
www.allitebooks.com

http://www.allitebooks.org

VSTO 3.0 for Office 2007
Programming

Get to grips with programming Office 2007 using
Visual Studio Tools for Office

Vivek Thangaswamy

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

VSTO 3.0 for Office 2007 Programming

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2009

Production Reference: 1040309

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-52-8

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Vivek Thangaswamy

Reviewers

Helmut Obertanner

Maarten van Stam

N Satheesh Kumar

Senior Acquisition Editor

Douglas Paterson

Development Editor

Dilip Venkatesh

Technical Editor

Rakesh Shejwal

Copy Editor

Sumathi Sridhar

Indexer

Monica Ajmera

Production Editorial
Manager

Abhijeet Deobhakta

Editorial Team Leader

Akshara Aware

Project Team Leader

Lata Basantani

Project Coordinator

Joel Goveya

Proofreader

Dirk Manuel

Production Coordinator

Shantanu Zagde

Cover Work

Shantanu Zagde

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vivek Thangaswamy is a software solutions developer and technical writer,
living and working in the enjoyable surroundings of Chennai city in India. Although
his range of technical competence stretches across various platforms and lines
of businesses, his specialization is in the area of Microsoft enterprise application
architectures and Microsoft server based product integration. Vivek is working
with Microsoft technologies such as .NET, SharePoint, BizTalk, VSTO, and MS
Performance Point Server for one of the world’s largest Software Services companies.
He holds several Microsoft certifications and Microsoft MVP awards. He holds a
bachelors degree in Information Technology, and is currently pursuing his Masters
in Business Administration (Finance). Vivek loves to spend time with his friends,
and writing poems in his mother tongue.

To my brother, Arun Thangaswamy, who shaped me for the future
and always brings out the best in me.

To my mother and father, who taught me to think, and gave me the
courage to dream bigger.

To all of my friends, who bring joy to my life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Helmut Obertanner was born in 1968 in Munich, Germany. After school, he
became an Electronic Engineer, and his first experience with building computers
came in 1985. On graduation, he started repairing Commodore Business Machines
(PET). Later on, he specialized in repairing the legendary C64, Amiga and Atari
consoles, and the very first PCs. From 1990 to 1995, he worked as a systems engineer,
building heterogeneous networks with Windows NT, Novell, and Apple. After
that, he was administrator for an architecture company, responsible for the entire
IT communications, CAD, and Office support. In 2000, he changed to being an
IT systems supplier, and worked as a technical consultant for Exchange Server,
Antivirus, Firewalls, and Backup/Restore solutions. In 2002, he started developing
Software, building Outlook add-ins with VB6. When the Microsoft .NET Framework
1.0 came out, he was one of the first to try and build managed add-ins for Office. Due
to his technical knowledge, sample codes, and help to other Office Developers he
was awarded the MVP for VSTO by Microsoft. He is always interested in working on
new technologies.

Currently, he is working for PHARMATECHNIK GmbH & Co. KG in Starnberg,
Germany, building software for pharmacies using .NET and C#.

Maarten van Stam holds a B.Sc in Computer science (Graduation in 1996, HIO, The
Hague, The Netherlands), and has worked as a software engineer for over 20 years.
He started programming dBase and Clipper (DOS) systems in the early 80's, followed
by Pascal and C++ in the late 80's, C++ and VB "for Windows" in the early 90's, and
continues to program in VB.NET and C# as part of the Microsoft's .NET Framework.

www.allitebooks.com

http://www.allitebooks.org

Maarten has specialized in Office development, .NET, and VSTO, and has received
the Microsoft MVP award in the area of Visual Developer-VSTO for voluntarily
sharing expertise with others. In addition to this role, Maarten takes part in several
TAP programs, beta tests, software design reviews and advisory councils for
software tools such as Visual Studio Team System and Microsoft Office. In addition
to working in the software business professionally, Maarten is also an organizational
member in the "Software Development Network", currently the largest developer
community group in the Netherlands (www.sdn.nl).

Besides tech-reading Beginning Office 2007 Development with VSTO, Maarten also
reviewed Visual Studio Tools for Office 2007: VSTO for Excel, Word, and Outlook by
Eric Carter and Eric Lippert (ISBN 0321533216).

Maarten's insights can be read and followed on www.maartenvanstam.nl, where
you can find his blog all aspects of software development.

N Satheesh Kumar has a Bachelor's Degree in Computer Science Engineering and
has around 12 years of experience in software development life cycle, project and
program management. He is also a PMI-certified Project Management Professional
(PMP). He started his career developing software applications using Borland
software products in a company based in India, and then moved to the United
Arab Emirates and continued developing applications using Borland Delphi
and customizing Great Plain Dynamics (now known as Microsoft Dynamics) for
an automobile company. Later, he spent three years designing and developing
application software using Microsoft products for a top multinational company,
and then spent a couple of years in project management and program management
activities. Currently, he works as a technical architect for a top retail company
based in the United States. He works with the latest Microsoft technologies and
has published many articles on LINQ and other features of .NET.

Satheesh is the author of the book LINQ Quickly, and has co-authored the book
Software Testing with Visual Studio Team System 2008.

I would like to thank my family members and friends for their
continued support in my career and success.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Visual Studio Tools for Office (VSTO) 5

What is Microsoft VSTO? 6
Why VSTO 3.0? 8

Safer managed code extensions 8
Data caching 9
Feature customization 9
User Interface customization 9
Smart tags 10
WPF support 10
Visual designers 10
Security improvements 11
Maintainability 12

What's new in VSTO 3.0? 12
VSTO architecture 14

Development approaches 15
Document-oriented approach 15
Application-oriented approach 16

VSTO development and deployment 16
Creating Office applications through VSTO 16

VSTO development environment 18
Package 18

Visual Studio integration 19
Creating VSTO solutions 20
Viewing IDE Windows 23
Debugging 25

What can we expect in the next version? 26
Summary 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Microsoft Office InfoPath Programming 27
Microsoft Office InfoPath 28
InfoPath 2007 in Visual Studio 28
Visual Studio 2008 InfoPath solution overview 29

The VSTO problem when installing Office InfoPath 2007 31
Creating our first example 32
Available customization features 34
Object model in InfoPath solution 35

Understanding the Microsoft Office InfoPath object model 36
Understanding the InfoPath object model functional area 37

Using events in InfoPath 40
Form-level events 41
Xml events 53
Control events 55

Writing event validation for an expense report form 56
Manipulating a data source 61

Fetch node value from main data source 61
Assigning a value to a node in the main data source 62
Adding or creating a new node in the main data source 63
Deleting or removing nodes from the main data source 64
Populating Microsoft Office InfoPath with Microsoft SQL Server 2008 65

Working with Custom Task Panes 67
Managed code 67
Custom Task Pane 67
Creating an InfoPath Task Pane 68
Creating an InfoPath add-in project using Visual Studio 2008 71

InfoPath and SharePoint workflow 76
Summary 77

Chapter 3: Microsoft Office Word Programming 79
Microsoft Office Word 2007 solutions 80

Application-level solutions versus document-level solutions 81
Creating document-level solutions 81
Publishing solution deployment 84

Working with objects and documents 86
Working with key objects 88

Inserting text in Word 2007 document 88
Selecting text in a Word 2007 document 89
Creating a table in a Word 2007 document 90
Working with Word templates 92

Actions Pane: Document-level customization 93
Creating a Custom Actions Pane for Microsoft Office Word 2007 93

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Managing the Actions Pane 94
Designing the Actions Pane 96

Application-level solutions 97
Task Pane: Application-level customization 98
What is the Task Pane? 98
Custom Task Pane 102

Creating a Custom Task Pane for Microsoft Office Word 2007 102
Programming in Word 104

Word host items 104
Word host controls 105
Adding controls to a document 106

Adding an ActiveX control to Microsoft Office Word 2007 programmatically 107
Data binding to host controls 110

What is LINQ? 117
Using LINQ in Word 2007 with VSTO 3.0 and Visual Studio 2008 117

Customization 118
Ribbon menu 119
Adding controls to menus 120
Toolbar (Quick Access Toolbar) 125

Adding controls to toolbars 125
Summary 127

Chapter 4: Microsoft Office Excel Programming 129
Programming in Excel 130

Hello World example using Visual Studio 2008 131
Manipulation 134

Data manipulation 135
Reading worksheet cells 135
Opening a text file as a workbook using VSTO 136
Connecting with Microsoft SQL Server 2008 database 137

Worksheet manipulation 139
Working with ranges 141

Cells 142
Unions 143
Named ranges 144

Excel host items 145
The workbook host item 146
The worksheet host item 148
The ChartSheet host item 149

Excel host controls 151
Chart control 152
The ListObject control 153
The NamedRange control 154

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

The XMLMappedRange control 155
The SelectionChange event 155

Creating Excel smart tags with VSTO 156
Excel formulae 158
Regular expressions 160
Excel data protection 162

Workbook protection 162
Worksheet protection 164

Summary 164
Chapter 5: Microsoft Office Outlook Programming 165

Microsoft Office Outlook object model overview 166
Customization using VSTO 169

Menus in Outlook 170
Outlook form regions support 175
Manipulation 181

Contacts 184
Email messages 188

Working with Appointments 193
Working with meetings 195
Creating a Ribbon menu for Outlook 2007 197
Summary 203

Chapter 6: Microsoft Office PowerPoint, Visio,
and Project Programming 205

Programming PowerPoint 2007 206
PowerPoint 2007 object model 208
Creating a presentation at runtime 209

Dynamically add a slide and set title text in the presentation 210
Set the presentation theme 212

Ribbons in PowerPoint 213
Ribbon Visual Designer 213
Creating a Ribbon 214

Programming Visio 2007 219
Visio 2007 object model 221
Dynamically creating a new Visio document 222

Adding shapes to a document at runtime 223
Adding a page as a background for another page 225

Set the document theme 228
Creating a Commandbar 229

Table of Contents

[v]

Programming Project 2007 231
Creating a Project and adding a task dynamically 233
Creating menus for Microsoft Project 235
Creating a Commandbar for Microsoft Project 236

Summary 238
Index 239

Preface
Welcome to VSTO 3.0 for Office 2007 Programming. This book covers Visual Studio
Tools for Office programming, with a primary emphasis on the several new VSTO
programming features available for Microsoft Office 2007. VSTO is a phenomenon
that means different things to different people. This book introduces developers
to VSTO as a platform for developing enterprise solutions based on Microsoft
Office application.

This book covers Microsoft VSTO objects for Microsoft Office applications such as
Word, Excel, PowerPoint, Visio, Outlook, and Project, which can be a significant
challenge for the typical VBA developer—one set of target readers for this book.
This book is focused more on the features of VSTO and how to work with the
heavily-built Office object models. Although you might not be familiar with .NET
programming, this book will help you to adapt easily to the new VSTO with .NET
programming environment.

VSTO brings the Office applications to the .NET programming world. With VSTO
3.0, you can create add-ins for the six Microsoft Office applications, customize the
Ribbon feature of the Microsoft Office 2007 suite, and create application-level custom
task panes. This book strives to follow the same model. It explains VSTO’s concepts
and basic programming in a way that helps beginners to get started and helps
advanced users to get better. In addition to this, the book includes chapters for all
of the Office applications, which describe how the programming and customization
works, what its requirements are, and how it will simplify typical tasks.

What this book covers
Chapter 1 provides a panoramic overview of Visual Studio Tools for Office. This
chapter provides you with a firm grounding in what VSTO really is. We look at
how VSTO addresses the Microsoft Office 2007 customization area, its feature set,
and its architecture.

Chapter Title

[2]

Chapter 2 starts by explaining the object model and programming approach in
InfoPath 2007. We then take a look at how we can customize InfoPath with Visual
Studio 2008. The later part of the chapter explains how to work on task pane creation,
development of add-ins, and so on.

Chapter 3 begins with a description of creating a Word solution using Visual Studio
2008, and as we move further, the chapter explains how to create document-level
solutions and application-level solutions. It then explains the deployment process.
It also covers key Word objects, with examples of how to work with SQL data
manipulation, and so on.

Chapter 4 takes a look at working with Excel objects, and covers key objects with
example solutions. It focuses on explaining host items and host controls and
provides examples of some common solutions. It also gives you an idea of
worksheet protection, smart tags, charts, and so on, with the help of examples.

Chapter 5 starts the chapter with an overview of Outlook objects and moves on to
Outlook folder manipulation, mail item processing and working with meetings and
appointments. In the later part of the chapter, we work with Ribbon customization
for Outlook, with examples and many such customizations for Outlook.

Chapter 6 covers three Office applications: PowerPoint, Visio, and Project. Here, we
work with shapes in Visio, Ribbon customization for PowerPoint, and dynamic
project item manipulation, and so on.

Who this book is for
This book is aimed at .NET developers who are familiar with C# and who want to
get to grips with programming Office 2007. The book will also be useful for people
who already have experience with VBA and programming Office, but are ready to
take the next step into the more powerful world of Office programming with VSTO.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Zack used the AfterNewPresentation
event and developed a solution for it".

Chapter No.

[3]

A block of code will be set as follows:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Creating PowerPoint presentation with single slide in it
 // Using the PowerPoint object instance adding the
 // Slide with text title structure to the current Presentation
 PowerPoint.Presentation PacktPresentation = this.Application.
 Presentations.Add(Microsoft.Office.Core.MsoTriState.
 msoTriStateMixed);
 }

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"As it can be seen in the following screenshot, Say Hello World is displayed in a
message box:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
making sure that you mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note via the SUGGEST A TITLE form on www.packtpub.com, or send an
email to suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7528_Code.zip to directly
download the example code.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide the
location address or website name immediately, so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of this book, and we will do our best to address it.

Visual Studio Tools for
Office (VSTO)

VSTO is a framework for the development of solutions for Microsoft Office tools.
By using VSTO and what is known as managed code, developers can build Office
solutions. Before we begin the chapter, let us see an overview of what we are going
to cover in this chapter. This book is for Office Developers using Visual Studio Tools
for Office. This chapter will make you comfortable with Visual Studio Tools for
Office 3.0. We will be covering:

What is Microsoft VSTO?
Why do we need VSTO 3.0?
New features added in VSTO 3.0 as compared with the older version
The architecture of VSTO and the tools' approaches
Infrastructural setup—system requirements, installation, and so on
How VSTO is integrated with Visual Studio 2008, and its integrated design
and debugging features
New features in the next version of VSTO, and how VSTO can be
further improved

VSTO helps you to build document-level solutions, where a solution is specific
to the document for which it is deployed. You can build application-level
solutions by using the application-level add-in for your solution development.
The application-level add-in is accessible to all of the documents processed
through that particular application.

•

•

•

•

•

•

•

Visual Studio Tools for Office (VSTO)

[6]

What is Microsoft VSTO?
VSTO is a platform for Microsoft Office solution development, built on top of .NET
framework. The latest release is version 3.0. Starting with VSTO 3.0, developers have
integrated Office clients into the Visual Studio designer and the .NET layers on top of
the native object models.

Visual Studio 2008

VSTO 3.0

.NET Framework

The image above represents how VSTO has been integrated with the Visual Studio
2008 environment. Now, the term "Office solutions" appears a lot. You may have
questions like—"What exactly, is an Office solution anyway? What kind of Office
solutions can be developed using VSTO?". Let's answer these questions.

An Office solution is a solution developed for Microsoft Office applications,
including Word, Excel, InfoPath, Access, or PowerPoint. With the help of VSTO,
developers can build Office solutions using what is known as managed code.

Managed code is program code that executes under the supervision of a .NET
Framework Common Language Runtime. Programs in any programming language
can be compiled using either managed or unmanaged code. Code that is built
on the .NET framework is meant to be managed code. Managed code brings
easy deployment to your VSTO solution, as compared to VBA (Visual Basic for
Applications). VBA is a programming combination of Visual Basic associated with
an integrated development environment for Microsoft Office applications.

Unlike VSTO, VBA doesn't support programming languages. VSTO gives you
the full support of a programming language to build Microsoft Office solutions.
VSTO helps you to build a secure and safe solution for your Office application. All of
the VBA scripts will be stored inside the document for which you are programming,
while VSTO brings you the new concept called document-level solutions and
application-level solutions.

Chapter 1

[7]

Using VSTO, Office developers can build solutions such as Add-Ins; Add-Ins are
additional program components that can be added to Office applications by using
VSTO. For example, Microsoft offers a few free add-ins for Office 2007 licensed
users, such as the 2007 Microsoft Office add-in Microsoft Save as PDF or XPS—this
add-in facilitates the saving of a document in PDF or XPS format. You can also
customize existing Office application features, and you can program against existing
options available in the Office application. Let's say you need to save or export all of
the content from Microsoft Office Word 2007 to Microsoft Office Excel 2007 on the
click event of a button placed on the toolbar, or during some action.You can create an
add-in for this kind of activity using VSTO. This is one scenario where you can use a
VSTO add-in for your Office solution development.

Before VSTO, Office developers had to use VBA, VB6, or C++ to create so called
shared COM Add-Ins. All Add-Ins share the same address space, and if one fails,
the host application or all other Add-Ins crash. Unlike VSTO, VBA code is written
directly in the Office application's IDE and is compiled at run-time. All VBA scripts
are stored inside the document for which you were programming. In VSTO, this is
termed a document-level solution, where the solution is specific to the document
for which it is deployed. Similarly, in VSTO, document level add-ins are delivered
within a specific document. For example, let's say that you include functions in a
specific Microsoft Office Word document—the functions are available only when
you open that particular Word document. Document level add-ins are relevant only
to Word and Excel. Document-level customizations are the VSTO version of VBA
macros in Word or Excel.

VSTO introduces a new concept called application-level solutions. With an
application-level solution, the solution is accessible for all documents processed
through that particular application. You can build application-level solutions by
using the application-level add-in for your solution development.

VSTO gives you two fully-supported programming languages in which to build
Microsoft Office solutions that will run in all Microsoft Office applications—C#,
VB.NET, or XML. As a VSTO programmer, you will need to have a basic knowledge
of C# to program Office applications using C#. In this book, we will assume that you
have a basic knowledge of C# concepts such as classes, namespaces, and methods. In
addition, you should know the basics of XML.

The following MSDN reference link will help you learn about .NET
and C#: http://msdn.microsoft.com/en-us/vcsharp/
aa336804.aspx

Visual Studio Tools for Office (VSTO)

[8]

In most of the Office 2007 applications, Microsoft has used XML (Extensible Markup
Language) as the standard format for data and UI processing. For example, InfoPath
forms save data in XML format. C# brings you great programming support for
XML and Office applications. Office already has built-in support for an XML-based
customization model, of which VSTO takes full advantage. Using C# classes and
simple XML, VSTO simplifies the connection between .NET, and the server and
Office systems.

VSTO leverages two powerful technologies that you may be familiar
with—C# and XML. C# is one of the most powerful programming
languages supported by Microsoft .NET frameworks.
VSTO gives full flexibility to programs using C# and VB.NET programming
language for Office 2007 applications.
You, as a VSTO programmer, need to have a basic knowledge of C#, in order
to program Office applications using C#.

So, for instance, instead of having a Word macro that you need to run in order to
create the document you want, you could simply transfer the information to a
Word template and have Office create the document for you! VSTO thus provides
data-caching capabilities.

Why VSTO 3.0?
VSTO is a simple, but powerful framework for Office solution development.
The framework brings an amazing number of benefits to the hands of every
Office developer—form controls, classes, granular security, server scalability,
object-oriented features, integrity, easy deployment, and many others.

Safer managed code extensions
VSTO allows managed and unmanaged code to be seamlessly put together into the
same .NET assembly. This allows the developers to retain unmanaged code that
cannot be ported over to the .NET framework without completely re-writing it. The
Microsoft Office document or workbook with a linked or referenced managed code
assembly is said to have managed code extensions. Managed extensions can be
created by using VSTO on Microsoft Excel or Word, which are similar to macros but
are much safer. With VSTO, you can create a template that only needs to be loaded
with data.

•

•

•

Chapter 1

[9]

Data caching
Data caching, simply put, is storing data in memory for quick access. A Microsoft
Office Word document or Excel workbook has a hidden control rooted inside it
called the Runtime Storage Control, which stores cached data. VSTO provides
data-caching capabilities as well as a ServerDocument class in C# that can be used
by an application external to Office (for example, the Winform application) to
manipulate the data cache without accessing the object model of Word or Excel.

Feature customization
VSTO 3.0 gives you great control in being able to customize Office applications
with reusable classes. Unlike VBA developers, VSTO developers are not limited
to the VBA function library. VSTO provides a wide variety of classes, objects, and
events to build business solutions for Microsoft Office. Using VSTO, developers can
customize features for Office applications. These can be as simple as a button on the
application's Command bar or adding custom task panes, or as complex as a data
report template with access to different data sources.

User Interface customization
VSTO provides Windows Forms controls that help you to develop a rich User
Interface (UI) for your Office solution. By using a wide variety of control sets,
VSTO developers can build rich data views for users. Each and every type of
Windows Forms control has its own set of properties, methods, and events that
make it suitable for different needs.

VSTO makes it easy to build rich User Interfaces by using controls inside the
document and the Task Pane. For instance, you can create an animated one-button
command to generate a form letter. For example, say a company has data content
stored in its server, and a user wants to refer some content from the server while
working in the document and without disturbing the current document view.
Using VSTO, you can make the server content available inside the Task Pane of
the document without interfering with the user's current work.

Visual Studio Tools for Office (VSTO)

[10]

Smart tags
New for VSTO 3.0 and Office 2007, smart tags are strings that an Office application
recognizes in a document. With Smart tags enabled, Microsoft Office Word attempts
to recognize certain types of data in a document, visually indicated by a purple,
dotted underline. Clicking on a smart tag brings up a list of possible actions for that
particular data type. VSTO provides object models to Office developers, which can
be used to create smart tags for documents and workbooks.

WPF support
Windows Presentation Foundation (WPF) controls is a technology product of
Microsoft Corporation. WPF can be used to build a rich and attractive look and feel
for the user. WPF can be used in VSTO development environment, which supports
C# programming, whereas VBA lacks this support. VSTO's visual designer supports
the use of Windows Forms and Windows Presentation Foundation controls. WPF
provides a reliable programming model for building client-based and web-based
applications, and presents a clear separation between the business logic and the UI.

Visual designers
VSTO provides visual designers for Office applications such as Word 2007, Excel
2007, and others that appear inside the Visual Studio IDE (Integrated Development
Environment). Creating a form in the Visual Studio IDE is as easy as dragging and
dropping the form into the Microsoft Office document. Developers gain access to
many tools and features in Visual Studio's IDE, such as IntelliSense (Microsoft's
implementation of auto completion in the Visual Studio IDE), drag and drop
controls, and data sources. VSTO also provides the Ribbon Visual Designer that
lets you customize the Office Ribbon and program it by using a simple .NET
application-like programming model. The following image explains how
IntelliSense helps developers using Visual Studio IDE.

Chapter 1

[11]

Security improvements
The VSTO security model involves wide support from Trust Center in Microsoft
Office and the Visual Studio Tools for Office runtime, which helps resolve the
security issues common to VBA code. There are many disadvantages to the VBA
security model. An abundant number of viruses are easily developed using VBA
macros. To run VBA macros safely, you have to set the security to high on the user
machine, and digitally sign the code. More importantly, these operations need to be
performed manually by the user. In VSTO 3.0, the Security Model has been changed.
VSTO builds the security policy that is required to run and debug your solution on
your computer every time that you build a project. The Assemblies are signed before
publishing—this is done by Visual Studio 2008. Preferably, you obtain a certificate
from a globally-acknowledged Certificate Authority or from an internal Certificate
Authority, if the solution is only for an internal solution, and sign the manifests
using the signing properties page in Visual Studio. Later, you publish the solution
to its appropriate location.

Visual Studio Tools for Office (VSTO)

[12]

Maintainability
VSTO solutions developed for an Office system are easier to maintain. Updating the
deployed solutions, changing the code, and updating a single assembly will help
more resources doing the same thing in multiple copies of the same documents. All
of the code will reside inside the assembly—a partially-compiled code library that
contains the logical unit of code inside it as a single dynamic link library (.dll) file.
With macros, the script resided inside the Office documents. Whenever you wanted
to update the code, you had to modify every single document that contained it. With
VSTO 3.0, managing application-level add-ins can be done by simply changing the
code and updating the single assembly, instead of doing the same thing for multiple
copies of the same document.

What's new in VSTO 3.0?
VSTO 3.0 is loaded with a wide variety of new features, and reloaded with
enhancements of some of the key existing features. VSTO 3.0's new features target
Microsoft Office 2007 (Office 12) tools with new functionalities and enhanced existing
features. Let's list some of the key new features that are available in VSTO 3.0 that
improve Office solution development work:

Document-level customizations: Document-level customizations are
customized solutions that reside in a single document. Document-level
customization using VSTO is one of the key features added in this new
version of VSTO. VSTO supports document-level solutions for Microsoft
Office Word, Microsoft Office Excel, and Microsoft Office InfoPath.
Application level add-ins: Application level add-ins are created as a
managed code assembly using VSTO that will be loaded when the relevant
Microsoft Office application is launched. VSTO 3.0 provides access to .NET
objects and controls that you can program directly.
Visual Designers for Ribbons: Ribbons are the new way of organizing
related commands. Visually, they appear as controls. Visual Designer
provides advanced tools and supports developers in creating and designing
custom Ribbons more easily.
Task Panes: The Task Pane helps users to access information quickly
and more conveniently. Task Panes can be shown or hidden in the Office
application user interface depending on the user's preference.

•

•

•

•

Chapter 1

[13]

Form regions: Form regions are new ways to customize the user interface of
the standard Microsoft Office Outlook 2007. For instance, VSTO 3.0 provides
a Windows Forms-based design and development environment, in Visual
Studio 2008. This allows Office developers to design and code the new
Outlook form regions in single development environment and brings
most of the Windows Forms to the hosting environment of Outlook.
Workflow support: VSTO provides visual designer support for developers to
create Workflows using Visual Studio 2008. A Wizard option is used to create
Workflows and directly assign these to the deployment location.
SharePoint support: New objects in VSTO help developers to program
in Office applications for SharePoint. You can extend your Office client
applications using VSTO and integrate them with a SharePoint Portal into
an enterprise solution such as Customer Relationship Management, Supply
Chain Management, and other similar applications.
Deployment using ClickOnce: New for VSTO 3, ClickOnce deployment
technology allows Windows-based applications to be deployed and run with
minimal user interaction. The security zone will limit the permissions and
actions for applications that are deployed using ClickOnce technology.
Word content controls: Content controls are containers within which specific
types of content, such as dates, lists, pictures, or text, can be placed.
Rich user interface controls: Office solutions can be built with rich and
easy-to-access user interfaces. For instance, you can create an actions pane
with windows controls, which has data interaction with other data sources
in the actions pane.
Support for other Office applications: There is even a complex object
model for Visio, which is somewhat different from the other Office
applications, and can be challenging to understand. In Visio, each shape is
represented as an object that you drag-and-drop onto the page from stencils.
Understanding and manipulating these objects is the key to creating Visio
applications solution.

Stencils are collections of Visio shapes that you can add to your drawings,
and that are contained in a Visio file.

•

•

•

•

•

•

•

Visual Studio Tools for Office (VSTO)

[14]

VSTO architecture
Architecture is the essential association of a system that comes to life in its
components, their associations to each other and to the environment, and the main
beliefs guiding its design, and evolution. VSTO applications are composed of Office
applications and .NET assemblies.

Office applications: VSTO exposes objects that make it easier to program
Office applications. These include objects that enhance the application and
process the data that the application uses. One of the most important points
to understand is that the Word and Excel editors provide a view of a Word or
Excel document. Using these editors, you can edit and format the document
as though you were working directly in an Office application.
.NET assemblies: These contain Intermediate Language (IL) code. Metadata,
which is binary information describing your program, is stored in memory
and is part of a .NET assembly. In addition to metadata information,
assemblies also have a special file called a Manifest. The Manifest contains
information about the current version of the assembly.

The core components of VSTO Architecture are document-level customizations,
application-level add-ins, and a Data Model at the document level. The new
architecture of VSTO allows Office applications to be written and run with
macros embedded inside the application.

Development Tools

Visual Studio 2008
visual Studio Tools for Office 3.0

Custom Task Panes, Ribbon Customization, Outlook
Form Region, Add-Ins, Word Content Controls

2007 Office System Client Applications

Word
Excel
PowerPoint

InfoPath
OutLook
Visio

Project
Access
Open XML

Object Model XML - UI Customization

•

•

Chapter 1

[15]

The preceding image represents the Microsoft Office 2007 Solution Logical
Architecture. VSTO enables Office developers to build document-level
customizations for InfoPath, Word, and Excel documents, whereas for Outlook,
PowerPoint, and Visio, there are no document-level customization features
supported by VSTO.

VSTO provides very good support for object-oriented programming, a feature
lacking in VBA scripting. VSTO provides full support for the C# programming
language, allowing the implementation of object-oriented programming in Office
solutions. Object-oriented programming is a kind of programming that relates
coding blocks to objects. In other words, object-oriented programming is a software
programming approach in which the structures of a program are based on objects'
interaction with other objects, in order to perform or execute tasks.VSTO has several
objects to work with in order to create applications using VSTO 3.0.

The architectural design of VSTO helps the Office developer in programming
separately for application and data. The VSTO architecture design provides
enhanced support for developing application-level solutions, and it exposes
various objects that will make it easier for Office developers to program for Office
applications. The most important point that you have to understand is that Word
and Excel are the editors for the data they represent. Using these editors, you can
edit and format the visually-displayed data. VSTO exposes a wide range of objects
for enhancing the application and for processing the data inside the application
for all of the Office applications that support it. Developing application level and
document-level solutions is another architectural advancement in VSTO.

Development approaches
The types of solutions that we can create by using VSTO 3.0 fall into two
categories, which we will use throughout this book—document-level solutions,
and application-level solutions. Let's discuss each briefly.

Document-oriented approach
The document-oriented approach is designed specifically to get to the
core of a Word or Excel document and include information that the document
wasn't originally designed to support. VSTO 3.0 supports the creation of
document-oriented approaches for InfoPath, Word, and Excel. Essentially,
document-oriented approaches provide a document pointing to very specific
tasks. An example of a document-oriented approach would be where uniform
template kind of documents are managed inside a team or company without
affecting the application of the document that they reside in.

Visual Studio Tools for Office (VSTO)

[16]

A point to note is that the document-oriented approach will apply to most, but not
all, Office 2007 applications.

Application-oriented approach
VSTO 3.0 is capable of creating application-oriented approaches for all of the
applications in the Office 2007 suite. You can create and implement add-ins that
add a wide range of functionalities and features to your Office application. The
application-oriented approach replaces VBA, and adds new features such as
add-ins for 2007 Microsoft Office applications that support enterprise solution
development using VSTO. Furthermore, the approach supports the six applications
in the 2007 Microsoft Office system, along with the tools and enhanced application
programming interfaces (APIs) for customizing the Ribbon UI and creating custom
task panes and add-ins. An API is a set of declarations of the functions or procedures
provided in order to support requests made by computer programs.

VSTO development and deployment
The VSTO system 3.0 Runtime, which is the primary requirement to run the Office
2007 solutions, is built on VSTO. More importantly, the VSTO 3.0 is built into the
Visual Studio 2008 installer. Service pack 1 for Visual Studio 2008 is available for
users, which will improve the Visual Studio performance, and fix unknown bugs.
The following VSTO related bug that used to load VSTO-derived Outlook Addins,
was also fixed in Service Pack 1—AddinLoader.DLL, is not signed. This DLL
MUST be signed so as to enable Outlook to load any add-in developed under
VSTO 2005, when user sets Macro security to High, and Trust installed addins...
is NOT selected.

Creating Office applications through
VSTO
VSTO is included in the Visual Studio 2008 release, which is a set of related libraries
and designers for developing applications, along with add-ins for Microsoft Office
2003 and 2007. Microsoft has bundled VSTO 3.0 with Visual Studio 2008 for the
first time, which also represents a considerable step forward in the development
environment. Previously, developers had to install Visual Studio and VSTO
separately in order to build a development environment. Also, it was necessary
to perform manual configuration in order to enable debugging for Office solutions.

Chapter 1

[17]

Microsoft Office remains the best Office application when it comes to automating
processes, as well as for using different types of data sources for presenting data
to the user. In VSTO 3.0, Microsoft Office tools have become more powerful for
presenting data from business applications because Microsoft has made the Office
development environment more developer-friendly by creating a new development
environment that helps developers to build solutions that function inside Office
applications. Thus, Microsoft Office developers are able to easily create solutions that
can do more for their business, while reducing costs by reusing existing functionality
available in the Office applications.

VSTO can even integrate with your existing ERP system, and increase your
enterprise's growth. One leading logistics company has integrated its existing
enterprise application with Microsoft Office application using Visual Studio
Tools for Office. You can extend your Office client applications by using VSTO
and integrate VSTO with the SharePoint Portal to provide enterprise solutions such
as Office Business Applications, including Customer Relationship Management,
Supply Chain Management, and many others.

Application
Level

Add-Ins

Custom
Task
Pane

Fluent UI Open XML

Word 2007

Excel 2007

PowerPoint 2007

OutLook 2007

InfoPath 2007

Project 2007

Visio 2007

Access 2007

Visual Studio 2008
and

VSTO 3.0

www.allitebooks.com

http://www.allitebooks.org

Visual Studio Tools for Office (VSTO)

[18]

The preceding image represents Office 2007 and its extensibility using VSTO 3.0.
All of the extensible features of VSTO 3.0 are not common to all of the Office 2007
applications. For example, application-level add-ins are not supported by Access
2007, and custom task panes are not supported by Visio 2007. VSTO documents
contain a deployment manifest. The deployment manifest is an XML file that
contains a description of the ClickOnce deployment, including the identification
of and other information about the current ClickOnce application version that is to
be deployed. The location of the VSTO document assembly will be available inside
the document's deployment manifest. You can programmatically manipulate the
deployment manifest of a document.

VSTO development environment
VSTO 3.0 is not a separate installation package for Visual Studio 2008. VSTO 3.0
reduces the development installation effort for Office developers. While installing
Visual Studio 2008, VSTO 3.0 is installed along with the other frameworks and
needed components.

You must install the Microsoft .NET Framework 3.5 redistributable
package before installing the VSTO 3.0 Runtime. Developing and running
Office customizations built with VSTO 3.0 requires the latest version of
Microsoft Office 2007.

Package
The VSTO Runtime is installed when installing the Microsoft VSTO 3.0
redistributable package, which is essential for developing and deploying Office
solutions using VSTO 3.0. A VSTO 3.0 redistributable package is the framework that
brings the power and productivity of Visual Studio 2008 and the .NET framework to
business solutions built on the Microsoft Office 2007 application.

Chapter 1

[19]

VSTO 1.0 VSTO 2.0 VSTO 3.0

also known as VSTO 2003 also known as VSTO 2005 SE also known as VSTO 2008

 Full programming support for
Office 2000 and Office XP.

 Full programming support for
Office 2003 and few limitations
for Office 2007.

 Debugging is supported for
VSTO development in Visual
Studio, but developer has to
configure manually.

 Started supporting Open XML.

 Full programming support for
Office 2007.

 Enhanced debugging support.
Automatically configured during
installation.

 Visual designer for Ribbon
development.

 Wide range of new objects for
Office application customization.

 Enhanced security concepts.

The preceding image explains the version history of VSTO, highlighting some of the
key differences between the versions. The current release of VSTO supports only
the programming languages VB.NET and C#. We can expect other programming
languages support in the next version of VSTO.

Visual Studio integration
VSTO 3.0 provides a visual representation of Office applications inside the
Visual Studio, in order to easily create a customized user interface. VSTO 3.0 is
well integrated with Visual Studio 2008, which provides the integrity for Office
developers to develop and deploy Microsoft Office solutions for Microsoft Office
tools. Visual Studio 2008 enables developers to build scalable Office business
applications, influence key Office UI features, support workflow, and create easier
deployments. Office development is a part of Visual Studio 2008 Professional
and later versions, which focuses mainly on the developers' compatibility and
maintainability assurances.

Visual Studio Tools for Office (VSTO)

[20]

Let's take a look at a typical VSTO project template for an Office 2007 application in
Visual Studio 2008.

In the preceding image, you can see the VSTO project templates for Office 2007
applications in Visual Studio 2008. Visual Studio 2008 has been packed with all of the
VSTO 3.0 components needed to build an Office solution using VSTO. When installing
Visual Studio 2008, all of the related installations, including project templates for VSTO
3.0, Office development references, and others, have been installed and fully-integrated
into the new Visual Studio 2008 development environment.

Creating VSTO solutions
Visual Studio 2008 is very fast, collaborative, and flexible in developing and delivering
a wave of innovative new Microsoft technologies, including enhanced language and
data features. C# and VB.NET programming supported in Office 2007 is one of the
enhanced language features, and easy data interaction with other data sources, such as
Microsoft SQL server, is one of the data features. These features ensure that developers
can rapidly create connected applications, deliver next generation software practices,
and overcome application software development challenges.

Chapter 1

[21]

Client

Office 2007 Client Tools

VSTO 3.0

Visual Studio 2008

The preceding image represents the development environment of the Office solution.
In this figure, the client represents the development environment machine; the VSTO
3.0 inside Visual Studio 2008 represents the VSTO integrated Visual Studio; Office
2007 Client tools are the Office applications, including Word, Excel, InfoPath, and
others, that should be installed in the client machine for development.

The development environment using Visual Studio 2008 is capable of creating
application-level, data-centric solutions with VSTO 3.0. The data-centric solutions
are the functionalities that are siginificantly focused on data manipulation and
data storage.

The Visual Studio 2008 development environment makes it possible to develop
solutions with great design-time and runtime support for key Office 2007 System
features, such as the Ribbon, Custom Task Panes, document-level solutions, Outlook
forms regions, and so on.

The Ribbon is a new way of representing menu items in the Office application. In the
new development environment, you have a visual designer within which you can
drag-and-drop controls inside the Ribbon, and design your custom Ribbon menus
easily. Even for a data-related operation such as creating data connections, you have
a data connection wizard for easy creation of a data connection.

Visual Studio Tools for Office (VSTO)

[22]

Let's take a look at how the Office project solution looks, once it's been created
in Visual Studio 2008. For example, we'll load a Word 2007 document solution
created with Visual Studio 2008 and VSTO, using project templates available in
the development environment:

Chapter 1

[23]

The preceding image represents how the Office project solution for Word 2007 has
been created in Visual Studio 2008. You can see all of the references listed as System.
AddIn, System.Core, and so on. These are loaded automatically as a part of the
project template. This provides the developer with easy-to-start programming by
eliminating the manual process of adding references and validating the solution.

Office developers can integrate business data into documents by using XML-based
data/view separation and programmability. For example, in InfoPath, you can easily
integrate business data with the InfoPath forms, and you can program the data of the
InfoPath, storing it as a separate file in XML format. You can also present the data in
different views, depending on how the user wants to see it, in the user interface. You
can develop solutions using the combined Outlook object model.

Viewing IDE Windows
Visual Studio is a fabulous Microsoft product designed especially for development
activities. It is one of the most widely-used development tools among developers
across the globe. It is built on an IDE, and enables developers to build different
types of applications using Microsoft technologies. IDE is a software application for
developing new software programs and applications that provides broad facilities to
programmers for software development.

In general, IDE consists of a source code editor, compilers, and debuggers. Most
readers will be familiar with the Visual Studio IDE. Visual Studio 2008 has an
appearance similar to previous IDEs, but with more enhancements. By default,
Microsoft Visual Studio IDE will provide you with IntelliSense, debugging,
compilers for .NET programming, access to control controls, and the ability
to build solutions. The latest enhancements such as visual designer for Ribbon,
drag-and-drop controls, and enhanced debugging for Office applications will
reduce the development time and increase the productivity of developers.

Visual Studio Tools for Office (VSTO)

[24]

The in-built VSTO object model is designed to support .NET. And it's also simple!
Many common functions are packaged and well-integrated. In the new version, tools
such as Word, Excel, and InfoPath's target windows, are integrated directly into the
IDE interface. This helps Office developers to build solutions without needing an
advanced knowledge of the underlying object model. VSTO also has visual designers
for Word 2007 and Excel 2007 that are in the Visual Studio IDE.

In the preceding image, we can see how the visual designer for Word 2007 appears
in Visual Studio 2008. In this environment, you have the drag-and-drop functionality
and other easy-to-design layouts for the use of an Office developer. Visual Studio
2008 brings the visual designer for other Office tools such as Excel and Infopath
into the IDE. In a similar way, the Visual Studio 2008 IDE brings the visual Ribbon
designer for Office tools into the interface. The Ribbon designer allows an Office
developer to visually design an Office Ribbon (officially called the Office Fluent
user interface) using the well-known drag-and-drop interface, and interact with
the Ribbon using standard .NET code.

Chapter 1

[25]

The preceding image shows the visual designer for the Ribbon in Office solution
development, which simplifies the Ribbon development process for Office
developers by providing drag-and-drop controls and easy access to resources.
Similarly, Visual Studio 2008 simplifies and speeds up the development process
of the actions pane, document-specific Task Panes, creating application-specific
custom Task Panes, and Outlook Form Region Designer.

Debugging
Debugging is one of the most important tasks in software development, and a
task that all developers will have run into many times in their programming lives.
Developers have several debugging alternatives available for debugging their .NET
applications that have DLL files in the Visual Studio IDE.

Visual Studio 2008 provides a strong set of build and debugging tools for Office
solution development using VSTO 3.0. This is a big improvement over VSTO 2.0,
which did not provide preconfigured debugging options. During configuration of
the build, developers can select the components that they want to build, and exclude
those that they want to avoid for the current build. A developer has the flexibility to
build configurations for solutions as well as projects.

Visual Studio Tools for Office (VSTO)

[26]

What can we expect in the next version?
The following points list some of the features we can expect in the next version of
VSTO, based on the author's analysis and experiences as a VSTO developer:

Presently, VSTO 3.0 supports VB.NET and C# for Office solution
development. In future releases of VSTO, we can expect support for
other languages such as C++, which will help C++ developers to build
VSTO solutions.
VSTO 3.0 smart tags are limited to document-level solutions in Office
applications. They cannot be used in application-level solutions. Therefore
we can expect Microsoft to add this feature in a future version of VSTO.
Building workflow activities inside of Office applications by using VSTO
and a Visual Studio environment is another feature that we can expect
in the next release. Interoperability of data and applications is at the core
of windows workflow, and progress in VSTO helps us to reorganize
workflow-oriented development.
Using VSTO to create document-level custom Tasks Panes for Visio
applications should also be added in a future version. This will be
useful for managing custom shapes for Visio users.

Summary
Microsoft has rebuilt the Office development framework, VSTO, with a wide
variety of features, and has also enhanced most of the existing features. In this
chapter, we went through the features and functionalities of VSTO 3.0. You have
seen what VSTO is about and how it can be used for Office 2007 application
customization. You have learned how VSTO is integrated with Visual Studio 2008,
and how easy it is for a developer to create a solution using Visual Studio 2008. You
have also seen some of its key features such as custom Task panes, Ribbons, Add-ins
and document-level customization, and so on, and how these are helpful for Office
developers. In this chapter you have also seen the architecture of VSTO and IDE for
VSTO development, and have learned the enhanced debugging features for VSTO in
Visual Studio IDE. You have learned the concept of object-oriented support in VSTO
Office solution development, and have also seen the C# programming language and
.NET framework technology platform support for Office development.

•

•

•

•

Microsoft Office InfoPath
Programming

Microsoft Office InfoPath, as the name suggests, is a part of the Microsoft Office Tool
suite. InfoPath aids programmers, as well as Microsoft Office users. Programmers
can use InfoPath to design XML-based forms, and users of Office applications can
open these forms and easily enter data into them. Microsoft Office InfoPath was
first released as a part of Microsoft Office 2003, but has been considerably enhanced
since then.

In this chapter, we'll discuss the following:

InfoPath 2007 in Visual Studio (UI and installation), including how to start an
InfoPath solution in Visual Studio 2008
Creating an InfoPath solution—object model, and object model
functional area
Events in InfoPath—form-level events, XML events, and control events
Custom programming—data validation, custom actions on save, and
switching views
Manipulating the Data Source—making InfoPath work with Microsoft
SQL Server
Creating a custom Task Pane for InfoPath 2007
Writing InfoPath Add-ins using VSTO programming
InfoPath and its important role in SharePoint Workflow

•

•

•

•

•

•

•

•

Microsoft Office InfoPath Programming

[28]

Microsoft Office InfoPath
When you design an InfoPath form, InfoPath creates a .xsn file, which is stored
internally as a cabinet (.cab) file because it can actually contain additional subfiles.
In other words, the .xsn file contains all of the necessary subfiles required to assist
users in entering data and validating it.

There are two ways to see the files that are contained inside a .xsn file. The first
approach is to open your .xsn InfoPath form in InfoPath designer. InfoPath designer
is simply the Microsoft Office InfoPath 2007 form template design environment. The
second approach requires a little more effort. You can rename your .xsn files to the
.cab extension and then extract all of the files related to the original .xsn file to a
specified folder. Microsoft Office InfoPath 2007 is based on an industry-standard
Extensible Markup Language. This allows developers to create customized tags
that offer flexibility in organizing and presenting information.

The simplicity of InfoPath forms solutions is that they provide support
and facilitate you in combining multiform process information into a
single electronic form using which you can gather all of the required
information for your processes.

At this point, you might ask: if InfoPath is built into Microsoft Office, why are we
discussing it as a part of Visual Studio? Here's why. Even though the InfoPath
designer has remarkable features for creating forms with validation rules, a lot of
design capabilities cannot be achieved using the standard InfoPath environment.
When you find that you can't create the forms that you want by using the InfoPath
designer, you would typically resort to scripting, or managed code, to achieve the
functionality that you wanted. With both InfoPath and Visual Studio, that's not
necessary. A Visual Studio tool for Office development provides an environment
that allows you to integrate Visual Studio with Microsoft Office's InfoPath tools, to
create a virtually limitless approach to forms creation.

InfoPath 2007 in Visual Studio
When Microsoft first released InfoPath, in 2003, the software had some serious
limitations. There was no easy way to combine InfoPath with programming
languages. As a result, there was no easy way to use a language to refine the
functionality of a form that had been designed with InfoPath.

Chapter 2

[29]

When Microsoft launched the Visual Studio 2005 edition, they also released a toolkit
for InfoPath that allowed programmers to integrate Visual Studio and InfoPath, in
order to create managed code solutions for Microsoft Office applications. Managed
code is program code that executes under the supervision of a virtual environment.
Programs in any language can be compiled either into managed code or unmanaged
code. Here, the code built on a .NET framework is meant to be managed code.

The bottom line is that VSTO 3.0 is well-integrated with Visual Studio 2008. It
provides .NET platform developers with tools for building applications that
influence Microsoft Office InfoPath 2007 (and other Microsoft Office programs,
such as Microsoft Excel 2007 and Microsoft Word 2007)—all in an environment
that matches the development, deployment, and security of live .NET applications.
Whenever you find that the features of the InfoPath form designer aren't robust
enough to get the job done, you can write scripted or managed code to create your
ideal InfoPath form. In Microsoft InfoPath, every control on a form must be bound
to an element in the corresponding XML document.

VSTO offers supporting tools that Office developers can use to build on
top of Office applications as a platform.

Writing scripts for InfoPath is typically done in JavaScript, which unfortunately has a
very limited set of features when you compare them with the functionality attainable
with managed code such as C#. Managed code gives you many additional options,
including creating plugins, more flexible form solutions, and much more.

Visual Studio 2008 InfoPath solution
overview
The VSTO 3.0 experience brings InfoPath forms right into Visual Studio by using
InfoPath 2007. Once you have installed Visual Studio 2008 in your development
environment, you're ready to create InfoPath solutions by using Visual Studio. The
following images in this section show the steps to the InfoPath solution using Visual
Studio. These are the dialog boxes and the environment window that you will use
when you begin creating InfoPath solutions.

Microsoft Office InfoPath Programming

[30]

The following screenshot displays Visual Studio New Project dialog box that you
use to open an InfoPath template from Visual Studio.

The next screenshot shows the Design a Form Template dialog box, in which you
select the type of template that you want to create. The type of template that you
select is normally determined based on your data source (database, XML file, and
so on). You can also use this dialog box to open an existing form template.

Chapter 2

[31]

The window in the next screenshot shows all of the supporting files (in the rightmost
pane) for creating an InfoPath solution. The formcode.cs file is used to write
business logic, in other words, the customization code for your InfoPath solutions.
This screenshot shows the InfoPath environment in Visual Studio 2008. Web Service
is used to create forms that interact with the web service for data processing. A
Database is used to create forms that interact with the Access or Microsoft SQL
Server Database for data processing. XML or Schema is used to create forms
that process the data source as the existing XML document or the XML schema.
Connection Library will search the Microsoft Office server for the existing data
connection that can be used for the form.

The VSTO problem when installing Office
InfoPath 2007
When installing Microsoft Office InfoPath 2007, you need to carry out the
following simple procedure to avoid the problem of programming compatibility
with .NET framework:

1. Install the Microsoft Office 2007 clients (without .NET programming support
for the .NET Framework version 2.0).

2. Install the .NET 3.0 Framework.

Microsoft Office InfoPath Programming

[32]

3. Install Microsoft Office SharePoint Portal Server 2007.
4. Go to Add or Remove Programs and add .NET programmability support for

.NET Framework version 2.0.

Creating our first example
In our first example, we will make you more comfortable, by explaining the Hello
World example using Visual Studio 2008 and Microsoft Office InfoPath 2007.

Let's write a Hello World program as our first program, using VSTO 3.0 for
Microsoft InfoPath 2007.

1. Open Visual Studio 2008, and create a new InfoPath 2007 Form
template project.

2. Select New project. Under Office, select 2007 and then select InfoPath 2007
Form template, and name the project as per your requirements.

3. Next, the Design Template dialog box appears. This is where you choose the
template for your design requirement. In our example, we will select Blank
and click on OK.

4. The solution will be created with all of supporting files for our development
of InfoPath solution. Let's write a Hello World message on a button click
event for an InfoPath form. In the design task pane of the Visual Studio
window, you can find the Controls button hyper linked. The following
screenshot shows the InfoPath Design Task Pane inside Visual Studio.

Chapter 2

[33]

5. Next drag-and-drop a textbox to display the Hello World message
and a button to write the Click event for, from InfoPath toolbox.
The next image represents the InfoPath Toolbox Task Pane showing
the InfoPath-supported controls.

6. Right-click on the button and select Button Properties from the shortcut
menu. In the Button Properties window, click on the Edit Form Code button
under the General tab. This will generate the Click event for the button.

7. Add the following code into the control's Click event:
 public void Click_Clicked(object sender, ClickedEventArgs e)
 {
 // Read the Textbox and write the "Hello World"
 XPathNavigator xNode = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:field1",
 NamespaceManager);
 // Set value to Textbox
 xNode.SetValue("Hello World");
 }

Microsoft Office InfoPath Programming

[34]

Once you have added and executed the above code, you will get the following
screenshot as the output.

Available customization featurescustomization features
InfoPath programmability encourages you to customize an InfoPath form by altering
its form files or by writing scripting code to create custom functions by using the
InfoPath object model. The main components of an InfoPath form that support
customization are:

Data validation
Event handling
User interface
Editing controls
Error handling
Security
Data submission
Business logic
Form integration

Data validation
Data validation is the process of testing the correctness of entered data. You can
apply a set of rules to a control or field to specify the type and range of data that
users are allowed to enter. If a user enters an incorrect value into a form, data
validation code will display error messages to users. With the support of data
validation in InfoPath you can also write custom code to achieve complex validation.

Microsoft Office InfoPath 2007 imposes the distinct XML schema
whenever a user enters data in the InfoPath form; this is also known as
schema validation.

•
•
•
•
•
•
•
•
•

Chapter 2

[35]

InfoPath 2007 supports improved custom data validation through the use of
managed code. Several new classes provide you with the ability to generate data
validation errors for cases that previously couldn't be detected. With the use of these
powerful InfoPath data validation capabilities, you can enforce business logic more
thoroughly in your Office solutions.

Custom actions on save
Developing custom save functionality for an Office InfoPath 2007 form template
is easy to achieve. The SaveEventArgs object can be used during a save operation
(from an event handler for the Save event) to determine save properties and to
perform the actual save operation. The SaveEventArgs object can be accessed only
from code running in forms that were opened in Microsoft Office InfoPath 2007.

Switching views
Microsoft Office InfoPath forms support multiple views. When you open a form in
InfoPath, the default view appears, which is based on the user's previous interaction
and previously-implemented rules. Microsoft InfoPath provides the SwitchView
method to allow you to shift views from inside the form through the use of managed
code. The SwitchView method is activated from the View object, which in turn
doesn't activate until the Loading event has completed. Here's a simple code
example that shows how to switch views:

public void btnApply1_Clicked(object sender, ClickedEventArgs e)
{
 ViewInfos.SwitchView("ViewName");
}

The code shows that, on a button click, the view will be switched to the name of the
view defined in the SwitchView method.

Object model in InfoPath solution
InfoPath forms are intended to be easy to use. The concept is that a simple form
can be used by numerous people in a small workgroup to collect information. For
example, a 25-person marketing team might use different instances of the same
form to fill out and share information about client calls that the staff make. The
data in these forms might then be merged into a single summary report that is sent
to the management every month. On the other hand, InfoPath forms can be more
dedicated, meaning they can be connected to existing databases, or integrated into
existing business systems.

Microsoft Office InfoPath Programming

[36]

Let's suppose your company uses Microsoft SharePoint to manage the process of
expense reporting; the developers in your IT department might design an InfoPath
expense form that enables users to submit data directly to SharePoint, which in
turn routes that data to the appropriate department for approval. One of the main
advantages of Microsoft InfoPath 2007 is that you can use it to quickly create a
frontend for your input form.

Understanding the Microsoft Office InfoPath
object model
If you're eager to leverage Microsoft Office InfoPath functionality in enterprise
software applications, you may be pleased to discover that the VSTO InfoPath object
model provides most of the functionality of Microsoft Office InfoPath. The Microsoft
Office InfoPath 2007 object model provides improved support for managed code
when compared to the previous version of the VSTO InfoPath object model.

The Microsoft Office InfoPath object model is a Component Object Model (COM).
The importance of COM is that it is a language-neutral way of implementing objects
that can be used in different environments. The InfoPath object model can be used
to interact with InfoPath forms and their underlying XML documents. It is similar
to other Microsoft Office application object models—the object model implements
interfaces for collections, objects, properties, methods, and events.

The InfoPath 2007 object model is not supported in Microsoft Office
InfoPath 2003. So, if you use the InfoPath 2007 object model to write
code for your Microsoft Office InfoPath 2007 solution, and then decide
to make that form template compatible with Microsoft Office InfoPath
2003, you must remove the code or rewrite it using the InfoPath 2003
object model.

When Microsoft launched InfoPath 2007, they added several new objects, collections,
and enumerations to the existing object model.

Previously, in the InfoPath 2003 object model, objects were packed in three
namespaces: Microsoft.Office.InfoPath, Microsoft.Office.Interop.
InfoPath, and Microsoft.Office.Interop.InfoPath.Xml. In the new version,
all objects and collections related to InfoPath are packed in the single namespace
Microsoft.Office.InfoPath.

The following table provides a quick overview of the InfoPath object model. It shows
the frequently-used objects whose names were changed depending on their usage
in programming.

Chapter 2

[37]

InfoPath 2003 object model InfoPath 2007 object model
thisXDocument.DOM this.MainDataSource

IXMLDOMNode XPathNavigator

Read field1.text Read field1.Value

Set field1.text Set using field1.SetValue()

Understanding the InfoPath object model
functional area
The InfoPath 2007 object model is designed in such a way that the same object model
can be used for both client and server development environments. The InfoPath 2007
object model is a well-built hierarchical type library composed of classes, objects,
collections, properties, methods, and events. The InfoPath object model supports
Office developers in manipulating many parts of an InfoPath application or form
template with the standard application programming interface.

The following are some of the InfoPath managed-code object model classes
and objects:

Application

WindowCollection

Window

XmlFormCollection

XmlForm

ViewInfoCollection

View

You can download the managed object model from MSDN. Search for
InfoPathObjectModelMap. This document is useful to all Microsoft
InfoPath developers.

Let's look at each of these components to determine how they fit into the
object model.

•

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Microsoft Office InfoPath Programming

[38]

Application
The base of the InfoPath 2007 object model is the Application class. The
Application class includes properties and methods that return references to the
high-level objects of the InfoPath object model. The Application object in the
InfoPath object model provides a number of properties and methods that can be
used not only to access lower-level collections and objects in the object model, but
also to perform a variety of extended-use functions.

// Accessing the User property of the Application class and reading
 the logged in Username
 this.Application.User.UserName.ToString();

WindowCollection
WindowCollection contains a Window object for each window within a Microsoft
Office InfoPath 2007 form. The Windowcollection implements properties that can
be used to access a form's associated Window objects. It is accessible through the
Windows property of the Application object. WindowCollection members have
two core properties—count and item, which handle the property called Windows
from the Windows collection. The WindowCollection collection can be used only
to get the number of Window objects that the collection contains.

// Reference to the InfoPath WindowCollection and accessing the
 Application window

 Microsoft.Office.InfoPath.WindowCollection
 InfoPathWindowCollection = this.Application.Windows;

// Reading the count of InfoPath windows
 InfoPathWindowCollection.Count.ToString();

Window
The Window objects of an InfoPath form are accessed all the way through the Item
property of the WindowCollection object. The Application class has a property for
enumerating windows, which is a collection of Window objects. The Window object
provides a number of properties and methods that can be used to programmatically
interact with InfoPath windows. You can also access the view by using the windows'
object properties. Views are an essential part of InfoPath forms.

Chapter 2

[39]

Views are used to represent the data from the original data structures in a mixture
of formats.

// Reference to InfoPath Window class and reading the
 ActiveWindow
 Window InfoPathWindow = this.Application.ActiveWindow;

// Getting the WindowState of the InfoPath example maximized,
 minimized or normal
 InfoPathWindow.WindowState.ToString();

XmlFormCollection
The XmlFormCollection object has the ability to access the current instance of
InfoPath through the XmlForms property of the Application object. By using the
XmlForm class, you can easily access form templates and form data.

// Reference to InfoPath XmlFormCollection in the Application
 XmlFormCollection InfoPathXmlFormCollection = this.Application.
 XmlForms;

// Gets the count of the XmlFormCollection collection
 InfoPathXmlFormCollection.Count;

XmlForm
The XmlForm class represents the essential XML document of an InfoPath form.
Also, the XmlForm class is one of the key objects in the InfoPath object model. The
XmlForm class provides other properties that can be used to get information about
the InfoPath form.

// Datasource navigation through XPath navigator
 XPathNavigator DataSourceNavigator = this.MainDataSource.
 CreateNavigator();

// Reading through the XML structure in the InfoPath XML form
 DataSourceNavigator.SelectSingleNode("/my:myFields/my:field1",
 this.NamespaceManager);

// Setting the value for the field in XML form
 SetValue("Demo for XmlForm Class");

Microsoft Office InfoPath Programming

[40]

View
The View class represents the view (appearance) of the InfoPath form. The View class
provides the ViewInfo property, which allows you to access information about the
associated view. The ForceUpdate method is one of the most useful methods, and
updates the current view programmatically.

// Reference to InfoPath View class and reading the CurrentView
 property
 Microsoft.Office.InfoPath.View InfoPathView = this.CurrentView;

// Reading the Caption of the current view
 InfoPathView.ViewInfo.Caption.ToString();

ViewInfoCollection
The ViewInfoCollection object for an InfoPath form can be accessed through the
ViewInfos property of the XmlForm class. The ViewInfoCollection class contains
a ViewInfo object for each view within a form. Also, the ViewInfoCollection class
implements properties that can be used to access the ViewInfo object associated with
each view in a form. For example, the CurrentView property returns a View object
that describes the current view of the InfoPath form.

// Referencing the ViewInfoCollection class of InfoPath form
 ViewInfoCollection ReadViewInformation = this.ViewInfos;
// Reading through the properties of the variable ReadViewInformation
 ReadViewInformation.Default.Name.ToString();

Using events in InfoPath
The events available to InfoPath developers in Microsoft InfoPath 2007 are different
from the events available to other technology forms developers. For example,
the InfoPath hosted control, provided by the InfoPath event manager, gives the
developers of third-party hosted applications the ability to respond to events
defined in the form. The InfoPath event manager provides this functionality.

Event names are case sensitive, unlike those in HTML or XHTML forms.

InfoPath 2007 events can be classified into the following three types:

Form-level events
XML and data validation events
Control events

•
•
•

Chapter 2

[41]

Form-level events
You can write code to react to different events that can occur in Microsoft Office
InfoPath 2007, as a user fills out a form. In InfoPath, events take the form of event
handlers that are created when you work with a form in design mode. InfoPath
event handlers must be initially created in design mode because, in addition to the
scripting declarations that are created in a form's primary scripting file, entries are
also made in the form definition (.xsf) file. After you have created an event handler,
you should not alter its declaration in the primary scripting file. The following table
describes how each form-level event behaves.

Name Description
FormEvents_Loading() Returns a reference to a form's essential XML

document and return status during the loading
of a form; the Loading event is bound using the
LoadingEventHandler delegate

FormEvents_ViewSwitched() Returns a reference to a form's essential XML
document during a switch view operation;
the ViewSwitched event is bound using the
ViewSwitchedEventHandler delegate

FormEvents_ContextChanged() Returns information about the XML Document
Object Model (DOM) node that is the current
context of the form's essential XML document;
the ContextChanged event is bound using the
ContextChangedEventHandler delegate

FormEvents_Submit() Used to prevent the form from being submitted
if the form has not been saved first; the Submit
event is activated only if the form template has the
Perform Custom Action Using Code option set
in the Submit Options dialog box; the Submit
event is bound using the SubmitEventHandler
delegate

FormEvents_VersionUpgrade() An event handler for the VersionUpgrade
event, which allows you to run the code to update
a form when the form template on which it is
based has been upgraded since the form was last
opened; the event handler is used to display the
version numbers of the form and form template;
the VersionUpgrade event is bound using the
VersionUpgradeEventHandler delegate

Microsoft Office InfoPath Programming

[42]

Name Description
FormEvents_Save() The event handler for the Save event, where

we should insert any pre-defined business logic
to determine whether all data has been entered
according to defined rules; if the data is determined
to be valid, this event handler performs a save; if
any invalid entries are found, the event handler
displays a message and cancels the save operation;
the Save event is activated only if the form template
has the Save Using Custom Code option set in the
Form Options dialog box; the Save event is bound
using the SaveEventHandler delegate

FormEvents_Sign() Used to add additional data to a digital signature;
this event handler will run only in fully-trusted
form templates; the Sign event is bound using the
SignEventHandler delegate

FormEvents_Merge() Returns properties and methods that can be used
during a Merge event to programmatically interact
with a form's essential XML document and to
determine merge properties, such as the number of
files being merged; the Merge event is bound using
the MergeEventHandler delegate

A delegate is a member of a group, which represents the same group.
A delegate is an object that refers to a static method or an instance of
a method.

To receive events when a form is processed, you need to first register the events.
You can use the InternalStartup method to add code to register the events. The
InternalStartup method is generated by the IDE. Events can be registered either
manually or using the IDE. For form-level events, the code displays the following:

// Note that the following procedure is required by Microsoft Office
 InfoPath.
// It can be modified using Microsoft Office InfoPath.

public void InternalStartup()
{

 EventManager.FormEvents.Loading += new
 LoadingEventHandler(FormEvents_Loading);

}

Chapter 2

[43]

If you receive the following error message while running your InfoPath
solution from Visual Studio 2008: Microsoft Office InfoPath does not
recognize some or all of the command line options. Exit and restart
Microsoft Office InfoPath with the correct command line options—
you need to update your Office tools with the latest service-pack release.

Here's another way to register events. First, open your form in InfoPath Designer,
which is located inside the Solution folder that shows the list of files. The folder
and the file structure will be the same for all InfoPath solutions created using Visual
Studio 2008, as shown in the following image:

The Microsoft Form Definition File (the manifest.xsf file) is located inside
the InfoPath Form Template folder, the contents of which are shown in the
following screenshot:

Microsoft Office InfoPath Programming

[44]

Open the manifest.xsf file in the InfoPath designer, to register events. Click
through the sequence of menu items available in the InfoPath designer tool, as
shown in the following screenshot:

The previous screenshot shows the sequence of menu items used to access
form-level events from the Tools menu. In this example, you click on the Tools
menu, and then select Programming from the drop-down menu. Notice that some
events are enabled, while some are disabled (greyed out). Next, click on the name of
the event that you want to register (in this example, Loading Event...).

If an XML node includes the attribute xsi:nil="true", any text
value of the XML node will produce XML that is not valid. As a result,
Microsoft Office InfoPath will not accept the value, and you will receive
an error message when you try to set it. To work around this problem,
simply add the code that checks for the xsi:nil="true" attribute.
InfoPath will then remove the attribute at run time—before the code
sets the text value of the node. To see how this works, take a look at the
following example.

Chapter 2

[45]

An example of the solution xsi:nil="true" attribute
Microsoft Office InfoPath forms are prepared by connecting to a Web Service
Contract-First (WSCF) web services. When you examine the schemas, you will
not find the nullable attribute that equals "true" in the XML Schema Definition
(XSD) generated (.XSD file) by InfoPath. The XSD is referred to as the XML Schema
language. xsi:nil="true" is the nullable attribute that we need to handle in
the InfoPath.

// Create a Navigator object to access the main DOM.
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();
// Create a Navigator object for the field that you want to set.
 XPathNavigator xData = xDoc.
 SelectSingleNode("/my:myFields/my:myName",
 this.NamespaceManager);

// Check and remove the "nil" attribute.
 if (xData.MoveToAttribute("nil", "http://www.w3.org/2001/XMLSchema
 -instance"))
 xData.DeleteSelf();
// Set the value of the myName field.
 xData.SetValue("Vivek");

// Data clean up.
 xDoc = null;
 xData = null;

The following sections describe the use of the events that you can select from the
Programming submenu.

Loading event
After you work through the menu options shown in the previous image, an event
handler will be created in your code to handle the specific event. Let's work through
a sample to see how the Loading event works in the InfoPath form.

FormEvents_Loading(object sender, LoadingEventArgs e)

The following example will load information about the currently logged-in user.
The form will display the user's name by returning this information from the
Loading event.

public void FormEvents_Loading(object sender, LoadingEventArgs e)
{

// Create a Navigator object to access the main DOM
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();
// Create a Navigator object for the field that you want to set

Microsoft Office InfoPath Programming

[46]

 XPathNavigator xData = xDoc.SelectSingleNode("/my:
 myFields/my:field1", this.NamespaceManager);

// Check and remove the "nil" attribute
 if (xData.MoveToAttribute("nil",
 "http://www.w3.org/2001/XMLSchema-instance"))
 xData.DeleteSelf();

// Loading the current user's name into a string variable
 string strLoggedInUserName = System.Environment.UserName;
// Assigning the user'sname to the field value
 xData.SetValue(strLoggedInUserName);
}

The Loading event can be cancelled by using the CancelableArgs property of the
SaveEventArgs class and then setting the Cancel property to "true".

Using the ViewSwitched event
By using the InfoPath form's ViewSwitched event, you can sync to other form events
such as Save, Merge, and so on.

FormEvents_ViewSwitched(object sender, ViewSwitchedEventArgs e)

InfoPath Forms Services is a server technology that makes it possible for users to fill
out InfoPath forms in a web browser.

public void FormEvents_ViewSwitched(object sender,
 ViewSwitchedEventArgs e)
{
// Messagebox will display the view name with custom message
 MessageBox.Show("Currently loading the view named: " +
 this.CurrentView.ViewInfo.Name);
}

Using the ContextChanged event
The ContextChanged event occurs when the context node changes. The
ContextChanged event is not supported in browser-enabled forms. Browser-enabled
forms are designed in InfoPath and can be filled out either in InfoPath or in a web
browser. InfoPath browser-enabled forms are to be used for better performance and
scalability. In addition, note that the ContextChanged event is asynchronous—the
event is not activated on every change in the context node; instead, it is activated
after the application has stopped processing other events.

FormEvents_ContextChanged(object sender, ContextChangedEventArgs e)

Chapter 2

[47]

Here's an example of the ContextChanged event.

public void FormEvents_ContextChanged(object sender,
 ContextChangedEventArgs e)
{
 if (e.ChangeType == "ContextNode")
 {
 // Position a XPathNavigator on the DisplayContext field.
 XPathNavigator rtNode, msgTxtBox;
 rtNode = this.MainDataSource.CreateNavigator();
 msgTxtBox = rtNode.SelectSingleNode("/my:myFields/my:field2",
 this.NamespaceManager);

 // Set DisplayContext with the name of the current context.
 msgTxtBox.SetValue("Context Name: " + e.Context.Name + ",
 Context Type: " + e.Context.NodeType);

 //Even you can change the view on context change
 //Switching view after the context change
 ViewInfos.SwitchView("Context Changed");
 return;
 }
}

Using the Submit event
If your InfoPath form is also on a hosted Microsoft Office InfoPath 2007 form that
uses the Submit event handler, the Submit event always occurs first in the InfoPath
form and then in the host form.

FormEvents_Submit(object sender, SubmitEventArgs e)

If the code in the Submit event in InfoPath 2007 cancels the event due to an error,
the Submit event in the host form will not occur, and the user may receive an
error message stating that The form cannot be submitted. The following code
demonstrates the use of the Submit event.

private bool Validate()
{
 string strAge = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:MyAge",
 NamespaceManager).InnerXml;

 if (strAge.Length == 0)
 {
 MessageBox.Show("Please enter your age!");
 return false;
 }
 return true;
}

public void FormEvents_Submit(object sender, SubmitEventArgs e)
{

Microsoft Office InfoPath Programming

[48]

 if (Validate() == true)
 {
 string xPath = "/my:myFields/my:MyAge";
 XPathNavigator xNavigator = MainDataSource.CreateNavigator();
 XPathNavigator xValueNavigator = xNavigator.
 SelectSingleNode(xPath, NamespaceManager);
 FileSubmitConnection xConnection = (FileSubmitConnection)(
 DataConnections["DataSource"]); xConnection.
 Execute(xValueNavigator);
 }
 else
 {
 MessageBox.Show("Please fill the form correctly");
 }
}

Using the VersionUpgrade event
The VersionUpgrade events are not available from third-party hosted applications
because these events occur before the form is loaded in the hosted application.

FormEvents_VersionUpgrade(object sender, VersionUpgradeEventArgs e)

This event is triggered when the version number of the form being opened is
older than the version number of the form template on which it is based. Here's
an example:

public void FormEvents_VersionUpgrade(object sender,
 VersionUpgradeEventArgs e)
{
// Version details displayed in Message box
 MessageBox.Show("InfoPath Form Version: " + e.DocumentVersion +
 "\n InfoPath Form Template Version: " +
 e.FormTemplateVersion);
}

The VersionUpgrade event can be cancelled by using the CancelableArgs property
of the VersionUpgradeEventArgs class to set the Cancel property to true.

Using the Save event
The Save event is not meant to be instantiated by the developer in form code. You
can add event handlers for form-level events via the Microsoft Office InfoPath 2007
Design mode user interface.

FormEvents_Save(object sender, SaveEventArgs e)

Chapter 2

[49]

The SaveEventArgs object, which is passed as a parameter to an event handler for
the Save event, provides properties and methods that can be used to get the form's
file name, determine the Save status, and perform the Save operation.

To add a custom Save event to the InfoPath Form template, follow these steps:

1. Open the Tools menu and click on Form Options.
2. In the Form Options dialog box, click on Open and Save category, select the

Save using custom code checkbox, and then click on Edit.
3. Click OK to close the Form Options dialog box, and then replace the contents

of the FormEvents_Save method with the following code sample:
 public void FormEvents_Save(object sender, SaveEventArgs e)
 {
 // Read the node
 string strBookName = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:BookName",
 NamespaceManager).InnerXml;

 // Check the BookName enetered in the textbox
 if (strBookName == string.Empty)
 {
 // If textbox is empty, prompt message to user
 e.CancelableArgs.Message = "Please enter the BookName to save
 the Form";
 e.CancelableArgs.Cancel = true;
 }
 else
 {
 // Open SaveAs dialog box
 if (e.IsSaveAs)
 {
 SetSaveAsDialogFilename(strBookName + ".xml");
 }
 e.PerformSaveOperation();
 e.CancelableArgs.Cancel = false;
 }
 }

Microsoft Office InfoPath Programming

[50]

The following screenshot shows the InfoPath form:

The next screenshot shows the InfoPath form prompt that appears when you try to
save the form without entering the book name correctly in the text box shown in the
previous screenshot.

The form is in preview mode after the custom save has been implemented in the
InfoPath solution.

The previous screenshot showed the dialog box that requests a book name for the
form in preview mode—after the custom save has been implemented as an InfoPath
solution. The following screenshot demonstrates how you can custom-save code in
an InfoPath 2007 form.

Chapter 2

[51]

After the user enters the correct book name, InfoPath displays the Save As
dialog box, as seen in the preceding screenshot, to save the InfoPath's data file
to the desired location.

Sign event
The Sign event will take place only when the form can be completely trusted. In
other words, an event handler for this event needs to confirm the Full Trust security
level before it can run. You can use the event handler for the Sign event to add
additional data to the digital signature.

FormEvents_Sign(object sender, SignEventArgs e)

Here's one easy way to add a signature—use the Digital Signatures dialog box,
which you can access from the Tools menu. Older versions of InfoPath stored state
values as hidden variables. InfoPath 2007 has a new property called FormState,
which can be used to store state values. In the older versions of InfoPath, you had
to use hidden variables. The FormState property reduces or eliminates the use of
hidden variables. Hidden variables are variables that are used as holding places for
values that can be read through programming. FormState is an IDictionary object,
that holds user-defined state values defined in the variable declaration section.

// Constant declaration for sign status
 const string _signStatus = "Allowed";

Microsoft Office InfoPath Programming

[52]

//Form sign status property
private bool SignStatus
{
 get
 {
 // To store the state values FormState
 if (FormState.Contains(_signStatus))
 {
 return (bool)FormState[_signStatus];
 }
 return false;
 }
 set
 {
 if (!FormState.Contains(_signStatus))
 {
 FormState.Add(_signStatus, value);
 }
 else
 {
 FormState[_signStatus] = value;
 }
 }
}

public void FormEvents_Sign(object sender, SignEventArgs e)
{
// Form status check
 if (SignStatus)
 {
 Signature thisSignature = e.SignedDataBlock.Signatures.
 CreateSignature();
 thisSignature.Sign();
 e.SignatureWizard = true;
 }
 else
 {
 e.SignatureWizard = false;
 MessageBox.Show("Click here to proceed.");
 return;
 }
}

Chapter 2

[53]

Merge event
In InfoPath 2003, you needed to write your own .xsl transformation code to
perform a merge. In InfoPath 2007, merging forms can be done using a built-in
event handler.

FormEvents_Merge(object sender, MergeEventArgs e)

Here is an example to show how the InfoPath forms can be merged:

public void FormEvents_Merge(object sender, MergeEventArgs e)
{
 string strFromPath = @"C:\InfoPathForm\Form1.xml";
 XmlDocument InfoPathXML = new XmlDocument();
// The InfoPath Form template must be Fully Trusted.
 InfoPathXML.Load(strFromPath);
 XPathNavigator xNavigate = InfoPathXML.CreateNavigator();
// Merge the root node to the current form.
 this.MergeForm(xNavigate);
}

A Merge event can be cancelled by using the CancelableArgs property of the
MergeEventArgs class and setting the Cancel property to true.

Xml events
InfoPath 2007 is a powerful data-driven platform. XML events are otherwise called
data validation events in InfoPath. The changed event, changing event, and the
validating event are the events used for form validation purposes, as explained
in the following table:

Name Description
fieldname_Changed Changed event will be fired after the changes to a form's

essential XML document have been accepted and the
Validating event has occurred; the Changed event is
bound using the XmlChangedEventHandler delegate.

fieldname_Changing Changing event will be fired after changes to a form's
essential XML document have been made, but before the
changes have been accepted; the Changing event is bound
using the XmlChangingEventHandler delegate

fieldname_Validating Validating event is fired after changes to a form's
essential XML document have been accepted, but before
the Changed event has occurred; the Validating event is
bound using the XmlValidatingEventHandler delegate

Microsoft Office InfoPath Programming

[54]

Changed event
The InfoPath Changed event is activated when the form (or elements on the InfoPath
form) has been changed.

fieldname_Changed(object sender, XmlEventArgs e)

The Changed event is normally used for changing data in an InfoPath form
corresponding to other changes happening in the same InfoPath form. Consider
an example where, once the total is changed, the message gets written to the user
interface with both the old value and the new value. We write the functionality for
the changed event of the field, as shown below.

public void fieldname_Changed(object sender, XmlEventArgs e)
{
 string StrManagerName = "";
// Check if value has changed and not a table insertion
 if (e.Operation == XmlOperation.ValueChange)
 {
 // Get Current Row
 XPathNavigator xNavigator = e.Site;
 bool bParent = xNavigator.MoveToParent();

 // Get Reference to the Gross Value
 XPathNavigator xField = xNavigator.SelectSingleNode("/my:
 Report/my:Total/my:grandtotal", this.NamespaceManager);
 StrValue = xField.InnerXml;
 // Create a Navigator object to access the main DOM
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();
 // Create a Navigator object for the field that you want to set
 XPathNavigator xData = xDoc.SelectSingleNode("/my:Report
 /my:Total/my:msgChange", this.NamespaceManager);

 // Set old and newly changed manager names
 xData.SetValue("Old Total: " + e.OldValue.ToString() + " &
 New Value: " + e.NewValue.ToString());

 }
}

Changing event
You can use the Changing event to address advanced data validation requirements.
This event occurs after the Validate event is activated. During the Changing event,
the form's underlying XML document is placed in read-only mode.

fieldname_Changing(object sender, XmlChangingEventArgs e)

Chapter 2

[55]

If the code detects an error, InfoPath rejects the user's changes and restores the data
to its previous state. Here's an example:

public void myYearsOfExperience_Changing(object sender,
 XmlChangingEventArgs e)
{
 string strYearsOfExp = e.Site.SelectSingleNode("..
 /my:myYearsOfExperience", NamespaceManager).InnerXml;

 if (strYearsOfExp == string.Empty || strYearsOfExp == "")
 {
 e.CancelableArgs.Message = "Please enter a valid input";
 e.CancelableArgs.Cancel = true;
 }
}

Validating event
The InfoPath Validating event displays a prompt (if an error is found) before the
form has finished loading.

fieldname_Validating(object sender, XmlValidatingEventArgs e)

In other words, the Validating event is normally used more for error handling in
the InfoPath form, as compared to the data validation of the InfoPath form.

public void Name_Validating(object sender, XmlValidatingEventArgs e)
{
 XPathNavigator xNode = this.CreateNavigator().
 SelectSingleNode("/my:myFields/my:Name",NamespaceManager);
 this.Errors.Add(xNode, "Name to validate..", "error occured",
 "Correct the error");
}

Control events
InfoPath supports only one event when a button control is activated. The Clicked
event is activated when a button control on a form is clicked, and is used to display
a message to the user.

Clicked event
The following code uses the Clicked event to display the date and time when the
user clicks on a particular button:

ButtonName_Clicked(object sender, ClickedEventArgs e)

Microsoft Office InfoPath Programming

[56]

The event handler for this event does not allow the user to cancel the event.

// Example for Click event to display date information.
public void btn_ClickEvent_Clicked(object sender, ClickedEventArgs e)
{
// Click event shows the message as current date.
 System.DateTime sysDate = new DateTime();
 MessageBox.Show(sysDate.Date.ToString());
}

Writing event validation for an expense
report form
Let's work on a sample form and use some of the events available in Microsoft
Office InfoPath 2007. Let's start by creating a company expense report form, and
implementing the events for the validation of the user interface.

We are using most of the events available in InfoPath 2007 in the expense report for
some of the user interface validation.

1. Start Microsoft Visual Studio 2008.
2. On the File menu, click on New Project.
3. In the New Project dialog box, expand Visual C# project types.
4. Select New project. Under Office select 2007, and select InfoPath 2007 Form

template. Name the project as per your requirements.
5. The Design Template dialog box is displayed. This is where you choose the

appropriate template for your design. In this example, we have selected the
Expense Report template.

6. Add the following code into the formcode.cs file.
 public partial class FormCode
 {
 public void InternalStartup()
 {
 EventManager.FormEvents.Loading += new
 LoadingEventHandler(FormEvents_Loading);
 EventManager.FormEvents.ContextChanged += new
 ContextChangedEventHandler(FormEvents_ContextChanged);
 EventManager.XmlEvents["/my:expenseReport/my:manager/
 my:managerEmailAddress"].Changing += new
 XmlChangingEventHandler(managerEmailAddress_Changing);
 EventManager.XmlEvents["/my:expenseReport/my:manager/
 my:managerName"].Changed += new

Chapter 2

[57]

 XmlChangedEventHandler(managerName_Changed);
 ((ButtonEvent)EventManager.ControlEvents["
 Button_Submit"]).Clicked += new
 ClickedEventHandler(Button_Submit_Clicked);
 }

public void FormEvents_Loading(object sender, LoadingEventArgs e)
{
//Create a Navigator object to access the main DOM
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();
//Create a Navigator object for the field that you want to set
 XPathNavigator xData = xDoc.SelectSingleNode("/my:expenseReport/
 my:reportDate", this.NamespaceManager);

//Check and remove the "nil" attribute
 if (xData.MoveToAttribute("nil", "http://www.w3.org/2001/
 XMLSchema-instance"))
 xData.DeleteSelf();
}

public void FormEvents_ContextChanged(object sender,
 ContextChangedEventArgs e)
{
 if (e.ChangeType == "ContextNode")
 {
 // Position a XPathNavigator on the DisplayContext field.
 XPathNavigator rtNode, msgTxtBox;
 rtNode = this.MainDataSource.CreateNavigator();
 msgTxtBox = rtNode.SelectSingleNode("/my:expenseReport/
 my:manager/my:managerEmailAddress",
 this.NamespaceManager);

 //Create a Navigator object to access the main DOM
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();
 //Create a Navigator object for the field that you want to set
 XPathNavigator xData = xDoc.SelectSingleNode("/my:
 expenseReport/my:emailMessage", this.NamespaceManager);

 // Set DisplayContext with the name of the current context
 xData.SetValue("Current Context Name: " + e.Context.Name);

 return;
 }
}

public void managerEmailAddress_Changing(object sender,
 XmlChangingEventArgs e)
{

Microsoft Office InfoPath Programming

[58]

// Ensure that the constraint you are enforcing is compatible
// With the default value you set for this XML node.
 string strManagerEmail = e.Site.SelectSingleNode("/my:
 expenseReport/my:manager/my:managerEmailAddress",
 NamespaceManager).InnerXml;

// valiadting the Email format
 if (!isEmail(strManagerEmail))
 {
 if (strManagerEmail == string.Empty || strManagerEmail == "")
 {
 // Validation message
 e.CancelableArgs.Message = "Please enter a valid
 E-Mail";
 e.CancelableArgs.Cancel = true;
 }
 }
}

// Function to validate Email
public static bool isEmail(string inputEmail)
{
// Regular expression for Email
 string strRegex = @"^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}" +
 @"\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\" +
 @".)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$";

 Regex reg = new Regex(strRegex);
// Compare the regular expression
 if (reg.IsMatch(inputEmail))
 return (true);
 else
 return (false);
}

public void managerName_Changed(object sender, XmlEventArgs e)
{
 string StrManagerName = "";
// Check if value has changed and not a table insertion
 if (e.Operation == XmlOperation.ValueChange)
 {
 // Get Current Row
 XPathNavigator xNavigator = e.Site;
 bool bParent = xNavigator.MoveToParent();

 // Get Reference to the Gross Value

Chapter 2

[59]

 XPathNavigator xField = xNavigator.SelectSingleNode("/my:
 expenseReport/my:manager/my:managerName",
 this.NamespaceManager);
 StrManagerName = xField.InnerXml;

 //Create a Navigator object to access the main DOM
 XPathNavigator xDoc = this.MainDataSource.CreateNavigator();

 //Create a Navigator object for the field that you want to set
 XPathNavigator xData = xDoc.SelectSingleNode("/my:
 expenseReport/my:msgManagerChange", this.NamespaceManager);

 // Set old and newly changed manager names
 xData.SetValue("Old Name: " + e.OldValue.ToString() + " & New
 Name: " + e.NewValue.ToString());

 }
}

public void Button_Submit_Clicked(object sender, ClickedEventArgs e)
{
 XPathNavigator xNavigator = this.MainDataSource.
 CreateNavigator();
// Primary value to be validated
 XPathNavigator xMgrValue = xNavigator.SelectSingleNode("/my:
 expenseReport/my:manager/my:managerName",
 this.NamespaceManager);
 XPathNavigator xMgrEmailValue = xNavigator.SelectSingleNode("/my:
 expenseReport/my:manager/my:managerEmailAddress",
 this.NamespaceManager);

 if (xMgrValue.Value.ToString() == string.Empty ||
 xMgrEmailValue.Value.ToString() == string.Empty)
 {
 MessageBox.Show("Please enter manager information");
 }
}
}

Microsoft Office InfoPath Programming

[60]

Now, you can see the following screenshots as a result of executing the
preceding code:

Chapter 2

[61]

Manipulating a data source
There may be some reason or requirement for the developer to interact with data
source from the code, that is, for manipulating a data source from managed code.
A data source is a data structure that has information about a specific data file or
database. We may have different requirements, such as manipulating data using the
data source information. Or we may need to work extensively on a process before
sending it to a data source. Anything like this may need various kinds of data source
interaction using code.

Let's take a different scenario—how Microsoft SQL Server connects to InfoPath and
manipulates the data in the InfoPath form and explain it by way of a demonstration.
Populating InfoPath form fields with data returned by the SQL database is not a
difficult task, but the scenario is how we are going to manipulate the secondary data
source from inside the InfoPath form, and how we are going to manage the data
inside the form. And this is not the only scenario to explain how the data source
data can be manipulated; this is only one of those scenarios.

Fetch node value from main data source
One of the more important processes in an InfoPath managed code solution is the
ability to retrieve a single node from an XML data source.

In our demonstration, let's take a look at how a single node value can be retrieved
using a custom function in C#, which returns the value in the string format. Here,
the FetchSingleNodeValue_MainDataSource function returns a string value when
passed a single XPath statement argument.

// Custom function to fetch the single node from the main data source.
private string FetchSingleNodeValue_MainDataSource(string xPath)
{
// Navigate through main data source
 XPathNavigator xNode = MainDataSource.CreateNavigator().
 SelectSingleNode(xPath, NamespaceManager);
 return xNode.ToString();
}

// Button click event to call the custom function and display the
result.
public void btn_nodevalue_Clicked(object sender, ClickedEventArgs e)
{
// Call the custom function to result the data.
 string strResult = FetchSingleNodeValue_MainDataSource("/my:
 myFields/my:myName");
 MessageBox.Show(strResult);
}

Microsoft Office InfoPath Programming

[62]

In some cases, the node value that your program is trying to retrieve will be relative
to a particular event object. In the FetchSingleNodeValue_MainDataSource
function, the event object is passed as an argument along with the XPath
statement to override this situation.

// Custom function to fetch the single node from main data source.
private string FetchSingleNodeValue_MainDataSource(string xPath,
 XmlEventArgs objEventArg)
{
 // Navigate through main data source using XMLeventarg.
 XPathNavigator xNode = objEventArg.Site.SelectSingleNode(xPath,
 NamespaceManager);
 return xNode.ToString();
}

Assigning a value to a node in the main
data source
The AssignNodeValue_ToMainDataSource function uses the first XPath statement
argument to identify an XPathNavigator object, and then assigns it to the value of
the second argument.

// Custom function
private string AssignNodeValue_ToMainDataSource(string xPath,
 string strValue)
{
// Navigate through main data source
 XPathNavigator xNode = MainDataSource.CreateNavigator().
 SelectSingleNode(xPath, NamespaceManager);
 xNode.SetValue(strValue);
 return xNode.ToString();
}

// Button click event
public void btn_SetNodeValue_Clicked(object sender,
 ClickedEventArgs e)
{
// Call the custom function to result the data & Passing parameter
 string strResult = AssignNodeValue_ToMainDataSource("/my:
 myFields/my:myChapterName", "Programming InfoPath");
 MessageBox.Show("Assigned value is : " + strResult);
}

Chapter 2

[63]

Adding or creating a new node in the main
data source
An XML structure within an InfoPath form can include an internal recurring section
or a recurring table control. Suppose that you want to add a row to a recurring
section or a recurring table while some user action occurs or while a form is loading.
You can achieve this by applying the XPathNavigator object in conjunction with the
InsertAfter or AppendChildElement methods. In the following example, we create
a new node through the use of the button click event.

public void btn_addrow_Clicked(object sender, ClickedEventArgs e)
{
// Get a reference to the node the repeating table is bound to
 XPathNavigator xNav = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:group1/my:group2",
 this.NamespaceManager);
// Make a copy of the node by cloning it
 XPathNavigator xRow = xNav.Clone();
// Set the new values of the row's fields
 xRow.SelectSingleNode("/my:myFields/my:group1/my:group2/my:
 field1", this.NamespaceManager);
 xRow.SelectSingleNode("/my:myFields/my:group1/my:group2/my:
 field2", this.NamespaceManager);
 xRow.SelectSingleNode("/my:myFields/my:group1/my:group2/my:
 field3", this.NamespaceManager);

// Insert the new row after the last row in the table
 xNav.InsertAfter(xRow);
}

Whenever we click on the AddRow button, a new row gets created as shown in the
following screenshot:

Microsoft Office InfoPath Programming

[64]

Deleting or removing nodes from the main
data source
In the previous section, we saw how you can add a row to a recurring section or
recurring table during user interaction, or while a form is loading. Similarly, you
might also want to remove a node from a recurring section or recurring table.

To do so, you need to specify a row identity so that the program knows which row
has been selected. In the following example, we use an radio button in the user
interface. Here's the code to delete or remove a row:

public void btn_removeRow_Clicked(object sender, ClickedEventArgs e)
{
// Get a reference to the node the repeating table is bound to
 XPathNavigator xNav = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:group3/my:group4",
 this.NamespaceManager);

// Get radio button value
 string rdValueCheck = xNav.SelectSingleNode("/my:myFields/my:
 group3/my:group4/my:rdBtnSelect",
 this.NamespaceManager).Value;

 if (rdValueCheck == "1")
 {
 xNav.DeleteSelf();
 }
}

When the user clicks the RemoveRow button, after selecting a row, the selected row
will be removed.

Chapter 2

[65]

Populating Microsoft Office InfoPath with
Microsoft SQL Server 2008
Now, let's take a look at how to connect Microsoft Office InfoPath 2007 to Microsoft
SQL Server 2008 and populate InfoPath fields with data from a Microsoft SQL Server
database. Connecting to a Microsoft SQL Server database is not a complex task in
InfoPath. Using the data connection wizard, you can achieve this in a very simple
way. In some scenarios, this process will not be sufficient to satisfy your business
requirements. If this is the case, then you may have to go for custom coding. Using
custom programming, you can connect to Microsoft SQL Server database, and
manage, manipulate, and validate data. Let's see how to connect to Microsoft
SQL Server 2008 and display data from a Microsoft SQL Server database in the
InfoPath fields.

1. Start Microsoft Visual Studio 2008.
2. On the File menu, click on New Project.
3. In the New Project dialog box, expand Visual C# project types.
4. Select New project. Under Office select 2007 and select InfoPath 2007 Form

template and name the project as per your requirements.
5. Add the System.Data.dll reference to the solution.

Microsoft Office InfoPath Programming

[66]

6. Add the following namespaces in the formcode.cs file:
 using System.Data;
 using System.Data.SqlClient;

7. The following code is used to connect to the Microsoft SQL Server database
and populate the fields with data from the Microsoft SQL server:

 public void FormEvents_Loading(object sender, LoadingEventArgs e)
 {
 // Initializing SqlConnection class.
 SqlConnection SQLDatabaseConnection = new SqlConnection();
 // Passing ConnectionString property value to SqlConnection class
 SQLDatabaseConnection.ConnectionString = "Data Source=WINNER;
 Initial Catalog=PacktPub;Integrated Security=True";
 SQLDatabaseConnection.Open();
 // Initializing SqlCommand class
 SqlCommand SQLDatabaseCommand = new SqlCommand();
 // Passing the connection information
 SQLDatabaseCommand.Connection = SQLDatabaseConnection;
 // Setting the command type
 SQLDatabaseCommand.CommandType = CommandType.Text;
 // SQL Query
 SQLDatabaseCommand.CommandText = "select * from Books";

 // Initializing SqlDataAdapter Class
 SqlDataAdapter SQLDatabaseDataAdapater = new
 SqlDataAdapter();
 SQLDatabaseDataAdapater.SelectCommand = SQLDatabaseCommand;
 // Initializing DataSet Class
 DataSet SQLDatabaseDataSet = new DataSet();
 SQLDatabaseDataAdapater.Fill(SQLDatabaseDataSet);

 // Reading data from dataset
 string strValue1 = SQLDatabaseDataSet.Tables[0].Rows[0][2].
 ToString();
 string strValue2 = SQLDatabaseDataSet.Tables[0].Rows[0][1].
 ToString();

 // Assigning to the control
 XPathNavigator xNode1 = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:field1",
 NamespaceManager);
 xNode1.SetValue(strValue1);

 // Assigning to the control
 XPathNavigator xNode2 = MainDataSource.CreateNavigator().
 SelectSingleNode("/my:myFields/my:field2",
 NamespaceManager);
 xNode2.SetValue(strValue2);
 }

Chapter 2

[67]

In our example, the custom code to connect to Microsoft SQL Server and populating
data in InfoPath fields is done from inside the form loading event. In this example,
we connect to the database named PacktPub and get the data from the table named
Books. The data retrieved from the database is shown to the user in the text
box controls.

Working with Custom Task Panes
In Microsoft InfoPath, every control on a form must be bound to an element in the
corresponding XML document. In turn, the contents of the XML document must be
defined by a corresponding schema. These requirements can be limiting when you
want to provide some added assistance to retrieve information and populate a form.
These limitations are explained below.

Managed code
You can use managed code to display System.Windows.Forms dialog boxes that are
launched by a button click on the form. But doing so comes at the cost of making
development and deployment more complicated. For example, forms that you
developed using Windows forms dialog boxes often cannot be deployed by a
forms server.

Custom Task Pane
An alternative to managed code, in terms of supporting enterprise applications, is
to use a Custom Task Pane. Microsoft Office 2007 supports custom task panes that
provide you with tools to make available the features and the information your users
or customers require at the place and time that they desire.

Microsoft Office InfoPath Programming

[68]

A Custom Task Pane in InfoPath 2007 is simply an HTML file that appears in the
Task Pane (on the right-hand side of the InfoPath form). The HTML file can include
form controls that are not bound to elements in the XML document. The HTML file
can also have inline script, where the script can call back into the InfoPath object
model, including calling any of your functions in the form code-behind script.

You can make web service calls from an HTML script, and you can also use InfoPath
query adapters. InfoPath query adapters are used to retrieve data that is stored
in the secondary data source (secondary data source is used to store data from
supplementary or other data sources, as distinct from the current data source).
We'll see how to do this in the next section.

The Task Pane functions like a toolbar in such a way that you can move
it around on the screen, dock the Task Pane horizontally or vertically, or
separate it to keep it floating on the screen.

Creating an InfoPath Task Pane
To create an InfoPath Task Pane, follow the steps below:

1. Open Visual Studio 2008, and create a new InfoPath 2007 Add-in project.
2. In the Visual Studio solution, right-click on the reference and then click Add

Reference on the .NET tab.
3. Scroll down to Microsoft.Office.Interop.InfoPath.Xml, and either

double-click on it, or select it and then click on OK.
4. To add the user control for the Custom Task Pane, right-click the project,

and then select Add New Item from the context menu. The Add New
Item window is displayed; select User Control, name the user control
CustomTaskPane.cs and click on Add.

5. In the Custom Task Pane, we are going to implement the number-to-word
conversion concept and add the labels, textbox entries, and buttons required
to build the user interface for the number-to-word converter functionality.

6. After building the user interface, the user control appears as shown in the
following screenshot:

Chapter 2

[69]

7. Add a global variable for your Task Pane immediately after the partial
class declaration:

 private CustomTaskPane CustomTaskPane;

8. Add a Click event for the button in the toolbar to open the Task Pane. You
have to write the following code to call your Task Pane in this event handler.

 private void openTaskPane_Click(Office._CommandBarButton src,
 ref bool Cancel)
 {
 // Task Pane Class initiation
 CustomTaskPane = new CustomTaskPane();
 // Adding the Task Pane
 CustomTaskPanes.Add(CustomTaskPane, "Task Pane");
 // Make the Task Pane to be visible for the users
 CustomTaskPanes[0].Visible = true;
 }

9. Here is the code to append the custom button for our Task Pane into
Microsoft InfoPath 2007. When the user clicks on this button, the Task
Pane will be visible to the user.

 private void ThisAddIn_Startup(object sender,
 System.EventArgs e)
 {
 // Code to append the custom button we created to the
 standard toolbar
 if (this.Application.ActiveWindow != null)
 {
 Office.CommandBars AddInCommandBars = (Office.
 CommandBars)this.Application.ActiveWindow.CommandBars;
 Office.CommandBar AddInStandardBar =
 AddInCommandBars["Standard"];

Microsoft Office InfoPath Programming

[70]

 if (AddInStandardBar != null)
 {
 Office.CommandBarButton AddInConverterButton = (Office.
 CommandBarButton)AddInStandardBar.Controls.Add(
 Office.MsoControlType.msoControlButton, Type.Missing,
 Type.Missing, Type.Missing, true);

 // Button properties
 AddInConverterButton.Caption = "CustomTask Pane";
 AddInConverterButton.Visible = true;
 AddInConverterButton.Enabled = true;
 AddInConverterButton.Style = Office.MsoButtonStyle.
 msoButtonCaption;
 AddInConverterButton.Click += new
 Office._CommandBarButtonEvents_ClickEventHandler(
 openTaskPane_Click);
 }
 }
 }

10. Now, when you run the Visual Studio solution with InfoPath 2007, you can
preview the InfoPath form template, as shown in the following screenshot.

Chapter 2

[71]

Writing InfoPath add-ins
Microsoft Office InfoPath 2007 provides a variety of features and
flexibility for Office developers who want to enhance or customize
InfoPath forms. Among these options is the ability to use Microsoft
Visual Studio 2008 and VSTO to create an InfoPath 2007 application-level
add-in. This means that, by using the Microsoft Office InfoPath 2007
object model, you can create add-ins for InfoPath 2007. So, in this section,
we'll see how to create InfoPath add-ins using VSTO and Visual Studio
2008. InfoPath add-in is an option to add functionality to your InfoPath
that is not available by default. Creating your own custom controls is just
one way of extending the basic set of features included in InfoPath. By
using COM add-ins, you can provide functionality that is not included in
the core InfoPath application.

Creating an InfoPath add-in project using
Visual Studio 2008
In this section, we'll see a step-by-step procedure for creating an InfoPath add-in.
Although we'll create a specific add-in with this example, you can follow the same
basic steps to create your own add-ins.

1. Start Microsoft Visual Studio 2008.
2. On the File menu, click on New Project.
3. In the New Project dialog box, expand Visual C# project types.

Microsoft Office InfoPath Programming

[72]

4. Expand Office project types, and then select 2007, as shown in
following screenshot:

5. In the Templates pane, select InfoPath 2007 Add-in. Enter any desired
name in the Name box, and then click on OK. Now the solution for the
InfoPath 2007 Add-In has been created successfully, as shown in the
following screenshot:

Chapter 2

[73]

6. Right-click on the InfoPath add-in project solution, and select
Add | Windows Form from the shortcut menu.

7. Name the form that you are adding to your InfoPath add-in solution.
8. Right-click on the InfoPath add-in project solution, and select

Add | Class File from the shortcut menu.
9. Name the file NumericConvertor.cs.

Microsoft Office InfoPath Programming

[74]

10. Add Labels, Textbox, and Button controls to the windows form to create
the user interface for your number-to-word convertor. Number-to-word
converter is an example that has been included in this section to explain
the add-in. It converts the numbers (stored as digits) into words; this
functionality is not available in the InfoPath by default. The number-to-word
conversion code has been written inside the NumericConvertor.cs, which is
called for execution in the Windows forms added to your project. It appears
as shown in the following image:

11. Here's the code to append the custom button for our add-in to Microsoft
InfoPath 2007.

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Code to append the custom button we created to the standard
 toolbar
 if (this.Application.ActiveWindow != null)
 {
 Office.CommandBars AddInCommandBars = (Office.
 CommandBars)this.Application.ActiveWindow.CommandBars;
 Office.CommandBar AddInStandardBar =
 AddInCommandBars["Standard"];
 if (AddInStandardBar != null)
 {
 Office.CommandBarButton AddInConverterButton = (Office.
 CommandBarButton)AddInStandardBar.Controls.Add(
 Office.MsoControlType.msoControlButton, Type.Missing,
 Type.Missing, Type.Missing, true);
 // Button properties
 AddInConverterButton.Caption = "Convert Number";
 AddInConverterButton.Visible = true;
 AddInConverterButton.Enabled = true;

Chapter 2

[75]

 AddInConverterButton.Style = Office.MsoButtonStyle.
 msoButtonCaption;

 AddInConverterButton.Click += new
 Office._CommandBarButtonEvents_ClickEventHandler(
 openAddIn_Click);
 }
 }
 }
 // Click event for the button in tool bar
 private void openAddIn_Click(Office._CommandBarButton src,
 ref bool Cancel)
 {
 InfoPathAddIn NumberConverter = new InfoPathAddIn();
 // This will call the NumberConverter Add-In and it will be
 shown to the User
 NumberConverter.Show();
 }

The number-to-word converter add-in will be visible in the Microsoft Office InfoPath
2007, and will appear as shown in the following screenshot.

The number-to-word converter user interface appears as shown in the
following screenshot.

Microsoft Office InfoPath Programming

[76]

Let's continue the process and test the new functionality. Test the add-in by pressing
F5. Visual Studio will compile the project and launch InfoPath. The form opens in
Design mode, and you have no add-in. Click the Preview button.

You should see the Convert button on the far right side of the toolbar.
The functionality for the number-to-word conversion is written in the
NumericConvertor.cs file. But if you create your own add-in, the visual
result will depend upon the core requirements of your project.

InfoPath and SharePoint workflow
Microsoft has created an innovative product that can be used to satisfy most
enterprise collaboration needs. The solution is called Microsoft SharePoint, and
is a comprehensive document management system. Microsoft SharePoint is a
web-based document management system that has a variety of features
and functionalities that can enhance your collaboration style and improve your
business values. The term, SharePoint is commonly used to refer to Microsoft's two
products Windows SharePoint Services and Microsoft Office SharePoint Server.
Windows SharePoint Services 3.0 takes full advantage of Microsoft ASP.NET and
the core Microsoft .NET runtime.

Microsoft Office InfoPath is one of the most useful Microsoft Office tools when
combined with Microsoft SharePoint. Microsoft Office InfoPath has the ability to
publish InfoPath forms on a SharePoint web site. This in turn allows InfoPath forms
to be accessed from Internet Explorer, Firefox, Netscape, Safari, or mobile devices
using Form Services. Microsoft Office InfoPath is well integrated with Office Server
products such as SharePoint, so that you can build a Workflow solution for your
business needs. For most activities for creating InfoPath forms, it is much easier
to use InfoPath than designing ASPX pages. InfoPath forms also provide new
capabilities, such as built-in data validation.

The Microsoft Windows Workflow Foundation is built on a .NET Framework. This
is packaged with the .NET Framework 3.0 and the .NET Framework 3.5. It enables
developers to create workflow-enabled applications. There are four main parts to
Windows workflow:

Workflow designer
Activity model
Workflow runtime
Rules engine

•

•

•

•

Chapter 2

[77]

Workflow in InfoPath can be used to implement role-specific form actions, role-based
user features such as enabling forms, submitting emails, submitting to SharePoint
based on certain rules, and so on.

The InfoPath form library is the primary integration point between Windows
SharePoint Services and InfoPath. Microsoft InfoPath Forms Services is a server
technology built on Microsoft Windows SharePoint Services 3.0 as an ASP.NET 2.0
application. The user experience of filling out a form in a browser is similar to that of
filling out a form in InfoPath, but the purpose of this technology is to allow the user
to run an InfoPath form inside the browser. An important goal is to reduce licensing
costs for the customer and to increase business value.

Summary
This chapter has provided a complete view of Microsoft InfoPath 2007, and how it
can be enhanced using VSTO 3.0. This chapter highlighted the capabilities of VSTO
3.0 and Visual Studio 2008. Along the way, we saw the essentials of VSTO and the
InfoPath 2007 object model. By working with code in your InfoPath forms, we've
seen how you can perform data source manipulation. We have also seen how you
can use a custom Task Pane and InfoPath add-ins using the InfoPath 2007 object
model. The bottom line is that Visual Studio 2008 has made the InfoPath 2007
programming environment easier and faster to use.

Microsoft Office Word
Programming

Microsoft Office Word is the word processing software application released by
Microsoft Corporation in the1980s for Xenix Systems. Later, Microsoft launched
Word for the different platforms available in the market. Microsoft Office Word
is part of the Microsoft Office Tools package. Microsoft Office Word is one of the
most influential and comprehensive tools in the complete Microsoft Office software
package. Even though Microsoft Office Word is now packed with several features
and built-in functionality, the out-of-the-box Word features have never met the
real world needs of business requirements. Windows form controls and business
functionalities such as application-level solutions were unavailable until VSTO 2008,
and could only be programmed only with VB6 or C++ as shared add-ins using plain
COM technology.

Microsoft has finally given enough control and support in VSTO 2008, to enhance
and add functionality to Microsoft Office Word using .NET technology. VSTO
ships with a full set of managed APIs, which makes Word a normal programming
experience for .NET developers. Automating the creation of data-rich business
documents with Microsoft Office Word 2007 can be achieved with VSTO 3.0 and
Visual Studio 2008.

In this chapter, we'll discuss:

Word 2007 in Visual Studio, including how to create a Word solution in
Visual Studio 2008
Word solution—the object model and the object model functional area
Document-level and application-level solutions
Working with a Task Pane and creating custom Task Panes
The concept of an Action Pane and managing Action Panes

•

•

•

•

•

Microsoft Office Word Programming

[80]

Host items and host controls
Working with menus, toolbars and Ribbons
Data binding concepts in Word 2007

Using VSTO 3.0, we can develop Word 2007 solutions at two levels: at the document
level and at the application level.

For example, Microsoft Office Word 2007 automation is a great mechanism for
populating business documents (including invoices, estimates, and reports) with
data from backend systems. This type of repetitive task is typically performed by
salaried office workers. Using VSTO 2008 Microsoft Office Word and VSTO 3.0, you
can automate much of this routine work—making your workers available for more
important work.

We can automate the creation of data-rich business documents with Microsoft Office
Word 2007 using VSTO 3.0 and Visual Studio 2008. With automation and support
for VSTO, Microsoft Office Word 2007 is more programmable than ever before.
VSTO is the latest set of tools for programming Word.

Microsoft Office Word 2007 solutions2007 solutions solutions
In older versions of Word, such as Microsoft Office 97, only macros could be used to
enhance or automate a Word document. A macro is a series of commands that can be
edited using Visual Basic Editor or by writing a VB6 or C++ unmanaged add-in.

For instance, a Word 2003 macro can be used to format an entire document with the
same font and style. Macros are limited to scripting languages; new commands and
behaviors cannot be built using macros.

Microsoft finally transcended macros following the introduction of Office 2003 with
.NET platform support. For the first time, programmers were allowed to program
Word and other Office applications using .NET languages, including C# and
VB.NET. In VSTO 2008, VSTO's support for .NET programming languages finally
moves us fully beyond the limitations of macros. Let's take a look at what these two
levels mean.

•

•

•

Chapter 3

[81]

Application-level solutions versus
document-level solutions
VSTO 3.0 supports the creation of document-level solutions for Word, InfoPath,
and Excel. Document-level solutions provide a document pointing to very specific
tasks. The document-oriented approach can be used with documents in a uniform
template that needs to be managed inside a team or company without affecting the
application of the document that it resides in. For instance, a service business may
wish to automatically generate invoices based upon customer data pulled from an
SQL database.

An application object represents the whole application, whereas the document
object represents the single document. With the document object, a specific type of
document— in this example a programmatically created and filled-out invoice, is
required; no changes to the application are necessary.

VSTO 3.0 is capable of having an application-oriented approach for all of
the applications in the Office 2007 suite. You can implement a wide range of
functionalities and features to your Office application through add-ins.

The ability to create application-level solutions using .NET technology is one
of the key functionalities provided by the VSTO 3.0 for Office 2007 development.
An application-level solution is customization done specifically to suit the
application—in this case, Word 2007—and is available for all of the documents
used by this application. The Task Pane customization and Ribbon customization
are examples of application-level solutions that can be performed using VSTO.
These concepts are explained in detail later in this chapter. A Task Pane button
that generates our service business' invoice would appear in all instances of
Word and would create a new behavior for the Word application.

Creating document-level solutions
In this section, you're going to see a simple document-level customized solution
saying Hello world. This customization is specific to the document you've
customized; the Hello world message appears whenever the document is opened.
So every time you open this document, it displays the message. Even if you send
the same document to other users, and the user opens the same document on a
different machine running a different installation of Word 2007, the same message
will be displayed. This is because the solution is document-level, and it resides in
the document; the document being moved to a different location will not affect the
solution. If a new instance of Word 2007 is started with a blank document, the text is
not inserted.

Microsoft Office Word Programming

[82]

Let's create a Word 2007 document solution using Visual Studio 2008. You will
learn how the Startup and Shutdown events are used in the Word 2007 document
solution. The Startup event is raised after the document is run and the Shutdown
event is raised for each one of the documents, when the application domain, that the
code is loaded in, is about to unload.

1. Open Visual Studio 2008, to create a new Word 2007 Document
template project.

2. Select New project. Under Office select 2007 and here select Word 2007
Document and name the project according to your requirements. The
following image shows the Visual Studio 2008 project template dialog box:

3. Next, you need to select the document type and name the document for
your solution:

Chapter 3

[83]

4. The solution will be created with all of the supporting files for the
development of our Word solution. The newly-created Word 2007
document solution is displayed in the following image:

5. Write the program to customize the document in Microsoft Office Word 2007
inside the ThisDocument.cs file.

Microsoft Office Word Programming

[84]

We'll set up this solution to run upon startup and shutdown of Microsoft Office
Word 2007, using .NET programming. The ThisDocument.cs is the file where we
will be writing our business logic, or the customization code for our Word solution,
that you develop.

// Startup event for word application. Note the method signature
below—we'll see this alot.
// The Objects parameter indicates the sender and the event to be
received.
private void ThisDocument_Startup(object sender, System.EventArgs e)
{
 // We'll call a standard message box to show the text message to
 the document users
 MessageBox.Show("Welcome to Word 2007 Programming");
}

//Shutdown event for word application
private void ThisDocument_Shutdown(object sender, System.EventArgs e)
{
 // During document shutdown, we'll show a message to the users.
 // This is to show that you can do some operations during
 document shutdown.
 MessageBox.Show("Let's go back and explore more");
}

When making the move to Word 2007, dump everything you know about the UI
(User Interface). Everything has changed. You now have full freedom and control to
create modern solutions in Word 2007 using VSTO with Visual Studio 2008.

Publishing solution deployment
The ClickOnce deployment technology allows Windows-based applications to be
deployed and run with minimal user interaction. ClickOnce refers to an application
deployment and maintenance procedure in which you compile your solution and
publish it to a location available to your users. ClickOnce-deployed applications show
lower consumption of resources—they are installed per-user, not per-machine. No
administrator constitutional rights are required to install any of these applications.

Each ClickOnce application is isolated from the other, so that they do not affect other
applications. You have a wide range of options to configure solution deployment
manually or even automatically using wizards. Let's see the publishing of the process
for custom Office application using these options.

Deployment using Publish Wizard automates the tasks of specifying the deployment
settings. The wizard asks you to enter the path of the publishing folder and the
installation folder.

Chapter 3

[85]

1. Open Visual Studio 2008. From the menu select Build | Publish
WordDocument1.

2. In the Publish Wizard dialog box, enter the location for the deployment files
to be published, and then click Next.

Microsoft Office Word Programming

[86]

3. In the next step of the Publish Wizard, select From a CD-ROM or
DVD-ROM. By specifying CD-ROM or DVD-ROM, you're telling the
publishing wizard that the installation path is the same as the publish
path. Click Next.

4. The Publish Wizard displays the publish location and declares itself ready to
publish. Click Finish to publish the solution.

After you complete these steps, you can run the sample solution by opening
the WordDocument1.docx file. When it opens, you should be able to see the
customization that you have done in the document.

Working with objects and documents
As we get more efficient at developing solutions that use Microsoft Office Word,
we can interact with the objects provided by the Word 2007 object model's huge
number of methods, properties, objects, and events. Remember, an object model
is a framework for developing and supporting program component objects that
provide the underlying services of interface cooperation, life cycle management,
and event services.

The most important aspect of developing and automating Office applications is to
understand the object and the object model. Specifically, we have to look at how the
objects and the object model works. Before we move onto application-level solutions,
let's look at some basic Word 2007 objects. IntelliSense is Microsoft's implementation
of auto-completion in Visual Studio's IDE. This will help the developer to easily
access the objects, properties, and methods when programming.

When developing application-level solutions in Office 2007, you may
need to access the objects of the application at the application-level for
customization. If so, go ahead and create the project using the Word 2007
Add-in Project template, which is available in Visual Studio 2008. If the
requirement is just to access the objects at document-level, then all you
need to do is to create the project using the Word 2007 Document Project
template available in Visual Studio 2008.

Word 2007 objects are arranged in a hierarchical order, and the two main classes at
the top of the hierarchy are the application and document classes. An application
object represents the whole application while a document object represents a single
document. VSTO 3.0 extends several of these native objects into host items and host
controls that can be used in document-level customizations.

Chapter 3

[87]

For developing and automating Word 2007 solutions, we have to interact with and
program objects that are provided by the Word object model. The Word object model
can be accessed through the following main objects:

Application object
Document object
Range object
Selection object
Tables collection object

Application object
The Application object represents the Word 2007 application, and is the parent of
all of the other objects. You can use the Application object's properties and methods
to manage the Word 2007 environment.

// To access the Application object
// Here 'methodname' represents the method available in the
 application object.

 this.Application.methodname

There is a lot of overlap in the Word 2007 object model. The overlap exists because
there are multiple ways in which we can access the same type of object.

Document object
The Document object is one of the members of the Application object and is also
a member of the Selection object. This is one area where an overlap occurs in the
Word 2007 object model. By using the Document object you can manage independent
documents separately in the Word 2007 solution.

// One of the ways to access Document object
// Here 'methodname' represents the method available in the
 application object.

 this.Application.Documents.methodname

Range object
The Range object is the object that you would use when you want to work with a
range of spaces, borders, and so on, in Microsoft Office Word 2007. The Range object
represents a bordering area in a document. It includes non-printing characters such
as spaces, tab characters, and paragraph marks.

// One of the ways to access Range object
// Here 'methodorobjectname' represents the method available in the
 application object
 this.Application.ActiveDocument.Range.methodorobjectname

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Microsoft Office Word Programming

[88]

Selection object
The Selection object either represents the currently-selected area in our document,
or it represents the insertion point, if nothing in the document is currently selected. If
the requirement is to work with the active selection, you have to use the Selection
object. This shares many properties and methods with the Range object.

// A few ways to access the Selection object
// Access the Selection object through ActiveDocument object

 this.Application.ActiveDocument.Sections;

// Access the Selection object through ActiveWindow object

 this.Application.ActiveWindow.Selection;

Tables collection object
The Tables collection is a collection of Table objects that represent the tables in a
selection, range, or document. It is accessed via the construct Tables (Index), where
Index is the index number, which returns a single Table object. The index number
represents the position of the table in the selection, range, or document.

// Way to access Table Object

 this.Application.ActiveDocument.Tables[int IndexValue];

Working with key objects
Now that you've seen a simple Hello world application and some basic methods,
let's work out some of the underlying concepts of the Word 2007 object model, using
some key objects in Word 2007. It is not feasible to entirely describe the Word object
model in this section, but I'll try to make you comfortable with the most important
objects in the Word object model and the most frequently used methods, properties,
and events for these objects.

By using Word 2007, VSTO 3.0, and Visual Studio 2008, you can now apply
sophisticated concepts including looping through collections, editing texts,
working with range objects, prompting for information, and much more.

Inserting text in Word 2007 document
Inserting text in Word 2007 document can be achieved using Range objects and
Selection objects. There are methods available for inserting text inside the Word
2007 document. InsertAfter method inserts text at the end of the active range
or selection, whereas InsertBefore inserts text at the start of the active range or
selection. The example code for both these methods is as follows:

Chapter 3

[89]

// Using InsertBefore method inserts text
 this.Application.ActiveDocument.Content.InsertBefore("Text @ the
 Start - ");

// Using InsertAfter method inserts text

 this.Application.ActiveDocument.Content.InsertAfter(" - Text @
 the End");

The same insert text operation can be performed using the Selection object. The
following is sample code for this:

// Using Selection Object inserting text after the text

 this.Application.Selection.InsertAfter(" - Text @ the End");

// Using Selection Object inserting text before the text

 this.Application.Selection.InsertBefore("Text @ the Start - ");

Selecting text in a Word 2007 document
Selecting text content in Word 2007 document can be achieved using the Sentences
collection. By using the Range object, you can set the range of the text content to be
selected in Word 2007. The Select() method is used to select text in Word 2007; this
method is available in the Range object.

// Initializing the Range object
 Word.Range PacktRangeSelect;

// Check the sentence count
 if (this.Sentences.Count >= 1)
 {
 // Set the start and ent point has object
 object pktStartFrom = this.Sentences[2].Start;
 object pktStopHere = this.Sentences[5].End;

 // Assign the selection range
 PacktRangeSelect = this.Range(ref pktStartFrom,
 ref pktStopHere);

 // Select the sentence using Select() method
 PacktRangeSelect.Select();
 }
 else
 {
 return;
 }

Microsoft Office Word Programming

[90]

The following screenshot results after adding and executing the preceding code:

Creating a table in a Word 2007 document
Using the Table object we can programmatically create a table in Word. By using
the Range object, you can set the range for the table to be drawn in Word 2007. We
have a wide selection of options for setting the style property of the table that we
are creating. In the following code sample, we are going to create a table with four
columns and three rows:

// Object instance
// System.Type.Missing;Represents a missing value in the Type
 information. This field is read-only.
 object pktMissing = System.Type.Missing;

// Range on the application selection
 Word.Range PacktRangePresent = this.Application.Selection.Range;
// Using Table object add in the Word document
 Word.Table PacktTable = this.Application.ActiveDocument.Tables.
 Add(PacktRangePresent, 3, 4, ref pktMissing, ref pktMissing);

// Border propety of the Table we are creating
 Word.Border[] PacktBorder = new Word.Border[6];
 PacktBorder[0] = PacktTable.Borders[Word.WdBorderType.
 wdBorderLeft];
 PacktBorder[1] = PacktTable.Borders[Word.WdBorderType.
 wdBorderRight];

Chapter 3

[91]

 PacktBorder[2] = PacktTable.Borders[Word.WdBorderType.
 wdBorderTop];
 PacktBorder[3] = PacktTable.Borders[Word.WdBorderType.
 wdBorderBottom];
 PacktBorder[4] = PacktTable.Borders[Word.WdBorderType.
 wdBorderHorizontal];
 PacktBorder[5] = PacktTable.Borders[Word.WdBorderType.
 wdBorderVertical];

// Border formatting of the Table
// Loop through the border and set color for table
 foreach (Word.Border pktBorder in PacktBorder)
 {
 // Table line style propety
 pktBorder.LineStyle = Word.WdLineStyle.wdLineStyleTriple;
 // Table line color property
 pktBorder.Color = Word.WdColor.wdColorGray30;
 }

A table with gray border gets created, as seen in the following screenshot:

Microsoft Office Word Programming

[92]

Working with Word templates
A template in Word 2007 is a re-usable format for a document. Microsoft Office
Word 2007 templates contain sample content, formatting, and objects that can be
used to quickly and easily create a new document. Word 2007 has a number of new
key features such as content controls, targeted at developers, which will help you
build more elegant and robust solutions.

Some of the key features include:

XML data: Microsoft Office 2007 application provides wide support for XML
format data widely. Microsoft Office InfoPath is a good example, in that its
data is managed in the XML format.
XML mapping: Microsoft Office 2007 features are mapped with XML. For
example, the new Ribbon menu and the controls in the InfoPath are both
mapped with the XML.
Content control: Content controls are new controls that are used to manage
data inside a Word document.

If you regularly create documents that contain a bunch of specific formatting, but not
necessarily the same text, you can save yourself considerable time if you create Word
templates to be used as the basis of future documents. Word templates can contain
formatting, styles, headers, footers, and macros, in addition to dictionaries, toolbars,
and autotext entries.

•

•

•

Chapter 3

[93]

Microsoft Office Word 2007 has a wide variety of built-in templates for Office
application users. The previous image represents the existing templates available
in Microsoft Office Word 2007.

Actions Pane: Document-levelDocument-level-level
customization
The Actions Pane is the customizable part of the document that is put together in a
specific Microsoft Office Word 2007 document. Action Panes provide a convenient
way for developers to introduce custom UIs into Office applications. Custom Actions
Panes can be created and programmed using VSTO and Visual Studio 2008. You can
program for events in the document to show and hide controls on the Actions Pane,
and use HTML and CSS to create rich user interfaces inside a Word application in
order to provide the user with an easily-accessible layout.

The Custom Actions Pane is very different from the Custom Task Pane,
even though they sound very similar. The Custom Task Pane is associated
with application-level solutions, and the Custom Actions Pane is
associated with document-level solutions.

Let's create a simple example of a Custom Actions Pane. Here, you are going to add a
TextBox control to the Actions Pane and set the value for the TextBox property.

Creating a Custom Actions Pane for MicrosoftCustom Actions Pane for Microsoft Actions Pane for Microsoft
Office Word 2007
The following steps will create a Custom Actions Pane for Microsoft Office Word 2007:

1. Open Visual Studio 2008 to create a new Word 2007 Document
template project.

2. Select New Project. Under Office, select 2007 and then select the Word 2007
Document template and name the project as you wish.

3. Next, you need to select the document type, and name the document for
your solution.

4. The solution will be created with all of the required supporting files for our
development of the Word solution.

Microsoft Office Word Programming

[94]

5. Write the following program to create a document in Microsoft Office Word
2007, inside the ThisDocument.cs file.

 // Initializing the TextBox control to use in Actions Pane
 TextBox VSTOTextBox = new TextBox();

 private void ThisDocument_Startup(object sender,
 System.EventArgs e)
 {
 // Set the text property for the TextBox control
 VSTOTextBox.Text = "Say Hello to Actions Pane User";

 // Add the TextBox control to the ActionsPane
 ActionsPane.Controls.Add(VSTOTextBox);

 // On document load ActionsPane is shown
 ActionsPane.Show();
 }

6. The resulting Actions Pane is shown in the document pane, with the TextBox
control added to Actions Pane. The following screenshot shows the Actions
Pane in the document with added textbox control:

Managing the Actions Pane
Actions Panes are not simply sliding windows that hold some controls and objects.
Actions Panes consist of layers of containers. You can manage the position and size
of each Actions Pane in Word 2007. You can even manipulate the controls present in
an Actions Pane. Actions Panes support Windows form control to allow the design
of custom Actions Panes.

Chapter 3

[95]

The Actions Pane has several functions:

It allows you to add a contextual user interface to the document.
It provides you with the most flexible way of designing a custom user
interface for the document.
It takes care of user interface layout challenges, easily plugs into
the Microsoft Office user interface, and acts like a dockable toolbar.
It provides the ability to add Winform controls to the surface of a Word 2007
document. Winform controls are more flexible and interact with the Actions
Pane through Visual C# .NET code, instead of HTML controls.

The ActionsPane object supports Windows form controls, and you can change the
orientation of the Actions Pane programmatically.

The Actions Pane allows developers to host a Windows form control within the
document's actions pane, which is more flexible for interacting with them through
Visual C# .NET code when compared to HTML controls. The Actions Pane is built
on top of the Task Pane object, and is composed of three objects: Actions Pane object,
the Actions Pane controls, and Windows controls.

The following image represents the building blocks of the Actions Pane in
Word 2007:

Task Pane

Actions PaneActions Pane
Objects

Actions Pane
Controls

Windows
Controls

You can change the orientation of the Actions Pane. If the Actions Pane is docked
vertically or horizontally, then this will have an impact on the stack order of the
Actions Pane controls on the Actions Pane. VSTO 2008 provides access to the
document Actions Pane via the new ActionsPane object.

•

•

•

•

Microsoft Office Word Programming

[96]

Designing the Actions Pane
As we saw in the previous section, the Actions Pane is placed inside the document
Actions Task pane, which is hosted within the Word Task pane. To customize the
document Actions Task pane, you can use VSTO and Visual Studio's support for
adding controls and creating rich user interfaces in the Actions Pane.

The DateTimePicker control will insert the selected date in a Word document. Let's
add a DateTimePicker control to the Actions Pane:

1. Open Visual Studio 2008 to create a new Word 2007 Document
template project.

2. Select New Project. Under Office select 2007 and then select the Word 2007
Document template, and name the project as you wish.

3. Next, you need to select the document type, and name the document for
your solution.

4. The solution will be created with all of the required supporting files for our
development of a Word solution.

5. Write the program to show Actions Pane in Microsoft Office Word 2007,
inside the ThisDocument.cs file. You can add controls directly through the
code. The following is the code snippet to add controls:

 // Initializing the DateTimePicker control
 DateTimePicker _PacktDateTimePicker = new DateTimePicker();

 // Code to add control in Document Actions Pane
 private void ThisDocument_Startup(object sender,
 System.EventArgs e)
 {

 // Adding the DateTimePicker to the controls of the Actions Pane
 this.ActionsPane.Controls.Add(_PacktDateTimePicker);

 }

6. Next, to add the value selected from the DateTimePicker to the document
content, you need to work on the events of the DateTimePicker control.

 private void InternalStartup()
 {
 // ValueChanged Event registration in the InternalStartup of
 the application
 this. _PacktDateTimePicker.ValueChanged += new System.
 EventHandler(this. _PacktDateTimePicker_ValueChanged);
 }

 // ValueChanged event of PacktDateTimePicker
 private void PacktDateTimePicker_ValueChanged(object sender,
 EventArgs e)
 {

Chapter 3

[97]

 // Read content and insert the value after the paragraph
 this.Content.InsertParagraphAfter();

 // Insert value from the DateTimePicker select value
 this.Content.InsertAfter(PacktDateTimePicker.Value.
 ToString());
 }

Adding and executing the preceding code snippets, we get the following screenshot
as an output:

If you have a requirement to display a control on the Actions Pane in response
to some events, then you can achieve the same by writing the code for any event
available in Word 2007.

Application-level solutions
An application-level solution is one of the key functionalities provided by VSTO 3.0
for Office 2007 development using .NET technology. An application-level solution can
be achieved by creating application-level add-ins. As we have mentioned earlier, the
Task Pane customization and Ribbon customization are some of the application-level
solutions that can be performed using VSTO. Whatever customization you do to the
application will be in the Microsoft Office Word application, and this customization
will be specific to the application that you are customizing, and it will be available for
all of the documents used by this application.

Microsoft Office Word Programming

[98]

Task Pane: Application-level customization
The Microsoft Office 2007 system provides a wealth of interface enhancements that
make common tasks easier, and enhance user productivity. Microsoft has changed
the way in which developers can create form-based solutions, by making Office 2007
development more consistent with development for other Microsoft Office products.
In this section, we shall see how the Task Pane can be used to customize the user
interface of Microsoft Office Word 2007 by using VSTO.

Normally, in Microsoft Office Word, to show some additional information or
to gather user inputs from the user, it is necessary to use dialog boxes or forms.
These forms and dialog boxes have several disadvantages. Forms don't provide
programming language support for customization, and they appear inside the
document content area. Dialog boxes appear as pop ups, and many users don't
like this kind of interaction.

To overcome these disadvantages and deliver a rich user interface, Microsoft
has come up with the Task Pane feature in Microsoft Office Word. Task Panes in
Microsoft Office Word help you to get work done efficiently by bringing the tools
you need right up close to your work. A Task Pane functions like a toolbar in that
you can move it around on the screen, dock it horizontally or vertically, or detach
it and keep it floating on the screen.

What is the Task Pane?
The Task Pane is one of the new features that have been included in Microsoft Office
2003/XP, and now in Microsoft Office 2007. The Microsoft Office system introduces
custom task panes that give you the tools to provide the features and the information
that your customers need.

A Microsoft Office 2007 Task Pane can contain one or more pages, and each page
is broken up into sections. Microsoft Visual Studio Tools for the 2007 Microsoft
Office system has opened up the Task Pane to developers in a new way. It enables
developers to add Windows forms controls to the Task Pane, and interacts with the
active document through the host's object model.

The Task Pane is a dockable dialog window, that appears on the rightmost side of
the Microsoft Office Word application. You can also press the shortcut key Shift +
F7 to display the Search Task Pane. The Task Pane is context-sensitive, changing
depending on the action. For instance, when you select Custom Animation, the
Task Pane will change to show animation attributes and effects.

Chapter 3

[99]

The Task Pane provides additional advantages for Office users and even Office
developers. It provides a rich user interface, and hassle-free, quick access to the data
required by users. Developers have the ability to customize a Task Pane through
VSTO programming, and the ability to build a rich user interface using Windows
forms controls.

Let's build a custom Task Pane. We'll start by simply building a Task Pane with a
custom title.

1. Open Visual Studio 2008 to create a new Word 2007 Add-In template project.
2. Select a New Project. Under Office select 2007 then select the Word 2007

Add-In project template and name the project as you wish. The next image
shows the Visual Studio 2008 project template dialog box.

Microsoft Office Word Programming

[100]

3. The solution will be created with all of the supporting files for our
development of the Word solution. The next image shows the
newly-created Word 2007 add-in solution.

4. Write a program to show this Task Pane and a message on the startup of
Word 2007, inside the ThisAddIn.cs file. This code will display a message
in the title bar of the Task Pane of Word 2007.

 // Initializing the CustomTaskPane object of the current
 application
 private Microsoft.Office.Tools.CustomTaskPane
 PacktTaskPaneControl = null;

 // Iniatilizing the UserControl control
 UserControl PacktUserControl = new UserControl();

 // Loading the Task Pane on word start up
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Add the TextBox control to the CustomTaskPane
 // The PacktUserControl parameter sets the title to "Sample
 Search"
 PacktTaskPaneControl = this.CustomTaskPanes.
 Add(PacktUserControl, "Sample Search");

 // Set the CustomTaskPane to visible
 PacktTaskPaneControl.Visible = true;
 }

Chapter 3

[101]

Adding and executing the preceding code results in the following screenshot:

While Task Panes can be customized as per user requirements and
needs, Custom Task Panes give you a way to create your own Task
Pane that provides users with a well-known interface to access your
solution's features.

The Task Pane design also includes the three main design options:

Design templates that include HTML layouts for Task Pane
Color schemes that provide a way of creating a rich look and feel for
Task Panes
Animation schemes that let you do things such as adding animated files
through the Windows Form control or through HTML elements

Microsoft Visual Studio Tools for the 2007 Microsoft Office system opened up the
Task Pane to developers in a new way; it enabled developers to add Windows forms
controls to the task pane and interact with the active document through the host's
object model.

•

•

•

Microsoft Office Word Programming

[102]

Custom Task PaneTask Pane Pane
Custom Task Panes give us a way to create our own Task Pane and provide Office
users with a common interface to access our solution's features and functionalities.
Users can customize the Task Pane in Microsoft Office Word 2007 application, and
developers can customize Task Panes by programming in .NET using the Visual
Studio 2008 IDE. In this section, we will learn how to program Custom Task Panes.
Remember, as this is available to all Word 2007 users once installed, this is an
application-level customization for Microsoft Office Word 2007.

Using Visual Studio IDE, we can create a multi-featured, integrated user interface
with more interactive and easy-to-access features for Microsoft Office Word
application users. We can create the Task Pane and bind its controls to the
appropriate data sources, and make it interact with the host application. The
Microsoft Office 2007 system applications do not include a built-in interface for
showing and hiding your Custom Task Pane.

Creating a Custom Task Pane for Microsoft OfficeTask Pane for Microsoft Office Pane for Microsoft Office
Word 2007

1. Open Visual Studio 2008 to create a new Word 2007 Add-In template project.
2. Select New Project. Under Office, select 2007 and the select the Word 2007

Add-In project template and name the project as you wish.
3. The solution will be created with all of the supporting files for our

development of a Word solution.
4. Next, let's add the user control to be used in our Task Pane. Right-click on

the project, and select Add | User Control from the context menu. Name
the user control as UserControl1.cs, and click OK.

5. Now, in the Custom Task Pane, you are going to implement the calculator
for Microsoft Office Word. Add the labels, textboxes, and buttons required to
build the user interface for the calculator in the user control that you created
in the previous step.

Chapter 3

[103]

6. Write the program to display the Task Pane and the calculator in Microsoft
Office Word 2007, inside the ThisAddIn.cs file. Let's show the calculator in
the Task Pane of Word 2007.

 // Initializing the CustomTaskPane object of the current
 application
 private Microsoft.Office.Tools.CustomTaskPane
 PacktTaskPaneControl = null;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Add the calculator Usercontrol to the TaskPane
 PacktTaskPaneControl = this.CustomTaskPanes.Add(new
 UserControl1(), "Calculator for Word");

 // Make TaskPane visible
 PacktTaskPaneControl.Visible = true;
 }

7. After building the user interface, the user control appears as shown in
the following screenshot; the Custom Task Pane solution output shows
the calculator.

Microsoft Office Word Programming

[104]

Programming in Word in Word
When programming in Microsoft Office Word 2007, the tools and techniques
needed to program using C# for applications are VSTO 3.0, Visual Studio 2008, and
the .NET framework. So far, we've learned that by using VSTO 3.0, we can program
forms, controls, objects, and error handling, and have learned that VSTO 3.0 enables
rapid application development for Microsoft Office solutions. VSTO 3.0 gives
the Office developers the flexibility to create document-level customizations and
application-level add-ins by using Visual C#, .NET, and Visual Studio 2008.

Microsoft has come up with a variety of Word 2007- supported objects that are
exposed from the Office object model, allowing Office developers to program against
the exposed objects for the development and customization of Word 2007. In general,
while automating the Office applications using managed code, you program against
the primary interop Office assemblies.

A primary interop assembly is an exceptional, vendor-supplied assembly
that includes type definitions. A single primary interop assembly can
wrap more than one version of the same type of library.

In VSTO 3.0 solutions, you can write code against the host items in your VSTO
projects. The following table provides an overview of the assembly reference changes
in VSTO 3.0:

Before VSTO 3.0 full release After VSTO 3.0 full release
ServerDocument.dll ServerDocument.v9.0.dll

Microsoft.VisualStudio.Tools.
Office.dll

Microsoft.Office.Tools.v9.0.dll

Microsoft.VisualStudio.Tools.
Office.Common.dll

Microsoft.Office.Tools.Common.
v9.0.dll

Microsoft.VisualStudio.Tools.
Office.Word.dll

Microsoft.Office.Tools.Word.
v9.0.dll

This quick overview will help VSTO 3.0 developers to understand how the new
version differs from the previous version.

Word host items
Host items present a way in for our code in Visual Studio Tools for Office solutions.
Host items and host controls are the two classes that provide us the programming
models for the Visual Studio Tools for Office solution. This interacts well with Office
COM components, just as object model interaction takes place.

Chapter 3

[105]

The preceding image gives us an overview of the Word 2007 host items and the host
controls of the Word document. Each host item can host more than one host control
for the document. Each and every host control will expose events, objects, and data
binding properties for the Word 2007 customization.

Host items have a few programmatic limitations. At the document level, we can
have only one host item. That is, we cannot add programmatically to the document.
Also, document-level host items can be created only at design time. Host items have
designers, which act as the visual representation of the classes. Host items act as the
containers for the controls, such as host controls and Windows form controls. Host
items provide a means for displaying data by Word document class.

Word host controlshost controls controls
VSTO 3.0 extends data binding to Office solutions by enabling programmers to bind
data to objects such as bookmarks, ranges, and so on. These objects are called host
controls; they are controls that apply to a given application. Host controls are based
on native Office objects. Enriched host controls extend Office object models, offer
great flexibility in data binding, and enhance event model features. Host controls are
also called Office-specific controls.

Word host controls extend the host application (Word) object model to provide
new functionality or to improve programmability. Word host controls are part
of Word 2007 application customizations, and support both document-level and
application-level customizations.

Microsoft Office Word Programming

[106]

Let's see a sample program that will add bookmark controls to a Word 2007
document using bookmark host control.

1. Open Visual Studio 2008 to create a new Word 2007 Document
template project.

2. Select New Project. Under Office select 2007 and then select the Word 2007
Document template and name the project.

3. Next, you need to select the document type, and name the document for
your solution.

4. The solution will be created with all of the supporting files for our
development of the Word solution.

5. Write the program to add a bookmark control in Microsoft Office Word 2007,
inside the ThisDocument.cs file.

 // Adding bookmark control to document at runtime
 private void ThisDocument_Startup(object sender,
 System.EventArgs e)
 {
 // Initializing the Bookmark object
 Microsoft.Office.Tools.Word.Bookmark PacktParagraph;

 // Add the bookmark range and set the text value
 PacktParagraph = this.Controls.AddBookmark(this.
 Paragraphs[1].Range, "First Paragraph");

 // Add the paragraph text entry
 PacktParagraph.Text = "Hello World";
 }

Adding controls to a document
Adding controls to a document can be achieved in design mode and also
programmatically. Let's see how to add a control to the document solution
created, at run-time, and in a simple and elegant way.

In this section, we'll add ActiveX to our VSTO Word 2007 document solution.

ActiveX, in case you didn't know, is a component object model developed
by Microsoft for the Windows platform. ActiveX controls are used for
customized applications for gathering data, viewing different kinds of
files, and so on.

Chapter 3

[107]

Adding an ActiveX control to Microsoft Office Word
2007 programmaticallyprogrammatically
In this example, let's add an ActiveX calendar control to the document-level
customization. In an earlier part of this book, you have seen an example with
DateTimePicker. DateTimePicker is a Windows forms control, and the calendar
control that you are using in this example is an ActiveX control. This is to
demonstrate that ActiveX controls can be used for Office 2007 customization
when customizing using VSTO.

1. Open Visual Studio 2008, create a new Word 2007 Document project, and
name the solution as you desire.

2. Next, let's add the user control to be used for our solution. Right-click on the
project, and select Add | User Control. Name the user control UserControl1.cs
and click OK.

3. Next expand the Visual Studio Toolbox, right-click on the Toolbox and select
Choose Items from the context menu.

Microsoft Office Word Programming

[108]

4. In the Choose Toolbox Items dialog box, select the COM Components tab,
and then select the checkbox next to Calendar Control 12.0. This is a native
ActiveX control in the MSCAL.OCX DLL file.

5. After adding the Calendar Control 12.0 ActiveX control, you can see that the
control has been added to your toolbox for Visual Studio 2008, as shown in
the following screenshot:

Chapter 3

[109]

6. Now, a developer can drag-and-drop the ActiveX control into the
UserControl that we will add to our Word 2007 document solution.

7. In the ThisDocument class, declare an instance of the UserControl1
wrapper, with UserControl1 as a private field in the class:

 // Declare the instance of our UserControl
 private UserControl1 ManagedActiveXCtrl;

8. In the ThisDocument_Startup method, instantiate UserControl1 and its
ClickEvent, and add the control to the Actions Pane of our document. When
the user clicks on the date in the calendar, write the selected date value in the
Word work-space.

 // StartUp method of our Document in the solution
 private void ThisDocument_Startup(object sender,
 System.EventArgs e)
 {
 // Initializing the instance of the User control
 ManagedActiveXCtrl = new UserControl1();

 // Register the click event of the control
 ManagedActiveXCtrl.axCalendar1.ClickEvent += new
 System.EventHandler(axCalendar1_ClickEvent);

 // Add the control to the Actions Pane
 this.ActionsPane.Controls.Add(ManagedActiveXCtrl);
 }

 // Click event of our User Control
 private void axCalendar1_ClickEvent(object sender,
 EventArgs e)
 {

Microsoft Office Word Programming

[110]

 // Insert the selected date to the content
 this.Content.InsertParagraphAfter();

 // Insert the date after converted to string
 this.Content.InsertAfter(this.ManagedActiveXCtrl.
 axCalendar1.Value.ToString());
 }

9. We have successfully implemented a simple ActiveX control in the Word
2007 document solution through programming. Now, run the solution to see
the result. It will be similar to the following image. Note that date is added in
the current system date-time format.

Data binding to host controlshost controls controls
In VSTO 3.0, data binding to the host controls is one of the features that improves
Office 2007 programming. The new Visual Studio 2008 GUI data tools allow you to
bind data from an SQL Server database to host controls and Windows form controls
within your Visual Studio Tools for Office document.

Displaying XML data in XML Node host controls within a Word document is made
easy with the new Visual Studio environment—by connecting to data sources using
the data sources window or data access objects. First, let's have an architectural
overview of Office 2007 data access objects.

Chapter 3

[111]

Data Access Objects

Database

TableAdapter

DataSet

DataTable DataView

BindingSource

Bookmark Textbox ListObjects NamedRange

Data binding in Microsoft Office Word can be done in two ways:

Simple data binding
Complex data binding

Let's begin with simple data binding. In simple data binding, we'll bind data from
Microsoft SQL Server 2008 to the Microsoft Office Word 2007. Later, you will learn
the concept of complex data binding.

Simple data binding
In simple data binding, a control property is bound to a single data element. With the
exception of the XMLNodes control, all host controls support simple data bindings.

Office Word 2007 has a new type of control called content controls. Content controls
are containers within which specific types of content, such as dates, lists, pictures, or
text, can be placed. Let's work out a simple data binding in Word 2007 using Visual
Studio 2008:

1. Open Visual Studio 2008, to create a new Word 2007 Document
template project.

2. Select New Project. Under Office, select 2007. Then, select the Word 2007
Document template, and give the the project a name of your choice.

3. Next, you need to select the document type, and name the document for
your solution.

•
•

Microsoft Office Word Programming

[112]

4. The solution will be created with all of the supporting files necessary for the
development of our Word solution.

5. Within the document, draw a table with two rows and four columns, as
shown in the following screenshot:

6. Next, we need to add a data source to our Word 2007 document solution. In
Visual Studio 2008, under the Data menu select Add New Data Source.

7. The Data Source Configuration wizard will appear with Database, Service,
and Objects as your Data Source options.

8. Select Database, and click the Next button to proceed.
9. Now, the wizard will take you to the Choose Your Data Connection screen.

Click on the New Connection button to proceed.
10. On the New Connection screen, select the Data Source and Data Provider,

and test the connection. As soon as the testing process has completed, the
new connection information will be automatically added to your connection
drop-down list.

11. Next, save the connection string to the application configuration file,
enter the connection string that you want to appear in the application
configuration file, and proceed by clicking Next.

Chapter 3

[113]

12. To choose our database objects, refer to the following screenshot. In
this example, you have selected the table that was created to display
the profile information.

13. Click Finish. Now the Data Source created will appear in your Visual Studio
2008, as shown in the following screenshot:

Microsoft Office Word Programming

[114]

14. Depending upon the data items, the Data Source items will be mapped
to the corresponding controls by default. These mappings can be changed
to other controls later, as per our requirement. By default, all of the data
items in our Data Source are mapped to PlainTextContentControl. Next,
drag-and-drop the data item from the Data Source to the position in the
document where you want it to be displayed.

15. Let's change the default control for our data items. In our example, we'll
change the Professional data item from PlainTextContentControl to
Bookmark. To do this, select the data item, and a drop-down menu with a
button will appear on it. When you click on this button, you will see the list
of controls that are available to be mapped to our data item.

16. Run the solution to see the result. The first record in the database
will be displayed in the table inside the document, as shown in the
following screenshot:

Chapter 3

[115]

You can perform these kinds of data manipulations by using .NET programming.
Let's look at a simple example of data manipulation. Here, you will be protecting the
data shown in the Word document by setting it to locked, by using custom code.

Lock control is simply the process of setting the data to read-only,
protecting it from editing by another user.

Change the data item Contentid to be a Combobox control, and place this control in
the document. By using this drop-down box, we can jump to the data items that we
want to view inside the document. We will place the procedure to lock or unlock the
content control inside the Enter event of the content control.

Write a program to create a document in Microsoft Office Word 2007, in the
ThisDocument.cs file.

Let's see the code snippet to lock or unlock the content control of our data item that is
displayed in the document:

// Enter Event of Address Content Control
 private void ptAddressCtrl_Entering(object sender, Microsoft.
 Office.Tools.Word.ContentControlEnteringEventArgs e)
 {
 // Display the dialog window for the edit operation
 System.Windows.Forms.DialogResult myResult = new

Microsoft Office Word Programming

[116]

 DialogResult();

 // Message with Yes/No option to proceed
 myResult = MessageBox.Show("Do you want to UnLock?",
 "Edit Address?", MessageBoxButtons.YesNo,
 MessageBoxIcon.Question, MessageBoxDefaultButton.
 Button2, MessageBoxOptions.DefaultDesktopOnly, false);

 // If you select the no it will remain in lock mode and display
 the content
 if (myResult == DialogResult.Yes)
 ptAddressCtrl.LockContentControl = false;
 }

The results of addition of this code, can be seen in the following screenshot:

Complex data binding
In simple data binding, a single property of the control is bound to a single value in
the data model, for example, binding a value to the TextBox controls text property.
With complex data binding, you bind a control to a collection of data items. For
example, a datagrid/dataview control binds to a dataset that is a collection of
data items. This is the main difference between simple data binding and complex
data binding.

Complex data binding works best with new data management concepts and
technologies, and the most modern data management technology in .NET is LINQ
(Language Integrated Query). VSTO 3.0 supports LINQ for data management and
manipulation for the development of Office application solutions.

Chapter 3

[117]

What is LINQ?
LINQ is a programming model that introduces queries as a first-class concept
into any Microsoft .NET language. LINQ is all about queries, whether they are
queries returning a set of matching objects, a single object, or a subset of fields from
an object or a set of objects. LINQ is one of the key features of the Microsoft .NET
Framework 3.5.

LINQ queries can directly populate an object hierarchy, and parameterization
is automatic and type-safe, which is more extensive in application development.
In Visual Studio 2008, nearly all projects automatically include references to
System.Core and System.Xml.Linq, where most of the LINQ classes are defined.

Using LINQ in Word 2007 with VSTO 3.0 and Visual
Studio 2008

1. Open Visual Studio 2008, to create a new Word 2007 Document
template project.

2. Select New Project. Under Office, select 2007 and then select the Word 2007
Document template, and name the project as you wish.

3. Next, you need to select the document type, and name the document for
your solution.

4. The solution will be created with all of the supporting files required for the
development of our Word solution.

5. In the Startup event of the Word document, let's do some string
manipulation using LINQ.

6. In this simple demonstration, you are going to see how to query a string and
retrieve the number of words in the string. This is going to be achieved by
using LINQ and lambda expressions. A lambda expression is an unspecified
function that can contain expressions and statements, and all lambda
expressions use the lambda operator (=>), which is read as "goes to".

 private void ThisDocument_Startup(object sender, System.EventArgs
 {
 // String to store the title text
 String strText = "Beginning VSTO from PacktPub";

 // Use LINQ and implicit types to get the word count
 var qChars = from c in strText select c;
 int charCount = qChars.Count();

 // Use lambda expression to get the number of words.
 List<string> textWords = new List<string>(strText.
 Split(new char[] { ' ' }));

Microsoft Office Word Programming

[118]

 var qLetterWords = textWords.FindAll(x => (x.Length >= 2));
 // Insert in the word using selection objects
 this.Application.Selection.InsertAfter("\n Character Count:
 " + charCount + "\n Word Count: " + qLetterWords.Count);
 }

7. Run the solution from Visual Studio, to insert the text into the Word
document, as shown in the following screenshot:

Complex data binding works with new data management concepts and technologies.
VSTO 3.0 also supports LINQ for data management and manipulation for the
development of Office application solution. In the above demonstration for complex
data binding, using LINQ in Word 2007 document solution provides you with
a demonstration of how extensive VSTO 3.0 is, supporting the creation of Office
applications for every business need.

Customization
Microsoft Office Word 2007 is a powerful authoring tool that gives you the ability to
create and share documents. Advanced integration with Microsoft Office SharePoint
Server 2007 and new XML-based file formats make Microsoft Office Word 2007 the
ideal choice for building integrated document management solutions, by providing
users with an enterprise collaboration solution, managing the content and data in a
centralized system. Microsoft Office Word 2007 helps information workers to create
professional-looking content more quickly than ever before.

Chapter 3

[119]

Microsoft Office Word 2007 has a variety of new features that help users to create
and manage more specific documents for their needs. But Microsoft Office Word
2007 window can be confusing to users who are familiar with the previous versions
of Microsoft Office Word. Apart from the new features and functionality, Microsoft
Office 2007 has come up with customization options for most of the features,
including the Quick Access Toolbar, Shortcut Keys, AutoCorrect, Status Bar,
Menus, Watermark, Document themes, and the Ribbon.

To make life easier for your users, you can now extensively customize the Word
2007 interface. This customization can be achieved in two ways—first, through
the Microsoft Office Word 2007 user interface tools (which can be done even by
end-users) and, second, by programming in the .NET and VSTO platforms.

Ribbon menu
In Microsoft Office Word 2007, all of the, classic, menus have been replaced by
a new style of menu called the Ribbon. Microsoft describes the Ribbon in the
following way:

The Ribbon replaces the current system of layered menus, toolbars, and task panes
with a simpler system of interfaces optimized for efficiency and discoverability.

New users may find it a little harder to locate what they are looking for in the Ribbon
menu, because they are new to this style of interface. If you have existing Word
macros that use menus or toolbars, they will usually work in Office 2007; but the
implementation is not attractive.

The previous image shows the default Ribbon menu options in Word 2007. Even
though everyone seems to hate the Ribbon, there are many nice features. The Ribbon
menu is more advantageous than the old menu because it brings all of the features
of Office 2007 directly to the users. The Ribbon menu also brings a better visual
representation to the user, in order to identify the menu that they are searching for.
Although the Ribbon is larger than the old menu system, it doesn't seem to take
anymore UI space in the Word document, as the new Ribbon effectively replaces
the menu bar, floating palettes, and toolbars.

Microsoft Office Word Programming

[120]

You don't have any out-of-the-box features to enable the classic menu style in Word
2007, but we can achieve the same classic menu item in the UI and almost 100% of
the original functionality, by adding third-party add-in controls. Users can customize
the Ribbon by using the built-in features available, with a few more limitations. We
can customize, add control, and do more using the VSTO 3.0 runtime and .NET
programming at the document-level and the application-level of Word 2007.

Adding controls to menus
Developers have complete control over customizing the Ribbon in Word 2007. The
design around the Ribbon is fairly simple. It's a tabbed strip interface that contains
a set of groups. Each of these groups can contain a number of controls, with each
control potentially having a different type. These might be buttons, drop-down
menus, textboxes, and so on. These controls can be grouped in a nested fashion
within the definition, and the user interface will display it continuously.

Let's do some simple customization of the Ribbon menus in Microsoft Office
Word 2007. Follow the steps given below to add controls and customize your
Word 2007 menu.

1. Open Visual Studio 2008, to create a new Word 2007 Add-In
template project.

2. Select New Project. Under Office, select 2007, and then select the Word 2007
Add-In template, and give the project a name.

3. The solution will be created. Along with with all the supporting files
required for the development of our Word solution.

4. Next, let's add the Ribbon component to our solution. Right-click on the
project, and select Add | New Item... | Ribbon (Visual Designer) (A control
that provides a visual designer for basic Ribbon customization tasks) from
the context menu.

Chapter 3

[121]

5. Name the Ribbon component Ribbon1.cs, and then click OK.

Microsoft Office Word Programming

[122]

6. Expand the toolbox window in Visual Studio 2008, and you can find the
controls that support the Ribbon menu in Office customization.

7. Drag-and-drop the ToggleButton control that's required for the
development, to inside your group control in the Ribbon.

8. Right-click on the control, and then select Properties. In the Properties
window, select the Click event under Events. Following is the code for the
Click event of the ToggleButton in the custom Ribbon.

 // Click event of the ToggleButton
 private void toggleButton1_Click(object sender,
 RibbonControlEventArgs e)
 {
 // Inserting text in the active window using Range Object
 Microsoft.Office.Interop.Word.Range rngWordRange =
 Globals.ThisAddIn.Application.Selection.Range;

 // Set the text for the text properties
 rngWordRange.Text = "Microsoft - VSTO Book \n";
 }

Chapter 3

[123]

9. Run the solution from Visual Studio to see the output of the solution.

If there is a requirement to add or customize a Microsoft Office button (Office menu)
in Word 2007, we can do so in VSTO 3.0. Repeat steps one to five of the previous
operation, and then, follow these instructions:

1. Drag the button control and drop it inside the Office menu. The
following images represent the two controls that have been added
to the OfficeMenu item.

Microsoft Office Word Programming

[124]

2. Next, add the following code to the event of the button control. This is placed
in the Ribbon1.cs file of your solution

 private void button1_Click(object sender,
 RibbonControlEventArgs e)
 {
 // Show a message box!
 System.Windows.Forms.MessageBox.Show("Menu Item in Word
 2007");
 }

3. Run the solution from Visual Studio to see the output for the solution that is
similar to the following screenshot:

Chapter 3

[125]

Toolbar (Quick Access Toolbar)
In earlier versions of Word, developers could customize the toolbars. We could
even create our own custom toolbar by using custom coding. Even though the
Ribbon is quicker and easier than the classic toolbars, you may find yourself wishing
for certain commands that used to be immediately available on a toolbar and are
now hidden somewhere within the Ribbon. To satisfy Word 2007 users' need for
familiarity, and Word 2007 developers' desire to customize, Microsoft Office Word
2007 comes with the Quick Access Toolbar (QAT), which can be customized to suit
our needs. The following images represent the default view of the Quick Access
Toolbar in Word 2007:

Adding controls to toolbars
Users have the option to add often-used commands, or commands missing from the
Ribbon command buttons to the QAT. There are a few ways to do this. One option
is to right-click on the command button on the Ribbon, and choose Add to Quick
Access Toolbar from the shortcut menu (refer to the previous image.) You can also
access the QAT through coding by using VSTO 3.0 and .NET programming.

Microsoft Office Word Programming

[126]

Performing a range of actions on the 2007 Microsoft Office Fluent User Interface,
such as customizing the Quick Access Toolbar, requires only a few lines of XML and
programming code. The 2007 Microsoft Office Fluent UI replaces the current system
of layered menus, toolbars, and Task Panes with a simpler system that is optimized
for competence and discoverability. We can add components to the Office Fluent
Ribbon by using XML markup elements, and we can set the properties of these
components by using attributes. We can assign functionality to the components by
using any programming language supported by Microsoft Visual Studio 2008, such
as Microsoft Visual C#, and Microsoft Visual Basic.

From within VSTO 2008, there are two possible ways to customize the Office Fluent
UI Quick Access Toolbar. One way is modify an Office Open XML format file created
by one of the Microsoft Office applications that support the Office Fluent UI.

Another way is to use an add-in. The Office Fluent UI has been built by Microsoft so
that XML is capable of providing a hierarchical and declarative model for the user
interface. You add controls to QAT by using XML elements to indicate the type
of component.

Every Office developer must understand that when customizing the QAT,
it has to be started from scratch. We must set the startFromScratch
attribute to true:
<ribbon startFromScratch="true">

The XML markup for QAT document controls is provided here:

<customUI xmlns="http://schemas.microsoft.com/Office/2006/
 01/customui" onLoad="Ribbon_Load">
 <ribbon>
 <qat>
 <sharedControls>
 <button idMso="Copy" />
 <button idMso="Paste" />
 </sharedControls>
 </qat>
 </ribbon>
</customUI>

Chapter 3

[127]

The following table provides a quick overview of the child elements of the Quick
Access Toolbar in Office 2007:

Objects Need for the Object
control Generic control object that can represent other

objects such as a button, splitButton
button Built-in button control
separator Separator control

Summary
Microsoft has made the most extensive and, arguably, the most constructive set
of changes to Word 2007 over the previous versions. This chapter provided an
overview of Microsoft Office Word 2007, and how it can be enhanced using VSTO
3.0. This chapter brings out the best part for all Office application developers using
VSTO 3.0 and Visual Studio 2008.

Visual Studio 2008 has made the Word 2007 programming environment easier
and faster for business enhancement. You can still assign custom functions to any
command or macro through coding. You have learned the important objects of
Word 2007. You have learned the concepts of document-level and application-level
customization. You have learned, with examples, how to develop custom Actions
Panes and Task Panes.

Finally, we explored the use of controls in a Word document, and learned how
to add these controls at design time, bind them to data, and how to create them
dynamically at run time. You have learned simple and complex data binding in
Word 2007, with the help of sample code.

We then took a closer look at how to add host controls to a document host item,
both at design time and at run time. You have learned about menus and Ribbon
customization in Word 2007. We also looked at some of the special features of
VSTO 3.0 such as host items, host controls, and the Ribbon.

Microsoft Office Excel
Programming

Before we begin the chapter, let's see where you will stand once you complete reading
this chapter on Microsoft Office Excel programming. Beginning with programming
in Excel 2007 using VSTO 3.0 and proceeding with programming concepts, you
will learn how to manipulate data inside Excel. Later, you will learn the concepts
of workbook manipulation and worksheet manipulation, with code samples. When
programming in the Excel 2007, the object model plays an important role. You will
learn the most important and widely used objects, with the help of demonstrations.

In this chapter, you will learn:

Excel 2007 in Visual Studio 2008, including how to start an Excel solution in
Visual Studio 2008
Excel 2007 solution: the object model, and the object model functional area
Data and worksheet manipulation in Excel 2007
Data processing with Microsoft SQL Server 2008
Working with ranges, cell unions, named ranges, and so on
Working with host items in Excel, and charts
Customization using host controls in Excel
Working with regular expressions, formulae, and smart tags
Worksheet protection in Excel 2007

Word content control support in Excel is one of the key features that every Office
developer has to learn; all of these details will be dealt in this chapter more precisely.
Programmatically creating and managing Excel smart tags using VSTO and Excel
formulas will enhance your Excel with VSTO programming knowledge. Finally,
you will learn the regular expression and workbook protection concepts in
Excel programming.

•

•
•
•
•
•
•
•
•

Microsoft Office Excel Programming

[130]

Microsoft Office Excel is the most frequently-used Microsoft application and one of
the leading spreadsheet programs available. A spreadsheet program is a program
that uses a huge grid to display data in rows and columns. The spreadsheet program
can then be used to do calculation, data manipulation, and various similar tasks,
against this data.

Programming in Excel in Excel
Microsoft Office Excel is one of the powerful Office tools that provides
uncomplicated data management. It is loaded with features such as graphing,
charting, pivot tables, and calculation. Even though Excel is loaded with numerous
features for users, there may be some functionality that cannot be achieved by
using the standard Microsoft Excel environment. In Microsoft Office Excel 2007,
automation is a great mechanism for populating business documents (for example,
reports) with data from backend system. This can be achieved by using VSTO 3.0
and Visual Studio 2008. Microsoft Office Excel 2007 is more programmable than
ever before with support for Visual Studio Tools for Office.

VSTO is aimed at Microsoft Office Excel users who want to develop Excel-based
applications for other Microsoft Office Excel users. VSTO 3.0 is shipped with all
of the newly-enhanced Excel objects, including improved features for building
Microsoft Office based solutions.

VSTO 3.0 is loaded with new features, including support for Windows form controls
from within Microsoft Office tools customization. It provides the support for using
.NET frameworks, objects and classes for Microsoft Office tools customization. For
example, System.Data is the .NET frameworks object that can be used inside
the Excel solution to process database operations. This new feature is tightly
integrated with the Visual Studio 2008 IDE and gives you the comfort of design
time customization of Excel documents for data display and UI customization.

Similar to other Microsoft Office Tools, with Microsoft Office Excel 2007 customization
using VSTO 3.0, you have two levels of customization—document-level customization
and application-level customization. Document-level customization is a solution
created for document-level programming and is specific to the document that is
part of that particular solution. Application-level customization is a solution created
for application-level programming and is specific to the application, and therefore
common to all documents based on that application.

Chapter 4

[131]

In a simple Hello World demonstration, let's learn about the document level
customization approach. We'll step through a simple task, showing how to
create an Excel document that will display a Hello World message on startup.

Hello World example using Visual Studio 2008example using Visual Studio 2008 using Visual Studio 2008
1. Open Visual Studio 2008, and create a new Excel 2007 Workbook project.
2. Select New Project. Under Office select 2007, and then select the Excel 2007

Workbook template and name the project ExcelHelloWorld, as shown in the
following image:

Microsoft Office Excel Programming

[132]

3. The document selection dialog box is displayed. At this point, you need to
choose the template for your design. In this example, you select a new blank
template and click on the OK button. Refer to the following screenshot:

4. The solution will be created with all of the supporting files required for
our development of an Excel solution. Each solution is created with three
worksheets, with default names: Sheet1, Sheet2, and Sheet3 for the
workbook you're going to customize , as shown in the following image. The
number of sheets in a new workbook depends on the settings in Excel. The
following image also shows you the Excel-supported controls, placed on the
leftmost side of the Visual Studio 2008 toolbox panel. You can also see the
visual representation of Excel 2007 inside Visual Studio 2008.

Chapter 4

[133]

5. Let's write our Hello World message in a cell when we load the Excel 2007
document. Write the following code inside the ThisWorkbook.cs file.

 // The Startup event of workbook in our Excel solution
 // Startup event common to all Office application
 // Startup event will be fired at the start of the application

 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {
 // Creating the instance of active WorkSheet of Excel Document

 Excel.Worksheet AuthorWorkSheet = ThisApplication.ActiveSheet
 as Excel.Worksheet;

 // Get the range using number index through Excel cells
 by setting AuthorExchange to an Excel range object starting at
 (1,1) and ending at (1,1)

Microsoft Office Excel Programming

[134]

 Excel.Range AuthorExcelRange = ThisApplication.
 get_Range(AuthorWorkSheet.Cells[1, 1],
 AuthorWorkSheet.Cells[1, 1]);

 // Setting the value in the cell

 AuthorExcelRange.Value2 = "Hello! this is my VSTO program for
 Excel 2007";

 }

The following screenshot results after adding and executing the preceding code:

Manipulation
Microsoft Office Excel is one of the most comprehensive data management tools for
all kinds of users. It is a tool that can be easily understood and quickly learnt. The
most important feature of Microsoft Office Excel is its capability to manipulate data
from different sources.

Excel is one of the most powerful and user-friendly data manipulation applications.
You could use Excel to predict what's ahead for your business by creating detailed
financial forecasts. This powerful application has pivot table functionality that
allows you to drop in your data and rearrange it to answer all kinds of business
data analysis type questions. Excel helps you to build various useful analytical tools
such as your monthly sales report and product sales growth analysis more easily
and flexibly. Excel offers you formulae and functions that will help you to perform
complex financial calculations without any manual errors. Excel can provide you
with a graphical presentation of your business data by using charts and graphs.

Chapter 4

[135]

Want to know your growth levels for a specific product sales range? Check which
parts of your business are performing worse? The pivot table provides more
information from your business in depth.

Every application in this computer world works with data. The data can be in any
form and can belong to different sources. The key question for data management is
where to place the data. You manage the data in two ways: data managed outside
the program and data managed inside the program. The data managed outside
the program includes data managed in a database, a file system, and so on. Data
managed inside the program includes data in different worksheets within the
workbook, embedded images, and so on.

Data manipulationmanipulation
For users who are not satisfied with the default features in Microsoft Office Excel,
VSTO programming makes Excel more flexible, and provides a development tool
for the creation of custom solutions for data manipulation and data analysis.

Custom programming using VSTO 3.0 improves most part of the Microsoft Office
Excel solution. Custom programming using VSTO 3.0 provides a wide range of
advantages, including saving time by automating most of the frequently-performed
tasks, reducing errors due to manual operations, as well as enforcing standards
for data processing, and building the capability to seamlessly integrate with other
applications seamlessly.

Reading worksheet cellsworksheet cells cells
There are many ways to manipulate data and write to the cells in an Excel worksheet.
Let's see some of these ways.

We can read worksheet cells directly through the Cells property of the sheets, rows,
and columns, and can set a value directly by using the cell's row and column index.

Open Visual Studio 2008 and create a new Excel solution. Refer to the previous
example for full instructions of how to do this. Write the following code inside the
ThisWorkbook.cs file. In this sample explanation, you are writing data into the
worksheet by using the Cells object.

 // The Startup event of workbook in our Excel solution

 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {

 // Set value for Cells row and column index

Microsoft Office Excel Programming

[136]

 // Text data in Sheet1 cells

 Globals.Sheet1.Cells[3, 3] = "Set my data";

 }

We can also read the worksheet and write data to the cells by using the Range object.
In this case, you are creating the range and setting the text data for the range in the
Excel worksheet.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code inside the ThisWorkbook.cs file. In this demonstration, you read the worksheet
through the range of cells and set the value by reading through cell ranges.

 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {

 // Setting value in ExcelSheet cells through reading range object

 Excel.Range AuthorExcelSheetRange = Globals.Sheet1.Range["A2",
 "B2"];

 // Text data for the range A2 to B2

 AuthorExcelSheetRange.Value2 = "Set my data";

 }

Let's see a demonstration of how to read data from an external data file and display
this inside our Excel cells. In this demonstration, you will see how the data from the
text (.txt) file is displayed in the spreadsheet.

Opening a text file as a workbook using VSTO
We'll now see how to open the text file as a workbook by using VSTO and C#
programming. This saves time and makes the user more comfortable in accessing
the text file while processing the data. Open Visual Studio 2008 and create a new
solution, as before. Write the following code inside the ThisWorkbook.cs file:

 // Opening Text file as workbook
 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {
 // In the workbook objects, file path as parameter in Opentext
 property this.Application.Workbooks.OpenText(@"C:\TechBooks.txt",

 // Value 1 is, the row from which it will read data in the text
 file missing, 1,

Chapter 4

[137]

 // Checks for delimits for text parsing
 Excel.XlTextParsingType.xlDelimited,
 // Text Enumeration value
 Excel.XlTextQualifier.xlTextQualifierNone,
 missing, missing, missing, true, missing, missing, missing,
 missing, missing, missing, missing, missing, missing);

 }

Connecting with Microsoft SQL Server 2008
database
Microsoft SQL Server 2008 is a relational database management system developed by
Microsoft Corporation. Microsoft SQL Server is used to manage a huge volume of data
along with relation and Metadata information for this data. VSTO provides support for
manipulating the data from your database inside Excel using ADO.NET classes.

Microsoft SQL Server 2008

ADO.NET

Excel Object Model

Excel 2007

The preceding figure demonstrates how an Excel 2007 object is used to interact
with the Microsoft SQL Server database. Let's see how to connect with a relational
database management system, retrieve data from the database, and finally display
it in our Excel spreadsheet. This demonstration shows you how to retrieve data
from a Microsoft SQL Server 2008 database and place the retrieved data into the
worksheet cells.

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code inside the ThisWorkbook.cs file.

// Namespace for SQL Server connection
 using System.Data.SqlClient;

// Startup event of the workbook
 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)

Microsoft Office Excel Programming

[138]

 {

 // Opening SQL connection for Microsoft SQL Server 2008
 // WINNER the database server contains the databse called Products
 SqlConnection MySQLConnection = new SqlConnection(@"Data
 Source=WINNER;Initial Catalog=Products;
 Integrated Security=True");

 // Passing SQL command text
 SqlCommand MySQLCommand = new SqlCommand("SELECT * FROM
 Books", MySQLConnection);
 MySQLConnection.Open();

 // SQL reader to read through data from Database
 SqlDataReader MySQLReader = MySQLCommand.ExecuteReader();

 // Get the active sheet of current application
 Excel.Worksheet MyWorkSheet = this.Application.ActiveSheet as
 Excel.Worksheet;

 // Header for the columns set in the Value2 properties
 ((Excel.Range)MyWorkSheet.Cells[1, 1]).Value2 = "Book Name";
 ((Excel.Range)MyWorkSheet.Cells[1, 2]).Value2 = "Author Name";

 // Indexer

 int i = 2;

 // Loop to read through the database returned data
 while (MySQLReader.Read())
 {
 // Writing the data from the database table column BookName
 ((Excel.Range)MyWorkSheet.Cells[i, 1]).Value2 =
 MySQLReader["BookName"];

 // Writing the data from the database table column Author
 ((Excel.Range)MyWorkSheet.Cells[i, 2]).Value2 =
 MySQLReader["Author"];
 i++;
 }

 // Dispose the SQL command
 MySQLCommand.Dispose();

 // Closing SQL connection after using it.
 MySQLConnection.Close();

 }

The following screenshot displays data retrieved from Microsoft SQL Server 2008
database and the data being displayed in the worksheet cells.

Chapter 4

[139]

In this demonstration, you learned how to connect with a Microsoft SQL Server 2008
database in order to get data and populate it in a workbook. This is just one of the
ways of manipulating data outside of a workbook.

Worksheet manipulation
A Microsoft Excel file is represented in Excel as a workbook. Each and every
workbook can have many worksheets. Worksheets are individual data grids
within the workbook. The term 'worksheet' refers to the rows and columns of
the sheet on which you are working, whereas the term 'spreadsheet' refers to a
type of computer application.

VSTO helps you to manage Excel worksheets programmatically. Using VSTO's
programming support, you can access worksheets, add worksheets, delete
worksheets, and so on.

Open Visual Studio 2008 and create a solution with all the supporting files
for the development of the Excel solution. Write the following code inside the
ThisWorkbook.cs file. Here, you're going to add and delete worksheets within
your workbook, at runtime, using the VSTO programming.

Code for adding a worksheet to your workbook using VSTO:
 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {

•

Microsoft Office Excel Programming

[140]

 // Adding worksheet to our workbook
 Excel.Worksheet AuthorWorksheet = Sheets.Add (missing,
 missing, 1, missing) as Excel.Worksheet;

 }

Code for deleting a worksheet from a workbook using VSTO:
 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {
 // Code to delete the second sheet, referenced here as Sheets[2]
 because we have not turned off the DisplayAlerts flag, a
 warning message will be prompted before deleting
 which causes a stop in the automated solution that requires
 user input

 ((Excel.Worksheet)this.Application.ActiveWorkbook.
 Sheets[2]).Delete();

 }

The following screenshot shows how the code tries to delete the worksheet and how
the Excel application prompts the user to confirm the deletion.

•

Chapter 4

[141]

The following programming tip will help you to avoid seeing the delete warning
message that is displayed to the user when deleting the worksheet.

// To avoid warning messages
 this.Application.DisplayAlerts = false;

// The code will delete the second sheet.
 ((Excel.Worksheet)this.Application.ActiveWorkbook.Sheets[2]).
 Delete();

Worksheet manipulation helps document users to provide better data processing.
It is advantageous as it has easy access to data, builds better user interfaces, and
optimizes data processing for reports and other business needs.

Working with ranges
Microsoft Office Excel is loaded with a wide variety of objects that can be
programmed for using VSTO 3.0. The Range object is probably the most
frequently-used object in the Excel object model, and helps an Excel developer
to manipulate the cells and their data by using a referenced range. In this section,
we will see how to refer to cells programmatically, and manipulate the ranges of
data in Microsoft Office Excel 2007. The Excel range is a vital part of the Excel
application. A range may correspond to a logical relationship between cells.

The following sample program explains how to read the cells of a worksheet by
using the Range object, and how to format the background color of a range of cells.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code inside the Sheet1.cs file.

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {

 // Reading Excel using Range object
 Excel.Range AuthorRange = Globals.Sheet1.Range["A1", "C5"] as
 Excel.Range;

 // Formatting the selected Range with autocolor format
 AuthorRange.AutoFormat(Excel.XlRangeAutoFormat.
 xlRangeAutoFormatColor1, true, false, true, false,
 true, true);

 }

Microsoft Office Excel Programming

[142]

Adding and executing the preceding code results in the following screenshot:

Cells
In any spreadsheet program, such as Microsoft Office Excel, each rectangular box
is referred to as a cell. A cell is the intersection point of a column and a row inside
the spreadsheet. Using VSTO, you can manipulate the cells in the worksheet for
processing data in the worksheet. You can apply formulas, add smart tags, and
merge and format cells, depending on conditions.

In the following example, you will see how to merge a cell in the worksheet by using
the Range object, and also how to use the copy operation by using the Range object in
the Excel object model.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code inside the Sheet1.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {

 // Merging the cell of provided range using cell ranges
 Globals.Sheet1.get_Range("A1:A5,B1:B5",
 missing).Merge(missing);

 // Copy the range of cells and put in another range of cell
 Globals.Sheet1.Range["C5", missing].Copy(Range["D5",
 missing]);

 }

Chapter 4

[143]

As we can see in the following screenshot, we merged two cells and copied the
contents of the cell C5 to cell D5.

Unions
A combination of ranges has to be treated as single range, and that range is referred
to as the Union. In other words, the display of a group of ranges in a combined
format is called a Union. Unions make it easy for the developer to process data
inside a worksheet. Generally, a Union is used to calculate a subtotal.

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code inside the Sheet1.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {
 // Creating Range object instance
 Excel.Range AuthorRange1 = this.Application.get_Range("B5",
 missing);

 // Creating another Range object instance
 Excel.Range AuthorRange2 = this.Application.get_Range("C5",
 missing);

 // Using Union method of current Excel
 Excel.Range AuthorRange3 = this.Application.
 Union(AuthorRange1, AuthorRange2, missing, missing,

Microsoft Office Excel Programming

[144]

 missing, missing, missing, missing, missing, missing,
 missing, missing, missing, missing, missing, missing,
 missing, missing, missing, missing, missing, missing,
 missing, missing, missing, missing, missing, missing,
 missing, missing);

 // Writing the new range using the union operation
 AuthorRange3.Value2 = "Programming VSTO Book";
 }

Named ranges
Named ranges are used as replacements for the columns of numbers in Excel
spreadsheet. You can use a more indicative name to refer to a column of numbers.
Such ranges are known as Named ranges.

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code inside the Sheet1.cs file:

 // Instance of the NamedRange Class
 Microsoft.Office.Tools.Excel.NamedRange AuthorNamedRange = null;
 private void Sheet1_Startup(object sender, System.EventArgs e)
 {
 // Setting range of cells from E1 to G1
 Excel.Range AuthorRange = this.Range["E1", "G1"];

 // Setting the range name for cells
 AuthorNamedRange = this.Controls.AddNamedRange(AuthorRange,
 "AuthorCells");

 // Updating the values in the cell
 AuthorNamedRange.Value2 = "VSTO - My First Book";
 }

Chapter 4

[145]

The following screenshot shows the results of adding and executing the
preceding code:

Excel host items
Excel host items are classes that offer programming models for developing
document-level solutions using VSTO. Document-level customization uses a set of
host items that includes Microsoft.Office.Tools.Excel.Worksheet. Worksheet
host is one of the host items that acts as a container for controls such as Windows
form controls.

Host Items

Worksheet

Host Control

Events

Objects Data Binding

Microsoft Office Excel Programming

[146]

In Excel, you have three types of host items:

Workbook
Worksheet
ChartSheet

In every Excel solution, there is one workbook host item and a separate worksheet
host item for each worksheet in the workbook. All of these host items are folded
in the native Excel workbook, Excel worksheet, and the Excel ChartSheet, which
together constitute the Microsoft.Office.Interop.Excel namespace.

The workbook host item
A workbook host item is created whenever you create an Excel 2007 workbook
project using Visual Studio 2008, that is, document-level customization for Microsoft
Office Excel. Visual Studio Tools for Office, by design, creates a workbook host item
within the project solution. When programming, you need to reference the workbook
using the ThisWorkbook object. The workbook host item is a workbook object model,
which is available in the VSTO Excel object model.

There are numerous events exposed in the workbook host item. You will see
some of these events in the sample code below. In this example, you're going to
see the sample work for the NewWorkbook event in an Excel workbook. First let's
see the NewWorkbook event for the workbook host item. Here, let's register the
NewWorkbook event in the workbook solution. Within Office 2007 tools such as Excel
2007 and other Office applications, there is an option to handle events by using
the Event Manager. The Event Manager provides mechanisms by which forms or
documents can provide and respond to events. The Event Manager is called from the
InternalStartup() method which in turn controls the events that are registered
when a document is initially loaded. Each captured event can be registered within
the InternalStartup() method, and then the delegates can be constructed to
encapsulate a reference to a method that handles the events' custom code.

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code inside the ThisWorkbook.cs file:

 private void InternalStartup()
 {
 // Explicitly cast the application object to the application
 events
 ((Excel.AppEvents_Event)ThisApplication).NewWorkbook += new
 Microsoft.Office.Interop.Excel.
 AppEvents_NewWorkbookEventHandler(ThisWorkbook_
 NewWorkbook);

•

•

•

Chapter 4

[147]

 // Visual Studio generated
 this.Startup += new System.EventHandler(ThisWorkbook_Startup);
 this.Shutdown += new System.EventHandler(ThisWorkbook_
 Shutdown);
 }

 // NewWorkbook event in the Excel solution
 public void ThisWorkbook_NewWorkbook(Microsoft.Office.
 Interop.Excel.Workbook AuthorWorkBook)
 {
 // Reading from Excel using the Range object
 Excel.Range AuthorRange = Globals.Sheet1.Range["B1", "D5"] as
 Excel.Range;
 // Formatting the selected Range with autocolor format
 AuthorRange.AutoFormat(Excel.XlRangeAutoFormat.
 xlRangeAutoFormatClassic3, true, false, true, false, true,
 true);
 // Messagebox after range of cells formatted
 MessageBox.Show("New workbook name: " + AuthorWorkBook.Name);
 }

Now, let's see the WorkbookOpen event of the workbook host item. Here, let's
register the WorkbookOpen event in the workbook solution.

 private void InternalStartup()
 {
 // Explicitly cast the application object to the application
 events
 ((Excel.AppEvents_Event)ThisApplication).WorkbookOpen += new
 Microsoft.Office.Interop.Excel.
 AppEvents_WorkbookOpenEventHandler(ThisWorkbook_WorkbookOpen);

 // Visual Studio generated
 this.Startup += new System.EventHandler(ThisWorkbook_Startup);
 this.Shutdown += new System.EventHandler(ThisWorkbook_
 Shutdown);
 }

 // Open event of Workbook
 public void ThisWorkbook_WorkbookOpen(Microsoft.Office.
 Interop.Excel.Workbook AuthorWorkBook)
 {
 // Messagebox shows the name of the file being opened
 MessageBox.Show("You are opening workbook name: " +
 AuthorWorkBook.Name);
 }

Microsoft Office Excel Programming

[148]

The worksheet host item
A worksheet host item is the worksheet in the Excel workbook. You can have more
than one worksheet in your workbook. This is an object that exposes events and
works as a holder for components. You can add Windows forms controls to the host
item, just as you would add them to your Windows forms. Worksheets are the key
components of any kind of Excel solution.

The following example will show how to program for the Change event of the cells
in the Excel worksheet. Open Visual Studio 2008 and create a new solution, as before.
Write the following code inside the ThisWorkbook.cs file. This will register the
Change event in the worksheet host item's .cs file:

 // Visual studio generated InternalStartup()
 private void InternalStartup()
 {
 // Register your Change event
 this.Change += new Microsoft.Office.Interop.Excel.
 DocEvents_ChangeEventHandler(Sheet1_Change);
 }

The following code should be placed inside the Change event of the worksheet
host item:

 private void Sheet1_Change(Excel.Range AuthorCellPoint)
 {
 // Reading the current context of cell which has been changed
 string AuthorCellChanged = AuthorCellPoint.
 get_Address(missing, missing,Excel.XlReferenceStyle.xlA1,
 missing, missing);

 // Message displaying the changed cell address
 MessageBox.Show("The Cell " + this.Name + " : " +
 AuthorCellChanged + " is changed.");

 }

Chapter 4

[149]

Once the code is executed, you'll get a confirmation message in a message box, as
shown in the following screenshot:

The ChartSheet host item host item
A ChartSheet host item is a worksheet in an Excel workbook that presents
information in the form of charts and graphs. The ChartSheet host item contains
only charts, and exposes some events. You cannot add any controls inside the
ChartSheet host item even though it is a worksheet in an Excel workbook. The
ChartSheet host item works as a holder for components.

In a document-level customization project, you cannot create host items at run
time. Another limitation is that when you create a new worksheet host item at run
time using the add method, you get a native Microsoft.Office.Interop.Excel
worksheet object rather than a Microsoft.Office.Tools.Excel worksheet host
item. There are numerous events exposed in the ChartSheet host item. You will see
some of these events in the following sample code.

Let's see a demonstration of the MouseUp event of the ChartSheet host item.

Microsoft Office Excel Programming

[150]

Open Visual Studio 2008 and create a new solution, as usual. Right-click on the
ExcelWorkbook.xlsx file of your Excel 2007 solution in the Solution Explorer, and
select Add New Excel Chart.

In the Chart.cs file, you can program your functionality. In this example, let's write
a code for the MouseUp event in the ChartSheet host item:

 // MouseUp event registration in the Chart Host item.
 private void InternalStartup()
 {
 this.MouseUp += new Microsoft.Office.Interop.Excel.
 ChartEvents_MouseUpEventHandler(Chart4_MouseUp);
 }

 private void Chart4_MouseUp(int Button, int Shift, int x, int y)
 {
 // Set the constant value for range of cells
 Globals.Sheet1.Range["B2", "B4"].Value2 = 15;
 Globals.Sheet1.Range["C2", "C4"].Value2 = 18;

 // Adding the sheet1 cells as data source
 this.SetSourceData(Globals.Sheet1.Range["B2", "C4"],
 Excel.XlRowCol.xlColumns);

 // Chart display type
 this.ChartType = Excel.XlChartType.xlConeColStacked100;

 // Message to display the mouse moved
 MessageBox.Show("Your clicked at X-axis: " + x.ToString() + "
 and Y-axis: " + y.ToString());
 }

The following screenshot shows the results of adding and executing the
preceding code:

Chapter 4

[151]

The Excel host items are loaded with many features that help Office developers to
build optimized Excel solutions. Even though the Excel host item has many features,
it has a few drawbacks when using Excel host items for programming.

Excel host controlshost controls controls
The member variables of the base classes that are created when you add bookmarks,
named ranges, list objects, and so on to Excel are called as host controls in the Excel
object model. VSTO has improved a number of objects in the Excel 2007 object
model, such as the capability to bind data to an object. You can also expose the
object's events. These objects are called Excel host items and Excel host controls.
Microsoft .NET-friendly classes, which are built on top of the native Office objects,
are meant to be host controls. Some Office developers refer to these controls as the
content controls of Excel. These controls provide you with a wide variety of data
formatting, and give fine development control to developers, in order to provide
better presentation of data for Excel users.

In general, host controls have some basic functionality, as Office objects are based on
some enhanced features, such as richer event models and data binding capabilities.
The host controls can be added to and deleted from your Excel documents
programmatically. Host controls are of the type Microsoft.Office.Tools.Excel and
the corresponding native objects are of the type Microsoft.Office.Interop.Excel.

Microsoft Office Excel Programming

[152]

The following Excel host controls are available in the Excel object model:

Chart control
ListObject control
NamedRange control
XMLMappedRange control

Chart control
The Chart control is the Chart object of the object model. The Chart control
can process simple data binding. The Chart control exposes events to do more
interactive operations over the control. An Excel Chart object is loaded with a large
set of options, which will give the Office developers more flexibility in displaying
data dynamically. Some of the key requirements that can be achieved though VSTO
Excel objects are addressed here for your reference. It is possible for the Excel Chart
object to create, destroy, and recreate operations dynamically.

The Excel Chart control has more events, in order to simplify interaction with
users. Event procedures in Microsoft Office Excel 2007 have diverse levels of control
and influence. Excel developers have to note that event procedures in an Excel
worksheet's code unit detect only events in the Excel worksheet, whereas event
procedures in a workbook's code unit can catch events that occur in all of the sheets
within the workbook.

Let's see a small example that shows how to read the range of cell values and
dynamically generate a chart inside the Excel worksheet.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code in the Sheet1.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {

 // Chart control object
 Microsoft.Office.Tools.Excel.Chart AuthorBookInfo;

 // Chart control properties to display
 // parameters are chart display properties
 AuthorBookInfo = this.Controls.AddChart(75,90,550,150,
 "BookReport");

 // Type of chart displayed based on the data
 AuthorBookInfo.ChartType = Excel.XlChartType.
 xlCylinderBarStacked;

 // Set the constant value for range of cells
 Globals.Sheet1.Range["B1", "B5"].Value2 = 82;
 Globals.Sheet1.Range["D1", "D5"].Value2 = 83;

•

•

•

•

Chapter 4

[153]

 // Gets the cells that define the data to be charted.
 Excel.Range AuthorChartRange = this.get_Range("B1", "D5");

 // Adding data source to the chart control
 AuthorBookInfo.SetSourceData(AuthorChartRange, missing);

 }

The following screenshot shows the results of adding and executing the
preceding code:

The ListObject controlListObject control controlcontrol
ListObject is a control that holds the data as a list that exposes events. The
ListObject control has the capability to perform complex data binding with
different data sources. The ListObject control helps you to build a formatted
visual data representation for the user. Let's take a look at an example:

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code in the Sheet1.cs file:

 private void Sheet2_Startup(object sender, System.EventArgs e)
 {
 // ListObject is initialized
 Microsoft.Office.Tools.Excel.ListObject AuthorBookListObject;

 // Adding the ListObject control to the sheet
 AuthorBookListObject = this.Controls.AddListObject(this.

Microsoft Office Excel Programming

[154]

 get_Range("B3:F9", missing), "AuthorBooksReport");

 // Setting new style for ListObject
 AuthorBookListObject.TableStyle =
 Excel.XlTableStyleElementType.xlWholeTable;
 }

As we can see in the following screenshot, we have added the ListObject control
and we have set a new style for it.

The NamedRange controlNamedRange control control
VSTO provides a new NamedRange control , which is used for representing named
ranges in an Excel worksheet. Alternatively, you could say that the NamedRange control
is the control in which a range of cells will have a unique name for identification
purposes. When drawn onto a range of cells in the worksheet, the control creates a
NamedRange object at the selected location. The NamedRange control exposes events,
and has the capability to bind with data. The range is nothing but a collection of cells in
the spreadsheet, that can be used to provide formatting and data binding.

Open Visual Studio 2008 and create a new solution, as usual. Write the following
code in the Sheet1.cs file:

 private void InternalStartup()
 {
 // BeforeDoubleClick event of the sheet
 this.BeforeDoubleClick += new Microsoft.Office.Interop.Excel.

Chapter 4

[155]

 DocEvents_BeforeDoubleClickEventHandler(
 Sheet1_BeforeDoubleClick);
 }

 private void Sheet1_BeforeDoubleClick(Microsoft.Office.
 Interop.Excel.Range AuthorRange, ref bool Proceed)
 {
 // Setting the value in the cell
 Globals.Sheet1.Range["B2", missing].Value2 = "Buy VSTO Book";

 // Formatting the color for the cell value
 Globals.Sheet1.Range["B2", missing].Font.Color =
 System.Drawing.ColorTranslator.ToOle(System.Drawing.Color.
 DarkGreen);

 // Formatting the font style for the cell value
 Globals.Sheet1.Range["B2", missing].Font.Bold = true;
 }

The XMLMappedRange control
The XMLMappedRange control supports simple data binding such as binding to a
single data field. The Microsoft.Office.Tools.Excel.XMLMappedRange control
can use the same formatting that you apply to a Microsoft.Office.Interop.
Excel.Range.

The SelectionChange eventSelectionChange event eventevent
The SelectionChange event is raised when the cell related to the attribute is
selected or deselected. To perform SelectionChange event registration in the Excel
worksheet host item, open Visual Studio 2008 and create a new solution, as before.
Write the following code in the Sheet1.cs file:

 private void InternalStartup()
 {

 this.SelectionChange += new Microsoft.Office.Interop.Excel.
 DocEvents_SelectionChangeEventHandler(
 Sheet1_SelectionChange);

 }

 private void Sheet1_SelectionChange(Excel.Range AuthorCellPoint)
 {

 // Reading the address of the cell selected
 string AuthorCellSelection = AuthorCellPoint.
 get_Address(missing,missing, Excel.XlReferenceStyle.xlA1,
 missing, missing);

Microsoft Office Excel Programming

[156]

 // The selected cell address is updated in a cell
 Globals.Sheet1.Range["B2", missing].Value2 =
 AuthorCellSelection;

 }

The following screenshot shows the results of adding and executing the
preceding code:

Creating Excel smart tags with VSTO
Smart tags are intended to identify particular data and then provide the action
options available based on the data type identified. The actions are available via
a button that becomes visible close to the cell that contains the data. The button is
displayed when the cell is activated, or whenever you move the mouse pointer over
the cell.

Smart tags are one of the most useful features that have been enhanced in VSTO
3.0. VSTO smart tags are much easier to use and easy to understand. You can easily
customize the actions more strongly than with standard texts. Another good feature
is that you have access to the Range object of the standard texts.

Chapter 4

[157]

By default, smart tag functionality is turned off in Microsoft Office Excel 2007. VSTO
smart tags can be used only in document-level projects for Excel 2007.

First, you need to turn on the smart tag recognition functionality. To do this, execute
the following procedure.

Open Visual Studio 2008 and create a new solution, as usual. The following is the
example code for adding smart tags using VSTO in the Excel solution. Add this code
to the Sheet1.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {
 // Adding the NamedRange for cells
 Microsoft.Office.Tools.Excel.NamedRange AuthorRange1 =
 this.Controls.AddNamedRange(this.Range["B2", missing],
 "AuthorRange1");

 // Enabling SmartTag option in the workbook
 Globals.ThisWorkbook.SmartTagOptions.EmbedSmartTags = true;

 // Enabling SmartTag recognizer
 Globals.ThisWorkbook.Application.SmartTagRecognizers.
 Recognize = true;

 // Applying formula, MSFT is the Stock Quote for Microsoft
 Corporation
 // The SmartTag for recognizing stock symbols
 AuthorRange1.Formula = "MSFT";

 // SmartTags added to the action
 Excel.SmartTag AuthorSmartTag1 = AuthorRange1.SmartTags.
 Add("urn:schemas-microsoft-com:
 smarttags#StockTickerSymbol");

 Excel.SmartTag AuthorSmartTag2 = AuthorRange1.SmartTags.
 Add("urn:schemas-microsoft-com:smarttags#list");
 }

Microsoft Office Excel Programming

[158]

The following screenshot shows the results of adding and executing the
preceding code:

Excel has numerous built-in options for recognizers, which can be disabled and
enabled as per the users' needs. In addition to this, VSTO offers an option to create
and manage document-level smart tags. When creating smart tags using VSTO, first
create the instance of the SmartTag class and provide the caption name and unique
identifier for your smart tag. Using the methods and properties, you can precede the
smart tag creation.

Excel formulaeformulae
Microsoft Office Excel formulae allow you to execute calculations on the data entered
in the spreadsheet cells. Using a formula is a method of performing calculations that
rely on a recognized approach. VSTO helps Office developers to automate Excel
solutions with formulae for calculation in the cells of the spreadsheet.

Formula is a property of the NamedRange control in the Microsoft.Office.Tools.
Excel object. If the NamedRange control contains a formula, the Formula property
returns the formula as a string.

Let's see an example of multiplying a range of cell values, and displaying the results
in the assigned cell. Open Visual Studio 2008 and create a new solution, as usual.
Write the following code in the Sheet1.cs file:

Chapter 4

[159]

 private void Sheet2_Startup(object sender, System.EventArgs e)
 {

 // Range of cell for calculation
 Microsoft.Office.Tools.Excel.NamedRange AuthorCellRange1 =
 this.Controls.AddNamedRange(this.Range["B1", "B2"],

 "AuthorNamedRange1");

 // Cell range to display the calculated result
 Microsoft.Office.Tools.Excel.NamedRange AuthorCellRange2 =
 this.Controls.AddNamedRange(this.Range["B3", missing],

 "AuthorNamedRange2");

 // Default value for the cells
 AuthorCellRange1.Value2 = 10;

 // Formula to multiply the cell values
 AuthorCellRange2.Formula = "=B1*B2";

 // Formula hiding property for protected sheets
 AuthorCellRange2.FormulaHidden = true;

 // Calculate the cell values
 AuthorCellRange2.Calculate();
 }

The following screenshot shows the results of adding and executing the
preceding code:

Microsoft Office Excel Programming

[160]

The preceding example shows the implementation of the simple multiplication
formula for two cells in the worksheet. You can perform more complex and
challenging calculations using this formula in Excel. Applying the formulae using
VSTO brings you the great advantage of applying them at runtime, and also based
on conditions.

Regular expressionsexpressions
Regular expressions give a short, flexible, and snappy way of recognizing strings
of text, such as characters, words, or patterns. There is no specific feature available
in VSTO 3.0 for regular expressions. VSTO allows you to use most of the .NET
framework's namespaces and classes. In VSTO, you can use regular expression
with the help of .NET programming.

The following is an example for email validation applied to an Excel cell using
regular expression techniques for the Excel 2007 document-level solution.

Open Visual Studio 2008 and create a new solution with all the supporting files for the
development of the Excel solution. Write the following code in the Sheet1.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {
 // Setting the value in the cell
 Globals.Sheet1.Range["A1", missing].Value2 =
 "vivek@arimaan.com";

 // Loading the cell value to the string
 string strCellData = Globals.Sheet1.Range["A1",
 missing].Value2.ToString();

 // Validating the RegEx for email string

 if (EmailValidate(strCellData) == true)
 {
 // String display in the cell
 Globals.Sheet1.Range["B1", missing].Value2 =
 "Email Address is Valid";
 }
 else
 {

 // String display in the cell
 Globals.Sheet1.Range["B1", missing].Value2 =
 "Email Address is Not Valid";
 }
 }

 // Regular Expression validation function

Chapter 4

[161]

 public static bool EmailValidate(string strEmail)
 {

 string strRegex = @"^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}" +
 @"\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\" + @".)+))(
 [a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$";

 Regex emailRegEx = new Regex(strRegex);

 if (emailRegEx.IsMatch(strEmail))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

The following screenshot shows the results of adding and executing the
preceding code:

Regular expressions are used to find frequent occurrences of a pattern of characters
within a string. These characters are of two types—one that includes alphabetic
characters and numerals, called literal characters, and one that includes special
characters such as * or @ or #. In the previous example, a regular expression was
implemented using smart tags. You can also implement regular expressions via
other controls and events, and not just through smart tags.

Microsoft Office Excel Programming

[162]

Excel data protection data protectiondata protection protection
Microsoft Office Excel provides a few layers of security and protection that allow you
to control the access to an Excel document. VSTO offers a much wider variety of data
and content protection options. One of the important concepts is authentication via
a password request in order to access the data in the workbook. However, there are
no out-of-the-box options available in VSTO to validate the strength of the password
assigned to the workbook or worksheet.

Workbook protectionprotection
The best way of protecting an Excel document is to protect your entire Excel file with
an access password, which will allow only authorized users to view or modify the
data inside the workbook.

Password is a property of the Excel workbook class. You can access this property via
the Globals.ThisWorkbook.Password property. You have more options available
for password encryption when developing a protected Excel solution. Let's take a
look at an example.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code inside the ThisWorkbook.cs file:

 private void ThisWorkbook_Startup(object sender,
 System.EventArgs e)
 {

 // Prompting the Textbox to enter the new password for your
 workbook
 string AuthorPassword = this.Application.
 InputBox("New Password:", missing, missing, missing,
 missing, missing, missing, missing).ToString();

 // Check the Password is not empty
 if (AuthorPassword == string.Empty)
 {

 // If password is empty show message
 MessageBox.Show("Please enter valid password");
 }
 else
 {
 // Else set the password to the Workbooks password property
 Globals.ThisWorkbook.Password = AuthorPassword;
 }
 }

Chapter 4

[163]

The following screenshot shows the results of adding and executing the
preceding code:

When you try to click on the OK button without entering any password information,
an error message will be displayed, as shown in the following screenshot:

Microsoft Office Excel Programming

[164]

Worksheet protection protectionprotection
Worksheet protection is useful in many scenarios. A workbook may contain more than
one worksheet and if the owner of the workbook wants to protect or hide one or more
specific worksheets from other users then it can be done in Microsoft Office Excel.

Let's see how to protect the worksheet from public users with the help of a password.

Open Visual Studio 2008 and create a new solution, as before. Write the following
code inside the ThisWorkbook.cs file:

 private void Sheet1_Startup(object sender, System.EventArgs e)
 {
 // This will protect the Worksheet with password from
 editing by the public users
 Globals.Sheet1.Protect("MyPassword", missing, missing,
 missing, missing, missing, missing, missing, missing,
 missing, missing, missing, missing, true, missing,
 missing);
 }

In this section, you have learned the basic concepts of protecting the workbook and
worksheet using VSTO and C# programming. You can also implement a custom
algorithm for password security to tighten the strength of protection.

Summary
In this chapter, we focused on the basic functionality of the Microsoft Office Excel
2007 spreadsheet application. At the beginning of this chapter, we discussed data
manipulation, Excel workbooks, and Excel worksheet manipulation. We have seen
several ways of data processing through VSTO and C# in Microsoft Office Excel
2007, to help you learn the flexible ways of data processing for Excel. Reading
further, you learned the concept of the object model in Excel and more about the
Range object in the Excel object model. This chapter covered significant features
for working with cells using Range objects. In the later part of the chapter, we
learned more about how smart tags can be created using VSTO. This chapter also
covered Excel host items and Excel host controls. We took a look at events that are
exposed by Excel host items, with code snippets. We learned how VSTO helps Office
developers to build Excel solutions with all of the basic features such as formulae
and expressions. And, finally we saw how to secure an Excel workbook using VSTO.

Microsoft Office Outlook
Programming

Microsoft Office Outlook is one of the world's most widely-used personal
information management tool. Primarily, the Microsoft Office Outlook serves as
an email application for a wide range of users. In this chapter, you will learn the
concepts of programming for Microsoft Office Outlook 2007 using VSTO 3.0 and
C#. We will take a look at the following:

An overview of the Outlook object model and its features in VSTO
Learning the extensibility of Microsoft Office Outlook 2007 using the
object model
Learning to customize Microsoft Office Outlook menus and toolbars
using VSTO
Working with form regions in Outlook, manipulating folders, contact
information, and mail items using VSTO programming
Learning the concepts and seeing a demonstration of working with Outlook
meetings and appointments
Working with Ribbons for Outlook 2007
Outlook applications and the Microsoft SQL Server 2008 database interaction

•

•

•

•

•

•

•

Microsoft Office Outlook Programming

[166]

Microsoft Office Outlook object
model overview
Programming in Microsoft Office Outlook differs from programming other Microsoft
applications such as InfoPath and Excel. Most of the Microsoft Office applications
target documents rather than data items, but Microsoft Office Outlook targets each
data item stored in the database or the primary data storage used by an Outlook
application. Microsoft Office Outlook stores and manages data items such as emails,
appointments, notes, tasks, and contacts in tables in a structured database.

The Microsoft Office Outlook object model is based on COM (Component Object
Model) and is used to interact with Outlook form regions, menus, and other
application customization possibilities. It is similar to other Microsoft Office
application object models when thought of with respect to the object model
implementation interfaces for collections, objects, properties, methods, and events.

COM is a language-neutral way of implementing objects that can be used in
different environments.

A large numbers of objects are available for developing and customizing Outlook
2007. If the developer needs to develop application add-ins for Outlook, he or she
can program using the objects provided by the Outlook object model. In the Outlook
object model, the class will represent each object in the UI to the user. For example,
the Microsoft.Office.Interop.Outlook.Application class represents the
entire application, and the Microsoft.Office.Interop.Outlook.MailItem
class represents an email message.

To get used to the object models in Outlook, you should be familiar with some of the
top-level objects. The Application object represents an Outlook application, and it is
the highest level class in the Outlook object model. The Explorer object corresponds
to the window that displays the contents of a folder, and contains Outlook data items
such as email messages, tasks, appointments, and so on. The MAPIFolder object
represents the folder that contains emails, contacts, tasks, and other Outlook data
items. By default, there are sixteen MAPIFolder objects available. The Inspector
object corresponds to a window that displays a single item such as a particular
email message, or a specific contact item.

Chapter 5

[167]

Let's see how to create application-level add-ins for Microsoft Office Outlook
2007 using VSTO 3.0. We will create a Hello World application-level example for
Microsoft Office Outlook 2007 using Visual Studio 2008.

1. Open Visual Studio 2008 to create a new Outlook 2007 Add-in
template project.

2. Select New Project. Under Office select 2007, and then select the Microsoft
Outlook Add-in template, and name the project as per your requirements.

Microsoft Office Outlook Programming

[168]

3. The solution will be created with all of the supporting files required for the
development of Outlook solution, as shown in the following screenshot:

4. Write the following code to display a message box:
 // Windows forms namespace to display Message box
 using System.Windows.Forms;

5. Write the code to display the Say Hello World! message while loading:
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {

 // Message box display
 MessageBox.Show("Say Hello World!");

 }

Chapter 5

[169]

The result will be similar to what is shown in the following screenshot:

Outlook 2007 object models are categorized and mapped correspondingly. The
following Outlook object models hold all of Outlook's objects for programming in
their corresponding object model categories: Items object model, Navigation bars
and Outlook bars object model, Rules object model, and Views object model. In the
Application object model hierarchy, the Application object
is the parent of all other Outlook objects.

Customization using VSTO
Most enterprise business applications are loaded with a wide variety of features for
users. Even though these applications have a wide range of features, many business
requirements can be fulfilled only through customization because not all applications
are designed to fit each and every enterprise's special needs. Customization for most
of the application is a tough job to execute.

Outlook 2007 is loaded with a wide variety of features that will satisfy a broad range
of user categories. Some organizations need more functionality and features to be
added, so that the application will satisfy their custom business requirements. VSTO
3.0 helps Office developers to customize and enhance the Outlook 2007 application
as per the user's business requirements.

Microsoft Office Outlook Programming

[170]

Microsoft Office Outlook 2007 supports other Microsoft Office tools such
as InfoPath and Excel, in order to provide seamless collaboration.

VSTO provides an easy way to create an application-level add-in for Outlook 2007
using Visual Studio 2008. Creating add-ins for Microsoft Office Outlook 2007 has
been more complex to work out, but VSTO 3.0 offers Office developers with project
templates in Visual Studio 2008 to allow them to create add-ins for Outlook 2007.
Adding to the project templates, VSTO offers great support for development and
deployment, which improves the development work. This provides .NET framework
support for Outlook 2007 add-in programming, which includes class library support,
controlled exception handling, memory management, extensibility, ClickOnce
deployment, and so on.

Menus in Outlook in Outlook
A group of commands or lists of options from which you can choose your desired
operation is known as a menu. Most of the latest applications are menu driven.
Microsoft Office Outlook, which is a menu-driven application, provides the user
with an easy flowing UI for user interaction. Most of the menu-driven applications
will provide you with basic customization such as choosing the menu for the default
view of the application, and so on.

In Microsoft Office, all menus and toolbars are CommandBars. A
CommandBar is a static collection shared by all Windows. There are
standard toolbars, menu bars, context menus, and so on. A small add-in
enumerates and displays all Microsoft Outlook CommandBars.

Likewise, Microsoft Office Outlook 2007 provides the option for a user to customize
the menus. VSTO 3.0 provides Office developers with the ability to build custom
menus and customize the existing menus using the .NET framework and support
a programming language. You can even rebuild the classic menu style for Outlook
2007 by using the VSTO 3.0 application level add-ins development.

Let's create a custom menu in the menu bar of the Outlook and add a new item to
the menu. This way, you will get to know about custom menu development for
Microsoft Office Outlook 2007.

Open Visual Studio 2008 and create a new solution, as described in the
previous example.

Chapter 5

[171]

Let's write a program to create a menu item and call it Say Hello World.

 // Defining new Menubar
 private Office.CommandBar PacktOldMenuBar;

 // Defining old Menubar
 private Office.CommandBarPopup PacktNewMenuBar;

 // Defining instance of button for menu item
 private Office.CommandBarButton PacktButton1;

 // Tag string for our Menu item
 private string strMenuString = "Outlook AddIn #1";

 private void ThisAddIn_Startup(object sender,
 System.EventArgs e)
 {
 // Define the Old Menu Bar
 PacktOldMenuBar = this.Application.ActiveExplorer().
 CommandBars.ActiveMenuBar;

 // Define the new Menu Bar into the existing menu bar
 PacktNewMenuBar = (Office.CommandBarPopup)PacktOldMenuBar.
 Controls.Add(Office.MsoControlType.msoControlPopup,
 missing, missing, missing, false);

 //If PacktNewMenuBar not found then the code will add it

 if (PacktNewMenuBar != null)
 {
 // Set caption for the Menu
 PacktNewMenuBar.Caption = "Packt Menu Item 1";

 // Tag string value passing
 PacktNewMenuBar.Tag = strMenuString;

 // Assigning button type
 PacktButton1 = (Office.
 CommandBarButton)PacktNewMenuBar.
 Controls.Add(Office.MsoControlType.
 msoControlButton, missing, missing, 1, true);

 // Setting up the button style
 PacktButton1.Style = Office.MsoButtonStyle.
 msoButtonIconAndCaptionBelow;

 // Set button caption
 PacktButton1.Caption = "Say Hello World";

 // Set the menu visible
 PacktNewMenuBar.Visible = true;
 }
 }

Microsoft Office Outlook Programming

[172]

The following screenshot displays the resulting menu developed by you using the
preceding code:

You can also build more custom menus for your Outlook 2007 with functionality as
per your requirements. VSTO will speed up development and provide support for
a hassle free environment for the developer to work on Outlook 2007 add-ins and
other customization.

Toolbars in Outlook in Outlookin Outlook Outlook
Generally, toolbars provide easy access to the functionality of the application by
using buttons and menus. Most application's user interfaces have a toolbar that has
buttons, menus, and input or output control elements for user interaction with the
application. Even applications allow users to do visual customization of toolbars as
per the users' needs.

Microsoft Office Outlook 2007 provides a very good visual representation of toolbars
for user interaction with the application. Outlook provides support for toolbar
customization to improve custom visual interaction for users. VSTO 3.0 offers
wide options to build custom toolbars and to customize existing toolbars as per
the user's needs.

Chapter 5

[173]

Remember that menus and CommandBars are not VSTO features, but
are in the Microsoft.Office namespace. VSTO is making it easier to
program for the Office object model.

Let's see a demonstration of creating a custom toolbar with a button.

1. Open Visual Studio 2008, and create a new solution, as described above.
2. Next, add the reference needed to show the message box needed in

our demonstration:
 // Namespace reference for message box
 using System.Windows.Forms;

3. Let's write a program to create a toolbar and call it Hello World!.
 // Declare the toolbar
 Office.CommandBar PacktCustomToolBar;

 // Declare the button
 Office.CommandBarButton PacktButtonA;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {

 // Verify the PacktCustomToolBar exist and add to the application
 if (PacktCustomToolBar == null)
 {
 // Adding the commandbar to Active explorer
 Office.CommandBars PacktBars = this.Application.
 ActiveExplorer().CommandBars;

 // Adding PacktCustomToolBar to the commandbars
 PacktCustomToolBar = PacktBars.Add("NewPacktToolBar",
 Office.MsoBarPosition.msoBarTop, false, true);
 }

 // Adding button to the custom tool bar
 Office.CommandBarButton MyButton1 = (Office.
 CommandBarButton)PacktCustomToolBar.Controls.Add(1,
 missing, missing, missing, missing);

 // Set the button style
 MyButton1.Style = Office.MsoButtonStyle.msoButtonCaption;

 // Set the caption and tag string
 MyButton1.Caption = "PACKT BUTTON";
 MyButton1.Tag = "MY BUTTON";

Microsoft Office Outlook Programming

[174]

 if (this.PacktButtonA == null)
 {
 // Adding the event handler for the button in the toolbar
 this.PacktButtonA = MyButton1;
 PacktButtonA.Click += new Office.
 _CommandBarButtonEvents_ClickEventHandler(ButtonClick);
 }
 }

 // Button event in the custom toolbar
 private void ButtonClick(Office.CommandBarButton ButtonContrl,
 ref bool CancelOption)
 {
 // Message box displayed on button click
 MessageBox.Show(ButtonContrl.Caption + " Says Hello World!");
 }

The following image shows the results of adding a custom toolbar with button control:

Chapter 5

[175]

The CommandBars object helps you to build variants of toolbars to your Outlook
2007 application's user interface. Microsoft Office Outlook 2007 is the only tool
in the Microsoft Office 2007 family to support both standard toolbars and the
new Ribbon in their UI.

Outlook form regions support
Before the release of Microsoft Office Outlook 2007, Outlook forms were the only
option for creating a custom UI. In Outlook 2007, you have a new feature called form
regions. Form regions are a new way of customizing the Outlook. Form regions are
the added feature of the UI in the standard Microsoft Office Outlook 2007. Form
regions will add custom functionality–they will build a new range of options in
the UI for Microsoft Office Outlook 2007.

When you work with standard forms, you can see that all Outlook items have a
MessageClass property that determines the type of objects you're working on, for
example, contact, appointment, task, email, post, or journal entry. All of the standard
forms are stored in the standard forms library. Form regions are the replacement
for the standard forms, to display the custom reading pane, and add new pages to
Outlook. In form regions, the controls can be bound to the Outlook properties.

Outlook forms bring you a new design with the support of .NET controls, in order
to easily integrate with your Visual Studio Designer and provide code templates and
debugging options.

1. Open Visual Studio 2008, to create a new Outlook 2007 Add-in
template project.

2. Select New Project. Under Office select 2007 and select Outlook 2007 Add-in
template and name the project as per your requirement.

3. The solution will be created with all of supporting files required for the
development of our Outlook solution.

Microsoft Office Outlook Programming

[176]

4. Right-click on your project solution and click on the Add New Item
option. Select the Outlook Form Region template as shown in the
following screenshot:

5. After clicking on the Add button in the Visual Studio 2008 Add New Item
dialog box, a wizard window in which you can set the properties for New
Outlook Form Region will appear as shown in the following screenshot:

Chapter 5

[177]

6. A form region can be created as either a separate form or as a form adjoining
the existing form, or you can also overwrite an existing form with the new
form you're creating. In the New Outlook Form Region wizard, you have
options to select accordingly.

Microsoft Office Outlook Programming

[178]

7. Name the new Outlook form region as per your requirements:

Chapter 5

[179]

8. Next, associate the standard message classes to the Outlook form region:

Microsoft Office Outlook Programming

[180]

9. Once you are done creating the Outlook form region, run the solution. The
new form region will appear as shown in the following screenshot:

10. We can also write a program to display the current contact item's email
address in the form region. Open the FormRegion1.cs file and write the
following code inside the FormRegionShowing event:

 // Occurs before the form region is displayed
 // Use this.OutlookItem to get a reference to the current
 Outlook item
 // Use this.OutlookFormRegion to get a reference to the
 form region

 private void FormRegion1_FormRegionShowing(object sender,
 System.EventArgs e)
 {
 // Verify the current Outlook item is Outlook contact item
 if (this.OutlookItem is Outlook.ContactItem)
 {
 // Get reference through the Outlook contact item
 Outlook.ContactItem PacktMailContactItem = (Outlook.
 ContactItem)this.OutlookItem;

 // Message box displayed while you click the form region
 button in the Ribbon

Chapter 5

[181]

 MessageBox.Show("This form region to display: " +
 PacktMailContactItem.Email1DisplayName);

 // The listview control displays the current contacts
 display email
 ContactListView.Items.Add(PacktMailContactItem.
 Email1DisplayName.ToString());
 }
 }

The addition and execution of the preceding code results in the following screenshot:

One of the key advantages of form regions is that you can use themed controls that
match the look of standard Outlook forms in Outlook 2007, and you also have easy
access to new controls for date and time picking, and time zones. Form regions
will help you to build custom contact forms, meeting invitees, and enhanced UI for
Microsoft Office Outlook 2007. Outlook 2007 also contains a huge number of new
form controls that offer the business logic and performance that users expect from
Outlook forms.

Manipulation
Manipulation is an essential element for the efficient development of a reliable
solution to satisfy any kind of business need. Manipulation plays the most important
role in customization and development of any kind of solution for mature enterprise
applications. The primary part of manipulation is the data. Microsoft Office
Outlook 2007 allows a wide range of data item manipulation methods inside the
application—you can manipulate mail items, contact items, folders in Outlook, and
so on. Let's see some examples of manipulation.

Microsoft Office Outlook Programming

[182]

Folders
Folders are the containers that hold file items and sub folders inside the main
folder. Folders are used to manage mail items to make them easily accessible inside
Outlook. In Outlook 2007, you can manage mail items, contact items, and other
communication information.

Let's start working with the Outlook folder using VSTO 3.0 and C#.NET
programming. The following code will create a folder with your desired name, by
using VSTO object models.

1. Open Visual Studio 2008 to create a new Outlook 2007 Add-in
template project.

2. Select New Project. Under Office select 2007, and then select Outlook 2007
Add-in template and name the project as per your requirement.

3. The solution will be created with all of the supporting files required for the
development of our Outlook solution.

4. Enter the following code, which will dynamically create a folder, inside the
ThisAddIn.cs file:

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Get the namespace for Outlook operation
 Outlook.NameSpace ReadOutLookNameSpace = this.Application.
 GetNamespace("MAPI");

 // Get the default folder names from the Outlook
 Outlook.MAPIFolder ReadDefaultFolders = ReadOutLookNameSpace.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox);

 // Create folder in the "FolderPacktPub"
 ReadDefaultFolders = this.Application.Session.Folders[1].
 Folders.Add("FolderPacktPub", missing);
 }

Chapter 5

[183]

We can see the dynamically-created folder named FolderPacktPub on the leftmost
side of the Outlook screen, as shown in the following screenshot:

The folders contain Items collections which hold items that are compatible
with the type of data that is supported in Microsoft Office Outlook 2007. The
GetDefaultFolder() method is used to retrieve a reference to the Sent Items
folder. This is declared in order to get default folders by using new Folder
objects for Outlook 2007.

You may need to clean up Outlook by deleting unwanted folders. The delete
operation for folders inside Outlook can be performed by using the MAPIFolder
object and the properties and methods exposed by the object. Let's see an example of
how to delete a folder using the VSTO object. In this example, you are going to run
the operation at the initialization of the add-in. You can do the same thing by using
the Click event for the button that was placed on the toolbar (or anywhere else
you need).

Open Visual Studio 2008 and create a new solution, as explained earlier. Write the
following code, which will dynamically delete a folder in the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{

// Loading the NameSpace needed to manipulate MAPI
 Outlook.NameSpace PacktNameSpace = this.Application.
 GetNamespace("MAPI");

// Accessing the folder through MAPIFolder Object

Microsoft Office Outlook Programming

[184]

// PacktNameSpace.Folders is a collection of all the folders
// We want to delete the 13th folder, FolderPackt
 Outlook.MAPIFolder PacktFolders = PacktNameSpace.Folders[13];

// Getting the folder named FolderPackt
 PacktFolders.Name = "FolderPackt";

// Doing the delete operation using Delete method
 PacktFolders.Delete();
}

Contacts
Contacts contain information about communication with a person. The information
can be their address, name, phone number, and other relevant information. The
Contacts folder in Microsoft Office Outlook 2007 is the electronic form of managing
contact information about people. Outlook offers the ability to very easily manage
multiple phone numbers and more information for a single person. Outlook provides
better management of contact entries and brings easy access through the information
available in the Contacts folder.

In certain situations, you may need to add or modify the contact entries dynamically.
To support these features, Microsoft provides a solution through VSTO 3.0
programming to allow Office developers to build application-level add-ins,
which will help you integrate custom developed solutions.

We will now create a contact item using the VSTO 3.0 object model and C#.

Open Visual Studio 2008 and create a new solution, as explained earlier.
Write the following code, which will dynamically create a contact item in
the ThisAddIn.cs file.

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Using the Outlook object reading through the contact item
 folders
// Preparing to create a new contact item

 Outlook.ContactItem OutlookPacktContact = (Outlook.
 ContactItem)this.Application.CreateItem(Outlook.
 OlItemType.olContactItem);

// Set FirstName property
 OutlookPacktContact.FirstName = "Radhika";

// Set LastName property
 OutlookPacktContact.LastName = "Rajagopalan";

// Set Email1Address property

Chapter 5

[185]

 OutlookPacktContact.Email1Address = "radhika@vsto.com";

// Set CompanyName property
 OutlookPacktContact.CompanyName = "ACC Inc";

// Set Categories property
 OutlookPacktContact.Categories = "Packt Group";

// Now save the above contact item
 OutlookPacktContact.Save();
}

After executing the source code, you will get the following screenshot as the output
for your solution.

ContactItem is the object used to access the contact in a Contacts folder by using
Outlook programming. The ContactItem object has been exposed with a wide
variety of properties, events, and methods to program for the Contact folder in
Outlook 2007.

Microsoft Office Outlook Programming

[186]

You have seen how to create a new contact item by using an object in Outlook
2007. Let's take a look at one of the most important contact management features in
Microsoft Office Outlook: the distribution list. A distribution list is a collection of
email contact information that has been grouped into a single list. VSTO helps Office
developers create and modify distribution lists by using the DistListItem object.

Let's create a distribution list dynamically, using the VSTO Outlook object model and
C# programming.

Open Visual Studio 2008 and create a new solution, as described earlier.
Write the following code, which will dynamically create a distribution list, inside
the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Using the Outlook object reading through the Distribution item
// Preparing to create a new Distribution item
 Outlook.DistListItem OutlookPacktDistributionList = (Outlook.
 DistListItem)this.Application.CreateItem(Outlook.OlItemType.
 olDistributionListItem);

// Name the new distribution list
 OutlookPacktDistributionList.DLName = "PacktContactList";

// To set the recipient information, create the mailitem
 collect object
 Outlook.MailItem PacktListItem = (Outlook.MailItem)this.
 Application.CreateItem(Outlook.OlItemType.olMailItem);

// Adding mail items
 PacktListItem.Recipients.Add("Radhika Rajagopalan
 <radhika@bookvsto.com>");
 PacktListItem.Recipients.Add("Vivek Thangaswamy
 <vivek@bookvsto.com>");

// Adding the recipients to the new distribution
 OutlookPacktDistributionList.AddMembers(PacktListItem.Recipients);

// Save the new distribution using Save method
 OutlookPacktDistributionList.Save();
}

Chapter 5

[187]

The newly-distribution list appears as shown in the following screenshot:

On clicking the Members tab in the solution, we get a list of the recipients, or
members, as shown in the following screenshot:

Microsoft Office Outlook Programming

[188]

Email messagesmessages
Email is an electronic form of storing information that can be shared with people via
an electronic communication system. You can write, send, and receive information
without using paper, and communicate through electronic systems by using a digital
copy of the information.

You can do many email operations through VSTO programming, such as composing
mail items at runtime using Office objects. Let's create a new mail that has a Subject,
To, Address and few other properties, by using the VSTO Outlook MailItem object.

Open Visual Studio 2008 and create a new solution, as explained earlier.
Write the following code, which will dynamically create a mail item, inside
the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Outlook mailitem object to compose new mail
 Outlook.MailItem PacktMailItem = (Outlook.MailItem)this.
 Application.CreateItem(Outlook.OlItemType.olMailItem);

// Set the To address property value
 PacktMailItem.To = "radhika@vsto.com";
// Set the Subject property value
 PacktMailItem.Subject = "Mail from PacktPub Editor";

// Set the Body property value
 PacktMailItem.Body = "Your book is ready to buy!";

// Set the Importance level for the mail
 PacktMailItem.Importance = Outlook.OlImportance.
 olImportanceNormal;

// If parameter is set to false compose mail won't display
 PacktMailItem.Display(true);

// To send the composed mailitem
// ((Outlook._MailItem) PacktMailItem).Send();
 }

Chapter 5

[189]

The results of the execution of the preceding code example can be seen in the
following screenshot:

The Microsoft.Office.Interop.Outlook.MailItem class represents an email
message. MailItem objects are usually found in folders, such as Inbox, Sent Items,
and Outbox. The MailItem exposes properties and methods that can be used to
create and send email messages.

With Outlook 2007 mail items, you have the option to categorize mail using colors.
This categorization can be achieved by the use of VSTO objects. Mail items can be
categorized programmatically. Outlook.MailItem is the object used to access mail
items in Outlook 2007.

Microsoft Office Outlook Programming

[190]

The following image is a typical view of the category option available in
Outlook 2007:

Let's see in an example of how to get the category property by using the VSTO
objects for the mail items.

Open Visual Studio 2008 and create a new solution, as described earlier. Write
the following code to the context menu item in the mail box folder, inside the
ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Creates a new mail item instance
 Outlook.MailItem OLmailitems = (Outlook.MailItem)this.Application.
 CreateItem(OlItemType.olMailItem);
// Get the category dialog window for the mail items
 OLmailitems.ShowCategoriesDialog();
}

After executing this program, we can see the different color properties, as shown in
the following screenshot:

Chapter 5

[191]

VSTO also supports the customization of Outlook 2007 context menu items. Let's
look at an example to add a custom menu item in the context menu item of the email
folder in Outlook.

Open Visual Studio 2008 and create a new solution, as explained earlier. Write
the following code to the context menu item in the mail box folder, inside the
ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Custom context menu item event managed
 this.Application.ItemContextMenuDisplay += new Microsoft.Office.
 Interop.Outlook.ApplicationEvents_11_
 ItemContextMenuDisplayEventHandler(
 PacktMenuItem_ItemContextMenuDisplay);
}

// Context menu item adding procedure
public void PacktMenuItem_ItemContextMenuDisplay(Microsoft.Office.
 Core.CommandBar PacktCommandBar, Microsoft.Office.Interop.Outlook.
 Selection Selection)
{
// Commadbarpopup control to context menu item

Microsoft Office Outlook Programming

[192]

 Office.CommandBarPopup PacktCustomItem =
 (Office.CommandBarPopup)PacktCommandBar.Controls.Add(Office.
 MsoControlType.msoControlPopup, Type.Missing,
 "Custom Menu Item", PacktCommandBar.Controls.Count + 1,
 Type.Missing);

// Added to separate group in context menu
 PacktCustomItem.BeginGroup = true;

// Set the tag value for the menu
 PacktCustomItem.Tag = "PacktCustomMenuItem";

// Caption for the context menu item
 PacktCustomItem.Caption = "Custom Menu Item1";

// Set it to visible
 PacktCustomItem.Visible = true;
}

The resulting custom menu item in the Inbox mail folder is visible in the
following screenshot:

Chapter 5

[193]

Working with Appointments
Before I explain the Appointments feature in Microsoft Office Outlook 2007, let me
explain the Microsoft Office Outlook calendar. This will help you understand the
concepts of Appointments more easily, and also explain how you can utilize this
functionality for your needs. The Microsoft Outlook 2007 calendar is the scheduling
component of the Outlook mail management system. It is well-integrated with other
Microsoft Outlook functionality such as email, contacts, appointments, and other
items in.

Appointments are the actions you're scheduling in your Outlook calendar, inviting
other people to participate if required. You can set the status of your availability for
an appointment, and you can also schedule recurring appointments.

Let's create an Outlook Appointment dynamically by using VSTO objects and
C# programming:

Open Visual Studio 2008 and create a new solution, as described earlier. Write
the following code, which will dynamically create an Appointment item in the
ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{

// Outlook AppointmentItem object to compose new Appointment
 Outlook.AppointmentItem PacktAppointmentItem = (Outlook.
 AppointmentItem)this.Application.CreateItem(Outlook.
 OlItemType.olAppointmentItem);

// Set the subject property value
 PacktAppointmentItem.Subject = "Regarding book review";

// Set the location property value
 PacktAppointmentItem.Location = "Meeting Hall";

// Set the start date
 PacktAppointmentItem.Start = DateTime.Today;

// Set the end date
 PacktAppointmentItem.End = DateTime.Today;

// Set the body property value
 PacktAppointmentItem.Body = "Book review comments from
 all editors";

// Set the required attendee information
 PacktAppointmentItem.RequiredAttendees = "vivek@vsto.com";

// Set the optional attandee information
 PacktAppointmentItem.OptionalAttendees = "radhika@vsto.com";

// If parameter is set to false compose Appointment won't display
 PacktAppointmentItem.Display(true);

// To send the composed PacktAppointmentItem
//((Outlook._AppointmentItem)PacktAppointmentItem).Send();
 }

Microsoft Office Outlook Programming

[194]

The following screenshot shows the results of adding and executing this code:

The AppointmentItem object is used to create appointments dynamically. An
AppointmentItem object can be used to create a meeting, a one-time appointment,
or a recurring appointment.

Let's perform a demonstration of how to delete a recurring appointment from your
Outlook 2007 calendar, by using VSTO programming.

Open Visual Studio 2008 and create a new solution, as described earlier. Write the
following code, which will dynamically delete an Appointment item, inside the
ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Reading the calendar folder through MEPIFolder object
 Outlook.MAPIFolder PacktCalendarInfo = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.
 olFolderCalendar);

// Get the data items in the calendar folder
 Outlook.Items PacktCalendarDataItems = PacktCalendarInfo.Items;

// Searching the Appointment items based on subject
 Outlook.AppointmentItem PacktAppointmentItem =
 PacktCalendarDataItems["Book release"] as Outlook.
 AppointmentItem;

Chapter 5

[195]

// Selected appointment's recurrence information
 Outlook.RecurrencePattern PacktRecPattern = PacktAppointmentItem.
 GetRecurrencePattern();

// Loading the appointment to AppointmentItem Object
 Outlook.AppointmentItem PacktAppointmentDelete = PacktRecPattern.
 GetOccurrence(new DateTime(2008, 9, 28, 8, 0, 0));

// Now delete using the Delete method
 PacktAppointmentDelete.Delete();
}

Working with meetings
Meetings are generally discussions amongst more than two people, during which
predetermined topics are discussed. Meetings help you prepare a plan, or finalize
pending work, or perform other tasks involving colleagues. In Microsoft Office
Outlook, a meeting is a scheduled appointment—that is, people are invited to attend.
You can set the meeting time and other options for the meeting attendees, to process
the invitation.

VSTO 3.0 supports the dynamic creation of meeting items for Office. Let's
create a meeting invitation dynamically, by using the VSTO object model and
C# programming.

Open Visual Studio 2008 and create a new solution, as explained earlier. Write the
following code, which will dynamically create a meeting invite item, inside the
ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Outlook PacktMeetingItem object to compose new meeting request
 Outlook.AppointmentItem PacktMeetingItem = (Outlook.
 AppointmentItem)this.Application.CreateItem(Microsoft.Office.
 Interop.Outlook.OlItemType.olAppointmentItem);

 PacktMeetingItem.MeetingStatus = Microsoft.Office.
 Interop.Outlook.OlMeetingStatus.olMeeting;

// Set the subject for the meeting
 PacktMeetingItem.Subject = "Changes in book content";

// Update the body information of the meeting
 PacktMeetingItem.Body = "Work on the changes and update";

// Start Expiry Time of the meeting
 PacktMeetingItem.Start = new DateTime(2008, 9, 28, 9, 0, 0);

Microsoft Office Outlook Programming

[196]

// Set the recipient information
 Outlook.Recipient PacktRecipient = PacktMeetingItem.Recipients.
 Add("Radhika Rajagopalan");

 PacktRecipient.Type = (int)Outlook.OlMeetingRecipientType.
 olRequired;

// If parameter is set to false compose MeetingItem won't display
 PacktMeetingItem.Display(true);

// To send the composed PacktMeetingItem
//((Outlook.MeetingItem)PacktMeetingItem).Send();
 }

As we can see in the following screenshot, a Meeting tab is created successfully after
executing this program.

An Outlook meeting is one of the many types of Appointments in Outlook. Meetings
are internally linked with the Outlook calendar. A meeting request can be created
using only the AppointmentItem object. To create and set the meeting invitation
by using the AppointmentItem, you must set the MeetingStatus property
to olMeeting.

Chapter 5

[197]

Creating a Ribbon menu for Outlook 2007
The Ribbon is the new way of presenting menus for Office users and organizing
related commands; visually it will appear as controls. The Ribbon menu feature is
supported in most of the Office 2007 applications, such as Word, Excel, and Outlook.
InfoPath and Visio are not provided with the Ribbon menu feature.

Let's create a Ribbon menu for Outlook by using Outlook objects and Visual designer
support. In this example, we will create a Ribbon menu with a button on it. When
you click the button, the option for composing a new mail will open.

1. Open Visual Studio 2008 and create a new solution, as described earlier.
2. Next, let's add the Ribbon component to our solution. Right-click on the

project, and select Add | New Item... | Ribbon (Visual Designer), from the
context menu. Name the Ribbon component as Ribbon1.cs, and click OK.

Ribbon Visual Designer is a control that provides a visual designer for
basic Ribbon customization tasks.

Microsoft Office Outlook Programming

[198]

3. Expand the Toolbox sliding window in Visual Studio 2008, and you can find
the controls that support the Ribbon menu under Office customization.

4. Next, drag-and-drop the controls that are required for your development
inside your group control in the Ribbon. In this example, you are going to
use the Button control.

5. The Outlook Ribbon menu is quite different from other Office applications.
The Ribbon menu varies for each Outlook region. For example, for reading
a mail, you will see different Ribbon menu commands to those for an
appointment and so on. To view your add-in that has the Ribbon menu,
you need to specify the Ribbon types.

Chapter 5

[199]

6. To create a program that will open a window for composing a new mail on
a button click event, write the following code snippet inside the Ribbon1.cs
file. Also include the code using Microsoft.Office.Interop.Outlook; in
the Ribbon1.cs file to get access to the Outlook objects.

 // Click event of the button
 private void Button_OpenNewMail_Click(object sender,
 RibbonControlEventArgs e)
 {

 // Application class to get Outlook object references
 ApplicationClass PacktApplication = new ApplicationClass();

 // Get the MAPIFolder NameSpaces
 NameSpace PacktNameSpace = PacktApplication.
 GetNamespace("MAPIFolder");

 // Access to the default folders
 MAPIFolder ApreeMAPI = PacktNameSpace.
 GetDefaultFolder(OlDefaultFolders.olFolderInbox);

 // Outlook mailitem object to compose new mail
 MailItem PacktMailItem = (MailItem)ApreeMAPI.Items.
 Add(OlItemType.olMailItem);

 // To display the new mail compose window
 PacktMailItem.Display(true);
 }

Microsoft Office Outlook Programming

[200]

Adding and executing the preceding code results in the following output:

Outlook 2007 data interaction with Microsoft SQLinteraction with Microsoft SQL with Microsoft SQL
Server 20082008
Microsoft presents a programming interface for synchronizing data from an external
data source with the Outlook data file dedicated to storing data from that source.
As you know, VSTO 3.0 is powerful enough to use features of the .NET technology.
Linking the Outlook contacts in a Microsoft SQL Server 2008 database is one of the
key features available for Outlook users. Working with your Outlook contacts in a
database will keep you informed of changes to Outlook contacts and vice versa.

Let's see how to make your Outlook 2007 application interact with a relational
database management system, for example, Microsoft SQL Server 2008. Let's
consider a scenario where you want to import all of the contact information for
your friends or colleagues that is currently managed in a Microsoft SQL Server
2008 database.

1. Open Visual Studio 2008 and create a new solution, as described earlier.
2. You need to know about the database, and the details of the tables that

you are going to import into your contact folder. You can see the table
information that is used in this demonstration in the following images:

Chapter 5

[201]

3. Let's write a program to establish effective communication with the Microsoft
SQL Server 2008 database table, and import the information to Outlook
2007's contact folder, by using the C# programming language and VSTO.

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Instantiated datatable, used to read the loaded data
 DataTable PacktDataTable = new DataTable();

 // Opening SQL connection for Microsoft SQL Server 2008
 SqlConnection PacktSQLConnection = new SqlConnection(@"Data
 Source=WINNER;Initial Catalog=PacktPub;Integrated
 Security=True");

 // Passing SQL command text and SQL connection information

 SqlCommand PacktSQLCommand = new SqlCommand("SELECT * FROM
 Contacts", PacktSQLConnection);

 // Open the SQL connection through Open method
 PacktSQLConnection.Open();

 // SQL reader to read through data from Database
 SqlDataReader PacktSQLReader = PacktSQLCommand.
 ExecuteReader(CommandBehavior.CloseConnection);

 // Load the read data to datatable
 PacktDataTable.Load(PacktSQLReader);

 // Now close the datareader
 PacktSQLReader.Close();

 // Get the contact folder loaded using MAPIFolder object

Microsoft Office Outlook Programming

[202]

 Outlook.MAPIFolder PacktContactFolder = Application.Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.
 olFolderContacts);

 // Accessing the Contact data items through Outlook item object
 Outlook.Items PacktContactItems = PacktContactFolder.Items.
 Restrict("[MessageClass]='IPM.Contact'");

 // To read the data one by one from the datatable
 foreach (System.Data.DataRow PacktDataRow in PacktDataTable.
 Rows)
 {
 // Check if the current contact item exists in Outlook or not.
 Outlook.ContactItem PacktExistingContact = (Outlook.
 ContactItem)PacktContactItems.Find("[Email1Address] =
 '" + PacktDataRow["Email"] + "'");

 // If it exists, then delete
 if (PacktExistingContact != null)
 {
 PacktExistingContact.Delete();
 }
 else
 {
 // Create a new contact object and update with data
 from database
 Outlook.ContactItem PacktAddContact = Application.
 CreateItem(Outlook.OlItemType.olContactItem) as
 Outlook.ContactItem;

 // Assign the value from datarow value
 PacktAddContact.FirstName = PacktDataRow["FirstName"].
 ToString();

 PacktAddContact.Email1Address = PacktDataRow["Email"].
 ToString();

 PacktAddContact.CompanyName = PacktDataRow["Company"].
 ToString();

 // Save the assigned values as contact
 PacktAddContact.Save();
 }
 }
 }

Chapter 5

[203]

Once executed, the information stored in the database is retrieved and
displayed in the Contacts plane, as shown in the following screenshot:

Summary
This chapter examined some important topics regarding programming using VSTO
and C# for Microsoft Office Outlook 2007. You have seen the Outlook object model,
and how it is used for Outlook application development and customization. This
chapter covered the concepts of customizing the Outlook toolbar and menu bar
using VSTO. You have learned about VSTO programming support for Outlook
form regions. You have seen the most important part of Outlook data manipulation
such as email, contacts, and folder manipulation. In the later part of this chapter,
you learned programming for a meeting and an appointment in Outlook. You have
learned about the Ribbon, and how you can create Ribbons for Outlook. You also
learned the concept of database interaction with an Outlook application, with the
help of an example of how to connect to a database and get information from it into
the Contact folder of Outlook. You have seen code examples for each topic, which
will make it easier for you to understand the concepts.

Microsoft Office PowerPoint��PowerPoint����
Visio�� and Project

Programming
Microsoft PowerPoint is a presentation program developed and released by
Microsoft Corporation. Microsoft PowerPoint 2007 is a part of the Microsoft Office
2007 suite. Microsoft PowerPoint 2007 is loaded with a wide range of features for
its users. VSTO 3.0 helps you to develop application-level solutions for Microsoft
PowerPoint 2007. Visual Studio 2008 and VSTO 3.0 provide support for developing
application-level add-ins and custom Ribbon development for PowerPoint.

In this chapter, we'll discuss:

PowerPoint 2007 object model concepts
Programming in PowerPoint using VSTO 3.0
Creating a presentation and adding slides using VSTO 3.0
Visio 2007 Object model concepts
Programming in Visio using VSTO 3.0
Shapes and how to manipulate them using VSTO and C# programming
Working with command bars and document themes
Programming in Project 2007 using VSTO 3.0
The concept of the Ribbon, and the introduction of the Visual Designer for
the Ribbon
Creating and customizing Ribbons for PowerPoint 2007

•

•

•

•

•

•

•

•

•

•

Microsoft Office Powerpoint, Visio, and Project Programming

[206]

Microsoft Visio is a diagramming software application from Microsoft Corporation.
Microsoft Visio 2007 is used for creating vector graphics diagrams. VSTO offers a wide
range of objects and classes for developing application-level solutions for Microsoft
Visio 2007. VSTO provides full support for custom development of Visio, working
with shapes in Visio, customization of toolbars, managing documents, and so on.

Microsoft Project is a project scheduling and controlling tool, developed and released
by Microsoft Corporation. Microsoft Project 2007 is designed to support project
managers in developing project plans, assigning tasks for resources, tracking project
and task progress, managing budgets, and analyzing resources workloads. Microsoft
Project is one of the complete project management applications available. VSTO 3.0
provides full support for developing application-level solutions for Microsoft Project.
VSTO exposes a wide range of classes, objects, and properties that can be used to
customize Microsoft Project 2007.

Programming PowerPoint 2007
VSTO 3.0 provides enhanced support for PowerPoint 2007 to satisfy a user's needs.
Currently, VSTO 3.0 supports only application-level customization for Microsoft
Office PowerPoint 2007.

Let's consider the following scenario—Zack wants to say hello to all of the
PowerPoint 2007 users in the office, and Zack is interested in doing this by using
VSTO and Visual Studio 2008. The following example demonstrates, how Zack said
hello to all of the PowerPoint 2007 users by using VSTO programming.

Let's see how to create the solution for Microsoft Office PowerPoint 2007 using
Visual Studio 2008 and write a Hello program as your first programming example,
using VSTO 3.0 for Microsoft PowerPoint 2007.

1. Open Visual Studio 2008, to create a new PowerPoint 2007 Add-in
template project.

2. Select New Project. Under Office select 2007, and then select the Microsoft
PowerPoint Add-in template, and name the project as per your requirements.

Chapter 6

[207]

3. The solution will be created with all of the supporting files required for the
development of our PowerPoint solution.

Microsoft Office Powerpoint, Visio, and Project Programming

[208]

4. Enter using System.Windows.Forms; as the namespace for the message
box feature.

5. In the ThisAddIn.cs file, write the following code to say Hello to all the
Microsoft Office PowerPoint users:

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Message box to display information from PowerPoint
 MessageBox.Show("Say Hello! to PowerPoint Users");
 }

The results of executing this simple program can be seen in the
following screenshot:

PowerPoint 2007 object model
The object models available in VSTO help PowerPoint Office developers to program
against the existing functionality. At first glance, the object models may give the
impression of being difficult to understand. On the contrary, it is one of the easiest
ways to conceptualize PowerPoint 2007 programming. The object model is a
visualization of how every object in PowerPoint is related to the properties of
objects. By accessing the objects through the commands, you can manipulate
these with VSTO code, programmatically.

Chapter 6

[209]

VSTO provides you with the finest options for customizing Microsoft Office
PowerPoint 2007, which macros don't have. A macro is a series of commands that are
executed in sequence. Macros are programmed using Visual Basic Script (VBScript),
and are vulnerable to security. VSTO provides full support for C# or VB.NET, the
programming languages supported by the .NET framework.

Creating a presentation at runtime
The VSTO 3.0 project template automatically loads the entire alias to your Microsoft
Office PowerPoint solution. You can easily reference this through the namespaces
and classes available, in order to to build your custom solution for PowerPoint 2007.

Now, let's see how to create a PowerPoint presentation at runtime, using VSTO 3.0
for Microsoft PowerPoint 2007.

Open Visual Studio 2008 and create a new solution. Refer to the previous example
for complete instructions on how to do this. Write the following code to create a
presentation in Microsoft Office PowerPoint 2007 in the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Creating PowerPoint presentation with single slide in it
 // Using the PowerPoint object instance adding the
 // Slide with text title structure to the current Presentation
 PowerPoint.Presentation PacktPresentation = this.Application.
 Presentations.Add(Microsoft.Office.Core.MsoTriState.
 msoTriStateMixed);
 }

Microsoft Office Powerpoint, Visio, and Project Programming

[210]

Dynamically add a slide and set title text in
the presentation
The VSTO application-level add-in is slightly different for Microsoft Office
PowerPoint 2007. VSTO in PowerPoint doesn't have the ability to recognize the
default presentation during the startup procedure. This is not a limitation of VSTO in
PowerPoint; it is the default behavior of VSTO programming for PowerPoint 2007.

Zack has another task at hand—to create a presentation using PowerPoint 2007,
where the presentation should be loaded with a slide and have some text added to
it by default. Knowing the default behavior of the VSTO application level add-in for
PowerPoint 2007, Zack came up with a solution for this scenario.

VSTO exposes many objects, classes, and events for PowerPoint 2007 programming.
Using events exposed by VSTO, you can achieve the solution for this scenario. Zack
used the AfterNewPresentation event and developed a solution for it. Let's follow
up the procedure and learn how to create a presentation and add a slide to it with
text content.

Open Visual Studio 2008 and create a new solution, as described earlier. In
the ThisAddIn.cs file, write the following program to add a title slide to the
presentation in Microsoft Office PowerPoint 2007:

// PowerPoint application object instance
 PowerPoint.Application PacktPowerPointApplication;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Get access to the instance of current application
 PacktPowerPointApplication = this.Application;

 // Registering the AfterNewPresentation event of the PowerPoint
 PacktPowerPointApplication.AfterNewPresentation +=
 new PowerPoint.EApplication_
 AfterNewPresentationEventHandler(
 PacktPowerPointApplication_AfterNewPresentation);
 }

// AfterNewPresentation event of PowerPoint presentation
 private void PacktPowerPointApplication_AfterNewPresentation(
 PowerPoint.Presentation PacktPresentation)
 {
 // Call the custom function to add slide with text on it
 Packt_AddSlides(PacktPresentation);
 }

// Custom function to add slide with text
 private void Packt_AddSlides(PowerPoint.Presentation

Chapter 6

[211]

 PacktPresentationAdd)
 {
 // Create presentation in powerpoint
 PowerPoint.Presentation PacktPowerPresent = this.Application.
 Presentations.Add(Microsoft.Office.Core.
 MsoTriState.msoTrue);

 // Create the custom layout
 PowerPoint.CustomLayout PacktLayout = PacktPowerPresent.
 SlideMaster.CustomLayouts[PowerPoint.PpSlideLayout.
 ppLayoutTitle];

 // Add slide to it
 PowerPoint.Slide PacktSlide = PacktPowerPresent.Slides.
 AddSlide(1,PacktLayout);

 // Set the title text for the slide
 PacktSlide.Shapes.Title.TextFrame.TextRange.Text = "Book For
 PacktPub";

 // Set the text message in the slide
 PacktSlide.Shapes[2].TextFrame.TextRange.Text = "Microsoft
 Office 2007 Programming";
 }

When you execute this code, you will see a slide and the text, Book For Packtpub, as
default text, as shown in the following screenshot:

Microsoft Office Powerpoint, Visio, and Project Programming

[212]

Set the presentation theme
Presentation themes, colors, and properties can be changed using C# programming
with the support of VSTO 3.0. Zack has another task at hand—his manager wants
all of the PowerPoint applications that have a default white background theme to
be changed to some colorful theme. For such a scenario, the ApplyTheme method
is available in the PowerPoint.Presentation object to apply any theme to the
entire presentation.

Let's learn how to apply themes using VSTO programming, by examining the
following procedure.

Open Visual Studio 2008 and create a new solution, as explained earlier. In the
ThisAddIn.cs file, write the following program to set a theme for presentation in
Microsoft Office PowerPoint 2007:

// PowerPoint application object instance
 PowerPoint.Application PacktPowerPointApplication;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Get access to the instance of current application
 PacktPowerPointApplication = this.Application;

 // Registering the AfterNewPresentation event of the PowerPoint
 PacktPowerPointApplication.AfterNewPresentation +=
 new PowerPoint.EApplication_
 AfterNewPresentationEventHandler(
 PacktPowerPointApplication_AfterNewPresentation);
 }

// AfterNewPresentation event of PowerPoint presentation
 private void PacktPowerPointApplication_AfterNewPresentation(
 PowerPoint.Presentation PacktPresentation)
 {
 // Call the custom function to apply theme
 Packt_ApplyTheme(PacktPresentation);
 }

// Custom function to apply theme
 private void Packt_ApplyTheme(PowerPoint.Presentation
 PacktPresentationAdd)
 {
 // Locating the path where theme files are located in your system
 // .thmx are the theme file format for Microsoft Office PowerPoint
 PacktPresentationAdd.ApplyTheme(@"C:\Program Files\Microsoft
 Office\Document Themes 12\Foundry.thmx");
 }

Adding and executing the preceding code, results in a theme as shown in the
following screenshot:

Chapter 6

[213]

Ribbons in PowerPoint
The Ribbon is the new way of presenting menus for Office 2007 users and organizing
related commands. Visually, it appears similar to controls. The Ribbon menu feature
is supported in Microsoft Office PowerPoint 2007. Ribbons can be created and
customized to fulfil new user requirements.

The previous image illustrates the visual representation of the Ribbon menu in your
Microsoft Office PowerPoint 2007 application.

Ribbon Visual Designer
Ribbon Visual Designer is a new option in Visual Studio 2008 that Office developers
can use to easily create and customize Ribbons for Office 2007 applications. The
features such as drag-and-drop of controls into the Ribbon and easily designing the
UI of the Ribbon will give you more productivity by saving more development time.

Microsoft Office Powerpoint, Visio, and Project Programming

[214]

Creating a Ribbon
Let's look at how to create and customize a Ribbon menu for Microsoft Office
PowerPoint 2007 using Visual Studio 2008 and VSTO programming. On clicking the
button placed in the Ribbon, the custom task pane will be displayed.

1. Open Visual Studio 2008 and create a new solution, as described earlier. To
add a Ribbon to your solution, right-click on the project name. From context
menu, click on Add | New Item…, as shown in the following screenshot:

Chapter 6

[215]

2. Next, select Ribbon (Visual Designer) and name the Ribbon Ribbon1.cs.

3. On adding the Ribbon to the solution, the Ribbon appears as shown in the
following screenshot:

Microsoft Office Powerpoint, Visio, and Project Programming

[216]

4. Drag-and-drop the control into the Ribbon, as shown in the following
screenshot (the button control is added to the Ribbon):

5. Next, you need to add User Control to the solution, in order to develop
a custom task pane for PowerPoint 2007. Again, right-click on the project
name. From the context menu, click on Add | New Item…, as shown in the
following screenshot:

Chapter 6

[217]

6. Next, select the User Control, and name it UserControl1.cs.

7. Open the UserControl1.cs file, and add the following
namespace references:

 using System.Windows.Forms;
 using Office = Microsoft.Office.Core;
 using PowerPoint = Microsoft.Office.Interop.PowerPoint;

8. Open the Ribbon1.cs file, and add the following
namespace references:

 using System.Windows.Forms;
 using Office = Microsoft.Office.Core;
 using PowerPoint = Microsoft.Office.Interop.PowerPoint;

9. Next, add the instance of the User Control and custom task pane to the
Ribbon code file:

 // Usercontrol instance to access from the Ribbon
 private UserControl1 PacktUserControl;

 // Instance for Custom Task Pane to create
 private Microsoft.Office.Tools.CustomTaskPane PacktCustomPane;

Microsoft Office Powerpoint, Visio, and Project Programming

[218]

10. Next, write the following code to show the custom task pane in the button
click event of the Ribbon menu:

 private void RibbonButton1_Click(object sender,
 RibbonControlEventArgs e)
 {
 // Initializing the UserControl in the ribbon
 PacktUserControl = new UserControl1();

 // Add the UserControl to the custom task pane
 PacktCustomPane = Globals.ThisAddIn.CustomTaskPanes.
 Add(PacktUserControl, "Calendar");

 // Set the custom task pane to visible
 PacktCustomPane.Visible = true;
 }

11. On the ValueChanged event of the dateTimePicker , we are writing the code
to insert the selected date.

 private void dateTimePicker1_ValueChanged(object sender,
 EventArgs e)
 {
 try
 {
 // Getting the active presentation slide
 PowerPoint.Slide PckTSlide = Globals.ThisAddIn.
 Application.ActivePresentation.Slides[1];
 // Set the presentation type like text or image imsert option
 PacktTextShape = PckTSlide.Shapes.AddTextbox(Office.
 MsoTextOrientation.msoTextOrientationHorizontal,
 50, 100, 600, 50);
 // Set the text value as selected date time
 PacktTextShape.TextFrame.TextRange.Text = dateTimePicker1.
 Value.ToString();
 // Font style properties
 PacktTextShape.TextFrame.TextRange.Font.Size = 48;
 PacktTextShape.TextFrame.TextRange.Font.Color.RGB = Color.
 DarkViolet.ToArgb();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

Chapter 6

[219]

The output of executing this procedure can be seen in the following screenshot:

Programming Visio 2007
Microsoft Office Visio is a dominant application for developing sophisticated
models. A model is an abstract representation of a system that specifies the modeled
system from a firm viewpoint and at a certain level of abstraction. Microsoft Office
Visio is the finest design tool for creating shapes, construction diagrams, flow
diagrams, database design diagrams, and other design diagrams.

Let's consider a scenario. Zack wants to say hello to all the Visio 2007 users in the
office, and Zack is interested in doing this by using VSTO and Visual Studio 2008.
The following example demonstrates how Zack implemented this using
VSTO programming.

Microsoft Office Powerpoint, Visio, and Project Programming

[220]

Let's see how to create the solution for Microsoft Office Visio 2007 using Visual
Studio 2008, and write Hello World program as your first programming using VSTO
3.0 for Microsoft Visio 2007.

1. Open Visual Studio 2008 to create a new Visio 2007 Add-in template project.
2. Select New Project. Under Office select 2007, and then select the Visio 2007

Add-in template and name the project as per your requirements.

3. The solution will be created with all of supporting files required for the
development of our Visio solution.

Chapter 6

[221]

4. In the ThisAddIn.cs file, write the following program to say Hello World
to the Microsoft Office Visio users. Add the using System.Windows.Forms
namespace for the message box window.

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Message box to display information from Visio
 MessageBox.Show("Say Hello World!");
 }

As it can be seen in the following screenshot, Say Hello World is displayed in a
message box:

Visio 2007 object model
Visio applications are fully supported by Visual Studio Tools for Office, and work
with the objects model by using managed code. Using Visual Studio 2008, you have
the full control necessary to develop custom solutions for Visio 2007 with the help of
VSTO add-ins and project templates.

Microsoft Office Powerpoint, Visio, and Project Programming

[222]

By using the object model, you will considerably reduce your development cycle. For
example, built-in classes offered by the object model expose methods that will solve
many of your requirements, and also save development time.

Dynamically creating a new Visio document
The main advantage of programming for any kind of application is automating
some of the manual operations. For any kind of document-based applications,
creating a new document will be the primary operation to be performed. To test
the ability of programming support for the application, we can create the new
document dynamically by using the programming language supported for
customizing the application.

Let's create a sample exercise for creating a Visio document dynamically by using
VSTO and C# programming.

Open Visual Studio 2008 to create a new Visio solution, as described earlier. Write the
following program to create a Visio document dynamically in the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Instance for Document object and calling the Add method on the
 Document collection
 Visio.Document PacktVisioDocument = this.Application.Documents.
 Add("");

// Instance of Shape object
// Page Object has a PageSheet to set other page properties
 Visio.Shape PacktShape = PacktVisioDocument.Pages[1].PageSheet;

// Set the page width property
 PacktShape.get_Cells("PageWidth").Formula = "13.5 in";

// Set the page height property
 PacktShape.get_Cells("PageHeight").Formula = "5.5 in";
}

Chapter 6

[223]

The dynamically-created Visio document, as a result of executing this code, can be
seen in the following screenshot:

Adding shapes to a document at runtime
Microsoft Office Visio supports drawing shapes in the document. In Visio, shapes
represent objects and meaningful concepts. A line, 2-D shapes, or even complex
calendars are represented as shapes in the Visio application. Each and every shape
has its own behavior corresponding to its drawing type.

Zack is facing a new problem now. He wants to prove the ability of VSTO
customization for Visio 2007. His manager is not convinced of VSTO's ability to create
shapes, add them to the document, and change their properties at runtime. Zack has
to show him the capability of VSTO over Visio 2007. He has created an example to
show his manager how to add shapes to the Visio document dynamically.

Microsoft Office Powerpoint, Visio, and Project Programming

[224]

Let's take a look at the example that Zack created:

Open Visual Studio 2008 to create a new Visio solution, as described earlier.
In the ThisAddIn.cs file, write the following program, to create a Visio
document dynamically:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Instance for Document object and calling the Add method on
 the Document collection
 Visio.Document PacktVisioDocument = this.Application.
 Documents.Add("");

// Instance of Shape object
// Page Object has a PageSheet to set other page properties
 Visio.Shape PacktShape = PacktVisioDocument.Pages[1].PageSheet;

// Set the page width property
 PacktShape.get_Cells("PageWidth").Formula = "5.5 in";

// Set the page height property
 PacktShape.get_Cells("PageHeight").Formula = "2.5 in";

// Code to add Shape to the document
// Access the Shapes file through Document object
 Visio.Document PacktDocStencil = Application.Documents.
 OpenEx("BASIC_M.VSS", (short)Visio.VisOpenSaveArgs.
 visOpenDocked);

// Drop the new Square Shape to our Visio document
 Visio.Shape PacktShape2 = PacktShape.Drop(PacktDocStencil.
 Masters["Square"], 10, 7.50);

// Adding text to inside the Shape
 PacktShape2.Text = "Packt Shape One";
}

Chapter 6

[225]

The dynamically-created square shape, with the text Packt Shape One, will be
created, as shown in the following screenshot:

Adding a page as a background for another page
Let's see how to use a page as a background for another page. In this example, a
document will contain two pages—the first page will be the work space that holds all
of the shapes and objects, while the other page will act as the background image for
the first page.

Open Visual Studio 2008 to create a new Visio solution, as explained earlier.
In the ThisAddIn.cs file, write the following program to create a Visio
document dynamically:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Instance for Document object and calling the Add method on
 the Document collection
 Visio.Document PacktVisioDocument = this.Application.
 Documents.Add("");

// Instance of Shape object
// Page Object has a PageSheet to set other page properties
 Visio.Shape PacktShape = PacktVisioDocument.Pages[1].PageSheet;

// Set the page width property
 PacktShape.get_Cells("PageWidth").Formula = "6 in";

Microsoft Office Powerpoint, Visio, and Project Programming

[226]

// Set the page height property
 PacktShape.get_Cells("PageHeight").Formula = "3 in";

// Adding the page for background
 Visio.Page PacktBgPage = Application.ActiveDocument.Pages.Add();

// Set the name for new page
 PacktBgPage.Name = "Packt Page BackGround";

//Set the background code property
 PacktBgPage.Background = 3;

// The new page will be the backgroud for the current page
 Application.ActiveDocument.Pages[1].BackPage = PacktBgPage.Name;

// New shape instance
 Visio.Shape PacktTextShape = null;

// Read the page of the current document
 PacktTextShape = PacktVisioDocument.Pages[2].PageSheet;

// Create rectangle
 PacktTextShape.DrawRectangle(1.0, 10.0, 3.0, 10.5);

// Set the text style
 PacktTextShape.TextStyle = "Normal";

// Set the line style
 PacktTextShape.LineStyle = "Text Only";

// New instance of Character object
 Visio.Characters PacktText = null;

// Assign the characters of the shape to the Visio character object
 PacktText = Application.ActiveDocument.Pages[2].Shapes.
 get_ItemFromID(PacktTextShape.ID+1).Characters;

// Set the begin point
 PacktText.Begin = 0;

// Set the end point
 PacktText.End = 25;

// Text for the rectangle
 PacktText.Text = "My First BOOK";
}

The page that is acting as the background page has a rectangular shape that contains
the text, My First BOOK on it. You can see the following screenshot when you click
the Page-1 tab:

Chapter 6

[227]

When you click the Packt Page BackGround tab, you can see the
following screenshot:

Microsoft Office Powerpoint, Visio, and Project Programming

[228]

Set the document theme
The objects available in the VSTO object model can be used to change the theme of
the Visio document. ThemeColors is the object used to manage the themes for Visio
documents. Under the ActivePage object, the ThemeColors and ThemeEffects
property is exposed when accessed through the Application object. The colors
available in the Visio.VisThemeColors object are assigned to the ThemeColors.
Similarly, the themes available for the Visio.VisThemeEffects object are assigned
to the ThemeEffects.

Let's see an example of how to change the default theme for shapes inside the
document, and give new color themes, programmatically, by using VSTO and C#.

Open Visual Studio 2008 to create a new Visio solution, as described earlier. In the
ThisAddIn.cs file, write the following program to set the theme for a Visio document:

private void ThisAddIn_S tartup(object sender, System.EventArgs e)
{

// Instance for Document object and calling the Add method on
 the Document collection
 Visio.Document PacktVisioDocument = this.Application.
 Documents.Add("");

// Instance of Shape object
// Page Object has a PageSheet to set other page properties
 Visio.Shape PacktShape = PacktVisioDocument.Pages[1].PageSheet;

// Set the page width property
 PacktShape.get_Cells("PageWidth").Formula = "6 in";

// Set the page height property
 PacktShape.get_Cells("PageHeight").Formula = "3 in";

// Code to add Shape to the document
// Access the Shapes file through Document object
 Visio.Document PacktDocStencil = Application.Documents.
 OpenEx("BASIC_M.VSS", (short)Visio.VisOpenSaveArgs.
 visOpenDocked);

// Drop the new Square Shape to our Visio document
 Visio.Shape PacktShape1 = PacktShape.
 Drop(PacktDocStencil.Masters["Circle"], 2, 2);

// Adding text to inside the Shape
 PacktShape1.Text = "Packt Shape One";

// Drop the new Triangle Shape to our Visio document
 Visio.Shape PacktShape2 = PacktShape.
 Drop(PacktDocStencil.Masters["Triangle"], 3, 3);

// Adding text to inside the Shape

Chapter 6

[229]

 PacktShape2.Text = "Packt Shape Two";

// Set the theme color for the Shapes in the active page
 Application.ActivePage.ThemeColors = Visio.VisThemeColors.
 visThemeColorsMedianDark;

// Set the theme effect for the Shapes in the active page
 Application.ActivePage.ThemeEffects = Visio.
 VisThemeEffects.visThemeEffectsMesh;
}

On executing this code, you get the following output:

Creating a Commandbar
The Commandbar is the main control panel for most of the functions available in the
application. The Commandbar is easily accessible and is visible near the top of the
applications screen. VSTO objects help you to customize your existing Commandbar,
or build your own custom Commandbar, for Visio 2007.

In this example, you are going to learn how to create a new custom Commandbar
and add a button to it, enabling a click event for the button.

Microsoft Office Powerpoint, Visio, and Project Programming

[230]

Open Visual Studio 2008 to create a new Visio solution, as explained earlier. Write
the following code to create a Commandbar for Visio in the ThisAddIn.cs file.

// Namespace to access Windows Form features
 using System.Windows.Forms;

// Instance of the CommandBars collection object
 private Office.CommandBars PacktCommandBarCollection;

// Instance of the CommandBar object
 private Office.CommandBar PacktCommandBar;

// Instance of CommandBarButton control
 private Office.CommandBarButton PacktBookList;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Access the current application's CommandBars
 PacktCommandBarCollection = (Office.CommandBars)this.
 Application.CommandBars;

 // Add the new CommandBar to the CommandBar list with name, type,
 and so on.
 PacktCommandBar = PacktCommandBarCollection.Add(
 "PacktVisioBar", Office.MsoBarPosition.msoBarTop,
 Type.Missing, true);

 // Add the CommandBarButton to your new CommandBar
 PacktBookList = (Office.CommandBarButton)PacktCommandBar.
 Controls.Add(Office.MsoControlType.msoControlButton, 1,
 Type.Missing,1, true);

 // Set tag property to the CommandButton
 PacktBookList.Tag = "Packt Book List";

 // Set the tooltip property of the CommandButton
 PacktBookList.TooltipText = "Made for Packt";

 // Register the click event for the button
 PacktBookList.Click += new Office.
 _CommandBarButtonEvents_ClickEventHandler(
 PacktBookList_Click);
 }

// Click event of the CommandButton control
 private void PacktBookList_Click(Office.CommandBarButton Ctrl,
 ref bool CancelDefault)
 {
 // Message to button clicked users
 MessageBox.Show("books are in progress...");
 }

Chapter 6

[231]

The CommandBar that we created by adding the preceding code can be seen in the
following screenshot:

Programming Project 2007 Project 2007
Microsoft Office Project is a specialized project management application that stores
and manages a large volume of data related to your project. This, data can include
the project name, description, tasks and durations, project resource names, calendars,
assignments, costs, milestones, and more. Project managers use Microsoft Office
Project to enter, save, and update project information. They can then send updated
project information such as assignments or task updates to specific resources.

Microsoft Office Project 2007 provides you with excellent project management
features, through easy-to-use management tools and flexible working tools. By
using Microsoft Office Project 2007, project management is made simpler for project
managers. Managers can track and examine projects effectively with an enhanced
view of the schedule and the supporting functionality to manage it.

VSTO provides application-level solution development and customization for
Microsoft Office Project 2007. You can create application-level add-ins for Microsoft
Office Project 2007 using Visual Studio 2008.

1. Open Visual Studio 2008, to create a new Project 2007 Add-in template project.
2. Select New Project. Under Office select 2007, and then choose the Project

Add-in template and name the project as per your requirements.

Microsoft Office Powerpoint, Visio, and Project Programming

[232]

 3. The solution will be created with all the supporting files needed for the
development of our Project solution, as shown in the Solution Explorer:

Chapter 6

[233]

 4. In the ThisAddIn.cs file, write the following program to say Say! Hello World
to all Microsoft Project users:

 // Namespace to access Windows Form features
 using System.Windows.Forms;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Message displayed to all Project 2007 users
 MessageBox.Show("Say! Hello World");
 }

On executing this code, a message box containing the text Say! Hello World is
displayed in Microsoft Project, as shown in the following screenshot:

Creating a Project and adding a
task dynamically
MSProject.Project is the main object used for Microsoft Project programming
using VSTO. The MSProject.Project object exposes several project-related
properties, such as the Name property that sets the name of the project, and the
Manager property that assigns the manager name for the project.

Microsoft Office Powerpoint, Visio, and Project Programming

[234]

Let's see an example of how to create a new project and add a task item to it, by
using the VSTO objects available for Microsoft Project.

Open Visual Studio 2008, to create a new Project solution, as described earlier. Write
the following code in the ThisAddIn.cs file:

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
// Using project object to create new project document
 MSProject.Project PacktProject = Application.Projects.Add(false,
 Type.Missing, false);

// Set the Name for project
 PacktProject.Name = "New Book for Packt";

// Add the project manager
 PacktProject.Manager = "Radhika";

// Get the active project
 PacktProject = Globals.ThisAddIn.Application.ActiveProject;

// Add the task to the active project
 PacktProject.Tasks.Add("Prepare Topic", Type.Missing);

}

The results of executing this code can be seen in the following screenshot:

Chapter 6

[235]

Creating menus for Microsoft Project
Microsoft Office Project 2007 provides a very good visual representation of menus
for user interaction with the application. Microsoft Project provides support for
menu customization in order to improve customized visual interaction with users.
VSTO 3.0 offers extensive options to build custom menus and to customize existing
menus to suit users' needs.

Let's see an example of how to create a menu for Microsoft Project by using
VSTO objects.

Open Visual Studio 2008, to create a new Project solution, as done earlier. Write the
following code in the ThisAddIn.cs file.

// The menu details at class level.
 private Office.CommandBarButton PacktMenuCmd;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Initialize the CommandBarPopup object
 Office.CommandBarPopup PacktCmdBarCtrl = null;

 // Get the active menubar in the application
 Office.CommandBar PacktMenuBar = (Office.
 CommandBar)Application.CommandBars.ActiveMenuBar;

 // Get the total controls count in menubar
 int ctrlCount = PacktMenuBar.Controls.Count;

 // Add the menu with control in the application interface
 PacktCmdBarCtrl = (Office.CommandBarPopup)PacktMenuBar.
 Controls.Add(Office.MsoControlType.msoControlPopup,
 missing, missing, ctrlCount, true);

 // Check for commandbar
 if (PacktCmdBarCtrl != null)
 {

 // Set the caption property of the commandbar
 PacktCmdBarCtrl.Caption = "Packt Book Project";

 // Set the Tag property of the commandbar
 PacktCmdBarCtrl.Tag = "Tag to identify our Menu";

 // Adding the menu command to the commandbar
 PacktMenuCmd = (Office.CommandBarButton)PacktCmdBarCtrl.
 Controls.Add(Office.MsoControlType.msoControlButton,
 missing, missing, missing, true);

Microsoft Office Powerpoint, Visio, and Project Programming

[236]

 PacktMenuCmd.Caption = "Pack Microsoft Books";
 PacktMenuCmd.Tag = "Tag Microsoft Books";
 PacktMenuCmd.FaceId = 61;

 // Click event handler for the menu item
 PacktMenuCmd.Click += new Microsoft.Office.Core.
 _CommandBarButtonEvents_ClickEventHandler(
 menuCommand_Click);

 }
 }

// Add text to cell A1 when the menu is clicked.
 private void menuCommand_Click(Microsoft.Office.Core.
 CommandBarButton Ctrl, ref bool CancelDefault)
 {
 MessageBox.Show("Packt Menu Clicked");
 }

The results of executing the code can be seen in the following screenshot:

Creating a Commandbar for Microsoft ProjectCommandbar for Microsoft Project for Microsoft ProjectMicrosoft Project Project
Most user interfaces for applications have a Commandbar that has buttons, menus,
and input or output control elements for user interaction with the application.
Office.CommandBar is an object in VSTO that is used to create the Commandbar
menu in the Microsoft Office 2007 application.

Chapter 6

[237]

Let's see an example of how to create a Commandbar menu for Microsoft Project by
using VSTO objects.

Open Visual Studio 2008, to create a new Project solution. Write the following code
in the ThisAddIn.cs file:

// Office commandbar initializing
 Office.CommandBar PacktCmdBar;

// Office commandbarbutton initializing
 Office.CommandBarButton PacktButton;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 // Commandbar object indexing
 if (PacktCmdBar == null)
 {
 // Add a commandbar named ‘Export Data'
 PacktCmdBar = Application.CommandBars.Add("Export Data",
 1, missing, true);
 }

 // Adding button to the commandbar and event handler.
 PacktButton = (Office.CommandBarButton)PacktCmdBar.Controls.
 Add(1, missing, missing, missing, missing);

 // Set the button style property
 PacktButton.Style = Office.MsoButtonStyle.
 msoButtonIconAndCaption;

 // Set the caption for the Button
 PacktButton.Caption = "Export Data";

 // Set the tag for the Button
 PacktButton.Tag = "Export Data Tag";

 // Click event for the Button in the commandbar
 PacktButton.Click += new Office.
 _CommandBarButtonEvents_ClickEventHandler(ButtonClick);

 // Set the commandbar to visible
 PacktCmdBar.Visible = true;
 }

// Click event for the button in the commandbar
 private void ButtonClick(Office.CommandBarButton PacktCtrl,
 ref bool cancel)
 {
 // Message to be displayed
 MessageBox.Show("Set your operation here!");
 }

Microsoft Office Powerpoint, Visio, and Project Programming

[238]

The result of executing this code can be seen in the following screenshot:

Summary
In this chapter, you have learned the concept of programming with PowerPoint 2007
using VSTO 3.0. You learned about the object models of PowerPoint and worked
out sample solutions. You learned how to create a presentation, how to add slides,
and how to format the text inside the slides using VSTO and C# programming. You
learned the concept of the Ribbon menu in the PowerPoint application, and how to
create and customize a Ribbon. In the second half of this chapter, you learned about
programming for Visio 2007. You learned the concept of programming in Visio 2007
using VSTO 3.0. You have also learned the object models of Visio and worked on
some examples. You learned how to create and manage shapes in Visio by using
VSTO and C# programming. You have also learned programming in Project 2007
using VSTO 3.0.

Index
A
action panes, Microsoft Office Word 2007

about 93
architectural structure 95
creating 93, 94
designing 96, 97
functions 95
managing 94

ActionsPane object 95
ActiveX control 106
add-ins 7
application class, InfoPath 2007

object model 38
application-level customization

task pane 98
application-level solutions

about 7
versus document-level solutions 81

application object, Outlook object model
166

application object, Word object model 87
ApplyTheme method 212
AppointmentItem object 194
appointments, Microsoft Office Outlook

2007
deleting, VSTO used 193-195

architecture, VSTO 3.0
.NET assemblies 14
core components 14, 15
office applications 14
solution, application-oriented approach 16
solution, document-oriented approach 15

B
binding, data 117

C
change event 148
changed event, InfoPath 2007 54
changing event, InfoPath 2007 54, 55
chart control 152
ChartSheet host item, Excel host items

about 149
MouseUp event 149, 150

clicked event 55
COM 36, 166
Component Object Model. See COM
control events, InfoPath 2007

clicked event 55
custom action panes. See action panes,

Microsoft Office Word 2007
custom action pane versus custom task pane

93
custom task pane, InfoPath 2007

about 67, 68
InfoPath add-in project creating,

Visual Studio 2008 used 71-76
InfoPath add-ins, writing 71
InfoPath task pane, creating 68-70
managed code 67

custom task pane, Microsoft Office 2007
about 102
creating 102, 103
versus custom action pane 93

D
data binding, Microsoft Office Word 2007

complex data binding 117
simple data binding 111-116

data manipulation, Microsoft Office Excel
2007

[240]

text file opening as workbook, VSTO used
136

ThisWorkbook.cs file, code 136
worksheet cells, reading 135, 136

data protection, Microsoft Office Excel 2007
about 162
workbook protection 162
worksheet protection 164

data source, manipulating 61
Microsoft Office InfoPath, populating with

Microsoft SQL Server 2008 65-67
node, adding 63
node, creating 63
nodes, deleting 64
nodes, removing 64
node value, fetching 61, 62
value, assigning to node 62

DateTimePicker control, actions pane 96, 97
DistListItem object 186
distribution list, Microsoft Office Excel 2007

186, 187
document-level customization

about 7
actions pane 93

document-level solutions
about 7
creating 81-84
versus application-level solutions 81

doucment object, Word object model 87

E
event manager 146
Excel 2007. See Microsoft Office Excel 2007
Excel formulae 158, 160
Excel host controls

about 151
chart control 152
ListObject control 153
NamedRange control 154, 155
SelectionChange event 155
XMLMappedRange control 155

Excel host items
ChartSheet host item 149-151
workbook host item 146, 147
worksheet host item 146-148

Excel object model
Excel host controls 151

range object 141
expense report form

expense validation, writing for 56-59
explorer object, Outlook object model 166

F
features, VSTO 3.0

application level add-ins 12
deployment, ClickOnce used 13
document-level customizations 12
form regions 13
other office applications, support for 13
rich user interface controls 13
sharepoint support 13
task panes 12
visual designers for ribbons 12
word content controls 13
workflow support 13

FormEvents_ContextChanged() 42
FormEvents_Loading() 42
FormEvents_Merge() 42
FormEvents_Save() 42
FormEvents_Sign() 42
FormEvents_VersionUpgrade() 42
FormEvents_ViewSwitched() 42
form-level events, InfoPath 2007

about 41-44
ContextChanged event, using 46, 47
event, loading 46
merge event 53
save event, using 48-51
sign event 51, 52
solution xsi:nil= 45
submit event, using 47, 48
VersionUpgrade event, using 48
ViewSwitched event, using 46

form regions, Microsoft Office Outlook 2007
175-181

FormRegionShowing event 180

H
host controls

data binding 110
in Excel 151, 152
in Word 151

[241]

host items
in Excel 145, 146
in Word 145

I
InfoPath 2003

object model 36
InfoPath 2007

about 28
customization features 34
custom task pane 67, 68
data source, manipulating 61
events 40
example 32, 33
installing, guidelines 31
in Visual Studio 28, 29
Microsoft SharePoint 76
object model 36
workflow 77

InfoPath 2007, customization features
data validation 34, 35
save, custom actions 35
views, switching 35

InfoPath 2007, events
control events 55
form-level events 41-44
XML events 53

InfoPath add-in, creating
Visual Studio 2008 used 71-76

InsertAfter method 88
InsertBefore method 88
Inspector object, Outlook object model 166
InternalStartup() method 146
Intermediate Language (IL) code 14

K
key objects

table, creating in Word 2007 document
90, 91

text, inserting in Word 2007 document
88, 89

text, selecting in Word 2007 document 89
word templates 92
working with 88

L
Lambda expression 117
Language Integrated Query. See LINQ
LINQ

about 117
using, in Word 2007 117, 118

ListObject control 153
loading event, InfoPath 2007 46

M
macros 209
managed code 6
manifest 14
manipulation, Microsoft Office Excel 2007

about 181
contact item creating, VSTO 3.0 object

model used 184, 186
contacts folder 184
data manipulation 135
distribution list 186
folder creating, VSTO object models used

182, 183
folder deleting, VSTO object models used

183
folders 182
worksheet manipulation 139

MAPIFolder object, Outlook object model
166

meetings, Microsoft Office Outlook 2007
creating, VSTO object model and C# used

195, 197
menus, Microsoft Office Outlook 2007

170-172
menus, Microsoft Office Word 2007

controls, adding 120-124
merge event, InfoPath 2007 53
MessageClass property 175
Microsoft.Office.Interop.Outlook.

Application class 166
Microsoft.Office.Interop.Outlook.MailItem

class 166
Microsoft Office 2007

custom task pane 102
task pane 98

[242]

Microsoft Office Excel 2007
about 130
data protection 162
distribution list 186, 187
Excel formuale 158, 160
Hello World example, Visual Studio 2008

131-133
manipulation 134
range object 141
regular expressions 160
smart tags creating, VSTO used 156, 157

Microsoft Office InfoPath. See InfoPath
2007

Microsoft Office InfoPath 2007.
See InfoPath 2007

Microsoft Office Outlook 2007
about 191
application-level-add-ins creating, VSTO

3.0 used 167, 168, 169
appointments 193
appointments deleting, VSTO used 194, 195
category option 190
context menu item, adding in email folder

191, 192
customizing, VSTO used 169
email message 188, 189
form regions 175-181
interacting, with SQL Server 2008 200-202
meetings 195, 197
MessageClass property 175
object model, overview 166
Outlook.MailItem object 189
ribbon menu, creating 197-199

Microsoft Office Outlook 2007 customizing,
VSTO used

about 170
menus, in outlook 170, 172
toolbars, in outlook 172

Microsoft Office PowerPoint 2007. See
PowerPoint 2007

Microsoft Office Project 2007. See Project
2007

Microsoft Office Visio 2007. See Visio 2007
Microsoft Office Word 2007

action panes 93
custom action pane 93
customization approaches 130

customizing 119
programming 104
ribbon menu 119
solutions 80
table, creating 90, 91
templates 92
templates, features 92
text, inserting 88, 89
text, selecting 89

Microsoft Office Word 2007, customization
approaches

application level customization 130
document level customization 130

Microsoft Office Word 2007, customizing
controls, adding to menus 120-124
controls, adding to toolbars 125, 126
Quick Access Toolbar (QAT) 125
ribbon menu 119, 120

Microsoft Office Word 2007, programming
about 104
ActiveX control, adding programmatically

107-110
controls, adding to document 106
host controls 105, 106
host items 104, 105

Microsoft Office Word 2007, solutions
application-level solutions versus document

level solutions 81
document-level solutions, creating 82-84
publish wizard 84-86

Microsoft SharePoint, InfoPath 2007 76
Microsoft VSTO. See VSTO 3.0
MouseUp event 149, 150
MSDN, link 7
MSProject.Project object 233

N
NamedRange control 154, 155
new features. See features, VSTO 3.0
NewWorkbook event 146

O
object model, Word 2007 86
object model, InfoPath 2003 37
object model, InfoPath 2007

about 37

[243]

application class 38
classes 37
functional area 37
objects 37
view class 40
ViewInfoCollection object 40
WindowCollection object 38
window object 39
XmlForm class 39
XmlFormCollection object 39

object model, Microsoft Office Outlook 2007
application object 166
explorer object 166
Inspector object 166
MAPIFolder object 166
overview 166

object model, PowerPoint 2007 208
office applications, VSTO 3.0

innovating 17, 18
VSTO, development environment 18
VSTO package 18

Office Fluent UI 126
office solution 6
Outlook 2007. See Microsoft Office

Outlook 2007
Outlook.MailItem object 190

P
PowerPoint.Presentation object 212
PowerPoint 2007

object model 208
presentation, creating at runtime 209
presentation theme, setting 212
programming 206-208
ribbons 213
ribbons, creating 214-218
ribbon visual designer 213
slide, adding dynamically in presentation

210, 211
title text, setting in presentation 210, 211

primary interop assembly 104
Project 2007

Commandbar, creating for Microsoft project
236, 237

menus, creating for Microsoft project
235, 236

programming 231-233
project, creating 233, 234

Q
QAT

about 125
in Office 2007 127

R
range object, Word object model 87
range object, Microsoft Office Excel 2007

about 141
cell range, style changing 141
cells 142
named ranges 144
unions 143, 144

regular expressions, Microsoft Office Excel
2007 160, 161

ribbon menu, Microsoft Office Outlook 2007
creating 197-199

ribbon menu, Microsoft Office Word 2007
119, 120

ribbons, PowerPoint 2007
creating 214-218
ribbon visual designer 213

S
save event, InfoPath 2007 48-51
Select() method 89
SelectionChange event 155
selection object, Word object model 88
sign event, InfoPath 2007 51, 52
SharePoint Workflow

and InfoPath 76
Shutdown event 82
smart tags

creating, VSTO used 157
creating, with VSTO 156

Startup event 82
submit event 47, 48

T
tables collection object, Word object model

88

[244]

task pane, Microsoft Office 2007
about 98
custom task pane, building 99, 100
custom task pane, creating 102, 103
design options 101

templates, Microsoft Office Word 2007
about 92
features 92, 93

ThisAddIn.cs file 100
ThisDocument.cs file 84
ThisWorkbook object 146
toolbars, Microsoft Office Outlook 2007

172-175

V
validating event, InfoPath 2007 55
VBA 6
VersionUpgrade event, InfoPath 2007 48
version, VSTO

new features, in VSTO 12
new features, in VSTO 3.0 12, 14
new version vs older version 12

view class, InfoPath 2007 object model 40
ViewInfoCollection object, InfoPath 2007

object model 40
ViewSwitched event, InfoPath 2007 object

model 46
Visio 2007

about 219
Commandbar, creating 229, 230
document theme, setting 228, 229
object model 222
page, adding as background for another

page 225, 226
programming 219, 221
shapes, adding to document at runtime

223, 224
Visio document, creating dynamically 222,

223
Visual Basic for Applications. See VBA
Visual Studio

InfoPath 2007 28, 29
Visual Studio 2008

Excel 2007, Hello World example 131, 132
Microsoft Office Excel 2007 130

Visual Studio 2008 InfoPath solution,
overview 29-31

Visual Studio 2008 integration
debugging 25, 26
IDE windows, viewing 23, 25
office project solution 22
office project solution, development

environment 21
VSTO project template 20
VSTO solutions, creating 20-23

Visual Studio Tools for Office. See VSTO
VSTO

about 5, 8
application-level solutions 7
document-level solution 7
features 130
Microsoft Office Word 2007, solutions 80
publish wizard 84
smart tags, creating 156, 157

VSTO 1.0 19
VSTO 2.0 19
VSTO 3.0

application-level solutions versus document
level solutions 81

architecture 14
deployment 16
development 16
document-level solutions, creating 82-84
features 130
future release, expectations 26
integrating, with Visual Studio 2008 19, 20
need for 8
new features 12
office applications, innovating 17, 18
package 19
present release vs future release 26
Project 2007 206, 231
Visio 2007 219

VSTO 3.0, need for
data caching 9
feature customization 9
maintainability 12
safer managed code extensions 8
security improvements 11
smart tags 10
user interface customization 9

[245]

visual designers 10
Windows Presentation Foundation controls

(WPF) support 10

W
window object, InfoPath 2007 object model

39
WindowCollection object, InfoPath 2007

object model 38
Word 2007. See Microsoft Office Word 2007
Word object model

application object 87
document object 87
range object 87
selection object 88
tables collection object 88

workbook host item, Excel host items
event manager 146
InternalStartup() method 146
NewWorkbook event 146

ThisWorkbook object 146
workflow, InfoPath 2007

parts 76
worksheet host item, Excel host items

change event 148

X
XML events, InfoPath 2007

about 53
changed event 54
changing event 54, 55
validating event 55

XmlForm class, InfoPath 2007 object model
39

XmlFormCollection object, InfoPath 2007
object model 39

XMLMappedRange control 155
XML Schema Definition. See XSD
XSD 45

Thank you for buying
VSTO 3.0 for Office 2007
Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Visual C++ Windows
Applications by Example
ISBN: 978-1-847195-56-2 Paperback: 440 pages

Code and explanation for real-world MFC C++
Applications

1. Learn C++ Windows programming by
studying realistic, interesting examples

2. A quick primer in Visual C++ for programmers
of other languages, followed by deep,
thorough examples

3. Example applications include a Tetris-style
game, a spreadsheet application, a drawing
application, and a word processor

4. Each application demonstrates key real-
world techniques: parsing text, working with
files, creating memory structures, displaying
interactive graphics, and more

Software Testing with Visual
Studio Team System 2008
ISBN: 978-1-847195-58-6 Paperback: 340 pages

A comprehensive and concise guide to testing your
software applications with Visual Studio Team
System 2008

1. Test your software applications with Visual
Studio Team System 2008 and rest assured of
its quality

2. Create a structured testing environment for
your applications to produce reliable products

3. Comprehensive yet concise guide with a lot of
examples and clear explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Visual Studio Tools for Office (VSTO)
	What is Microsoft VSTO?
	Why VSTO 3.0?
	Safer managed code extensions
	Data caching
	Feature customization
	User Interface customization
	Smart tags
	WPF support
	Visual designers
	Security improvements
	Maintainability

	What's new in VSTO 3.0?
	VSTO architecture
	Development approaches
	Document-oriented approach
	Application-oriented approach

	VSTO development and deployment
	Creating Office applications through VSTO
	VSTO development environment
	Package

	Visual Studio integration
	Creating VSTO solutions
	Viewing IDE Windows
	Debugging

	What can we expect in the next version?
	Summary

	Chapter 2: Microsoft Office InfoPath Programming
	Microsoft Office InfoPath
	InfoPath 2007 in Visual Studio
	Visual Studio 2008 InfoPath solution overview
	The VSTO problem when installing Office InfoPath 2007

	Creating our first example
	Available customization features
	Object model in InfoPath solution
	Understanding the Microsoft Office InfoPath object model
	Understanding the InfoPath object model functional area

	Using events in InfoPath
	Form-level events
	Xml events
	Control events

	Writing event validation for an expense report form
	Manipulating a data source
	Fetch node value from main data source
	Assigning a value to a node in the main data source
	Adding or creating a new node in the main data source
	Deleting or removing nodes from the main data source
	Populating Microsoft Office InfoPath with Microsoft SQL Server 2008

	Working with Custom Task Panes
	Managed code
	Custom Task Pane
	Creating an InfoPath Task Pane
	Creating an InfoPath add-in project using Visual Studio 2008

	InfoPath and SharePoint workflow
	Summary

	Chapter 3: Microsoft Office Word Programming
	Microsoft Office Word 2007 solutions
	Application-level solutions versus document-level solutions
	Creating document-level solutions
	Publishing solution deployment

	Working with objects and documents
	Working with key objects
	Inserting text in Word 2007 document
	Selecting text in a Word 2007 document
	Creating a table in a Word 2007 document
	Working with Word templates

	Actions Pane: Document-level customization
	Creating a Custom Actions Pane for Microsoft Office Word 2007
	Managing the Actions Pane
	Designing the Actions Pane

	Application-level solutions
	Task Pane: Application-level customization
	What is the Task Pane?
	Custom Task Pane
	Creating a Custom Task Pane for Microsoft Office Word 2007

	Programming in Word
	Word host items
	Word host controls
	Adding controls to a document
	Adding an ActiveX control to Microsoft Office Word 2007 programmatically
	Data binding to host controls

	What is LINQ?
	Using LINQ in Word 2007 with VSTO 3.0 and Visual Studio 2008

	Customization
	Ribbon menu
	Adding controls to menus
	Toolbar (Quick Access Toolbar)
	Adding controls to toolbars

	Summary

	Chapter 4: Microsoft Office Excel Programming
	Programming in Excel
	Hello World example using Visual Studio 2008

	Manipulation
	Data manipulation
	Reading worksheet cells
	Opening a text file as a workbook using VSTO
	Connecting with Microsoft SQL Server 2008 database

	Worksheet manipulation

	Working with ranges
	Cells
	Unions
	Named ranges

	Excel host items
	The workbook host item
	The worksheet host item
	The ChartSheet host item

	Excel host controls
	Chart control
	The ListObject control
	The NamedRange control
	The XMLMappedRange control
	The SelectionChange event

	Creating Excel smart tags with VSTO
	Excel formulae
	Regular expressions
	Excel data protection
	Workbook protection
	Worksheet protection

	Summary

	Chapter 5: Microsoft Office Outlook Programming
	Microsoft Office Outlook object model overview
	Customization using VSTO
	Menus in Outlook

	Outlook form regions support
	Manipulation
	Contacts
	Email messages

	Working with Appointments
	Working with meetings
	Creating a Ribbon menu for Outlook 2007
	Summary

	Chapter 6: Microsoft Office PowerPoint, Visio, and Project Programming
	Programming PowerPoint 2007
	PowerPoint 2007 object model
	Creating a presentation at runtime
	Dynamically add a slide and set title text in the presentation
	Set the presentation theme

	Ribbons in PowerPoint
	Ribbon Visual Designer
	Creating a Ribbon

	Programming Visio 2007
	Visio 2007 object model
	Dynamically creating a new Visio document
	Adding shapes to a document at runtime
	Adding a page as a background for another page

	Set the document theme
	Creating a Commandbar

	Programming Project 2007
	Creating a Project and adding a task dynamically
	Creating menus for Microsoft Project
	Creating a Commandbar for Microsoft Project

	Summary

	Index

