
—
Stuart Preston

THE E XPER T ’S VOICE® I N A U T O M AT I O N

Using Chef with
Microso� Azure

www.allitebooks.com

http://www.allitebooks.org

 Using Chef with
Microsoft Azure

 Stuart Preston

www.allitebooks.com

http://www.allitebooks.org

Using Chef with Microsoft Azure

Stuart Preston
London, United Kingdom

ISBN-13 (pbk): 978-1-4842-1477-0 ISBN-13 (electronic): 978-1-4842-1476-3
DOI 10.1007/978-1-4842-1476-3

Library of Congress Control Number: 2016941179

Copyright © 2016 by Stuart Preston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Gwenan Spearing
Technical Reviewer: John Fitzpatrick
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the Author ... xi

About the Technical Reviewer ... xiii

Introduction ...xv

 ■Chapter 1: Confi guration Management using Chef .. 1

 ■Chapter 2: Microsoft Azure Terminology and Concepts 29

 ■Chapter 3: Chef Azure VM Extensions ... 55

 ■Chapter 4: Using Chef Provisioning to Provision Machines 71

 ■Chapter 5: Advanced Chef Provisioning Techniques ... 101

 ■Chapter 6: Integrating Quality Tooling into the Chef Development Life Cycle131

 ■Chapter 7: Chef Concepts in the Real World .. 163

 ■ Chapter 8: Pulling It All Together: Continuous Provisioning with
Chef and Azure .. 173

 ■Appendix A: Further Resources ... 221

Index ... 225

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author ... xi

About the Technical Reviewer ... xiii

Introduction ...xv

 ■Chapter 1: Confi guration Management using Chef .. 1

The Purpose and Principles of Automated Provisioning and
Confi guration Management .. 2

Chef Architecture .. 3

Chef Client and Chef Server-supported Platforms .. 5

Getting Ready for Chef Development .. 6

Developing Your First Recipe Using Chef ... 19

Code Editors ... 19

Initializing a Chef Repository .. 20

Modifying and Running the Default Recipe .. 21

Getting Started with Hosted Chef ... 23

Summary .. 28

 ■Chapter 2: Microsoft Azure Terminology and Concepts 29

Deploying to the Microsoft Azure Platform ... 29

Subscriptions, Tenants, and Regions .. 31

Subscriptions .. 31

Tenants ... 32

Regions ... 33

v

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vi

Managing Azure from the Command Line .. 35

Installing the Tools (Windows) .. 36

Installing the Tools (Mac OS X) ... 38

Installing the Tools (Linux) .. 39

Logging In and Verifying Command-line Tools Connectivity ... 40

Azure Resource Groups .. 43

Azure Resource Manager Templates .. 44

Resource Manager Template Structure .. 44

Example Resource Manager Template ... 45

Expressions and Functions ... 52

Summary .. 53

 ■Chapter 3: Chef Azure VM Extensions ... 55

What Are Azure VM Extensions? ... 55

Introducing Chef VM Extensions ... 56

Chef Azure VM Extension Compatibility .. 57

Listing the Available Chef VM Extension Versions from the VM Extension Gallery 57

Adding a Chef VM Extension to an Existing Virtual Machine ... 61

Validating a Chef VM Extension is successfully installed at the Command Line 63

Removing a Chef VM Extension from a Virtual Machine ... 66

Installing a Chef VM Extension at the Command Line Using Azure Resource
Manager Template Language ... 67

Summary .. 69

 ■Chapter 4: Using Chef Provisioning to Provision Machines 71

About Chef Provisioning on Azure .. 71

Installation and Confi guration .. 72

Installing the Chef Provisioning for Azure Resource Manager Ruby Gem .. 72

Authenticating to Azure Resource Manager ... 74

Confi guring the Application and Service Principal ... 75

Confi guring Chef Provisioning for Authentication ... 81

Preparing the Chef-Repo .. 82

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vii

Chef Provisioning Recipes .. 83

Confi guring the Provisioning Node as a Chef Client ... 84

Executing the Provisioning Recipe ... 85

Chef Provisioning a Windows VM with Remote Desktop Enabled .. 87

Chef Provisioning and the Chef VM Extensions .. 94

Destroying Azure Resources ... 97

Summary .. 99

 ■Chapter 5: Advanced Chef Provisioning Techniques ... 101

Explaining VM Image Naming within Azure Resource Manager JSON 101

Identifying and Retrieving VM Images .. 103

Using Azure Key Vault to Store Secrets .. 105

Azure Key Vault ARM Template ... 106

Retrieving the Object ID for an Azure Active Directory User ... 108

Azure Key Vault Provisioning Recipe .. 109

Creating a Windows Server with WinRM Securely Enabled via Key Vault 111

Creating a Self-signed Certifi cate .. 111

Uploading the Certifi cate to Key Vault .. 112

Provisioning a WinRM-Enabled Windows Server .. 114

Verifying WinRM Status .. 121

Creating Other PaaS Resources via Chef Provisioning and Resource Explorer 123

Creating a Dummy Resource .. 124

Viewing the Resource in Resource Explorer ... 127

Extracting the Template .. 128

Running a Custom Deployment .. 129

Summary .. 130

 ■Chapter 6: Integrating Quality Tooling into the Chef Development Life Cycle 131

Cookbook Linting .. 131

Using RuboCop ... 132

Using FoodCritic ... 140

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Cookbook Testing ... 145

Using ChefSpec .. 146

Using Test Kitchen and InSpec with Azure Resource Manager 153

Installing the Azure Resource Manager Driver for Test Kitchen .. 154

Confi guring the Credentials File ... 154

Confi guring Test Kitchen within a Chef Repo .. 155

Summary .. 162

 ■Chapter 7: Chef Concepts in the Real World .. 163

Avoid Using the _default Environment ... 163

Use Chef Environments to Refl ect Your Internal Release Processes 164

Listing Existing Environments .. 164

Creating New Environments ... 164

Changing the Environment for a Node .. 166

Searching for Servers in an Existing Environment ... 168

Controlling Releases through Environments Using the Environment and
Role Patterns .. 168

Attribute Precedence .. 171

Semantic Versioning Overview ... 171

Summary .. 172

 ■ Chapter 8: Pulling It All Together: Continuous Provisioning with
Chef and Azure .. 173

What are we Aiming for? .. 173

Phase 1 - Initial Chef Repository Setup .. 175

Initializing the Application Repository .. 175

Add Chef Provisioning Recipes ... 176

Provisioning the CI Server .. 182

Phase 2 - Installing and Confi guring Jenkins ... 185

Using Berkshelf to Retrieve Public Cookbooks ... 187

Creating a Recipe to Install Jenkins ... 188

Uploading the Cookbook and Dependencies .. 189

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Preparing and Uploading Role Defi nitions .. 189

Confi guring the Jenkins Server .. 190

Adding Plug-ins to Jenkins ... 192

Verifying Jenkins Plug-in Installation ... 194

Securing Access to Jenkins .. 195

Adding Chef Dependencies to Jenkins ... 197

Phase 3 - Setting Up a New Chef Repository in GitHub ... 199

Confi guring a .gitignore File to Exclude Sensitive Information ... 200

Connecting a Local Git Repo to the Remote ... 201

Phase 4 - Confi guring the Jenkins Project ... 202

Adding a New Project ... 202

Adding Build Steps ... 204

Triggering a Jenkins Build from GitHub .. 215

Adding and Destroying a Test Environment .. 217

Summary .. 219

 ■Appendix A: Further Resources ... 221

Chef Server on the Azure Marketplace ... 221

Azure Weekly Newsletter ... 222

Microsoft Azure Cookbook.. 223

Conclusion .. 224

Index ... 225

www.allitebooks.com

http://www.allitebooks.org

 About the Author

 Stuart Preston . The story begins in the early 1980s when Mum and Dad
bought me an Acorn Electron computer for my sixth birthday. It was love
at first sight and the rest is history.

 While technology continues to evolve and change at pace, the
curiosity that was present in the six-year-old Stuart is still as strong today.
Throughout a varied career I have had the privilege of working with a vast
range of technologies and some incredible people. The greatest sense of
achievement comes from tackling new and complex problems, drawing
on those experiences to provide simple technical solutions to real-world
problems spanning the business and technical domains.

 It was early 2015 when a tempting new challenge presented itself -
how to automate Microsoft’s Azure Cloud Platform. While many vendors
and tools had delivered part of the solution, the ecosystem was only just
beginning to mature. Over the next 12 months I set about collaborating
with Chef and Microsoft, solving problems as they presented themselves

and at times running to keep up with the pace of innovation in both companies.
 As a firm believer in open source and the strength of community, the tools I have built (many of which

are used in this book) are available on GitHub at https://github.com/pendrica , and contributors are very
welcome!

 When I’m not attempting to “Code the Impossible”, my curiosity will generally lead me to a good pub or
an airport. A keen traveler, I enjoy nothing more than getting my bearings in a new city, sampling the local
food, and of course the local beers too.

xi

https://github.com/pendrica

 About the Technical Reviewer

 John Fitzpatrick is a Technical Trainer for Chef and also works on
coaching companies in EMEA as Official Chef Training Partners within
the region. John has worked for Chef since September 2013; however, he
has been using the Chef platform since May 2010 from when he worked at
RightScale. He is active in the community and is an organizer of both the
‘DevOps Belfast’ and the ‘Chef Users London’ meetup groups. John lives
and works from Belfast in Northern Ireland. He is married to Colette, has
one daughter Jane, and a dog.

xiii

 Introduction

 One of the challenges of working in technology today is the relentless pace of change. As practices evolve
and new tools are introduced, documentation either does not exist or becomes rapidly out of date, which is
part of the reason there were very few resources available to me when I started my journey of using Chef with
the Microsoft Azure platform. I struggled to find the information I needed in one place but instead gathered
nuggets of knowledge that were scattered far and wide, eventually learning the hard way how to accomplish
the results I wanted. This book aims to bring the most important points into one place - and be the book I
wish I had on my desk when I started out.

 Automating your infrastructure in the cloud has many benefits. Clicking around in an online portal
certainly feels easy from a usability point of view but you may be missing out on some of the great
advantages of the cloud that can be realized when you adopt an Infrastructure-as-Code approach. Using
Chef, you can version your infrastructure configuration, introduce quality tooling into your infrastructure
pipeline, and integrate the provisioning of new environments into your continuous delivery process.
Leveraging the flexibility of the cloud to pay for only what you need can reduce infrastructure spend
considerably and maintaining your platform as code allows for testing that protects the system against
human error, reducing failures and unforeseen issues.

 If you are new to Chef, Microsoft Azure, or both this book should give you an overview of the best
practices for managing your platform alongside some detailed examples that help to step you through the
process. I’ve tried to keep things simple, while ensuring real-world considerations are not omitted.

 A small word of warning. Releases to both Chef and Microsoft Azure happen at an alarming pace
(thanks, Continuous Delivery!) and so I expect aspects of this book will soon become out of date, or
superseded by the new thinking. To ensure the book remains a useful resource as both Chef and Azure
evolve I will try and keep track of any significant changes via the book’s home page at http://bit.ly/
chefazure .

 My aim for this book is to give you the raw materials and guidance required to get started using Chef
with the Microsoft Azure toolset - first of all, setting out the tools you can use individually and then in the
later chapters using continuous provisioning approaches. I look forward to hearing about the solutions you
create using the tools.

xv

http://bit.ly/chefazure
http://bit.ly/chefazure

1© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_1

 CHAPTER 1

 Configuration Management
using Chef

 The automation of configuration management is not a particularly new practice in the world of
software delivery. However, scripted approaches of the past suffered from a lack of common standards,
documentation, and understanding. A team member would select a preferred scripting language, adopt
their own patterns, and implement it in their own unique way. This approach required an in-depth
knowledge of the dependencies for all the software to be installed and configured on a machine and often
made assumptions about the initial state of the machine before applying changes. Upgrades to software
were rarely considered, and because the knowledge was invested in a single person it was difficult to support
and maintain. Not everything would or could be automated, and so there would also generally be an amount
of manual tweaking required to achieve the desired state, so it wasn’t entirely automated and left scope for
human error.

 Modern configuration management tools such as Chef aim to solve these problems by abstracting
away the actions to be taken on a target resource from their actual implementation. We utilize a common
domain-specific language (DSL) across all resources to describe the desired state of the system, and behind
the scenes Chef takes care of the rest.

 Chef has enjoyed enormous success and adoption since its creation in 2008, with companies such as
Facebook and Microsoft using the product to manage their infrastructure. At the heart of this success is the
global community it has built. By open sourcing the core product and working hard on the cross-platform
story, Chef has enlisted thousands of potential contributors to help drive innovation and to support each
other with the challenges of automating infrastructure at scale. The culture and community permeate
through all aspects of the Chef offering and draws yet more contributions into the ecosystem, making it a
powerful force in the world of automation.

 In this chapter we will discuss the principles and purpose of automated provisioning and configuration
management, walk through an overview of Chef, and go through the steps required to set up a Chef
workstation environment that can be used to automate configuration management in the cloud.

 Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1476-3_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

2

 The Purpose and Principles of Automated Provisioning and
Configuration Management
 It would be remiss of me not to mention the DevOps movement early on in this book. While there are many
definitions, I tend to go along with the definition of DevOps being a cultural and technical movement that
focuses on building organizations that are able to operate with stability at high velocity. The term itself
targets the silos that these groups have traditionally found themselves in.

 Automation is one of the pillars of the DevOps movement because it can provide quality assurance,
consistency, and repeatability across the realms of both development and operations. This is especially
true in the case of infrastructure automation where manually building individual servers, configuring their
base applications, applying their updates, and patching them was not only a time-consuming task but
also complex and prone to human error. Minor deviations would occur between resources that should be
configured identically, causing unforeseen issues and brittle setups that were hard to reproduce. The term
 snowflake server is often used to reflect the uniqueness of those systems.

 Many large enterprises have met with challenges scaling their on-premises infrastructure, teams,
and processes to meet the demands of the high-velocity, agile development teams they now service.
Organizational structures would introduce multiple hand-offs into the process with a set of project
requirements being agreed upon up front (generally by a designated architect before the development team
is even assembled). The environments would be designed and scheduled into the pipeline of work across
a large team of disparate skillsets to complete their relevant tasks and then hand over to the development
team on the scheduled date, sometimes weeks and months after the initial requirements were agreed upon.

 In the initial days and weeks of using the environment the development team, struggling to run their
application on the delivered environment, would identify new requirements or issues in configuration. After
an indisputable root cause had been established the correcting actions would be scheduled again through
the same waterfall process, elongating the feedback loop, preventing QA activities in the environments, and
often delaying the project launch.

 A more incremental, automated approach to provisioning can drastically reduce the feedback loop
on configuration changes and allow development teams to operate at velocity without environment
impediments. By describing your infrastructure platform as code it can be updated frequently as the
requirements of the application evolve over time and because Chef recipes are idempotent , once the
desired state is achieved, future executions of the recipe will result in a no-op (i.e., no changes will be made).
Automation also removes the opportunity for human error to introduce unwanted deviations between
environments and “configuration drift” over time into an unknown state.

 Many organizations are moving away from on-premises infrastructure into a cloud environment;
and as they do so, the opportunities to leverage Infrastructure as Code practices greatly increase. Using
a cross-platform provisioning and configuration management tool such as Chef you can now provision
an application architecture consisting of IaaS, PaaS, and SaaS services across a global distribution of data
centers using a common language and framework. Although many examples in this book will focus on IaaS
scenarios, I encourage you not to overlook the many PaaS and SaaS options available in Azure, some of
which may prevent you from reinventing the wheel.

 Figure 1-1 shows the separation of Provisioning from Configuration Management from Release
Management. Often in the cloud sense, these terms are used interchangeably whereas I prefer to draw out
the separation of each area as a separate concern. This is because different tooling and artifacts are involved
for each layer of the architecture:

• Provisioning is concerned with the specification of the guest and operating system
on top of a host. The host could be a virtualization layer such as a hypervisor or
a cloud platform such as Microsoft Azure. The point is that in this layer we know
nothing about the application that is going to run on top of it.

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

3

• Configuration Management is concerned with the configuration of the Operating
System after it has been provisioned, as well as any applications and their
configuration that sit on top of that Operating System.

• Release Management is concerned with the releasing of an application payload on
top of the application that has been deployed.

 One other huge advantage of using Infrastructure as Code practices in a cloud environment is the ability
to provide ephemeral environments in a fast, repeatable, and consistent way. With the right automation in
place you could potentially spin up a new environment for a day, or even for a few minutes, at a minimal
cost and with a negligible lead time. Compare this to the increased complexity and overhead you would
experience if trying to achieve the same in an on-premises, manual setup, and it becomes clear that the
cloud was made for automation.

 Chef Architecture
 Let’s quickly cover some of the core terminology of Chef as (hopefully) a refresher for you.

 ■ Note If this isn’t a refresher for you, I highly recommend you spend a couple of days going through the
excellent resources and hands-on labs available at http://learn.chef.io to familiarize yourself with the Chef
platform and terminology.

 Chef is built around the concepts of converging toward desired state and modeling Infrastructure as
Code via resources that are building blocks. Simply put, a cookbook is made up from a collection of recipes ,
which in turn are an ordered set of instructions you would like to perform on a node (a node being defined
as any server or device capable of running a Chef client). Recipes themselves are written in the Chef domain-
specific language (DSL) built on top of the Ruby language. Cookbooks can also contain Resources, which do

 Figure 1-1. Provisioning vs. Configuration Management vs. Release Management

http://learn.chef.io/

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

4

the work behind the scenes to take the code specified in the recipe, detect the current state of the system,
and make the necessary changes to converge the system toward the correct target state.

 Along with recipes and resources, a cookbook contains all the files and configuration templates
required, as well as supporting artifacts such as any data that is used by the component being deployed. It
also contains unit tests that can be used to ensure we have written our recipes correctly.

 Nodes communicate with a Chef Server , which is the repository for all the cookbooks that need
deploying. The most common deployment approach is to use a central Chef server; this can be downloaded
and installed yourself, however there are other options available including Hosted Chef - a full Chef
environment hosted on servers managed by Chef themselves, or you can even boot up an image from your
cloud provider’s Marketplace in the case of Microsoft Azure and Amazon Web Services.

 Chef Server distributes cookbooks to the nodes based on their configuration. So on your nodes,
you need to install the Chef Client and configure it so that it can connect to the server and retrieve the
cookbooks. This installation process is commonly referred to as ‘bootstrapping’.

 The relationships between the Chef components are presented in Figure 1-2 .

 Figure 1-2. Chef components overview - see https://docs.chef.io/chef_overview.html

https://docs.chef.io/chef_overview.html

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

5

 ■ Note Chef Analytics is a premium feature of Chef and while it has a role to play in an enterprise Chef
deployment, we won’t cover it in detail in this book.

 Chef Client and Chef Server-supported Platforms
 One of the greatest advantages of using Chef is that it provides a consistent approach to configuration
management in a cross-platform environment. Chef can be installed on a huge variety of platforms, which
makes it easier to build and manage hybrid platforms utilizing multiple technologies in a single deployment
architecture. This allows teams to select the best technology for the job from an ever-increasing number
of available options, without diverging on the administration tools and practices used to manage those
applications.

 Table 1-1 lists the operating platforms the Chef Client is aimed at and an indication whether or not that
platform is supported in Azure.

 Table 1-1. Chef Client-supported platforms

 Platform Azure Support Version

 AIX N 6.1, 7.1

 CentOS Y 5, 6, 7

 FreeBSD Y 9, 10

 Debian Y 7 (Wheezy), 8 (Jessie)

 Mac OS X N 10.8, 10.9, 10.10

 Oracle Linux Y 5, 6, 7

 Red Hat Enterprise Linux Y 5, 6, 7

 Solaris N 10, 11

 Ubuntu Y 12.04, 14.04

 Microsoft Windows Y (servers) 2008, 2008r2, 2012, 2012r2, 2016, 7, 8, 8.1, 10

 ■ Note Chef has a categorization of platforms into support tiers. The definitions of Tier 1 support, Tier 2
support, and Not supported can be found in the Chef RFC021 – see https://github.com/chef/chef-rfc/
blob/master/rfc021-platform-support-policy.md

https://github.com/chef/chef-rfc/blob/master/rfc021-platform-support-policy.md
https://github.com/chef/chef-rfc/blob/master/rfc021-platform-support-policy.md

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

6

 For the Chef Server, the platforms listed in Table 1-2 are supported:

 With the announcement in November 2015 that Microsoft and Red Hat are partnering to provide
access to Red Hat Enterprise on Azure, you are now able to run a completely supported environment with
Chef Server running in Azure on the Red Hat Enterprise Linux platform if you wanted to. This demonstrates
Microsoft’s commitment to providing a fully supported, industry-leading cloud platform, whether you are
running Windows or not.

 Getting Ready for Chef Development
 Now that we’ve had a brief refresher of Chef architecture, let’s look at what it takes to set up a workstation
for use with Chef and to execute a very basic recipe locally. Many of these setup tasks are prerequisites for
exercises later in the book, so even if you are already using Chef I suggest using this section as a helpful
checklist to run through and ensure you have everything you need to get started.

 ■ Note In chapter 2 we’ll look at the tools needed to work with the Microsoft Azure platform; for now let’s
focus on getting our Chef environment set up correctly.

 Installing the Chef Development Kit (ChefDK)
 The Chef Development Kit (hereafter known as ChefDK) includes everything you need to develop and test
for the Chef platform. There are a number of components included, and I’ll just pull out the key ones:

• Chef Client (including Chef-Zero, a way of simulating a Chef server without a
deployment footprint)

• Chef Provisioning (a set of tools and drivers that let you provision machines and
compute resources for both on-premises deployment and cloud providers such as
Microsoft Azure)

• Berkshelf and Policyfiles (dependency management solutions)

• Cookbook generators

• Tools such as Knife for working against the Chef Server

• Test-Kitchen (tooling that lets you test your Chef cookbooks and recipes across a
matrix of operating system platforms and client versions)

 Table 1-2. Chef Server-supported platforms

 Platform Azure Support? Version

 CentOS Y 5, 6, 7

 Oracle Linux Y 5, 6

 Red Hat Enterprise Linux Y 5, 6, 7

 Ubuntu Y 12.04 LTS, 14.04 LTS

http://dx.doi.org/10.1007/978-1-4842-1476-3_2

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

7

 ChefDK runs on Microsoft Windows, Mac OSX, and Linux (Debian, Ubuntu, Red Hat Enterprise Linux
and CentOS) and thanks to the hard work of the maintainers it works in mostly the same way on all of them.
We’ll take a look at how to install on Windows, OSX, and Ubuntu in this chapter.

 Installing ChefDK on Windows

 To download the ChefDK for a Windows machine, we need to visit http://downloads.chef.io in a browser,
navigate to Chef Development Kit, and press the button marked Get It (as shown in Figure 1-3).

 After selecting the correct version of the installer for your platform (as shown in Figure 1-4) and
downloading it, we can progress to running the installer.

 Figure 1-3. Accessing the Chef Development Kit (ChefDK) downloads area at http://downloads.chef.io

http://downloads.chef.io/
http://downloads.chef.io/

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

8

 Launch the installer from your Downloads folder (or alternatively, wherever you have saved it). The
Welcome screen is shown and allows you to proceed through the installation. Accept all defaults when
prompted and press Install . Installation should now progress (as seen in Figure 1-5).

 Figure 1-4. Selecting the correct platform for the ChefDK download

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

9

 Once installation has completed, you may wish to reboot or log off and back on to your machine, to
ensure that the path variables are correctly set up and ready to use.

 Installing ChefDK on Mac OS X

 The installation process on OS X is similar to the Windows package in that there’s a package to download
and execute as part of the setup. The installer is a standard package that can be launched after mounting the
downloaded image file. Figure 1-6 shows the Welcome screen of the package installer.

 Figure 1-5. ChefDK installer on Microsoft Windows

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

10

 Launch the package and accept all the defaults, inputting your local credentials at the correct time,
of course.

 Once the installation has completed as shown in Figure 1-7 , exit the installer and then unmount/eject
the image file.

 Figure 1-6. ChefDK installation dialog

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

11

 Once the installation completes, proceed to the verification steps.

 Installing ChefDK on Linux

 On Ubuntu and Debian, you need to download the correct .deb file for your platform and then at a Terminal
prompt, locate your .deb file and type:

 $ sudo dkpg -i chefdk_0.10.0.1_amd64.deb

 Figure 1-7. Installation completed on Mac OS X

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

12

 Installation will take a few moments and complete as shown in Figure 1-8 .

 On the RedHat and CentOS platforms, ChefDK is provided in the RPM format and you will need to
download the correct .rpm file for your platform (noting there are different versions for RedHat 6 and
RedHat 7, for example). Once you have the correct file, from the same directory type:

 $ sudo rpm -Uvh chefdk-0.10.0-1.el7.x86_64.rpm

 [sudo] password for stuart:
 warning: chefdk-0.10.0-1.el7.x86_64.rpm: Header V4 DSA/SHA1 Signature, key ID 83ef826a: NOKEY
 Preparing... ################################# [100%]
 Updating / installing...
 1:chefdk-0.10.0-1.el7 ################################# [100%]
 Thank you for installing Chef Development Kit!

 Installation will take a few moments. Once the installation completes, proceed to the verification steps.

 Verifying the ChefDK Installation
 To verify the installation, we can use the chef -v command . This will let us know which versions of all the
tools are installed.

 PS C:\Users\StuartPreston> chef -v

 You should see the following output or similar:

 Chef Development Kit Version: 0.10.0
 chef-client version: 12.5.1
 berks version: 4.0.1
 kitchen version: 1.4.2

 Figure 1-8. Installing the .deb on Ubuntu Linux

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

13

 If the ChefDK was successfully installed on your system, you have all the files required on your system
that support you in the Chef development cycle. However, before we can start developing our recipes,
we need to initialize our environment. Put simply this means ensuring that Chef and Ruby paths and
environment variables are correctly pointing at the location ChefDK installed them to. The command chef
shell-init lets you achieve this by generating the correct initialization script for your environment, and so
all we need to do is run this command whenever we start a new session by placing a call to this command in
the shell’s start up (i.e., in the file located at $PROFILE on Windows and in ~/.bash_profile or ~/.zshrc on
Mac OS X and Linux).

 Initializing the environment (Windows)

 To initialize our environment on Windows, we use the chef shell-init powershell command to our
 $PROFILE file (this is usually a file named C:\Users\<username>\Documents\WindowsPowerShell\
Microsoft.PowerShell_profile.ps1). When any PowerShell commands are added to this file, they are loaded
at the start of each PowerShell session. So to configure things correctly, we need to create a $PROFILE file if
one doesn’t exist already:

 PS C:\Users\StuartPreston> if(!(Test-Path $PROFILE)) { New-Item -Force -ItemType File
$PROFILE }

 We can then add the output of chef shell-init powershell to it as follows:

 PS C:\Users\StuartPreston> chef shell-init powershell | Add-Content $PROFILE

 Now, every time you open a new PowerShell session, your paths and environment variables will be set
up correctly.

 ■ Warning On new Windows installations, Windows PowerShell scripts will not work until an administrator
sets the local execution policy for PowerShell scripts using the following command:

 PS C:\Users\StuartPreston> Set-ExecutionPolicy RemoteSigned -Force

 Initializing the environment (Bash/Zsh)

 To use the ChefDK version of Ruby as the default Ruby on a system with bash as your shell, edit the $PATH
and GEM environment variables to include paths to the ChefDK. To accomplish this, run:

 $ echo 'eval "$(chef shell-init bash)"' >> ~/.bash_profile

 If you use zsh as your shell, then you can use the following line to set up your environment:

 $ echo 'eval "$(chef shell-init zsh)"' >> ~/.zshrc

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

14

 Installing Git
 The Chef toolset uses Git and its related tools extensively, so we need to ensure we have a working Git client
on the machine in our path. On Windows the installation procedure has a few options so I’ve covered the
installation process in detail.

 Installing Git on Windows

 To install Git on Windows, navigate to https://git-scm.com/downloads as shown in Figure 1-9 and
download the Windows installer.

 After downloading the installer, the Git Setup Wizard will launch. You will be prompted to accept the
general public license, select a directory, identify the components you wish to install, select a start menu
folder, adjust your PATH environment, configure your terminal emulator to use with Git Bash, and configure
performance tweaks. It is tempting to select the default option for all of these but I recommend you adjust a
few of these options to ensure you get the optimal set up for Chef development.

 Figure 1-9. Git download page as seen when accessed using Windows

www.allitebooks.com

https://git-scm.com/downloads
http://www.allitebooks.org

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

15

 When given the option to adjust your PATH environment you should select the option to Use Git from
the Windows Command Prompt to ensure Git is available to all processes on the system, as shown in
Figure 1-10 :

 When asked to configure the terminal emulator to use with Git Bash, select Use Windows’ default
console window as shown in Figure 1-11 as this is most compatible with the command-line tools used in
Chef development.

 Figure 1-10. Git installer on Windows

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

16

 Finally, I would also recommend enabling the experimental performance tweaks when reaching the
screen shown in Figure 1-12 , which based on my experience speed up Git performance on Windows.

 Figure 1-11. Git installer on Windows

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

17

 After pressing Next, the installation will proceed. When it is complete you will need to either reboot or
log out and back in to your desktop for the settings to apply correctly.

 Git on Mac OS X

 The OS X platform already has a few ways of distributing Git. If you have XCode installed already you may
already have the Git client installed. To find out, open a new Terminal window and type git --version . If
you get a version number in response then you don’t need to install anything to work with source control
and Git/GitHub repositories.

 If you need to install Git you can download the installer from https://git-scm.com/downloads and
follow the onscreen instructions, providing your password at the appropriate stage. I had no problems with
the default options provided in the installer so I recommend you stick with those settings unless you have a
specific reason not to.

 Figure 1-12. Git installer on Windows

https://git-scm.com/downloads

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

18

 When you launch the installer, you may be blocked due to OS X security requirements, if you then visit
Security & Privacy you are able to launch the installer from there, as shown in Figure 1-13 :

 Once you have installed the Git package, you can proceed to the next section.

 Git on Linux

 To configure Git on Linux, simply use your package manager (e.g., apt-get or yum) to install the git-all
package. The following commands will automatically install and configure Git on the respective Linux builds:

 Ubuntu/Debian

 $ sudo apt-get install git-all

 Output not shown

 Figure 1-13. Security dialog on Mac OS X, allowing launch of a “blocked” package

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

19

 RedHat/CentOS

 $ sudo yum install git-all

 Output not shown

 Developing Your First Recipe Using Chef
 In this section, we’re going to generate a blank repository and add a simple recipe to it. This is a basic
example to ensure local setup is working how it should be and to demonstrate how Chef recipes can be used
to bring your machine to a desired state and keep it in that state.

 Code Editors
 Before you start to develop your first recipe I recommend you review the code editor you are using. A good
visual code editor is not a requirement, but it can be very helpful for working with Chef and selecting the
right one can save you time. Selecting one is very much a matter of personal taste, and I encourage you to
make sure you have one that supports some basic features.

 When selecting a code editor , make sure it supports the following: Themes and Plugins, Snippets,
Syntax coloring/highlighting for the Ruby language, Multiple cursors, a tree view of the entire folder/
repository you are working with, and ideally Git integration.

 Here’s a list of three editors I’ve tried recently and had success with:

• Sublime Text - ($70 USD) - http://sublimetext.com

• GitHub Atom - (free/open source) - http://atom.io

• Visual Studio Code (free/open source) - http://code.visualstudio.com

 Of course, if you have many years’ experience of systems administration, you’ve probably grown used
to an editor by now, but I would still encourage you to take the opportunity to download and try out some of
the newer editors on the scene. You spend a lot of time in the editor and the longer you leave it, the harder it
is to change.

 I recommend using Visual Studio Code - it’s a lightweight code editor based on the GitHub Electron
framework, supports all the features I’ve listed above, runs on Windows, OS X and Linux, and it’s open
source. Figure 1-14 shows the main window of Visual Studio Code. There is also a Chef Extension for Visual
Studio code available on the Visual Studio Code Marketplace (https://marketplace.visualstudio.com/
items/Pendrica.Chef), which enables many of the features listed above.

http://sublimetext.com/
http://atom.io/
http://code.visualstudio.com/
https://marketplace.visualstudio.com/items/Pendrica.Chef
https://marketplace.visualstudio.com/items/Pendrica.Chef

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

20

 Initializing a Chef Repository
 Let’s get started by using one of the ChefDK features, a Chef generator, to generate us a complete application
using the chef generate app command, specifying our name and e-mail address (these values can
obviously be substituted with your own):

 PS C:\Users\StuartPreston> chef generate app chefazure-ch01 --copyright "Stuart Preston"
--email "stuart@pendrica.com"

 After a few seconds, you should see output similar to the following (note I have truncated the output).

 Compiling Cookbooks...
 Recipe: code_generator::app
 * directory[C:/Users/StuartPreston/chefazure-ch01] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch01

 [...]

 * directory[C:/Users/StuartPreston/chefazure-ch01/cookbooks] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch01/cookbooks
 * directory[C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01

 [...]

 Figure 1-14. Visual Studio Code main window on the Windows platform

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

21

 * directory[C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/recipes]
action create

 - create new directory C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/
recipes

 * template[C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/recipes/
default.rb] action create

 - create new file C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/
recipes/default.rb

 - update content in file C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/
recipes/default.rb from none to 7358b0

 (diff output suppressed by config)
 * directory[C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/spec/unit/

recipes] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch01/cookbooks/chefazure-ch01/

spec/unit/recipes

 [...]

 * execute[initialize-git] action run
 - execute git init .
 * cookbook_file[C:/Users/StuartPreston/chefazure-ch01/.gitignore] action create
 - create new file C:/Users/StuartPreston/chefazure-ch01/.gitignore
 - update content in file C:/Users/StuartPreston/chefazure-ch01/.gitignore from none to

33d469
 (diff output suppressed by config)

 We can see from the output that we created a new directory chefazure-ch01 and generated some files
there. We can also see that git init . was executed in that directory, which means it is ready for use with
Git commands executed locally.

 ■ Tip If you would like to learn more about Git basics, there’s a great reference available online at
 http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository

 Modifying and Running the Default Recipe
 If we open up the directory chefazure-ch01 within our code editor and navigate to cookbooks/chefazure-
ch01/recipes/default.rb we are now looking at our default recipe for the cookbook chefazure-ch01 .

 Let’s add a file resource that writes a file to our home directory. Edit the file so that it looks similar to the
below. On OS X and Linux platforms change the file name (chefazure.txt) to a writable location (e.g., /tmp/
chefazure.txt)

 #
 # Cookbook Name:: chefazure-ch01
 # Recipe:: default
 #
 # Copyright (c) 2015 Stuart Preston, All Rights Reserved.

http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

22

 file 'chefazure.txt' do
 action :create
 content 'Using Chef with Azure'
 end

 ■ Tip The Ruby language style guide encourages the use of two spaces per indentation level. Many editors
have 4 spaces or a Tab as the default setting. This can usually be changed in your code editor’s settings. For
further discussion see https://github.com/bbatsov/ruby-style-guide#source-code-layout

 This recipe should create a file with the specified contents. We can run the recipe on our local machine
and manually inspect the file to ensure this recipe is working as expected. When we installed the ChefDK
on our machine, a Chef Client was also installed and we can use this in ‘local mode’, which allows us to
execute recipes without the use of a Chef server.

 Ensuring you are running PowerShell “as Administrator” on Windows or via sudo on OS X and Linux
we can run chef-client --local-mode from the root of the chef repository:

 PS C:\Users\StuartPreston\chefazure-ch01> chef-client --local-mode .\cookbooks\chefazure-
ch01\recipes\default.rb

 [2015-11-14T13:45:29+00:00] WARN: No config file found or specified on command line, using
command line options.
 Starting Chef Client, version 12.5.1
 resolving cookbooks for run list: []
 Synchronizing Cookbooks:
 Compiling Cookbooks...
 [2015-11-14T13:45:48+00:00] WARN: Node DESKTOP-TIDJ3S8 has an empty run list.
 Converging 1 resources
 Recipe: @recipe_files::C:/users/stuartpreston/chefazure-ch01/cookbooks/chefazure-ch01/
recipes/default.rb
 * file[chefazure.txt] action create
 - create new file chefazure.txt
 - update content in file chefazure.txt from none to 7ba0df
 --- chefazure.txt 2015-11-14 13:45:48.000000000 +0000
 +++ ./chefazure.txt20151114-6260-1z0avyn 2015-11-14 13:45:48.000000000 +0000
 @@ -1 +1,2 @@
 +Using Chef with Azure

 Running handlers:
 Running handlers complete
 Chef Client finished, 1/1 resources updated in 19 seconds

https://github.com/bbatsov/ruby-style-guide#source-code-layout

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

23

 Let’s find this file (it will have been created at the root of the first drive on your system) and modify it
using a text editor (remembering to run this text editor as Administrator or via sudo). Change the text in the
file to read 'Using Chef with Microsoft Azure'

 Now let’s run the chef-client again to see what happens:

 PS C:\Users\StuartPreston\chefazure-ch01> chef-client --local-mode .\cookbooks\chefazure-
ch01\recipes\default.rb

 Converging 1 resources
 Recipe: @recipe_files::C:/users/stuartpreston/chefazure-ch01/cookbooks/chefazure-ch01/
recipes/default.rb
 * file[chefazure.txt] action create
 - update content in file chefazure.txt from 2331dd to 7ba0df
 --- chefazure.txt 2015-11-14 13:51:43.000000000 +0000
 +++ ./chefazure.txt20151114-6776-fy5dz7 2015-11-14 13:52:10.000000000 +0000
 @@ -1,2 +1,2 @@
 -Using Chef with Microsoft Azure
 +Using Chef with Azure

 Running handlers:
 Running handlers complete
 Chef Client finished, 1/1 resources updated in 20 seconds

 We can see that the Chef client restored our file back to the desired state as described in our recipe. The
corrective action taken was based on the state of the machine at the time of recipe execution. This was a
simple example, but it demonstrates that being able to describe configuration in terms of a desired state is
very powerful as we will see throughout the book.

 We have seen how we can execute recipes in local mode but what if we want to run that recipe on a
target machine, or across tens, hundreds or thousands of machines? We need to upload our recipes so
others can consume them. We need an account on a Chef Server.

 Getting Started with Hosted Chef
 As we mentioned earlier in the chapter Chef Server can be hosted locally, in a cloud provider or we can use
an account on servers that are hosted by Chef themselves. For the purpose of this this section we’re going
to sign up for a Hosted Chef account and connect our local Chef Client to it; that way we can upload our
cookbooks to it and execute them using our local machine as a node, exactly how we would in a production
scenario.

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

24

 You’ll be asked to provide some details such as your name and e-mail address. After pressing the
 Get Started button you will immediately be sent an e-mail as shown in Figure 1-16 .

 Figure 1-15. Signing up for Hosted Chef via https://manage.chef.io/signup

 First of all we need to visit https://manage.chef.io/signup in a browser as shown in Figure 1-15 .

https://manage.chef.io/signup
https://manage.chef.io/signup

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

25

 Figure 1-16. Validation e-mail that is received when you sign up to Hosted Chef

 After clicking the link in the e-mail you are taken to a page as shown in Figure 1-17 where you can
associate a password with your account.

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

26

 Figure 1-17. Associating a password with your Hosted Chef account

 After pressing Create User, you are signed in to the Chef Manage site and a message is displayed
(as shown in Figure 1-18):

 Figure 1-18. Welcome to Chef Manage (Hosted Chef)

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

27

 ■ Tip I recommend creating an Organization with the name <CompanyName>-<OrganizationName> as this
is a shared service and Organizations are named on a first-come-first-served basis.

 Press the Create New Organization button and enter the requested details as shown in Figure 1-19 .

 Once the Organization has been created you’ll be taken to a page where you can download a ‘Starter
Kit’ as shown in Figure 1-20 .

 Figure 1-19. Creating an Organization within Hosted Chef

 Figure 1-20. Getting Started page on Hosted Chef

CHAPTER 1 ■ CONFIGURATION MANAGEMENT USING CHEF

28

 The Starter Kit is a zip file that contains a number of files and is by far the quickest way to get your
generated keys from the Chef Server. The kit contains:

• A user private key file (file name: username.pem) that allows you to perform actions
against the organization.

• An organization validator private key file (file name: orgname-validator.pem) that
allows you to join nodes to the organization.

• A Knife configuration file called knife.rb that is used with all commands that talk to
the hosted Chef server.

• A ‘starter’ cookbook.

 ■ Note Do not download the starter kit more than once as this will reset your access to this Chef
organization!

 We’re not too interested in the starter cookbook as we’ve already shown we can generate one for
ourselves, but download the chef-starter.zip and extract the contents into your home folder. You will now
have a directory called chef-repo containing a . chef folder inside it, where all the configuration files are
located. We will be taking the contents of this folder and using them as we progress through the book, so
keep it safe.

 ■ Warning Be sure not to check the .chef folder into source control, especially not a publicly hosted Git
solution such as GitHub.

 In later chapters, we’ll be using these keys to connect our repository to the Chef Server, uploading a
cookbook, and working through a more advanced scenario in Azure. For now, you have everything you need
locally to progress through the rest of the examples in this book.

 Summary
 In this chapter we familiarized ourselves with Chef’s architecture, installed all the tools required for day-to-
day development with Chef, and had a brief refresher on recipe development. I could write a whole book
on using Chef but it would be of little value as the resources available online at http://learn.chef.io are
comprehensive and very usable. Later in this book we will be stepping through a number of more advanced
examples in detail, so don’t worry if you are not at expert level yet.

 In the following chapters we will be focusing in on how we can use Chef with Microsoft Azure, including
some of the best practices for building quality into your Infrastructure as Code pipeline while building a
scalable and secure platform in Azure.

http://learn.chef.io/

29© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_2

 CHAPTER 2

 Microsoft Azure Terminology
and Concepts

 Now that we understand the importance of platform automation and had a brief refresher on the key
concepts of using Chef for configuration management, let’s have a look at what you need to know about the
Azure platform in order to get automating!

 In this chapter we’ll take a brief look at the history of Azure for the newcomer to the platform, then
familiarize ourselves with key terminology for deploying to Azure and ensure you have all the tools installed
to successfully automate Azure using Chef.

 In this book we are focusing on the latest features of Azure, based around Azure Resource Manager
(ARM) stack and the latest portal features that are available at https://portal.azure.com

 We won't be looking at older features of Azure Virtual Machines (sometimes referred to as “Classic”
compute resources) such as using the old management portal available from https://manage.
windowsazure.com , or using the Service Management APIs although we may mention them from time to
time if there is no other way to accomplish a task. These features have mostly been superseded now by the
features in Azure Resource Manager (ARM) .

 ■ Note The pace of updates to the Azure platform and tools from Microsoft will likely mean that the
screenshots seen here may become out of date, so don’t be surprised if a button or some text cannot be found
or doesn’t match the book exactly.

 Deploying to the Microsoft Azure Platform
 The Windows Azure platform was released in 2010, initially offering Platform-as-a-Service (PaaS) “Hosted
services” such as Web and Worker roles, and storage capabilities such as queues and table storage for those
organizations who had the capability to develop their solutions based on the .NET stack.

 In April 2013, Microsoft released Windows Azure Infrastructure Services to general availability, allowing
finally the creation of Infrastructure-as-a-Service (IaaS) solutions. Initially a limited set of Windows Server
and Linux operating systems were available and since then more vendors have come to the platform.

 In 2014 the platform was renamed to Microsoft Azure, to make it clear that it isn’t just Windows
resources that you can create on their compute platform. Currently, Linux makes up over 25% of all IaaS
compute resource on Azure, and as of November 2015 more than 57% of Fortune 500 companies are using
Azure in their environment.

https://portal.azure.com/
https://manage.windowsazure.com/
https://manage.windowsazure.com/

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

30

 Much has been written on IaaS versus PaaS and the distinction is fairly well understood (see Figure 2-1
below). In a nutshell, with IaaS you get to manage and operate everything from the OS upwards, whereas
with PaaS you only have to worry about deploying your Applications and Data on top of the platform.

 Figure 2-1. Separation of Responsibilities - On-Premises vs. IaaS vs. PaaS

 One thing that is common to both IaaS and PaaS architectures is that deployment orchestration across
different types of resources is the responsibility of the end user and you need automation tooling to help
you do this. In Azure the primary way of achieving this orchestration is through the use of Azure Resource
Manager (ARM) templates.

 The majority of Azure Services are in the PaaS category, and with Azure Resource Manager we can
combine IaaS and PaaS based deployments, which means we can deploy web sites or boot up virtual
machines using the same set of underlying technologies. We’ll cover hybrid deployment scenarios like this
in the advanced topics toward the rear of the book.

 So remember that while we mostly talk about configuring IaaS environments in this book, the lines
are now very much blurred, and it is easy to see how a single deployment can easily be made up of both
PaaS and IaaS resources. PaaS generally has a lower surface area for management, which is great because it
eliminates the need for patching and upgrading the platform; however it is not so great when you need to
customize the underlying platform or manage intricate dependencies.

 We’re going to use the rest of this chapter to make sure we are familiar with the Azure platform and the
components and terminology you will need to work with when automating it.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

31

 Subscriptions, Tenants, and Regions
 When we start to talk about management of Azure, the terms Subscription , Tenant, and Region often get
confused and we’ll be using them quite a bit in this book; so this section will recap the terms. Figure 2-2
shows the relationships between the three terms. At a high level:

• The subscription identifies the owner of the subscription and the method
of payment (you may see this referred to in Azure-parlance as the Payment
Instrument). Subscriptions are given a name and ID and resources you create
in Azure can be associated to this subscription. A subscription is not tied to a
particular region and is associated with a tenant .

• The tenant is the directory name that was created when you created your first
Subscription (unless you added your custom domain already, it probably has a
domain name like contoso.onmicrosoft.com).

• The region describes the location of the datacenter where you want your primary
resources to be located: for example, ‘West US’ is the region identifier for resources
that are hosted in the California datacenter.

 Let’s drill into each one of these terms a little further.

 Figure 2-2. Regions, Tenants, and Subscriptions in Microsoft Azure

 Subscriptions
 To follow the exercises and examples in this book, we’ll need to use an Azure subscription . There are many
ways of purchasing Microsoft Azure and we won’t cover them here; but if you need a free trial you can visit
 https://azure.microsoft.com/en-us/pricing/free-trial/

 For the examples in the book, you will need the Subscription GUID for the subscription you wish to
work with. This can be obtained by following these steps:

 1. Navigate to the Azure portal at https://portal.azure.com and log in
remembering to use the account you signed up with.

 2. Click the Browse All icon on the left-hand side of the portal.

 3. In the menu that appears, click Subscriptions , as shown in Figure 2-3 .

https://azure.microsoft.com/en-us/pricing/free-trial/
https://portal.azure.com/

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

32

 ■ Note If you are a developer or IT professional with a Microsoft Visual Studio with MSDN subscription, are
a Microsoft Partner, or you are a startup who qualifies for BizSpark, then you are very likely to have access to
free monthly Azure credits. See http://azure.microsoft.com/en-us/pricing/member-offers/ for further
details.

 Tenants
 A tenant refers to a dedicated instance of Azure Active Directory (Azure AD) for your organization. Typically,
a tenant is referred to by its default directory name: for example, contoso.onmicrosoft.com and it also has a
globally unique identifier (GUID) that in general is not used publicly, but is used in automation scenarios.

 When you sign up to Microsoft Azure or Office 365, you are allocated a directory automatically, and
custom domain names can be added afterwards. Your users and roles are created in the directory.

 Active Directory properties are only accessible from the “old” portal at https://manage.windowazure.com
(as shown in Figure 2-4) so this is one of the few times you may need to access this portal until the functionality
can be replicated in the new portal located at https://portal.azure.com

 Figure 2-3. Finding the Subscription GUID in the Azure Management Portal

http://azure.microsoft.com/en-gb/pricing/member-offers/
https://manage.windowazure.com/
https://portal.azure.com/

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

33

 Regions
 At the time of writing, Microsoft Azure is available for purchase in 140 countries and from those countries
you can provision and deploy compute resource in over 20 regions (plus China, which is managed
independently and is not generally available unless your company has a legal entity located there). More
regions have already been announced for 2016 in the United Kingdom and in Germany.

 ■ Note Not all machine sizes and services are available in all regions, and this may also influence your
decision about where to locate your compute resource. You can view the full list of services by region at
 http://azure.microsoft.com/en-us/regions/#services

 When planning to deploy an application to Microsoft Azure it is important to take datacenter location
and any usage restrictions into account. Table 2-1 lists the current Microsoft Azure regions. More are being
added each year to provide better global coverage and lower latency.

 Figure 2-4. Viewing a tenant in the management portal

http://azure.microsoft.com/en-us/regions/#services

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

34

 Note that Australian regions are available only to customers with billing addresses in Australia or New
Zealand. For an up-to-date list of regions and service availability, visit http://azure.microsoft.com/
en-us/regions/

 Selecting Your Nearest Region
 If you have some experience running applications that consume data from across the Internet, you’ll know
that latency (typically measured as the gap in milliseconds between sending and receiving packets of data)
is an important factor in the perceived performance of an application. This is also a key consideration
when you select the location of your resources to minimize the latency when using the Microsoft Azure
management portal or automation tools. So before we dive in to the exercises it is useful to find out your
nearest datacenter location.

 We can make an approximation of your nearest datacenter by visiting http://azurespeed.com
(thank you, Blair Chen) in a web browser as seen in Figure 2-5 .

 Table 2-1. Global Microsoft Azure regions and corresponding
datacenter locations, as of November 2015

 Azure Region Location

 Central US Iowa

 East US Virginia

 East US Virginia

 US Gov Iowa Iowa

 US Gov Virginia Virginia

 North Central US Illinois

 South Central US Texas

 West US California

 North Europe Ireland

 West Europe Netherlands

 East Asia Hong Kong

 Southeast Asia Singapore

 Japan East Tokyo, Saitama

 Japan West Osaka

 Brazil South Sao Paulo State

 Australia East New South Wales

 Australia Southeast Victoria

 Central India Pune

 South India Chennai

 West India Mumbai

www.allitebooks.com

http://azure.microsoft.com/en-us/regions/
http://azure.microsoft.com/en-us/regions/
http://azurespeed.com/
http://www.allitebooks.org

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

35

 We can see from the screenshot that my nearest datacenter is in the Netherlands (West Europe). So for
my examples I’ll be choosing ‘West Europe’ as the primary location for my resources.

 Now we know where we’re going to host our resources (region name), the name of our active directory
(tenant), and who is paying (subscription); now we can advance through the rest of the chapter and get our
environment set up with the right tools.

 Managing Azure from the Command Line
 There are two ways to manage Azure from the command line - you can either use the Azure Command-
line tools (referred to as azure-cli), which is a stand-alone, cross-platform (Windows, OS/X and Linux)
application written in node.js, or you can use the Azure PowerShell cmdlets , which run natively on the
Windows platform. There is no explicit feature parity between the two tools, but in general they both release
at similar times as new functionality is released in Azure.

 ■ Note Chef tools such as Chef-Provisioning communicate with Azure’s Resource Management API via a
separate cross-platform library so these command-line tools are only required on your workstations to help you
manage your subscriptions.

 Figure 2-5. Using azurespeed.com to determine your nearest datacenter

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

36

 The tool you use will most likely be dictated by the platform you and your team generally work on - if
your day-to-day job is mostly managed from the Windows environment then the PowerShell cmdlets are
likely be most convenient to you. If you are running on OS/X or a Linux platform, then you are limited in
choice to the Azure CLI only.

 In this book, command-line examples are provided in both Azure- cli and PowerShell forms where
possible. You should start by installing the tools you need. The tools are updated regularly so even if you
think you’ve installed a recent version, it may not contain the latest updates. You should use this time to find
the latest available versions and update if necessary.

 To install the command-line tools, we need to start by visiting https://azure.microsoft.com/
downloads , which will direct you to the correct language version of the site. You’ll need to scroll down to the
Command-line tools section, which is at the bottom of the page, and select the installer you want as shown
in Figure 2-6 .

 Figure 2-6. Download location for Azure Command-line tools

 Installing the Tools (Windows)
 In Windows , you can choose to install both the command-line tools and the PowerShell cmdlets via the
same WebPI 5.0 installer. It actually doesn’t matter which installer you select first, because once installation
of the first one is completed you are given the option to install the remaining tools.

 Azure-cli
 Let’s start by installing the command-line tools by running the installer and pressing Install (as shown in
Figure 2-7) .

https://azure.microsoft.com/downloads
https://azure.microsoft.com/downloads

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

37

 After installation of the command-line tools, you are given the opportunity to add the Microsoft Azure
PowerShell tools to the installation. I recommend declining this option. Why? Because the PowerShell
modules are now available on the PowerShell Gallery, so they are installable and updatable via the excellent
PSGet (see http://psget.net).

 If you have a copy of Visual Studio installed on your machine, I recommend adding the Microsoft
Azure SDK for .NET though - this will give you some visual help writing Azure Resource Manager
deployment templates in JSON.

 Now that we have the tools installed we can skip to the next stage, which is to verify the installation.

 PowerShell (PSGet)

 ■ Note If you do not have PSGet installed, you will need to install it from http://psget.net

 To install the PowerShell cmdlets via PSGet, open an administrative/elevated PowerShell window and
use the Install-Module AzureRM cmdlet:

 PS C:\WINDOWS\system32> Install-Module AzureRM

 Figure 2-7. Web Platform Installer 5.0 installation of Microsoft Azure Cross-platform Command-line tools

http://psget.net/
http://psget.net/

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

38

 You may get a prompt about installing the modules from an untrusted repository:

 You are installing the module(s) from an untrusted repository. If you trust this
repository, change its InstallationPolicy value by running the Set-PSRepository cmdlet.

 Are you sure you want to install software from 'https://www.powershellgallery.com/api/v2/'?
 [Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "N"): Y

 The AzureRM PowerShell module has a number of dependent modules. We can install these using the
 Install-AzureRM command:

 PS C:\WINDOWS\system32> Install-AzureRM

 Installing AzureRM modules.
 AzureRM.Profile 0.10.0 installed [1/24]...
 Azure.Storage 0.10.1 installed [2/24]...
 AzureRM.ApiManagement 0.10.0 installed [3/24]...
 AzureRM.Automation 0.10.0 installed [4/24]...
 AzureRM.Backup 0.10.0 installed [5/24]...

 [...]
 AzureRM.StreamAnalytics 0.10.0 installed [20/24]...
 AzureRM.Tags 0.10.0 installed [21/24]...
 AzureRM.TrafficManager 0.10.0 installed [22/24]...
 AzureRM.UsageAggregates 0.10.0 installed [23/24]...
 AzureRM.Websites 0.10.0 installed [24/24]...

 Installing the Tools (Mac OS X)
 If you are a Node.js user already, you should be able to install the Azure-cli by using the Node.js package
manager, NPM:

 $ npm install -g azure-cli

 Otherwise you’ll have to install from the downloaded package, as shown in Figure 2-8 . After launching
the installer, accept all the defaults and proceed to the verification steps.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

39

 Installing the Tools (Linux)
 On the Linux platform we are basically restricted to the option of installing via the Node.js package manager
(NPM) or via a separately downloaded package.

 Ubuntu/Debian

 $ sudo apt-get install nodejs-legacy
 $ sudo apt-get install npm
 $ sudo npm install -g azure-cli

 RedHat /CentOS

 $ sudo yum install nodejs-legacy
 $ sudo yum install npm
 $ sudo npm install -g azure-cli

 Figure 2-8. Installing the command-line tools on Mac OS X

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

40

 Logging In and Verifying Command-line Tools Connectivity
 Now that we have all tools we need installed, let’s see if we can connect to Azure and list the available
subscriptions. We do this with the azure-cli by using the azure login command . In PowerShell we need to
use the Add-AzureAccount cmdlet.

 Azure-cli
 First of all, we need to log in by using the azure login --username <your-username> command (note the
use of two dashes --). The cli requests the password for your account.

 PS C:\Users\StuartPreston> azure login --username stuart@pendrica.com

 info: Executing command login
 Password: **********
 info: Added subscription Microsoft Partner Network
 info: Added subscription Pendrica Production
 info: login command OK

 To list the available subscriptions, use the azure account list command:

 PS C:\Users\StuartPreston> azure account list

 info: Executing command account list
 data: Name Id Current State
 data: ------------------------- ------------------------------------ ------- --------
 data: Microsoft Partner Network b6e7eee9-YOUR-GUID-HERE-03ab624df016 true Enabled
 data: Pendrica Production bcf669fc-YOUR-GUID-HERE-e2d1f9f4b1c3 false Enabled
 info: account list command OK

 If you want to change the active subscription, you can use the azure account set command. Below I am
setting the active subscription to my Microsoft Partner Network subscription:

 PS C:\Users\StuartPreston> azure account set "Microsoft Partner Network"

 info: Executing command account set
 info: Setting subscription to "Microsoft Partner Network" with id
 "b6e7eee9-YOUR-GUID-HERE-03ab624df016".
 info: Changes saved
 info: account set command OK

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

41

 We can view the Tenant ID for a given subscription by using the Subscription ID and passing it into the
 azure account show command:

 PS C:\Users\StuartPreston> azure account show b6e7eee9-YOUR-GUID-HERE-03ab624df016

 info: Executing command account show
 data: Name : Microsoft Partner Network
 data: ID : b6e7eee9-YOUR-GUID-HERE-03ab624df016
 data: State : Enabled
 data: Tenant ID : 9c117323-YOUR-GUID-HERE-9ee430723ba3
 data: Is Default : true
 data: Environment : AzureCloud
 data: Has Certificate : Yes
 data: Has Access Token : Yes
 data: User name : stuart@pendrica.com
 data:

 Finally, to make sure we are creating our resources in Azure Resource Manager mode we need to switch
to ARM mode; for this we use the azure config mode arm command:

 PS C:\Users\StuartPreston> azure config mode arm

 info: New mode is arm

 To confirm we are in the correct (ARM) mode, we can use the azure config list command:

 PS C:\Users\StuartPreston> azure config list

 info: Getting config settings
 data: Setting Value
 data: ------- -----
 data: mode arm

 We now have a fully configured azure-cli installation that we can use for the rest of the examples.

 PowerShell
 If you’re not on Windows, you are free to skip to the next section. We’re going to configure Windows
PowerShell so we are ready to use it for the remaining examples in the book. First of all, we need to log in by
using the Login-AzureRmAccount command. This should launch a browser window (as shown in Figure 2-9)
to request credentials. You will need to provide your username and password.

 PS C:\Users\StuartPreston> Login-AzureRmAccount

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

42

 After entering your username and password, you will be logged in and now need to set a
subscription to work with. To list the available subscriptions and their state using PowerShell, use the
 Get-AzureRmSubscription command:

 PS C:\Users\StuartPreston> Get-AzureRmSubscription | Select SubscriptionId, SubscriptionName

 SubscriptionId SubscriptionName
 -------------- ----------------
 b6e7eee9-YOUR-GUID-HERE-03ab624df016 Microsoft Partner Network
 bcf669fc-YOUR-GUID-HERE-e2d1f9f4b1c3 Pendrica Production

 If you need to change which subscription is the active or current one using PowerShell, use the
 Select-AzureSubscription command:

 PS C:\Users\StuartPreston> Select-AzureRmSubscription -SubscriptionName
"Microsoft Partner Network"

 Environment : AzureCloud
 Account : stuart@pendrica.com
 TenantId : 9c117323-YOUR-GUID-HERE-9ee430723ba3
 SubscriptionId : b6e7eee9-YOUR-GUID-HERE-03ab624df016
 CurrentStorageAccount :

 We are now ready to create resources in the cloud with Azure Resource Manager, but before that we
need to understand a bit more about Resource groups.

 Figure 2-9. Browser dialog launched during Login-AzureRmAccount cmdlet

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

43

 Azure Resource Groups
 Resource Groups in Azure let you manage all resources (such as web sites, virtual machines, storage,
databases, and networks) for an application together.

 A resource group typically include all of the resources for an application, but you can also use them
as a container for resources that are logically grouped together: perhaps a set of shared services that other
applications use. You can decide how you want to allocate resources to resource groups based on what
makes the most sense for your organization.

 Resources in Azure are classified into providers, and there are three core providers for IaaS resources -
Microsoft.Network, Microsoft.Compute, and Microsoft.Storage. An example of this is shown in Figure 2-10 .

 Figure 2-10. Resources inside a single Resource Group for a single application

 One of the key benefits of Resource Groups is that you can reuse server names for the same resource but
in different resource groups. This is a great advancement for testing purposes as the machine names will not
change according to which environment you are in (of course there are some notable exceptions to this such
as Storage Accounts and Public IP addresses).

 ■ Note Deleting a resource group will delete all the resources contained within it.

 As your application evolves over time you’ll need the ability to describe the entire resource group and
its dependencies in a way where we can start with the application topology in one shape and end up in
another. This is exactly the use case for Azure Resource Manager templates.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

44

 Azure Resource Manager Templates
 Azure Resource Manager allows you to define a simple template (in JSON format) that defines deployment
and configuration of your application. Using the template, you can repeatedly deploy your application
throughout the application life cycle and have confidence your resources are deployed in a consistent state.

 Resource Manager is declarative and idempotent - declarative in this case meaning the document
describes the target state for each resource, and idempotent in our world means that we can execute the
script multiple times and get the same result. Which is very useful for testing, of course!

 Resource Manager ensures that the resources for a configuration are created in the correct order to
preserve the dependencies and references. For example, Resource Manager will not create the NIC for a
virtual machine until it has created the virtual network with a subnet and an IP address. You can specify
parameters in your template to allow for customization and flexibility in deployment. For example, you can
pass parameter values that tailor deployment for your test environment. By specifying the parameters, you
can use the same template for deployment to all of your environments.

 Finally, because it is a JSON document, you can check it in to your source code repository and update it
as your architecture evolves.

 Resource Manager Template Structure
 It is important to understand the structure of a template before diving into hundreds of lines of code, so let’s
have an in-depth look at a template. An empty Azure Resource Manager (ARM) deployment template looks
like the following:

 Listing 2-1. Blank ARM deployment template

 {
 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.

json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 },
 "variables": {
 },
 "resources": [
],
 "outputs": {
 }
 }

 Even if you don’t understand JSON just yet, don’t worry. A JSON document always has lots of curly
brackets that are used to group items together, and brackets not being matched is one of the primary causes
of template deployment failure.

 There are some tools that will help you ensure you minimize mistakes with the files when you modify
them, and we’ll discuss these as we get further into the book. For now, we just want to understand how a
template is composed as understanding this is key to most of the automation techniques we’ll be using.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

45

 Example Resource Manager Template
 Here’s one of the simplest ARM templates that can be created. It creates a Storage account, Network
Interface, A VLAN with two subnets, and a VM in a specified location. Don’t worry if this looks daunting right
now; there are tools to help ensure you don’t make too many mistakes with the file.

 Listing 2-2. Populated ARM deployment template

 {
 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.

json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "vnetLocation": {
 "type": "string",
 "defaultValue": "West US",
 "allowedValues": [
 "East US",
 "West US",
 "West Europe",
 "East Asia",
 "South East Asia"
]
 },
 "storageName": {
 "type": "string"
 },
 "storageType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_GRS",
 "Standard_ZRS"
]
 },

 Table 2-2. Constituent parts of an ARM deployment template

 Key Description

 Parameters Used to specify configuration parameters that you wish to expose to the command
line or calling process for users to input.

 Variables Used to specify internally scoped variables for use across the deployment template.

 Resources Used to list an array of resources, and their type (identified by a provider name), and
their dependencies.

 Outputs Used to relay information back to the caller that is returned by the execution of the
deployment (e.g., a generated SQL Server instance name).

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

46

 "storageLocation": {
 "type": "string",
 "defaultValue": "West US",
 "allowedValues": [
 "East US",
 "West US",
 "West Europe",
 "East Asia",
 "South East Asia"
]
 },
 "vmName": {
 "type": "string"
 },
 "vmAdminUserName": {
 "type": "string"
 },
 "vmAdminPassword": {
 "type": "securestring"
 },
 "vmWindowsOSVersion": {
 "type": "string",
 "defaultValue": "2012-R2-Datacenter",
 "allowedValues": [
 "2008-R2-SP1",
 "2012-Datacenter",
 "2012-R2-Datacenter",
 "Windows-Server-Technical-Preview"
]
 }
 },
 "variables": {
 "vnetPrefix": "10.0.0.0/16",
 "vnetSubnet1Name": "Subnet-1",
 "vnetSubnet1Prefix": "10.0.0.0/24",
 "vnetSubnet2Name": "Subnet-2",
 "vnetSubnet2Prefix": "10.0.1.0/24",
 "vmImagePublisher": "MicrosoftWindowsServer",
 "vmImageOffer": "WindowsServer",
 "vmOSDiskName": "vmOSDisk",
 "vmVmSize": "Standard_D1",
 "vmVnetID": "[resourceId('Microsoft.Network/virtualNetworks', 'vnet')]",
 "vmSubnetRef": "[concat(variables('vmVnetID'), '/subnets/',

variables('vnetSubnet1Name'))]",
 "vmStorageAccountContainerName": "vhds",
 "vmNicName": "[concat(parameters('vmName'), 'NetworkInterface')]"
 },

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

47

 "resources": [
 {
 "name": "vnet",
 "type": "Microsoft.Network/virtualNetworks",
 "location": "[parameters('vnetLocation')]",
 "apiVersion": "2015-05-01-preview",
 "dependsOn": [],
 "tags": {
 "displayName": "vnet"
 },
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('vnetPrefix')]"
]
 },
 "subnets": [
 {
 "name": "[variables('vnetSubnet1Name')]",
 "properties": {
 "addressPrefix": "[variables('vnetSubnet1Prefix')]"
 }
 },
 {
 "name": "[variables('vnetSubnet2Name')]",
 "properties": {
 "addressPrefix": "[variables('vnetSubnet2Prefix')]"
 }
 }
]
 }
 },
 {
 "name": "[parameters('storageName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "location": "[parameters('storageLocation')]",
 "apiVersion": "2015-05-01-preview",
 "dependsOn": [],
 "tags": {
 "displayName": "storage"
 },
 "properties": {
 "accountType": "[parameters('storageType')]"
 }
 },
 {
 "name": "[variables('vmNicName')]",
 "type": "Microsoft.Network/networkInterfaces",
 "location": "[parameters('vnetLocation')]",
 "apiVersion": "2015-05-01-preview",

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

48

 "dependsOn": [
 "[concat('Microsoft.Network/virtualNetworks/', 'vnet')]"
],
 "tags": {
 "displayName": "vmNic"
 },
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "subnet": {
 "id": "[variables('vmSubnetRef')]"
 }
 }
 }
]
 }
 },
 {
 "name": "[parameters('vmName')]",
 "type": "Microsoft.Compute/virtualMachines",
 "location": "[parameters('vnetLocation')]",
 "apiVersion": "2015-05-01-preview",
 "dependsOn": [
 "[concat('Microsoft.Storage/storageAccounts/', parameters('storageName'))]",
 "[concat('Microsoft.Network/networkInterfaces/', variables('vmNicName'))]"
],
 "tags": {
 "displayName": "vm"
 },
 "properties": {
 "hardwareProfile": {
 "vmSize": "[variables('vmVmSize')]"
 },
 "osProfile": {
 "computername": "[parameters('vmName')]",
 "adminUsername": "[parameters('vmAdminUsername')]",
 "adminPassword": "[parameters('vmAdminPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "[variables('vmImagePublisher')]",
 "offer": "[variables('vmImageOffer')]",
 "sku": "[parameters('vmWindowsOSVersion')]",
 "version": "latest"
 },

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

49

 "osDisk": {
 "name": "vmOSDisk",
 "vhd": {
 "uri": "[concat('http://', parameters('storageName'),

'.blob.core.windows.net/', variables('vmStorageAccount
ContainerName'), '/', variables('vmOSDiskName'), '.vhd')]"

 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces',

variables('vmNicName'))]"
 }
]
 }
 }
 }
],
 "outputs": {
 }
 }

 Let’s now go through the constituent parts of this template to get an understanding of the patterns
involved.

 Parameters
 Parameters are the external inputs to the template and can be set externally by both the command-line
tools and Windows PowerShell. We can see in this case there are eight parameters added - vnetLocation,
storageName, storageType, storageLocation, vmName, vmAdminUserName, vmAdminPassword,
vmWindowsOSVersion.

 "parameters": {
 "vnetLocation": {
 "type": "string",
 "defaultValue": "West US",
 "allowedValues": [
 "East US",
 "West US",
 "West Europe",
 "East Asia",
 "South East Asia"
]
 },

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

50

 "storageName": {
 "type": "string"
 },
 "storageType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_GRS",
 "Standard_ZRS"
]
 },
 "storageLocation": {
 "type": "string",
 "defaultValue": "West US",
 "allowedValues": [
 "East US",
 "West US",
 "West Europe",
 "East Asia",
 "South East Asia"
]
 },
 "vmName": {
 "type": "string"
 },
 "vmAdminUserName": {
 "type": "string"
 },
 "vmAdminPassword": {
 "type": "securestring"
 },
 "vmWindowsOSVersion": {
 "type": "string",
 "defaultValue": "2012-R2-Datacenter",
 "allowedValues": [
 "2008-R2-SP1",
 "2012-Datacenter",
 "2012-R2-Datacenter",
 "Windows-Server-Technical-Preview"
]
 }
 }

 Each parameter has a type , a default value , and optionally a list of allowed values . For example, the
 vmWindowsOSVersion parameter is a string type and has a default value of 2012-R2-Datacenter . It also
has values that can be selected from the allowedValues list shown.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

51

 Variables
 Variables are internally scoped to the template: that is, they are only settable from within the template.
In the variables section, you construct values that can be used to simplify template language expressions.
Typically, these variables will be based on values provided from the parameters. The example below
demonstrates how to reference other elements, as well as introducing the concat() function:

 "variables": {
 "vnetPrefix": "10.0.0.0/16",
 "vnetSubnet1Name": "Subnet-1",
 "vnetSubnet1Prefix": "10.0.0.0/24",
 "vnetSubnet2Name": "Subnet-2",
 "vnetSubnet2Prefix": "10.0.1.0/24",
 "vmImagePublisher": "MicrosoftWindowsServer",
 "vmImageOffer": "WindowsServer",
 "vmOSDiskName": "vmOSDisk",
 "vmVmSize": "Standard_D1",
 "vmVnetID": "[resourceId('Microsoft.Network/virtualNetworks', 'vnet')]",
 "vmSubnetRef": "[concat(variables('vmVnetID'), '/subnets/',

variables('vnetSubnet1Name'))]",
 "vmStorageAccountContainerName": "vhds",
 "vmNicName": "[concat(parameters('vmName'), 'NetworkInterface')]"
 },

 Resources
 As you can see, a blank template requires one or more Resources added to it so that it has some work to do.
Each resource follows a very similar structure. Let’s examine the resource for the Storage account in the
example template:

 {
 "name": "[parameters('storageName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "location": "[parameters('storageLocation')]",
 "apiVersion": "2015-05-01-preview",
 "dependsOn": [],
 "tags": {
 "displayName": "storage"
 },
 "properties": {
 "accountType": "[parameters('storageType')]"
 }
 },

 Each resource has a name , type , location , and properties . It also defines any dependencies it has so that
Resource Manager can provision resources in order. As we spend more time with Resource Manager with
more complex examples, we’ll delve deeper into how things work.

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

52

 Outputs
 In the Outputs section, you specify values that are returned from deployment. For example, you could return
the URI to access a deployed resource.

 The following example shows a value that is returned in the Outputs section.

 {
 "outputs": {
 "siteUri" : {
 "type" : "string",
 "value": "[concat('http://',reference(resourceId('Microsoft.Web/sites',

parameters('siteName'))).hostNames[0])]"
 }
 }

 Expressions and Functions
 Expressions and functions extend the JSON that is available in the template and allow you to create values
that are not strict literal values. Expressions are enclosed with brackets ([and]), and are evaluated at
deployment time.

 Listed in Table 2-3 are some common expression functions:

 Table 2-3. Common Resource Manager template functions (from https://azure.microsoft.com/en-gb/
documentation/articles/resource-group-template-functions)

 Function Description

 base64 Returns the base64 representation of the input string.

 concat Combines multiple string values and returns the resulting string value. This function
can take any number of arguments.

 copyIndex Returns the current index of an iteration loop. For examples of using this function,
see Create multiple instances of resources in Azure Resource Manager.

 deployment Returns information about the current deployment operation.

 listKeys Returns the keys of a storage account. The resourceId can be specified by using the
resourceId function or by using the format providerNamespace/resourceType/
resourceName. You can use the function to get the primaryKey and secondaryKey.

 padLeft Returns a right-aligned string by adding characters to the left until reaching the total
specified length.

 parameters Returns a parameter value. The specified parameter name must be defined in the
parameters section of the template.

 provider Return information about a resource provider and its supported resource types. If no
type is provided, all of the supported types are returned.

 reference Enables an expression to derive its value from another resource’s runtime state.

 replace Returns a new string with all instances of one character in the specified string
replaced by another character.

(continued)

https://azure.microsoft.com/en-gb/documentation/articles/resource-group-template-functions
https://azure.microsoft.com/en-gb/documentation/articles/resource-group-template-functions

CHAPTER 2 ■ MICROSOFT AZURE TERMINOLOGY AND CONCEPTS

53

 The following example shows how to use several of the functions when constructing values:

 "variables": {
 "location": "[resourceGroup().location]",
 "usernameAndPassword": "[concat('parameters('username'), ':', parameters('password'))]",
 "authorizationHeader": "[concat('Basic ', base64(variables('usernameAndPassword')))]"
 }

 We can see the usernameAndPassword value uses the concat() function to join together the
username and password, which are passed in as parameters. We also see the authorizationHeader key uses
the base64() function to generate the base64 version of the usernameAndPassword variable.

 For now, you know enough about expressions and functions to understand the sections of the template.
For more detailed information about all of the template functions, including parameters and the format of
returned values, see https://azure.microsoft.com/en-gb/documentation/articles/resource-group-
template-functions/

 Summary
 In this chapter we learned about some of the key Microsoft terminology that will be required to automate
the provisioning and configuration management of Azure using Chef. There is obviously a lot more to learn
about Azure than I have covered in this chapter. There are some great resources available already so I have
only touched on the basics here.

 If you were able to follow through the examples and installations, then you have everything you need for
the upcoming chapters.

 Function Description

 resourceGroup Returns a structured object that represents the current resource group.

 resourceId Returns the unique identifier of a resource. You use this function when the resource
name is ambiguous or not provisioned within the same template.

 subscription Returns details about the subscription.

 toLower Converts the specified string to lower case.

 toUpper Converts the specified string to upper case.

 variables Returns the value of variable. The specified variable name must be defined in the
variables section of the template.

Table 2-3. (continued)

https://azure.microsoft.com/en-gb/documentation/articles/resource-group-template-functions/#comments
https://azure.microsoft.com/en-gb/documentation/articles/resource-group-template-functions/#comments

55© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_3

 CHAPTER 3

 Chef Azure VM Extensions

 Whether you have many years’ experience with Chef or just followed the online training material at
 http://learn.chef.io you will know that one of the first things you need to do when setting up an
environment is to bootstrap the machines you are working with. This means installing the Chef client onto
the target machines over the network. This chapter introduces the Chef VM Extensions for Azure, a more
efficient method of applying the Chef client onto a virtual machine and registering that node with your
Chef server.

 We’ll start by looking at the mechanics of Azure VM Extensions and discuss the benefits of using the
Chef VM Extension in place of the traditional Chef bootstrap process. We will then step through what you
need to do to install, configure, and troubleshoot the Chef VM Extensions in your environment.

 What Are Azure VM Extensions?
 Azure VM Extensions are lightweight pieces of software that extend VM functionality in some way. They
are managed by a process running on each compute resource called the VM Agent, which is installed by
default when creating a VM. If you’ve used a Windows virtual machine on Azure and ever had to reset an
administrator password through the portal, you’ll have used the features of the VM Agent.

 VM Extensions are stored in an Extension Gallery that is accessible to the VM at provisioning time. The
gallery is geo-replicated so that it is available in all regions. The VM Agent on each machine is responsible
for retrieving the extension to the local VM and then calling an Install, Update, or Uninstall command, which
then executes logic contained in scripts within the extension.

 During installation and once the Extension has been installed the status of the extension is reported
into an area of blob storage alongside the VM. This location can be read by the Resource Manager API
(and including the Portal) to give feedback.

 VM Extensions are useful because their state can be made visible externally without logging onto the
machine; they are also provisioned and de-provisioned independently of the machine itself, all of which
mean they lend themselves well to be used in configuration management scenarios. Figure 3-1 shows the
components of an Azure VM Extension.

http://learn.chef.io/

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

56

 ■ Note VM extensions can technically be added to any compute (VM) resource including those servicing PaaS
roles (such as web and worker processes); however we will focus on adding resource to IaaS resources only.

 Introducing Chef VM Extensions
 Chef worked with Microsoft to build and certify the Chef VM Extension as a more efficient way of enabling
the Chef client on a machine, demonstrating the integration points of Azure with vendor-based solutions
such as Chef.

 Azure Resource Manager (ARM) allows us to define complete infrastructure stacks and architectures to
be provisioned within Azure, including storage, network interfaces, public IP addresses, and load balancers.
One assumption that is often made that because the cloud is ‘public’ that all resources created on it are
public and therefore the only surface for management is through the front end. This is not the case for many
cloud providers - it is also possible to create virtual machines that are not externally accessible with a public
IP address.

 To bootstrap a VM with a Chef client in Azure the following requirements must be met:

• The target machine must have WinRM (Windows) or SSH (Linux) protocol enabled
and configured to be listening.

• You must be able to route to the machine directly, either over the Internet, VPN, or
ExpressRoute.

 Figure 3-1. Components of Azure VM Extensions

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

57

• Firewalls must be opened to allow connections to the target machine from your
client on ports TCP/5985-5986 (WinRM) or port TCP/22 (SSH).

• The target machine must have access to the Chef Server via HTTPS.

 But what if the nodes you wish to bootstrap are not directly accessible to the Internet or via a private
(VPN or ExpressRoute) network? We need an alternative approach. The Azure VM Extension is deployed as a
resource, so the prerequisites to use the extension are much simpler:

• The target machine only requires outbound network connectivity via an Internet
gateway to retrieve the installer files (enabled by default).

• The target machine must have access to the Chef Server via HTTPS.

 Enabling the client is attractive in an automation sense, as we can declare the extension at the machine
definition time, making it a time-saving option, too, when you are building many machines in parallel.

 To start working with the Chef VM Extension, we first need to find a suitable version from the Extension
Gallery so we can provision it.

 Chef Azure VM Extension Compatibility
 There are three different types of extensions published to the gallery; in fact we are probably only interested
in two of them. ChefClient is the name of the extension for Windows and LinuxChefClient is the name of
the extension for Linux. CentosChefClient only provides a Chef version 11 client and is not recommended
unless you are using a very old Chef server. You can see a list of the version compatibility for the Chef VM
Extension in Table 3-1 :

 Table 3-1. Chef VM Extension compatibility

 Extension Name Supported Operating Systems

 CentosChefClient CentOS 6.5+ (NB: Installs Chef Client version 11 only)

 ChefClient Windows Server 2008 (all variants including R2), Windows Server 2012 (all variants
including R2), Windows Server 2016 Technical Preview (experimental)

 LinuxChefClient Ubuntu 12.04+, CentOS 6.5+

 To get started let’s see which VM Extensions are available to us from the VM Extension Gallery.

 Listing the Available Chef VM Extension Versions from the VM
 Extension Gallery
 The easiest way to accomplish this is by using either the Azure command line interface (CLI) or Azure
PowerShell cmdlets (see chapter 2 if you have not installed or configured either tool yet). Let’s start with
demonstrating how to do this using the Azure-cli .

http://dx.doi.org/10.1007/978-1-4842-1476-3_2

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

58

 Azure-cli
 First we need to ensure we have a valid session by signing in using the azure login command and following
the instructions displayed on the screen:

 PS C:\Users\StuartPreston> azure login --username stuart@pendrica.com

 info: Executing command login
 Password: **********
 info: Added subscription Microsoft Partner Network
 info: Added subscription Pendrica Production
 info: login command OK

 Once we have logged in, ensure that you are in ARM mode by using the azure config mode arm
command:

 PS C:\Users\StuartPreston> azure config mode arm

 info: New mode is arm

 The Azure-cli has a number of commands that relate to VM resource extensions. These can be seen by
typing azure vm extension-image at the command line:

 PS C:\Users\StuartPreston> azure vm extension-image

 help: Commands to manage VM resource extension images
 help:
 help: Lists virtual machine/extension image publishers
 help: vm extension-image list-publishers [options] <location>
 help:
 help: Lists virtual machine extension image types by a publisher
 help: vm extension-image list-types [options] <location> <publisher>
 help:
 help: Lists virtual machine extension image versions by publisher and type input
 help: vm extension-image list-versions [options] <location> <publisher> <typeName>
 help:
 help: Lists virtual machine extension images by publisher, and type input
 help: vm extension-image list [options] <location> <publisher> <typeName>
 help:
 help: Lists virtual machine extension image versions by publisher, type and version
input
 help: vm extension-image show [options] <location> <publisher> <typeName> <version>
 help:
 help: Options:
 help: -h, --help output usage information
 help:
 help: Current Mode: arm (Azure Resource Management)

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

59

 We’re interested first in using the azure vm extension-image list-types command to get a list of the
image types that can be assigned to our VM. For this we need to know the datacenter location
(e.g., West Europe) and the publisher name, which in our case is Chef.Bootstrap.WindowsAzure :

 PS C:\Users\StuartPreston> azure vm extension-image list-types

 info: Executing command vm extension-image list-types
 Location: West Europe
 Publisher: Chef.Bootstrap.WindowsAzure
 + Getting virtual machine extension image types (Publisher: "Chef.Bootstrap.WindowsAzure"
Location:"westeurope")
 data: Publisher Type Location
 data: --------------------------- ---------------- ----------
 data: Chef.Bootstrap.WindowsAzure CentosChefClient westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient westeurope
 data: Chef.Bootstrap.WindowsAzure LinuxChefClient westeurope
 info: vm extension-image list-types command OK

 We can see the three types of VM Extension are available to us; but to use the VM Extension in our ARM
templates, we need the version number too. This is retrieved by the use of the azure vm extension-image
list-versions command. In addition to the datacenter location and publisher, we also now need to supply
the VM extension type name:

 PS C:\Users\StuartPreston> azure vm extension-image list-versions

 info: Executing command vm extension-image list-versions
 Location: West Europe
 Publisher: Chef.Bootstrap.WindowsAzure
 TypeName: ChefClient
 - Getting virtual machine extension image verions (Publisher: "Chef.Bootstrap.
WindowsAzure" Type:"ChefClient" Location:"westeurope")
 data: Publisher Type Version Location
 data: --------------------------- ---------- ---------------- ----------
 data: Chef.Bootstrap.WindowsAzure ChefClient 11.10.4 westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient 11.12.0.0 westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient 11.18.6.2 westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient 1207.12.3.0 westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient 1210.12.100.1000 westeurope
 data: Chef.Bootstrap.WindowsAzure ChefClient 1210.12.4.1000 westeurope
 info: vm extension-image list-versions command OK

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

60

 PowerShell
 For PowerShell , we need to use the combination of the Get-AzureVMImagePublisher , Get-
AzureVMExtensionImageType , and Get-AzureVMExtensionImage cmdlets to retrieve a list of valid
extension versions:

 First of all, we need to ensure we are logged in with the correct account:

 PS C:\Users\StuartPreston> Login-AzureRmAccount

 A web page will be presented, allowing you to sign in with your Organizational ID. You should then be
logged in, and presented your account information:

 Environment : AzureCloud
 Account : stuart@pendrica.com
 Tenant : 9c117323-abab-abab-abab-9ee430723ba3
 Subscription : 4801fa9d-cdcd-cdcd-cdcd-b265ff49ce21
 CurrentStorageAccount :

 We can now run the following command to get a list of the available Chef Azure VM Extension versions
(you will need to substitute the -Location parameter value with the region you are interested in):

 PS C:\Users\StuartPreston> Get-AzureRmVMImagePublisher -Location "West Europe" | where
PublisherName -eq 'Chef.Bootstrap.WindowsAzure' | Get-AzureRmVMExtensionImageType |
Get-AzureRmVmExtensionImage | Select Type, Version | Format-Table -AutoSize

 Type Version
 ---- -------
 CentosChefClient 11.12.4.2
 CentosChefClient 11.14.6.1
 ChefClient 11.10.4
 ChefClient 11.12.0.0
 ChefClient 11.18.6.2
 ChefClient 1207.12.3.0
 ChefClient 1210.12.100.1000
 ChefClient 1210.12.4.1000
 LinuxChefClient 11.18.6.2
 LinuxChefClient 1207.12.3.0
 LinuxChefClient 1210.12.100.1000
 LinuxChefClient 1210.12.4.2000

 ■ Note If you have been paying close attention, you will see that both Azure-cli and PowerShell approaches
return the full version number of the extension (e.g., 1210.12.100.1000). When specifying the version in an ARM
template, we need to specify only the Major and Minor versions in the template (e.g., 1210.12).

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

61

 Adding a Chef VM Extension to an Existing Virtual Machine
 The Chef VM extension can be added to machines individually from the command line using either the
Azure-cli or PowerShell.

 ■ Note At the time of writing there is no way of achieving this through the management portal.

 To add a Chef VM extension to an existing VM from the command line we will need to supply two
configuration files, one called publicSettings.config and one called privateSettings.config . The
difference between the two files is that privateSettings.config contains values you would like to keep
secret - any settings entered here are hidden from all Azure logging and only made available to the target
machine.

 ■ Hint Many of the values required for the configuration files can be found in the knife.rb file that you
downloaded with the Starter Kit (see chapter 1 for more details).

 publicSettings.config
 Here is the template that needs to be used for the publicSettings.config file , and the description of each
key can be seen in Table 3-2 :

 {
 "bootstrap_options": {
 "chef_node_name":"<your node name>",
 "chef_server_url":"<your chef server url>",
 "validation_client_name":"<your chef organization validation client name>"
 },
 "runlist":"<your run list>"
 }

 Table 3-2. Chef VM Extensions publicSettings.config settings

 Key Name Description Example Value

 chef_node_name This needs to be set to the name you wish to register
with the Chef Server.

 VM

 chef_server_url This is the Chef server URL to register the node with. https://api.chef.io/
organizations/myorganization

 validation_client_
name

 This is the name of the validation key (usually the
same as the filename without -validator.pem).

 myorganization

 runlist This is the initial runlist to add to the node. This
runlist will be deployed when the machine has
first run.

 recipe[starter::default]

http://dx.doi.org/10.1007/978-1-4842-1476-3_1
https://api.chef.io/organizations/myorganization
https://api.chef.io/organizations/myorganization

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

62

 privateSettings.config
 Here is the template that needs to be used for the privateSettings.config file , the description of each key
can be seen in Table 3-3 :

 {
 "validation_key": "<your chef organization validation key>"
 }

 Table 3-3. Chef VM Extensions privateSettings.config settings

 Key Name Description Example Value

 validation_key This is the extracted text from the organization-validator.pem file.
Each line ending should be replaced with “\n” so that it fits into a
single string

 <see example>

 Converting a Multiline Key to a String Suitable for JSON

 The JSON format does not deal well with the concept of multiline strings , so we must convert our key to
a single line string that is delimited with “\n”. Ruby offers a quick way of accomplishing this, by using the
following snippet. Simply replace cert.pem with the path to the certificate you wish to convert to a single line
with explicit line breaks.

 PS C:\Users\StuartPreston> chef exec ruby -e 'p ARGF.read' cert.pem

 "-----BEGIN RSA PRIVATE KEY-----\nMIIEpAIBAAKCAQEAlSvQ/TcQVLHlGAo5im3eS79BbtJJ5j/
C0N5aXF7IwjnM0Ltw\nMsn/i1qdV1mMUTuPrCFkQYaOcK5gIkqld15DXjv7y6tnvxlxkCUHaALfNx23Q9J/\nJR
2o3INyliGgW9RlBBTSZ916Lm1ur+K35fDn3TmPKszVnPwpPmqn7aWSbjd8MhMc\nISlTawIUaYVNadEK6ba4bf6
uzt0VekP6RGw6807dOqn0+YFNuuclqyMDoozXrHsc\nzpd6jNEMvlzGrUTlP+6jhvDAC0QsoNq1sONNdTXsABce
c6TmTNy/1REeGiF0AxfT\nlB1vo3Z2On34oFbmYLUlsqzRhmtdXmAy7MBOgwIDAQABAoIBAF8BhR2A0Hngw1RI\
nTtWHnCkKKpZ2gHKQ8Xct5scl5x8syPG4L4FpfcQ3djaH5gJmuN6cdcn19Qp3ROsS\nN8iK1MVT1s6k4HKptdZ
kfw8TpS7pUit0CV6OQVoQrg5IZGWYJK4wxME6IfMn53NG\nJnHguQwA+Nn9k59kSrBiJYoKBfUDkLq8CzRLKXDF
QtfFwxUO+Gei7ClB6dPcUADC\nbvti/crAK3n/6MXoxTGyRNZvKYdxTwV2ZKd2QWT/2oiAn0zS6Qo4mnTMPQvH
T93h\nbqcm58ELJAEaUkmb/h/7rMdH7mDmKBv4wr8LRyqPIiLDcGF/88UzkdgxxVu/IlO9\ng92qnqECgYEAxV1
B5ta4LfmNwPhEu9e9JVpYY73ONWteV+TbZHC1pwLZy6SnSLa8\nScgu7t+wcJ/\nZX7nNkwybuNmVOh+iCwQUVN
92zb0cytDvRF/0Drzkh/px5RIXqF+pP3pXMbNbyRF\nOxYpv6JyNo94NJI5h114s4HDTogeyq82A2pm5Bs2YO/
iFINJIlW/nyB+OixxM+C5\n5sqFWrWmaEulo67tuDTGGXMiArSQYI/ItJdWn7cCgYEAmW36QX5DCFqsvItEw9Lf\
nlB48AK4ZlKW3XhToCZklXoR01D9YXMrSbXlWIxV6kNOLXuXXJXGoIEoVPJgP98N0\nGI056HmqQNmiV48yTTit
YWG9detxa2LXHCPQLXqwAxAkagmR7G1evGH9JXbGVmWX\nKLJUWqmvVG2OsNYcg8u4ylECgYBrK7cjKKNQg+v7V6E
6rnxHWIDBSwmO/mVv1Srz\n8lllMQHwkhSfIxbis3i+UpWLeeIYCXL/Q0tkhcnVRqpCFCwhOji81MclHGhRw7Kb\
nObg76Ia6MqR60C0WA4Db1teTyUH6hiLyHoK2t56wbhYVD7NEMJb5Sbgw32qI0ZtN\ny/WDCQKBgQC+adlpc06RQuL
EuyxXH9aFQi3FRXBjK3Op+8nN1IlW7kfLNkkkKsez\nZII47UkrboVTxaZRmEfTkcJzANNft9gxMz9EjiSJ0X0KG/+
v4bNiP1mjUJlIfhlQ\n9Tq7asOu8NV5BCds/S6VKiVoznhVCzkSH5mwczJSgoJwMeg4QVAHDw==\n-----END RSA
PRIVATE KEY-----"

 You can now copy and paste this single string into the correct location in the privateSetting.config
JSON file.

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

63

 Now that we have our settings files we can use the azure vm extension set command (Azure-cli) or
 Set-AzureRmVMExtension cmdlet (PowerShell) to add the extension to an existing VM:

 Azure-cli
 Assuming we have a resource group named chefazure-ch03 and a VM named ch03-vm , then the command
to execute to add the Windows ChefClient would look similar to the following:

 PS C:\Users\StuartPreston\chefazure-ch03> azure vm extension set --public-config-path pu
 blicsettings.config --private-config-path privatesettings.config chefazure-ch03 ch03-vm
ChefClient Chef.Bootstrap.WindowsAzure 1210.12

 info: Executing command vm extension set
 + Looking up the VM "ch03-vm"
 + Installing extension "ChefClient", VM: "ch03-vm"
 info: vm extension set command OK

 PowerShell
 To add the Chef VM Extension using PowerShell we use the Set-AzureRmVMExtension cmdlet. Again, with an
existing resource group named chefazure-ch03 and a VM named ch03-vm , then the command to execute
to add the Windows ChefClient would look similar to the following:

 PS C:\Users\StuartPreston\chefazure-ch03> $settings = gc .\publicSettings.config -raw
 PS C:\Users\StuartPreston\chefazure-ch03> $protectedSettings =
gc .\privateSettings.config -raw
 PS C:\Users\StuartPreston\chefazure-ch03> Set-AzureRmVMExtension -ResourceGroupName
chefazure-ch03 -Name ChefClient -VMName ch03-vm -Publisher Chef.Bootstrap.WindowsAzure
-ExtensionType ChefClient -TypeHandlerVersion 1210.12 -Location "West Europe" -SettingString
$settings -ProtectedSettingString $protectedSettings

 Note that there will be a delay before the result is returned:

 Status : Succeeded
 StatusCode : OK
 RequestId : f2a51388-93a8-4fd7-858d-d30864f3e98b
 Output :
 Error :
 StartTime : 19/10/2015 21:52:15 +01:00
 EndTime : 19/10/2015 21:55:08 +01:00
 TrackingOperationId : cd985541-fec4-4e43-88e2-91825f35f616

 Validating a Chef VM Extension is successfully installed at the
Command Line
 Next you will want to ensure that the Chef VM Extension is successfully installed. There are a variety of ways
this can be achieved. First of all, the extension status can be viewed in the portal. From the command line,
the azure vm extension command allows us to retrieve properties about a provisioned Chef VM Extension:

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

64

 Azure Management Portal
 If all went well you should be able to navigate via Browse All to your VM, navigate to All Settings and then
 Extensions to see that the Chef Client extension is installed successfully, as shown in Figure 3-2 below.

 Figure 3-2. Viewing the status of VM Extensions in the management portal

 Figure 3-3. Chef Server showing registered node

 To verify that the node has registered itself, we can visit the Hosted Chef management portal in a
browser, and the default tab Nodes should be showing the new node. Figure 3-3 shows this.

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

65

 There are many more options available in the Chef management portal for configuring your nodes; for
example, you may be asking yourself why is Environment set to _default ? We will discuss this when we look
at productionizing your workloads in chapter 7 .

 Azure-cli
 In order to verify the installation of a Chef VM Extension using Azure-cli we use the azure vm extension
get command:

 PS C:\Users\StuartPreston\chefazure-ch03> azure vm extension get chefazure-ch03 ch03-vm

 info: Executing command vm extension get
 + Looking up the VM "ch03-vm"
 data: Publisher Name Version
 State
 data: --------------------------- -------------------------------- ------- ---------
 data: Chef.Bootstrap.WindowsAzure ChefClient 1210.12 Succeeded
 data: Microsoft.Azure.Diagnostics Microsoft.Insights.VMDiagnosticsSettings 1.2 Succeeded
 info: vm extension get command OK

 To get more detailed information such as the provisioning state of the extension, we need to use the
 --json flag, which returns us full details of the resource:

 PS C:\Users\StuartPreston\chefazure-ch03> azure vm extension get chefazure-ch03 ch03-vm
 --json

 [
 {
 "tags": {},
 "publisher": "Chef.Bootstrap.WindowsAzure",
 "extensionType": "ChefClient",
 "typeHandlerVersion": "1210.12",
 "autoUpgradeMinorVersion": false,
 "settings": {
 "bootstrap_options": {
 "chef_node_name": "ch03-vm",
 "chef_server_url": "https://api.chef.io/organizations/pendemowin",
 "validation_client_name": "pendemowin-validator"
 },
 "runlist": "recipe[dscdemo::default]"
 },
 "provisioningState": "Succeeded",
 "id": "/subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/resourceGroups/chefazure-

ch03/providers/Microsoft.Compute/virtualMachines/ch03-vm/extensions/ChefClient",
 "name": "ChefClient",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "location": "westeurope"
 },

http://dx.doi.org/10.1007/978-1-4842-1476-3_7

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

66

 {
 "tags": {},
 "publisher": "Microsoft.Azure.Diagnostics",
 "extensionType": "IaaSDiagnostics",
 "typeHandlerVersion": "1.2",
 "autoUpgradeMinorVersion": false,
 "settings": {
 "xmlCfg": "removed for brevity"",
 "storageAccount": "chefazurech033545"
 },
 "provisioningState": "Succeeded",
 "id": "/subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/resourceGroups/chefazure-

ch03/providers/Microsoft.Compute/virtualMachines/ch03-vm/extensions/Microsoft.
Insights.VMDiagnosticsSettings",

 "name": "Microsoft.Insights.VMDiagnosticsSettings",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "location": "westeurope"
 }
]

 From the output, we are able to validate all the non-protected settings (protected settings are settable
only, and not retrievable after deployment). We can identify from the provisioningState key that the
deployment of the Chef VM Extensions was successful.

 PowerShell
 When using PowerShell , we can verify the extension is installed by using the Get-AzureRmVMExtension
cmdlet, as follows (again it is assumed the Resource Group Name is chefazure-ch03 and the VM Name is
 ch03-vm).

 PS C:\Users\StuartPreston\chefazure-ch03> Get-AzureRmVMExtension -ResourceGroupName chef
 azure-ch03 -VMName ch03-vm -Name ChefClient | Select Name, TypeHandlerVersion,
ProvisioningState

 Name TypeHandlerVersion ProvisioningState
 ---- ------------------ -----------------
 ChefClient 1210.12 Succeeded

 Removing a Chef VM Extension from a Virtual Machine
 Let’s assume that we wish to remove the extension from a VM again. To accomplish this task, we can use
either Azure-cli or PowerShell:

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

67

 Azure-cli
 To remove the Chef extension using the Azure-cli we use the azure vm extension set command with the
 -u parameter:

 PS C:\Users\StuartPreston\chefazure-ch03> azure vm extension set -u -q chefazure-ch03
ch03-vm ChefClient Chef.Bootstrap.WindowsAzure 1210.12

 info: Executing command vm extension set
 + Looking up the VM "ch03-vm"
 + Looking up extension "ChefClient", VM: "ch03-vm"
 + Uninstalling extension "ChefClient", VM: "ch03-vm"
 info: vm extension set command OK

 PowerShell
 To remove the Chef extension using PowerShell we use the Remove-AzureRmVMExtension cmdlet:

 PS C:\Users\StuartPreston\chefazure-ch03> Remove-AzureRmVMExtension -ResourceGroupName
chefazure-ch03 -VMName ch03-vm -Name ChefClient -Force

 After a few minutes, this should succeed with the following message:

 Status : Succeeded
 StatusCode : OK
 RequestId : e0202987-d642-4698-9f2a-c6eb0f59c7cd
 Output :
 Error :
 StartTime : 19/10/2015 22:15:32 +01:00
 EndTime : 19/10/2015 22:19:22 +01:00
 TrackingOperationId : 7cd45cf9-702d-437-b314-66ca2cc2e27f

 Installing a Chef VM Extension at the Command Line Using Azure
Resource Manager Template Language
 Although it is relatively simple to deploy the Chef VM Extension from within the management portal, you
are more likely to want to automate this from the command line. We can do this by using Azure Resource
Manager. Remember that the Chef VM Extension is essentially another resource so we can define it in the
JSON and add it to the collection of resources to deploy.

 Here’s a template that shows us the options available with the Chef VM Extension:

 {
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(parameters('vmName'),'/', 'chefExtension')]",
 "apiVersion": "2015-05-01-preview",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/', parameters('vmName'))]"
],

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

68

 "properties": {
 "publisher": "Chef.Bootstrap.WindowsAzure",
 "type": " <configurable> ",
 "typeHandlerVersion": " <configurable> ",
 "settings": {
 "bootstrap_options": {
 "chef_node_name" : " <configurable> ",
 "chef_server_url" : " <configurable> ",
 "validation_client_name" : " <configurable> "
 },
 "runlist": " <configurable> "
 },
 "protectedSettings": {
 "validation_key": " <configurable> "
 }
 }
 }

 This fragment of JSON can then be taken and inserted as a resource in a Resource Manager template.
The configurable options are shown in Table 3-4 :

 Table 3-4. Chef VM Extensions configuration options

 Key Name Description Example Value

 type One of ChefClient , LinuxChefClient,
or CentosChefClient depending on
whether you use Windows, Ubuntu/
Debian, or RedHat/CentOS.

 ChefClient

 typeHandlerVersion This is the version of the extension, just
the major and minor parts.

 1210.12

 chef_node_name This needs to be set to the name you
wish to register with the Chef Server.

 VM

 chef_server_url This is the Chef server URL to register
the node with.

 https://api.chef.io/
organizations/myorganization

 validation_client_name This is the name of the validation key
(usually the same as the filename
without -validator.pem).

 myorganization

 runlist This is the initial runlist to add to the
node. This runlist will be deployed
when the machine has first run.

 recipe[starter::default]

 validation_key This is the extracted text from the
organization-validator.pem file.

 <see example>

https://api.chef.io/organizations/myorganization
https://api.chef.io/organizations/myorganization

CHAPTER 3 ■ CHEF AZURE VM EXTENSIONS

69

 You can then use either the Azure-cli or PowerShell or one of the methods shown later in this book to
deploy this template. Remember that the Chef VM Extensions install themselves as a service by default on
the Windows platform. Chef VM Extensions are used extensively in the Chef Provisioning driver so we will be
referring to terminology from this chapter later in the book.

 Summary
 In this chapter, we showed you how using the Chef VM Extensions can save you time and effort when
compared to bootstrapping virtual machines via their public IP address. We demonstrated how to add,
verify, and remove the VM Extension from Azure-cli and PowerShell and showed you how to build an ARM
resource that adds the extension to an existing VM.

71© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_4

 CHAPTER 4

 Using Chef Provisioning to
Provision Machines

 Chef Provisioning is a part of the Chef toolset that orchestrates the creation of machines and supporting
infrastructure, particularly in the cloud but also for on-premises infrastructure too. It lets you define your
application topology in an infrastructure-as-code way via one or more Chef recipes . This is particularly
powerful in today’s world of continuous delivery where we need fast feedback cycles - the ability to create,
destroy, and re-create entire environments from scratch gives us flexibility, reliability, and repeatability; and
as we know this eventually helps organizations reduce their time to market and lower support overheads by
reducing recovery times.

 Chef Provisioning operates a driver model so that it can communicate with different cloud providers
and software platforms. There are Chef Provisioning drivers not only for Microsoft Azure but for Amazon
Web Services (AWS), OpenStack, VMWare vSphere, Docker, and others too. See https://github.com/chef/
chef-provisioning for a comprehensive list.

 In this chapter we’ll make sure your local machine is configured for Chef Provisioning, describe the
resources available for use, explore the options that are configurable on Azure, and run a couple of recipes to
demonstrate the concepts of provisioning resources in Azure using Chef.

 In chapter 5 we’ll enhance these recipes and look at examples of more sophisticated architectures that
you can deploy using Chef Provisioning. Once you’ve mastered all that, in chapter 8 we’ll explore the end-to-
end world of continuous provisioning and set up a continuous delivery pipeline using Chef on Azure.

 About Chef Provisioning on Azure
 Before we delve into the implementation specifics of the driver, Figure 4-1 shows the architecture of the Chef
Provisioning driver for Azure Resource Manager.

https://github.com/chef/chef-provisioning
https://github.com/chef/chef-provisioning
http://dx.doi.org/10.1007/978-1-4842-1476-3_5
http://dx.doi.org/10.1007/978-1-4842-1476-3_8

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

72

 The Chef Provisioning driver for Azure is heavily dependent on the Azure SDK for Ruby, which provides
helpful functionality to support modeling, authentication, threading, and error handling. The driver
communicates with the Azure Resource Manager REST APIs, which then take on the hard work of dealing
with idempotency, creating resources in the correct order and reporting status. Behind the scenes a set of
Resource Providers are responsible for each operation they are handed to do. The Azure SDK for Ruby runs
on Windows, OS X, and Linux.

 Installation and Configuration
 We’re going to be using our local workstation as a ‘provisioning node’ for this example, and we’ll configure
it to talk to the organization on the hosted Chef server that you created in chapter 1 . This is so that we can
upload provisioning recipes and have the provisioned resources communicate with that same organization
continuously after that. The provisioning node will be communicating with both the Chef Server and the
Azure Management API over TLS (port TCP/443).

 Installing the Chef Provisioning for Azure Resource
Manager Ruby Gem
 Chef Provisioning for Azure Resource Manager has the following dependencies that must be installed before
we can start to build our recipes:

• Chef Client

• Chef Provisioning

 Both of the above components were installed when we installed the ChefDK in chapter 1 . So if you are
reading this and don’t have the ChefDK installed, now would be a good time to go back and install it.

 Figure 4-1. Overview of Chef Provisioning and Azure

http://dx.doi.org/10.1007/978-1-4842-1476-3_1
http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

73

 To verify we have all the required components, we can use the chef gem list command to view the
Ruby gems that are installed:

 PS C:\Users\StuartPreston> chef gem list --local chef

 *** LOCAL GEMS ***

 chef (12.5.1 universal-mingw32)
 chef-config (12.5.1)
 chef-dk (0.10.0)
 chef-provisioning (1.5.0)
 chef-provisioning-aws (1.6.1)
 chef-provisioning-azure (0.4.0)
 chef-provisioning-fog (0.15.0)
 chef-provisioning-vagrant (0.10.0)
 chef-vault (2.6.1)
 chef-zero (4.3.2, 1.5.6)
 cheffish (1.6.0)
 chefspec (4.4.0)

 If you see chef and chef-provisioning in the list, we’re ready to carry on. Otherwise, you’ll need to
investigate why, and possibly reinstall the ChefDK (see chapter 1 for detailed instructions on how to do this).

 We can now install the chef-provisioning-azurerm gem and its dependencies by using the following
command:

 PS C:\Users\StuartPreston> chef gem install chef-provisioning-azurerm

 Fetching: concurrent-ruby-1.0.0.pre1.gem (100%)
 Successfully installed concurrent-ruby-1.0.0.pre1
 Fetching: timeliness-0.3.7.gem (100%)
 Successfully installed timeliness-0.3.7
 Fetching: ms_rest-0.1.1.gem (100%)
 Successfully installed ms_rest-0.1.1
 Fetching: faraday-cookie_jar-0.0.6.gem (100%)
 Successfully installed faraday-cookie_jar-0.0.6
 Fetching: ms_rest_azure-0.1.1.gem (100%)
 Successfully installed ms_rest_azure-0.1.1
 Fetching: azure_mgmt_resources-0.1.0.gem (100%)
 Successfully installed azure_mgmt_resources-0.1.0
 Successfully installed chef-provisioning-azurerm-0.3.1
 Parsing documentation for concurrent-ruby-1.0.0.pre1
 Installing ri documentation for concurrent-ruby-1.0.0.pre1
 Parsing documentation for timeliness-0.3.7
 Installing ri documentation for timeliness-0.3.7
 Parsing documentation for ms_rest-0.1.1
 Installing ri documentation for ms_rest-0.1.1

http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

74

 Parsing documentation for faraday-cookie_jar-0.0.6
 Installing ri documentation for faraday-cookie_jar-0.0.6
 Parsing documentation for ms_rest_azure-0.1.1
 Installing ri documentation for ms_rest_azure-0.1.1
 Parsing documentation for azure_mgmt_resources-0.1.0
 Installing ri documentation for azure_mgmt_resources-0.1.0
 Parsing documentation for chef-provisioning-azurerm-0.3.1
 Installing ri documentation for chef-provisioning-azurerm-0.3.1
 Done installing documentation for concurrent-ruby, timeliness, ms_rest,
faraday-cookie_jar, ms_rest_azure, azure_mgmt_resources, chef-provisioning-azurerm
after 12 seconds
 7 gems installed

 If you see output similar to the above, then that’s all we need from an installation perspective, and we
can now progress on to configuring our node with the credentials required to connect to Azure. If not, you’ll
need to stop at this point and troubleshoot.

 Authenticating to Azure Resource Manager
 Azure Resource Manager operates a claims-based authorization, meaning that every request sent to Azure
needs to be accompanied with a token. Luckily for us this is dealt with behind the scenes; however we do
need to configure a special type of object in Azure Active Directory for automation called a Service Principal.

 A Service Principal is able to have permissions delegated to it so it can perform actions on your Azure
subscription. Why can’t we just use a username and password? The primary advantage a Service Principal
has over using a standard User object in Azure Active Directory is that a Service Principal is not subject to
any restrictions when multifactor authentication is enabled.

 Azure Resource Manager has Role-based Access Control (RBAC) measures built into it; this is a flexible
system that allows fine-grained access management and allows only the necessary access required to
perform tasks. RBAC can be applied to individual resources, to a Resource Group, or to a Subscription if
required. That is what we are most interested in.

 So in the following example, we’re going to grant our Service Principal the Owner permission on our
 Subscription A . This is depicted in Figure 4-2 below.

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

75

 ■ Note If you are interested in reading up on Role-based Access Control, have a read of
 https://azure.microsoft.com/en-us/documentation/articles/role-based-access-control-configure

 Service Principals are objects that are attached to Applications within Azure Active Directory, and we
use the ID of the Service Principal to assign a role against the relevant Subscription. So we have four things
to achieve in order to complete this task:

 1. Authenticate /Log in to Azure

 2. Create an Application

 3. Create a Service Principal for the Application

 4. Assign the Service Principal to a valid Role on a Subscription

 Configuring the Application and Service Principal
 We can use either the cross-platform Azure-cli tool or PowerShell to configure the Application and add a
Service Principal. In this section we will demonstrate both approaches.

 Figure 4-2. Service Principal in Azure Directory with specific rights against Subscriptions

https://azure.microsoft.com/en-us/documentation/articles/role-based-access-control-configure

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

76

 Azure-cli
 To use the Azure-cli to create our service principal, we need to ensure we are logged into our tenant within
Azure Resource Manager correctly:

 PS C:\Users\StuartPreston> azure login --username stuart@pendrica.com

 info: Executing command login
 Password: **********
 / info: Added subscription Microsoft Partner Network
 info: Added subscription Pendrica Production
 +
 info: login command OK

 At this point, it would be a good idea to get the Tenant Id and the Subscription Id and make a note of
them. This can be achieved by running azure account list --json and inspecting the output:

 PS C:\Users\StuartPreston> azure account list --json

 [
 {
 "id": " b6e7eee9-YOUR-GUID-HERE-03ab624df016 ",
 "name": "Microsoft Partner Network",
 "user": {
 "name": "stuart@pendrica.com",
 "type": "user"
 },
 "tenantId": " 9c117323-YOUR-GUID-HERE-9ee430723ba3 ",
 "state": "Enabled",
 "isDefault": true,
 "registeredProviders": [],
 "environmentName": "AzureCloud",
 "managementEndpointUrl": https://management.core.windows.net
 },
 {
 "id": " bcf669fc-YOUR-GUID-HERE-e2d1f9f4b1c3 ",
 "name": "Pendrica Production",
 "user": {
 "name": "stuart@pendrica.com",
 "type": "user"
 },
 "tenantId": " 9c117323-YOUR-GUID-HERE-9ee430723ba3 ",
 "state": "Enabled",
 "isDefault": false,
 "registeredProviders": [],
 "environmentName": "AzureCloud",
 "managementEndpointUrl": https://management.core.windows.net
 }
]

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

77

 As we can see the Tenant ID is 9c117323-YOUR-GUID-HERE-9ee430723ba3 and the Subscription
ID we are interested in is b6e7eee9-YOUR-GUID-HERE-03ab624df016 . Keep these values safe as we’ll use
them shortly.

 We can then create the new application by using the azure ad app create command; note that
the --home-page and --identified-uris must be specified even though we won’t actually use them later on.
The --password option is used to set a shared secret and will be used later on so make a note of it.

 PS C:\Users\StuartPreston> azure ad app create --name "automation-chef" --home-page
"http://chef.io" --identifier-uris "https://pendrica.com/automation-chef" --password
"my-top-secret-password"

 info: Executing command ad app create
 + Creating application automation-chef
 data: Application Id: 02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b
 data: Application Object Id: cafac4ae-YOUR-GUID-HERE-2d8b6eb2d21c
 data: Application Permissions:
 data: claimValue: user_impersonation
 data: description: Allow the application to access

automation-chef on behalf of the signed-in user.
 data: directAccessGrantTypes:
 data: displayName: Access automation-chef
 data: impersonationAccessGrantTypes: impersonated=User,

impersonator=Application
 data: isDisabled:
 data: origin: Application
 data: permissionId: 6c98e9b7-YOUR-GUID-HERE-6c62693c5c4
 data: resourceScopeType: Personal
 data: userConsentDescription: Allow the application to access

automation-chef on your behalf.
 data: userConsentDisplayName: Access automation-chef
 data: lang:
 info: ad app create command OK

 By creating an application, we are returned an Application Id ; we’ll need this to configure Chef
Provisioning later on, so make a note of it. The next thing we’ll need to do is create our Service Principal for
our application. For this we need to pass in the Application Id at the command line:

 PS C:\Users\StuartPreston> azure ad sp create 02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b

 info: Executing command ad sp create
 + Creating service principal for application 02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b
 data: Object Id: c49c3e61-70a9-4af4-86d1-86c61ab2f428
 data: Display Name: automation-chef
 data: Service Principal Names:
 data: 02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b
 data: https://pendrica.com/automation-chef
 info: ad sp create command OK

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

78

 This time, we were returned an Object Id for our Service Principal, which we will use to assign a role.
For this we need azure role assignment create command passing in the Object Id and Subscription Id as
shown below:

 PS C:\Users\StuartPreston> azure role assignment create --objectId c49c3e61-70a9-4af4-8
 6d1-86c61ab2f428 -o Owner -c /subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016

 info: Executing command role assignment create
 + Finding role with specified name
 data: RoleAssignmentId : /subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/
providers/Microsoft.Authorization/roleAssignments/53c94040-YOUR-GUID-HERE-cabe8abd6560
 data: RoleDefinitionName : Owner
 data: RoleDefinitionId : 8e3af657-YOUR-GUID-HERE-2fe8c4bcb635
 data: Scope : /subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016
 data: Display Name : automation-chef
 data: SignInName :
 data: ObjectId : c49c3e61-YOUR-GUID-HERE-86c61ab2f428
 data: ObjectType : ServicePrincipal

 We should now have a working Service Principal with access to the subscription. To verify that we
can log in, we use the Application Id and Tenant Id (obtained from azure account list) along with the
password for the application and the --service-principal option:

 PS C:\Users\StuartPreston> azure login -u 02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b -p "my-top-
secret-password" --service-principal --tenant 9c117323-YOUR-GUID-HERE-9ee430723ba3

 info: Executing command login
 /info: Added subscription Microsoft Partner Network
 +
 info: login command OK

 PowerShell
 Let’s set up a Service Principal using PowerShell now, following the same pattern as described above. First of
all, we need to log in to Azure using the Login-AzureRmAccount cmdlet:

 PS C:\Users\StuartPreston> Login-AzureRmAccount

 You will be asked to authenticate using a browser-based form; then you should receive the below output
or similar:

 Environment : AzureCloud
 Account : stuart@pendrica.com
 TenantId : 9c117323-YOUR-GUID-HERE-9ee430723ba3
 SubscriptionId : b6e7eee9-YOUR-GUID-HERE-03ab624df016
 CurrentStorageAccount :

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

79

 As you can see, we are presented the TenantId and the SubscriptionId upon login; we’ll need both
of these later so make a note of them. We can now progress to create an application using the
 New-AzureRmADApplication cmdlet:

 PS C:\Users\StuartPreston> $app = New-AzureRmADApplication -DisplayName "automation-chef2"
-HomePage "http://chef.io" -IdentifierUris "https://pendrica.com/automation-chef2" -Password
"my-top-secret-password"

 If we examine $app we can see we are returned an ApplicationId that we can use:

 PS C:\Users\StuartPreston> $app

 Type : Application
 ApplicationId : 5f2536db-YOUR-GUID-HERE-db080287b58a
 ApplicationObjectId : 094a1477-YOUR-GUID-HERE-291432050fdb
 AvailableToOtherTenants : False
 AppPermissions : {{
 "claimValue": "user_impersonation",
 "description": "Allow the application to access automation-chef2
 on behalf of the
 signed-in user.",
 "directAccessGrantTypes": [],
 "displayName": "Access automation-chef2",
 "impersonationAccessGrantTypes": [
 {
 "impersonated": "User",
 "impersonator": "Application"
 }
],
 "isDisabled": false,
 "origin": "Application",
 "permissionId": "43869379-YOUR-GUID-HERE-6f0fc7bfeae7",
 "resourceScopeType": "Personal",
 "userConsentDescription": "Allow the application to access

automation-chef2 on your behalf.",
 "userConsentDisplayName": "Access automation-chef2",
 "lang": null
 }}

 We can now create a service principal for the application using the New-AzureRmADServicePrincipal
cmdlet:

 PS C:\Users\StuartPreston> New-AzureRmADServicePrincipal -ApplicationId $app.ApplicationId

 DisplayName Type ObjectId
 ----------- ---- --------
 automation-chef2 924895ba-YOUR-GUID-HERE-

d1c8b4e208f2

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

80

 Now we can assign the Owner role on the current subscription to the Service Principal using the
New-AzureRmRoleAssignment cmdlet:

 ■ Tip Use the Select-AzureRmSubscription cmdlet if the subscription you want to grant access to is not
the current one.

 PS C:\Users\StuartPreston> New-AzureRmRoleAssignment -RoleDefinitionName Owner
-ServicePrincipalName $app. ApplicationId

 RoleAssignmentId : /subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/providers/
Microsoft.Authorization/roleAssignme

 nts/c3ee69b5-YOUR-GUID-HERE-afb8f5179d60
 Scope : /subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016
 DisplayName : automation-chef2
 SignInName :
 RoleDefinitionName : Owner
 RoleDefinitionId : 8e3af657-YOUR-GUID-HERE-2fe8c4bcb635
 ObjectId : 924895ba-YOUR-GUID-HERE-d1c8b4e208f2
 ObjectType : ServicePrincipal

 We can test this using Login-AzureRMAccount . We use the Application ID and the Password to create a
credentials object:

 PS C:\Users\StuartPreston> $creds = Get-Credentials

 Then we can use these credentials as part of the Login request, passing in the TenantId we noted down
earlier:

 PS C:\Users\StuartPreston> Login-AzureRmAccount -Credential $creds -ServicePrincipal -Tenant
9c117323-YOUR-GUID-HERE-9ee430723ba3

 Environment : AzureCloud
 Account : 5f2536db-YOUR-GUID-HERE-db080287b58a
 TenantId : 9c117323-YOUR-GUID-HERE-9ee430723ba3
 SubscriptionId : b6e7eee9-YOUR-GUID-HERE-03ab624df016
 CurrentStorageAccount :

 We have completed the four stages to creating a Service Principal using the command-line tools. We
now can proceed to use the values captured above in order to configure our provisioning node so it can
authenticate correctly and gain access to the requested resources. We’ll need the Tenant Id , Subscription
Id , Application Id (otherwise known as a Client Id), and the Password (otherwise known as a Client Secret)
from above.

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

81

 Configuring Chef Provisioning for Authentication
 Now that we have a Service Principal with delegated ownership permission on our Subscription, we need
to configure the Chef Provisioning for Azure Resource Manager driver. The driver can read credentials from
one of two locations:

 1. A file located beneath the home directory of the user executing Chef Client

 2. By reading in a set of environment variables

 Here’s how:

 Configuring the Credentials File
 Our credentials are stored in the ~/.azure/credentials file; let’s create it and add a section for our
subscription:

 Do not enter these:
 [b6e7eee9-YOUR-GUID-HERE-03ab624df016] <- Subscription ID
 tenant_id = "9c117323-YOUR-GUID-HERE-9ee430723ba3" <- Tenant ID
 client_id = "02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b" <- Application ID
 client_secret = "my-top-secret-password" <- Application Password

 Breaking this down, the first line [b6e7eee9-YOUR-GUID-HERE-03ab624df016] represents the
 Subscription Id , and is the connection between the Chef Provisioning recipe and Azure. The Tenant ID you
will have already. In the credentials file the client_id and client _secret values are the Application Id and
Password that were created above respectively. The Azure SDK for Ruby uses client_id and client_secret in
its terminology (and error messages), which is why they are named like that.

 ■ Note ~ (tilde) is an alias in most shells (including PowerShell) for the user’s home directory. This is the
equivalent of using $env:USERPROFILE in Windows PowerShell or $HOME in OS X or a Unix shell.

 Environment Variable-based Configuration
 If it is preferable in your environment to set up some Environment variables, the following can be used. In
this case we do not need to set the Subscription ID, because we will be passed it by the recipe. However, it
means we can only support one Subscription per host, unless your Service Principal is granted access to
multiple subscriptions:

 AZURE_CLIENT_ID="02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b"
 AZURE_CLIENT_SECRET="my-top-secret-password"
 AZURE_TENANT_ID="9c117323-YOUR-GUID-HERE-9ee430723ba3"

 All done? Great. Now we can progress onto writing recipes!

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

82

 Preparing the Chef-Repo
 To follow the examples, we will need the .chef folder from the Starter Kit that you downloaded in chapter 1 ,
which is preconfigured with the private keys required to talk to the hosted Chef server and the validation key
that allows us to register newly provisioned nodes against it.

 Starting from your home directory, let’s create a new repo for this chapter:

 PS C:\Users\StuartPreston> chef generate app chefazure-ch04 --copyright "Stuart Preston"
--email "stuart@pendrica.com"

 Copy the .chef folder from the Starter Kit zip file into the chefazure-ch04 folder.
 We can now generate a new cookbook called provision . We do this with the chef generate cookbook

command. Note that we start in the chefazure-ch04 folder:

 PS C:\Users\StuartPreston> cd chefazure-ch04
 PS C:\Users\StuartPreston\chefazure-ch04> chef generate cookbook cookbooks/provision
--copyright "Stuart Preston" --email "stuart@pendrica.com"

 Compiling Cookbooks...
 Recipe: code_generator::cookbook
 * directory[C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision
 [...]
 * directory[C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision/recipes] action
create
 - create new directory C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision/recipes
 * template[C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision/recipes/default.rb]
action create_if_missing

 - create new file C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision/recipes/
default.rb

 - update content in file C:/Users/StuartPreston/chefazure-ch04/cookbooks/provision/
recipes/default.rb from none to 505148

 (diff output suppressed by config)

 PS C:\Users\StuartPreston\chefazure-ch04>

 We can see by inspecting the output that a number of folders and files were created, including
a default.rb recipe file. We’ll be using that to describe the machines we want to create using Chef
Provisioning.

 When we want to begin integrating some quality tooling with Chef we’ll need to use some more of these
generated files, this will be covered later in chapter 6 . For now, let’s open the whole repo in our code editor
of choice. I use Microsoft’s Visual Studio Code but feel free to use your favorite editor:

 PS C:\Users\StuartPreston\chef-repo> code .

 Once the editor has launched, we can navigate to cookbooks/provision/recipes/default.rb as shown
in the screenshot below and we’re ready to add some provisioning code. Figure 4-3 shows the default.rb
recipe opened in our text editor:

http://dx.doi.org/10.1007/978-1-4842-1476-3_1
http://dx.doi.org/10.1007/978-1-4842-1476-3_6

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

83

 Chef Provisioning Recipes
 In this section, we’ll add to the blank recipe that is open and add the code required to define the resources
we want to deploy. First of all, we need to tell Chef Provisioning that we’re interested in the AzureRM driver
and provide it the Subscription ID of the subscription we want to work with. This is accomplished by adding
the following two lines to default.rb :

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 We’re now ready to add our resources to our recipe. To start off with, let’s create an Azure Resource
Group in our subscription:

 azure_resource_group "chef-azure-book" do
 location 'West Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

 The resource actually defines two actions :create and :destroy - we will cover the destroy action later
in the chapter. :create is the default action so does not need to be specified in the recipe. The full list of
parameters is shown below in Table 4-1 :

 Figure 4-3. Visual Studio Code showing the default recipe in the provision cookbook

 Table 4-1. azure_resource_group resource options

 Parameter Name Description Example Value

 location This is the location where the machine and storage
account should be created. See chapter 2 for a list of all
regions.

 'West Europe'

 tags This is a comma-separated list of tag values to be
applied to the resource group. Note that this field is not
incremental - the tags on the target resource will be
overwritten with the contents of this parameter each
time the Chef client converges.

 CreatedFor: 'Using Chef
with Microsoft Azure book'

http://dx.doi.org/10.1007/978-1-4842-1476-3_2

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

84

 At this point you should have a recipe that looks like the following:

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group "chef-azure-book" do
 location 'West Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

 We can now upload this to our server using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch04> knife cookbook upload provision

 Uploading provision [0.1.0]
 Uploaded 1 cookbook.

 Configuring the Provisioning Node as a Chef Client
 We need to configure our workstation as a provisioning node in order to work with Azure. This is because
when we send instructions to create resources in Azure, those resources need a real Chef Server to talk
to. Unfortunately, we cannot use Chef Client in local mode for this scenario. So we’re going to set up our
workstation as a full Chef Client. Don’t worry though: Chef Client will only run when we tell it to do so from
the command line. There are three things we need to accomplish:

 1. Copy the organization-validator.pem file from within your .chef folder to c:\
chef (Windows) or /etc/chef (OS X/Linux) depending on which platform you are on.

 2. Copy the following lines from your knife.rb to c:\chef\client.rb or /etc/chef/
client.rb depending on your platform:

 current_dir = File.dirname(__FILE__)
 validation_client_name "pendrica-chefazure-validator"
 validation_key "#{current_dir}/pendrica-chefazure-validator.pem"
 chef_server_url https://api.chef.io/organizations/pendrica-chefazure

 3. At an administrative command prompt on Windows or via sudo on OS X and
Linux, run chef-client once:

 C:\WINDOWS\system32> chef-client

 Starting Chef Client, version 12.5.1
 Creating a new client identity for DESKTOP-TIDJ3S8 using the validator key.
 resolving cookbooks for run list: []
 Synchronizing Cookbooks:
 Compiling Cookbooks...
 [2015-11-15T09:48:47+00:00] WARN: Node DESKTOP-TIDJ3S8 has an empty run list.
 Converging 0 resources

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

85

 Running handlers:
 Running handlers complete
 Chef Client finished, 0/0 resources updated in 20 seconds

 We can see that a new client identity has been created. Behind the scenes a new key, client.pem, was
generated and stored locally in either c:\chef or /etc/chef depending on your platform.

 If we log on to the hosted Chef Management interface at https://manage.chef.io with the
credentials you created in chapter 1 , then you’ll be able to see our new ‘node’ created successfully as
shown in Figure 4-4 :

 Figure 4-4. Chef Management interface showing a new node has been created

 We can now proceed to use our local node to provision cloud resources.

 Executing the Provisioning Recipe
 We now have a cookbook that has been uploaded to the server, and a client that talks to the same server. But
how does the provisioning node know which recipe to run?

 Chef Client lets us specify the items that should be in the runlist itself using the -r or -o options. The
 -r option will persist the run-list to the server so that it would run next time whereas the -o option simply
overrides the run-list for that run.

 At this point we want the ability to control the run list from the client so we will specify the -o option to
override the runlist for this run.

 PS C:\Users\StuartPreston\chefazure-ch04> chef-client -o recipe[provision::default]

 Starting Chef Client, version 12.5.1
 [2015-11-15T10:12:49+00:00] WARN: Run List override has been provided.
 [2015-11-15T10:12:49+00:00] WARN: Original Run List: []
 [2015-11-15T10:12:49+00:00] WARN: Overridden Run List: [recipe[provision::default]]
 [2015-11-15T10:12:50+00:00] WARN: chef-client doesn't have administrator privileges on node
DESKTOP-TIDJ3S8. This might cause unexpected resource failures.
 resolving cookbooks for run list: ["provision::default"]
 Synchronizing Cookbooks:
 - provision (0.1.0)
 Compiling Cookbooks...
 Converging 1 resources
 Recipe: provision::default
 * azure_resource_group[chef-azure-book] action create

https://manage.chef.io/
http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

86

 - create or update Resource Group chef-azure-book
 [2015-11-15T10:12:54+00:00] WARN: Skipping final node save because override_runlist
was given

 Running handlers:
 Running handlers complete
 Chef Client finished, 1/1 resources updated in 27 seconds

 We can see that our recipe was executed and the azure_resource_group resource took the :create
action. To verify from the command line, we can use the azure group list command if using Azure-cli or
the Get-AzureRmResourceGroup cmdlet if using PowerShell.

 Azure-cli

 PS C:\Users\StuartPreston\chefazure-ch04> azure group list

 info: Executing command group list
 + Listing resource groups
 data: Name Location Provisioning State Tags:
 data: -------------- ---------- ------------------- -----------------------
 data: chef-azure-book westeurope Succeeded CreatedFor=Using Chef with

Microsoft Azure book
 [...]
 info: group list command OK

 PowerShell

 PS C:\Users\StuartPreston\chefazure-ch04> Get-AzureRmResourceGroup | Format- Table

 ResourceGroupName Location ProvisioningState
 ----------------- -------- -----------------
 chef-azure-book westeurope Succeeded

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

87

 Management Portal
 We can also verify the creation of our resource group via the Azure Management Portal, as shown in
Figure 4-5 .

 Figure 4-5. Azure Management Portal showing the chef-azure-book Resource Group and tags

 It should be noted that if you were to change the tags option, and re-upload the cookbook and re-run
the Chef client, the new tags would overwrite the first set that were uploaded. Now that we have verified the
Resource Group exists, we can now add a Resource Template to our repository and execute it using the Chef
client.

 Chef Provisioning a Windows VM with Remote Desktop Enabled
 We’re ready to add an Azure Resource Manager template to our recipe and watch resources from it get
provisioned.

 There are many sources of Azure Resource Manager templates, from creating your own from scratch
using the documentation, to predefined templates that others have created. A good library of predefined
templates is available at https://github.com/Azure/azure-quickstart-templates

 Let’s find a template that we can use to demonstrate provisioning from Chef. In my example I use the
one from https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-rdp-
port as shown in Figure 4-6 .

https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-rdp-port
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-rdp-port

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

88

 Downloading the Template
 Each template in the gallery has a file azuredeploy.json that contains the ARM template; let’s download it
by clicking on the link, making sure you click on the Raw button as shown in Figure 4-7 . Then save the entire
file into the location cookbooks/provision/files/default/azuredeploy.json within your repo .

 Figure 4-6. GitHub page for our sample Windows VM

 Figure 4-7. GitHub "Raw" button used to display the contents of a file in your browser

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

89

 We should now be able to navigate to and inspect the azuredeploy.json file in our code editor, as
shown in Figure 4-8 .

 Figure 4-8. Viewing azuredeploy.json in a code editor

 We shouldn’t need to modify the azuredeploy.json file after this point; what we are interested in is the
parameters. We need the names of all the parameters in order to add a resource to our Chef recipe. If we
examine the parameters section of JSON we can see all the keys are the names of the parameters that we
want to put in our recipe. I’ve highlighted them in bold below.

 "parameters": {
 " dnsLabelPrefix ": {
 "type": "string",
 "metadata": {
 "description": "Unique public DNS prefix for the deployment. The fqdn will look

something like '<dnsname>.westus.cloudapp.azure.com'. Up to 62 chars, digits or
dashes, lowercase, should start with a letter: must conform to '^[a-z][a-z0-9-]
{1,61}[a-z0-9]$'."

 }
 },
 " vmName ": {
 "type": "string",
 "defaultValue": "vm",
 "metadata": {
 "description": "The name of the VM"
 }
 },

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

90

 " adminUsername ": {
 "type": "string",
 "defaultValue": "cloudguy",
 "metadata": {
 "description": "The name of the administrator of the new VM. Exclusion list:

'admin','administrator'"
 }
 },
 " adminPassword ": {
 "type": "securestring",
 "metadata": {
 "description": "The password for the administrator account of the new VM"
 }
 },
 " rdpPort ": {
 "type": "int",
 "defaultValue": 50001,
 "metadata": {
 "description": "Public port number for RDP"
 }
 }
 }

 We can now use the azure_resource_template resource to refer to our JSON file, and specify the
required parameters. Table 4-2 explains the properties that are available on this resource.

 Table 4-2. azure_template_resource resource options

 Parameter Name Description Example Value

 resource_group This is the name of the Azure Resource Group you
want to provision your resources in.

 'chef-azure-book'

 template_source This is the path to the ARM template you wish to
deploy, relative to the root of the repo.

 'cookbooks/provision/files/
default/azuredeploy.json'

 parameters This is an array of key/value pairs used to define
parameters. The key names match the parameter
names in the ARM template.

 username: 'test',
 password: 'P2ssw0rd'

 chef_extension This is an array of key/value pairs used to determine
whether a Chef VM Extension should be added to
each Compute resource found in the ARM template.

 client_type: 'ChefClient',
version: '1210.12',
 runlist: 'role[webserver]'

 Here’s what our azure_resource_template recipe should look like after modifiation:

 azure_resource_template "chef-azure-deployment" do
 resource_group "chef-azure-book"
 template_source "cookbooks/provision/files/default/azuredeploy.json"
 parameters dnsLabelPrefix: 'chef-azure-book',
 vmName: 'chefazurevm',
 adminUsername: 'azure',
 adminPassword: 'P2ssw0rd',
 rdpPort: 3389
 end

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

91

 Let’s go through each of the parameters in turn to explain them and some of the Azure naming rules
that apply.

• dnsLabelPrefix - this is an Azure DNS entry that will be created dynamically. Only
the first part of the name needs to be specified as . <location>.cloudapp.azure.com
will be added automatically. In our case ‘chef-azure-book’.

• vmName - the name assigned to the VM itself. In our case ‘chefazurevm’.

• adminUsername / adminPassword - credentials for the VM.

• rdpPort - TCP port number that will be used to create a rule allowing access to the
machine on the RDP port. In our case we will use the default RDP port ‘3389’.

 Ensure that you have saved both the recipe file and the template and we can now upload this to our
server using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch04> knife cookbook upload provision

 Uploading provision [0.1.0]
 Uploaded 1 cookbook.

 We can now run our recipe again from our workstation:

 PS C:\Users\StuartPreston\chefazure-ch04> chef-client -o recipe[provision::default]

 The output should follow a similar pattern to below (I have shortened the output):

 resolving cookbooks for run list: ["provision::default"]
 Synchronizing Cookbooks:
 - provision
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: provision::default
 * azure_resource_group[chef-azure-book] action create
 - create or update Resource Group chef-azure-book
 * azure_resource_template[chef-azure-deployment] action deploy
 - Result: Accepted
 - Resource Microsoft.Network/virtualNetworks 'VNET' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazure2015' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazure2015' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazure2015' provisioning status is Running
 [...]
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'my-deployment'
 Running handlers:
 Running handlers complete
 Chef Client finished, 2/2 resources updated in 428.605428 seconds

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

92

 We can verify that our resources have been created using the Azure-cli , PowerShell. or in the
Management Portal:

 Azure-cli

 PS C:\Users\StuartPreston\chefazure-ch04> azure group show chef-azure-book

 {
 "tags": {
 "CreatedFor": "Using Chef with Microsoft Azure book"
 },
 "id": "/subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/resourceGroups/chef-azure-
book",

 "name": "chef-azure-book",
 "provisioningState": "Succeeded",
 "location": "westeurope",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "resources": [
 {
 "id": "/subscriptions/b6e7eee9-YOUR-GUID-HERE-03ab624df016/resourceGroups/chef-

azure-book/providers/Microsoft.Compute/virtualMachines/vm",
 "name": "vm",
 "type": "virtualMachines",
 "location": "westeurope",
 "tags": null
 },
 [...]

 PowerShell

 PS C:\Users\StuartPreston\chefazure-ch04> Get-AzureRmResource | where {$_.ResourceGroupName
-eq "chef-azure-book" } | Select Name, ResourceType

 Name ResourceType
 ---- ------------
 vm Microsoft.Compute/virtualMachines
 loadBalancer Microsoft.Network/loadBalancers
 chefazurevm-nif Microsoft.Network/networkInterfaces
 publicIp Microsoft.Network/publicIPAddresses
 VNET Microsoft.Network/virtualNetworks
 chefazure2015 Microsoft.Storage/storageAccounts

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

93

 Management Portal

 Figure 4-9 shows the Resource Group with the resources available after Chef Provisioning has run.

 Figure 4-9. Resource Group showing created Resources in the Management portal

 We can now connect to the machine by RDP if we wish. In our particular deployment, we have a load
balancer with a NAT rule enabled that allows us to connect to the target VM on the standard port. Figure 4-10
shows the configuration that was created, entirely based on the JSON template combined with the parameters
we specified.

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

94

 Chef Provisioning and the Chef VM Extensions
 If you recall from chapter 3 , we have the ability to add the Chef VM Extension to compute resource in
Azure as a ‘bootstrapless’ mechanism to get the Chef client installed and enabled on the machine. Chef
Provisioning for Azure Resource Manager has a feature that allows this VM Extension to be automatically
added to compute resources.

 To enable the feature, we need to change the azure_resource_template resource to add a property
 chef_extension , which in turn has a couple of properties that are settable, such as the machine’s initial run_
list on provision, and the version of the extension to deploy.

 The additional property looks like this:

 chef_extension client_type: 'ChefClient',
 version: '1210.12'
 runlist: 'role[webserver]'

 If we add this property to our existing resource, our entire recipe now looks like this:

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group "chef-azure-book" do
 location 'West Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

 Figure 4-10. Inbound NAT rules through a load balancer as seen in the Azure Management portal

http://dx.doi.org/10.1007/978-1-4842-1476-3_3

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

95

 azure_resource_template "chef-azure-deployment" do
 resource_group "chef-azure-book"
 template_source "cookbooks/provision/files/default/azuredeploy.json"
 parameters dnsLabelPrefix: 'chef-azure-book',
 vmName: 'chefazurevm',
 adminUsername: 'azure',
 adminPassword: 'P2ssw0rd',
 rdpPort: 3389
 chef_extension client_type: 'ChefClient',
 version: '1210.12'
 end

 Having made these changes can now upload this recipe to our server using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch04> knife cookbook upload provision

 Uploading provision [0.1.0]
 Uploaded 1 cookbook.

 We can now run our recipe again from our workstation:

 PS C:\Users\StuartPreston\chefazure-ch04> chef-client -o recipe[provision::default]

 The output should follow a similar pattern to below (I have shortened the output):

 resolving cookbooks for run list: ["provision::default"]
 Synchronizing Cookbooks:
 - provision (0.1.0)
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: provision::default
 * azure_resource_group[chef-azure-book] action create
 - create or update Resource Group chef-azure-book
 * azure_resource_template[chef-azure-deployment] action deploy
 - adding a Chef VM Extension with name: vm and location: [parameters('location')]
 - Result: Accepted
 - Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'vm/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'vm/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'vm/chefExtension'

provisioning status is Running

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

96

 - Resource Microsoft.Compute/virtualMachines/extensions 'vm/chefExtension'
provisioning status is Running

 [...]
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'chef-azure-deployment'
 [2015-11-15T13:41:53+00:00] WARN: Skipping final node save because override_runlist was given

 We have now provisioned our first server via Chef Provisioning and enabled it to talk to the hosted
Chef server via the Chef VM Extension. We are now able to manage the node like any other node in the
organization.

 What happened here? Via the Azure Resource Manager driver, we instructed Azure to add a Virtual
Machine extension of type chefExtension to the existing VM that was created. We picked up the organization
validator key from the local Chef client, and used the settings from our client to point our new node to the
hosted Chef server.

 If you navigate to the Hosted Chef management portal at https://manage.chef.io we can see that our
node has registered successfully, as shown in Figure 4-11 . You’ll note the machine is called <vm>.<resource
group name> - this is so that the server can disambiguate the machines when they connect.

 Figure 4-11. Hosted Chef portal showing vm.chef-azure-book is registered correctly

 We can also check via Remote Desktop to the server that the settings in client.rb are as we expect them,
as shown in Figure 4-12 .

https://manage.chef.io/

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

97

 Destroying Azure Resources
 Now we have seen how to create resources in Azure, we had better work out how to remove them or else
someone within your organization will get a large bill at the end of the month! Luckily we can simply destroy
our resource group.

 To destroy the resource group after use, we need to create a new recipe that destroys our resources by
specifying the :destroy action on the azure_resource_group resource. We can generate the recipe using the
 chef generate recipe command:

 PS C:\Users\StuartPreston\chefazure-ch04> chef generate recipe cookbooks/provision destroy
--copyright "Stuart Preston" --email stuart@pendrica.com

 Compiling Cookbooks...
 Recipe: code_generator::recipe
 * directory[cookbooks/provision/spec/unit/recipes] action create (up to date)
 * cookbook_file[cookbooks/provision/spec/spec_helper.rb] action create_if_missing (up to date)
 * template[cookbooks/provision/spec/unit/recipes/destroy_spec.rb] action create_if_missing
 - create new file cookbooks/provision/spec/unit/recipes/destroy_spec.rb

 Figure 4-12. Confirming the configuration values set in client.rb are set correctly

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

98

 - update content in file cookbooks/provision/spec/unit/recipes/destroy_spec.rb from
none to 0ef16e

 (diff output suppressed by config)
 * template[cookbooks/provision/recipes/destroy.rb] action create
 - create new file cookbooks/provision/recipes/destroy.rb
 - update content in file cookbooks/provision/recipes/destroy.rb from none to 660c50
 (diff output suppressed by config)

 Now open up the destroy.rb recipe and modify it so that it looks similar to the one below, replacing your
Subscription ID for the sample one:

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group "chef-azure-book" do
 action :destroy
 end

 Having made these changes, upload this recipe to the hosted Chef server using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch04> knife cookbook upload provision

 Uploading provision [0.1.0]
 Uploaded 1 cookbook.

 We can now run our recipe again from our workstation:

 PS C:\Users\StuartPreston\chefazure-ch04> chef-client -o recipe[provision::destroy]

 Starting Chef Client, version 12.5.1
 [2015-11-15T14:57:15+00:00] WARN: Run List override has been provided.
 [2015-11-15T14:57:15+00:00] WARN: Original Run List: []
 [2015-11-15T14:57:15+00:00] WARN: Overridden Run List: [recipe[provision::destroy]]
 [2015-11-15T14:57:16+00:00] WARN: chef-client doesn't have administrator privileges on
node DESKTOP-TIDJ3S8. This might cause unexpected resource failures.
 resolving cookbooks for run list: ["provision::destroy"]
 Synchronizing Cookbooks:
 - provision (0.1.0)
 Compiling Cookbooks...
 Converging 1 resources
 Recipe: provision::destroy
 * azure_resource_group[chef-azure-book] action destroy
 - destroy Resource Group chef-azure-book
 [2015-11-15T15:01:52+00:00] WARN: Skipping final node save because override_runlist was given

 Running handlers:
 Running handlers complete
 Chef Client finished, 1/1 resources updated in 04 minutes 58 seconds

CHAPTER 4 ■ USING CHEF PROVISIONING TO PROVISION MACHINES

99

 The recipe can take up to five minutes to execute while locks are freed on all of the resources within the
Resource Group. Chef Provisioning will wait for this to complete in case anything further down the recipe is
dependent on the Resource Group being deleted.

 While the resource group is being destroyed it is given the status of Deleting as seen in the portal in
Figure 4-13 .

 Figure 4-13. Azure Resource Group in Deleting state as seen in the Management portal

 We can see how an operation that would have taken quite a few clicks – refreshing and waiting in the
portal – can be accomplished with a single line, and we don’t have to worry about shutting resources down
in the correct order.

 Summary
 In this chapter we made sure your workstation was configured correctly to support Chef Provisioning and
the Chef Provisioning Azure Resource Manager driver (chef-provisioning-azurerm). We went into detail
on how to set up a Service Principal to allow us to configure Chef Provisioning correctly. We then looked at
examples of ARM templates and showed you how to build a Windows Server using the framework. On top
of that we looked at how to enable the Chef VM Extension so that every machine you boot up in Azure is
configuration managed from Day 1.

 By this point you will may be starting to see how this all comes together to express an entire Azure
environment as code, using Chef to orchestrate the provisioning and the configuration management of
the environment. Now that you understand the basics, we’ll move on to some more complex real-world
scenarios.

101© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_5

 CHAPTER 5

 Advanced Chef Provisioning
Techniques

 In this chapter we’re going to have a look at some of the more advanced things you might want to do when
provisioning resources in Azure via Chef Provisioning. We’ll start by looking at how to ensure your secrets
can be stored securely using Azure’s Key Vault PaaS service, use that service to securely configure WinRM
on a VM running in Azure, and then look at some ways in which you can leverage some of the newest PaaS
services in Azure.

 Explaining VM Image Naming within Azure Resource
Manager JSON
 In the previous chapter we saw how we could use an Azure Resource Manager template to create a Windows
Server compute resource, but how did we know which version of Windows Server to deploy? The basic
answer is that the image used was baked into the template. But what if we want to use a different version of
Windows Server? That’s what we’ll explain shortly.

 We saw in the template we were using, downloaded from https://github.com/Azure/azure-
quickstart-templates/tree/master/101-vm-with-rdp-port , that the Virtual Machine is a type of
Compute resource that has some internal variables that include publisher , offer , sku, and version . Here’s
the fragment of template that defines the Virtual Machine:

 {
 "apiVersion": "[variables('apiVersion')]",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "vm",
 "location": "[variables('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts',variables('storageAccountName'))]",
 "[concat('Microsoft.Network/networkInterfaces/',parameters('vmName'),'-nic')]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "Standard_D2"
 },

https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-rdp-port
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-with-rdp-port

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

102

 "osProfile": {
 "computerName": "[parameters('vmName')]",
 "adminUsername": "[parameters('adminUserName')]",
 "adminPassword": "[parameters('adminPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "[variables('imagePublisher')]",
 "offer": "[variables('imageOffer')]",
 "sku": "[variables('imageSku')]",
 "version": "latest"
 },
 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat('http://',variables('storageAccountName'),'.blob.core.

windows.net/vhds/',parameters('vmName'),'-osdisk.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces',concat(parameters

('vmName'),'-nic'))]"
 }
]
 },
 "diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": "true",
 "storageUri": "[concat('http://',variables('storageAccountName'),

'.blob.core.windows.net')]"
 }
 }
 }
 }

 The template above expects these properties to be provided to it, so how do we discover the correct
values for the template? Let’s have a look at how to retrieve the publishers , offers , and skus for any public
VM image.

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

103

 Identifying and Retrieving VM Images
 There’s a particular sequence of events you must go through in order to list the publicly available
 VM images :

• To get a list of the Publishers you need to execute azure vm image list-
publishers (Azure-cli) or Get-AzureRmVMImagePublisher (PowerShell).

• Then you can retrieve the Offers with azure vm image list-offers (Azure-cli) or
 Get-AzureRmVMImageOffer (PowerShell).

• Only then can you retrieve the Sku with azure vm image list-skus (Azure-cli)
or Get-AzureRmVMImageSku (PowerShell).

 As the specific images available can possibly vary by region, the datacenter location must be passed in
as a parameter to each command or cmdlet too. Let’s step through the process of ’discovering’ the Windows
2012 R2 Datacenter image in both Azure-cli and PowerShell, noting that I am using West Europe as my
region (as it is my nearest datacenter).

 Azure-cli
 To discover images using Azure-cli we use the following commands:

 PS C:\Users\StuartPreston> azure vm image list-publishers "West Europe"

 info: Executing command vm image list-publishers
 + Getting virtual machine and/or extension image publishers (Location: "westeurope")
 data: Publisher Location
 data: -- ----------
 [...]

 data: MicrosoftWindowsServer westeurope

 [...]
 info: vm image list-publishers command OK

 Now we can use the azure vm image list-offers command and specify the publisher:

 PS C:\Users\StuartPreston> azure vm image list-offers "West Europe" MicrosoftWindowsServer

 info: Executing command vm image list-offers
 + Getting virtual machine image offers (Publisher: "MicrosoftWindowsServer"
Location:"westeurope")
 data: Publisher Offer Location
 data: ---------------------- ------------- ----------
 data: MicrosoftWindowsServer WindowsServer westeurope
 info: vm image list-offers command OK

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

104

 Now armed with the Publisher and the Offer we can retrieve the Skus:

 PS C:\Users\StuartPreston> azure vm image list-skus "West Europe" MicrosoftWindowsServer
WindowsServer

 info: Executing command vm image list-skus
 + Getting virtual machine image skus (Publisher:"MicrosoftWindowsServer"
Offer:"WindowsServer" Location:"westeurope")
 data: Publisher Offer sku
data: ---------------------- ------------- --
data: MicrosoftWindowsServer WindowsServer 2008-R2-SP1
 data: MicrosoftWindowsServer WindowsServer 2012-Datacenter
data: MicrosoftWindowsServer WindowsServer 2012-R2-Datacenter
data: MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-3-with-Containers
data: MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-4-Nano-Server
data: MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-Nano-Server
data: MicrosoftWindowsServer WindowsServer Windows-Server-Technical-Preview
info: vm image list-skus command OK

 Let’s see how to do the same using PowerShell.

 PowerShell
 To discover images using PowerShell we use the following commands:

 PS C:\Users\StuartPreston> Get-AzureRmVMImageOffer -Location "West Europe"

 PublisherName

 [...]
 MicrosoftWindowsServer

 Now we can use the Get-AzureRmVMImageOffer command and specify the publisher:

 PS C:\Users\StuartPreston> Get-AzureRmVMImageOffer -Location "West Europe" -PublisherName
"MicrosoftWindowsServer" | Select Offer

 Offer

 WindowsServer

 Armed with the Publisher and the Offer we can retrieve the list of available Skus:

 PS C:\Users\StuartPreston> Get-AzureRMImageSku -Location "West Europe" -PublisherName
"MicrosoftWindowsServer" -Offer "WindowsServer" | Select PublisherName, Offer, Skus

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

105

 PublisherName Offer Skus
 ------------- ----- ----
 MicrosoftWindowsServer WindowsServer 2008-R2-SP1
 MicrosoftWindowsServer WindowsServer 2012-Datacenter
 MicrosoftWindowsServer WindowsServer 2012-R2-Datacenter
 MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-3-with-Containers
 MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-4-Nano-Server
 MicrosoftWindowsServer WindowsServer 2016-Technical-Preview-Nano-Server
 MicrosoftWindowsServer WindowsServer Windows-Server-Technical-Preview

 Now we have all the constituent values, these can be passed in as parameters in your provisioning
recipes or used for other purposes, such as with Test Kitchen (you can read more about this in chapter 6).

 Using Azure Key Vault to Store Secrets
 As we know, it’s not just VMs that you can create with Azure Resource Manager. We can also provision PaaS
resources too. One of the PaaS solutions within Azure is KeyVault (see https://azure.microsoft.com/
en-us/services/key-vault/), which is best described as a scalable Key Management solution that allows
the storage of cryptographic keys without the cost normally associated with the implementation of HSMs
(Hardware Security Modules) on premises.

 The retrieval of a certificate from Key Vault is currently required if you wish to enable WinRM in a secure
configuration on a Windows Server at provisioning time. So let’s cover how to provision the Key Vault itself,
along with the command-line tools used to manage it. Later examples in this chapter will show you how to
provision machines that rely on secrets stored in the Key Vault.

 You may create many Key Vault per subscription if you wish. Let’s go through the process of
provisioning a Key Vault. Azure Key Vault is quite simple to provision using Azure-cli, PowerShell, or Chef
Provisioning, so you may be asking yourself why you would want to use Chef. The main reason to do so is
for consistency, so that we can keep all our provisioned resources in the same repo. Now let’s go through the
process of provisioning a Key Vault using Chef.

 As this is the first example in this chapter, we’ll need a repo in which to work in:

 PS C:\Users\StuartPreston> chef generate app chefazure-ch05

 Compiling Cookbooks...
 Recipe: code_generator::app
 [output truncated]

 You’ll now want to copy in the .chef folder from our chef-starter repo (as created in chapter 1), so that
our keys and knife.rb configuration are available in our new repo.

 Now we can enter our repo and open the folder in our code editor:

 PS C:\Users\StuartPreston> cd chefazure-ch05
 PS C:\Users\StuartPreston\chefazure-ch05> code .

http://dx.doi.org/10.1007/978-1-4842-1476-3_6
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/
http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

106

 Azure Key Vault ARM Template
 We need to create a file cookbooks/chefazure-ch05/files/keyvault/deploy.json within our repository
representing the ARM template that creates a Key Vault so that we can refer to it from a provisioning recipe.

 ■ Note This ARM template can be downloaded from https://raw.githubusercontent.com/Azure/azure-
quickstart-templates/master/101-key-vault-create/azuredeploy.json , and you can find this and the
associated recipes in the book's accompanying download.

 Here’s the template reproduced in its entirety. We can see there are nine parameters that I have
highlighted in bold that we will need to supply in our Chef Provisioning recipe and finally the resource
contained within it:

 {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.
json#",

 "contentVersion": "1.0.0.0",
 "parameters": {
 " keyVaultName ": {
 "type": "string",
 "metadata": {
 "description": "Name of the Vault"
 }
 },
 " location ": {
 "type": "string",
 "allowedValues": [
 "Central US",
 "East US",
 "East US 2",
 "North Central US",
 "South Central US",
 "West US",
 "North Europe",
 "West Europe",
 "East Asia",
 "Southeast Asia",
 "Japan East",
 "Japan West",
 "Brazil South",
 "Australia East",
 "Australia Southeast"
],
 "metadata": {
 "description": "Key Vault location"
 }
 },
 " tenantId ": {
 "type": "string",

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-key-vault-create/azuredeploy.json
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-key-vault-create/azuredeploy.json

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

107

 "metadata": {
 "description": "Tenant Id of the subscription. Get using Get-AzureSubscription

cmdlet or Get Subscription API"
 }
 },
 " objectId ": {
 "type": "string",
 "metadata": {
 "description": "Object Id of the AD user. Get using Get-AzureADUser or

Get-AzureADServicePrincipal cmdlets"
 }
 },
 " keysPermissions ": {
 "type": "array",
 "defaultValue": [],
 "metadata": {
 "description": "Permissions to keys in the vault. Valid values are: all, create,

import, update, get, list, delete, backup, restore, encrypt, decrypt, wrapkey,
unwrapkey, sign, and verify."

 }
 },
 " secretsPermissions ": {
 "type": "array",
 "defaultValue": [],
 "metadata": {
 "description": "Permissions to secrets in the vault. Valid values are: all, get,

set, list, and delete."
 }
 },
 " skuName ": {
 "type": "string",
 "defaultValue": "Standard",
 "allowedValues": [
 "Standard",
 "Premium"
],
 "metadata": {
 "description": "SKU for the vault"
 }
 },
 " enableVaultForDeployment ": {
 "type": "bool",
 "defaultValue": false,
 "allowedValues": [
 true,
 false
],
 "metadata": {
 "description": "Specifies if the vault is enabled for a VM deployment"
 }
 },

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

108

 " enableVaultForDiskEncryption ": {
 "type": "bool",
 "defaultValue": false,
 "allowedValues": [
 true,
 false
],
 "metadata": {
 "description": "Specifies if the azure platform has access to the vault for enabling

disk encryption scenarios."
 }
 }
 },
 "resources": [
 {
 "type": "Microsoft.KeyVault/vaults",
 "name": "[parameters('keyVaultName')]",
 "apiVersion": "2015-06-01",
 "location": "[parameters('location')]",
 "properties": {
 "enabledForDeployment": "[parameters('enableVaultForDeployment')]",
 "enabledForDiskEncryption": "[parameters('enableVaultForDiskEncryption')]",
 "tenantId": "[parameters('tenantId')]",
 "accessPolicies": [
 {
 "tenantId": "[parameters('tenantId')]",
 "objectId": "[parameters('objectId')]",
 "permissions": {
 "keys": "[parameters('keysPermissions')]",
 "secrets": "[parameters('secretsPermissions')]"
 }
 }
],
 "sku": {
 "name": "[parameters('skuName')]",
 "family": "A"
 }
 }
 }
]
 }

 Retrieving the Object ID for an Azure Active Directory User
 When we create the Key Vault, we will need to add permissions so that our normal user (not the application
Service Principal) has access to be able to create keys. Luckily this is something that the Key Vault provider
can do for us. To configure that, we need the Object Id of the Azure Active Directory user we want to grant
access to, which can be retrieved using Azure-cli and PowerShell.

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

109

 Azure-cli
 In Azure-cli we can use the azure ad user show --upn command and pass in the UPN of the user we want
to grant access to:

 PS C:\Users\StuartPreston\chefazure-ch05> azure ad user show --upn stuart@pendrica.com

 info: Executing command ad user show
 + Getting active directory user
 data: Object Id: 38e8a50f-YOUR-GUID-HERE-a605e06e9695
 data: Principal Name: stuart@pendrica.com
 data: Display Name: Stuart Preston
 data: E-Mail: stuart@pendrica.com
 data:

 PowerShell
 In PowerShell we can use the Get-AzureRmADUser -UserPrincipalName cmdlet and pass in the UPN of the
user we want to grant access to:

 PS C:\Users\StuartPreston> Get-AzureRmADUser -UserPrincipalName stuart@pendrica.com

 DisplayName ObjectId
 ----------- --------
 Stuart Preston 38e8a50f-YOUR-GUID-HERE-a605e06e9695

 Azure Key Vault Provisioning Recipe
 To provision our Key Vault, we need to create a new file to contain our recipe in the following path:
 cookbooks/chefazure-ch05/recipes/keyvault.rb and add the below recipe to it. Now that we have the
ObjectId for the user who should have permission to the Key Vault, this can be substituted into the objectId
parameter.

 ■ Tip If you cannot locate your TenantId, the quickest way might be to have a look in your credentials file
located at ~/.azure/credentials .

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-shared' do
 location 'West Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

110

 azure_resource_template 'keyvault-deployment' do
 resource_group 'chefazure-shared'
 template_source 'cookbooks/chefazure-ch05/files/keyvault/deploy.json'
 parameters keyVaultName: 'chefazure-keyvault',
 location: 'West Europe',
 tenantId: '48b9bba3-YOUR-GUID-HERE-90f0b68ce8ba',
 objectId: '38e8a50f-YOUR-GUID-HERE-a605e06e9695',
 keysPermissions: ['all'],
 secretsPermissions: ['all'],
 skuName: 'Standard',
 enableVaultForDeployment: true,
 enableVaultForDiskEncryption: false
 end

 Upload the cookbook using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch05> knife cookbook upload chefazure-ch05

 Uploading chefazure-ch05 [0.1.0]
 Uploaded 1 cookbook.

 Now let’s provision this recipe using our local chef-client :

 PS C:\Users\StuartPreston\chefazure-ch05> chef-client -o recipe[chefazure-ch05::keyvault]

 Starting Chef Client, version 12.5.1
 [2015-11-21T17:20:24+00:00] WARN: Run List override has been provided.
 [2015-11-21T17:20:24+00:00] WARN: Original Run List: []
 [2015-11-21T17:20:24+00:00] WARN: Overridden Run List: [recipe[chefazure-ch05::keyvault]]
 resolving cookbooks for run list: ["chefazure-ch05::keyvault"]
 Synchronizing Cookbooks:
 - chefazure-ch05 (0.1.0)
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: chefazure-ch05::keyvault
 * azure_resource_group[chefazure-shared] action create
 - create or update Resource Group chefazure-shared
 * azure_resource_template[keyvault-deployment] action deploy
 - Result: Accepted
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'keyvault-deployment'
 [2015-11-21T17:20:39+00:00] WARN: Skipping final node save because override_runlist was
 given

 Running handlers:
 Running handlers complete
 Chef Client finished, 2/2 resources updated in 31 seconds

 We have now successfully created a Key Vault and provided access to our Service Principal. Let’s have a
look at how a Windows Server might use Key Vault in the process of enabling WinRM securely.

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

111

 Creating a Windows Server with WinRM Securely
Enabled via Key Vault
 Now that we have uploaded our certificates into a Key Vault, we can refer to the Key Vault in an Azure
Resource Manager template. This opens up certain scenarios such as this one where the WinRM endpoint is
correctly configured on a new VM that we create in a Resource Group. There are three stages to the process:

 1. Creating a self-signed certificate

 2. Uploading the self-signed certificate to the Key Vault

 3. Provisioning a WinRM-enabled Windows Server using the certificate in the
Key Vault

 Let’s go through the process in detail.

 Creating a Self-signed Certificate
 To get started we need to generate a self-signed certificate to upload to our Key Vault.

 Mac OS X/Linux (Azure-cli)
 If you are running on Mac or Linux, we can use the OpenSSL tools to generate a certificate in PFX format by
following the commands below in bold:

 $ openssl genrsa 2048 > private.pem
 Generating RSA private key, 2048 bit long modulus
 ...+++
 ..+++
 e is 65537 (0x10001)

 $ openssl req -x509 -new -key private.pem -out public.key
 You are about to be asked to enter information that will be incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished Name or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]: GB
 State or Province Name (full name) [Some-State]: London
 Locality Name (eg, city) []: London
 Organization Name (eg, company) [Internet Widgits Pty Ltd]: Pendrica Ltd
 Organizational Unit Name (eg, section) []: IT
 Common Name (e.g. server FQDN or YOUR name) []: vm
 Email Address []: stuart@pendrica.com

 $ openssl pkcs12 -export -in public.key -inkey private.pem -out vm.pfx
 Enter Export Password:
 Verifying - Enter Export Password:

 We how have a .pfx suitable for uploading to Key Vault.

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

112

 Windows (PowerShell)
 If you are running on Windows 8.1, Windows 2012 R2 or higher, the New-SelfSignedCertificate cmdlet can
be used to generate a certificate that can then be exported to a .pfx suitable for uploading to the Key Vault:

 PS C:\Users\StuartPreston\chefazure-ch05> New-SelfSignedCertificate -DnsName
vm.mydomain.local

 Directory: Microsoft.PowerShell.Security\Certificate::LocalMachine\MY

 Thumbprint Subject
 ---------- -------
 434A322583F2903880B27FED0E6AA1E0AB68E000 CN=vm.mydomain.local

 C:\Users\StuartPreston\chefazure-ch05> $certPassword = ConvertTo-SecureString -String
"P2ssw0rd" -Force -AsPlainText
 C:\Users\StuartPreston\chefazure-ch05> $cert = Get-ChildItem -Path cert:\localMachine\my |
where { $_.Subject -eq 'CN=vm.mydomain.local' }
 C:\Users\StuartPreston\chefazure-ch05> Export-PfxCertificate -Cert $cert -Password
$certPassword -FilePath vm.pfx

 Directory: C:\Users\StuartPreston\chefazure-ch05
 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 -a---- 21/11/2015 23:20 2615 vm.pfx

 Uploading the Certificate to Key Vault
 To upload our certificate into the Key Vault so it is ready for use later, we can use the Azure-cli or PowerShell.
Both paths follow the same approach - a temporary file is needed as our payload that we upload to Key Vault.
The payload is a JSON document that contains our PFX data (which needs to be base64 encoded), and then
the whole document needs to be base64 encoded before uploading it.

 Mac OS X/Linux (Azure-cli)
 To manually create the required payload, we’ll start by base64 encoding our PFX file:

 $ base64 -i vm.pfx

 MIIKMwIBAzCCCe8GCSqGSIb3DQEHAaCCCeAEggncMIIJ2DCCBg8GCSqGSIb3DQEHAaCCBgAEggX8MIIF+
DCCBfQGCyqGSIb3DQEMCgECoIIE/jCCBPowHAYKKoZIhvcNAQwBAzAOBAhFmO4v4OiE9wICB9AEgg
TYz4nFVhhVpiKqD6+DZ8TLd837
 [...] full output not shown
 RzEiBCBEAEUAUwBLAFQATwBQAC0AVABJAEQASgAzAFMAOAAAADA7MB8wBwYFKw4DAhoEFNZlC7N1gOrgUIuGWBuo
Sa31UbHcBBTtCIWsbWB/qgWl31zEK4kmwKQUbQICB9A=

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

113

 Now we can create a temporary file called secret.json using the following as a template and pasting in
your base64 encoded data and password if you set one:

 {
 "data": " [paste your base64 encoded content from above] ",
 "dataType" :"pfx",
 "password": " [pfx password] "
 }

 Now we need to base64 encode this secret.json:

 $ base64 -i secret.json

 ewoiZGF0YSI6ICJNSUlLSVFJQkF6Q0NDZWNHQ1NxR1NJYjNEUUVIQWFDQ0NkZ0VnZ25VTUlJSjBEQ0NCSWNHQ1Nx
R1NJYjNEUUVIQnFDQ0JIZ3dnZ1IwQWdFQU1JSUViUVlKS29aSWh2Y05BUWNCTUJ3R0NpcUdTSWIzRFFFTU
FRWXdEZ1FJVHIv
 [...] full output not shown
 Yk1GaXpFTXBTWUUvODVnS0ZvSDk4T1BHc3dNVEFoTUFrR0JTc09Bd0lhQlFBRUZBdWFzdjlVM2gx
Ri8wL2NWK0EvSWx4eDdhMFhCQWdvc2NUbkpWMEZ4QUlDQ0FBPSIsCiJkYXRhVHlwZSI6ICJwZngiLAoicGF
zc3dvcmQiOiAiIgp9Cg==

 We can then use the azure keyvault secret set command to upload this secret:

 $ azure keyvault secret set --vault-name "chefazure" --secret-name "vmselfcert" --value
"ewoiZGF0YSI6ICJNSUlLSVFJQkF6Q0NDZWNHQ1NxR1NJYjNEUUVIQWFDQ0NkZ0VnZ25VTUlJSj
BEQ0NCSWNHQ1NxR1NJYjNEUUVIQnFDQ0JIZ3dnZ1IwQWdFQU1JSUViUVlKS29aSWh2Y05BUWNCTUJ3
R0NpcUdTSWIzRFFFTUFRWXdEZ1FJVHIvd0ppOE5QcHNDQWdnQWdJSUVRRHNldzZVaVM4SHg2el
dOWHN2clE1WGFiMDJsNUZkOE5aZjhEeVFzOCtYOHB0VGlZNUJSOGFMaDd5UVJ

 [...] full input not shown

 GaXpFTXBTWUUvODVnS0ZvSDk4T1BHc3dNVEFoTUFrR0JTc09Bd0lhQlFBRUZBdWFzdjlVM2gxRi8wL2NWK0EvSWx4e
DdhMFhCQWdvc2NUbkpWMEZ4QUlDQ0FBPSIsCiJkYXRhVHlwZSI6ICJwZngiLAoicGFzc3dvcmQiOiAiIgp9Cg=="

 info: Executing command keyvault secret set
 + Creating secret https://chefazure.vault.azure.net/secrets/vmselfcert
 data: value
"ewoiZGF0YSI6ICJNSUlLSVFJQkF6Q0NDZWNHQ1NxR1NJYjNEUUVIQWFDQ0NkZ0VnZ25VTUlJSjBEQ0NCSWNHQ1Nx
R1NJYjNEUUVIQnFDQ0JIZ3dnZ1IwQWdFQU1JSUViUVlKS29aSWh2Y05BUWNCTUJ3R0NpcUdTSWIzRFF
FTUFRWXdEZ1FJVHI
 [...] full output not shown
 aYk1GaXpFTXBTWUUvODVnS0ZvSDk4T1BHc3dNVEFoTUFrR0JTc09Bd0lhQlFBRUZBdWFzdjlVM2gxRi8wL2NWK0Ev
SWx4eDdhMFhCQWdvc2NUbkpWMEZ4QUlDQ0FBPSIsCiJkYXRhVHlwZSI6ICJwZngiLAoicGFzc3dvcmQiOiAiIgp9Cg=="
 data: id https://chefazure.vault.azure.net/secrets/vmselfcert/3772db676efd407b89f8fdd86bb545f5
 data: attributes enabled true
 data: attributes created "2016-01-28T22:34:51.000Z"
 data: attributes updated "2016-01-28T22:34:51.000Z"
 info: keyvault secret set command OK

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

114

 Windows (PowerShell)
 Here’s a PowerShell script to create our temporary payload in the correct format and upload it:

 $fileName = "vm_mydomain_com.pfx"
 $certPassword = "your-cert-password"
 $fileContentBytes = get-content $fileName -Encoding Byte
 $fileContentEncoded = [System.Convert]::ToBase64String($fileContentBytes)
 $jsonObject = @"
 {
 "data": "$filecontentencoded",
 "dataType" :"pfx",
 "password": "$certPassword"
 }
 "@
 $jsonObjectBytes = [System.Text.Encoding]::UTF8.GetBytes($jsonObject)
 $jsonEncoded = [System.Convert]::ToBase64String($jsonObjectBytes)
 $secret = ConvertTo-SecureString -String $jsonEncoded -AsPlainText -Force

 Save the file as encodeCertificate.ps1 and execute it. Now we can execute the Set-AzureKeyVaultSecret
cmdlet to upload the secret to the Key Vault:

 PS C:\Users\StuartPreston\chefazure-ch05> Set-AzureKeyVaultSecret -VaultName "chefazure"
-Name "vmselfcert" -SecretValue $secret

 Vault Name : chefazure
 Name : vmselfcert
 Version : f4233e85f0c94bd987b337a7e329fa48
 Id : https://chefazure.vault.azure.net:443/secrets/vmselfcert/

f4233e85f0c94bd987b337a7e329fa48
 Enabled : True
 Expires :
 Not Before :
 Created : 22/11/2015 00:20:23
 Updated : 22/11/2015 00:20:23
 Content Type :
 Tags :

 We’ll need the URL to the secret (the Id field) for the next section.

 Provisioning a WinRM-Enabled Windows Server
 Here’s the deploy.json file you will need to provision a WinRM-enabled Windows Server. You can save this
JSON in cookbooks/chefazure-ch05/files/winrm_winserver/deploy. json

 {
 "$schema": "http://schema.management.azure.com/schemas/2014-04-01-preview/
deploymentTemplate.json",
 "contentVersion": "1.0.0.0",
 "parameters": {

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

115

 "newStorageAccountName": {
 "type": "string",
 "metadata": {
 "description": "This is the name of the storage account"
 }
 },
 "dnsNameForPublicIP": {
 "type": "string",
 "metadata": {
 "description": "DNS Name for the Public IP. Must be lowercase."
 }
 },
 "adminUserName": {
 "type": "string",
 "metadata": {
 "description": "Admin username"
 }
 },
 "adminPassword": {
 "type": "securestring",
 "metadata": {
 "description": "Admin password"
 }
 },
 "imagePublisher": {
 "type": "string",
 "defaultValue": "MicrosoftWindowsServer",
 "metadata": {
 "description": "Image Publisher"
 }
 },
 "imageOffer": {
 "type": "string",
 "defaultValue": "WindowsServer",
 "metadata": {
 "description": "Image Offer"
 }
 },
 "imageSKU": {
 "type": "string",
 "defaultValue": "2012-R2-Datacenter",
 "metadata": {
 "description": "Image SKU"
 }
 },
 "location": {
 "type": "String",
 "metadata": {
 "description": "Location where resources will be deployed"
 }
 },

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

116

 "vmSize": {
 "type": "string",
 "metadata": {
 "description": "Size of the VM"
 }
 },
 "vmName": {
 "type": "string",
 "metadata": {
 "description": "Name of the VM"
 }
 },
 "vaultName": {
 "type": "string",
 "metadata": {
 "description": "Name of the KeyVault"
 }
 },
 "vaultResourceGroup": {
 "type": "string",
 "metadata": {
 "description": "Resource Group of the KeyVault"
 }
 },
 "certificateUrl": {
 "type": "string",
 "metadata": {
 "description": "Url of the certificate with version in KeyVault e.g.

https://testault.vault.azure.net/secrets/testcert/b621es1db241e56a72d037479xab1r7"
 }
 }
 },
 "variables": {
 "addressPrefix": "10.0.0.0/16",
 "subnet1Name": "Subnet-1",
 "subnet1Prefix": "10.0.0.0/24",
 "vmStorageAccountContainerName": "vhds",
 "publicIPAddressName": "myPublicIP",
 "publicIPAddressType": "Dynamic",
 "storageAccountType": "Standard_LRS",
 "virtualNetworkName": "myVNET",
 "nicName": "myNIC",
 "vnetID": "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]",
 "subnet1Ref": "[concat(variables('vnetID'),'/subnets/',variables('subnet1Name'))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[parameters('newStorageAccountName')]",
 "apiVersion": "2015-05-01-preview",
 "location": "[parameters('location')]",

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

117

 "properties": {
 "accountType": "[variables('storageAccountType')]"
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "[variables('publicIPAddressName')]",
 "location": "[parameters('location')]",
 "properties": {
 "publicIPAllocationMethod": "[variables('publicIPAddressType')]",
 "dnsSettings": {
 "domainNameLabel": "[parameters('dnsNameForPublicIP')]"
 }
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[variables('virtualNetworkName')]",
 "location": "[parameters('location')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('addressPrefix')]"
]
 },
 "subnets": [
 {
 "name": "[variables('subnet1Name')]",
 "properties": {
 "addressPrefix": "[variables('subnet1Prefix')]"
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/networkInterfaces",
 "name": "[variables('nicName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[concat('Microsoft.Network/publicIPAddresses/', variables('publicIPAddressName'))]",
 "[concat('Microsoft.Network/virtualNetworks/', variables('virtualNetworkName'))]"
],
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

118

 "privateIPAllocationMethod": "Dynamic",
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses',variables

('publicIPAddressName'))]"
 },
 "subnet": {
 "id": "[variables('subnet1Ref')]"
 }
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[parameters('vmName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[concat('Microsoft.Storage/storageAccounts/', parameters('newStorageAccountName'))]",
 "[concat('Microsoft.Network/networkInterfaces/', variables('nicName'))]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[parameters('vmSize')]"
 },
 "osProfile": {
 "computername": "[parameters('vmName')]",
 "adminUsername": "[parameters('adminUsername')]",
 "adminPassword": "[parameters('adminPassword')]",
 "secrets": [
 {
 "sourceVault": {
 "id": "[resourceId(parameters('vaultResourceGroup'), 'Microsoft.KeyVault/

vaults', parameters('vaultName'))]"
 },
 "vaultCertificates": [
 {
 "certificateUrl": "[parameters('certificateUrl')]",
 "certificateStore": "My"
 }
]
 }
],
 "windowsConfiguration": {
 "provisionVMAgent": "true",
 "winRM": {
 "listeners": [
 {
 "protocol": "http"
 },

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

119

 {
 "protocol": "https",
 "certificateUrl": "[parameters('certificateUrl')]"
 }
]
 },
 "enableAutomaticUpdates": "true"
 }
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "[parameters('imagePublisher')]",
 "offer": "[parameters('imageOffer')]",
 "sku": "[parameters('imageSKU')]",
 "version": "latest"
 },
 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat('http://',parameters('newStorageAccountName'),'.blob.core.

windows.net/vhds/','osdisk.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces',variables('nicName'))]"
 }
]
 },
 "diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": "true",
 "storageUri": "[concat('http://',parameters('newStorageAccountName'),'.blob.

core.windows.net')]"
 }
 }
 }
 }
]
 }

 Here’s an example recipe that would be required. You can tweak it as required for your environment
and save it as cookbooks/chefazure-ch05/recipes/winrm_winserver.rb .

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

120

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch05' do
 location 'West Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

 azure_resource_template 'keyvault-deployment' do
 resource_group 'chefazure-ch05'
 template_source 'cookbooks/chefazure-ch05/files/winrm_winserver/deploy.json'
 parameters newStorageAccountName: 'chefazurech05',
 dnsNameForPublicIP: 'chefazure-ch05-vm',
 adminUsername: 'azure',
 adminPassword: 'P2ssw0rd',
 imagePublisher: 'MicrosoftWindowsServer',
 imageOffer: 'WindowsServer',
 imageSKU: '2012-R2-Datacenter',
 location: 'West Europe',
 vmName: 'ch05vm',
 vmSize: 'Standard_D2',
 vaultName: 'chefazure',
 vaultResourceGroup: 'chefazure-shared',
 certificateUrl: 'https://chefazure.vault.azure.net:443/secrets/vmselfcert/02a48

bca5dbf42228a170c6ebab476af'
 end

 We can see that this is a fairly standard ARM template that will produce a Windows 2012 R2 Datacenter
server, but also configured to point at the Key Vault we created earlier. This allows the template to retrieve
the certificate, store it in the VM's certificate store, and then configure WinRM securely.

 Upload the cookbook using knife cookbook upload :

 PS C:\Users\StuartPreston\chefazure-ch05> knife cookbook upload chefazure-ch05

 Uploading chefazure-ch05 [0.1.0]
 Uploaded 1 cookbook.

 We can now execute this by running chef-client -o recipe[chefazure-ch05::winrm_winserver] :

 PS C:\Users\StuartPreston\chefazure-ch05> chef-client -o recipe[chefazure-ch05::winrm_
winserver]

 Starting Chef Client, version 12.5.1
 [2015-11-22T07:43:45+00:00] WARN: Run List override has been provided.
 [2015-11-22T07:43:45+00:00] WARN: Original Run List: []
 [2015-11-22T07:43:45+00:00] WARN: Overridden Run List: [recipe[chefazure-ch05::winrm_winserver]]
 [2015-11-22T07:43:46+00:00] WARN: chef-client doesn't have administrator privileges on node
DESKTOP-TIDJ3S8. This might cause unexpected resource failures.
 resolving cookbooks for run list: ["chefazure-ch05::winrm_winserver"]

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

121

 Synchronizing Cookbooks:
 - chefazure-ch05 (0.1.0)
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: chefazure-ch05::winrm_winserver
 * azure_resource_group[chefazure-ch05] action create
 - create or update Resource Group chefazure-ch05
 * azure_resource_template[chefazure-ch05-vm-deployment] action deploy
 - Result: Accepted
 - Resource Microsoft.Network/virtualNetworks 'myVNET' provisioning status is Running
 - Resource Microsoft.Network/publicIPAddresses 'myPublicIP' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Network/virtualNetworks 'myVNET' provisioning status is Running
 - Resource Microsoft.Network/publicIPAddresses 'myPublicIP' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chefazurech05' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'ch05vm' provisioning status is Running
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'chefazure-ch05-vm-deployment'
 [2015-11-22T07:59:37+00:00] WARN: Skipping final node save because override_runlist was
 given

 Running handlers:
 Running handlers complete
 Chef Client finished, 2/2 resources updated in 6 minutes 13 seconds

 Verifying WinRM Status
 We can verify the status by using the Test-NetConnection cmdlet, which checks whether the specified port
is open. When configured securely, WinRM runs on port 5986.

 PS C:\Users\StuartPreston\chefazure-ch05> Test-NetConnection chefazure-ch05-vm.westeurope.
cloudapp.azure.com -Port 5986

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

122

 WARNING: Ping to chefazure-ch05-vm.westeurope.cloudapp.azure.com failed -- Status:
TimedOut
 ComputerName : chefazure-ch05-vm.westeurope.cloudapp.azure.com
 RemoteAddress : 23.97.185.157
 RemotePort : 5986
 InterfaceAlias : Ethernet 2
 SourceAddress : 192.168.1.13
 PingSucceeded : False
 PingReplyDetails (RTT) : 0 ms
 TcpTestSucceeded : True

 We can also RDP to the machine to verify that the WinRM server is configured correctly by typing the
command winrm get winrm/config/service at an administrative command prompt as shown in Figure 5-1 :

 Figure 5-1. WinRM configuration on a Windows 2012 R2 server

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

123

 That covers the server side, but what about the client side? First of all, depending on your operating
system, you may find that the WinRM service is not started, so let’s start it. At an administrative PowerShell
session, type Start-Service winrm :

 PS C:\Users\StuartPreston\chefazure-ch05> Start-Service winrm

 As the certificate we uploaded wasn’t signed by a trusted certificate authority, and neither does the
name of the certificate match the hostname we are connecting to, we need to specify a couple of options so
that we can skip this checking when WinRM connects:

 PS C:\Users\StuartPreston\chefazure-ch05> $PSSessionOptions = New-PSSessionOption
-SkipCACheck -SkipCNCheck
 PS C:\Users\StuartPreston\chefazure-ch05> Enter-PSSession -UseSSL -ComputerName
chefazure-ch05-vm.westeurope.cloudapp.azure.com -Credential ch05vm\azure -SessionOption
$PSSessionOptions

 After entering the password, you will be presented with a remote session:

 [chefazure-ch05-vm.westeurope.cloudapp.azure.com]: PS C:\Users\azure\Documents> hostname
 ch05vm

 ■ Note Don’t forget to destroy your Resource Group after each exercise in the book!

 We have now used Chef Provisioning and Azure to provision and Key Vault and used it to securely
enable WinRM. Let’s have a look at the other types of resources that can be created in Azure.

 Creating Other PaaS Resources via Chef Provisioning and
Resource Explorer
 Let’s imagine we wanted to use a brand new Azure PaaS resource that has just been announced publicly at a
conference. We could wait until the API gets documented. Or we could use a tool called Resource Explorer
to inspect and explore resources that have already been created in your subscription.

 Let’s have a look at the process needed to automate the creation of any resource you can create through
the Management Portal today.

 Azure Data Factory describes itself as “a fully managed service for composing data storage, processing,
and movement services into streamlined, scalable, and reliable data production pipelines.” (see https://
azure.microsoft.com/en-us/documentation/videos/azure-data-factory-overview for more detail).

 Immediately I can imagine hundreds of use cases for such a PaaS service as part of a larger
architecture, so it sounds like a good candidate for our lesson in provisioning generic resources from
Chef Provisioning. Azure has some useful tools for quickly creating provisioning templates for anything
available in the gallery, if you know where to look. We’ll start from scratch, assuming no prior knowledge
of this resource and work through the process for rapidly creating an Azure Resource Manager template
and Chef Provisioning recipe.

https://azure.microsoft.com/en-us/documentation/videos/azure-data-factory-overview
https://azure.microsoft.com/en-us/documentation/videos/azure-data-factory-overview

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

124

 Figure 5-2. Example services that can be deployed from the Azure Marketplace

 Creating a Dummy Resource
 The first thing I do when I want to have a play with new resources in Azure is to head to the Azure
Management Portal (https://portal.azure.com). Every time I click New , I am overwhelmed with a list of
new shiny things I can play with!

 An example of this can be seen in Figure 5-2 . The analytics space is clearly a fast-moving area with
plenty of solutions already integrated into Azure and no doubt more to come. Let’s create a Data Factory.

https://portal.azure.com/

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

125

 When we create a resource using the portal in Azure, there is a predictable process with a pattern to
it. We select our resource, pick a subscription and resource group, add some settings/properties, and then
press Create . Moments later we have a provisioned resource. Taking Data Factory as an example, Figure 5-3
shows the options that need to be supplied to provision a Data Factory.

 Figure 5-3. New Data Factory options

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

126

 Figure 5-4. Viewing our template data factory that has been provisioned

 We simply need to supply the name, a Resource Group, and a Region to provision the resource. Once
the resource has been provisioned we can view the Data Factory blade, as shown in Figure 5-4 .

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

127

 You are presented here with a tree-view containing all the Providers and importantly, Subscriptions
available. Drilling into the Subscription we can see a list of all the available Resource Groups, from which we
can further expand and see the Resources that have been provisioned in that Resource Group.

 This can be seen in Figure 5-6 , where we have expanded the chefazure-ch05 Resource Group to find a
Resource of type Microsoft.DataFactory/dataFactories called template-datafactory .

 Viewing the Resource in Resource Explorer
 Now the resource has been provisioned we can use the Resource Explorer tool , which can be found from the
Portal by pressing Browse, then navigating to Resource Explorer (as shown in Figure 5-5).

 Figure 5-5. Finding the Resource Explorer in the Browse list in the Azure Management Portal

 Figure 5-6. Resource Explorer showing the tempate-datafactory resource

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

128

 Extracting the Template
 As before, we need an ARM template and a Recipe so that we can use Chef Provisioning to provision our
Data Factory.

 Let’s start with the Resource definition found in Resource Explorer, by navigating to Deployments/
Microsoft.DataFactory-template-datafactory. In the output window (as shown in Figure 5-7), we can see a
 templateLink element, in our case the URL: https://gallery.azure.com/artifact/20151001/Microsoft.
DataFactory.0.9.3-preview/DeploymentTemplates/DataFactory.json and we can use this to retrieve the
complete template used, and the parameters.

 Figure 5-7. Viewing the deployment JSON within Resource Explorer

 Now we can proceed to create the required files for our deployment; we’ll need to store the deploy.json
and a data_factory.rb in our cookbook as follows:

 cookbooks/chefazure-ch05/files/data_factory/deploy.json:
 {
 "$schema": "http://schema.management.azure.com/schemas/2014-04-01-preview/

deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "string"
 },
 "apiVersion": {
 "type": "string",
 "defaultValue": "2015-01-01-preview"
 }
 },
 "resources": [
 {

https://gallery.azure.com/artifact/20151001/Microsoft.DataFactory.0.9.3-preview/DeploymentTemplates/DataFactory.json
https://gallery.azure.com/artifact/20151001/Microsoft.DataFactory.0.9.3-preview/DeploymentTemplates/DataFactory.json

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

129

 "apiVersion": "[parameters('apiVersion')]",
 "name": "[parameters('name')]",
 "location": "[parameters('location')]",
 "type": "Microsoft.DataFactory/dataFactories",
 "properties": {}
 }
]
 }
 cookbooks/chefazure-ch05/recipes/data_factory.rb:
 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch05-ne' do
 location 'North Europe'
 tags CreatedFor: 'Using Chef with Microsoft Azure book'
 end

 azure_resource_template 'chefazure-ch05-datafactory-deployment' do
 resource_group 'chefazure-ch05-ne'
 template_source 'cookbooks/chefazure-ch05/files/data_factory/deploy.json'
 parameters name: 'chefazure-ch05-datafactory',
 location: 'North Europe'
 end

 Running a Custom Deployment
 Now that we have retrieved our Resource Manager template, stored it in our cookbook, and created a recipe
that uses it, we can execute it using the Chef Client as follows:

 PS C:\Users\StuartPreston\chefazure-ch05> knife cookbook upload chefazure-ch05

 Uploading chefazure-ch05 [0.1.0]
 Uploaded 1 cookbook.

 PS C:\Users\StuartPreston\chefazure-ch05> chef-client -o recipe[chefazure-ch05::data_factory]

 Starting Chef Client, version 12.5.1
 [2015-11-22T17:16:51+00:00] WARN: Run List override has been provided.
 [2015-11-22T17:16:51+00:00] WARN: Original Run List: []
 [2015-11-22T17:16:51+00:00] WARN: Overridden Run List: [recipe[chefazure-ch05::data_factory]]
 resolving cookbooks for run list: ["chefazure-ch05::data_factory"]
 Synchronizing Cookbooks:
 - chefazure-ch05 (0.1.0)
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: chefazure-ch05::data_factory
 * azure_resource_group[chefazure-ch05-ne] action create
 - create or update Resource Group chefazure-ch05-ne
 * azure_resource_template[chefazure-ch05-datafactory-deployment] action deploy

CHAPTER 5 ■ ADVANCED CHEF PROVISIONING TECHNIQUES

130

 - Result: Accepted
 - Resource Microsoft.DataFactory/dataFactories 'chefazure-ch05-datafactory' provisioning

Status is Running
 - Resource Microsoft.DataFactory/dataFactories 'chefazure-ch05-datafactory' provisioning

Status is Running
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'chefazure-ch05-datafactory-deployment'
 [2015-11-22T17:17:27+00:00] WARN: Skipping final node save because override_runlist was given

 Running handlers:
 Running handlers complete
 Chef Client finished, 2/2 resources updated in 01 minutes 16 seconds

 Having converged, we can now view that our Resource was provisioned correctly, as seen in Figure 5-8 .

 Figure 5-8. A Data Factory created via Chef Provisioning and Azure Resource Manager

 This was a very simple example, but we can now combine PaaS and IaaS resources when using Chef
Provisioning and Azure, and this opens up many possibilities for the creation of hybrid environments.

 Summary
 In this chapter we explored Azure Resource Manager and demonstrated how to use it with all the features of
Chef Provisioning. As we have been able to see - integrating Chef with Azure is not just about provisioning
compute (VM) resources, and this enables Chef to be used to provision hybrid PaaS and IaaS environments
in a reliable, repeatable way.

 The number of services in Azure grows weekly, a pace far faster than this book can keep up with. So we
demonstrated how to interpret Resource Explorer and create your own templates as and when new services
become available.

 In the next chapter we’re going to take a look how we can use Azure as part of our quest for quality when
using the Chef toolset.

131© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_6

 CHAPTER 6

 Integrating Quality Tooling into
the Chef Development Life Cycle

 The Chef ecosystem is fortunate to have many tools available to it to help in the quest for quality. This
chapter introduces some of the tools that are publicly available to help. Eventually we will be using these
tools as part of a Continuous Delivery pipeline, and it is important to get an understanding of how each tool
can be executed individually.

 In this chapter we’re going to take a tour around some of the most popular code analysis and testing
tools that are distributed with the ChefDK. First we’ll have a look at cookbook linting using tools such as
Rubocop and FoodCritic, before turning our attention to the different types of unit and integration testing
tools out there.

 As the purpose of this chapter is to introduce the tools, we’ll show you one or two working examples for
each tool, focusing on how they are used in the context of Chef and Azure and then provide some further
resources for you to go and explore at your own pace.

 Cookbook Linting
 Linting is the process of checking source code for problems before execution. Two tools have emerged as the
most popular in this area: Rubocop and FoodCritic. Rubocop is a static code analyzer that focuses on Ruby
code style errors, FoodCritic focuses on common errors in Chef recipes, and both are powerful tools when
used as part of a development workflow. Writing code in a consistent manner makes it easier for other team
members to read your code and extend it confidently. It also reduces the amount of difference from commit
to commit in your source code repository, making it easier to review.

 It takes just a few seconds to run Rubocop and FoodCritic, so there’s no reason not to run both regularly
against your cookbooks as part of your development process. These tools also return standard return codes
meaning they are very suitable for use in automated pipelines. We’ll be covering this in chapter 8 .

 ■ Note Rubocop and FoodCritic are installed with the Chef Development Kit (ChefDK) by default. See
chapter 1 if you have not installed ChefDK yet.

http://dx.doi.org/10.1007/978-1-4842-1476-3_8
http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

132

 Using RuboCop
 Most of the code that is authored when working with Chef is written as Ruby. Just about every file within a
cookbook (with few exceptions) is a Ruby file. So we can use Rubocop to do the following:

• Enforce style conventions and best practices

• Evaluate the code in a cookbook against metrics such as “line length” and “function size”

• Help every member of a team to author similarly structured code

• Establish uniformity of source code

• Set expectations for fellow (and future) project contributors

 The Rubocop ruleset was borne out of the Ruby Style Guide (see https://github.com/bbatsov/
ruby-style-guide), which is a community-maintained set of guidelines that attempts to define a good set of
conventions and principles.

 Each rule in Rubocop may be enabled and disabled, either at a global level by configuring a .rubocop.yml
file at the root of your project or by adding special comments to each Ruby file that exclude offenses from being
counted. Let’s give it a go in a new cookbook.

 Running Rubocop against an Entire Repository
 In this example, we’re going to run Rubocop against a new repository to verify the output is as expected, with
no errors.

 First of all, let’s create a new repository using chef generate app:

 PS C:\Users\StuartPreston> chef generate app chefazure-ch06

 This should generate an output similar to the following, and I have shortened the (lengthy) output:

 Compiling Cookbooks...
 Recipe: code_generator::app
 * directory[C:/Users/StuartPreston/chefazure-ch06] action create
 - create new directory C:/Users/StuartPreston/chefazure-ch06
 * template[C:/Users/StuartPreston/chefazure-ch06/.kitchen.yml] action create
 - create new file C:/Users/StuartPreston/chefazure-ch06/.kitchen.yml

 [... files are created here ...]
 * execute[initialize-git] action run
 - execute git init .
 * cookbook_file[C:/Users/StuartPreston/chefazure-ch06/.gitignore] action create
 - create new file C:/Users/StuartPreston/chefazure-ch06/.gitignore
 - update content in file C:/Users/StuartPreston/chefazure-ch06/.gitignore from none to

33d469
 (diff output suppressed by config)

https://github.com/bbatsov/ruby-style-guide
https://github.com/bbatsov/ruby-style-guide

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

133

 Now let’s move into our repo directory:

 PS C:\Users\StuartPreston> cd chefazure-ch06

 and execute Rubocop with no other command-line options:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files

 7 files inspected, no offenses detected

 As you can see from the output we have no offenses detected. That’s a good start. Let’s add some code to
a recipe and see if Rubocop detects anything wrong.

 Detecting and Correcting Rubocop Violations
 Let’s open up our code editor (in my case Visual Studio Code):

 PS C:\Users\StuartPreston\chefazure-ch06> code .

 Now navigate to cookbooks\chefazure-ch06\recipes and open up the default.rb file. Let’s add a
simple log resource to our recipe as follows:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2016 The Authors, All Rights Reserved.

 log "Hello, World!"

 The code should look similar to the code shown in Figure 6-1 . Save the file.

 Figure 6-1. Adding a log resource to the default recipe in our cookbook

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

134

 Now we’re going to run Rubocop again and see what results we get:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files
 ..C....

 Offenses:

 cookbooks/chefazure-ch06/recipes/default.rb:7:5: C: Prefer single-quoted strings when you
don't need string interpolation or special symbols.
 log "Hello, World!"
 ^^^^^^^^^^^^^^^
 cookbooks/chefazure-ch06/recipes/default.rb:7:20: C: Final newline missing.
 log "Hello, World!"

 7 files inspected, 2 offenses detected

 As we can see from the output, two style offenses have been detected in the code from adding one
seemingly innocuous line of code. Impressive! We can now correct them and try it again. We can make the
changes manually ourselves or use the (experimental) autocorrect feature of Rubocop.

 ■ Note Some text editors will automatically add a final newline to your file if you forget, so you may only see
one offense here!

 Rubocop Autocorrect
 While there are some Rubocop violations that have multiple possible fixes, Rubocop does a good job of
correcting code automatically by simply typing rubocop -a .

 Autocorrect works best when there is only one solution to the problem; otherwise it will leave the
offense alone. Let’s run rubocop -a against our code and see what happens:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop -a

 Inspecting 7 files
 ..C....

 Offenses:

 cookbooks/chefazure-ch06/recipes/default.rb:7:5: C: [Corrected] Prefer single-quoted strings
when you don't need string interpolation or special symbols.
 log "Hello, World!"
 ^^^^^^^^^^^^^^^
 cookbooks/chefazure-ch06/recipes/default.rb:7:20: C: [Corrected] Final newline missing.
 log "Hello, World!"

 7 files inspected, 2 offenses detected, 2 offenses corrected

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

135

 We can see in our example we now have corrected two offenses. This can also be seen in Figure 6-2 . Our
quoted string was changed to single quotes, and a new line was added at the end of the file for consistency.

 Suppressing Rubocop Offenses
 While it would be great if we could use and enforce the default Rubocop rules for all our projects without
modification, sometimes you will break so many rules that you want to defer fixing them until a later point,
or perhaps you have a rule that simply doesn’t make sense for your project.

 If you have a legitimate reason to suppress an offense there are a few ways to accomplish this:

 1. You may generate a .rubocop_todo.yml file from your failing tests, with the
intent of fixing them later.

 2. You may add blanket exclusions to your .rubocop.yml file.

 3. You may add per-line exclusions as a comment in each file.

 4. You may exclude sections of files.

 5. You may exclude entire files.

 Generating a todo file

 A Rubocop todo file is simply a partial configuration file that can be included in your Rubocop configuration.
As you gradually solve the problems you remove the line from the todo file until there’s none left.

 Let’s change our default.rb file so it triggers our first warning again:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2016 The Authors, All Rights Reserved.

 log "Hello, World!"

 Figure 6-2. Our corrected recipe after being run through Rubocop in autocorrect mode

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

136

 Now let’s generate a rubocop-todo.yml file by using rubocop --auto-gen-config :

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop --auto-gen-config

 Inspecting 7 files
 ..C....

 Offenses:

 cookbooks/chefazure-ch06/recipes/default.rb:7:5: C: Prefer single-quoted strings when you
don't need string interpolation or special symbols.
 log "Hello, World!"
 ^^^^^^^^^^^^^^^

 7 files inspected, 1 offense detected
 Created .rubocop_todo.yml.
 Run `rubocop --config .rubocop_todo.yml`, or
 add inherit_from: .rubocop_todo.yml in a .rubocop.yml file.

 If we inspect the contents of the .rubocop_todo.yml file we can see the exclusions created for the
specific ‘cops’ (Rubocop tests) that we are no longer interested in testing for:

 PS C:\Users\StuartPreston\chefazure-ch06> cat .rubocop_todo.yml

 # This configuration was generated by
 # `rubocop --auto-gen-config`
 # on 2015-11-05 16:18:50 +0000 using RuboCop version 0.34.2.
 # The point is for the user to remove these configuration records
 # one by one as the offenses are removed from the code base.
 # Note that changes in the inspected code, or installation of new
 # versions of RuboCop, may require this file to be generated again.

 # Offense count: 1
 # Cop supports --auto-correct.
 # Configuration parameters: EnforcedStyle, SupportedStyles.
 Style/StringLiterals:
 Enabled: false

 To take on the new configuration, you can either specify rubocop -c .rubocop_todo.yml from the
command line, or (the preferred approach) is to create a new file called .rubocop.yml and insert the
following line:

 inherit_from: .rubocop_todo.yml

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

137

 Now when you execute rubocop without any parameters it will pick up the .rubocop_todo.yml file and
suppress any defined rules there:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files

 7 files inspected, no offenses detected

 Adding Blanket Exclusions

 As we mentioned before, the .rubocop.yml file is where we apply any configuration that is global to the
whole repository. So let’s replace our .rubocop.yml file with the contents of the .rubocop_todo.yml file,
as it already has some rules in it:

 PS C:\Users\StuartPreston\chefazure-ch06> cp .rubocop_todo.yml .rubocop.yml
 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files

 7 files inspected, no offenses detected

 Ok so what’s the difference? Although the same outcome is achieved, you would place rules you wanted
to suppress permanently for the whole team in the .rubocop.yml file and rules that you eventually want to
fix in the .rubocop_todo.yml file.

 Finally let’s have a look at how to exclude cops from running on a per-line basis.

 Adding Per-line Exclusions

 To exclude cops from running on a per-line basis, we need to add a Ruby comment to that line.
 First, let’s remove our .rubocop.yml to bring back an error that needs correcting, and run Rubocop

again to detect our mistake. We can use the -D parameter to see the full cop name, which we’ll need to use to
specify our exclusion.

 PS C:\Users\StuartPreston\chefazure-ch06> rm .rubocop.yml
 PS C:\Users\StuartPreston\chefazure-ch06> rubocop -D

 Inspecting 7 files
 ..C....

 Offenses:

 cookbooks/chefazure-ch06/recipes/default.rb:7:5: C: Style/StringLiterals: Prefer single-
quoted strings when you don't need string interpolation or special symbols.
 log "Hello, World!"
 ^^^^^^^^^^^^^^^

 7 files inspected, 1 offense detected

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

138

 We can take the cop name “Style/StringLiterals” and put that in a comment against our code with a
 rubocop:disable directive, as shown in Figure 6-3 . The resulting code should look like this:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2016 The Authors, All Rights Reserved.

 log "Hello, World!" # rubocop:disable Style/StringLiterals

 Now when you execute rubocop -D again, there should be no offenses detected:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop -D

 Inspecting 7 files

 7 files inspected, no offenses detected

 Suppressing Specific Rules Per Section

 A per-section Rubocop suppression is achieved by surrounding the code with a comment to disable and
then enable the rule. Here’s an example:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2016 The Authors, All Rights Reserved.

 # rubocop:disable Style/StringLiterals
 log "Hello, World!"
 # rubocop:enable Style/StringLiterals

 Figure 6-3. Suppressing a rubocop rule at line level

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

139

 When we run rubocop now, our section is excluded from the listed rules, and we get the output shown
below:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files

 7 files inspected, no offenses detected

 Suppressing All Rules in a Section

 Finally, you can override Rubocop from running any rules against a section of code by using the all
directive. Here’s an example:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2015 The Authors, All Rights Reserved.

 # rubocop:disable all
 log "Hello, World!"
 # rubocop:enable all

 When we run rubocop now, all rules in that section are suppressed from execution:

 PS C:\Users\StuartPreston\chefazure-ch06> rubocop

 Inspecting 7 files

 7 files inspected, no offenses detected

 Rubocop Options
 Rubocop can be executed with a range of options; these are all documented in Table 6-1 , you can also get the
list by running rubocop -h :

 PS C:\Users\StuartPreston> rubocop -h

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

140

 That covers the basics of Rubocop. Where possible try to maintain zero violations in your project or
distribute your .rubocop.yml files with your repo so that it is clear what is acceptable to the project to be
ignored or suppressed. Let’s move on to some of the other quality tools within the ChefDK.

 Using FoodCritic
 FoodCritic is a static code analyzer that checks for what it considers to be poor cookbook authoring practices
when using the Chef language. Compiling, converging, and executing real cookbook tests take time, and
tools such as FoodCritic help us ‘fail fast’ before any code has been executed. It can also flag problems that
would cause your Chef Client run to fail.

 Table 6-1. Rubocop command-line options

 Command-line Argument Description

 -v/--version Displays the current version and exits.

 -V/--verbose-version Displays the current version plus the version of Parser and Ruby.

 -L/--list-target-files List all files Rubocop will inspect.

 -F/--fail-fast Inspects in modification time order and stops after first file with
offenses.

 -C/--cache Store and reuse results for faster operation.

 -d/--debug Displays some extra debug output.

 -D/--display-cop-names Displays cop names in offense messages.

 -c/--config Run with specified config file.

 -f/--format Choose a formatter.

 -o/--out Write output to a file instead of STDOUT.

 -r/--require Require Ruby file.

 -R/--rails Run extra Rails cops.

 -l/--lint Run only lint cops.

 -a/--auto-correct Autocorrect certain offenses. Note: Experimental - use with caution.

 --only Run only the specified cop(s) and/or cops in the specified
departments.

 --except Run all cops enabled by configuration except the specified cop(s) and/
or departments.

 --auto-gen-config Generate a configuration file acting as a TODO list.

 --exclude-limit Limit how many individual files --auto-gen-config can list in Exclude
parameters, default is 15.

 --show-cops Shows available cops and their configuration.

 --fail-level Minimum severity for exit with error code. Full severity name or
uppercase initial can be given. Normally, auto-corrected offenses are
ignored. Use A or autocorrect if you'd like them to trigger failure.

 -s/--stdin Pipe source from STDIN. This is useful for editor integration.

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

141

 FoodCritic Rules
 There are currently 58 default FoodCritic rules that are executed against the specified cookbooks. A
complete list can be generated by using the command foodcritic -l :

 PS C:\Users\StuartPreston\chefazure-ch06> foodcritic -l

 FC001: Use strings in preference to symbols to access node attributes
 FC002: Avoid string interpolation where not required
 FC003: Check whether you are running with chef server before using server-specific features
 FC004: Use a service resource to start and stop services
 FC005: Avoid repetition of resource declarations
 FC006: Mode should be quoted or fully specified when setting file permissions
 FC007: Ensure recipe dependencies are reflected in cookbook metadata
 FC008: Generated cookbook metadata needs updating
 FC009: Resource attribute not recognised
 FC010: Invalid search syntax
 FC011: Missing README in markdown format
 FC012: Use Markdown for README rather than RDoc
 FC013: Use file_cache_path rather than hard-coding tmp paths
 FC014: Consider extracting long ruby_block to library
 FC015: Consider converting definition to a LWRP
 FC016: LWRP does not declare a default action
 FC017: LWRP does not notify when updated
 FC018: LWRP uses deprecated notification syntax
 FC019: Access node attributes in a consistent manner
 FC021: Resource condition in provider may not behave as expected
 FC022: Resource condition within loop may not behave as expected
 FC023: Prefer conditional attributes
 FC024: Consider adding platform equivalents
 FC025: Prefer chef_gem to compile-time gem install
 FC026: Conditional execution block attribute contains only string
 FC027: Resource sets internal attribute
 FC028: Incorrect #platform? Usage
 FC029: No leading cookbook name in recipe metadata
 FC030: Cookbook contains debugger breakpoints
 FC031: Cookbook without metadata file
 FC032: Invalid notification timing
 FC033: Missing template
 FC034: Unused template variables
 FC037: Invalid notification action
 FC038: Invalid resource action
 FC039: Node method cannot be accessed with key
 FC040: Execute resource used to run git commands
 FC041: Execute resource used to run curl or wget commands
 FC042: Prefer include_recipe to require_recipe
 FC043: Prefer new notification syntax
 FC044: Avoid bare attribute keys
 FC045: Consider setting cookbook name in metadata
 FC046: Attribute assignment uses assign unless nil
 FC047: Attribute assignment does not specify precedence

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

142

 FC048: Prefer Mixlib::ShellOut
 FC049: Role name does not match containing file name
 FC050: Name includes invalid characters
 FC051: Template partials loop indefinitely
 FC052: Metadata uses the unimplemented "suggests" keyword
 FC053: Metadata uses the unimplemented "recommends" keyword

 Each FoodCritic rule is documented at http://foodcritic.io - for example Figure 6-4 shows the first rule
that is tested against your cookbook: FC001.

 Figure 6-4. FoodCritic rule explanation as seen at http://www.foodcritic.io/#FC001

 To see FoodCritic in action, let’s go back to our recipe cookbooks/chefazure-ch06/default.rb in our
code editor and modify it as follows so that when executed it would log three messages as part of the Chef
Client run:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2015 The Authors, All Rights Reserved.

 log 'Hello, Adam!' do
 level :info
 end

 log 'Hello, Alan!' do
 level :info
 end

 log 'Hello, Ross!' do
 level :info
 end

 Now let’s see what FoodCritic identifies about our cookbook:

 C:\Users\StuartPreston\chefazure-ch06> foodcritic cookbooks/chefazure-ch06

http://foodcritic.io/
http://www.foodcritic.io/#FC001

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

143

 FC005: Avoid repetition of resource declarations: cookbooks/chefazure-ch06/recipes/
default.rb:7
 FC011: Missing README in markdown format: cookbooks/chefazure-ch06/README.md:1

 We can see that we have triggered the rule FC005: Avoid repetition of resource declarations . If we
look up this rule (as seen in Figure 6-5), we can see the problem and a possible solution is presented to us.

 Figure 6-5. FoodCritic rule explanation as seen at http://foodcritic.io/#FC005

 We can now go back to our recipe and change it to match the desired style:

 #
 # Cookbook Name:: chefazure-ch06
 # Recipe:: default
 #
 # Copyright (c) 2015 The Authors, All Rights Reserved.

 %w(Adam Alan Ross).each do |friend|
 log "Hello, #{friend}!" do
 level :info
 end
 end

http://foodcritic.io/#FC00

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

144

 ■ Note On a Windows machine, the path to the cookbook must be passed in with forward slashes (e.g.,
cookbooks/chefazure-ch06) rather than backslashes (e.g., cookbooks\chefazure-ch06).

 We can now retest and ensure we do not get any FC005 matches returned:

 PS C:\Users\StuartPreston\chefazure-ch06> foodcritic cookbooks/chefazure-ch06

 We are left with one further warning that we will suppress in the next section:

 FC011: Missing README in markdown format: cookbooks/chefazure-ch06/README.md:1

 Suppressing FoodCritic Messages
 Rules in FoodCritic are identified by a tag, which takes the format FC + number : for example, FC001 . To
exclude rules with specific tags, the -t option is used with a ~ in front of the tag name. For example, if we
wished to exclude the tag FC011: Missing README in markdown format we would specify the following
command at the command line:

 PS C:\Users\StuartPreston\chefazure-ch06> foodcritic cookbooks/chefazure-ch06 -t ~FC011

 The results list should now be an empty line, indicating that no issues were found with the cookbook:

 Suppressing FoodCritic Messages for an Entire cookbook

 To exclude rules for all users of a repo, we can create a .foodcritic file at the root of the specific cookbook,
containing a list of the rules we want to exclude. For example, to exclude the rule FC011: Missing README
in markdown format , the file should contain a single line as follows:

 PS C:\Users\StuartPreston\chefazure-ch06> echo "~FC011" > cookbooks/chefazure-ch06/.
foodcritic
 PS C:\Users\StuartPreston\chefazure-ch06> foodcritic cookbooks/chefazure-ch06

 Again the results returned should be an empty line, indicating no issues were found:

 Further FoodCritic Options
 FoodCritic has a number of additional options that can be seen by typing foodcritic -h as shown in
Table 6-2 .

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

145

 Now that we’ve covered the basic of code linting and static analysis, we’ll move on to explain how to test
your recipes.

 Cookbook Testing
 Cookbook Testing with Chef generally falls into two areas: Unit Testing and Acceptance Testing. From
a Unit Testing perspective, we’re interested in testing individual units of code, independently of other
circumstances in the system, such as the state of the environment. Because unit tests should not have any
external dependencies such as connections to a remote system they should execute at speed.

 From an Acceptance Testing perspective, we’re interested in testing that once we apply our code to an
environment, the described target state is reached.

 Table 6-2. FoodCritic command-line options

 Command-line Argument Description

 -t, --tags TAGS Check against (or exclude ~) rules with the specified tags.

 -l, --list List all enabled rules and their descriptions.

 -f, --epic-fail TAGS Fail the build based on tags. Use 'any' to fail on all warnings.

 -c, --chef-version VERSION Only check against rules valid for this version of Chef.

 -B, --cookbook-path PATH Cookbook path(s) to check.

 -C, --[no-]context Show lines matched against rather than the default summary.

 -E, --environment-path PATH Environment path(s) to check.

 -I, --include PATH Additional rule file path(s) to load.

 -G, --search-gems Search rubygems for rule files with the path foodcritic/rules/**/*.rb

 -P, --progress Show progress of files being checked.

 -R, --role-path PATH Role path(s) to check.

 -S, --search-grammar PATH Specify grammar to use when validating search syntax.

 -V, --version Display the foodcritic version.

 -X, --exclude PATH Exclude path(s) from being linted.

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

146

 Using ChefSpec
 ChefSpec is a framework that simulates a Chef Client run and allows you to test resources and recipes
without any other external dependencies. As a result, ChefSpec tests execute very quickly. Because of this,
ChefSpec tests are typically placed early in a CI system’s pipeline after static analysis and are typically the
first indicator of problems that may exist within a cookbook.

 ChefSpec is based on a behavior-driven development (BDD) framework called RSpec that uses a
natural language domain-specific language (DSL) to describe scenarios in which systems are being tested.
RSpec allows a scenario to be set up, then executed with dummy parameters. The results are then compared
to a predefined set of expectations. This syntax is shown in Figure 6-7 below.

 Figure 6-6. Types of Cookbook Testing

 The Chef ecosystem has a great Unit Testing tool called ChefSpec, which is a set of extensions on top of
the popular behavior-driven development (BDD) testing framework RSpec, and a great tool for Acceptance
Testing called Test Kitchen that is a complete framework that allows you to test your cookbooks against
multiple platforms. Figure 6-6 differentiates the types of testing and the tools used.

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

147

 Figure 6-7. Syntax of an RSpec test (credit: https://docs.chef.io/chefspec.html)

https://docs.chef.io/chefspec.html

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

148

 Figure 6-8. Directory structure showing the default test specification file created by chef generate app

 Generating ChefSpec tests for Cookbooks
 Luckily for us, cookbooks by default have a default set of ChefSpec tests created. They can be found under
<cookbook>/spec/unit/recipes. Test ‘specifications’ by convention are named _spec.rb so that tools can find
them by this pattern.

 Figure 6-8 shows us the structure that is generated and a default test that has been generated.

 Executing ChefSpec Tests
 ChefSpec tests are executed from the cookbook directory and not the root of the repo. So let’s execute the
default tests by changing directory into the cookbook directory and running rspec.

 ■ Tip Use the -f documentation flag to get a list of the tests that are executed, also if your terminal supports
it you can add the --color flag to get results in color.

 PS C:\Users\StuartPreston\chefazure-ch06> cd cookbooks/chefazure-06
 PS C:\Users\StuartPreston\chefazure-ch06\cookbooks\chefazure-ch06> rspec -f documentation

 chefazure-ch06::default
 When all attributes are default, on an unspecified platform
 converges successfully

 Finished in 0.71881 seconds (files took 15.13 seconds to load)
 1 example, 0 failures

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

149

 We can see from the output that we have one example, zero failures. This is the expected behavior. Let’s
break down the default tests to understand what it is doing a bit more.

 #
 # Cookbook Name:: chefazure-ch06
 # Spec:: default
 #
 # Copyright (c) 2016 The Authors, All Rights Reserved.

 require 'spec_helper'

 The statement require 'spec_helper' means that this file is including some statements from the
common file spec/spec_helper.rb . All of the spec files will require this statement at the top of the file
otherwise ChefSpec will not get loaded correctly. Let’s have a look at the default test:

 describe 'chefazure-ch06::default' do
 context 'When all attributes are default, on an unspecified platform' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new
 runner.converge(described_recipe)
 end

 it 'converges successfully' do
 expect { chef_run }.to_not raise_error
 end
 end
 end

 Working outwards from the test:

• The test itself (it 'converges successfully') is testing that the chef_run does not
raise an error when it converges.

• The let statement assigns variables that can be used elsewhere in the context block
(in our case, chef_run).

• The context block (context 'When all attributes are default, on an
unspecified platform') provides a grouping for the test, and can be used to run
different tests according to the platform being tested (not used here).

• The describe statement (describe 'chefazure-ch06::default') is the scenario
that is being tested. In this case a recipe: chefazure-ch06::default.

 What we are trying to do with ChefSpec test is provide tests that cover each scenario you are writing
recipes for, so that we can write the minimum recipe code that satisfies the test and eventually allows safe
refactoring of the recipe code.

 Imagine you have a scenario that means you want to write a recipe to ensure a specific file is deleted.
Most of the tests follow the pattern of the following:

 expect(chef_run).to <action>_<resource>('<name>')

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

150

 We know in Chef to write this recipe we need to use the file resource and the :delete action, so our
resulting test would look something like this:

 expect(chef_run).to delete_file('c:/test.txt')

 The resource in our recipe would look something like this:

 file 'c:/test.txt' do
 action :delete
 end

 We can see the resource name, the name of the file and the action match those we specified in the test.
 Let’s try it. First of all, open up the cookbooks/chefazure-ch06/spec/unit/recipes/default_spec.rb in

your text editor and add the following text within the context block:

 it 'deletes the test.txt file' do
 expect(chef_run).to delete_file('c:/test.txt')
 end

 The resulting file should look as shown in Figure 6-9 :

 Figure 6-9. Adding a test to our default_spec.rb file

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

151

 Now we can execute our test by running rspec with the -f documentation and --color options :

 PS C:\Users\StuartPreston\chefazure-ch06\cookbooks\chefazure-ch06> rspec -f documentation
--color

 After a few seconds you should see a similar test failure to below.

 chefazure-ch06::default
 When all attributes are default, on an unspecified platform
 converges successfully
 deletes the test.txt file (FAILED - 1)

 Failures:

 1) chefazure-ch06::default When all attributes are default, on an unspecified platform
 deletes the test.txt file
 Failure/Error: expect(chef_run).to delete_file('c:/test.txt')
 expected "file[c:/test.txt]" with action :delete to be in Chef run. Other file
 resources:

 # ./spec/unit/recipes/default_spec.rb:21:in `block (3 levels) in <top (required)>'

 Finished in 1.06 seconds (files took 15.93 seconds to load)
 2 examples, 1 failure

 Failed examples:

 rspec ./spec/unit/recipes/default_spec.rb:20 # chefazure-ch06::default When all attributes
 are default, on an unspecified platform deletes the test.txt file

 The output shows you exactly which test has failed so you can go back to it and resolve it. It is, of
course, correct that this test fails - we haven’t written the recipe yet! This style of test-first development is
a commonly accepted practice in the development world. We first of all write our test, see it fail, write the
minimum amount of code to satisfy the test, and then refactor our solution, maintaining test success all the
while. Figure 6-10 shows the workflow behind this practice.

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

152

 We can now add to our default.rb recipe to satisfy the test:

 file 'c:/test.txt' do
 action :delete
 end

 Having done that, let’s retry our test using rspec :

 PS C:\Users\StuartPreston\chefazure-ch06\cookbooks\chefazure-ch06> rspec -f documentation
--color

 chefazure-ch06::default
 When all attributes are default, on an unspecified platform
 converges successfully
 deletes the test.txt file

 Finished in 1.05 seconds (files took 14.8 seconds to load)
 2 examples, 0 failures

 We have satisfied our tests and everything is ‘green’.

 Figure 6-10. Test-first development process (image credit: Xavier Pigeon)

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

153

 Adding Code Coverage to Cookbook Tests
 ChefSpec offers a crude code coverage mechanism to let you know which resources have been touched by
your tests as a percentage.

 To enable it, simply add the following line to your spec_helper.rb file (found in your cookbook within
the spec folder):

 at_exit { ChefSpec::Coverage.report! }

 Now when you run the RSpec tests you should get a coverage report at the end:

 PS C:\Users\StuartPreston\chefazure-ch06\cookbooks\chefazure-ch06> rspec -f documentation
--color

 chefazure-ch06::default
 When all attributes are default, on an unspecified platform
 converges successfully
 deletes the test.txt file

 Finished in 9.38 seconds (files took 5.04 seconds to load)
 2 examples, 0 failures

 ChefSpec Coverage report generated...
 Total Resources: 1
 Touched Resources: 1
 Touch Coverage: 100.0%

 You are awesome and so is your test coverage! Have a fantastic day!

 Now we have seen how to add unit tests to your cookbooks to simulate behavior, we can now take a
look at the other side of testing, using Test Kitchen and InSpec to perform acceptance tests on your recipes
against real servers.

 Using Test Kitchen and InSpec with Azure
Resource Manager
 Test Kitchen (see http://kitchen.ci) is a test framework that allows you to execute code on one or more
platforms in isolation, ensuring that no prior state exists. Test Kitchen is written in Ruby (so is cross-
platform) and has a plug-in architecture that allows you to use it against popular cloud, virtualization, or
bare metal resources. It is not directly connected with the Chef toolset, but is distributed with the ChefDK,
which means it should be ready for us to use on our workstation.

 Test Kitchen in the context of Chef makes it easy to add Acceptance Tests to our infrastructure code
because we can spin up a brand new machine, execute our recipes, and then run tests to ensure the system
is in the desired state after execution. Then the machine can either be thrown away, or optionally you can
continue to work on it until you are closer to a working solution.

 There are four primary stages of the Test Kitchen workflow : create , converge , verify, and destroy and
these are shown in Figure 6-11 .

http://kitchen.ci/

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

154

 This workflow can be used for both development purposes and also integrated within a Continuous
Integration (CI) pipeline - if we complete the entire workflow and get no errors then we can continue to the
next stage of our CI/CD pipeline. We’ll be covering this more in chapter 8 .

 In this chapter we’ll be using Test Kitchen with the Azure Resource Manager driver, kitchen-azurerm
and identifying some of the commonly used configuration parameters. Let’s start by getting the kitchen-
azurerm packages installed and configured for our Azure subscription.

 Installing the Azure Resource Manager Driver for Test Kitchen
 I’m going to assume at this point that you have a recent ChefDK installed (if not, full details were provided in
chapter 1), so from your shell we can install the kitchen driver for Azure Resource Manager (see
 https://github.com/pendrica/kitchen-azurerm) by using the chef gem install kitchen-azurerm
command:

 PS C:\Users\StuartPreston> chef gem install kitchen-azurerm

 You should see output similar to the below if all was successful. You may see other dependencies get
installed at the same time too - this is normal:

 Successfully installed kitchen-azurerm-0.2.6
 Parsing documentation for kitchen-azurerm-0.2.6
 Installing ri documentation for kitchen-azurerm-0.2.6
 Done installing documentation for kitchen-azurerm after 0 seconds
 1 gem installed

 PS C:\Users\StuartPreston>

 We can now proceed with the rest of the configuration.

 Configuring the Credentials File
 In chapter 4 we set up a Service Principal and granted that Service Principal access to your Azure
Subscription. We then configured your ~/.azure/credentials file so that it could be used for provisioning
resources in Azure. We will be reusing that same mechanism here.

 Figure 6-11. “kitchen test” workflow

http://dx.doi.org/10.1007/978-1-4842-1476-3_8
http://dx.doi.org/10.1007/978-1-4842-1476-3_1
https://github.com/pendrica/kitchen-azurerm
http://dx.doi.org/10.1007/978-1-4842-1476-3_4

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

155

 To recap; our credentials file should look something like this:

 [b6e7eee9-YOUR-GUID-HERE-03ab624df016]
 client_id = "48b9bba3-YOUR-GUID-HERE-90f0b68ce8ba"
 client_secret = "my-top-secret-password"
 tenant_id = "9c117323-YOUR-GUID-HERE-9ee430723ba3"

 where the first line is our Subscription ID, the client_id is the Application ID of the Service Principal, the
 client_secret is the Shared Secret assigned to the application, and the tenant_id is the Tenant ID for the
Subscription.

 Configuring Test Kitchen within a Chef Repo
 Test Kitchen is driven from a single, declarative configuration file called .kitchen.yml that resides in the root
of your repo. A chef-generated app generated this file automatically for us at the beginning of this chapter,
and Listing 6-1 shows the default . kitchen.yml file that you’ll find in your repository.

 Listing 6-1. default .kitchen.yml file

 driver:
 name: vagrant

 provisioner:
 name: chef_zero

 # Uncomment the following verifier to leverage Inspec instead of Busser (the
 # default verifier)
 # verifier:
 # name: inspec

 platforms:
 - name: ubuntu-14.04
 - name: centos-7.1

 suites:
 - name: default
 run_list:
 - recipe[chefazure-ch06::default]
 attributes:

 ■ Tip If you do not have a .kitchen.yml file in your repo, one can be created automatically by typing kitchen
init in the location you want one.

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

156

 We can see our default configuration file has four mains sections:

• Driver - in this section we provide the name of the driver to be used. The default
driver supports Vagrant, which is a tool that is typically used in concert with a local
virtualization provider such as Oracle VirtualBox. In our case we will be changing
this to use the Azure Resource Manager driver.

• Provisioner - the provisioner is used to specify what action should be taken when
we ’converge’ our machine. We want to use the chef_zero provisioner, which
provides the capability to transfer and execute recipes from our cookbook(s) within
the machine itself.

• Platforms - a list of platforms can be provided here. In the example we can see both
Ubuntu-14.04 and CentOS 7.1 have been added. Test Kitchen builds a test matrix
based on a combination of platforms and suites.

• Suites - a suite is where we provide a run list containing the list of Chef recipes we
wish to execute in order. We can also override any attributes that are settable within
those recipes.

 If you execute kitchen list at this point, we are provided with a list of the test instances that would be
created if we ran kitchen create :

 Instance Driver Provisioner Verifier Transport Last Action
 default-ubuntu-1404 Vagrant ChefZero Busser Ssh <Not Created>
 default-centos-71 Vagrant ChefZero Busser Ssh <Not Created>

 ■ Note If you see an error message, then it is likely you do not have Vagrant installed. We do not require
Vagrant for the purposes of the book; however if you are interested in running Test Kitchen locally then you can
download it from https://www.vagrantup.com/downloads.html

 We’re going to edit our .kitchen.yml so that it uses the Azure Resource Manager (ARM) driver; so open
the file in your text editor and edit it as follows:

 driver:
 name: azurerm

 driver_config:
 subscription_id: 'b6e7eee9-YOUR-GUID-HERE-03ab624df016'
 location: 'West Europe'
 machine_size: 'Standard_DS2'

 provisioner:
 name: chef_zero

https://www.vagrantup.com/downloads.html

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

157

 platforms:
 - name: windows2012-r2
 driver_config:
 image_urn: MicrosoftWindowsServer:WindowsServer:2012-R2-Datacenter:latest
 transport:
 name: winrm

 verifier:
 name: inspec

 suites:
 - name: default
 run_list:
 - recipe[chefazure-ch06::default]
 attributes:

 We can see the driver name was changed to azurerm, and there’s a driver_config section that takes a
subscription_id, location, and machine_size parameters. These parameters should be self-explanatory.
Something that requires more explaining is the image_urn parameter.

 The image_urn parameter is a four-part string in the format Publisher:Offer:Sku:Version that
uniquely identifies an image in Azure. Here are some examples:

• MicrosoftWindowsServer:WindowsServer:2012-R2-Datacenter:latest

• Canonical:UbuntuServer:14.04.3-LTS:latest

• Canonical:UbuntuServer:15.04:latest

• OpenLogic:CentOS:7.1:latest

 In chapter 5 we explained how to derive these values; so if you skipped that bit, now would be a good
time to go back and read it as it is a slightly awkward mechanism to discover these images.

 Creating an Instance - Kitchen Create
 If we have our credentials file configured correctly, a valid subscription ID in our .kitchen.yml and a
valid image_urn entry, we’re ready to start up a machine in Azure. To do this we use the kitchen create
command. It will take a few minutes to provision.

 PS C:\Users\StuartPreston\chefazure-ch06> kitchen create

 -----> Starting Kitchen (v1.4.2)
 -----> Creating <default-windows2012-r2>...
 Creating Resource Group: kitchen-default-windows2012-r2-20151107T001229
 Creating Deployment: deploy-fc2ef6c5988cb47e
 Resource Microsoft.Network/publicIPAddresses 'publicip' provisioning status is

Running
 Resource Microsoft.Network/virtualNetworks 'vnet' provisioning status is Running
 Resource Microsoft.Storage/storageAccounts 'storagefc2ef6c5988cb47e' provisioning

status is Running
 Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running
 Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running

http://dx.doi.org/10.1007/978-1-4842-1476-3_5

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

158

 Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running
 [...]
 Resource Microsoft.Compute/virtualMachines 'vm' provisioning status is Running
 Resource Microsoft.Compute/virtualMachines/extensions 'vm/enableWinRM' provisioning

status is Running
 Resource Microsoft.Compute/virtualMachines/extensions 'vm/enableWinRM' provisioning

status is Running
 Resource Microsoft.Compute/virtualMachines/extensions 'vm/enableWinRM' provisioning

status is Running
 [...]
 Resource Microsoft.Compute/virtualMachines/extensions 'vm/enableWinRM' provisioning

status is Running
 Resource Template deployment reached end state of 'Succeeded'.
 IP Address is: 104.40.217.123 [kitchen-c2ef6c5988cb47e.westeurope.cloudapp.azure.com]
 Finished creating <default-windows2012-r2> (9m39.36s).
 -----> Kitchen is finished. (9m42.75s)

 At the end of the creation process we have a machine running and we are presented its IP address. Test
Kitchen stores this in a state file (named .kitchen/default-windows2012-r2.yml in our case) so that later
phases can use this information to connect to the machine.

 Converging an Instance - Kitchen Converge
 Converging an instance simply means bringing the machine toward the desired state so that it can be ready
for testing. We have specified the chef_zero provisioner in our configuration file (it’s the default), which
means that when we execute kitchen converge the following things will happen:

• The repository and any cookbooks specified as a dependency are transferred to the
target machine using the specified transport (WinRM in our case).

• If not installed already, a Chef Client will be downloaded and installed on the
machine.

• Chef Client will execute the specified recipes on the machine.

 We already have a very basic recipe set up in our repository, which attempts to delete a file. Let’s
converge our machine using kitchen converge and watch the output:

 PS C:\Users\StuartPreston\chefazure-ch06> kitchen converge

 -----> Starting Kitchen (v1.4.2)
 -----> Converging <default-windows2012-r2>...
 Preparing files for transfer
 Preparing dna.json
 Preparing cookbooks from project directory
 Removing non-cookbook files before transfer
 Preparing validation.pem
 Preparing client.rb
 -----> Installing Chef Omnibus (install only if missing)
 Downloading package from https://opscode-omnibus-packages.s3.amazonaws.com/
windows/2008r2/i386/chef-client-12.5.1-1-x86.msi

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

159

 Download complete.
 Successfully verified C:\Users\azure\AppData\Local\Temp\chef-true.msi

 Installing Chef Omnibus package C:\Users\azure\AppData\Local\Temp\chef-true.msi
 Installation complete
 Transferring files to <default-windows2012-r2>
 Starting Chef Client, version 12.5.1
 Creating a new client identity for default-windows2012-r2 using the validator key.
 resolving cookbooks for run list: ["chefazure-ch06::default"]
 Synchronizing Cookbooks:
 - chefazure-ch06 (0.1.0)
 Compiling Cookbooks...
 Converging 1 resources
 Recipe: chefazure-ch06::default
 * file[c:/test.txt] action delete (up to date)

 Running handlers:
 Running handlers complete
 Chef Client finished, 0/1 resources updated in 01 minutes 01 seconds
 Finished converging <default-windows2012-r2> (3m12.08s).
 -----> Kitchen is finished. (3m14.35s)

 We can see that our recipe executed, and our file was found to be in the correct state (deleted), as seen
by the following section:

 Converging 1 resources
 Recipe: chefazure-ch06::default
 * file[c:/test.txt] action delete (up to date)

 No action was taken on our instance because the file did not already exist; therefore the machine was in
the desired state as specified by the recipe. We can modify our recipe on our workstation and rerun kitchen
converge as many times as we like.

 ■ Note Each time you run kitchen converge with an updated recipe or suite of recipes you run the risk
of changing the state of the machine to an unexpected starting position for the next run. It is always wise to
destroy your machines regularly to ensure your recipes can run end to end.

 Using InSpec and Kitchen Verify
 InSpec is a recently released testing framework, similar to ChefSpec in that it uses BDD-like language
constructs in the test specifications. However, InSpec does no simulation of the Chef Client run; instead it
tests the actual running state of the machine. This makes InSpec tests a powerful tool for post-convergence

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

160

automated testing, as we can use it to ensure that each action specified in our recipe has brought the
machine to the correct target state. To give a couple of examples, here’s an example test to verify the ‘OS
family’ on our target machine is Windows:

 describe os[:family] do
 it { should eq 'windows' }
 end

 Here’s another test that tests whether an Apache configuration has a Listen parameter set to the value ‘443’:

 describe apache_conf do
 its('Listen') { should eq '443'}
 end

 A full list of Resources and Matchers are available at https://docs.chef.io/inspec_reference.html .
 As an example test, let’s run a couple of checks on our Windows 2012 R2 machine:

• We’ll check the machine has a DHCP Client service installed, enabled, and running

• We’ll also check that the machine is NOT listening on TCP port 80, as we have not
installed a Web Server on it.

 Looking at the list of resources, we can see that there are both the Service resource and Host resources
available to accomplish this task. So let’s open up the file test/integration/default/default_spec.rb in your
text editor and replace the contents with the text below:

 describe service('Dhcp') do
 it { should be_installed }
 it { should be_enabled }
 it { should be_running }
 end

 describe host('localhost', port: 80, proto: 'tcp') do
 it { should_not be_reachable }
 end

 Once complete, the file should look like Figure 6-12 .

https://docs.chef.io/inspec_reference.html

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

161

 We can now run kitchen verify to get our test results.

 PS C:\Users\StuartPreston\chefazure-ch06> kitchen verify

 -----> Starting Kitchen (v1.4.2)
 -----> Verifying <default-windows2012-r2>...
 ..."Test-NetConnection -ComputerName localhost -RemotePort 80| Select-Object -Property
ComputerName, RemoteAddress, RemotePort, SourceAddress, PingSucceeded | ConvertTo-Json"
 .

 Finished in 8 seconds (files took 6.57 seconds to load)
 4 examples, 0 failures

 As seen from the output, we have 0 failures. Of course this isn’t a real test as if it was a real test we would
now add some tests that we expect to pass (perhaps you are looking to define a Web Server on port 80, so it
"should be_listening"). The beauty of using Test Kitchen for this is that it is a rapid, repeatable process.

 For now, we’ve spent some credit running this VM with a public IP address on Azure and don’t need it
any longer so let’s destroy it.

 Destroying our Instance - Kitchen Destroy
 Destroying our server is as simple as typing kitchen destroy. What is actually happening here is that we are
deleting an Azure Resource Group that contains all the resources created by kitchen create. It actually takes
some time to acquire locks on all the resources in Azure, so once the delete request has been accepted by
Azure, the operation continues in the background, allowing you to continue to the next stage, or to start up a
new instance.

 Figure 6-12. Inspec example spec located at test/integration/default/default_spec.rb

CHAPTER 6 ■ INTEGRATING QUALITY TOOLING INTO THE CHEF DEVELOPMENT LIFE CYCLE

162

 ■ Note The author cannot be held responsible for large Azure bills if you forget to destroy your Test Kitchen
instances!

 PS C:\Users\StuartPreston\chefazure-ch06> kitchen destroy

 -----> Starting Kitchen (v1.4.2)
 -----> Destroying <default-windows2012-r2>...
 Destroying Resource Group: kitchen-default-windows2012-r2-20151107T001229
 Destroy operation accepted and will continue in the background.
 Finished destroying <default-windows2012-r2> (0m5.58s).
 -----> Kitchen is finished. (0m8.95s)

 Other Test Kitchen Commands
 We covered the basic four stages of Test Kitchen above, but there are a couple of other commands that are
useful to know about:

• You can run kitchen test in order to execute all phases of Test Kitchen in order
without stopping.

• You can run kitchen diagnose --all in order to diagnose problems with
configuration (note: most issues are caused by formatting issues in the .yml file.)

• Finally, instead of running through each test suite and platform sequentially, these
can be executed in parallel by running kitchen <command> --concurrency <n>
where n is the number of threads you wish to start.

 Summary
 We’ve now taken a very quick lap through some important quality tools that are provided with the Chef
Development Kit. We are able to run linters such as Rubocop and FoodCritic against our code to address
consistency and code quality issues. We can add ChefSpec unit tests to simulate the behavior of our recipes
and catch unexpected behavior early in the development cycle. We can configure Test Kitchen to use Azure
Resource Manager to define ephemeral (short-lived) machines that we can use for testing, and we can use a
Chef Zero provisioner and InSpec tests to verify the real state of the target system after convergence.

 In the next two chapters we’re going to take everything we have learned from the book so far about real-
world scenarios and see what a starting point for a Continuous Integration/Continuous Delivery pipeline
might look like.

163© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_7

 CHAPTER 7

 Chef Concepts in the Real World

 All this cookbook development is nice and simple when we’re following the demos in Chef Fundamentals,
or being taught the ins and outs of attributes and data bags by a trainer. But what happens in the real world?
That is what this chapter seeks to answer by summarizing some of the established patterns and practices
from environments of varying shapes and sizes and highlighting some common mistakes and dead-ends.

 Chef is a wonderfully flexible and extensible toolset; and because of this, many people have invented
their own ways of working with it that work for them. In practice, there are a few tips, patterns, and practices
that make sense to adopt and I’ll be presenting some of those here for consideration.

 Let’s consider the case of a typical company that has a single instance of Chef and needs to implement a
release process across three environments: Development (Dev), Test, and Production (Prod), as depicted in
Figure 7-1 .

 Figure 7-1. Typical environment structure for releasing software within an organization

 Releases need to progress in a rapid but stable manner through the environments, and we need to
ensure that by making changes in lower environments (Dev and Test), we don’t impact any users of the
Production system. Let’s step through some of the aspects of Chef you may want to look at.

 Avoid Using the _default Environment
 All those nodes you bootstrapped when doing your Chef training probably went into the _default
environment , didn’t they? But did you know that version constraints cannot be applied to the _default
environment ? (as shown in Figure 7-2).

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

164

 If we cannot version a cookbook, it means that every time we upload a cookbook to the Chef server, the
latest version of the cookbook will always be used in the Chef run. For this reason, where possible move your
nodes to a specific environment at the earliest opportunity. We’ll discuss how to create Chef environments
in the next section.

 Use Chef Environments to Reflect Your Internal Release
Processes
 It sounds simple, but having a set of Chef environments that match your application life cycle usually makes
the most sense. If you run your code through development and test before you reach production, you should
have Chef environments to match.

 Listing Existing Environments
 To list the available environments that are already created in your Chef organization, we use the knife
environment list command:

 PS C:\Users\StuartPreston\chefazure-ch07> knife environment list -w

 _default: https://api.chef.io/organizations/pendrica-chefazure/environments/_default

 We can see in our organization that we currently have only a _default environment.

 Creating New Environments
 Environments are specified via an environment.json file that is added to your repo. The environments file
is usually stored in the environments folder within a Chef repository; however it does not take effect when
you upload a cookbook. We must use the knife environment command to upload a new environment
definition. This process is shown in Figure 7-3 .

 Figure 7-2. Setting a cookbook constraint on the _default environment is not possible

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

165

 Environment File Contents
 An environment file should be located in your repo at /environments/<environment>.json . Let’s have a
look at an example file, test.json :

 {
 "chef_type": "environment",
 "name": "test",
 "json_class": "Chef::Environment",
 "description": "Test environment",
 "cookbook_versions": {
 "couchdb": "= 11.0.0",
 "my_cookbook": "= 1.2.0"
 },
 "default_attributes": {
 "apache2": {
 "listen_ports": [
 "80",
 "443"
]
 }
 },
 "override_attributes": {
 "apache2": {
 "min_spareservers": "5"
 }
 }
 }

 Figure 7-3. Environment file relationship to Environments

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

166

 In our example there are three sections after the name and description field that are self-explanatory:

 1. cookbook_versions - in this section we can provide the specific list of cookbook
versions to “pin” for this environment. Any cookbooks that do not appear in the
list are essentially “unpinned” (i.e., the latest version will always be used).

 2. default_attributes - environment default attributes take precedence over recipe
or attribute file-defined attributes. This means that putting attributes here gives
us a mechanism to define attributes such as the name of a database server where
you have one per environment.

 3. override_attributes - if you have a default attribute defined, and a role that
overrides it with its own default attribute, you can use this section to define an
override_attribute. Essentially this attribute will override all recipe/cookbook/
role-defined default attributes. Useful when you need to enforce an attribute in a
particular environment.

 Uploading a New Environment File
 Environments can be uploaded at the command line using the command knife environment :

 PS C:\Users\StuartPreston\chefazure-ch07> knife environment from file ./environments/test.json

 Updated Environment test

 Now that we’ve created a new environment, we need to move some Chef nodes to it. As we know, all
nodes within Chef are assigned the _default environment if one isn’t specified; this can be changed from
either the server or the client, at the command line, or by modifying the client.rb file.

 ■ Note You may also create environments using the management portal but this is not recommended as it is
a manual, non-repeatable action, and doesn’t lend itself to good continuous delivery practices.

 Changing the Environment for a Node
 Remembering that each node that runs Chef Client uses a configuration file client.rb, we can specify the
environment in the client.rb and this has the effect of overriding the server-assigned environment for that
run (and storing that value for future runs or for searches against the Chef server). We can also use the knife
command or the Chef management portal in order to achieve this. We’ll use this section to go through each
of the options.

 Specifying the Environment for a Server in client.rb
 It’s relatively simple to modify your client.rb to specify your environment. Simply add the following line:

 environment <environment_name>

 for example:

 environment prod

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

167

 Once the file is saved, Chef Client will notify the server at the beginning of the client run that it is
overriding the environment set on the server, and the server will save that environment for future runs.

 ■ Tip If you are interested in managing your Chef Client configuration, have a look at the chef-client
cookbook, available on the Chef Supermarket at https://supermarket.chef.io/cookbooks/chef-client

 Specifying the Environment for a Server Using Knife
 To change the server environment from Knife, you can issue the knife node environment_set command
from your workstation. This runs against the configured Chef server as per your knife.rb file. The command
takes the node name and environment_name parameters. So next is how to set a node called vm.chef-
azure-book to the test environment:

 PS C:\Users\StuartPreston\chefazure-ch07> knife node environment_set vm.chef-azure-book test

 vm.chef-azure-book:
 chef_environment: test

 The new environment will then be used from the next Chef Client run.

 Specifying the Environment for a Server Using the Chef Management Portal
 When using the Chef management portal , you will find an Environment field on the Nodes tab. Simply
select the node and select the new environment, as shown in Figure 7-4 .

 Figure 7-4. Setting an environment using the Chef management portal

https://supermarket.chef.io/cookbooks/chef-client

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

168

 Searching for Servers in an Existing Environment
 Imagine that if you wanted a list of all servers that are in the _default environment , you would issue the
following knife search command, which will return the name attribute of servers in that environment:

 PS C:\Users\StuartPreston\chefazure-ch07> knife search "chef_environment:_default" -a name

 4 items found
 DESKTOP-TIDJ3S8:
 name: DESKTOP-TIDJ3S8
 chefazurec8t1.ch08-test1:
 name: chefazurec8t1.ch08-test1

 stuartpreston-pendrica:
 name: stuartpreston-pendrica

 vm.chef-azure-book:
 name: vm.chef-azure-book

 Controlling Releases through Environments Using the
Environment and Role Patterns
 Environments are a way of logically grouping servers, commonly aligned to the testing stages of an
application. Releases are sent through the environments and then tested at each stage. Figure 7-5 depicts
this typical set of environments .

 Figure 7-5. Typical set of environments within an organization

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

169

 The environment pattern is simply a way of splitting out your environmental information from your
application cookbooks, realizing that they may have a separate life cycle.

 Remember that cookbooks can be versioned, and roles cannot . This means it is a bad practice
to modify roles once deployed to a node, as any change to a role’s run list impacts all environments
simultaneously. That would not be a controlled release process! So how we get around this? By sticking to
the following principles during cookbook development:

 1. No nesting of roles . Each role should refer to one or more “capability” recipes
that are provided by an application cookbook.

 Example role roles/myapp-frontend.rb :

 {
 "name": "myapp-frontend",
 "chef_type": "role",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "description": "This is a single role that points to the standard-app-a frontend
 capability recipe",
 "run_list": [
 "recipe[myapp_a::default]",
],
 "env_run_lists" : {
 }
 }

 2. Application cookbooks should include and manage the dependencies for that
application (remembering that dependencies are specified in the application
cookbook’s metadata.rb file).

 Example metadata.rb:

 name 'myapp_a'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'
 license 'all_rights'
 description 'Installs/Configures myapp_a'
 long_description 'Installs/Configures chefazure-ch07'
 version '0.1.0'

 depends 'mysql'
 depends 'rabbitmq'

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

170

 3. Default attributes for each environment (e.g., location of database server in that
environment) should be specified in the environment JSON file.

 4. Default Role attributes should be avoided (as they override default environment
attributes that are unlikely to be desirable).

 5. Each node should be assigned the relevant roles that exist within the
environment JSON file.

 An overview diagram of how these principles work together is shown in Figure 7-6 . If you manage to
stick to these simple rules, you’ll have the basis for a continuous delivery solution, with controlled releases
into production. The running version in each environment is now a composite of the application cookbook
version, combined with the attributes and version constraints from the environment cookbook.

 Figure 7-6. Node/Role/Recipe relationships

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

171

 When using the environment pattern we are generally interested in setting default attributes:

 1. Attribute files (application cookbook) - here we are setting the default attributes
for our application, generally pointing them at Dev values (just in case they are
accidentally pushed to a Production environment).

 2. Environment attributes (environment cookbook) - here we are setting the
default attributes for an environment. Conveniently these override those set in
an attribute file so we can use this mechanism to set environmental attributes
(such as the connection string to the database in each environment).

 3. Roles - Generally the use of role attributes is not a good practice as they override
default Environment attributes. However, they can be a useful tool depending
on your implementation scenario. Just remember that if you want to use
Environment attributes over Role attributes in this scenario you’ll have to mark
the environment attribute as an override_attribute .

 Semantic Versioning Overview
 As mentioned, we typically use Semantic Versioning in order to version our cookbooks. Semantic versioning
is a standard for versioning, created in the community that brings a common understanding to version
numbering. Full details can be found at http://semver.org/spec/v2.0.0.html .

 Attribute Precedence
 There are 15 levels of attribute precedence that go from a default attribute in a cookbook through to a forced
overridden attribute set at an environment level, as shown in Figure 7-7 :

 Figure 7-7. Attribute precedence in Chef. Source: https://docs.chef.io/attributes.html

http://semver.org/spec/v2.0.0.html
https://docs.chef.io/attributes.html

CHAPTER 7 ■ CHEF CONCEPTS IN THE REAL WORLD

172

 The premise of Semantic versioning is simple; given a version number Major.Minor.Patch , increment
the following:

• Major version when you make incompatible API changes,

• Minor version when you add functionality in a backwards-compatible manner, and

• Patch version when you make backwards-compatible bug fixes.

 Luckily, public cookbooks, environment cookbooks, and pretty much all versioning in the Chef and
Ruby ecosystem follow this numbering scheme. This numbering scheme is shown in Figure 7-8 .

 Figure 7-8. Semantic Versioning structure

 Table 7-1. Typical version contraints used in Ruby and Chef cookbooks

 Constraint Meaning

 = 0.1.0 Matches version 0.1.0

 > 0.1.0 Greater than version 0.1.0

 >= 1.4.5 Greater than or equal to version 1.4.5

 ~> 2.6 Greater than or equal to version 2.6 but less than version 3.0

 ~> 2.6.5 Greater than or equal to version 2.6.5 but less than version 2.7.0

 < 1.1.0 Less than version 1.1.0

 <= 1.4.5 Less than or equal to version 1.4.5

 The semantic version numbering scheme allows us to use version constraints in our cookbook
metadata. A reminder of some of the more typical constraints is shown in Table 7-1 .

 Summary
 In this chapter, we highlighted some of the patterns and practices you should adopt when developing Chef
cookbooks in the real world. Chapter 8 will take these concepts one stage further and build out a complete
environment in Azure using Chef Provisioning, Jenkins, and Hosted Chef.

http://dx.doi.org/10.1007/978-1-4842-1476-3_8

173© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3_8

 CHAPTER 8

 Pulling It All Together: Continuous
Provisioning with Chef and Azure

 At this point in the book we’ve covered a lot of ground with both Chef and the Microsoft Azure platforms.
So far we have done the following:

• Understood how to set up a development workstation for Chef

• Looked at Azure’s capabilities, delved into detail on Azure Resource Manager, and
used both the Azure CLI and PowerShell cmdlets to accomplish administration tasks
in Azure

• Utilized the Chef VM Extensions as an efficient way of bootstrapping Chef on
multiple machines

• Used Chef Provisioning to provision various types of Azure resources and scale out
our architectures including both IaaS and PaaS resources

• Looked at the Chef testing landscape and the tooling that supports it, including the
Test Kitchen driver for Azure Resource Manager

• Looked at Chef in the real world, including implications of environments, versioning,
and runlists

 It’s time to pull all that together and in this advanced-level chapter we will be building a fully working,
continuous provisioning pipeline, running in Azure with Chef. We’ll take an incremental approach to
building it so that we have something working at each stage. At the end, we’ll have a framework that you can
use in your own environment that allows you to add configuration management and release management
on top of it.

 What are we Aiming for?
 To create our solution, we will need to break down our approach into four key phases, as follows:

 1. Initial Chef Repository setup

 2. Installing and configuring Jenkins

 3. Setting up a new Chef repository in GitHub

 4. Configuring the Jenkins project and building steps

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

174

 Our provisioning system will work off code that is checked into source control, so we want our pipeline
to have the following attributes:

• It will be triggered by commit pushes to our source control system (GitHub) for
updates

• Where there is an update to a provisioning recipe, the changes will be detected and
any new provisioning instructions will be executed

• If provisioning results in new servers being added, they are bootstrapped with a Chef
client

• Any new servers should be assigned a role or runlist so that the first time the Chef
client runs, recipes are executed on the target node

 Once all this has been accomplished, we will have a working pipeline. Figure 8-1 shows the components
involved. We will create a Dev environment initially and demonstrate how to add further environments that
are contained within their own Azure Resource Group.

 As you can see we have a lot to do, so let’s get started by setting up an application repository and get
some provisioning recipes ready.

 Figure 8-1. Solution Overview

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

175

 Phase 1 - Initial Chef Repository Setup

 ■ Note If you have not set up an Azure Active Directory Service Principal and configured Chef Provisioning
with an Azure credentials file, head back to Chapter 4 : Authenticating to Azure Resource Manager and
complete that section first.

 Initializing the Application Repository
 Let’s get started by creating ourselves an application repository to work in:

 PS C:\Users\StuartPreston> chef generate app chefazure-ch08 --copyright "Stuart Preston"
--email "stuart@pendrica.com"

 Compiling Cookbooks...
 Recipe: code_generator::app
 * directory[C:/Users/StuartPreston/chefazure-ch08] action create
 [...]

 We’ll need the keys and configuration we created in chapter 1 . Assuming you extracted the starter kit
into a folder ~/chef-repo, you can use the following commands:

 PS C:\Users\StuartPreston> cd .\chefazure-ch08\
 PS C:\Users\StuartPreston\chefazure-ch08> mkdir .chef

 Directory: C:\Users\StuartPreston\chefazure-ch08

 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 d----- 29/11/2015 16:02 chef

 PS C:\Users\StuartPreston\chefazure-ch08> cd .chef
 PS C:\Users\StuartPreston\chefazure-ch08\.chef> cp ~/chef-repo/.chef/*.* .

 We can now open up our application in our preferred development environment (Visual Studio Code
in my case):

 PS C:\Users\StuartPreston\chefazure-ch08\.chef> cd ..
 PS C:\Users\StuartPreston\chefazure-ch08> code .

http://dx.doi.org/10.1007/978-1-4842-1476-3_4
http://dx.doi.org/10.1007/978-1-4842-1476-3_1

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

176

 We’ll be using the chefazure-ch08 cookbook within our app to house our provisioning recipes as well
as all dependencies for this application. We should now have the structure as shown in Figure 8-2 :

 We can now move onto creating and executing the required baseline provisioning recipes.

 Add Chef Provisioning Recipes
 Azure Resource Groups make perfect boundaries between logical environments as they have their own
storage and networking infrastructure. If we want to add another environment later, we won’t affect any of
the existing resources that are deployed. Figure 8-3 shows the boundaries we want to keep between logical
environments.

 Figure 8-2. Required initial repository structure for this chapter

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

177

 When it comes to adding compute resource such as a VM inside a Resource Group, we need to use a
generic Azure Resource Manager template that will allow us to create Windows and Ubuntu machines from
it. The recipe associated with this template will need to refer to the Resource Group, and the template itself
will need to create a Storage Account as well as a Network and IP address. Via the recipe parameters a Chef
VM Extension will be added so that we don’t need to bootstrap the machine manually. Here’s the generic
ARM template we can use, which needs to be saved inside the repository:

 ■ Note The files and source code for this chapter can be downloaded from http://bit.ly/chefazure

 cookbooks/chefazure-ch08/files/shared/machine_deploy.json

 {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deployment

Template.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "metadata": {
 "description": "The location where the resources will be created."
 }
 },
 "vmSize": {
 "type": "string",
 "metadata": {
 "description": "The size of the VM to be created"
 }
 },
 "newStorageAccountName": {
 "type": "string",
 "metadata": {
 "description": "Unique DNS Name for the Storage Account where the Virtual

Machine's disks will be placed."
 }
 },

 Figure 8-3. Azure Resource Groups to be created

http://bit.ly/chefazure

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

178

 "adminUsername": {
 "type": "string",
 "metadata": {
 "description": "User name for the Virtual Machine."
 }
 },
 "adminPassword": {
 "type": "securestring",
 "metadata": {
 "description": "Password for the Virtual Machine."
 }
 },
 "dnsNameForPublicIP": {
 "type": "string",
 "metadata": {
 "description": "Unique DNS Name for the Public IP used to access the Virtual

Machine."
 }
 },
 "imagePublisher": {
 "type": "string",
 "defaultValue": "Canonical",
 "metadata": {
 "description": "Publisher for the VM, e.g. Canonical, MicrosoftWindowsServer"
 }
 },
 "imageOffer": {
 "type": "string",
 "defaultValue": "UbuntuServer",
 "metadata": {
 "description": "Offer for the VM, e.g. UbuntuServer, WindowsServer."
 }
 },
 "imageSku": {
 "type": "string",
 "defaultValue": "14.04.3-LTS",
 "metadata": {
 "description": "Sku for the VM, e.g. 14.04.3-LTS"
 }
 },
 "imageVersion": {
 "type": "string",
 "defaultValue": "latest",
 "metadata": {
 "description": "Either a date or latest."
 }
 },
 "vmName": {
 "type": "string",
 "defaultValue": "vm",

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

179

 "metadata": {
 "description": "The vm name created inside of the resource group."
 }
 }
 },
 "variables": {
 "location": "[parameters('location')]",
 "OSDiskName": "osdisk",
 "nicName": "nic",
 "addressPrefix": "10.0.0.0/16",
 "subnetName": "Subnet",
 "subnetPrefix": "10.0.0.0/24",
 "storageAccountType": "Standard_LRS",
 "publicIPAddressName": "publicip",
 "publicIPAddressType": "Dynamic",
 "vmStorageAccountContainerName": "vhds",
 "vmName": "[parameters('vmName')]",
 "vmSize": "[parameters('vmSize')]",
 "virtualNetworkName": "vnet",
 "vnetID": "[resourceId('Microsoft.Network/virtualNetworks',

variables('virtualNetworkName'))]",
 "subnetRef": "[concat(variables('vnetID'),'/subnets/',variables('subnetName'))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[parameters('newStorageAccountName')]",
 "apiVersion": "2015-05-01-preview",
 "location": "[variables('location')]",
 "properties": {
 "accountType": "[variables('storageAccountType')]"
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/publicIPAddresses",
 "name": "[variables('publicIPAddressName')]",
 "location": "[variables('location')]",
 "properties": {
 "publicIPAllocationMethod": "[variables('publicIPAddressType')]",
 "dnsSettings": {
 "domainNameLabel": "[parameters('dnsNameForPublicIP')]"
 }
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[variables('virtualNetworkName')]",
 "location": "[variables('location')]",

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

180

 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('addressPrefix')]"
]
 },
 "subnets": [
 {
 "name": "[variables('subnetName')]",
 "properties": {
 "addressPrefix": "[variables('subnetPrefix')]"
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/networkInterfaces",
 "name": "[variables('nicName')]",
 "location": "[variables('location')]",
 "dependsOn": [
 "[concat('Microsoft.Network/publicIPAddresses/',

variables('publicIPAddressName'))]",
 "[concat('Microsoft.Network/virtualNetworks/',

variables('virtualNetworkName'))]"
],
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses',

variables('publicIPAddressName'))]"
 },
 "subnet": {
 "id": "[variables('subnetRef')]"
 }
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[variables('vmName')]",
 "location": "[variables('location')]",

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

181

 "dependsOn": [
 "[concat('Microsoft.Storage/storageAccounts/',

parameters('newStorageAccountName'))]",
 "[concat('Microsoft.Network/networkInterfaces/', variables('nicName'))]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[variables('vmSize')]"
 },
 "osProfile": {
 "computerName": "[variables('vmName')]",
 "adminUsername": "[parameters('adminUsername')]",
 "adminPassword": "[parameters('adminPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "[parameters('imagePublisher')]",
 "offer": "[parameters('imageOffer')]",
 "sku": "[parameters('imageSku')]",
 "version": "[parameters('imageVersion')]"
 },
 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat('http://',parameters('newStorageAccountName'),'.

blob.core.windows.net/',variables('vmStorageAccountContainer
Name'),'/',variables('OSDiskName'),'.vhd')]"

 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces',

variables('nicName'))]"
 }
]
 },
 "diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": "true",
 "storageUri": "[concat('http://',parameters('newStorageAccountName'),

'.blob.core.windows.net')]"
 }
 }
 }
 }
]
 }

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

182

 We need to extract the parameters from the ARM template into a recipe so that it can be provisioned.
We’ll do that by creating a recipe for our CI server in the same way we did in chapter 4 . Remember to
substitute in the correct Subscription ID in the right place:

 cookbooks/chefazure-ch08/recipes/provision_jenkins.rb :

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch08-ci' do
 location 'West Europe'
 end

 azure_resource_template 'jenkins-server' do
 resource_group 'chefazure-ch08-ci'
 template_source 'cookbooks/chefazure-ch08/files/shared/machine_deploy.json'
 parameters location: 'West Europe',
 vmSize: 'Standard_D1',
 newStorageAccountName: 'chazch8ci',
 adminUsername: 'azure',
 adminPassword: 'P2ssw0rd',
 dnsNameForPublicIP: 'chefazure-ch08-ci',
 imagePublisher: 'Canonical',
 imageOffer: 'UbuntuServer',
 imageSKU: '14.04.3-LTS',
 vmName: 'chazch08jenkins'
 chef_extension client_type: 'LinuxChefClient',
 version: '1210.12',
 runlist: 'role[jenkins]'
 end

 PS C:\Users\StuartPreston\chefazure-ch08> knife cookbook upload chefazure-ch08

 Uploading chefazure-ch08 [0.1.0]
 Uploaded 1 cookbook.

 Provisioning the CI Server
 Having uploaded the cookbook and remembering that our local development workstation is connected
to the same Chef organization, we can now run Chef Client on our local provisioning node and explicitly
specify the provision_jenkins recipe for our runlist. This will provision our initial machine:

 PS C:\Users\StuartPreston\chefazure-ch08> chef-client -r recipe[chefazure-ch08::provision_
jenkins]

 Starting Chef Client, version 12.5.1
 [2016-01-16T00:30:37+00:00] WARN: chef-client doesn't have administrator privileges on node
DESKTOP-TIDJ3S8. This might cause unexpected resource failures.
 resolving cookbooks for run list: ["chefazure-ch08::provision_jenkins"]

http://dx.doi.org/10.1007/978-1-4842-1476-3_4

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

183

 Synchronizing Cookbooks:
 - chefazure-ch08 (0.1.0)
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: chefazure-ch08::provision_jenkins
 * azure_resource_group[chefazure-ch08-ci] action create
 - create or update Resource Group chefazure-ch08-ci
 * azure_resource_template[jenkins-server] action deploy
 - adding a Chef VM Extension with name: [variables('vmName')] and location:

[variables('location')]
 - Result: Accepted
 - Resource Microsoft.Network/publicIPAddresses 'publicip' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chazch8ci' provisioning status is Running
 - Resource Microsoft.Network/virtualNetworks 'vnet' provisioning status is Running
 - Resource Microsoft.Network/publicIPAddresses 'publicip' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chazch8ci' provisioning status is Running
 - Resource Microsoft.Network/virtualNetworks 'vnet' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chazch8ci' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chazch8ci' provisioning status is Running
 - Resource Microsoft.Storage/storageAccounts 'chazch8ci' provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 [...]
 - Resource Microsoft.Compute/virtualMachines 'chazch08jenkins' provisioning status is

Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'chazch08jenkins/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'chazch08jenkins/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'chazch08jenkins/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'chazch08jenkins/chefExtension'

provisioning status is Running
 - Resource Microsoft.Compute/virtualMachines/extensions 'chazch08jenkins/chefExtension'

provisioning status is Running
 - Resource Template deployment reached end state of 'Succeeded'.
 - deploy or re-deploy Resource Manager template 'jenkins-server'

 Running handlers:
 Running handlers complete
 Chef Client finished, 2/2 resources updated in 07 minutes 12 seconds

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

184

 Now that our provisioning recipe has been executed locally, we can verify that the Resource Group was
created successfully by visiting the Management Portal and navigating to Resource Groups, as shown in
Figure 8-4 :

 We can drill down further and find the VM and select Extensions to see which extensions have been
installed; this is shown in Figure 8-5 :

 Figure 8-4. Management Portal showing created chefazure-ch08-ci resource group

 Figure 8-5. Chef Extension in “Provisioning succeeded” status on a provisioning VM

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

185

 To check that the machine successfully registered against the Hosted Chef server, we can look on the
Hosted Chef server, as shown in Figure 8-6 :

 While we specified the jenkins ‘role’ for this server, the role hasn’t yet been uploaded to the Chef Server,
so it appears in red for the time being.

 Phase 2 - Installing and Configuring Jenkins
 There are many Continuous Integration servers out there both running in a managed (hosted) way and
on premises. We have chosen the popular tool Jenkins (http://jenkins-ci.org) Continuous Integration
server, which has a huge list of plug-ins and support for all the popular source control systems.

 There is also a publicly available cookbook on the Supermarket for installing and configuring it, which
we will use. The cookbook is available at https://supermarket.chef.io/cookbooks/jenkins (as shown in
Figure 8-7) and is maintained by the team at Chef, like many other high-profile cookbooks.

 Figure 8-6. Hosted Chef server showing the provisioned server

http://jenkins-ci.org/
https://supermarket.chef.io/cookbooks/jenkins

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

186

 By clicking on the Dependencies tab , we can see the dependent cookbooks for the Jenkins cookbook,
as shown in Figure 8-8 .

 Figure 8-7. Jenkins cookbook page on the Chef Supermarket

 Figure 8-8. Dependencies for the Jenkins cookbook

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

187

 Using Berkshelf to Retrieve Public Cookbooks
 Managing dependencies can get tricky over time - the more cookbooks you include, the more dependencies
get included. Downloading cookbooks is a fairly simple task but when we need to upload them to our server
it’s a pain to work out a list of all the dependencies to upload, not to mention the cookbooks themselves
clutter your repo. To avoid this pain, we can use Berkshelf , a dependency manager. Berkshelf takes the
heavy lifting out of managing community cookbooks. It downloads the cookbooks to a location outside
your repo on your local disk, ready for upload to the Chef server. Newer versions of dependencies can
be downloaded by the tool automatically and it is also supported by most of the testing tools out there,
including RSpec and Test Kitchen. We’ll use Berkshelf to work with the Jenkins cookbook.

 ■ Note More information about Berkshelf can be found at http://berkshelf.com

 First, we need to update our Berksfile (a file where you list the dependencies and their sources) so that
it knows we have a dependency on the jenkins cookbook. The Berksfile lives in the cookbook folder, rather
than the root of the repo. Let’s edit our Berksfile and add the dependency to the Jenkins cookbook as follows
(additions in bold):

 cookbooks/chefazure-ch08/Berksfile:

 source 'https://supermarket.chef.io'

 metadata

 cookbook 'jenkins'

 To download the cookbook and all dependencies to your local workstation, we can run the berks
install command:

 ■ Note berks install should be executed from the cookbook folder rather than the root of the repo

 PS C:\Users\StuartPreston\chefazure-ch08> cd cookbooks\chefazure-ch08
 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks install

 Resolving cookbook dependencies...
 Fetching 'chefazure-ch08' from source at .
 Fetching cookbook index from https://supermarket.chef.io...
 Installing apt (2.9.2)
 Installing jenkins (2.4.1)
 Using chefazure-ch08 (0.1.0) from source at .
 Installing packagecloud (0.1.1)
 Installing runit (1.7.6)
 Installing yum (3.9.0)

http://berkshelf.com/

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

188

 Where did the cookbooks install to? Dependency cookbooks are kept outside of our repo in the
 ~/.berkshelf/cookbooks folder:

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> ls ~/.berkshelf/cookbooks

 Directory: C:\Users\StuartPreston\.berkshelf\cookbooks

 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 d----- 16/01/2016 06:21 apt-2.9.2
 d----- 16/01/2016 06:21 jenkins-2.4.1
 d----- 16/01/2016 06:21 packagecloud-0.1.1
 d----- 16/01/2016 06:21 runit-1.7.6
 d----- 16/01/2016 06:21 yum-3.9.0

 Creating a Recipe to Install Jenkins
 Now that we have successfully added a dependency on the Jenkins cookbook, we need to create a recipe
within our cookbook that includes the Jenkins cookbook and any additional configuration we wish to
perform.

 To start, create a new file cookbooks/chefazure-ch08/recipes/install_jenkins.rb and add the
following content to it, to simply include the master recipe from the jenkins cookbook:

 cookbooks/chefazure-ch08/recipes/install_jenkins.rb:

 include_recipe 'jenkins::master'

 We also need to add a dependency on the Jenkins cookbook to our metadata file in the cookbook folder.
After modification the file should look like the following:

 cookbooks/chefazure-ch08/metadata.rb:

 name 'chefazure-ch08'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'
 license 'all_rights'
 description 'Installs/Configures chefazure-ch08'
 long_description 'Installs/Configures chefazure-ch08'
 version '0.1.1'

 depends 'jenkins'

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

189

 Uploading the Cookbook and Dependencies
 The neat thing about Berkshelf is that the cookbooks folder in our repo is not littered with cookbooks
that we need to keep up to date, and the berks upload command lets us upload all of our dependent
cookbooks to the server in one go. Let’s do that, remembering that we run the command from the
cookbook folder:

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks install
 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks upload

 Uploaded apt (2.9.2) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Uploaded chefazure-ch08 (0.1.0) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Uploaded jenkins (2.4.1) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Uploaded packagecloud (0.1.1) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Uploaded runit (1.7.6) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Uploaded yum (3.9.0) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'

 Preparing and Uploading Role Definitions
 Remember that Roles consist of attributes (if appropriate) and a run list? We’re going to create the jenkins
role we referred to earlier in the chapter and set its runlist to the recipe we just created. That way when we
next run the Chef client on the Jenkins server, the recipe should be executed.

 Create a new file (and roles folder) roles/jenkins.json

 roles/jenkins.json :

 {
 "name": "jenkins",
 "chef_type": "role",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "description": "jenkins role",
 "run_list": [
 "recipe[chefazure-ch08::install_jenkins]"
],
 "env_run_lists" : {
 }
 }

 Now we can upload our Jenkins role to the Chef server so it is ready for use:

 PS C:\Users\StuartPreston\chefazure-ch08> knife role from file roles/jenkins.json

 Updated Role jenkins!

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

190

 Configuring the Jenkins Server
 Let’s run the Chef Client manually on the server so that it picks up our latest changes. To find out what
hostname or IP address to connect to, we can have a look in the publicIP resource for our VM in the Azure
Management Portal, as shown in Figure 8-10 :

 Figure 8-9. Hosted Chef showing expanded Runlist for our Jenkins server

 If we refresh the Hosted Chef page in our browser, we will see that the runlist for our chczch08jenkins
node now expands correctly, as shown in Figure 8-9 :

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

191

 The DNS name should take the form <dnsNameForPublicIP>.<location>.cloudapp.azure.com where:

• dnsNameForPublicIP was specified in the parameters of the provisioning recipe

• location is the short name for the datacenter location, e.g. “westeurope”

 Using an SSH client, connect to the server and run sudo chef-client :

 azure@chefazurech08ci:~$ sudo chef-client

 (note the below output has been abbreviated)

 Starting Chef Client, version 12.6.0
 resolving cookbooks for run list: ["chefazure-ch08::jenkins_ci_install"]
 Synchronizing Cookbooks:
 - chefazure-ch08 (0.1.0)
 - jenkins (2.4.1)
 - apt (2.9.2)
 - runit (1.7.6)
 - packagecloud (0.1.1)
 - yum (3.9.0)
 Compiling Cookbooks...
 Converging 15 resources

 [...]

 * apt_package[jenkins] action install
 * service[jenkins] action restart
 - restart service service[jenkins]
 * service[jenkins] action enable (up to date)
 * service[jenkins] action start (up to date)

 Figure 8-10. Azure Management Portal showing the full DNS name of our CI server

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

192

 Running handlers:
 - AzureExtension::ReportHandler
 Running handlers complete

 Chef Client finished, 15/15 resources updated in 58 seconds

 Now we can see if we can verify that Jenkins is running. In a browser, navigate to the DNS name you
provided for the CI server earlier (e.g., http://chefazure-ch08-ci.westeurope.cloudapp.azure.com:8080).
If successful, you should see a dashboard similar to that in Figure 8-11 .

 Figure 8-11. Jenkins Dashboard

 Adding Plug-ins to Jenkins
 To start with, we will probably want to use Git, and the popular GitHub and Build Pipeline plug-ins in our
Jenkins implementation, and these can be configured from a recipe by adding the content below (in bold) to
 cookbooks\chefazure-ch08\recipes\install_jenkins.rb:

 include_recipe 'jenkins::master'

 package 'git' do
 action :install
 end

http://chefazure-ch08-ci.westeurope.cloudapp.azure.com:8080/

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

193

 jenkins_plugin 'github' do
 action :install
 notifies :restart, 'service[jenkins]', :delayed
 end

 jenkins_plugin 'build-pipeline-plugin' do
 action :install
 notifies :restart, 'service[jenkins]', :delayed
 end

 As we are now using Berkshelf to manage our uploads, we need to bump the version of our cookbook to
version 0.1.1 in cookbooks\chefazure-ch08\metadata.rb (this is because the previous version is locked by
Berkshelf, and besides - it is a good practice to get into the habit of incrementing the version number when
changes come through the system). The resulting metadata.rb file should look similar to the one below:

 cookbooks\chefazure-ch08\metadata.rb:

 name 'chefazure-ch08'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'
 license 'all_rights'
 description 'Installs/Configures chefazure-ch08'
 long_description 'Installs/Configures chefazure-ch08'
 version '0.1.1'

 depends 'jenkins'

 Now we need to notify Berkshelf of our new version (berks update), and upload it to the server
(berks upload):

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks update

 Resolving cookbook dependencies...
 Fetching 'chefazure-ch08' from source at .
 Fetching cookbook index from https://supermarket.chef.io...
 Using apt (2.9.2)
 Using chefazure-ch08 (0.1.1) from source at .
 Using jenkins (2.4.1)
 Using runit (1.7.6)
 Using yum (3.9.0)
 Using packagecloud (0.1.1)

 C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks upload

 Skipping apt (2.9.2) (frozen)
 Uploaded chefazure-ch08 (0.1.1) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Skipping jenkins (2.4.1) (frozen)
 Skipping packagecloud (0.1.1) (frozen)
 Skipping runit (1.7.6) (frozen)
 Skipping yum (3.9.0) (frozen)

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

194

 We can now execute Chef Client again on our Jenkins server, where we can see at the end of the run, we
successfully invoke a restart on the Jenkins service:

 azure@chazch08jenkins:~$ sudo chef-client

 Starting Chef Client, version 12.6.0
 resolving cookbooks for run list: ["chefazure-ch08::install_jenkins"]
 Synchronizing Cookbooks:
 - jenkins (2.4.1)
 - apt (2.9.2)
 - runit (1.7.6)
 - packagecloud (0.1.1)
 - yum (3.9.0)
 - chefazure-ch08 (0.1.1)
 Compiling Cookbooks...
 Converging 18 resources
 Recipe: jenkins::_master_package

 [...]

 * service[jenkins] action restart
 - restart service service[jenkins]

 Running handlers:
 - AzureExtension::ReportHandler
 Running handlers complete

 Chef Client finished, 17/39 resources updated in 01 minutes 58 seconds

 Verifying Jenkins Plug-in Installation
 To verify that the plug-ins were installed we can navigate to Manage Jenkins ➤ Manage Plugins and click
on the Installed tab in the browser dashboard; we should see two plug-ins installed as shown in Figure 8-12 .

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

195

 Now that we have our plug-ins installed we can start working with the Jenkins server itself to define jobs
relevant to our pipeline.

 Securing Access to Jenkins
 Before we start configuring Jenkins jobs that potentially contain sensitive data, we should lock down access
to the system and create our first account:

• From the Jenkins dashboard, select Manage Jenkins , then Configure Global Security.

• Click Enable Security . The page will expand to offer a choice of access control.

• Select Jenkins’ own user database.

• Uncheck Allow users to sign up.

• Select Logged-in users can do anything.

 Figure 8-12. Jenkins Dashboard showing plug-ins that are installed

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

196

 The options should look similar to Figure 8-13 below. Do not forget to press the Save button at the
bottom of the page.

 Figure 8-13. Configure Global Security option in Jenkins

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

197

 On pressing Save , you will be prompted to create the first account as shown in Figure 8-14 :

 You will now be logged in automatically.

 Adding Chef Dependencies to Jenkins
 We need to install some Ruby Gems on our Jenkins server, and to do so we can edit the install_jenkins.rb and
use the gem_package resource to add our new dependencies.

 cookbooks\chefazure-ch08\recipes\install_jenkins.rb:

 include_recipe 'jenkins::master'

 package 'git' do
 action :install
 end

 jenkins_plugin 'github' do
 action :install
 notifies :restart, 'service[jenkins]', :delayed
 end

 jenkins_plugin 'build-pipeline-plugin' do
 action :install
 notifies :restart, 'service[jenkins]', :delayed
 end

 package 'build-essential' do
 action :install
 end

 gem_package 'chef-provisioning' do
 action :install
 end

 Figure 8-14. “ First Account” Sign-up page shown in Jenkins

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

198

 gem_package 'chef-provisioning-azurerm' do
 action :install
 end

 gem_package 'rspec' do
 action :install
 end

 gem_package 'rake' do
 action :install
 end

 gem_package 'rubocop' do
 action :install
 end

 As we have made a change we need to increment our version number, update the Berkshelf dependencies,
and upload the new cookbook to the Chef server:

 cookbooks\chefazure-ch08\metadata.rb:

 name 'chefazure-ch08'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'
 license 'all_rights'
 description 'Installs/Configures chefazure-ch08'
 long_description 'Installs/Configures chefazure-ch08'
 version '0.1.2'

 depends 'jenkins'

 Now we need to notify Berkshelf of our new version (berks update), and upload it to the server
(berks upload):

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks update

 Resolving cookbook dependencies...
 Fetching 'chefazure-ch08' from source at .
 Fetching cookbook index from https://supermarket.chef.io...
 Using apt (2.9.2)
 Using chefazure-ch08 (0.1.2) from source at .
 Using jenkins (2.4.1)
 Using runit (1.7.6)
 Using yum (3.9.0)
 Using packagecloud (0.1.1)

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

199

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks upload

 Skipping apt (2.9.2) (frozen)
 Uploaded chefazure-ch08 (0.1.2) to: 'https://api.chef.io:443/organizations/pendrica-chefazure'
 Skipping jenkins (2.4.1) (frozen)
 Skipping packagecloud (0.1.1) (frozen)
 Skipping runit (1.7.6) (frozen)
 Skipping yum (3.9.0) (frozen)

 We can now execute Chef Client again on our Jenkins server, where we can see at the end of the run, we
successfully invoke a restart on the Jenkins service:

 azure@chazch08jenkins:~$ sudo chef-client

 Starting Chef Client, version 12.6.0
 resolving cookbooks for run list: ["chefazure-ch08::install_jenkins"]
 Synchronizing Cookbooks:
 - chefazure-ch08 (0.1.2)
 - jenkins (2.4.1)
 - apt (2.9.2)
 - runit (1.7.6)
 - yum (3.9.0)
 - packagecloud (0.1.1)
 Compiling Cookbooks...
 Converging 24 resources
 [...]
 Running handlers:
 - AzureExtension::ReportHandler
 Running handlers complete

 Chef Client finished, 7/33 resources updated in 58 seconds

 Phase 3 - Setting Up a New Chef Repository in GitHub
 For our scenario, we want our Jenkins jobs to be triggered by changes to the master branch in our repo.
So we need a hosted Git repository for this.

 You may already have your own hosted Git solution, such as Visual Studio Team Services (formerly
Visual Studio Online), GitLab, or Atlassian Stash/Bitbucket and a similar procedure will apply to those.
The basic steps to upload your repository are as follows.

• Log in to GitHub at https://github.com and create an account if necessary.

• Click on the plus sign and create a New repository (example values are shown
in Figure 8-15).

https://github.com/

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

200

• Press the Create repository button.

• Now that we have a new blank repository on GitHub, we can set this as the ’remote’
for our local repository and push to it. We will need to commit our changes first.

 Configuring a .gitignore File to Exclude Sensitive Information
 As we do not want to share our keys with the world, we need to add the following line to our Git ignore file so
that they won’t get included when we commit changes. Note the .gitignore file is in the root of our repo:

 .gitignore:
 .vagrant
 Berksfile.lock
 *~
 *#
 .#*
 \#*#
 .*.sw[a-z]
 *.un~

 Figure 8-15. GitHub Create repository screen

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

201

 # Bundler
 Gemfile.lock
 bin/*
 .bundle/*

 .kitchen/
 .kitchen.local.yml

 .chef/

 After saving the file, we can stage our changes for git, and then commit them:

 PS C:\Users\StuartPreston\chefazure-ch08> git add .
 PS C:\Users\StuartPreston\chefazure-ch08> git commit -m 'initial commit'

 [master (root-commit) 979f481] initial commit
 15 files changed, 490 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 .kitchen.yml
 create mode 100644 README.md
 create mode 100644 cookbooks/chefazure-ch08/Berksfile
 create mode 100644 cookbooks/chefazure-ch08/chefignore
 create mode 100644 cookbooks/chefazure-ch08/files/shared/machine_deploy.json
 create mode 100644 cookbooks/chefazure-ch08/metadata.rb
 create mode 100644 cookbooks/chefazure-ch08/recipes/default.rb
 create mode 100644 cookbooks/chefazure-ch08/recipes/install_jenkins.rb
 create mode 100644 cookbooks/chefazure-ch08/recipes/provision_jenkins.rb
 create mode 100644 cookbooks/chefazure-ch08/roles/jenkins.json
 create mode 100644 cookbooks/chefazure-ch08/spec/spec_helper.rb
 create mode 100644 cookbooks/chefazure-ch08/spec/unit/recipes/default_spec.rb
 create mode 100644 test/integration/default/serverspec/default_spec.rb
 create mode 100644 test/integration/helpers/serverspec/spec_helper.rb

 Connecting a Local Git Repo to the Remote
 We can now connect our local repository with the remote by using the git remote add command and
specifying the URI of the GitHub repo :

 PS C:\Users\StuartPreston\chefazure-ch08> git remote add origin https://github.com/
stuartpreston/chefazure-ch08.git
 PS C:\Users\StuartPreston\chefazure-ch08> git push -u origin master

 Username for 'https://github.com': stuartpreston
 Password for 'https://stuartpreston@github.com':
 Counting objects: 32, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (20/20), done.
 Writing objects: 100% (32/32), 5.53 KiB | 0 bytes/s, done.

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

202

 Total 32 (delta 0), reused 0 (delta 0)
 To https://github.com/stuartpreston/chefazure-ch08.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 We now have our changes committed and pushed to our remote Git repository in GitHub.

 Phase 4 - Configuring the Jenkins Project
 In Jenkins , a job is a container for the build process including all build steps. We’re going to create and
configure a job, using the following steps:

• From the home page, press create new jobs .

• You are taken to a page to enter the item name and the type of project. We’ll use
“Provisioning” as the item name and a Freestyle project as shown in Figure 8-16 .

 We are then taken to the project creation page as shown in Figure 8-17 .

 Adding a New Project
 There are a multitude of settings that we could set; however the key ones for us relate to how we access
source control. We can then add a few Build Steps that execute in order based on a trigger. To add a new
project, the options we need to set or select are the following:

• Project name : Provisioning

• GitHub project : (selected)

• Project url: https://github.com/stuartpreston/chefazure-ch08

• (advanced) Display name: chefazure-ch08

 Figure 8-16. Jenkins Create Job/Project creation page

https://github.com/stuartpreston/chefazure-ch08

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

203

 Figure 8-17. Jenkins Job creation screen

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

204

 Adding Build Steps
 Now we can add some build steps. To keep it as simple as possible for this chapter, our build will be
comprised of three steps.

• Execute Rubocop

• Upload the cookbook to the Chef server using Knife

• Execute Chef Provisioning

 Execute Rubocop
 As we saw in chapter 6 , Rubocop is a powerful tool for detecting style and ruby errors in code. It runs very
quickly, so it is a prime candidate for being at the top of the Build Steps list:

• Add a Build step and as shown in Figure 8-18 ; in the Command box enter the
following command (the -D ensures we get meaningful output with each error or
warning that occurs):

 /opt/chef/embedded/bin/rubocop -D

 Figure 8-18. Rubocop command

http://dx.doi.org/10.1007/978-1-4842-1476-3_6

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

205

 Press Save and run the build, by clicking the Build Now link on the Jenkins dashboard for the
Provisioning project, as shown in Figure 8-19 :

 While the build is running, you can visit the Console Output screen as shown in Figure 8-20 to see any
output that was written to the console (STDOUT) during the run. If you miss it, don’t worry - the output will
be saved for inspection later (you can view it by navigating to any build and pressing Console Output) .

 Figure 8-19. Jenkins dashboard

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

206

 By inspecting the console output, we can see that Rubocop executed, checked the files in our workspace
(corresponding to our Chef repo). and hopefully there are no offenses. If there are, then the build will fail
and you will need to correct these errors before moving on.

 Upload the Cookbook to the Chef Server Using Knife
 When the Rubocop step is successful we want to upload the chefazure-ch08 cookbook to the server to make
our provisioning recipes available. We can accomplish this using the knife cookbook tool running locally on
the Jenkins server.

 Before we do that, we need to make our knife configuration (i.e., the content of the ~/chef-repo/.chef
folder, excluding the validation key) available to Jenkins. I find the simplest way to accomplish the required
result is to manually copy the files from your machine into the home directory using SCP, SFTP or your
preferred tool and then copy them as root (using sudo) into /etc/chef:

 azure@chazch08jenkins:$ cd /etc/chef
 azure@chazch08jenkins:/etc/chef$ sudo cp /home/azure/stuartpreston-pendrica.pem .
 azure@chazch08jenkins:/etc/chef$ sudo cp /home/azure/knife.rb .

 Once the Knife configuration is available on the server, we can add another Build Step to our Jenkins job
of type Execute Shell . The format the command takes is as follows:

 /opt/chef/embedded/bin/knife cookbook upload <cookbook_name> -c /etc/chef/knife.rb -o
./cookbooks --force

 Figure 8-20. Console Output from Jenkins build process

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

207

 Where:

• <cookbook_name> is the name of the cookbook we wish to upload

• -c /etc/chef/knife.rb is the path to our Knife configuration file

• -o ./cookbooks is an override to the location of cookbooks that will point to our
cookbooks folder during a build

• --force is used to overwrite any existing cookbook on the server with the same
version

 The build step is shown in Figure 8-21 below:

 We can trigger a new build manually by pressing Save and pressing the Build Now button . We should
see the output as seen in Figure 8-22 .

 In the output from this build we can see Rubocop inspecting nine files, followed by Knife uploading the
cookbook to the server.

 Figure 8-21. Command line for uploading the cookbook using Knife

 Figure 8-22. Knife command running via Jenkins

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

208

 Configuring Jenkins for Chef Provisioning
 Before we can execute our first Chef Provisioning recipe via Jenkins, we need to make some modifications
to the configuration of the Jenkins server. This is because the keys that the Chef client will need to read
are not available to the Chef client when it is executed from Jenkins. We’ll need to change the permissions
on the client.pem and validation.pem files. Additionally, we will need a separate client.rb file to use for
provisioning purposes. The reason for that is that the client.rb that is installed on the machine through the
Azure VM Extension is incompatible with being run as the Jenkins user.

 So we’ll need to make some changes as follows - first we need to append two file resources and a
template resource to our install_jenkins recipe :

 cookbooks/chefazure-ch08/recipes/install_jenkins.rb

 file '/etc/chef/client.pem' do
 owner 'root'
 group 'jenkins'
 mode '0640'
 end

 file '/etc/chef/validation.pem' do
 owner 'root'
 group 'jenkins'
 mode '0640'
 end

 template '/etc/chef/client-provisioning.rb' do
 source 'client-provisioning.erb'
 owner 'root'
 group 'jenkins'
 mode '0640'
 end

 We need to create the .erb template that is referred to in the install_jenkins recipe. We put this template
in the templates folder. As you can see from the recipe, at the end we’ll expect all three files to be created
with permissions that allow read access to members of the Jenkins group on the server.

 cookbooks/chefazure-ch08/templates/client-provisioning.erb:

 node_name "<%= Chef::Config[:node_name] %>"
 chef_server_url "<%= Chef::Config[:chef_server_url] %>"
 validation_client_name "<%= Chef::Config[:validation_client_name] %>"
 client_key "<%= Chef::Config[:client_key] %>"
 validation_key "<%= Chef::Config[:validation_key] %>"
 file_cache_path "/var/lib/jenkins/.chef"
 log_location "/dev/stdout"
 log_level :info

 We will also need to update our metadata.rb again with a new version:

 metadata.rb:

 name 'chefazure-ch08'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

209

 license 'all_rights'
 description 'Installs/Configures chefazure-ch08'
 long_description 'Installs/Configures chefazure-ch08'
 version '0.1.3'

 depends 'jenkins'

 Once this has been saved, we need to perform a berks update and berks upload to the Chef server:

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks update

 Fetching 'chefazure-ch08' from source at .
 Fetching cookbook index from https://supermarket.chef.io...
 Using apt (2.9.2)
 Using chefazure-ch08 (0.1.3) from source at .
 Using jenkins (2.4.1)
 Using packagecloud (0.1.1)
 Using runit (1.7.6)
 Using yum (3.9.0)

 PS C:\Users\StuartPreston\chefazure-ch08\cookbooks\chefazure-ch08> berks upload

 Skipping apt (2.9.2) (frozen)
 Uploaded chefazure-ch08 (0.1.3) to: 'https://api.chef.io:443/organizations/pendrica-
 hefazure'
 Skipping jenkins (2.4.1) (frozen)
 Skipping packagecloud (0.1.1) (frozen)
 Skipping runit (1.7.6) (frozen)
 Skipping yum (3.9.0) (frozen)

 Back on our Jenkins server, we can rerun Chef client again (or wait 30 minutes for the changes to take
effect from the scheduled Chef client):

 azure@chazch08jenkins:/etc/chef$ sudo chef-client

 Starting Chef Client, version 12.6.0
 resolving cookbooks for run list: ["chefazure-ch08::install_jenkins"]
 Synchronizing Cookbooks:
 - runit (1.7.6)
 - apt (2.9.2)
 - jenkins (2.4.1)
 - packagecloud (0.1.1)
 - yum (3.9.0)
 - chefazure-ch08 (0.1.3)
 Compiling Cookbooks...
 Converging 26 resources
 [...]

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

210

 Recipe: chefazure-ch08::install_jenkins
 * jenkins_plugin[build-pipeline-plugin] action install (up to date)
 * apt_package[build-essential] action install (up to date)
 * gem_package[chef-provisioning] action install (up to date)
 * gem_package[chef-provisioning-azurerm] action install (up to date)
 * gem_package[rspec] action install (up to date)
 * gem_package[rake] action install (up to date)
 * gem_package[rubocop] action install (up to date)
 * file[/etc/chef/client.pem] action create
 - change mode from '0700' to '0640'
 * file[/etc/chef/validation.pem] action create
 - change mode from '0700' to '0640'
 * file[/etc/chef/client.pem] action create (up to date)
 * file[/etc/chef/validation.pem] action create (up to date)
 * template[/etc/chef/client-provisioning.rb] action create
 - create new file /etc/chef/client-provisioning.rb
 - update content in file /etc/chef/client-provisioning.rb from none to 3e6261
 --- /etc/chef/client-provisioning.rb 2016-01-16 22:53:17.255588400 +0000
 +++ /etc/chef/.client-provisioning.rb20160116-14225-7a41z9 2016-01-16

22:53:17.255588400 +0000
 @@ -1 +1,8 @@
 +node_name "chazch08jenkins.chefazure-ch08-ci"
 +chef_server_url https://api.chef.io/organizations/pendrica-chefazure
 +validation_client_name "pendrica-chefazure-validator"
 +client_key "/etc/chef/client.pem"
 +validation_key "/etc/chef/validation.pem"
 +file_cache_path "/var/lib/jenkins/.chef"
 +log_location "/dev/stdout"
 +log_level :info
 - change mode from '' to '0640'
 - change owner from '' to 'root'
 - change group from '' to 'jenkins'

 Running handlers:
 - AzureExtension::ReportHandler
 Running handlers complete

 Chef Client finished, 1/36 resources updated in 19 seconds

 Execute a Chef Provisioning Recipe
 We’re nearly complete on our Jenkins job creation - we need to add our final build step, which is to execute
Chef Provisioning. Chef Provisioning typically executes inside a normal Chef client, but in our case we are
using a special Chef client configuration that is separate from the one for the Jenkins server itself. That
way we can continue to service Jenkins, while sending Provisioning recipes through the Chef Provisioning
configuration.

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

211

 To accomplish this, we need to add another Build Step to our Jenkins job of type Execute Shell . The
format the command takes is as follows:

 /opt/chef/embedded/bin/chef-client -c /etc/chef/client-provisioning.rb -o recipe[chefazure-
ch08::default]

 Where:

• -c /etc/chef/client-provisioning.rb points to our custom configuration file for Chef
Provisioning

• -o recipe[chefazure-ch08::default] is a run list override - we only want to run the
provisioning recipes that are included by the default recipe in our cookbook

 The build step is shown in Figure 8-23 below:

 Figure 8-23. Command line for executing our custom Chef Client install

 Authenticating to Microsoft Azure from Jenkins

 To set up authentication from Jenkins to Azure, we need to copy the credentials file we created in chapter 4 .
The Jenkins home directory is typically /var/lib/jenkins but this may vary in your environment.

 If you are logged in as the azure user, you may find it easier to su to the jenkins user to avoid
permissions problems as follows:

 azure@chazch08jenkins: $ sudo su jenkins
 jenkins@chazch08jenkins:~$ mkdir ~/.azure
 jenkins@chazch08jenkins:~$ vi ~/.azure/credentials

 The credentials file should look similar to the following:

 /var/lib/jenkins/.azure/credentials:

 [b6e7eee9-YOUR-GUID-HERE-03ab624df016] <- Subscription ID
 tenant_id = "9c117323-YOUR-GUID-HERE-9ee430723ba3" <- Tenant ID
 client_id = "02a2ba0d-YOUR-GUID-HERE-0e7cd312d62b" <- Application ID
 client_secret = "my-top-secret-password" <- Application Password

 At this point we should have a fully working configuration so let’s test it by adding our first provisioning
recipe to our Chef repo, uploading it to GitHub, and then we can execute our job in Jenkins.

 Our “dev” environment comprises a single-machine Ubuntu server and assigned to the Apache role. It
is mostly a replica of the Jenkins machine, and it reuses the same ARM template. We’ll add the usual Chef
VM Extension to it so that it registers with a Chef Server. Ignore the fact that we don’t have an Apache role on
our Chef server yet - it can be added later. We are solely interested in the provisioning aspects at this stage.

http://dx.doi.org/10.1007/978-1-4842-1476-3_4

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

212

 Let’s add a provision_dev recipe to our cookbook:

 cookbooks/chefazure-ch08/recipes/provision_dev.rb

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch08-dev' do
 location 'West Europe'
 end

 azure_resource_template 'chefazure-ch08-dev' do
 resource_group 'chefazure-ch08-dev'
 template_source 'cookbooks/chefazure-ch08/files/shared/machine_deploy.json'
 parameters location: 'West Europe',
 vmSize: 'Standard_D1',
 newStorageAccountName: 'chazch8dev',
 adminUsername: 'azure',
 adminPassword: 'P2ssw0rd',
 dnsNameForPublicIP: 'chefazure-ch08-dev',
 imagePublisher: 'Canonical',
 imageOffer: 'UbuntuServer',
 imageSKU: '14.04.3-LTS',
 vmName: 'chazch08dev'
 chef_extension client_type: 'LinuxChefClient',
 version: '1210.12',
 runlist: 'role[apache]'
 end

 We need to add provision_dev recipe as an include to our default recipe, as our Jenkins job specifies
that the default recipe from our cookbook is executed:

 cookbooks/chefazure-ch08/recipes/default.rb

 include_recipe 'chefazure-ch08::provision_dev'

 Again as we’ve updated the cookbook we should also update our metadata to reflect the new version:

 metadata.rb:

 name 'chefazure-ch08'
 maintainer 'Stuart Preston'
 maintainer_email 'stuart@pendrica.com'
 license 'all_rights'
 description 'Installs/Configures chefazure-ch08'
 long_description 'Installs/Configures chefazure-ch08'
 version '0.1.4'

 depends 'jenkins'

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

213

 Pushing the changes to GitHub is as simple as adding the files, committing the change locally, and
pushing to master in your repo:

 PS C:\Users\StuartPreston\chefazure-ch08> git add .
 PS C:\Users\StuartPreston\chefazure-ch08> git commit -m 'adding dev server'

 [master d9bdba3] adding dev server
 1 file changed, 18 insertions(+)

 PS C:\Users\StuartPreston\chefazure-ch08> git push origin master

 Username for 'https://github.com': stuartpreston
 Password for 'https://stuartpreston@github.com':
 Counting objects: 6, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (5/5), done.
 Writing objects: 100% (6/6), 856 bytes | 0 bytes/s, done.
 Total 6 (delta 3), reused 0 (delta 0)
 To https://github.com/stuartpreston/chefazure-ch08.git
 31d3664..d9bdba3 master -> master

 After triggering another build via the Build Now button you should see lines similar to the following in
your Console Output log :

 [2016-01-16T22:56:55+00:00] INFO: chef-provisioning-azurerm 0.3.2
 [2016-01-16T22:56:55+00:00] INFO: chef-provisioning 1.5.1
 [2016-01-16T22:56:55+00:00] INFO: Processing azure_resource_group[chefazure-ch08-dev]
action create (chefazure-ch08::provision_dev line 4)
 [2016-01-16T22:56:56+00:00] INFO: Processing azure_resource_template[chefazure-ch08-dev]
action deploy (chefazure-ch08::provision_dev line 8)
 [2016-01-16T22:58:40+00:00] WARN: Skipping final node save because override_runlist was given
 [2016-01-16T22:58:40+00:00] INFO: Chef Run complete in 107.734846 seconds
 [2016-01-16T22:58:40+00:00] INFO: Skipping removal of unused files from the cache
 [2016-01-16T22:58:40+00:00] INFO: Running report handlers
 [2016-01-16T22:58:40+00:00] INFO: Report handlers complete
 [2016-01-16T22:58:40+00:00] INFO: Sending resource update report (run-id: 894abd54-bd28-
4836-bb19-b2961c6c9bc4)
 Finished: SUCCESS

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

214

 We can also look in Hosted Chef to verify that there is a new Node created for the Dev environment as
shown in Figure 8-25 .

 Figure 8-24. Azure Management Portal showing a Resource Group and Resources

 Verifying the Chef Provisioning run

 To verify that the Chef run was successful, other than monitoring the output of the Jenkins job, we can look
at the Azure management portal to verify the current provisioning state. We should see the Resource Group
and Resources that we specified in our recipe visible in the portal, as shown in Figure 8-24 .

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

215

 Now that we have a fully working end-to-end provisioning process that is driven from source control,
we can configure GitHub to send a notification to Jenkins on each build for a fully hands-off provisioning
solution.

 Triggering a Jenkins Build from GitHub
 We can use GitHub’s Webhook system to add a Webhook that notifies our Jenkins server whenever code is
pushed to GitHub. For this to happen, your Jenkins server must have an external (public) IP address like
the one described in this chapter. Otherwise, to receive events such as this, you will have to configure your
Jenkins server to poll GitHub.

 To configure GitHub to send notifications we need to visit our job definition in Jenkins again and
navigate to Build Triggers as follows:

 1. Trigger builds remotely should be ticked (selected).

 2. An authentication token needs to be specified. This can be any random
selection of characters. Don’t make the token the same as any of your passwords
- the default Jenkins configuration runs unencrypted on port 8080.

 Once configured, your Build Triggers definition should look similar to that in Figure 8-26 . Save the
definition.

 Figure 8-25. Chef Manage (Hosted Chef) showing a registered Node

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

216

 To configure the GitHub end of things, we need to navigate to the project Settings ➤ Webhooks &
Services and follow the steps below (these options are shown in Figure 8-27):

 1. Click ‘Add webhook’ then in the Payload URL, specify the URL in the format as
seen on the Jenkins Build Triggers page - http://<Jenkins Server>:8080/job/
<Job Name>/build?token=<token>

 a. Jenkins Server is the external fully qualified domain name of the Jenkins
server (e.g. chefazure-ch08-ci.westeurope.cloudapp.azure.com)

 b. Job Name is the project name within Jenkins (e.g. Provisioning)

 c. Token is the token assigned in the previous step (e.g., chefprovisioning2016)

 Example URL: http://chefazure-ch08-ci.westeurope.cloudapp.azure.com:
8080/job/Provisioning/build?token=chefprovisioning2016

 2. Ensure the Just the push event option is selected.

 3. Press Add Webhook.

 Figure 8-26. Configuring Build Triggers on the Provisioning job in Jenkins

http://chefazure-ch08-ci.westeurope.cloudapp.azure.com:8080/job/Provisioning/build?token=chefprovisioning2016
http://chefazure-ch08-ci.westeurope.cloudapp.azure.com:8080/job/Provisioning/build?token=chefprovisioning2016

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

217

 To test the trigger, we can simply browse directly to the URL in a browser and confirm that it triggers a
job within Jenkins.

 That’s it - we have now configured the Webhook, so let’s start making use of it by pushing two simple
changes through the system that exercise all the points of the system from trigger to provisioned resources.

 Adding and Destroying a Test Environment
 We’re going to create a provision_test recipe with an Azure Resource Group resource specified within it,
include it from the default recipe, push our changes, then show how resources are deleted. Let’s create
and update some files, starting with our default recipe that needs to be updated to add the provision_test
 recipe (additions shown in bold). Remember to leave a single blank line at the end of each file to avoid an
avoidable Rubocop failure!

 cookbooks/chefazure-ch08/recipes/default.rb

 include_recipe 'chefazure-ch08::provision_dev'
 include_recipe 'chefazure-ch08::provision_test'

 Figure 8-27. Github webhook configuration

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

218

 cookbooks/chefazure-ch08/recipes/provision_test.rb

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch08-test' do
 location 'West Europe'
 end

 Once those files are saved, we can commit the files and push the commit up to GitHub, in the same way
as we have done previously:

 PS C:\Users\StuartPreston\chefazure-ch08> git add .
 PS C:\Users\StuartPreston\chefazure-ch08> git commit -m 'adding test environment'

 [master d387a94] adding test environment
 2 files changed, 7 insertions(+)
 create mode 100644 cookbooks/chefazure-ch08/recipes/provision_test.rb

 C:\Users\StuartPreston\chefazure-ch08> git push origin master

 Username for 'https://github.com': stuartpreston
 Password for 'https://stuartpreston@github.com':
 Counting objects: 7, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (6/6), done.
 Writing objects: 100% (7/7), 747 bytes | 0 bytes/s, done.
 Total 7 (delta 3), reused 0 (delta 0)
 To https://github.com/stuartpreston/chefazure-ch08.git
 2e2f109..d387a94 master -> master

 If we look at the Jenkins server, it should now be executing a job, triggered from a GitHub Webhook. If
you look at the list of Resource Groups within the Azure Management Portal once the job has completed,
there should be a chefazure-ch08-test Resource Group created. If so, we have successfully configured
everything needed for a basic continuous provisioning pipeline.

 As our final piece of this chapter, let’s destroy the test environment we just created. Be careful not to
describe this as a rollback. It isn’t - all we are doing is specifying a new target state for our test environment
(destroy).

 To make the changes, we simply need to add a :destroy action to our Resource Group:

 cookbooks/chefazure-ch08/recipes/provision_test.rb

 require 'chef/provisioning/azurerm'
 with_driver 'AzureRM:b6e7eee9-YOUR-GUID-HERE-03ab624df016'

 azure_resource_group 'chefazure-ch08-test' do
 location 'West Europe'
 action :destroy
 end

CHAPTER 8 ■ PULLING IT ALL TOGETHER: CONTINUOUS PROVISIONING WITH CHEF AND AZURE

219

 We can push our change to GitHub again:

 PS C:\Users\StuartPreston\chefazure-ch08> git add .
 PS C:\Users\StuartPreston\chefazure-ch08> git commit -m 'destroying test environment'

 [master 63b30ab] destroying test environment
 1 file changed, 1 insertion(+)

 PS C:\Users\StuartPreston\chefazure-ch08> git push origin master

 Username for 'https://github.com': stuartpreston
 Password for 'https://stuartpreston@github.com':
 Counting objects: 6, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (5/5), done.
 Writing objects: 100% (6/6), 491 bytes | 0 bytes/s, done.
 Total 6 (delta 4), reused 0 (delta 0)
 To https://github.com/stuartpreston/chefazure-ch08.git
 d387a94..63b30ab master -> master

 After witnessing that a new job is created for this push, we should see the Azure Resource Group deleted
from our subscription.

 Summary
 By using a combination of Chef, Chef Provisioning, Azure, Chef VM Extensions, GitHub, and Jenkins we are
able to implement the beginnings of a sophisticated continuous provisioning pipeline. We understood the
following:

• How to provision, configure, and maintain a Jenkins server for continuous
provisioning using the Chef VM Extensions

• How to configure the Chef VM Extension for use with Chef Provisioning

• How to add quality gates such as Rubocop linting to the build pipeline

• How to use Berkshelf to manage dependencies for an application

• How to trigger a Jenkins job from GitHub for a completely hands-off solution driven
by changes to the Chef repository

 This is just a starting point of the journey with continuous provisioning and provides a framework on
which to add quality, configuration management, and release management to your project.

221© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3

 APPENDIX A

 Further Resources

 We have reached the last chapter in this book, and by now you should have a good idea at what is possible
when using the combination of Chef and Azure. This appendix includes some additional information and
resources that didn’t really fit anywhere else in the book.

 Chef Server on the Azure Marketplace
 For the demos and examples in this book we used the hosted Chef service at http://manage.chef.io
however what if you wanted to host your own Chef server in Azure that isn’t shared with anyone else and is
situated in your region? Well, the fastest way to achieve this is to use the images that have been uploaded to
the Azure Marketplace, as shown in Figure A-1 .

 Figure A-1. Chef Server images on the Azure Marketplace

http://manage.chef.io/

APPENDIX A ■ FURTHER RESOURCES

222

 The server is preconfigured with Chef server, the Chef management console, Chef reporting, and Chef
Analytics. This configuration is free from a Chef licensing perspective to use for deployments under 25
nodes. You will only be charged for the relevant compute, network, and storage usage costs.

 ■ Note Use of the Chef Server image is free from a Chef licensing perspective for up to 25 nodes, and there
are options to purchase 25–250 node licensed versions of Chef Server in the Azure Marketplace.

 Full installation instructions can be found online at https://docs.chef.io/azure_portal.html
#azure-marketplace where you will be guided through the installation and client set-up requirements.

 Azure Weekly Newsletter
 Keeping up to date with the latest developments in the Azure ecosystem has always been a challenge,
especially with the pace of releases from Microsoft and the various teams that work on the product.
Fortunately, help is at hand in the shape of a weekly newsletter (as shown in Figure A-2) curated by the
people at Endjin, a Microsoft Gold Partner based in the United Kingdom.

https://docs.chef.io/azure_portal.html#azure-marketplace
https://docs.chef.io/azure_portal.html#azure-marketplace

APPENDIX A ■ FURTHER RESOURCES

223

 You can register for the newsletter and view historic content by visiting http://azureweekly.info

 Microsoft Azure Cookbook
 You’ll have noticed that the topics in this book generally use Chef for provisioning resources in Azure rather
than the operational side of things (e.g., uploading a key to the Key Vault, or uploading content to a storage
account). The microsoft_ azure cookbook , available on the Chef Supermarket at https://supermarket.
chef.io/cookbooks/microsoft_azure (as shown in Figure A-3) aims to provide resources as well as
providers to manage these Azure components.

 Figure A-2. Azure Weekly Newsletter

http://azureweekly.info/
https://supermarket.chef.io/cookbooks/microsoft_azure
https://supermarket.chef.io/cookbooks/microsoft_azure

APPENDIX A ■ FURTHER RESOURCES

224

 If you need a useful way of moving content into Microsoft Azure blob storage, this is one way of
accomplishing that while staying in the Chef toolset.

 Conclusion
 If you are not already an active member of the Chef community, I would recommend you get involved.
There are Chef meetup groups all over the world as well as larger events such as “ChefConf” and Chef
Community Summits that are held in both the USA and Europe. Whether you are new to Chef or an expert
in your domain, sharing your experiences with other Chefs is one of the easiest and best ways to contribute.
You can also draw on the shared expertise of tens of thousands of Chefs all over the world to help you solve
your problems and offer advice. I look forward to seeing your contributions toward making the Chef and
Microsoft ecosystem an even better place!

 Figure A-3. Microsoft_Azure cookbook available on the Chef Supermarket

225© Stuart Preston 2016
S. Preston, Using Chef with Microsoft Azure, DOI 10.1007/978-1-4842-1476-3

 A
 Attribute precedence

 attribute fi les , 171
 environment attributes , 171
 roles , 171

 Automation , 2
 Azure cookbook , 223
 Azure ecosystem , 222
 Azure Marketplace , 221–222
 Azure Resource Manager (ARM) , 29–30, 56

 command line tools , 35
 Azure-cli forms , 36
 azure login command , 40
 Linux , 39
 Mac OS X , 38
 PowerShell forms , 36
 Windows , 36

 datacenter , 34
 deployment template

 blank template , 44
 output section , 52
 parameters , 49
 populated template , 45
 resources , 51
 variables , 51

 expressions and functions , 52
 Platform-as-a-Service (PaaS) , 29
 regions , 31, 33
 resource groups , 43
 subscriptions , 31
 tenants , 31–32

 Azure VM Extensions , 55
 Azure-cli , 57
 compatibility , 57
 components , 56
 confi guration options , 68
 management portal , 64

 Azure-cli , 65
 PowerShell , 66

 overview , 56
 PowerShell , 60
 privateSettings.confi g fi le

 JSON format , 62
 multiline strings , 62

 publicSettings.confi g fi le , 61
 remove command , 66

 Azure-cli , 67
 PowerShell , 67

 B
 Behavior-driven development (BDD) , 146

 C
 Chef architecture

 ChefDK (see Chef Development
Kit (ChefDK))

 client-supported platforms , 5
 cookbook , 3
 nodes , 4
 server-supported platforms , 6

 Chef Development Kit (ChefDK)
 Git installation , 14

 Linux , 18
 Mac OS X , 17
 RedHat/CentOS , 19
 Ubuntu/Debian , 18
 Windows , 14

 Linux , 11
 Mac OS X , 9
 chef -v command , 12

 Bash/Zsh initialization , 13
 Windows initialization , 13

 Windows , 7
 Chef environments

 cookbook_versions , 166
 default_attributes , 166
 _default environment , 168

 Index

■ INDEX

226

 existing list , 164
 fi le contents , 165
 nodes

 Chef management portal , 166–167
 client.rb , 166
 knife command , 166
 server environment, Knife , 167

 override_attributes , 166
 uploading , 166

 Chef recipes
 code editors , 19
 default recipe , 21
 repository , 20

 Confi guration management , 3
 Cookbook linting , 131

 FoodCritic , 140
 messages , 144
 options , 144

 RuboCop (see RuboCop)
 Cookbook testing

 acceptance testing , 145
 ChefSpec , 146

 code coverage mechanism , 153
 context block , 149
 default test , 148
 describe statement , 149
 execution test , 148
 let statement , 149
 test-fi rst development

process , 152
 unit testing , 146

 D
 _default environment , 163, 168

 E
 Environments

 add and destroy , 217–219
 attributes , 171
 cloud , 2–3
 _default environment , 163
 existing , 168
 knife command , 166–167
 PATH , 14
 role patterns , 168
 structure , 163

 F
 FoodCritic

 messages , 144
 options , 144
 rules , 141

 G
 Git repository , 199

 GitHub repo , 201
 .gitignore fi le , 200

 H
 Hosted Chef , 23

 I
 Idempotent , 2

 J
 Jenkins , 185

 add and destroy environment , 217
 Berkshelf , 187
 Build Now button , 207
 Chef dependencies , 197
 Chef Provisioning recipe

 authentication , 211
 berks update , 209
 berks upload , 209
 client.rb fi le , 208
 Console Output log , 213
 credentials fi le , 211
 Dev environment , 214
 Execute Shell format , 211
 install_jenkins recipe , 208
 metadata.rb , 208
 provision_dev recipe , 212
 verifi cation , 214

 confi guration , 190
 cookbook page , 186
 dashboard , 205
 dependencies tab , 186
 Execute Shell format , 206
 GitHub , 215
 installation , 194
 job creation , 203
 knife confi guration , 206
 page creation , 202
 plug-ins , 192
 recipe creation , 188
 role defi nitions , 189
 Rubocop command , 204
 security access , 195
 upload command , 189

 K
 KeyVault , 105

 active directory user , 108
 Azure-cli , 109
 PowerShell , 109

Chef environments (cont.)

■ INDEX

227

 ARM templates , 106
 provisioning recipe , 109

 L, M, N, O
 Linting , 131

 P, Q
 PaaS resource , 123

 ARM template , 128
 custom deployment , 129
 dummy creation

 analytics space , 124
 Data Factory blade , 126

 Resource Explorer tool , 127
 Provisioning , 2, 71

 authentication , 74, 81
 credentials fi le , 81
 environment variables , 81

 Chef-Repo , 82
 client node , 84
 confi guration , 75

 Azure-cli , 76
 PowerShell , 78

 destroy action , 97
 execution recipe , 85

 Azure-cli , 86
 management portal , 87
 PowerShell , 86

 installation , 72
 overview , 71
 remote desktop , 87

 Azure-cli , 92
 azuredeploy.json fi le , 88
 azure_resource_template

resource , 90
 management portal , 93
 parameters , 91
 PowerShell , 92

 resources
 create action , 83
 destroy action , 83

 system , 174
 VM extensions , 94

 R
 Release Management , 3
 Repository application

 Azure resource groups , 176
 CI server , 182
 initialization , 175

 RuboCop
 command , 204
 options , 139
 repository , 132

 all rules section , 139
 autocorrect , 134
 blanket exclusions , 137
 detect and correct violations , 133
 per-line exclusions , 137
 per section suppression , 138
 todo fi le , 135

 S
 Semantic Versioning , 171–172
 Snowfl ake server , 2
 Starter Kit , 28

 T, U
 Test Kitchen

 Azure Resource Manager , 154
 commands , 162
 converging , 158
 credentials fi le , 155
 destroy , 161
 driver , 156
 image_urn parameter , 157
 InSpec , 160
 instance creation , 157
 kitchen.yml fi le , 155
 platforms , 156
 provisioner , 156
 suites , 156
 workfl ow , 153

 V
 VM images

 Azure-cli , 103
 PowerShell , 104

 W, X, Y, Z
 WinRM endpoint

 provisioning server , 114
 self-signed certifi cate

 Mac OS X/Linux , 111
 Windows , 112

 upload certifi cate
 Mac OS X/Linux , 112
 Windows , 114

 verifi cation status , 121

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Configuration Management using Chef
	The Purpose and Principles of Automated Provisioning and Configuration Management
	Chef Architecture
	Chef Client and Chef Server-supported Platforms
	Getting Ready for Chef Development
	Installing the Chef Development Kit (ChefDK)
	Installing ChefDK on Windows
	Installing ChefDK on Mac OS X
	Installing ChefDK on Linux

	Verifying the ChefDK Installation
	Initializing the environment (Windows)
	Initializing the environment (Bash/Zsh)

	Installing Git
	Installing Git on Windows
	Git on Mac OS X
	Git on Linux
	Ubuntu/Debian
	RedHat/CentOS

	Developing Your First Recipe Using Chef
	Code Editors
	Initializing a Chef Repository
	Modifying and Running the Default Recipe

	Getting Started with Hosted Chef
	Summary

	Chapter 2: Microsoft Azure Terminology and Concepts
	Deploying to the Microsoft Azure Platform
	Subscriptions, Tenants, and Regions
	Subscriptions
	Tenants
	Regions
	Selecting Your Nearest Region

	Managing Azure from the Command Line
	Installing the Tools (Windows)
	Azure-cli
	PowerShell (PSGet)

	Installing the Tools (Mac OS X)
	Installing the Tools (Linux)
	Ubuntu/Debian
	RedHat /CentOS

	Logging In and Verifying Command-line Tools Connectivity
	Azure-cli
	PowerShell

	Azure Resource Groups
	Azure Resource Manager Templates
	Resource Manager Template Structure
	Example Resource Manager Template
	Parameters
	Variables
	Resources
	Outputs

	Expressions and Functions

	Summary

	Chapter 3: Chef Azure VM Extensions
	What Are Azure VM Extensions?
	Introducing Chef VM Extensions
	Chef Azure VM Extension Compatibility
	Listing the Available Chef VM Extension Versions from the VM �Extension Gallery
	Azure-cli
	PowerShell

	Adding a Chef VM Extension to an Existing Virtual Machine
	publicSettings.config
	privateSettings.config
	Converting a Multiline Key to a String Suitable for JSON
	Azure-cli
	PowerShell

	Validating a Chef VM Extension is successfully installed at the Command Line
	Azure Management Portal
	Azure-cli
	PowerShell

	Removing a Chef VM Extension from a Virtual Machine
	Azure-cli
	PowerShell

	Installing a Chef VM Extension at the Command Line Using Azure Resource Manager Template Language

	Summary

	Chapter 4: Using Chef Provisioning to Provision Machines
	About Chef Provisioning on Azure
	Installation and Configuration
	Installing the Chef Provisioning for Azure Resource Manager Ruby Gem
	Authenticating to Azure Resource Manager
	Configuring the Application and Service Principal
	Azure-cli
	PowerShell

	Configuring Chef Provisioning for Authentication
	Configuring the Credentials File
	Environment Variable-based Configuration

	Preparing the Chef-Repo

	Chef Provisioning Recipes
	Configuring the Provisioning Node as a Chef Client
	Executing the Provisioning Recipe
	Azure-cli
	PowerShell
	Management Portal

	Chef Provisioning a Windows VM with Remote Desktop Enabled
	Downloading the Template
	Azure-cli
	PowerShell
	Management Portal

	Chef Provisioning and the Chef VM Extensions
	Destroying Azure Resources

	Summary

	Chapter 5: Advanced Chef Provisioning Techniques
	Explaining VM Image Naming within Azure Resource Manager JSON
	Identifying and Retrieving VM Images
	Azure-cli
	PowerShell

	Using Azure Key Vault to Store Secrets
	Azure Key Vault ARM Template
	Retrieving the Object ID for an Azure Active Directory User
	Azure-cli
	PowerShell

	Azure Key Vault Provisioning Recipe

	Creating a Windows Server with WinRM Securely Enabled via Key Vault
	Creating a Self-signed Certificate
	Mac OS X/Linux (Azure-cli)
	Windows (PowerShell)

	Uploading the Certificate to Key Vault
	Mac OS X/Linux (Azure-cli)
	Windows (PowerShell)

	Provisioning a WinRM-Enabled Windows Server
	Verifying WinRM Status

	Creating Other PaaS Resources via Chef Provisioning and Resource Explorer
	Creating a Dummy Resource
	Viewing the Resource in Resource Explorer
	Extracting the Template
	Running a Custom Deployment

	Summary

	Chapter 6: Integrating Quality Tooling into the Chef Development Life Cycle
	Cookbook Linting
	Using RuboCop
	Running Rubocop against an Entire Repository
	Detecting and Correcting Rubocop Violations
	Rubocop Autocorrect
	Suppressing Rubocop Offenses
	Generating a todo file
	Adding Blanket Exclusions
	Adding Per-line Exclusions
	Suppressing Specific Rules Per Section
	Suppressing All Rules in a Section

	Rubocop Options

	Using FoodCritic
	FoodCritic Rules
	Suppressing FoodCritic Messages
	Suppressing FoodCritic Messages for an Entire cookbook

	Further FoodCritic Options

	Cookbook Testing
	Using ChefSpec
	Generating ChefSpec tests for Cookbooks
	Executing ChefSpec Tests
	Adding Code Coverage to Cookbook Tests

	Using Test Kitchen and InSpec with Azure Resource Manager
	Installing the Azure Resource Manager Driver for Test Kitchen
	Configuring the Credentials File
	Configuring Test Kitchen within a Chef Repo
	Creating an Instance - Kitchen Create
	Converging an Instance - Kitchen Converge
	Using InSpec and Kitchen Verify
	Destroying our Instance - Kitchen Destroy
	Other Test Kitchen Commands

	Summary

	Chapter 7: Chef Concepts in the Real World
	Avoid Using the _default Environment
	Use Chef Environments to Reflect Your Internal Release Processes
	Listing Existing Environments
	Creating New Environments
	Environment File Contents
	Uploading a New Environment File

	Changing the Environment for a Node
	Specifying the Environment for a Server in client.rb
	Specifying the Environment for a Server Using Knife
	Specifying the Environment for a Server Using the Chef Management Portal

	Searching for Servers in an Existing Environment

	Controlling Releases through Environments Using the Environment and Role Patterns
	Attribute Precedence
	Semantic Versioning Overview

	Summary

	Chapter 8: Pulling It All Together: Continuous Provisioning with Chef and Azure
	What are we Aiming for?
	Phase 1 - Initial Chef Repository Setup
	Initializing the Application Repository
	Add Chef Provisioning Recipes
	Provisioning the CI Server

	Phase 2 - Installing and Configuring Jenkins
	Using Berkshelf to Retrieve Public Cookbooks
	Creating a Recipe to Install Jenkins
	Uploading the Cookbook and Dependencies
	Preparing and Uploading Role Definitions
	Configuring the Jenkins Server
	Adding Plug-ins to Jenkins
	Verifying Jenkins Plug-in Installation
	Securing Access to Jenkins
	Adding Chef Dependencies to Jenkins

	Phase 3 - Setting Up a New Chef Repository in GitHub
	Configuring a .gitignore File to Exclude Sensitive Information
	Connecting a Local Git Repo to the Remote

	Phase 4 - Configuring the Jenkins Project
	Adding a New Project
	Adding Build Steps
	Execute Rubocop
	Upload the Cookbook to the Chef Server Using Knife
	Configuring Jenkins for Chef Provisioning
	Execute a Chef Provisioning Recipe
	Authenticating to Microsoft Azure from Jenkins
	Verifying the Chef Provisioning run

	Triggering a Jenkins Build from GitHub
	Adding and Destroying a Test Environment

	Summary

	Appendix A: Further Resources
	Chef Server on the Azure Marketplace
	Azure Weekly Newsletter
	Microsoft Azure Cookbook
	Conclusion

	Index

