter 10

[419]

 Begin Object Class=SpriteComponent Name=MySprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 HiddenGame=true
 End Object
 Components.Add(MySprite)
}

Removing it in a subclass would only require one line in the subclass' default properties:

Components.Remove(MySprite)

This way we have complete control over our Actor's appearance.

Components being inherited can also create a problem that we need to avoid when working
with them. In the previous chapter, we discussed compiler errors, and Components have one
specifically for them. Let's take a look.

Time for action – Component compiler error
The problem happens when we declare a Component that has already been created in our
parent class. To see it we'll create a new class with a Component:

1.	 Create a new file in Development/Src/AwesomeGame/Classes called
AwesomeInfo.uc.

2.	 Open AwesomeInfo.uc in ConTEXT and write the following code in it:

class AwesomeInfo extends Info
 placeable;

defaultproperties
{
 Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 HiddenGame=true
 End Object
 Components.Add(Sprite)
}

3.	 Compile the code and we'll get the following error:

[0004.20] Log: R:\UDK\UDK-AwesomeGame\Development\Src\
 AwesomeGame\Classes\AwesomeInfo.uc(6) : Error, BEGIN OBJECT: The
 component name Sprite is already used (if you want to override
 the component, don't specify a class): Begin Object
 Class=SpriteComponent Name=Sprite

Odds and Ends

[420]

4.	 This error is telling us that the name Sprite is already being used by a Component,
and if we take a look at AwesomeInfo's superclass,(Info), we can see it in the
default properties there:

Begin Object Class=SpriteComponent Name=Sprite
 Sprite=Texture2D'EditorResources.S_Actor'
 HiddenGame=TRUE
 AlwaysLoadOnClient=FALSE
 AlwaysLoadOnServer=FALSE
 End Object
Components.Add(Sprite)

5.	 If we didn't want to override this Component, then we would need to choose a
different name for our own. However, if we did want to override this Component
and change some variables, then we would just need to remove the Class= part
of our Component:

Begin Object Name=MySprite
 Sprite=Texture2D'EditorResources.S_Keypoint'
 HiddenGame=true
End Object
Components.Add(MySprite)

6.	 Compiling that code works, and now we would be able to change the properties of
that Component inherited from our parent class.

What just happened?
This is another case of a scary looking compiler error with a simple solution, it all depends
on whether we wanted to override the Component or not. The only other compiler error
dealing with Components has to do with putting variables in one that don't exist for that
Component class, so when working with them, make sure the variables you're setting in the
Component actually exist.

Interacting with Components
Being able to create Components is essential, but what if we need to change them during
gameplay? To do this, we can create a variable out of the Component and use them in
functions, or access their variables directly. Let's try that out now.

Chapter 10

[421]

Time for action – Components as variables
As our new AwesomeInfo class doesn't have any subclasses, we can mess around with it
without worrying about breaking anything, so let's keep working there.

1.	 First, we're going to put a StaticMeshComponent in the class, similar to what we
did with our AwesomeEnemy class. Let's rewrite our AwesomeInfo class to look like
the following code snippet:

class AwesomeInfo extends Info
 placeable;

defaultproperties
{
 Begin Object Class=StaticMeshComponent Name=MyMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_Y'
 Scale3D=(X=0.25,Y=0.25,Z=0.25)
 End Object
 Components.Add(MyMesh)

 bHidden=false
}

2.	 As we're using an emissive material, we don't need to set a light environment for
the StaticMeshComponent. The Info class has bHidden set to True, we need to
change it so we can see the AwesomeInfo in game.

3.	 Compile the code, and open AwesomeTestMap in the editor.

4.	 If the AwesomeActor is still there, delete it.

5.	 Select AwesomeInfo in the Actor tab of the Content Browser (under Actor | Info)
and place one in the map near the player start. In its properties, make sure Display |
Hidden is unchecked.

6.	 Save the map and close the editor.

7.	 Run the game, and we'll see the AwesomeInfo Actor in the game. Exit the game.

8.	 Now that the AwesomeInfo Actor is there, we need a way to interact with it. We
can do this by declaring a variable of the Component's class. Add this line to the top
of AwesomeInfo under the class declaration:

var StaticMeshComponent MyMeshComponent;

Odds and Ends

[422]

9.	 Next, we'll add a line at the end of our Component declaration in the default
properties:

defaultproperties
{
 Begin Object Class=StaticMeshComponent Name=MyMesh
 StaticMesh=StaticMesh'UN_SimpleMeshes.TexPropCube_Dup'
 Materials(0)=Material'EditorMaterials.WidgetMaterial_Y'
 Scale3D=(X=0.25,Y=0.25,Z=0.25)
 End Object
 Components.Add(MyMesh)
 MyMeshComponent=MyMesh

 bHidden=false
}

10.	Setting the variable such that it lets us interact with the component through script. If
we wanted to make the StaticMeshComponent changeable in the editor, then we
could add the parentheses to the variable declaration like the following code:

var() StaticMeshComponent MyMeshComponent;

This would be useful in, for example, a decorative class that had some UnrealScript
functionality behind it, like to for example, if you wanted to have it explode when shot.
You'd want the level designer to be able to set the static mesh that it used along with other
properties, so you would make the class user editable.

1.	 Now that we have the variable, let's see if we can use it. We'll use some Kismet to
toggle the material that's on it. First, let's declare two variables in our class for the
materials. Add the following line to the top, under the class declaration line:

var Material GreenMat, RedMat;

2.	 Now let's define their default properties:

GreenMat=Material'EditorMaterials.WidgetMaterial_Y'
RedMat=Material'EditorMaterials.WidgetMaterial_X'

3.	 Now for the function that will interact with the Component. We'll use the OnToggle
function so we can use the Toggle Kismet action on our AwesomeInfo Actor:

simulated function OnToggle(SeqAct_Toggle Action)
{
 if(Action.InputLinks[2].bHasImpulse)
 {
 if(MyMeshComponent.GetMaterial(0) == GreenMat)
 MyMeshComponent.SetMaterial(0, RedMat);

Chapter 10

[423]

 else
 MyMeshComponent.SetMaterial(0, GreenMat);
 }
}

In this function, we check if the material on the Component is GreenMat, if it is set
it to RedMat. If it's not, then we know it's RedMat, so set it to GreenMat.

4.	 Compile the code.

5.	 Open AwesomeTestMap in the editor.

6.	 Click on the AwesomeInfo Actor to select it, and then open the Kismet editor.

7.	 Right-click and select New Object Var Using AwesomeInfo_0.

8.	 Right-click above the object variable and select New Action | Toggle | Toggle.

9.	 Connect the Target variable link to the AwesomeInfo_0 object variable.

10.	Close the Kismet editor and select Trigger in the Actor tab of the Content Browser.

11.	Add a Trigger near the AwesomeInfo Actor.

12.	Double-click to open the Trigger's properties, and uncheck Display | Hidden.

13.	With the Trigger still selected, open the Kismet editor.

14.	Right-click to the left of the other two parts of the sequence and hit New Event
Using Trigger_0 | Touch.

15.	With the Trigger event selected, set its Sequence Event | Max Trigger Count to 0.

16.	Connect the Touched output of the Trigger event to the Toggle input of the Toggle
action. The Kismet sequence should look like the following screenshot:

Odds and Ends

[424]

17.	Save the map and close the editor.

18.	Run the game, and every time you run over the trigger the AwesomeInfo Actor will
toggle its material.

What just happened?
This was a simple example of interacting with Components, but with a little experimentation
this could be used for a lot of different purposes. For example, if we had a vehicle that
could be modified with different parts, then we could use the SetStaticMesh or
SetSkeletalMesh functions to change the component appearance.

Have a go hero – Using SetStaticMesh
Using all the knowledge you've gained from the previous chapters, see if you can create an
array of static meshes (choose any you can find in the Content Browser, right-click and select
Copy Full Name to Clipboard to get them for your default properties) and toggle through
them when the player runs over a Trigger. Remember that the static mesh component's scale
is currently set to 0.25, so you may want to change that as well!

Hint – Creating an array of static meshes in the default
properties will make this task easier.

A practical example
We had the hypothetical example of using Components to customize a vehicle, but let's see
if we can come up with something more practical for our AwesomeGame. Sprites and meshes
aren't the only thing we can use as Components, we can also use lights. Let's see if we can
create a toggleable flashlight for our player.

Time for action – Creating a toggleable flashlight
We'll be working in our AwesomePawn class for this, but first, let's set the mood.

1.	 Open AwesomeTestMap in the editor.

2.	 Select all of the lights, and in their properties set Light | Light Component |
Brightness to 0.3.

3.	 Rebuild the map by clicking on the Build All button in the top toolbar.

4.	 Save the map and close the editor.

Chapter 10

[425]

5.	 Open AwesomePawn.uc in ConTEXT.

6.	 We'll need a variable to store our light component, so let's add it:

var SpotLightComponent Flashlight;

7.	 Now let's add the Component to the default properties:

Begin Object Class=SpotLightComponent Name=MyFlashlight
 bEnabled=true
 Radius=1024.000000
 Brightness=1.90000
End Object
Components.Add(MyFlashlight)
Flashlight=MyFlashlight

8.	 Compile the code and run the game. We have a flashlight!

9.	 Now to toggle it. We can use an already existing function for this,
Use(). It's in PlayerController, so we'll have to override it in our
AwesomePlayerController class. If it's already there, then change
it to the following code snippet. If not, then write the following code in
AwesomePlayerController:

exec function Use()
{
 if(AwesomePawn(Pawn) != none)
 AwesomePawn(Pawn).Flashlight.SetEnabled
 (!AwesomePawn(Pawn).Flashlight.bEnabled);
}

10.	Compile the code and run the game. Now when you click on Use (default key is E),
the flashlight will toggle!

Odds and Ends

[426]

What just happened?
Now we can see some of the more practical uses of interacting with Components in our
classes. Components help keep things organized by avoiding creating unnecessary classes
and code. In our flashlight example, the light could be created as a separate Actor that's
attached to our Pawn, but keeping it as a Component keeps things simple.

DLLBind
DLLBind gives us a way to interact with code outside of the UDK. It is not a replacement for
UnrealScript, but lets us extend the functionality if we find we need to. As an example, as
UnrealScript's only interaction with files is through the ini's by way of config variables,
creating a save game system might be complicated or easily hacked. By using DLLBind, we can
send calls to an external file to take care of that. Let's take a look at a simple DLL interaction.

Time for action – Using DLLBind
One thing to note is that currently, DLLBind only works with the 32-bit code. If your ConTEXT
or batch files are set up to run the Win64 folder's UDK.exe, then you need to change it to
run from Win32 for DLLBind to work. You will get a compiler warning about it if you try to
compile with the Win64 UDK.exe.

First up, we need to create the DLL. I've provided one in the files included with the book, but
for reference sake, here is the code inside it:

#include "stdafx.h"
#include <stdio.h>

extern "C"
{
 __declspec(dllexport) void DLLFunction(wchar_t* s)
 {
 MessageBox(0, s, L"DLL has been called!", MB_OK);
 }
}

Basically, we're creating a function called DLLFunction that takes a wchar_t (equivalent of
a string) and pops up an OK box with the string as a message.

1.	 Grab AwesomeDLL.dll from the files included with the book and place the .dll in
the UDK-AwesomeGame\Binaries\Win32\UserCode folder.

Chapter 10

[427]

2.	 Now for the UnrealScript side of things. We're going to use our AwesomeInfo.uc
Actor for this, so let's write it as follows:

class AwesomeInfo extends Info
 placeable
 DLLBind(AwesomeDLL);

dllimport final function DLLFunction(string s);

simulated function PostBeginPlay()
{
 local string s;
 s = "Hi DLL!";
 DLLFunction(s);
}

defaultproperties
{
}

We use DLLBind as a class keyword with the name of the DLL in parentheses. The
DLL function must be declared as dllimport final, and we're passing it a string
called s (the name of the variable is arbitrary).

In PostBeginPlay, we create a local string, assign it a value, and then call our
DLLFunction with it.

3.	 Compile the code. If the compiler gives you any warnings about the DLL, make sure
it is in the right location and the name is the same as in UnrealScript. Furthermore,
make sure you're compiling with the Win32 version of UDK.exe.

4.	 We still have the AwesomeInfo Actor placed in AwesomeTestMap, but open the
editor to make sure it's there. You may get a warning about a missing component
(we've removed them from the default properties), if so just click on OK and save
and close the editor.

5.	 Run the game. We should see a message box pop up as the game starts!

Odds and Ends

[428]

What just happened?
DLLBind is useful when you need some functionality that the UDK doesn't provide on its
own, but as I said before it is not a replacement for UnrealScript. If you come into it thinking
that any core functionality of your game is going to be through DLLBind, then you need to
rethink your approach.

Final Thoughts
No amount of reading books and tutorial is going to explain everything about UnrealScript to
you. The lessons you've learned in this book are enough to get you started, but the best way
to learn more is by experimenting with the code on your own. I really can't stress enough the
importance of reading through the source code. Object, Actor, Controller, and Pawn are the
four most important classes to read through. Reading through these classes, taking a look at
the functions and variables they have that you can use, and seeing how they do things will
help you understand how everything fits together in the UDK world.

Take your time, and be patient. Unless you're coming into UnrealScript with years of
experience in another programming language, don't expect to create an entire game in a
few weeks or even months. Personally, it took me a few years to get to the point where I felt
comfortable programming an entire game using UnrealScript. Start small, creating variations
on the weapons that come with the UDK, or altering the rules of the GameInfo a bit. Don't
set your initial goals so high that they'll be unattainable, you'll only become frustrated.

And finally, have fun! You are making video games after all.

Other Resources
There are resources available on the internet to help you along. Here are the ones that I use:

�� http://udn.epicgames.com/Three/WebHome.html

The Unreal Developer Network is Epic Games' official site for everything related
to developing games with the Unreal Engine and the UDK in particular. There are
resources here for everything from UnrealScript to level design to the material
editor.

�� http://forums.epicgames.com/

The official Epic forums are a great place to get answers to your UDK questions and
show off your work. I post there pretty often, so if your question is answered by
Angel Mapper you know you've come to the right place!

Chapter 10

[429]

�� http://wiki.beyondunreal.com/

Another great resource for UnrealScripters. The information here spans all versions
of the Unreal Engine going back more than 10 years, so make sure the information
you're reading applies to Unreal Engine 3!

�� http://forums.beyondunreal.com/

The Beyond Unreal forums are another great place to post questions and show off
your work.

�� http://www.unrealplayground.com/forums/

My personal favorite hangout. It's not as active as it used to be, but I'm loyal.
UP'ers unite!

I hope you've enjoyed reading this book, and I hope the lessons you've learned here will help
you make some awesome UDK games. I always love to hear from fans, so if you'd like you
can send me an email at rachel@angelmapper.com. I can't wait to see what you create!

Pop quiz – Components and DLLBind
1.	 How are components created?

a.	 As a variable declaration

b.	 As a function declaration

c.	 In the default properties

2.	 How are components interacted with through script?

3.	 What two function modifiers need to be declared in a DLL binding function?

4.	 How awesome are you now?

Summary
We learned a lot in this chapter about components and DLLBind.

Specifically, we covered:

�� How Components are created and how to interact with them through script

�� How to use DLLBind to extend the functionality of the UDK

�� Other resources you can use in your quest to learn UnrealScript

Now that we've learned about UnrealScript, you're ready to start making games. Have fun!

mailto:rachel@angelmapper.com

Pop Quiz Answers

Chapter 1, Project Setup and Test Environments
1 Content. The Content folder contains all of our game's assets, including the levels.

2 BaseEngine.ini. Looking at the top of each ini folder for the line BasedOn will tell
you whether or not the file has a parent.

3 placeable makes it so an Actor class can be placed in a level by the level designer.

Chapter 2, Storing and Manipulating Data
1 An integer can only express whole numbers while a float can use fractions.

2 A vector is a struct composed of three floats, X, Y, and Z, used as a location or direction.

3 Add parentheses after var.
Example: var() float MyEditableFloat;

4 if(!bWater)

 bThirsty = true;

Pop Quiz Answers

[432]

Chapter 3, Understanding the Class Tree
1 False – Actors are created from a class blueprint, but after placing them in the editor

changes we make to them only apply to the ones we change.

2 Subclass

3 True – If the variable isn't the class we cast to or one of its subclasses, then the cast will
return none.

Chapter 4, Making Custom Classes

1 The PlayerController class

2 Bump

3 B – A

Chapter 5, Using Functions
1 static lets us call a function on a class without needing an instance of that class to call it

on.

2 Both of these examples would return a Boolean!

3 To skip over an optional parameter, simply add another comma to the function call's
parameters.

Chapter 6, Using States to Control Behavior
1 State, Non-state, Super

2 GoToState

3 Latent functions

Appendix

[433]

Chapter 7, Working with Kismet
1 Actions, Events, Conditions, and Variables

2 Events do not have input links

3 TriggerEventClass triggers events linked to Actors through the editor

Chapter 8, Creating Multiplayer Games
1 Simulated

2 Reliable and Unreliable

3 Repnotify

Chapter 9, Debugging and Optimization
1 The class is missing a closing curly bracket somewhere: }

2 if(SomeActor != none && SomeActor.SomeVariable > 8)

3 Most likely to return false

Chapter 10, Odds and Ends
1 In the default properties

2 By assigning them to a variable

3 dllimport final

4 Totally awesome!

Index
Symbols
$ operator 82
.ini file 27
^^ operator 81
- operator 73
! operator 79
!= operator 77
@ operator 41, 82
* operator 73
/ operator 73
&& operator 79
% operator 75
+ operator 73
< operator 77
<= operator 78
== operator 76
> operator 77
>= operator 78
|| operator 79
~= operator 78

A
abstract base class

creating 264-271
abstract modifier

about 148
using 148

accessed none
dealing with 392, 393
debugging 392
fixing 394-396

using, in function parameters 396, 397
Activated event 297
Activated function 310
ActivateSpawners function 191, 199, 229
Actor

component, adding to 414-419
actors

used, as local variables 202, 203
versus local variables 202
versus objects 153

Actors, as variables
about 116
experimenting with 116-122

actor variable errors 387-389
Actor variables

casting 124-128
ActorX tool 10
AddAmmo function 145, 186
AdjustProjectile function 396
aForward 171
AltAccel 170
AltAccel value 171
Altitude 47
ALT_Space 47
ALT_Surface 47
ALT_Underground 49
AmmoType class 148
AND operator 79
AnotherWeaponVariable 120
ArmsMesh array 161
arrays

about 50
copying 56

[436]

using 51-53
Artificial Intelligence (AI) 233
aStrafe 171
Attacking state 238, 240, 249, 340
Attack of Schellenberg

about 264
abstract base class, creating 264-271
boss class, creating 271-275
boss class, spawning 271-275
boss version, writing 275-278
rage mode. activating 279-281
subclassing 281

auto keyword 240, 260
AwesomeActor

about 25, 188
adding, to UDK 32, 33
compiling 30
testing 30, 32, 34

AwesomeActor class 40, 139
AwesomeBoss 339
AwesomeBoss.uc 349
AwesomeComponentActor class 414
AwesomeEnemy 340
AwesomeEnemy class

about 235, 247, 253, 421
functions 235

AwesomeEnemySpawner 203
AwesomeEnemySpawner actors 190, 203
AwesomeEnemySpawner class 194, 207, 234,

241
AwesomeEnemySpawners 189, 374
Awesome Game

about 136
best practices 410, 411
design document 136
expanding 154-156, 224-230
fixing 335
player, unbreaking 336, 337
unbreaking 337-341
setting up 24-26

AwesomeGame class 242
AwesomeGun class

MyInt variable, adding 102, 103
AwesomeGun.uc 100
AwesomeHUD class 345
AwesomeHUD event 179
AwesomeInfo class 421

AwesomeMap.udk 36
AwesomePawn class 234, 424
AwesomePlayerController 108, 116, 149, 170,

187
AwesomePlayerController class 425
AwesomeReplicationMap 352
AwesomeTestMap 190
AwesomeWeapon class 138, 149, 184
AwesomeWeapon_RocketLauncher 148
AwesomeWeapon_RocketLauncher class 204
AwesomeWeapon.uc 137
AwesomeWeaponUpgrade 142
AwesomeWeaponUpgrade actors 154
AwesomeWeaponUpgrade class 147, 148

B
bAlwaysRelevant 369
BaseEngine.ini 28
bAttacking variable 340
bAutoActivateOutputLinks 310
bBlockActors 172
bCheeseburger 213
bCollideActors 141
BeginState 252, 254
BeginState functions 340
best practices

Awesome Game 410, 411
bFrozen variable 195
bHasImpulse variable 307, 310
Binaries folder

about 10
ActorX tool 10
FaceFXPlugins tool 10
GFx tool 10
SpeedTreeModeler tool 10

bInvulnerable 173
bIsItRaining 40
bNetDirty 338, 368
bNetInitial 369
bNetOwner 369
bNoCrosshair variable 113
bNotRaining 80
boolean bFlashlightOn variable 332
boolean variables

about 40, 213
using 40-42

[437]

bOwnerNoSee 110
bPlayersOnly variable 312
bReplicateInstigator 369
bReplicateMovement 369
BrokenActor 375
BrokenActor.uc 377
BrokenGame 374
BrokenMap 375
bScoreDeaths 155
bSkipActorPropertyReplication 369
bSpawnBoss 344
Bump function 173
bUpgradeSpawned 291

C
CallTheClient function 355
CallTheServer function 357
CanHasCheeseburger() function 213
CanSpawnEnemy function 228
Caps(string S) function 84
casting

about 124
Actor variables 124
example 129

C++ code 11
CheatManager 218
Clamp function 145
Clamp(int V, int A, int B) function 83
class

about 96
classes, creating equally 96-98
creating 135

class breakdown
about 137
weapon branch, creating 137-145

class modifiers
about 147
abstract 148
config 151
hidecategories 151
hidedropdown 153
native 150
notplaceable 147
placeable 147

ClearAllTimers 223
client batch file 334, 335

client functions
about 351
setting up for 352, 353
using 354, 355

client modifier 217
ClientPlaySound function 351
client-server model

diagrammatic representation 332
client, setting up for network code

client batch file 334, 335
ClientTest 367
ClipX 179
Clock function

using 409
code

breaking 377, 378
comments 37
common operators

about 73
comparisons 76
concatenation 81
logical operators 79
modulo 75
standard arithmetic 73
variable functions 83

comparison operators
!= 77
< 77
<= 78
== 76
> 77
>= 78
~= 78
about 76

compile code 17
compiler errors

about 374
actor variable errors 387-390
brokenness, preparing for 374
class, breaking 376
code, breaking 377-379
function errors 386
mal-function 384, 385
misleading errors 380, 381
new script package 374, 375
twofer, setting up 382
variable errors 390, 391

[438]

complexity, Kismet
building 288
complex kismet sequence 288
Kismet events, using 289

complex kismet sequence 288, 289
Component compiler error 419, 420
Components

about 413
adding, to Actor 414-419
compiler error 419, 420
creating 414-419
interacting with 420-424
managing 414-419
manipulating, through functions 414-419
working, as variables 421-424

concatenation 81
concatenation operators

@ 82
$ 82
using 82, 83

config modifier 151
config variables

about 71
creating 71, 72

Const modifier 216
ConTEXT

about 12
configuring 14-18
downloading 13
installing 13
URL 13

Controller class 208
about 162
expanding 163-168

CurrentCameraLocation variable 166, 196
CurrentCameraRotation 196
CurrentWeaponLevel variable 142, 300, 338
custom functions

calling 191-193
custom GameInfo

creating 104
custom weapon

creating 100-102

D
DamageScaling variable 104

Deathmatch 104, 155
debugging

about 392
accessed none 392
Kismet 291-293
log, used 397-403

declaration 40
DefaultEngine 26
DefaultEngine.ini 27
DefaultGame.ini 29
default properties block

about 67, 70
using 67-69

DeltaTime 167, 207
DesiredCameraLocation 166
Development folder 11
directory structure, UDK. See UDK directory

structure
DLLBind

about 426
using 426-428

DoSomething 207
DoSomethingElse() function 187
DoSomething function 217
do until statement 90
DoWhatever function 2171
DrawColor 179
DrawHUD function 179, 180, 326
DrawText 179
dynamic arrays

about 53
using 53-55

E
EAltitude 49
EatAnApple() function 184
editable configurable variable 72
editable variables

about 70
ceating 70, 71

EMoveDir enum 47
EndAttack function 258
EndInvulnerable function 174
EndState 252-256
EnemiesDefeated 312
EnemiesKilled function 326

[439]

EnemiesLeft function 343
EnemyDied function 193, 223
enemy fleeing

fixing 346-349
EnemyKilled function 312, 343
EnemySpawners array 191, 194
Engine folder 11
enums

about 47
using 48-50

Epic 7
EventInstigator variable 160
event modifier 216
EWFT_Projectile 204
example, casting 129-133
ExampleMap 34
EXCLUSIVE OR operator 81
Exec functions 218
extends Actor 25
external programs

ConTEXT 12
nFringe 23
UnCodeX 19
used, for coding 12
WOTgreal 23

F
FaceFXPlugins tool 10
FClamp(float V, float A, float B) function 83
file 38
FireAmmunition function 204
FireInterval 146
FireModeNum 117
Fleeing state 242, 250, 340
floats

using 45
floats, variable functions

FClamp(float V, float A, float B) 83
FMax(float A, float B) 83
FMin(float A, float B) 83
FRand() 83

flow controls
do until 90
for 87
goto 92
if else 85

return 92
switch 90
while 88

FMax(float A, float B) function 83
FMin(float A, float B) function 83
FollowDistance variable 224
foreach iterator 203, 237, 394
for statement

about 87
using 87

FRand() function 83, 223
FreezeEnemy function 194, 223, 241, 242
Freeze function 195, 235
Frozen state 240, 241
function 184
function calls

replicating 351
function errors 386
function modifiers

about 216
client modifier 217
Const modifier 216
event modifier 216
exec modifier 218
iterator modifier 216
latent modifier 216
Native modifier 216
NoExport modifier 216
reliable modifier 217
server modifier 217
simulated modifier 217
singular modifier 217
static functions 219
unreliable modifier 217

function overriding
about 104
custom GameInfo, creating 104-106
experimenting with 104-113
PlayerController, creating 104-115

function overriding, in state 243-248
function parameters

about 206
using 206-208

functions
about 233
Components, manipulating through 414-419
creating 187

[440]

writing 188-190

G
game

test code, retrieving 263, 264
GameInfo class

about 154, 188, 209
AwesomeGame, expanding 154, 156
Pawn class, customizing 160
TestEnemy class, creating 157-159

GameReplicationInfo class
about 341
creating 341-346

GeneratedEvents array 323
GetAdjustedAimFor 112
GetAxes 170
GetOrders 216
GetPlayerViewPoint function 106, 107, 120, 163,

164, 196, 211
GetRemainingTimeForTimer 223
GetStateName function 257
GetWorldInfo() function 297
GFx tool 10
GivenTo function 104
GivePawn function 351
GoalScore 155
GoToState function 240
goto statement 92

H
hidecategories modifier

about 151
using 152, 153

hidedropdown modifier 153
HUD 147

about 178
using 178-180

I
if else statement

about 85, 243
using 85, 86

ignores keyword 260
using 260, 261

inheritance
about 98
custom weapon, creating 100-102
examining 99
experiments 102, 103

InputLinks array 306
InRangeSpawners array 229
installation

ConTEXT 13
UDK 8
UnCodeX 19, 20

instance variables 196
Instigator variable 369
InStr(string S, string T) function 84
integers

using 43, 44
ints, variable functions

Clamp(int V, int A, int B) 83
Max(int A, int B) 83
Min(int A, int B) 83
Rand(int Max) 83

InvulnerableTime 173
IsInState function 258
iterator modifier 216

J
jump 219
JumpOffPawn() function 185

K
keywords

about 260
using, in states 260

Kismet
about 283
complexity 288
debugging 291-293
expanding 320
Instigator 285
latent action 325
Log action 286
Obj Comment property 286
overview 283
PlayerController 285
PlayerStart 285

[441]

Properties panel 285
SeqAct_Log section 286
Sequence Object section 286
sequences 285
Sequences panel 285
using 284, 285
variables 290
wave size, setting 316-319

Kismet actions
about 295
AwesomeSeqAct_SpawnerActivation action

304
creating 295-298
SeqAct_Destroy action 296
SeqAct_Togg 304
Spawner Activation action 297
variables, using 299-303

Kismet conditions
about 308
using 309, 310

Kismet editor 310
Kismet events

about 311
cleanup job 311
creating 312
Empty output 289
functionality, moving into 313-316
Touched output 289
triggering 313
UnTouched output 289

Kismet handler functions
about 303
inputs, differentiating 306, 307
toggle input 308
using 303-305

Kismet inputs
differentiating 306, 307

Kismet SequenceOp classes 310
Kismet version, Hello World program

creating 285

L
labels

using, in states 261-263
latent action

using, in states 261-263

latent action, Kismet
about 325
creating 325-328

latent modifier 216
Left(string S, int I) function 84
Len(string S) function 84
level’s NetMode

checking 365
local variables

about 196
using 197-201

LocationOffset 60
Locs(string S) function 84
log

scenario, setting up 397-400
used, for debugging 397-403

Log action, Kismet 286
logical operators

^^ 81
! 79
&& 79
|| 79
about 79
AND 79
EXCLUSIVE OR 81
NOT 79
OR 79
using 80, 81

logical statements
writing 81

LogMe function 249

M
make command 23
MakeMeInvisible 132
map

setting up 374
math operator 73
MaxAmmoCount 99
Max(int A, int B) function 83
MAX_LEVEL 143
Mid(string S, int I, optional int J) function 84
Min(int A, int B) function 83
misleading errors 380, 381
modulo operator

% 75

[442]

about 75
using 75, 76

MovementSpeed variable 225
Moving state 259
MyAwesomeActor 119
MyAwesomeActor variable 123, 126
MyFloat parameter 208
MyInt line 198
MyInt variable

adding, to AwesomeGun class 102, 103
MyProj 215
MyProjectile variable 394
MySpawnedEnemy variable 215

N
native modifier 150
Native modifier 216
NetMode 365
NetPriority 368
NetUpdateFrequency 369
network code

testing 333
network code testing

Awesome Game, fixing 335
client, setting up 334
enemy fleeing, fixing 346
GameReplicationInfo class 341
server, setting up 333

newAccel variable 170
NewWeapon 130
NextWaveTime function 326, 343
nFringe 23
NM_Client 365
NM_DedicatedServer 365
NM_ListenServer 365
NM_Standalone 365
NoExport modifier 216
non-state functions

about 248
calling 248, 250

Normal(vector A) function 84
NoState function 247, 248
NotifyChangedWeapon function 130, 164
NOT operator 79
notplaceable modifier 147

O
Obj Comment property 287
OnToggle function 304, 352
OnWhatever functions

using 304
optimization

about 404
clock and unclock functions 409
profiler 404

OR operator 79
out_Location variable 166, 212
out modifier 211
Out node 287
out parameters

about 210
float 210
int 210

out_Rotation variable 166, 212
Owner variable 192

P
parameters

passing, to functions 210
PauseTimer 223
Pawn class

about 172
collisions, detecting 172, 173
customizing 160, 161
TestEnemies move, creating 174-177

Pawn reaction
changing 129, 130

Pawn.uc 185
Pawn.Weapon 120
placeable keyword 122, 234, 263
placeable modifier 147
PlayerController 147

about 218
creating 104-106

PlayerInput 171
PlayerInput actor 337
PlayerMove function 336
PlayerOwner 179
PlayerReplicationInfo 156, 209
Player Spawned event 287, 288
PlayerTick 167

[443]

PlayerWalking state 169, 336
PostBeginPlay 35
PostBeginPlay function 40, 189, 198, 202, 245,

249, 257
PreBeginPlay event 197
ProcessMove function 169, 170, 336
profiler

about 404
using 404-408

ProjectileFire function 204
Projectiles

about 192
modifying 204, 205

project, UDK
AwesomeGame, setting up 24-26
setting up 23

Q
quicky design document, Awesome Game 136

R
Rand(int Max) function 83
ReceiveBotVoiceMessage 351
reliable modifier

about 217
versus, unreliable modifier 351

RemoteRole 338
about 362
examining 363

ReplicatedEvent
about 369
using 370, 371

ReplicatedMove function 337
ReplicateMove 337
replication block

about 366
variable, replicating 367, 368

replication function modifiers
about 351
client functions 351
client function, setting up for 352, 353
client function, using 354, 355
combo breaker 360
map, setting up 358, 359
reliable versus unreliable 351
server function 355

server function, using 356, 357
simulated functions 357
simulated functions, using 359

replication variables
bAlwaysRelevant 369
bNetDirty 368
bNetInitial 369
bNetOwner 369
bReplicateInstigator 369
bReplicateMovement 369
bSkipActorPropertyReplication 369
NetPriority 368
NetUpdateFrequency 369

Repl(string S, string Match, string With, optional
bool bCaseSensitive) function 84

return statement
about 92
using 92

return values
about 212
using 212-214

Right(string S, int I) function 84
Role

about 362
examining 363

ROLE_Authority 362, 364
ROLE_AutonomousProxy 362
ROLE_None 362
ROLE_SimulatedProxy 362
rotators

about 63, 64
using 64-66

rotators, variable functions
RotRand() 84

RotRand() function 84
RPG 184
RunAway function 247, 248, 340, 346, 348

S
Scaleform 178
ScoreObjective function 156, 180, 194, 199
script package

creating 374, 375
Seeking state

about 235, 237, 240, 249
subclassing 259, 260

[444]

SequenceAction tree 325
SequenceObject 154, 295
sequences, Kismet 285
SequenceVariable 295
SeqVarLink struct 299
server batch file 333
server-client relationship 331-333
server functions

about 355
using 356, 357

server modifier 217
server, setting up for network code

server batch file 333, 334
ServerTest 367
SetLocation 60
SetMaterial calls

rewriting 258
SetMaterial function 254
SetSkeletalMesh function 424
SetStaticMesh function

using 424
SetTimer function 132, 222
ShotCost variable 99
simulated functions

about 357
map, setting up 358
using 359

simulated modifier 217
SimulatedProxy 338
singular modifier 217
SomeFloat variable 208
SpawnBoss function 314, 344
SpawnEnemy function 188, 192, 234
Spawn function 209, 215
SpawnLocation 209, 210
Spawn Point node 290
Spawn Point property 290
Spawn Point variable 285
SpawnTag parameter 210
SpeedTreeModeler tool 10
SpriteComponent 414
standard arithmetic operators

- 73
* 73
/ 73
+ 73
about 73

math 73-75
StartFire 117
StartWave function 317, 344
state

about 233, 234
creating 234-239
function overriding 243-248
keywords, using in 260
labels, using in 261-263
latent actions, using in 261-263
non-state functions 250, 252
subclassing 259
switching between 239-243
writing 234-239

state changes 252
state detection

about 252, 256
functions 257, 258

state detection functions
using 257, 258

static functions
about 219
using 220

strings
using 46

strings, variable functions
Caps(string S) 84
InStr(string S, string T) 84
Left(string S, int I) 84
Len(string S) 84
Locs(string S) 84
Mid(string S, int I, optional int J) 84
Repl(string S, string Match, string With, optional

bool bCaseSensitive) 84
Right(string S, int I) 84

structs
about 56
using 57, 59

superclass 221
SupportedEvents array 321
SupportedEvents, Kismet

about 321
custom SupportedEvent, creating 322-324
using 322

switch statement
about 90
using 90, 91

[445]

system requirements, UDK
2.0+ GHz processor 8
2 GB system RAM 8
3 GB free hard drive space 8
about 8
SM3-compatible video card 8
Windows XP SP2 or Windows Vista 8

T
TakeDamage event 208
TakeDamage function 158, 172, 193, 208, 235,

243, 246, 263
Target node 297
TargetPoints function 352
TargetPoint variable 290
TestEnemies move

creating 174-177
TestEnemy actor 190
TestEnemy class

creating 157-160
TestEnemy code 189
TestInt 370
throwweapon 219
Tick function 195, 207, 235-242
TimedEnemySpawn function 222
timers

about 221
displaying 231
using 221-223

TimeWeaponFiring function 186
toggleable flashlight

creating 424-426
Touch event 140, 217, 358
Touch function 159, 323
TriggerEventClass function 323
TryLoggingLocal function 201
twofer

setting up 382, 383

U
UberActor 124
UberFunction 124
UDK

about 7
directory overview 10
downloading 8

external programs, using 12
installing 8, 9
project, setting up 23
system requirements 8

UDK directory structure
about 10
Binaries 10
Development 11
Engine 11
UDKGame 11

UDKGame directory 38
UDKGame folder

about 11
Autosave 11
Config 11
Content 12
Flash 12
Localization 12
Logs 12
Movies 12
Script 12
Splash 12

UDKPawn 161
UnClock function

using 409
UnCodeX

about 19, 99, 185
configuring 20-22
downloading 19
installing 19, 20

UnCodeX search 235
Unreal Developer Network 428
Unreal Development Kit. See UDK
UnrealScript

about 135, 185
Components, creating 414
resources 428

UnrealScript classes
Controller class 162
GameInfo class 154
HUD class 178
Pawn class 172

UnrealScripters
about 429
URL 429

unreliable modifier 217
UpgradeWeapon function 141, 144, 184-186

[446]

UTBeamWeapon 99, 138
UTBerserk 104
UTDeathmatch 155
UTGameContent 29
UTJumpBoots 29
UTUDamage 104
UTWeap_LinkGun actor 120
UTWeapon 99, 186
UTWeap_RocketLauncher_Content 99, 130, 131

V
variable declaration 40
variable errors 390, 391
variable functions

about 83
floats 83
ints 83
rotators 84
strings 84
vectors 84

VariableLinks.Empty line 317
variable properties

about 67
config variables 71
default properties 67
editable variables 70

variables
about 39
arrays 50
booleans 40
Components, working as 421-424
dynamic arrays 53
enums 47
floats 45
integers 43
replicating 366
rotators 63
strings 46
structs 56

used, in Kismet actions 299
vectors 60

variables, Kismet actions
about 299
CurrentWeaponLevel variable 300
Int variable 300
WeaponLevel variable 300

vectors
about 60
using 60-63

vectors, variable functions
Normal(vector A) 84
VRand() 84
Vsize(vector A) 84

VRand() function 84
Vsize(vector A) function 84

W
WaveComplete 312
WaveCountdown function 326
wave size, Kismet

setting 316-318
Weapon 119
weapon branch

creating 137
Weapon Level node 301, 344
WeaponLevel variable 300
weapons 137
Weapon.uc 186
WhatState function 257
while statement

about 88
using 88, 89

WorldInfo class 365
WorldInfo.Game 297
WOTgreal

about 23
URL 23

Thank you for buying

Unreal Development Kit Game Programming with UnrealScript:
Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Unity 3.x Game Development Essentials
ISBN: 978-1-84969-144-4 Paperback: 420 pages

Build fully functional, professional 3D games with
realistic environments, sound, dynamic effects, and
more!

1.	 Kick start your game development, and build ready-
to-play 3D games with ease

2.	 Understand key concepts in game design including
scripting, physics, instantiation, particle effects, and
more

3.	 Test & optimize your game to perfection with
essential tips-and-tricks

Adobe Flash 11 Stage3D (Molehill) Game
Programming Beginner’s Guide
ISBN: 978-1-84969-168-0 Paperback: 412 pages

A step-by-step guide for creating stunning 3D games
in Flash 11 Stage3D (Molehill) using AS3 and AGAL

1.	 The first book on Adobe's Flash 11 Stage3D,
previously codenamed Molehill

2.	 Build hardware-accelerated 3D games with a
blazingly fast frame rate

3.	 Full of screenshots and ActionScript 3 source code,
each chapter builds upon a real-world example
game project step-by-step

4.	 Light-hearted and informal, this book is your trusty
sidekick on an epic quest to create your very own
3D Flash game

Please check www.PacktPub.com for information on our titles

HTML5 Games Development by Example:
Beginner’s Guide
ISBN: 978-1-84969-126-0 Paperback: 352 pages

Create six fun games using the latest HTML5, Canvas,
CSS, and JavaScript techniques

1.	 Learn HTML5 game development by building six fun
example projects

2.	 Full, clear explanations of all the essential
techniques

3.	 Covers puzzle games, action games, multiplayer, and
Box 2D physics

4.	 Use the Canvas with multiple layers and sprite
sheets for rich graphical games

Google SketchUp for Game Design:
Beginner's Guide
ISBN: 978-1-84969-134-5 Paperback: 270 pages

Create 3D game worlds complete with textures,
levels and props

1.	 Learn how to create realistic game worlds with
Google's easy 3D modeling tool

2.	 Populate your games with realistic terrain, buildings,
vehicles and objects

3.	 Import to game engines such as Unity 3D and create
a first person 3D game simulation

4.	 Learn the skills you need to sell low polygon 3D
objects in game asset stores

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Project Setup and Test Environments
	System requirements
	Minimum requirements:

	Time for action – Installing the UDK
	Directory overview
	Binaries
	Development
	Engine
	UDKGame

	Using external programs to code
	ConTEXT

	Time for action – Installing ConTEXT
	Time for action – Configuring ConTEXT
	UnCodeX

	Time for action – Installing UnCodeX
	Time for action – Configuring UnCodeX
	nFringe
	WOTgreal

	Setting up a project
	Time for action – Setting up AwesomeGame
	Compiling and testing
	Time for action – Compiling and testing AwesomeActor
	A quick note about comments

	Summary

	Chapter 2:
Storing and Manipulating Data
	Variables and arrays
	Booleans

	Time for action – Using booleans
	Integers and floats

	Time for action – Using integers
	Time for action – Using floats
	Strings

	Time for action – Using strings
	Enums

	Time for action – Using enums
	Arrays

	Time for action – Using arrays
	Dynamic arrays

	Time for action – Using dynamic arrays
	Structs

	Time for action – Using structs
	Vectors

	Time for action – Using vectors
	Rotators

	Time for action – Using rotators
	Variable properties
	Default properties

	Time for action – Using the default properties block
	Editable variables

	Time for action – Editable variables
	Config variables

	Time for action – Creating config variables
	Common operators
	Standard arithmetic

	Time for action – Math!
	Modulo

	Time for action – Using modulo
	Comparisons

	Time for action – Comparisons
	Logical operators

	Time for action – Using logical operators
	Concatenation

	Time for action – Concatenation
	Variable functions
	Ints
	Floats
	Strings
	Vectors
	Rotators

	Flow control
	If else

	Time for action – Using if/else
	For

	Time for action – Using the for statement
	While

	Time for action – Something
	Do until
	Switch

	Time for action – Using switches
	Return
	Goto

	Summary

	Chapter 3:
Understanding the Class Tree
	What is a class?
	Time for action – All classes are created equally
	Inheritance
	Time for action – Examining inheritance
	Time for action – Making a custom weapon
	Time for action – Experiments with inheritance
	Function overriding
	Time for action – Creating a custom GameInfo and
	PlayerController
	Time for action – Experiments with function overriding
	Actors as variables
	Time for action – Experiments with Actors as variables
	Casting
	Time for action – Casting Actor variables
	Time for action – A practical example of casting for our game
	Summary

	Chapter 4:
Making Custom Classes
	Creating a class
	Awesome Game quicky design document
	Class breakdown

	Time for action – Creating the weapon branch
	Class modifiers
	Placeable
	Notplaceable
	Abstract

	Time for action – Using abstract
	Native
	Config
	Hidecategories

	Time for action – Hidecategories
	Hidedropdown

	Actors versus objects
	Common UnrealScript classes
	The GameInfo

	Time for action – Expanding AwesomeGame
	Time for action – SHOOT NOW!
	Time for action – Customizing the Pawn class
	The Controller

	Time for action – Expanding the Controller
	Time for action – No, my left!
	The Pawn

	Time for action – Detecting collisions to give our Pawn damage
	Time for action – Making the TestEnemies move
	The HUD

	Time for action – Using the HUD
	Summary

	Chapter 5:
Using Functions
	What's your function?
	Creating and calling functions
	Time for action – Writing a function
	Time for action – Calling custom functions
	Time for action – What's your malfunction?
	Local versus instance variables
	Local Variables

	Time for action – Using local variables
	Actors as local variables

	Time for action – Using Actors as local variables
	Time for action – Modifying the projectile
	Function parameters and modifiers
	Function parameters

	Time for action – Using function parameters
	Time for action – Out parameters
	Return values

	Time for action – I'd like to return this please
	Function modifiers
	Native
	Const, NoExport, latent, and iterator
	Event
	Simulated, server, client, reliable, and unreliable
	Singular
	Exec

	Time for action – Filthy cheater
	Static

	Time for action – Using static functions
	The super
	Using timers
	Time for action – Just five more minutes mom
	Putting it all together
	Time for action – Expanding Awesome Game
	Summary

	Chapter 6:
Using States to Control Behavior
	It's a state of mind
	Creating a state

	Time for action – Writing a state
	Switching between states

	Time for action – Switching states
	Function overriding in states
	Red state, blue state, no state, new state?

	Time for action – Multiple personalities
	Non-state functions

	Time for action – Calling non-state functions
	Time for action – Non-state functions from inside a state
	State changes and detection
	BeginState

	Time for action – BeginState
	EndState

	Time for action – EndState
	State detection

	Time for action – Using state detection functions
	Subclassing states
	Time for action – Subclassing the Seeking state
	Keywords, labels, and latent functions
	Keywords

	Time for action – Using ignores
	Labels and latent functions

	Time for action – Do we really need to give labels to everything?
	Like a boss
	The cleanup job

	Time for action – Reverting our code
	Attack of Schellenberg

	Time for action – Creating the abstract base class
	Time for action – Creating and spawning the boss
	Time for action – I like you, I kill you last
	Time for action – Rage mode activate
	Summary

	Chapter 7:
Working with Kismet
	Overview of Kismet
	A simple introduction

	Time for action – Using Kismet
	Building complexity

	Time for action – A more complex Kismet sequence
	Time for action – Bug fixing time!
	Kismet actions
	Creating Kismet actions

	Time for action – Creating Kismet actions
	Using variables in Kismet actions

	Time for action – Using variables in Kismet
	Kismet handler functions

	Time for action – Using handler functions
	Time for action – Differentiating Kismet inputs
	Kismet conditions
	Time for action – What condition my condition was in
	Kismet events
	Time for action – The cleanup job
	Creating and triggering a Kismet event

	Time for action – Our first Kismet event
	Giving the event some meaning

	Time for action – Moving functionality into Kismet
	Further expanding our Kismet

	Time for action – Setting the wave size
	Supported events

	Time for action – Using SupportedEvents
	Time for action – Creating a custom SupportedEvent
	Latent actions
	Time for action – Creating a latent action
	Summary

	Chapter 8:
Creating Multiplayer Games
	The server-client relationship
	One state to bind us all

	Testing network code
	Setting up the server

	Time for action – The server batch file
	Setting up the client

	Time for action – The client batch file
	Fixing Awesome Game

	Time for action – Unbreaking the player
	Time for action – Unbreaking the game
	The GameReplicationInfo class

	Time for action – Making the GameReplicationInfo
	Fixing enemy fleeing

	Time for action – RUN AWAY!
	Time for action – Bossing around
	Replicating function calls
	Replication function modifiers
	Reliable versus Unreliable
	Client functions

	Time for action – Setting up for the client function
	Time for action – Using the client function
	Server functions

	Time for action – Using a server function
	Simulated functions

	Time for action – Setting up the map
	Time for action – Using simulated functions
	Time for action – COMBO BREAKER!
	Role and authority
	Role and RemoteRole

	Time for action – Examining Role and RemoteRole
	Time for action – Respect my authority!
	NetMode

	Time for action – Checking the level's NetMode.
	Replicating variables
	The replication block

	Time for action – Replicating a variable
	Replication variables
	ReplicatedEvent

	Time for action – Using ReplicatedEvent
	Summary

	Chapter 9:
Debugging and Optimization
	Compiler errors
	Time for action – Preparing for brokenness
	Time for action – A new script package
	Time for action – Breaking the class itself
	Time for action – Breaking some more code
	Time for action – Misleading errors
	Time for action – Captain obvious to the rescue!
	Time for action – Setting up a twofer
	Time for action – Mal-function
	Time for action – Taking care of other function errors.
	Time for action – Actor variable errors
	Time for action – Other variable errors
	Debugging
	Accessed none

	Time for action – Dealing with Accessed None
	Time for action – Fixing an Accessed None
	Time for action – Accessed None in function parameters
	Using the log

	Time for action – Setting up a scenario
	Time for action – Debugging using the log
	Optimization
	The profiler

	Time for action – Using the profiler
	Clock / UnClock

	Time for action – Using Clock and UnClock
	Best practices

	Summary

	Chapter 10:
Odds and Ends
	Using Components
	Creating Components

	Time for action – Adding a Component to an Actor
	Time for action – Component compiler error
	Interacting with Components

	Time for action – Components as variables
	A practical example

	Time for action – Creating a toggleable flashlight
	DLLBind
	Time for action – Using DLLBind
	Final Thoughts
	Other Resources

	Summary

	Appendix:
Pop Quiz Answers
	Chapter 1, Project Setup and Test Environments
	Chapter 2, Storing and Manipulating Data
	Chapter 3, Understanding the Class Tree
	Chapter 4, Making Custom Classes
	Chapter 5, Using Functions
	Chapter 6, Using States to Control Behavior
	Chapter 7, Working with Kismet
	Chapter 8, Creating Multiplayer Games
	Chapter 9, Debugging and Optimization
	Chapter 10, Odds and Ends

	Index

