WCF 4.0 Multi-tier Services
Development with LINQ to Entities

professional expertise distilled

Mike Liu [PACKT] enterprise 8

PUBLISHING

http://www.allitebooks.org

WCF 4.0 Multi-tier Services
Development with LINQ to
Entities

Build SOA applications on the Microsoft platform with
this hands-on guide updated for VS2010

Mike Liu

enterprise 8

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

WCF 4.0 Multi-tier Services Development with LINQ
to Entities

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010
Production Reference: 1020610

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-84968-114-8
www . packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmai I .com)

[vww allitebooks.cond

http://www.allitebooks.org

Author
Mike Liu

Reviewers
Yingwei Yang
Jeff Sanders

Acquisition Editor
David Barnes

Development Editor
Rakesh Shejwal

Technical Editor
Akash Johari

Copy Editor
Lakshmi Menon

Indexer
Rekha Nair

Credits

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Sneha Harkut

Proofreader
Kevin McGowan

Graphics
Geetanjali Sawant

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Mike Liu studied Mathematics and Applied Software Engineering at Nanjing
University between 1984 and 1988. After graduating with a bachelor's degree, he
worked as a Programmer/Senior Software Engineer/ Architect on Unix and DOS
using C/C++, Dbase, and Oracle. In 1995 he moved to New Zealand and studied
Business Computing at Auckland University of Technology. During the five-year

stay in New Zealand, he worked as a Senior Software Engineer on Unix and Windows
using C/C++, Java, FoxPro, Informix, Oracle, and SQL Server. He moved to the United
States in 2000 and since then has been working as a Web Developer/Senior Software
Engineer/Principal Software Engineer of various operating systems using various
programming languages and database technologies. He studied Software Engineering
at Brandeis University and graduated in 2005 with a master's degree.

Mike became a Sun Certified Java Programmer (SCJP) in 2000, a Microsoft Certified
Solution Developer (MCSD) for Visual Studio 6.0 in 2001, and an MCSD for .NET in
2004. He started using C# for production development back in the year 2001 when
C# was still in beta stage and he is now integrating a Business Process Management
application with a WCF services backend system.

Mike had his first book — MITT: Multi-user Integrated Table-processing Tool Under
Unix — published in 1993, and had his second book — Advanced C# Programming —
published in 2003. The previous version of this book — WCF Multi-tier Services
Development with LINQ —was published in 2008, with LINQ to SQL being used
as the ORM in the data access layer of the WCF services.

Many thanks to the editors and technical reviewers at Packt
Publishing. Without their help this book wouldn't be of such high
quality. And thanks to my wife, Julia Guo, and my two sons, Kevin
and James Liu, for their consideration and sacrifices while I was
working on this book.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Yingwei Yang joined Microsoft in 2008. Before that he worked for ITG and
Redcats USA. Yingwei enjoys working with .NET technology and is a big fan of
Service Oriented Architecture, Silverlight, and High Performance Computing. He
always thinks that Web Services/Software as a service brings endless opportunities
and possibilities.

Yingwei Yang also helped review the book, WCF Multi-tier Services Development with
LINQ, and he is reviewing Silverlight User Interface Cookbook.

Jeff Sanders is a published author and an accomplished technologist. He is
currently employed with Avanade Federal Services as a Group Manager/Senior
Architect and as the Manager of the Federal Office of Learning and Development.
Jeff has more than 17 years of professional experience in the field of IT and

strategic business consulting, in roles ranging from leading sales to delivery

efforts. He regularly contributes to certification development with Microsoft and
speaks publicly on Microsoft enterprise technologies. With his roots in Software
Development, Jeff's areas of expertise include operational intelligence, collaboration
and content management solutions, distributed component-based application
architectures, object-oriented analysis and design, and enterprise integration patterns
and designs.

Jeff is also the CTO of DynamicShift, a client-focused organization specializing in
Microsoft technologies, specifically Business Activity Monitoring, BizTalk Server,
SharePoint Server, StreamInsight, Windows Azure, AppFabric, Commerce Server,
and .NET. He is a Microsoft Certified Trainer, and leads DynamicShift in both
training and consulting efforts.

He may be reached at jeff.sanders@dynamicshift.com.

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Introducing Web Services and Windows
Communication Foundation
What is SOA?
Web services
What is a web service?
Web service WSDL
Web service proxy
SOAP
Web services: standards and specifications
WS- Profiles
WS-Addressing
WS-Security
WS-ReliableMessaging
WS-Coordination and WS-Transaction
WCF: Windows Communication Foundation
What is WCF?
Why is WCF used for SOA?
WCF architecture
Basic WCF concepts—WCF ABCs
Address
Binding
Contract
Service contract
Operation contract
Message contract

Data contract
Fault contract

Endpoint

NN, a2 m a2
N-QOOwowoONN~NNOOBRBRARWWNNNN= 20O 00WOLNI(IN

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Behavior 23
Hosting 23
Self hosting 23
Windows services hosting 23
IIS hosting 23
Windows Activation Services hosting 24
Channels 24
Metadata 25
WCF production and development environments 25
Summary 26
Chapter 2: Implementing a Basic HelloWorld WCF Service 29
Creating the HelloWorld solution and project 29
Creating the HelloWorldService service contract interface 37
Implementing the HelloWorldService service contract 39
Hosting the WCF service in ASP.NET Development Server 41
Creating the host application 41
Testing the host application 44
ASP.NET Development Server 45
Adding an SVC file to the host application 46
Modifying the web.config file 47
Starting the host application 48
Creating a client to consume the WCF service 49
Creating the client application project 50
Generating the proxy and configuration files 50
Customizing the client application 52
Running the client application 52
Setting the service application to AutoStart 53
Summary 54
Chapter 3: Hosting and Debugging the HelloWorid
WCF Service 55
Hosting the HelloWorld WCF service 55
Hosting the service in a managed application 56
Hosting the service in a console application 56
Consuming the service hosted in a console application 61
Hosting the service in a Windows service 61
Hosting the service in Internet Information Server 62
Preparing the folders and files 62
Turn on Internet Information Services 64
Creating the IIS application 64
Starting the WCF service in IIS 65
Testing the WCF service hosted in 1I1S 66
Other WCF service hosting options 66

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Debugging the HelloWorld WCF service 67
Debugging from the client application 67
Starting the debugging process 67
Debugging on the client application 69
Attaching to ASP.NET Development Server 70
Stepping into the WCF service 72
Debugging only the WCF service 73
Starting the WCF Service in debugging mode 74
Starting the client application in non-debugging mode 76
Starting the WCF service and client applications in debugging mode 77
Attaching to a WCF service process 77
Running the WCF service and client applications in non-debugging mode 77
Debugging the WCF service hosted in IIS 78
Just-In-Time debugger 80
Summary 82
Chapter 4: Implementing a WCF Service in the Real World 83
Why layer a service? 84
Creating a new solution and project using WCF templates 85
Using the C# WCF service library template 85
Using the C# WCF service application template 87
Creating the service interface layer 89
Creating the service interfaces 89
Creating the data contracts 91
Implementing the service contracts 92
Modifying the app.config file 94
Testing the service using WCF Test Client 96
Testing the service using our own client 101
Adding a business logic layer 107
Adding the product entity project 107
Adding the business logic project 108
Calling the business logic layer from the service interface layer 112
Testing the WCF service with a business logic layer 116
Summary 118
Chapter 5: Adding Database Support and Exception Handling to the
RealNorthwind WCF Service 119
Adding a data access layer 120
Creating the data access layer project 120
Calling the data access layer from the business logic layer 122
Preparing the database 125
Adding the connection string to the configuration file 126
Querying the database (GetProduct) 128
Testing the GetProduct method 130

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Updating the database (UpdateProduct) 133
Adding error handling to the service 136
Adding a fault contract 137
Throwing a fault exception 139
Updating the client program to catch the fault exception 140
Testing the fault exception 144
Summary 145
Chapter 6: LINQ—Language Integrated Query 147
What is LINQ 148
Creating the test solution and project 148
New data type var 149
Automatic properties 150
Object initializer 151
Collection initializer 151
Anonymous types 152
Extension methods 153
Lambda expressions 159
Built-in LINQ extension methods and method syntax 162
LINQ query syntax and query expression 163
Built-in LINQ operators 166
Summary 168
Chapter 7: LINQ to Entities: Basic Concepts and Features 169
ORM—Object-Relational Mapping 170
Entity Framework 171
LINQ to Entities 172
Comparing LINQ to Entities with LINQ to Objects 173
LINQ to SQL 173
Comparing LINQ to SQL with LINQ to Entities 174
Creating a LINQ to Entities test application 176
Creating the Data Model 176
Adding a LINQ to Entities item to the project 177
Generated LINQ to Entities classes 182
Querying and updating the database with a table 183
Querying records 183
Updating records 184
Inserting records 184
Deleting records 184
Running the program 185
View Generated SQL statements 187
View SQL statements using ToTraceString 187

[iv]

Table of Contents

View SQL statements using Profiler 190
Deferred execution 190
Checking deferred execution with SQL profiler 191
Deferred execution for singleton methods 193
Deferred execution for singleton methods within sequence
expressions 194
Deferred (lazy) loading versus eager loading 197
Lazy loading by default 198
Eager loading the with Include method 199
Joining two tables 201
Querying a view 202
Summary 203
Chapter 8: LINQ to Entities: Advanced Concepts and Features 205
Calling a stored procedure 206
Mapping a stored procedure to a new entity class 206
Modeling a stored procedure 206
Querying a stored procedure 208
Mapping a stored procedure to an existing entity class 210
Compiled query 213
Direct SQL 214
Dynamic query 215
Dynamic query with expressions 215
Dynamic query with parameters 216
Inheritance 217
LINQ to Entities Table per Hierarchy inheritance 217
Modeling the BaseCustomer and USACustomer entities 218
Modeling the UKCustomer entity 220
Generated classes with TPH inheritance 221
Testing the TPH inheritance 222
LINQ to Entities Table per Type inheritance 224
Preparing database tables 225
Modeling USACustomer1 and UKCustomer1 entities 226
Generated classes with TPT inheritance 228
Testing the TPT inheritance 228
Handling simultaneous (concurrent) updates 231
Detecting conflicts using a data column 232
Explaining the Concurrency Mode property 232
Adding another Entity Data Model 233
Writing the test code 234
Testing the conflicts 235
Turning on concurrency control 235
Detecting conflicts using a version column 239
Adding a version column 239
Modeling the Products table with a version column 240

[v]

Table of Contents

Writing the test code 241
Testing the conflicts 243
Transaction support 243
Implicit transactions 243
Explicit transactions 245
Adding validations to entity classes 247
Debugging LINQ to Entities programs 249
Summary 250
Chapter 9: Applying LINQ to Entities to a WCF Service 251
Creating the LINQNorthwind solution 252
Modeling the Northwind database 254
Copying the connection string to the service layer 256
Using LINQ to Entities in the data access layer 258
Modifying GetProduct in the data access layer 258
Modifying UpdateProduct in the data access layer 259
Testing LINQ to Entities with the WCF Test Client 260
Adding concurrency support 261
Turning on RowVersion concurrency mode 262
Modifying the ProductEntity class 262
Modifying the ProductDAO class 263
Modifying the GetProduct method 263
Modifying UpdateProduct method 264
Modifying the business logic layer classes 266
Modifying the service interface layer classes 266
Testing concurrency with WCF Test Client 267
Testing concurrency with our own client 269
Creating the test client 269
Implementing the GetProduct functionality 270
Implementing the UpdateProduct functionality 272
Testing the GetProduct and UpdateProduct operations 275
Testing concurrent update manually 277
Testing concurrent update automatically 280
Summary 285
Chapter 10: Distributed Transaction Support of WCF 287
Creating the DistNorthwind solution 288
Hosting the WCF service in lIS 290
Testing the transaction behavior of the WCF service 292
Creating a client to call the WCF service sequentially 292
Testing the sequential calls to the WCF service 299
Wrapping the WCF service calls in one transaction scope 301
Testing multiple database support of the WCF service 302

[vil

Table of Contents

Creating a new WCF service 303
Calling the new WCF service in the client application 304
Testing the WCF service with two databases 308
Enabling distributed transaction support 310
Enabling transaction flow in service binding 310
Enabling transaction flow on the service hosting application 31
Modifying the service operation contract to allow a transaction flow 312
Modifying the service operation implementation to require a
transaction scope 312
Understanding the distributed transaction support of a
WCF service 314
Testing the distributed transaction
support of the WCF service 314
Configuring the Distributed Transaction Coordinator 315
Configuring the firewall 317
Propagating a transaction from the client to the WCF service 318
Testing distributed transaction support with one database 318
Testing distributed transaction support with two databases 319
Summary 321

Index 323

[vii]

Preface

WCEF is the new Microsoft model for building services and LINQ to Entities is the
new Microsoft ORM for accessing underlying data storages. Want to learn both?
You may have already seen the huge reference tomes currently available.

This book is the quickest and easiest way to learn WCF and LINQ to Entities in
Visual Studio 2010. WCF and LINQ to Entities are both powerful, yet complex
technologies from Microsoft but this book will teach you both. The mastery of

these two topics will quickly get you started in creating service-oriented applications
and allow you to take your first steps into the world of Service-Oriented Architecture
(SOA) without getting overwhelmed.

Throughout this book you will understand what's going on behind the scenes with
WCF and learn the basic yet most useful techniques about LINQ to Entities. You will
develop three real world, multi-tiered WCF services from beginning to end, with
LINQ to Entities being used in the data access layer of the services. Various clients
including Windows console applications, the WCF Test Client, Windows Form
applications, and WPF applications will be created to test these WCF services. At the
end of this book you will be 100 per cent confident that you understand WCF and
LINQ to Entities, not only in theory, but also with sound real world experiences.

What this book covers

Chapter 1, Introducing Web Services and Windows Communication Foundation,
covers the basic concepts of web services and WCF is also explained.

Chapter 2, Implementing a Basic HelloWorld WCEF Service, discusses how a
simple HelloWorld WCEF service is implemented, hosted, and consumed.

Chapter 3, Hosting and Debugging the HelloWorld WCF Service, discusses various
hosting and debugging techniques for WCF services.

Preface

Chapter 4, Implementing a WCF Service in the Real World, explains how to create a
layered WCF service with an interface layer and a business logic layer.

Chapter 5, Adding Database Support and Exception Handling to the RealNorthwind WCF
Service, explains how to add a data access layer and fault message handling to the
previously created WCF service.

Chapter 6, LINQ — Language-Integrated Query, discusses LINQ-related language
features such as anonymous types, extension methods, and lambda expressions.

Chapter 7, LINQ to Entities: Basic Concepts and Features, covers the basic concepts
and features of LINQ to Entities such as LINQ to Entities designer, querying and
updating a table, deferred execution, and lazy/eager loading.

Chapter 8, LINQ to Entities: Advanced Concepts and Features, discusses advanced
concepts and features of LINQ to Entities such as stored procedures, inheritance,
concurrency control, and transactional support.

Chapter 9, Applying LINQ to Entities to a WCF Service, covers how the data access
layer of the WCF service will be recreated with LINQ to Entities.

Chapter 10, Distributed Transaction Support of WCF, explains how to add distributed
transaction support to the WCF service.

What you need for this book

Microsoft .NET Framework 4.0

Microsoft Visual Studio 2010: Ultimate, Premium, or Professional
Microsoft SQL Server 2008, 2005, or Express

Internet Information Server 7.0 or 6.0

Windows 7 or XP

SAE

Who this book is for

This book is for C# and C++ developers who are eager to get started with WCF

and LINQ to Entities and want a book that is practical and rich with examples from
the very beginning. Developers and architects evaluating SOA implementation
technologies for their company will find this book particularly useful because it gets
you started with Microsoft's tools for SOA and shows you how to customize our
examples for your prototypes.

[2]

Preface

This book presumes basic knowledge of C# or C++. Previous experience with
Visual Studio will be helpful but is not required as detailed instructions are given
throughout the book.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

public bool UpdateProduct(Product product)

{

// TODO: call business logic layer to update product
if (product.UnitPrice <= 0)

return false;

else

return true;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<connectionStrings>

<add name ="NorthwindConnectionString"” connectionString="server=your_
db_server\ your_db_instance;

uid=your_user_name; pwd=your_password;
database=Northwind” />
</connectionStrings>

<system.web>

<compilation debug=""true" />
</system.web>

Any command-line input or output is written as follows:

C:\SOAWithWCFandLINQ\Projects\Hel loWorld\Hel loWorldClient>

"C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcUtil._exe"
http://1ocalhost:8080/HostDevServer/Hel loWorldService.svc?wsdl /
out:HelloWorldServiceRef.cs /config:app.config

[31]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

% Warnings or important notes appear in a box like this.

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www. packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www. packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

: Downloading the example code for the book
\Y

~ Visit http://www.packtpub.com/files/code/1148 Code.zip
to directly download the example code.

The downloadable files contain instructions on how to use them.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code —we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions

of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Introducing Web Services
and Windows Communication
Foundation

In this chapter, we will explain concepts and definitions related to SOA, web
services, and WCF. We will discuss each of the following in detail:

e Whatis SOA?

e Whatis a web service and how is it related to SOA?

e What standards and specifications are there for web services?

e Whatis WCF?

e Use of WCF for SOA.

e WCEF architecture.

e Basic WCF concepts.

What is SOA?

SOA is the acronym for Service Oriented Architecture. As it has come to be known,
SOA is an architectural design pattern by which several guiding principles determine
the nature of the design. Basically, SOA states that every component of a system
should be a service, and the system should be composed of several loosely-coupled
services. A service here means a unit of a program that serves a business process.
Loosely-coupled here means that these services should be independent of each other
so that changing one of them should not affect any other services.

Introducing Web Services and Windows Communication Foundation

SOA is neither a specific technology nor a specific language. It is just a blueprint
or a system design approach. It is an architectural model that aims to enhance the
efficiency, agility, and productivity of an enterprise system. The key concepts of
SOA are services, high interoperability, and loose coupling.

Web services

There are many approaches to realizing SOA, but the most popular and practical
one is —using web services.

What is a web service?

A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. A web service is typically hosted on a remote
machine (provider) and called by a client application (consumer) over a network.
After the provider of a web service publishes the service, the client can discover it
and invoke it. The communications between a web service and a client application
use XML messages. A web service is hosted within a web server and HTTP is used
as the transport protocol between the server and the client applications. The
following diagram shows the interaction of web services:

Web Services Directory (UDDI)

3. Bind and Invoke

Web Services | Web Services
Client Provider

y

[8]

Chapter 1

Web services were invented to solve the interoperability problem between
applications. In the early 90s, along with the LAN/WAN/Internet development, it
became a big problem to integrate different applications. An application might have
been developed using C++ or Java, and run on a Unix box, a Windows PC, or even
a mainframe computer. There was no consistent way that was standardized across
the industry for it to communicate with other applications. It was the development
of XML that made it possible to share data between applications across hardware
boundaries and networks or even over the Internet.

For example, a Windows application might need to display the price of a particular
stock. With a web service, this application can make a request to a URL and/or
pass an XML string such as <QuoteRequest><GetPrice Symble="XYZ"/> </
QuoteRequest>. The requested URL is actually the Internet address of a web
service, which, upon receiving the above quote request, gives a response —
<QuoteResponse><QuotePrice Symble="XYZ">51.22</QuotePrice> </
QuoteResponse/>. The Windows application then uses an XML parser to interpret
the response package and display the price on the screen.

The reason it is called a web service is that it is designed to be hosted in a web
server such as Microsoft Internet Information Server, and called over the Internet,
typically through the HTTP or HTTPS protocols. This is to ensure that a web service
can be called by any application, using any programming language, and under any
operating system, as long as there is an active Internet connection and, of course, an
open HTTP/HTTPS port, which is true for almost every computer on the Internet.

Each web service has a unique URL and contains various methods. When calling

a web service, you have to specify which method you want to call, and pass the
required parameters to the web service method. Each web service method will also
give a response package to tell the caller the execution results.

Besides new applications being developed specifically as web services, legacy
applications can also be wrapped up and exposed as web services. So, an IBM
mainframe accounting system might be able to provide external customers with
a link to check the balance of an account.

[o]

Introducing Web Services and Windows Communication Foundation

Web service WSDL

In order to be called by other applications, each web service has to supply a
description of itself so that other applications will know how to call it. This
description is provided in a language called WSDL.

WSDL stands for Web Services Description Language. It is an XML format that
defines and describes the functionalities of the web service, including the method
names, parameter names and types, and returning data types of the web service.

For a Microsoft ASMX web service, you can see the WSDL by adding
?PWSDL to the end of the web service URL, say http://localhost/MyService/
MyService.asmx?WSDL.

Web service proxy

A client application calls a web service through a proxy. A web service proxy is

a stub class between a web service and a client. It is normally autogenerated by

a tool such as Visual Studio IDE, according to the WSDL of the web service. It can
be reused by any client application. The proxy contains stub methods mimicking

all the methods of the web service so that a client application can call each method
of the web service through these stub methods. It also contains other necessary
information required by the client to call the web service such as custom exceptions,
custom data and class types, and so on.

The address of the web service can be embedded within the proxy class, or it can
be placed inside a configuration file.

A proxy class of a web service could be generated for a specific language. For
example, there could be a proxy class for Java clients, a proxy class for C# clients,
and yet another proxy class for COBOL clients. A proxy class could also be generated
in a commonly understood way such as in XML format. Different clients written in
different languages can reuse this same common proxy class to communicate with
the web service.

To call a web service from a client application, the proper proxy class first has to be
added to the client project. Then, with an optional configuration file, the address of
the web service can be defined. Within the client application, a web service object can
be instantiated and its methods can be called just as for any other normal method.

[10]

Chapter 1

SOAP

There are many standards for web services —SOAP is one of them. SOAP was
originally an acronym for Simple Object Access Protocol and was designed by
Microsoft. As this protocol became popular with the spread of web services and its
original meaning was misleading, the original acronym was dropped with version
1.2 of the standard. It is now merely a protocol, maintained by W3C.

SOAP, now, is a protocol for exchanging XML-based messages over computer
networks. It is widely used by web services and has become its de facto protocol.
With SOAP, the client application can send a request in XML format to a server
application, and the server application will send back a response in XML format.
The transport for SOAP is normally HTTP/HTTPS, and the wide acceptance of
HTTP is one of the reasons why SOAP is also widely accepted today.

Web services: standards and
specifications

Because SOA is an architectural style and web service is now the de facto standard

for building SOA applications, we need to know what standards and specifications
there are for web services.

As discussed in previous sections, there are many standards and specifications for
web services. Some have been well-developed and widely accepted, some are being
developed, and others are just at the proposal stage. These specifications are in
varying degrees of maturity, and are maintained or supported by various standards
and entities. Specifications may complement, overlap, and compete with each other.
As most of these standards committees and specifications are for future web services,
not all of them are implemented in current web service frameworks.

Web service standards and specifications are occasionally referred to as

"WS-*" although there is not a single managed set of specifications that this
consistently refers to, nor a recognized owning body across all of them. The
reference term "WS-*" is more of a general nod to the fact that many specifications
are named with "WS-" as their prefix.

Besides XML, SOAP, and WSDL, here is a brief list of some other important
standards and specifications for web services.

[11]

Introducing Web Services and Windows Communication Foundation

WS-l Profiles

The Web Services Interoperability Organization (WS-I) is an industry consortium
chartered to promote interoperability across the stack of web services specifications.

It publishes web service profiles, sample applications, and test tools to help determine
profile conformance. One of the popular profiles it has published is the WS-I Basic
Profile. WS-1is governed by a Board of Directors, and Microsoft is one of the board
members. The web address for the WS-I organization is http://www.ws-i.org.

WS-Addressing

WS-Addressing is a mechanism that allows web services to communicate addressing
information. With traditional web services, addressing information is carried by

the transport layer, and the web service message itself knows nothing about its
destination. With this new standard, addressing information will be included in the
XML message itself. A SOAP header can be added to the message for this purpose.
The network-level transport is now responsible only for delivering that message to a
dispatcher capable of reading the metadata.

WS-Security

WS-Security describes how to handle security issues within SOAP messages.

It attaches signature and encryption information as well as security tokens to
SOAP messages. In addition to the traditional HTTP/HTTPS authentications, it
incorporates extra security features in the header of the SOAP message, working
in the application layer. Also, it ensures end-to-end security.

There are several specifications associated with WS-Security, such as
WS-SecureConversation, WS-Federation, WS-Authorization, WS-Policy,
WS-Trust, and WS-Privacy.

WS-ReliableMessaging

WS-ReliableMessaging describes a protocol that allows SOAP messages to be
delivered reliably between distributed applications.

The WS-ReliableMessaging model enforces reliability between the message source
and destination. If a message cannot be delivered to the destination, the model must
raise an exception or indicate to the source that the message can't be delivered.

There are several Delivery Assurance options for WS-ReliableMessaging, including
AtLeastOnce, AtMostOnce, Exactly Once, and InOrder.

[12]

Chapter 1

WS-Coordination and WS-Transaction

WS-Coordination describes an extensible framework for providing protocols that
coordinate the actions of distributed applications. The framework enables existing
transaction processing, workflow, and other systems for coordination, to hide their
proprietary protocols and to operate in a heterogeneous environment. Additionally,
this specification provides a definition for the structure of the context and the
requirements for propagating context between cooperating services.

WS-Transaction describes coordination types that are used with the extensible
coordination framework described in the WS-Coordination specification. It defines
two coordination types: Atomic Transaction (AT) for individual operations and
Business Activity (BA) for long-running transactions.

WS-AtomicTransaction provides the definition of the atomic transaction
coordination type that is used with the extensible coordination framework described
in the WS-Coordination specification. This protocol can be used to build applications
that require consistent agreement on the outcome of short-lived distributed activities
that have all-or-nothing semantics.

WS-BusinessActivity provides the definition of the business activity coordination
type that is used with the extensible coordination framework described in the
WS-Coordination specification. This protocol can be used to build applications that
require consistent agreement on the outcome of long-running distributed activities.

WCF: Windows Communication
Foundation

WCF is the latest technology from Microsoft for building services, including web
services. In this section, we will explain what WCF is and what it is composed of. We
will also explain various .NET runtimes, .NET Frameworks, Visual Studio versions,
the relationships between them, and what is needed to develop or deploy WCF
services. You will see some code snippets that will help you to further understand
WCEF concepts although they are not in a completed WCF project. Once we have
grasped the basic concepts of WCF, we will develop a complete WCF service and
create a client application to consume it, in the next chapter.

[13]

Introducing Web Services and Windows Communication Foundation

What is WCF?

WCEF is the acronym for Windows Communication Foundation. It is Microsoft's
latest technology that enables applications in a distributed environment to
communicate with each other.

WCF is Microsoft's unified programming model for building service-oriented
applications. It enables developers to build secure, reliable, transacted solutions that
integrate across platforms and interoperate with existing investments. WCF is built
on the Microsoft .NET Framework and simplifies the development of connected
systems. It unifies a broad array of distributed systems capabilities in a composable,
extensible architecture that supports multiple transports, messaging patterns,
encodings, network topologies, and hosting models. It is the next generation version
of several existing products — ASP.NET's web methods (ASMX) and Microsoft Web
Services Enhancements (WSE) for Microsoft .NET, .NET Remoting, Enterprise
Services, and System.Messaging.

The purpose of WCF is to provide a single programming model, that can be used to
create services on the .NET platform, for organizations.

Why is WCF used for SOA?

As we have seen in the previous section, WCF is an umbrella technology that
covers ASMX web services, .NET remoting, WSE, Enterprise Service, and System.
Messaging. It is designed to offer a manageable approach to distributed computing,
broad interoperability, and direct support for service orientation. WCF supports
many styles of distributed application development by providing a layered
architecture. At its base, the WCF channel architecture provides asynchronous,
untyped message-passing primitives. Built on top of this base are protocol facilities
for secure, reliable, transacted data exchange, and a broad choice of transport and
encoding options.

Let us take an example to see why WCF is a good approach for SOA. Suppose a
company is designing a service to get loan information. This service could be used
by the internal call center application, an Internet web application, and a third-party
Java J2EE application such as a banking system. For interactions with the call center
client application, performance is important. For communication with the J2EE-based
application, however, interoperability becomes the highest goal. The security
requirements are also quite different between the local Windows-based application
and the J2EE-based application running on another operating system. Even
transactional requirements might vary with only the internal application being
allowed to make transactional requests.

[14]

Chapter 1

With these complex requirements, it is not easy to build the desired service with
any single existing technology. For example, ASMX technology may serve well

for the interoperability, but its performance may not be ideal. .NET remoting is a
good choice from the performance perspective, but it is not good at interoperability.
Enterprise Services could be used for managing object lifetimes and defining
distributed transactions, but Enterprise Services supports only a limited set of
communication options.

Now with WCEF, it is much easier to implement this service. As WCF has unified a
broad array of distributed systems capabilities, the get loan service can be built with
WCF for all of its application-to-application communication. The following shows
how WCF addresses each of these requirements:

¢ Because WCF can communicate using web service standards, interoperability
with other platforms that also support SOAP, such as the leading J2EE-based
application servers, is straightforward.

* You can also configure and extend WCF to communicate with web services
using messages not based on SOAP, for example, simple XML formats such
as RSS.

e Performance is of paramount concern for most businesses. WCF was
developed with the goal of being one of the fastest-distributed application
platforms developed by Microsoft.

e To allow for optimal performance when both parties in a communication
are built on WCF, the wire encoding used in this case is an optimized binary
version of an XML Information Set. Using this option makes sense for
communication with the call center client application because it is also built
on WCF and performance is an important concern.

e Managing object lifetimes, defining distributed transactions, and other
aspects of Enterprise Services are now provided by WCF. They are available
to any WCEF-based application, which means that the get loan service can use
them with any of the other applications that it communicates with.

e Because it supports a large set of the WS-* specifications, WCF helps to
provide reliability, security, and transactions, when communicating with
any platform that supports these specifications.

o The WCEF option for queued messaging, built on Message Queuing,
allows applications to use persistent queuing without using another
set of application programming interfaces.

The result of this unification is greater functionality and significantly
reduced complexity.

[15]

[vww allitebooks.cond

http://www.allitebooks.org

Introducing Web Services and Windows Communication Foundation

WCF architecture

The following diagram illustrates the principal layers of the Windows Communication
Foundation (WCF) architecture. This diagram is taken from the Microsoft website
(http://msdn.microsoft.com/en-us/library/ms733128.aspx):

‘ Application ‘
Contracts
Data Message Service Policy and
Contract Contract Contract Binding
Service runtime
Throttling Error Metadata| |Instance| | Message
Behavior | |Behavior| |Behavior| |Behavior| Inspection
Transaction| | Dispatch Concurrency Parameter
Behavior Behavior Behavior Filtering
Messaging
WS Security WS Reliable Encoders:
Channel Messaging Binary/MTOM/Text/
Channel XML
wrre || top | [TrAnSECiont |y amepipe || MsMQ
Channel| | Channel Flow Channel ||Channel
anne Channel anne

Activation and hosting

Windows Windows
Activation .EXE . COM+
. Services
Service

¢ The Contracts layer defines various aspects of the message system. For
example, the Data Contract describes every parameter that makes up
every message that a service can create or consume.

e The Service runtime layer contains the behaviors that occur only during the
actual operation of the service, that is, the runtime behaviors of the service.

e The Messaging layer is composed of channels. A channel is a component that
processes a message in some way, for example, in authenticating a message.

e Inits final form, a service is a program. Like other programs, a service must
be run in an executable format. This is known as the hosting application.

[16]

Chapter 1

In the next section, we will explain these concepts in detail.

Basic WCF concepts—WCF ABCs

There are many terms and concepts surrounding WCF such as address, binding,
contract, endpoint, behavior, hosting, and channels. Understanding these terms is
very helpful when using WCF.

Address

The WCF Address is a specific location for a service. It is the specific place to which a
message will be sent. All WCF services are deployed at a specific address, listening at
that address for incoming requests.

A WCF Address is normally specified as a URL, with the first part specifying the
transport mechanism, and the hierarchical parts specifying the unique location of the
service. For example, http://www.myweb.com/myWCFServices/SampleService is
an address for a WCF service. This WCF service uses HTTP as its transport protocol,
and it is located on the server www._myweb . com, with a unique service path of
myWCFServices/SampleService. The following diagram illustrates the three parts of
a WCEF service address.

http://www.myweb.com/myWCFServices/SampleService

vl .

Transport Machine Address Service Path

Binding

Bindings are used to specify the transport, encoding, and protocol details required
for clients and services to communicate with each other. Bindings are what WCF
uses to generate the underlying wire representation of the endpoint. So, most of the
details of the binding must be agreed upon by the parties that are communicating.
The easiest way to achieve this is for clients of a service to use the same binding that
the service uses.

[17]

Introducing Web Services and Windows Communication Foundation

A binding is made up of a collection of binding elements. Each element describes
some aspect of how the service communicates with clients. A binding must include at
least one transport binding element, at least one message encoding binding element
(which can be provided by the transport binding element by default), and any number
of other protocol binding elements. The process that builds a runtime out of this
description allows each binding element to contribute code to that runtime.

WCEF provides bindings that contain common selections of binding elements. These
can either be used with their default settings or the default values can be modified
according to user requirements. These system-provided bindings have properties
that allow direct control over the binding elements and their settings.

The following are some examples of system-provided bindings:

BasicHttpBinding, WSHttpBinding, WSDualHttpBinding,
WSFederationHttpBinding, NetTcpBinding, NetNamedPipeBinding,
NetMsmqBinding, NetPeerTcpBinding, and MsmqIntegrationBinding.

Each one of these built-in bindings has predefined required elements for a common
task, and is ready to be used in your project. For instance, the BasicHttpBinding
uses HTTP as the transport for sending SOAP 1.1 messages, and it has attributes
and elements such as receiveTimeout, sendTimeout, maxMessageSize, and
maxBufferSize. You can use the default settings of its attributes and elements,

or overwrite them as needed.

Contract

A WCEF contract is a set of specifications that define the interfaces of a WCF service.
A WCF service communicates with other applications according to its contracts.
There are several types of WCF contracts such as Service Contract, Operation
Contract, Data Contract, Message Contract, and Fault Contract.

Service contract

A service contract is the interface of the WCF service. Basically, it tells others what
the service can do. It may include service-level settings such as the name of the
service, the namespace of the service, and the corresponding callback contracts of the
service. Inside the interface, it can define a bunch of methods, or service operations,
for specific tasks. Normally, a WCF service has at least one service contract.

[18]

Chapter 1

Operation contract

An operation contract is defined within a service contract. It defines the
parameters and return type of an operation. An operation can take data of a
primitive (native) data type such as an integer as a parameter, or it can take a
message, which should be defined as a message contract type. Just as a service
contract is an interface, an operation contract is a definition of an operation. It

has to be implemented in order for the service to function as a WCF service. An
operation contract also defines operation-level settings such as the transaction flow
of the operation, the directions of the operation (one-way, two-way, or both ways),
and the fault contract of the operation.

The following is an example of an operation contract:

[FaultContract(typeof(ProductFault))]
GetProductResponse GetProduct(GetProductRequest request);

In this example, the operation contract's name is GetProduct and it takes one input
parameter, which is of the type GetProductRequest (a message contract) and has
one return value, which is of the type GetProductResponse (another message
contract). It may return a fault message, which is of the type ProductFault (a

fault contract), to the client applications. We will cover message contract and fault
contract in the following sections.

Message contract

If an operation contract needs to pass a message as a parameter or return a message,
the type of these messages will be defined as message contracts. A message contract
defines the elements of the message as well as any message-related settings such as
the level of message security, and also whether an element should go to the header
or to the body.

The following is a message contract example:

namespace MyWCF.EasyNorthwind.MessageContracts
{
/// <summary>
/// Service Contract Class - GetProductResponse
/// </summary>
[WCF: :MessageContract(IsWrapped = false)]
public partial class GetProductResponse
{
private MyWCF.EasyNorthwind.DataContracts.Product product;
[WCF: :MessageBodyMember (Name = "Product'™)]
public MyWCF.EasyNorthwind.DataContracts.Product Product

{

[19]

Introducing Web Services and Windows Communication Foundation

get { return product; }
set { product = value; }
}
}
}

In this example, the namespace of the message contract is MyWCF .EasyNorthwind.
MessageContracts, and the message contract's name is GetProductResponse.
This message contract has one member, which is of the type Product.

Data contract

Data contracts are data types of the WCF service. All data types used by the

WCEF service must be described in metadata to enable other applications to
interoperate with the service. A data contract can be used by an operation contract
as a parameter or return type, or it can be used by a message contract to define
elements. If a WCF service uses only primitive (native) data types, it is not necessary
to define any data contract.

The following is an example of data contract:

namespace MyWCF.EasyNorthwind.DataContracts
{
/// <summary>
/// Data Contract Class - Product
/// </summary>
[WcfSerialization: :DataContract(Namespace = "http://MyCompany.com/
ProductService/EasyWCF/2008/05", Name = "Product™)]
public partial class Product
{
private int productlD;
private string productName;

[WcfSerialization: :DataMember (Name
IsRequired

"ProductlID",
false, Order = 0)]

public int ProductlD
{
get { return productlD; }
set { productlID = value; }
}

[WcfSerialization: :DataMember(Name =
"ProductName', IsRequired = false, Order = 1)]

public string ProductName

{
get { return productName; }
set { productName = value; }

[20]

Chapter 1

}
}
}

In this example, the namespace of the data contract is MyWCF .EasyNorthwind.
DataContracts, the name of the data contract is Product, and this data contract
has two members (ProductlD and ProductName).

Fault contract

In any WCF service operation contract, if an error is returned to the caller, the caller
should be warned of that error. These error types are defined as fault contracts. An
operation can have zero or more fault contracts associated with it.

The following is a fault contract example:

namespace MyWCF._EasyNorthwind.FaultContracts
{
/// <summary>
/// Data Contract Class - ProductFault
/// </summary>

[WcfSerialization: :DataContract(Namespace = "http://MyCompany.com/
ProductService/EasyWCF/2008/05", Name = "ProductFault™)]

public partial class ProductFault
{
private string faultMessage;

[WcfSerialization: :DataMember(Name =
"FaultMessage', IsRequired = false, Order = 0)]

public string FaultMessage
{
get { return faultMessage; }
set { faultMessage = value; }
}
}
}

In this example, the namespace of the fault contract is MyWCF . EasyNorthwind.
FaultContracts, the name of the fault contract is ProductFault, and the fault
contract has only one member (FaultMessage).

[21]

Introducing Web Services and Windows Communication Foundation

Endpoint

Messages are sent between endpoints. Endpoints are places where messages are
sent or received (or both), and they define all of the information required for the
message exchange. A service exposes one or more application endpoints (as well
as zero or more infrastructure endpoints). A service can expose this information
as the metadata that clients process to generate the appropriate WCF clients and
communication stacks. When needed, the client generates an endpoint that is
compatible with one of the service's endpoints.

A WCEF service endpoint has an address, a binding, and a service contract
(WCF ABC).

The endpoint's address is a network address where the endpoint resides.

It describes, in a standard-based way, where messages should be sent. Each
endpoint normally has one unique address, but sometimes two or more endpoints
can share the same address.

The endpoint's binding specifies how the endpoint communicates with the world,
including things such as transport protocol (TCP, HTTP), encoding (text, binary),
and security requirements (SSL, SOAP message security).

The endpoint's contract specifies what the endpoint communicates, and is essentially
a collection of messages organized in the operations that have basic Message
Exchange Patterns (MEPs) such as one-way, duplex, or request/reply.

The following diagram shows the components of a WCF service endpoint.

ServiceEndpoint

EndpointAddress

Binding

ContractDescription

[22]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Chapter 1

Behavior

A WCEF behavior is a type or settings to extend the functionality of the original

type. There are many types of behaviors in WCF such as service behavior, binding
behavior, contract behavior, security behavior, and channel behavior. For example, a
new service behavior can be defined to specify the transaction timeout of the service,
the maximum concurrent instances of the service, and whether the service publishes
metadata. Behaviors are configured in the WCF service configuration file. We will
configure several specific behaviors in the chapters that follow.

Hosting

A WCEF service is a component that can be called by other applications. It must be
hosted in an environment in order to be discovered and used by others. The WCF
host is an application that controls the lifetime of the service. With .NET 3.0 and
beyond, there are several ways to host the service.

Self hosting

A WCEF service can be self-hosted, which means that the service runs as a standalone
application and controls its own lifetime. This is the most flexible and easiest way of
hosting a WCEF service, but its availability and features are limited.

Windows services hosting

A WCEF service can also be hosted as a Windows service. A Windows service is
a process managed by the operating system and it is automatically started when
Windows is started (if it is configured to do so). However, it lacks some critical
features (such as versioning) for WCF services.

IIS hosting

A better way to host a WCF service is to use IIS. This is the traditional way of
hosting a web service. IIS, by its nature, has many useful features such as process
recycling, idle shutdown, process health monitoring, message-based activation, high
availability, easy manageability, versioning, and deployment scenarios. All of these
features are required for enterprise-level WCF services.

[23]

Introducing Web Services and Windows Communication Foundation

Windows Activation Services hosting

The IIS hosting method, however, comes with several limitations in the
service-orientation world, the dependency on HTTP being the main culprit. With
IIS hosting, many of WCEF's flexible options can't be utilized. This is the reason why
Microsoft specifically developed a new method called Windows Process Activation
Services (WAS) to host WCEF services.

WAS is the new process activation mechanism for Windows Server 2008 that is also
available on Windows Vista and Windows 7. It retains the familiar IIS 6.0 process
model application pools and message-based process activation and hosting features
(such as rapid failure protection, health monitoring, and recycling), but it removes
the dependency on HTTP from the activation architecture. IIS 7.0 uses WAS to
accomplish message-based activation over HTTP. Additional WCF components also
plug into WAS to provide message-based activation over the other protocols that
WCEF supports, such as TCP, MSMQ, and named pipes. This allows applications that
use the non-HTTP communication protocols to use the IIS features such as process
recycling, rapid fail protection, and the common configuration systems that were
only previously available to HTTP-based applications.

This hosting option requires WAS to be properly configured, but it does not require
you to write any hosting code as part of the application. (Microsoft MSN, Hosting
Services, retrieved on 3/6/2008 from http://msdn2.microsoft.com/enus/
library/ms730158.aspx.)

Channels

As we have seen in the previous sections, a WCF service has to be hosted in an
application on the server side. On the client side, the client applications have to
specify the bindings to connect to the WCF services. The binding elements are
interfaces, and they have to be implemented in concrete classes. The concrete
implementation of a binding element is called a channel. The binding represents
the configuration and the channel is the implementation associated with that
configuration. Therefore, there is a channel associated with each binding element.
Channels stack on top of one another to create the concrete implementation of the
binding — the channel stack.

The WCEF channel stack is a layered communication stack with one or more channels
that process messages. At the bottom of the stack is a transport channel that is
responsible for adapting the channel stack to the underlying transport (for example,
TCP, HTTP, SMTP, and other types of transport). Channels provide a low-level
programming model for sending and receiving messages. This programming model
relies on several interfaces and other types collectively known as the WCF channel
model. The following diagram shows a simple channel stack:

[24]

Chapter 1

Application

Protocol Channel

Protocol Channel

Transport Channel

Metadata

The metadata of a service describes the characteristics of the service that an external
entity needs to understand in order to communicate with the service. Metadata can
be consumed by the ServiceModel Metadata Utility Tool (Svcutil.exe) to generate
a WCEF client and the accompanying configuration that a client application can use to
interact with the service.

The metadata exposed by the service includes XML schema documents, which define
the data contract of the service, and WSDL documents, which describe the methods
of the service.

Though WCEF services always have metadata, it is possible to hide the metadata
from outsiders. If you do so, you have to pass the metadata to the client side by
other means. This practice is not common but it gives your services an extra layer
of security. When enabled through the configuration settings through metadata
behavior, metadata for the service can be retrieved by inspecting the service and its
endpoints. The following configuration setting in a WCF service configuration file
will enable metadata publishing for HTTP transport protocol:

<serviceMetadata httpGetEnabled=""true" />

WCF production and development
environments

WCF was first introduced in Microsoft's NET Common Language Runtime (CLR)
version 2.0. The corresponding framework is .NET 3.0. To develop and run WCF
services, Microsoft .NET Framework 3.0 or above is required.

[25]

Introducing Web Services and Windows Communication Foundation

Visual Studio is the preferred IDE for developing WCF service applications.

Both Visual Studio 2008 and Visual Studio 2010 support WCF service application
development. Visual Studio 2008 also supports application development for .NET
Framework 2.0, 3.0, and 3.5 (this is called multi-targeting), and Visual Studio 2010
supports application development for .NET Framework 2.0, 3.0, 3.5, and 4.0.

The following table shows all of the different versions of the .NET runtimes, .NET
Frameworks, and Visual Studios, along with their relationships:

CLR NET Components Visual Studio
Framework
2010
Z:I(;R .NET 4.0 Parallel Computing
ASP.NET Entity LINQ to Cloud
NET 3.55P1 MVC Framework Entities Computing 2008,2010
LIN
Q ASP
CLR NET35 LINQ LINQ LINQ NET REST RSS
2.0 to to to 2008,2010
) AJAX
SQL XML Objects
.NET 3.0 WCF WPF WF CardSpace
NET 2.0 Winforms ASP.NET ADO.NET 2005,2008,2010
CLR -NET1.1) 2003
Winforms ASP.NET ADO.NET
1.0 NET 1.0 2002

Summary

In this chapter, we have learned and clarified many concepts related to SOA,
web services, and WCEF. The key points in this chapter are:
e SOA is an architectural design pattern
e Web services are the most popular and practical way of realizing SOA today

e There are many standards and specifications for web services, including (but
not limited to) WSDL, SOAP, WS-I Profiles, and various WS-* standards

e WCF is a better technology for developing SOA services
e A WCEF service has at least one service endpoint
e A WCF service endpoint has an address, a binding, and a service contract

e A WCEF service can be self-hosted or can be hosted in a managed or an
unmanaged application

[26]

Chapter 1

A WCEF service can publish metadata and communicates with client
applications through channels

.NET Framework 3.0 or above is required to develop and run WCF
service applications

Visual Studio 2008 and 2010 are the preferred IDEs for WCF service
application development

[27]

Implementing a Basic
HelloWorld WCF Service

In the previous chapter, we learned several WCF concepts and looked at a few
code snippets.

In this chapter, we will implement a basic WCF service from scratch. We will
build a Hel loWor Id WCEF service by carrying out the following steps:

e Create the solution and project

e Create the WCF service contract interface

¢ Implement the WCF service

e Host the WCF service in the ASP.NET Development Server

e Create a client application to consume this WCF service

Creating the HelloWorld solution and
project

Before we can build the WCEF service, we need to create a solution for our service
project. We also need a directory in which we will save all the files. Throughout
this book, we will save our project source codes in the C:\SOAWithWCFandL INQ\
Projects directory. We will have a subfolder for each solution we create, and
under this solution folder, we will have one subfolder for each project.

Implementing a Basic HelloWorld WCF Service

For this Hel loWor Id solution, the final directory structure is shown in the
following image:

P=EES)

Organize = Include in library = Share with = New folder

I 1 Program Files MName Date modified Type
[> 10 ProgramData
4) SOAWRhWCFandLING
4 | Projects
4 HelloWorld
» 4 HelloWorldClient

. HelloWerldClient 1/14/2010 8:40 PM File folder
1. HelloWorldService 1/14/2010 8:40 PM File folder
. HostCmdLineApp 1/14/2010 8:40 PM File folder
. HostDevServer 1/14/2010 8:40 PM File folder
| Hostlls 1/14/2010 8:40 PM File folder
| HelleWorldService e) -
= HelloWarld.sln 12/26/2009 9:44 PM Microsoft Visua..,

, HostCmdLineApp = : :
- HelleWorld.suo 1/12/2010 4:48 PM Visual Studio 5.,
. HostDevServer

. Hostls

7 items

* You don't need to manually create these directories with Windows
Explorer; Visual Studio will create them automatically when you
create the solutions and projects.

Now follow these steps to create our first solution and the Hel lowor Id project:
1. Start Visual Studio 2010. If the Open Project dialog box pops up,
click on Cancel to close it.

2. Go to menu File | New | Project. The New Project dialog window
will appear.

[30]

Chapter 2

F

[8

New Project

Recent Templates

Installed Templates

Location:

Solution name:

l |2 o |

T, |

| Search Installed Tem @ |

4 . Blank Solution
Visual Basic —i Lo

Visual C#
Visual C++
Visual F#
Other Project Types
Setup and Deployment
Extensibility
Visual Studio Solutions
Database

Modeling Projects -

Online Templates

MName: HelloWorld

CASOAwithWCFand LINQProjects',
HelloWorld

L —
|.NET Framewark 4 X | Sort by: |Defau|t

Visual Studio Solutions

Type: Visual Studic Solutions

Create an empty solution containing no
projects

- Browse... |

Create directory for solution

|| Add to source control

From the left-hand side of the window (Installed Templates), expand Other

Project Types and then select Visual Studio Solutions as the template. From
the middle section of the window, select Blank Solution.

At the bottom of the window, type HelloWorld as the Name and

C:\SOAWithWCFandLINQ\Projects\ as the Location. Note that you
should not enter He l loWor Id within the location because Visual Studio
will automatically create a folder for a new solution.

[31]

Implementing a Basic HelloWorld WCF Service

5. Click on the OK button to close this window and your screen should look
like the following image with an empty solution.

-
o0

HelloWorld - Microsoft Visual Studio [E=EER

¥oqioo] . J2iojdig 1saes e

File Edit View Project Debug Team Data Tools Architecture Test Analyze Window Help
PG| % B9 e E-5 | 2

Solution Explorer > o x
=
2 Solution 'HelloWorld' (0 projects)

Show output from: |

._? Solution Explorer [l SeEEERVEN

6. Depending on your settings, the layout may be different. But you should still
have an empty solution in your Solution Explorer. If you don't see Solution
Explorer, go to menu View | Solution Explorer or press Ctrl + Alt + L to
bring it up.

7. In Solution Explorer, right-click on the solution and select Add | New
Project... from the context menu. You can also go to menu File | Add |
New Project... to get the same result. The following image shows the
context menu for adding a new project.

[32]

Chapter 2

r - —— - el
=0 HelloWorld - Microsoft Visual Studia [E=NIE

File Edit View Project Debug Team Data Tools Architecture Test Analyze Window Help

eI

™ <plution 'HelloWorld" (ﬂ.proj:ects.)

LCalculate Code Metrics

bjth3 12z e

Mew Project... Add »
Existing Project... L_?r Add Solution to Source Control...
New Web Site... 4 Paste Crl+V
Existing Web Site... Rename
i Newltem... Ctrl+Shift+A j Open Folder in Windows Explorer
] Bdsting Item... ShiftrAI+A | (= ponerties AR<Erter
1 MNew Solution Folder

£ Solution Explorer [l eFET

8. The Add | New Project window should now appear on your screen. In the
left-hand side of this window (Installed Templates), select Visual C# as the
template, and in the middle section of the window, select Class Library.

[33]

Implementing a Basic HelloWorld WCF Service

9. At the bottom of the window, type HelloWorldService as the Name. Write
C:\SOAWithWCFandLINQ\Projects\HelloWorld as the Location. Again,
don't add Hel loWorldService to the location, as Visual Studio will create a
subfolder for this new project (Visual Studio will use the solution folder as
the default base folder for all the new projects added to the solution).

I’ . —— —— e —— 5
Add New Project - & & " g
Recent Templates I.NET Framework 4 - |Sort by: lDefauIt hd | | Search Installed Tem © | |
Installed Templates -l ——
- 2 E‘cﬁ Windows Forms Application Visual C2 g PE YR
Visiial Basic o =| A project for creating a C# class library
Visual C#|)) i' (.dlf)
Visual C++ E Class Library Visual C# |_|
Visual F# p
Other Project Types \=ch ASP.NET Web Application Visual C#
Database
Modeling Projects ;ﬁ Empty ASP.MET Web Applica...Visual C#

Test Projects

I Online Templates

Silverlight Application Visual C#

@ % ¢

i
(5]
=

ASP.NET MVC 2 Web Applica..Visual C#

[i
(2] i
=

4

Silverlight Mavigation Applic... Visual C&F

Name: HelloWorldService
Location: CASOAWithWCFandLING \Projects\HelloWorld - Browse... |

You may have noticed that there is already a template for WCF Service
Application in Visual Studio 2010. For this very first example, we will not use
this template. Instead, we will create everything by ourselves to understand
the purpose of each template. This is an excellent way for you to understand
and master this new technology. In the next chapter, we will use this template
to create the project, so we don't need to manually type a lot of code.

10. Now you can click on the OK button to close this window.

Once you click on the OK button, Visual Studio will create several files for you.
The first file is the project file. This is an XML file under the project directory, and
it is called Hel loWorldService.csproj.

Visual Studio also creates an empty class file called Class1.cs. Later, we will
change this default name to a more meaningful one and change its namespace
to our own one.

[34]

Chapter 2

Three directories are created automatically under the project folder —one to hold the

binary files, another to hold the object files, and a third one for the properties files of
the project.

The window on your screen should now look like the following image:

50 HelloWorld - Microsoft Visual Studio [E= I
. - - e

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

- S a8 2B - - 25 b |Debug ~| | Any CPU - 2

Solution Explarer 01X
“#2HelloWorldService. Classl - A= | & 2] | [E

Susing System; : z = Show All Files
using System.Collections.Generic; = 4 E
using System.Lling; =d| Properties
| using System.Text; ST | Refer_gnces
#] Classl.cs

Id' (1 project)
ice

“'namespace HelloWorldService
{

public class Classl

1

¥

L} &3] Solution Explorer [S elEeaiTom

¥0q[oo] . iRiojdig 1anag He

Classl.cs File Properties

==
4

Build Action Compile
Advanced

Creating project 'HelloWorldService'... project creation successful.

We have now created a new solution and project. Next, we will develop and build
this service. But before we go any further, we need to do two things to this project:

1. Click on the Show All Files button on the Solution Explorer toolbar. It is the
second button from the left, just above the word Solution inside the Solution
Explorer. If you allow your mouse to hover above this button, you will see
the hint, Show All Files, as shown in above screenshot. Clicking on this
button will show all files and directories in your hard disk under the project
folder, even those items that are not included in the project. Make sure that

you don't have the solution item selected. Otherwise you can't see the Show
All Files button.

[35]

vww allitebooks.conl

http://www.allitebooks.org

Implementing a Basic HelloWorld WCF Service

2. Change the default namespace of the project. From Solution Explorer,
right-click on the HelloWorldService project, select Properties from the
context menu or go to menu item Project | HelloWorldService Properties....
You will see the project properties dialog window. On the Application tab,
change the Default namespace to MyWCFServices.

40 HelloWorld - Microsoft Visual

- sl ® Sy .- 3
File Edit View Project Build Debug Team Data Tools Architecture Test Apalyze Window Help
P S @ % A9 - - E-5 | b [pebug | [Anycru | @ 2
Ml HelloWorldService® x [fese ey ~ Solution Explorer * 1 X
g Eall
E‘ Application _2 Selution 'HelloWorld' (1 project]
£ /A 4 [HelloWorldService
i Build A + = Properties
E M =] References
A e
i Build Events] Classl.cs
S_ A zmbly name: Default namespace =
§' oWorldService CFServices|ll |
Resources i= |
16t framework: Output type: i |
Services T Framework 4 - l [Class Library
i tup ohject:
S3digE e £ Solution Explorer [l SeEERTEN
. tset) b |
¥
(™ n | | -
Output > X
Show output from: | Build R R R - |
L]
Creating project 'HelloWorldService'... project creation successful.

Lastly, in order to develop a WCF service, we need to add a reference to the
System.ServiceModel namespace.

1. On the Solution Explorer window, right-click on the HelloWorldService
project, and select Add Reference... from the context menu. You can also

go to menu item Project | Add Reference... to do this. The Add Reference
dialog window should appear on your screen.

[36]

Chapter 2

> Ref;;:—_‘
MET | COM | Projects | Browse | Recent
Component Marme Version Runtime Path i
System.Security 4,0.0.0 wd,0.21008 Ch\Program
System.ServiceModel Acti... 4.0.0.0 v4.0.21006 C\Program
System.ServiceModel Acti... 4.0.0.0 wd,0.21006 C\Program
System.ServiceModel.Cha... 4.0.00 wit,0.21006 Ch\Program
System.ServiceModel.Disc... 4.0.0.0 vd.0.21006 Ch\Program
| Systern,Servicelodel 4,0.0.0 wd,0.21006 Ch\Program
System.ServiceModel Rout... 4.0.0.0 v4.0.21006 C\Program
System.ServiceModel Web 40,00 wd,0.21006 C\Program
System.ServiceProcess 4.0.0.0 wit,0.21006 Ch\Program
System.Speech 4.0.0.0 vd.0.21006 Ch\Program
System.Transactions 4.0.00 +4.,0.21006 Ch\Program -
I 4 e 3 I
| oK | ‘ Cancel |

2. Select System.ServiceModel from the .NET tab and click on OK.

Now, on Solution Explorer, if you expand the references of the Hel loWor IdService
project, you will see that System.ServiceModel has been added. Also, note that
System.Xml .Linq is added by default. We will use this later when we query

a database.

Creating the HelloWorldService service
contract interface

In the previous section, we created the solution and the project for the Hel loworld
WCF service. From this section on, we will start building the Hel loworld WCF
service. First, we need to create the service contract interface.

[37]

Implementing a Basic HelloWorld WCF Service

1. In Solution Explorer, right-click on the HelloWorldService project, and
select Add | New Item... from the context menu. The following Add New
Item - HelloWorldService dialog window should appear on your screen.

Add New Item - HelloWorldService ' l B[
Installed Templates Sort by: |Defau|t : | | Search Installed Templates R
4 Visual C# Items 1 -
Type: Visual C£ It
Code C\g Assembly Information File Visual C# Items MWELIAL e
— An empty interface definition

Data :

General @ Class Diagram Visual C# Items

Web

m

Windows Forms » ADO.NET EntityObject G... Visual C#Items |
WPF 5

Reporting [ES8| IconFile Visual C# Iterns

Worldflow
Online Templates 1 Interface Visual CZ Items
Class Visual C# Items

Code File Visual C# Items

Ritrnan File Vizual C# tems

IHelloWaorldService.cs

e

2. On the left-hand side of the window (Installed Templates), select
Visual C# Items as the template, and from the middle section of the
window, select Interface.

3. At the bottom of the window, change Name from Interfacel.cs to
IHelloWorldService.cs.

4. Click on the Add button.

Now an empty service interface file has been added to the project. Follow the steps
below to customize it.

1. Add ausing statement:
using System.ServiceModel;

2. Add a ServiceContract attribute to the interface. This will designate the
interface as a WCF service contract interface.

[ServiceContract]

[38]

Chapter 2

3. Add a GetMessage method to the interface. This method will take a string
as the input and return another string as the result. It also has an attribute,
OperationContract.

[OperationContract]
String GetMessage(String name);

4. Change the interface to public.
The final content of the file, IHel loWorldService.cs, should look like the following:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.ServiceModel;
namespace MyWCFServices

{
[ServiceContract]
public interface IHelloWorldService
{
[OperationContract]
String GetMessage(String name);
}
}

Implementing the HelloWorldService
service contract

Now that we have defined a service contract interface, we need to implement it.
For this purpose we will reuse the empty class file that Visual Studio created for
us earlier, and modify this to make it the implementation class of our service.

Before we modify this file, we need to rename it. In the Solution Explorer window,
right-click on the file, Classl.cs, select rename from the context menu, and rename
it HelloWorldService.cs.

Visual Studio is smart enough to change all the related files which
are references to use this new name. You can also select the file
T and change its name from the Properties window.

[39]

Implementing a Basic HelloWorld WCF Service

Next, follow the steps below to customize this class file.

1. Change its namespace from Hel loWorldService to MyWCFServices. This
is because this file was added before we changed the default namespace of
the project.

2. Make it inherit from the interface, 1Hel loWorldService.

public class HelloWorldService: IHelloWorldService

3 Add a GetMessage method to the class. This is an ordinary C# method that
returns a string,.

public String GetMessage(String name)
{

return "Hello world from " + name + "I'';

3
The final content of the file, Hel loWorldService.cs, should look like the following;:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace MyWCFServices

{
public class HelloWorldService: IHelloWorldService
{
public String GetMessage(String name)
{
return "Hello world from " + name + "I"
}
}
}

Now, build the project. If there is no build error, it means that you have successfully
created your first WCF service. If you see a compilation error, such as 'ServiceModel'
does not exist in the namespace 'System’, this is probably because you didn't add
the System.ServiceModel namespace reference correctly. Revisit the previous
section to add this reference, and you are all set.

Next, we will host this WCF service in an environment and create a client application
to consume it.

[40]

Chapter 2

Hosting the WCF service in ASP.NET
Development Server

HelloWorldService is a class library. It has to be hosted in an environment so that
client applications may access it. In this section, we will explain how to host it using
ASP.NET Development Server. Later, in the next chapter, we will discuss more
hosting options for a WCF service.

Creating the host application

There are several built-in host applications for WCF services within Visual

Studio 2010. However, in this section, we will manually create the host application
so that you can have a better understanding of what a hosting application is really
like under the hood. In subsequent chapters, we will explain and use the built-in
hosting application.

To host the library using ASP.NET Development Server, we need to add a new
website to the solution. Follow these steps to create this website:

1. In Solution Explorer, right-click on the Solution file and select
Add | New Web Site... from the context menu. The Add New Web
Site dialog window should pop up.

[41]

Implementing a Basic HelloWorld WCF Service

2. Select Visual C# | Empty Web Site as the template, and leave the Web
location as File System. Change the website name from WebSitel to
C:\SOAWithWCFandLINQ\Projects\HelloWorld\HostDevServer

and click on OK.
e —,
Recent Templates l MET Framewaork 4 - | Sort by: lDefauIt | Search Installed Templates @ | J
Installed Templates “ 1 Visual C#
_ _ :"g ASP.NET Web Site Visuslcg [YPS TEUEY
Visual Basic LEC An empty Web site
Visual C#
% ASP.MET Web Service Yisual C#
Online Templates s
@ Empty Web Site Visual C#
Silverlight 1.0 Web Site Visual C#
w U
_Ca‘\ig WOCF Service Visual C#
‘] cH| AsPNET Reports Web Site Visual C# | 4

l% Dynamic Data Ling to SQL Web Site Visual C#

cﬁ)! Munamic Nata Frtities Weh Site Vieual C#
Web location: |Fi|e System - | WCFandLING\Projects\HelloWorld\HostDevServer = Browse... |

3. Now in Solution Explorer, you have one more item (HostDevServer)
within the solution. It will look like the following:

Solution Explorer *AOx

E e B e kol)
z Selution 'HelloWorld' (2 projects)
4 ;‘P‘ ChAHostDevServer',
i web.config

4 (5 HelloWorldService

> [=d| Properties

» [+3] References
1 bin

»

#] HelloWorldService.cs
#] HelloWorldService.cs

[42]

Chapter 2

6.

Next, we need to set the website as the startup project. In Solution Explorer,
right-click on the website, C:\...\HostDevServer, select Set as StartUp
Project from the context menu (or you can first select the website from
Solution Explorer, and then select menu item Website | Set as StartUp
Project). The website, C:\...\HostDevServer, should be highlighted in
Solution Explorer indicating that it is now the startup project.

Because we will host Hel loWor 1dService from this website, we need to add a
HelloWorldService reference to the website. In Solution Explorer, right-click
on the website, C:\...\HostDevServer, and select Add Reference... from the
context menu. The following Add Reference dialog box should appear:

o0 Add Reference N— |M

-~

Project Mame Project Directory

HelloWarldService C:\SOAWithWCFandLING\Projects\Hel

[QK J ‘ Cancel |

In the Add Reference dialog box, click on the Projects tab, select the
HelloWorldService project, and then click on OK. You will see that a new
directory (bin) has been created under the HostDevServer website and two
files from the Hel loWor IdService project have been copied to this new
directory. Later on, when this website is accessed, the web server (either
ASP.NET Development Server or IIS) will look for executable code in this
bin directory.

[43]

Implementing a Basic HelloWorld WCF Service

Testing the host application

Now we can run the website inside ASP.NET Development Server. If you start

the website, HostDevServer, by pressing Ctrl + F5 or by selecting Debug | Start
Without Debugging... in the menu, you will see an empty website in your browser.
Because we have set this website as the startup project, but haven't set any start page,
it lists all of the files and directories inside the HostDevServer directory (Directory
Browsing is always enabled for a website within ASP.NET Development Server).

. - . = ==
@ Directory Listing — /HostDe [P
Ll |£_ http://localhost:8080/HostDevierver/ - | ‘f| A | |b Bing L 2 -

File Edit View Favorites Tools Help
7. Favorites (& Directory Listing -- /HostDevServer/
Directory Listing -- /HostDevServer/
Thursday, January 14, 2010 10:27 PM <dir> Bin
Thursday, January 14, 2010 10:33 PM 949 web.config
Version Information: ASP.NET Development Server 10.0.0.0
Done €& Local intranet | Protected Mode: Off ¥a v HI00% «~
=

If you pressed F5 (or selected Debug | Start Debugging from the menu), you may
see a dialog saying, Debugging Not Enabled (as shown below). Choose the option,
Run without debugging (equivalent to Ctrl + F5) and click on the OK button to
continue. We will explore the debugging options of a WCF service later. Until then
we will continue to use Ctrl + F5 to start the website without debugging.

Debugging Mot Enabled |M

The page cannot be run in debug mode because debugging is not enabled in the Web.config file.
What would you like to do?

@ Modify the Web.config file to enable debugging.

1 Debugging should be disabled in the Web.config file before deploying the Web
gging g ploying
site to a preduction envirenment.

_ Bun without debugging. (Equivalent to Ctrl+F5) I

oK | | Cancel |

[44]

Chapter 2

ASP.NET Development Server

At this point, you should have the HostDevServer site up and running. This site is
actually running inside the built-in ASP.NET Development Server. It is a new feature
that was introduced in Visual Studio 2005. This web server is intended to be used

by developers only and has functionality similar to that of the Internet Information
Services (IIS) server. It also has some limitations, for example, you can only run ASP.
NET applications locally. You can't use it as a real IIS server to publish a website.

By default, ASP.NET Development Server uses a dynamic port for the web server each
time it is started. You can change it to use a static port using the Properties page of the
website. Just change the Use dynamic ports setting to false, and specify a static port,
such as 8080, from the Properties window of the HostDevServer website. You can't set
the port to 80 because IIS is already using this port. However, if you stop your local IIS,
you can set your ASP.NET Development Server to use port 80.

Even if you set its port to 80, it is still a local web server. It can't
=" be accessed from outside your local PC.

Properties * B X
CASOAWIthWCFandLINQ\Projects\HelloWorld\HostDevServer\, -
o2 |2 H 1=

F] s

Always Start When Debugging True

Port number 80&0 -
Use dynamic ports False]
Virtual path fHostDevServer
4
Full Path CASOAWIthWCFandLING\Proje -
Port number

Set the port number that the ASP.MET Development Server should
use,

It is recommended that you use a static port so that client applications know in
advance where to connect to the service. From now on, we will always use port
8080 in all of our examples.

ASP.NET Development Server is normally started from within Visual Studio when
you need to debug or unit test a web project. If you really need to start it from outside
Visual Studio, you can use a command line statement in the following format:

[45]

Implementing a Basic HelloWorld WCF Service

start /B WebDev.WebServer [/port:<port number>] /path:<physical path> [/
vpath:<virtual path>]

For our website, the statement should be like this:

start /B webdev.webserver.exe /port:8080 /path:'"C:\SOAWithWCFandLINQ\
Projects\Hel loWor ld\HostDevServer" /vpath:/HostDevServer

webdev.webserver .exe is located under your .NET framework installation
directory (C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 or C:\Program
Files\Common Files\Microsoft Shared\DevServer), and it may be called with
a different name such as webdev.webserver20.exe or webdev.webserver40.exe.

Adding an SVC file to the host application

Although we can start the website now, it is only an empty site. Currently it does not
host our Hel loWorldService. This is because we haven't specified which service this
website should host or an entry point for this website. Just as an asmx file is the entry
point for a non-WCF web service, a .svc file is the entry point for a WCF service, if it
is hosted on a web server. We will now add such a file to our website.

From Solution Explorer, right-click on the website C:\. . .\HostDevServer and
select Add New Item... from the context menu. The Add New Item dialog window
should appear, as shown below. Select Text File as the template and change Name
from TextFile.txt to HelloWorldService.svc in this dialog window.

A —— —_ e
Add New Item - CA\SOAWithWCFand INQ\Projects\HelloWorld\HostDevServer, - | P
Installed Templates Sort by: | Default Search Installed Templates yel
Visual Basic - :
[| Type: Visual C#
Visual C2 E.ﬁﬁ WCF Service Visual C# Ll)
A blank text file
Online Templat]
o= | Global Application Class Visual C&
\3 Style Sheet Visual C2
|I=| TextFile Visual C#
% Generic Handler Visual C#
| 5| JScriptFile Visual C#
Q:JH DataSet Visual C&
Name: HelloWorldService.sve Place code in separate file
Select master page W

o

[46]

Chapter 2

You may have noticed that there is a template, WCF Service, in the list. We won't
use it now as it will create a new WCEF service within this website for you (we will
use this template later).

After you click on the Add button in the Add New Item dialog box, an empty svc
file will be created and added to the website. Now enter the following line in this file:

<%@ServiceHost Service="MyWCFServices.HelloWorldService"%>

Modifying the web.config file

The final step is to modify the web.config file of the website. Open the web.config
file of the website and change it to be like this:

<?xml version="1.0"?>
<configuration>

<system.web>
<compilation debug="false" targetFramework="4_.0" />
</system.web>
<system.webServer>
<modules runAlIManagedModulesForAl IRequests="true"/>
</system.webServer>

<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="MyServiceTypeBehaviors">
<serviceMetadata httpGetEnabled="true" />
<serviceDebug includeExceptionDetaillnFaults="false" />
</behavior>
</serviceBehaviors>
</behaviors>
<services>
<service name="MyWCFServices.HelloWorldService"
behaviorConfiguration="MyServiceTypeBehaviors'>
<endpoint address=""" binding="wsHttpBinding"
contract=""MyWCFServices. IHelloWorldService"/>
<endpoint contract="I1MetadataExchange"
binding="mexHttpBinding" address="mex"/>
</service>
</services>
</system.serviceModel>

</configuration>

[47]

Implementing a Basic HelloWorld WCF Service

The behavior, httpGetEnabled, is essential because we want other applications to be
able to locate the metadata of this service. Without the metadata, client applications
can't generate the proxy and thus won't be able to use the service.

We use WSHttpBinding for this hosting, which means that it is secure (messages are
encrypted while being transmitted) and transaction-aware (we will discuss this in a
later chapter). However, because this is a WS-* standard, some existing applications
(for example, a QA tool) may not be able to consume this service. In this case, you
can change the service to use basicHttpBinding, which uses plain unencrypted
texts when transmitting messages, and is backward compatible with traditional
ASP.NET web services (asmx web services).

The following is a brief explanation of the other elements in this configuration file:

e Configuration is the root node of the file.
e system.serviceModel is the top node for all WCF service-specific settings.

e Within the services node, you can specify WCF services that are
hosted on this website. In our example, we have only one WCF
service —Hel loWorldService —hosted in this website.

e Each service element defines one WCF service, including its name,
behavior, and endpoint.

e Two endpoints have been defined for Hel loWor IdService: one for the
service itself (an application endpoint) and another for the metadata
exchange (an infrastructure endpoint).

e Within the serviceBehaviors node, you can define specific behaviors for a
service. In our example, we have specified one behavior, which enables the
service metadata exchange for the service.

Starting the host application

Now, if you start the website by pressing Ctrl + F5 (don't use F5 or menu option
Debug | Start Debugging until we discuss these later), you will now find the file,
HelloWorldService.svc, listed on the web page. Clicking on this file will give the
description of this service, that is, how to get the wsdl file of this service and how to
create a client to consume this service. You should see a page similar to the following
one. You can also set this file as the start page file so that every time you start this
website, you will go to this page directly. You can do this by right-clicking on this file
in Solution Explorer and selecting Set as Start Page from the context menu.

[48]

Chapter 2

(& HelloWorldService Service - Windows Internet Explorer 4 |. = |E é]

m £ | http://localhost:8080, HostDevServer/HelloWor v| *4 | A mb Bing Pl 'l"
L= -

File Edit View Favorites Tools Help

7.7 Favorites @ HelloWaorldService Service

HelloWorldService Service]

You have created a service.

To test this service, you will need to create a client and use it to call the service. You can do this using the sveutil.exe
tool from the command line with the following syntax:

m

svecutil.exe http://localhost:8080/HostDevServer/HelloWorldService. sve?wsdl

This will generate a configuration file and a code file that contains the client class. Add the two files to your client
application and use the generated client class to call the Service. For example:

C#
class Test
{
static void Main ()
{
HelloWorldServiceClient client = new HelloWorldServiceClient ()
|
Use the ‘client ariable to call operations on the service.
(| r a1 : 3 . 14
/ Always close the client.
client.Clos=e ()
}
H r

& Local intranet | Protected Mode: Off fa v ®100% ~

Now, click on the wsdl link on this page and you will get the wsdl xml file for this
service. The wsdl file gives all of the contract information for this service. In the next
section, we will use this wsdl to generate a proxy for our client application.

Close the browser. Then, from the Windows system tray (systray), find the little icon
labeled ASP.NET Development Server - Port 8080 (it is on the lower-right of your
screen, just next to the clock), right-click on it, and select Stop to stop the service.

Creating a client to consume the
WCF service

Now that we have successfully created and hosted a WCF service, we need a
client to consume the service. We will create a C# client application to consume
HelloWorldService.

In this section, we will create a Windows console application to call the WCF service.

[49]

Implementing a Basic HelloWorld WCF Service

Creating the client application project

First, we need to create a console application project and add it to the solution.
Follow these steps to create the console application:

1. In Solution Explorer, right-click on the solution, Hel loWor Id, and select
Add | New Project... from the context menu. The Add New Project dialog
window should appear, as shown below.

Add New Project

o) |

Installed Templates

: »
| Recent Templates | .NET Framework 4

v | Sort by: | Default

Type: Visual C#

v| __SEarch Installed Tem p__

et wpF Applicat Visual C#
. y & pplication Isua
Visual Basic lJ A project for creating a command-line
4 Visual C# = o)) application
Windows |_C£| WPF Browser Application Visual C#
Web
Office E ot Console Application Visual C#
Cloud Service ._
Reporting Ca‘ﬁg WCF Service Application Visual C#
SharePoint
Silverlight Enable Windows Azure Tools Visual C2
Test
WCF ;cﬁ Windows Forms Control Libr... Visual C#
Worldflow =
Online Templates cl_ﬁﬁj\-' Excel 2007 Workbook Visual C# "
MName: HelloWorldClient
Location: CASOAWiIthWCFandLINGQProjects\HelloWorld - | Browse... |

2. Select Visual C# | Console Application as the template, change the
project name from the defaulted value of ConsoleApplicationl to
HelloWorldClient, and leave the Location as C:\SOAWithWCFandLINQY\
Projects\HelloWorld. Click on the OK button. The new client project has
now been created and added to the solution.

Generating the proxy and configuration files

In order to consume a WCF service, a client application must first obtain or generate
a proxy class.

We also need a configuration file to specify things such as the binding of the service,
the address of the service, and the contract.

[50]

Chapter 2

To generate these two files, we can use the svcutil.exe tool from the command
line. You can follow these steps to generate the two files:

1.

Start the service by pressing Ctrl + F5 or by selecting menu option
Debug | Start Without Debugging (at this point your startup project
should still be HostDevServer; if not, you need to set this to be the
startup project). Now you should see the introduction window for the
HelloWor IdService service, as we saw in the previous section.

After the service has been started, run the command line svcutil .exe
tool with the following syntax (SvcUti I .exe may be in a different directory
in your machine, for example in Windows 7, it is under v7.0A directory):

C:\SOAWithWCFandLINQ\Projects\Hel loWorld\Hel loWorldClient>

"C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcUtil._exe"
http://1ocalhost:8080/HostDevServer/HelloWorldService.svc?wsdl
/out:HelloWorldServiceRef.cs /config:app.config

You will see an output similar to that shown in the following screenshot:

B Command Prompt | =SEEn X

C:~30AUithUCFandLINQ“\Projects“HelloWorldsHelloWor1dClient »""C: \Program Files“Mic
osoft SDHs“Windows“w?7.8A%bin“Svcltil.exe" http:/rlocalhost 8888 HostDevServer H
1lloWorldService .svc?wsdl sout:HellolorldB8erviceRef.cs sconfigiapp.config
Microzoft (H)> Service Model Metadata Tool

[Microsoft (R> Windows (R>» Communication Foundation, Uersion 3.0.4586.2152]
Copyright {c) Microsoft Corporation. All rights reserved.

Attempting to download metadata from *http:-/~“localhost:8888-HostDevServer-Hello
orldService.svc?usdl’ using WS—Metadata Exchange or DISCO.

Generating files...
C:~S0AWithUCFandLINg~Projectz~HelloWorld-HelloWorldClient~HelloWorldServiceRef .

C:~E0AUithUCFandLINg~Projects~HelloWorld~HellolWorldClient~app.config

C:~E0AUithUCFandLINg~Projects~HelloWorld~HelloWorldClient >

T 3

Here, two files have been generated: one for the proxy (Hel loWor IdServiceRef.cs)
and the other for the configuration (app.config).

If you open the proxy file, you will see that the interface of the service
(IHelloWorldService) is mimicked inside the proxy class and a client class
(HelloworldServiceClient) is created to implement this interface. Inside this client
class, the implementation of the service operation (GetMessage) is only a wrapper
that delegates the call to the actual service implementation of the operation.

Inside the configuration file, you will see the definitions of Hel loWor IdService
such as the endpoint address, binding, timeout settings, and security behaviors of
the service.

[51]

Implementing a Basic HelloWorld WCF Service

Customizing the client application

Before we can run the client application, we still have some more work to do.
Follow these steps to finish the customization:

1. Add the two generated files to the project. In Solution Explorer, click Show
All Files to show all the files under the Hel loWorldClient folder and you will
see these two files. However, they are not included in the project. Right-click
on each of them and select Include In Project to include both of them in the
client project. You can also use menu Project | Add Existing Item ... (or the
context menu Add | Existing Item ...) to add them to the project.

2. Add areference to the System.ServiceModel namespace. Just as we did
for the project, Hel loWorldService, we also need to add a reference to the
WCEF .NET System.ServiceModel assembly. From Solution Explorer, just
right-click on the HelloWorldClient project, select Add Reference... and
choose .NET System.ServiceModel. Then click on the OK button to add the
reference to the project.

3. Modify program.cs to call the service. In program.cs, add the following line
to initialize the service client object:

HelloWorldServiceClient client = new HelloWorldServiceClient();
Then we can call its method just as we would do for any other object:
Console_WriteLine(client.GetMessage("'Mike Liu'™));

Pass your name as the parameter to the GetMessage method so that it prints out a
message for you.

Running the client application
We are now ready to run this client program.
First, make sure Hel loWor IdService has been started. If you previously stopped

it, start it now (you need to set HostDevServer as the startup project, and press
Ctrl + F5 to start it in non-debugging mode).

Then, from Solution Explorer, right-click on the project, HelloWorldClient,
select Set as StartUp Project, and then press Ctrl + F5 to run it.

[52]

Chapter 2

You will see output as shown in the following image:

i - = I = T 3
BN C\Windows\systern32cmd.exe | =1CY |-°-"_-"-'-

Hello world from Mike Liu?
Press any key to continue

Setting the service application to AutoStart

Because we know we have to start the service before we run the client program, we
can make some changes to the solution to automate this task, that is, to automatically
start the service immediately before we run the client program.

To do this, in Solution Explorer, right-click on Solution, select Properties
from the context menu, and you will see the Solution 'HelloWorld' Property
Pages dialog box.

Solution "HelloWorld' Property Pages ' LE |
N/A I N/A
4 Common Properties 1 Current selection
Startup Project) Single startup project
Project Dependencies R
Debug Source Files oipish bl b
Code Analysis Settings @ Multiple startup projects:
. Configuration Properties . T - 1
Project Action | + |
M AHostDevServerh Start without debu |T|
HelloWorldClient] —
HelloWorldService
oK | | Cancel | | Apply

[53]

Implementing a Basic HelloWorld WCF Service

On this page, first select the option button, Multiple startup projects. Then
change the action of C:\...\HostDevServer\ to Start without debugging.
Change HelloWorldClient to the same action.

HostDevServer must be above HelloWorldClient. If it is not, use
s the arrows to move it to the top.

To test it, first stop the service, and then press Ctrl + F5. You will notice that
HostDevServer is started first, and then the client program runs without errors.

Note that this will only work inside Visual Studio IDE. If you start the client program
from Windows Explorer (C:\SOAWithWCFandLINQ\Projects\HelloWorld\
Hellowor IdClient\bin\Debug\Hel loWorldClient.exe) without first starting

the service, the service won't get started automatically and you will get an error
message saying 'Could not connect to http://localhost:8080/HostDevServer/
HelloWorldService.svc'.

Summary

In this chapter, we have implemented a basic WCF service, hosted it within
ASP.NET Development Server, and created a command line program to reference
and consume this basic WCF service. At this point, you should have a thorough
understanding as to what a WCF is under the hood. You will benefit from this
when you develop WCF services using Visual Studio WCF templates or automation
guidance packages. The key points covered in this chapter are:

e A WCEF service is a class library, which defines one or more
WCEF service interface contracts

e The System.ServiceModel assembly is referenced by all of the
WCEF service projects

e The implementations of a WCF service are just regular C# classes
e A WCEF service must be hosted in a hosting application

e Visual Studio 2010 has a built-in hosting application for WCF services,
which is called ASP.NET Development Server

e A client application uses a proxy to communicate with WCF services

e A configuration file can be used to specify settings for WCF services

[54]

Hosting and Debugging the
HelloWorld WCF Service

In the previous chapter, we built a basic Hel loWor Id WCF service and hosted it with
ASP.NET Development Server. In this chapter, we will explore more hosting options
for WCF services including hosting WCF services in a managed application, in a
Windows Service, in IIS, and in other advanced WCF hosting applications.

We will also explain how to debug WCEF services including debugging from the
client application, debugging only the WCF service, attaching to the WCF service
process, and the Just-In-Time debugger.

In this chapter, we will discuss:

e Hosting the service in a console application

¢ Hosting the service in a Windows Service application
e Hosting the service in IIS

e Testing the service

e Debugging the service from the client application

e Debugging the service only

e Attaching to the service process

¢ Just-In-Time debugger

Hosting the HelloWorld WCF service

In the previous chapter, we hosted our Hel loWorldService in ASP.NET
Development Server. In addition to this we have several other options for
hosting a WCF service. In this section, we will explore them one by one.

Hosting and Debugging the HelloWorld WCF Service

Hosting the service in a managed application

We can create a .NET managed application and host a WCF service inside the
application. The hosting application can be a command-line application, a Windows
Forms application, or a web application. This hosting method gives you full control
over the lifetime of the WCF service. It is very easy to debug and deploy, and
supports all bindings and transports. The drawback of this hosting method is that
you have to start the hosting application manually and it has only limited support
for high availability, easy manageability, robustness, recoverability, versioning, and
deployment scenarios.

Hosting the service in a console application

Following are the steps to host Hel loWorldService in a command-line application.
Note that these steps are very similar to the steps in the previous section where

we hosted a WCF service in ASP.NET Development Server. However, we must
remember that we don't need a . svc file and that the configuration file is called
app-config and not web.config. Refer to the previous section for diagrams. If you
want to host a WCF service in a Windows Forms application or a web application,
you can follow the same steps we have listed here simply by creating the project
using an appropriate project template.

1. Add a console application project to the solution:

In Solution Explorer, right-click on the solution file and select Add | New
Project... from the context menu. The Add New Project dialog box should
appear. Select Visual C# | Console Application as the template. Then
change the name from ConsoleApplicationl to HostCmdLineApp and
click on the OK button. A new project is added to the solution.

2. Set the project, HostCmdLineApp, as the startup project:

In Solution Explorer, right-click on the project, HostCmdLineApp, and select
Set as StartUp Project from the context menu. You can also select the project
in Solution Explorer and click on menu item Project | Set as StartUp Project
to do this.

3. Add areference to the Hel loWor IdService project:

In Solution Explorer, right-click on the project, HostCmdLineApp, and select
Add Reference... from the shortcut menu. The Add Reference dialog

box will appear. Click on the Projects tab, select the Hel loWor IdService
project, and then click on OK. Now, Hel loWorldService is under the
References folder of this project. You will also notice that two files from the
HelloWorldService project have been copied to the bin directory under this
project. If you can't see the bin directory, press F4 or click on the Show All
Files icon in Solution Explorer.

[56]

Chapter 3

Add a reference to System.ServiceModel:

This reference is required as we will manually create a service host
application and start and stop it in the steps that follow. In the Solution
Explorer window, right-click on the HostCmdL ineApp project and select
Add Reference... from the context menu. You can also select menu item
Project | Add Reference... to do this. Select System.ServiceModel from
the .NET tab and click on OK.

Add a reference to System.Configuration:

This reference is required as we will set the base address of the service in a
configuration file and read this base address from the configuration file at
runtime.

Add a configuration file to define the endpoints of the service:

The configuration file will be very similar to the configuration file we
created for the HostDevServer project. In Windows Explorer, copy the
web . config file from the project folder of HostDevServer to the project
folder of HostCmdL ineApp and change its name to app.config, then from
Solution Explorer, include this file in the project, HostCmdLineApp, (if you
can't see app-config file under this project, click on the Show All Files
button in Solution Explorer or click on the Refresh button to refresh

the screen).

Open this configuration file and add a new section, appSetting,
for the HTTPBaseAddress and set its value to http://localhost:8080/
HostCmdLineApp/HelloWorldService/. This means we will host
HelloWorldService using HTTP, at port 8080, and under the
HostCmdLineApp virtual directory.

The following is the full content of the app.config file:

<?xml version="1.0"?>
<configuration>
<appSettings>
<add key="HTTPBaseAddress" value="http://localhost:8080/
HostCmdLineApp/HelloWorldService/" />
</appSettings>
<system.web>
<compilation debug="false" targetFramework="4_.0" />
</system.web>
<system.webServer>
<modules runAlIManagedModulesForAl IRequests=""true"/>
</system.webServer>

<system.serviceModel>

[57]

Hosting and Debugging the HelloWorld WCF Service

10.

11.

<behaviors>
<serviceBehaviors>
<behavior name="MyServiceTypeBehaviors'>
<serviceMetadata httpGetEnabled="true" />
<serviceDebug includeExceptionDetaillnFaults="false" />
</behavior>
</serviceBehaviors>
</behaviors>
<services>

<service name="MyWCFServices.HelloWorldService" behaviorConf
iguration=""MyServiceTypeBehaviors'>

<endpoint address=""" binding="wsHttpBinding"
contract=""MyWCFServices. IHelloWorldService"/>

<endpoint contract="I1MetadataExchange"
binding="mexHttpBinding" address="mex"/>

</service>
</services>
</system.serviceModel>

</configuration>

Now we need to modify the Program.cs file to write some code to
start and stop the WCF service inside Program.cs.

First, add two using statements as follows:
using System.ServiceModel;
using System.Configuration;

Then add the following lines of code within the static Main method:

Type serviceType=typeof(MyWCFServices._HelloWorldService);

string httpBaseAddress =
ConfigurationManager .AppSettings[""HTTPBaseAddress'];

Uri[] baseAddress = new Uri[] {new Uri(httpBaseAddress)};
ServiceHost host = new ServiceHost(serviceType, baseAddress);
host.Open();

Console_WriteLine("'HelloWorldService is now running. ');
Console._WriteLine(""Press any key to stop it ...");
Console_ReadKey();

host.Close();

[58]

Chapter 3

12. As you can see we get the type of Hel loWorldService, construct a base
address for the WCEF service, create a service host passing the type and base
address, and call the Open method of the host to start the service. To stop the
service, we just call the Close method of the service host.

13.

Below is the full content of the Program.cs file

using
using
using
using
using
using

System;
System.Collections.Generic;
System.Linq;

System.Text;
System.ServiceModel ;
System.Configuration;

namespace HostCmdLineApp

{

class Program

{

static void Main(string[] args)

{
Type serviceType=typeof(MyWCFServices.HelloWorldService);

string httpBaseAddress =
ConfigurationManager .AppSettings["'"HTTPBaseAddress'];

Uri[] baseAddress = new Uri[] {new Uri(httpBaseAddress)};

ServiceHost host = new ServiceHost(serviceType,
baseAddress);

host.Open();

Console._WriteLine(""HelloWorldService is now running. ');
Console._WriteLine("Press any key to stop it ...");
Console.ReadKey();

host.Close();

[59]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Hosting and Debugging the HelloWorld WCF Service

14. After the project has been successfully built, you can press Ctrl + F5 to
start the service. You will see a command-line window indicating that
HelloWorldService is available and is waiting for requests.

BN C\Windows\system32hcmd.exe | = = —&-I

HelloWorldService is now running.
Press any key to stop it ...

Under Windows Vista and Windows 7, you may get an error message of System.
ServiceModel.AddressAccessDeniedException saying, Your process does not have
access rights to this namespace. This is because Visual Studio has to register the
namespace for our Hel loWorld service and, by default, Windows runs applications
in a limited-rights user account even when you are logged on to the computer as an
administrator. You can run Visual Studio as an administrator to solve this issue. Just
right-click on the Visual Studio 2010 executable file, devenv.exe, and select Run as
administrator, or change the property Privilege Level to Run this program as an
administrator, so you can always run Visual Studio as an administrator.

Alternatively, if you don't want to run as administrator, you can manually register
the namespace using tools like HttpSysConfig. You can Google Your process
does not have access rights to this namespace to see various options for this issue.
However, it seems to me no matter which option is taken, the process to manually
register a namespace for .NET is a little bit complex, so I would simply run Visual
Studio as administrator.

If you get the Access is denied error message under Windows XP, make sure you are
logged on as an administrator.

[60]

Chapter 3

Consuming the service hosted in a console
application

To consume the service hosted in the previous console application you can follow
the same steps described in the section, Creating a client to consume the WCF service
(Chapter 2), except that you pass http://localhost:8080/HostCmdLineApp/
HelloWorldService/?wsdl and not http://localhost:8080/HostDevServer/
HelloWorldService.svc?wsdl to the SvcUtil.exe when you generate the proxy
class and the configuration file.

In fact you can reuse the same client project, but inside the app.config file, change
the following line:

<endpoint address=
"http://1ocalhost:8080/HostDevServer/HelloWorldService.svc"

to this line:

<endpoint address=
"http://1ocalhost:8080/HostCmdLineApp/Hel loWorldService/"

Now, when you run this client program, it will use the WCF service hosted in

our newly created command-line application and not the previously-created
HostDevServer application. You will get the same result as before when ASP.NET
Development Server was used to host the WCF service.

Hosting the service in a Windows service

If you don't want to manually start the WCF service, you can host it in a Windows
service. In addition to the automatic start, Windows service hosting gives you some
other features such as recovery ability when failures occur, security identity under
which the service is run, and some degree of manageability. Just like the self-hosting
method, this hosting method also supports all bindings and transports. However,

it has some limitations. For example, you have to deploy it with an installer

and it doesn't fully support high availability, easy manageability, versioning, or
deployment scenarios.

The steps to create such a hosting application are very similar to what we did to
host a WCF service in a command-line application, except that you have to create an
installer to install the Windows service in the Service Control Manager (or you can
use the .NET Framework Instal lutil.exe utility).

[61]

Hosting and Debugging the HelloWorld WCF Service

Hosting the service in Internet Information
Server

It is a better option to host a WCF service within Internet Information Services Server
(IIS) because IIS provides a robust, efficient, and secure host for the WCF services.
IIS also has better thread and process execution boundaries handling (in addition

to many other features) compared to a regular managed application. Actually, web
service development on IIS has long been the domain of ASP.NET. When ASP.NET
1.0 was released, a web service framework was part of it. Microsoft leveraged the
ASP.NET HTTP pipeline to make web services a reality on the Windows platform.

The main drawback of hosting the service within IIS prior to version 7.0 is the tight
coupling between ASP.NET and web services, which limits the transport protocol
to HTTP/HTTPs. But with IIS 7.0, in addition to HTTP, you can now host a WCF
service with TCP, Named pipe, or MSMQ. You are no longer limited to HTTP.

Another thing you need to pay particular attention to when hosting WCF in IIS is
that the process and/or application domain may be recycled if certain conditions
are met. By default the WCF service session state is saved in memory so that
each recycle will lose all such information. This will be a big problem if you run a
website in a load-balanced or web-farm (web-garden) environment. In this case,
you might want to turn on the ASP.NET compatibility mode (add the attribute,
AspNetCompatibilityRequirements, to your WCF service) so that the session
state can be persisted in a SQL Server database or in the ASP.NET State Server.

Now we will explain how to host Hel loWor IdService within IIS. We will still host it
with HTTP protocol in this example but you should choose an appropriate protocol
for your service according to your needs.

Preparing the folders and files

First, we need to prepare the folders and files for the host application.
Follow these steps to create the folders and copy the required files:

1. Create the folders:

In Windows Explorer, create a new folder called Hostl1S under
¢:\SOAwithWCFandL INQ\Projects\Hel loWorld and a new subfolder
called bin under this Hostl1S folder. You should now have the following
new folders:

C:\SOAwithWCFandL INQ\Projects\Hel loWorl1d\Hostl IS
C:\SOAwithWCFandL INQ\Projects\Hel loWwor ld\HostlIS\bin

[62]

Chapter 3

2. Copy the files:

Now copy the files Hel loWor IdService.dll and Hel loworldService.
pdb from the Hel loWorldService project folder C:\SOAwi thWCFandL INQ\
Projects\HelloWorld\Hel loWorldService\bin\

Debug to the new folder we created, C:\SOAwithWCFandLINQ\Projects\
HelloWor ld\Hostl IS\bin.

3. Copy the files, Hel loWorldService.svc, and Web.config, from the
HostDevServer project folder, C:\SOAwithWCFandL INQ\Projects\
Hel loWorld\HostDevServer, to the new folder, C:\SOAwi thWCFandL INQ\
Projects\HelloWorld\HostlI1S.

The files under the two new directories should now be like the following:

Parent Folder: C:\SOAwithWCFandLINQ\Projects\Hel loworld\

Folder HostIIS HostIIS\bin
Files HelloWorldService.svc HelloWorldService.dll
Web.config HelloWorldService.pdb

4. Create Visual Studio Solution Folder:

To make it easier to view and manage from Visual Studio Solution Explorer,
you can add a new solution folder, Hostl1 1S, to the solution and add the files,
web.config, and Hel loWorldService.svc, to this folder. Add another new
solution folder, bin, under Hostl 1S, and add the files, Hel loWor1dService.
dl1, and Hel loWorldService.pdb under this bin folder. Your Solution
Explorer should be like following image.

e n
Solution Explorer * B X
=2 E
j Solution 'HelleWoarld' (4 projects) -
4 % Hostl I
4 . bin

m

| HelloWorldService.dll
& HelloWorldService.pdb
¥ HelloWorldService.sve
i web.config
2P O A\HostDevServer',
4 2 HelloWorldClient
=d| Properties =

-—j@ Solution Explorer [l eEERIwY

[63]

Hosting and Debugging the HelloWorld WCF Service

Turn on Internet Information Services

By default, Internet Information Services is not turned on in Windows 7.
You can follow these steps to turn it on:

Go to Control Panel | Programs | Turn Windows features on or off.

2. From the Windows Features dialog box, check Internet
Information Services.

3. Click on OK.

Internet Information Services is now turned on but since Visual Studio 2010 was
installed before IIS was turned on, at this point IIS does not have any ASP.NET
features enabled. This means if you create an ASP.NET website within IIS now,
when you try to access it, you will get an error.

There are two ways to enable WCF support from IIS. The first one is to run
aspnet_regiis.exe to enable aspnet_isapi as a web sevice extension, then run
ServiceModelReg. exe to register the required script maps in IIS, and manually create
Application Extension Mapping and Managed Handlers for SVC files inside IIS.

The second and the easier way is to reinstall NET Framework 4.0. After you have
turned on IIS features, as we just did previously in this section, uninstall and then
reinstall .NET Framework 4.0. ASP.NET 4.0 will be supported by IIS, once .NET 4.0
is reinstalled. I used this method as it is much easier.

Creating the IIS application

Next, we need to create an IIS application named Hel loWorldService. Follow these
steps to create this application in IIS 7.0.

1. Open the IIS manager through menu option Control Panel | Administrative
Tools (or just type start inetmgr in a command prompt).

2. Expand the nodes of the tree in the left-hand pane until the node named
Default Web Site becomes visible.

3. Right-click on that node and choose New | Add Application... from the
context menu.

In the Add Application window, enter HelloWorldService as the Alias.

5. Choose or enter C:\SOAWithWCFandLINQ\Projects\HelloWorld\
HostIIS as the Physical path.

[64]

Chapter 3

6. Leave DefaultAppPool as the Application pool. You can click on the
Select... button to verify this application pool is a .NET 4.0 application
pool. If it is not, you need to enable IIS to support .NET 4.0, as described
in previous section.

7. Click on the OK button.

-

Add Application L2 o]
Site name: Default Web Site
Path: !
Alias: Application pock
HelloWerldService DefaultAppPool | Select...

Example: sales

Bhysical path:
CASOAWiIthWCFandLIMQ\Projectst\HelloWorld\HostIS | |

Pass-through authentication

Connect as... l | Test Settings...

OK | | Cancel

If you are under Windows XP (IIS 6.0), you can create a new Virtual
Directory for Hostl IS. Just make sure you choose .Net 4.0.21006 as
the ASP.NET version for your new virtual directory.

Starting the WCF service in lIS

Once you have the files copied to the Hostl 1S folder and have the virtual directory
created, the WCF service is ready to be called by the clients. When a WCF service is
hosted within IIS, we don't need to explicitly start the service. As with other normal
web applications, IIS will control the lifetime of the service. As long as the IIS website
is started, client programs can access it.

[65]

Hosting and Debugging the HelloWorld WCF Service

Testing the WCF service hosted in IIS

To test the WCF service, open an Internet browser and enter the following URL in
the address bar of the browser. You will get an almost identical screen to the one
you got previously:

http://1ocalhost/Hel loWorldService/Hel loWorldService.svc

You don't need to add a port after the host because it is now hosted in IIS with
the default HTTP port 80. This also means that you can access it using your real
computer (host) name and even outside of your network if you are connected to
the Internet. Two example URLs are as follows:

http://[your_pc_name]/HelloWorldService/HelloWorldService.svc

http://[your_pc_name]. [your_company_domain].com/
HelloWorldService/HelloWorldService.svc

We can reuse the client program we created earlier to consume this WCF service
hosted within IIS. Just change the endpoint address line from this:

<endpoint address=
"http://1ocalhost:8080/HostCmdLineAPP/Hel loWorldService/"

to this:

<endpoint address=
"http://1ocalhost/HelloWorldService/HelloWorldService.svc"

Now, when you run this client program, it will use the WCF service hosted within
IIS and not the previously-created HostCmdLineApp application. You will get
the same result as before, when it was hosted in our own host application.

Other WCF service hosting options

From previous sections, we know that a WCF service can be hosted in ASP.NET
Development Server, in a website, in a Windows Service application, in a
command-line application, or in IIS. Besides these options, there are some other
ways to host a WCF service.

In Visual Studio 2010, there is a built-in, general-purpose WCF Service Host
(WcfSvcHost.exe), which makes the WCF host and development test much
easier. This host will be used by default if you create a WCF service using a

WCEF Service Library template. We will cover this new feature in the next chapter.

[66]

Chapter 3

Another option is to create a WCF service using a WCF Service Application template,
in which case the WCF service project itself is a website and is ready to run within its
own project folder. We will also cover this new feature in the next chapter.

If you want to learn more about hosting a WCF service, you can go to the Microsoft
MSDN site and search for WCF hosting. Here is one of those pages on the MSDN
site for WCF hosting, though at the time of writing, this page was still not updated
to .NET 4.0: http://msdn.microsoft.com/en-us/library/ms733766.aspx.

Debugging the HelloWorld WCF service

Now that we have a fully working WCEF service, let us have a look at the debugging
options of this service.

Debugging from the client application

The first and most common scenario is to debug from the client program. This means
that you start a client program in debug mode and then step into your WCF service.

Starting the debugging process

Follow these steps to start the debugging process from the client application:

1. Change the client program's web configuration file to call
HelloWorldService hosted within ASP.NET Development Server.
Open the file, app.config, inside the HelloWorldClient project and set
the address of the endpoint to this:

http://1ocalhost:8080/HostDevServer/HelloWorldService.svc

2. InSolution Explorer, right-click on the HelloWorldClient project and
select Set as Startup Project from the context menu.

[67]

Hosting and Debugging the HelloWorld WCF Service

3. Open the Program.cs file inside the Hel loWwor IdClient project and set a
breakpoint at the following line:

HelloWorldServiceClient client = new HelloWorldServiceClient();

T
=9 HelloWorld - Microsoft Visual Studio . =3 ﬁ

— —
FEile Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

il S A9 - - E-E P [Debug - | | Mixed Platforms i
Te = Z2 UM F 6B am &l

Uil Program.cs ¢ BTG S Solution Explorer 0 x
g i#HelloWorldClient.Program -| a#Main(string[] args) R | & 2] | I=] 5-2.
[
E “lusing System; +H 2P C\..\HostDevServer\, -
T using System.Collections.Generic; K [HelloWorldClient =
It} using System.Ling; | > [=d Properties
A Lusing System.Tesxt; I+ |3l References (4
2 (i bin I3
i “'namespace HelloWorldClient = i ob
]
E’ { i app.config |
T class Program #] HelloWorldServiceRef.es
{ | (2] Program.cs
= static veid Main(string[] args) . 3 HelloWorldService
a ._E HostCmdLlineApp L
@ elloWorldServiceClient client = new HelloWorldServiceClient(); < 2
|At Program.cs, line 12 character 13 ('HelloWorldClient.Program.Main(string[] args)’, line 3} ':3 Solution Explorer [l ReEERIEY]
1 Properties *ox
} pe!
| } Program.cs File Properties 7
100% - o ==
Output > ax [- — i':\
ui ction ompile 3
J j 5 3) =%
;hu’w uu’c;nrt L ‘ | | i | 'JJ =¥ | it [= Copy to Qutput Do not copy
Custom Tool i
Advanced

B Error List el
Ready

4. You can set a breakpoint by clicking on the gray strip to the left of the code
(the little ball in the diagram above), pressing F9 while the cursor is on the
line, or selecting the menu item Debug | Toggle Breakpoint. You should
ensure that the breakpoint line is highlighted, and if you hover your mouse
over the red breakpoint dot, an information line will pop up.

5. Now press F5 or select menu option Debug | Start Debugging to start the
debugging process.

As soon as you press F5, you will notice a little window pop up in the lower-right
corner of the screen, as shown in the following image:

i ASP.NET DevelopmentServer ®
http://Tocalthost:B8080/HostDevberver

F

ASP.NET Development Server - Port 8080
e///C:/SOA... |- ,?.-a P & . e 212PM |

Chapter 3

This is because the client program, Hel lowor IdClient, is referencing
HelloWor ldService, which is hosted in ASP.NET Development Server
(HostDevServer), and you have the project property Always Start When
Debugging set to True.

Note that this setting is for the WCF hosting project, not for the client or WCF
service project. This is very useful when debugging because you don't need to start
it explicitly. However, sometimes it might be annoying, especially when you have
several hosting projects within the same solution. In this case, you can turn it off by
setting it to False. However, you then have to start the service prior to debugging
the client application. Otherwise you will get an exception. We will discuss more
about this later in this chapter.

Debugging on the client application

The cursor should have stopped on the breakpoint line, as you can see in the
following HelloWorld (Debugging) screenshot. The active line is highlighted and
you can examine the variables just as you do for any other C# applications.

=0 HelloWorld (Debugging) - Microsoft Visual Studio

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help
Sl el
Process: i[3348] HelloWorldClientwshost.exe 'i Thread: |[4U4U] Main Thread

=

Program.cs < [EldiEaly 1] Solution Explorer

JfzHelloWorldClient.Program ! «*Main(string[] args)

P CA\HostDevServer

using System.Text;

“namespace HelloWorldClient

{

class Program
{

static void Main(string[] args)

{

HellokorldServiceClient client = new HelloWorldServiceClient();
Console.WriteLine(client.GetMessage("Mike Liu"));

1

a [HelloWorldClient
| Properties
«3] References
i bin
ohj
|5 app.config
] HelloWorldServiceRef.cs
) Program.cs
. 3 HelloWorldService
4[] HostCmdLinespp
L‘.;‘ Solution Explorer [l TS

e Sl Call Stack
Value | Type
@ args | {string[0]} 'stinQD
W dient [l [Hellawarl

] Autos B= BT 'E Watch 1

[69]

Hosting and Debugging the HelloWorld WCF Service

At this point, the channel between the client and the hosting server (HostDevServer)
hasn't been created. Press F10 or select menu option Debug | Step Over to skip over
this line. If you don't have the menu option Debug | Step Over, you may have to
reset your development environment settings through menu option Tools | Import
and Export Settings... (select General Development Settings from the Import and
Export Settings Wizard and check all of the available options).

Now, the following line of source code should be active and highlighted. At this point,
we have a valid client object which contains all of the information related to the WCF
service such as the channel, the endpoint, the members, and the security credentials.
The following Autos image shows the details of the Endpoint local variable.

Autos *OXxX
MName Value Type o
=l i dient {HelloWorldserviceClient} HelloWaorlds
System Sei

o canshareFactory true bool
7 _%}' Channel {System.Runtime.Remoting. Proxies. _ TransparentProxy} THelloWorld:
H channel {System.Runtime.Remoting. Proxies. _ TransparentProxy} THelloWorld: |
j" ChannelFactory f5ystem, ServiceModel. ChannelFactory <IHelloWorldService =} | System.Sen| =
H channelFactoryRef {System. ServiceModel. ChannelFactoryRef <IHelloWorldService =} System.Ser
o channelFactoryRefRelez false bool
7 j}'CIientCredentials {System. ServiceModel.Description. ClientCredentials} System.Ser
7 j" Endpoint Address={http: flocalhost: 3080 HostDevServer HelloWorldServig System.Ser
H endpointTrait {System. ServiceModel.EndpointTrait<IHelloWorldService =} System.Ser
& finalizeLock {object} object
4] j“lnnerchannel {System.Runtime.Remoting. Proxies. _ TransparentProxy} System.Ser
o releasedLastRef false boal
& sharingFinalized true boal -
=] Autos [l= JESETEE = RUE N

Attaching to ASP.NET Development Server

Press F11 to step into the WCF service. But instead of stepping in, we will step
over the whole line. The cursor will stop at the end of program source code.

This is because now the Visual Studio 2010 debugger hasn't been attached to
ASP.NET Development Server (Visual Studio 2008 or prior will attach to ASP.NET
Development Server automatically).

Let's follow these steps to attach to ASP.NET Development Server:

1. Stop the current debugging process.
2. Start a new debugging process by pressing F5.

3. ASP.NET Development Server at port 8080 should be
started automatically.

[70]

Chapter 3

4. While the cursor is stopped on the first line within the Main method of
HelloWorldClient's Program.cs file, select menu Debug | Attach to
Process....

5. In the Attach to Process window, select WebDev.WebServer40.EXE and
click on the Attach button.

Attach to Process - o e @ g 4 .5y - - % M

I Transport: Default v| I

Qualifier DADSLAPTOP =

Transport Information
The default transport lets you select processes on this computer or a remote computer running the Microsoft Visual Studio Remote Debugging
Monitor (MSVSMOM.EXE).

Attach to: Automatic: Managed (w.0) code, T-5QL code

Available Processes

Process o] Title Type User Name Sessior *
mspaint.exe 3656 1148 _03_06.png - Paint *B6 DADSLAPTOP\admin 1
IMSSECEs. eXe 2812 Eld DADSLAPTOP\admin 1
rundl32.exe 2472 *B6 DADSLAPTOP\admin 1
smaxd pnp.exe 2616 x50 DADSLAPTOP\admin 1
SynTPEnh.exe 3036 *B6 DADSLAPTOP\admi.. 1 [
SynTPStart.exe 2704 xB6 DADSLAPTOP\admin 1 | 4
taskhost.exe 2284 xB6 DADSLAPTOPadmin 1 |~
VSTracelog.exe 3072 Managed (v4.... DADSLAPTOP\admin 1 |
ASP.NET Development Server - Port 8080 .. DADSLAPTOP\admin 1 i
I :nr:m\nrnpn EYE 2517 1421 13 Neaft dnry . R.vﬁrrr;[r[nﬂlﬁl’nrrl A NADNGL ADTAD arlmin 1 ;

|| Show processes fram all users |”| Show processes in all sessions Refresh

[Attach] [Cancel |

Now ASP.NET Development Server is attached to Visual Studio 2010. We will
continue our debugging in the next section.

Before you can step into the service code from the client code, we need to set a
breakpoint on the service code. Open the file, Hel loWorldService.cs, inside

the HelloWorldService project and set a breakpoint on the GetMessage method.
Now we are ready to continue the debugging process.

[71]

Hosting and Debugging the HelloWorld WCF Service

Stepping into the WCF service

Now press F10 to skip the first line, and then press F11 to step into the service

code. The cursor now resides on the opening bracket of the GetMessage method of
HelloWorldService. You can now examine the variables inside Hel loWor IdService
just as you would for any other program. Keep pressing F10 and you should
eventually come back to the client program.

- — = e — —— . =B
80 HelloWorld (Debugging) Mlg:rosoit Visual Studio pr—— - > e |

File Edit View Project Build Debug Tearn Data Tools Architecture Test Analyze Window Help

I = = e - = L = 0

HEN R R = ‘ £ 53 u__‘_lgl i et i "'aJ == ‘ P |Debug Muxed Platforms ‘LL.’ =

JER U SR Z2[0FE @30 I aa|e®=Es] G e %@

¢ Process: i[2480]WebDev.WehServeMO‘EXE 'i Thread: ‘[1048] <Mo Name> '! o ;

HelloWorldService.cs & < Jffelelaty Ray app.config ~ Solution Explorer

“1sMyWCFServices. HelloWorldService -l ¥ GetMessage(String name) = | 2] | = 54%
~hamespace MyWCFServices | 4 (2P C\.\HostDevServer\
i [l _# Bin

public class HelloworldService : IHelloWorldService %] HelloWorldService.sve

{ £ % web.config
public String GetMessage(String name) | a E HelloWorldClient
E| =d| Properties
i

return "Hello world from " + name + "!"; B 5] References

{1 bin

i obj

= -

|59 app.config

] HelloWorldServiceRef.cs
L‘ﬂ Solution Explorer [l TS

> 1 X CallStack

| Value | Type - | Name | Lang +
MyWCFServices. HelloWorldService} MyWCFSery (| HelloWorldService, DLL!MyWCFServices. HelloWorldService. GetMessage(strin C#

B Locals _Egl Watch 1

Col 3 Ch9 INS

However, if you stay inside Hel loWor IdService for too long, when you come back
to HelloWorldClient you will get an exception window saying that it has timed
out. This is because, by default, Hel loWorldClient will call Hel lowWorldService
and wait for a response for a maximum time of one minute. You can change this to a
longer value in the configuration file, app.config, depending on your own needs.

[72]

Chapter 3

i, TimeoutException was unhandled X

The request channel timed out while waiting for a reply after 00:00:59.9979929,
Increase the timeout value passed to the call to Request or increase the
SendTimeout value on the Binding. The time allotted to this cperation may have
been a portion of a longer timeout,

Troubleshooting tips:

i Get general help for this exception. | -

m

Search for mere Help Online...

Actions:
View Detail...

Copy exception detail to the clipboard

You may also have noticed that you don't see the output window of

HelloWor IdClient. This is because, in debug mode, once a console application finishes,
the console window is closed. You can add one line to the end of Program.cs to wait
for a keystroke so that you can look at the output before it closes. You can do this by
adding the following line of code:

Console.ReadKey();

Debugging only the WCF service

In the previous section, we started debugging from the client program and then
stepped into the service program. Sometimes we may not want to run the client
application in debug mode. For example, if the client application is a third-party
product we won't have the source code or the client application may be a BPM
product that runs on a different machine. In this case, if we need to, we can run
the service in debugging mode and debug only the service.

[73]

Hosting and Debugging the HelloWorld WCF Service

Starting the WCF Service in debugging mode

To start Hel loWor IdService in debug mode, first set HostDevServer as the

startup project (if the Set as Startup Project is disabled, it means Visual Studio

is still attached to ASP.NET Development Server; just detach it or stop the

debugging process). Then open HelloWorldService.cs from the Hel loWorldService
project and set a breakpoint at the line inside the GetMessage method, as shown in

the following:
29 HelloWorld - Microsoft Visual Studio oo
File Edit View Website Build Debug Team Data Tools Architecture Test Anpalyze Window Help
j'J'.__jH§| & =2 __,|) o (M- _:J':;L| '3 |Debug 'HMlxadPIatfclrms 'i @;
L {El Z208B3 3835
% HelloWorldServiceRef.cs HelloWorldService.cs % BGhEn Red app.config Solution Explorer =
g’ TEMyWCFServices.HelloWorldService -l GetMessage(String name) A= E éﬂ | 5‘3. | 3] b
E_‘ ~hamespace MyWCFServices % j Solution 'HelloWaorld' (4 projects) «
-g_ { 4 | C\.\HostDevServer\
fi} public class HellokWorldServi : IHelloWorldService @ Bin
b { = # HelloWorldService.sve E|
5] public String GetMessage(String name) =% web.config
3 4 (3 HelloWorldClient
§- return "Hello world from ™ + name + “I"; =l = Properties
|At HelloWorldService.cs, line 12 character 13 ('MyWCFServices. HelloWorldService. GetfMessage(String name)’, line 3 | 3l References

}

Show output from: | Debug '!| _; | o) 2 | =4 | =
AOTLISL CHUICC CACCRLLON G CFPC 97 3 Coils J0T ¥ LC CHGUE L COMMIGNLC 0 L0010 LG LD COUL AL P LT
A first chance exception of type °System.ServiceModel.CommunicatienobjectabortedException® occur =
A first chance exception of type 'System.ServiceModel.CommunicationobjectAbortedException® occur
The thread "<No Name>' (ex418) has exited with code @ (exa@).

The program °[2488] WebDev.wWebServer48.EXE: Managed (v4£.8.21886)" has exited with code @ (exa8). |

B Error List SRl

..... obj

= app.config
\—j Solution Explorer - MeEUEN

> 1 x

Full Path
Opened URL

file

Misc

Now press F5 to start the service in debugging mode. A dialog window will pop

up warning Debugging Not Enabled. Select Modify the Web.

config file to enable

debugging and click on the OK button to continue. This will modify the debug

value from false to true in the web . config file.

[74]

Chapter 3

Debugging Mot Enabl b

I The page cannot be run in debug mode because debugging is not enabled in the Web.config file,
What would you like to do?

@ Modify the Web.config file to enable debugging.

1\ Debugging should be disabled in the Web.config file before deploying the Web
site to a production environment.

() Run without debugging. (Equivalent to Ctrl+F5)

l 0K J | Cancel

Now the WCEF service will be running in debugging mode, waiting for requests.

A browser will open displaying all of the files under the HostDevServer folder. If
you go back to Visual Studio IDE, you may find that a new solution folder, Script
Documents, has been added to the solution. This folder is the actual content of

the web page being displayed in the browser. Because its content is dynamically
generated, this folder will only be included in the solution when HostDevServer is
being debugged. Whenever you stop the debugging session, this folder will go away

automatically.

Solution Explorer * A X

=l
g Solution 'HelloWaorld' (4 projects)
a |2 Script Documents
4 j Windows Internet Explorer
& localhost
4 [CA.\HostDevServer\
> [Bin
#| HelloWorldService.sve
i3 web.config
4 [Z] HelloWorldClient
» =] Properties
. [+3] References
1 bin
i ohj
5 app.config s

I—“:‘ Solution Explorer [gl vy

»

m

]

[75]

Hosting and Debugging the HelloWorld WCF Service

After you press F5 to start a WCF service in debugging mode, you might see an error
message warning you that script debugging is disabled. For this dialog box, you can
do as instructed: clear the checkbox from Internet Explorer under Tools | Internet
Options | Advanced | Browsing | Disable Script Debugging, or just click the

Yes button to continue debugging without enabling script debugging for Internet
Explorer. We will not debug any script from Internet Explorer (our application is

not a web application).

Once you have clicked on the Yes button (or you may never see this message box
because you have the correct settings), the service will be started in debugging mode.

Starting the client application in non-debugging
mode

Now that we have the WCF service running in debugging mode, we need to start
the client application in non-debugging mode so that the debugging process can
start from the WCF service side and not from the client side.

For this example, you can't start the Hel loWor IdClient program from the same
Visual Studio IDE instance. The reason for this is that, once you have started
HelloWorldService in debugging mode, the solution is in running status. You can't
start another project from the same solution inside the same Visual Studio instance
while the Hel loWorldService project is running. Actually, the Set as Startup
Project menu option is disabled, making it impossible to set any other project as the
startup project. Also, a bunch of other menu options are disabled, meaning that you
can't change them while in debugging mode.

There are two ways to start the Hel lowor IdClient program in non-debugging
mode. The first one is to start it in another instance of Visual Studio. While
leaving the previous instance of Visual Studio running for Hel loWor IdService
in debugging mode, start a new Visual Studio instance and open the Hel loworld
solution. Set Hel loWor 1dCl ient as the startup project and then press Ctrl + F5 to
start it in non-debugging mode. As soon as you press Ctrl + F5, you will see that
the previous Visual Studio is active and the cursor has stopped on the breakpoint
line. You can now examine all of the variables inside Hel loWor IdService as you
would do for any other program. Press F10 once and you will be taken to the end
of the GetMessage method; press F10 again and you will be taken outside of the
HelloWorldService project. Because Hel loWorldClient is now not running in
debugging mode, you will see the output window immediately.

[76]

Chapter 3

Another way to start Hel loWorIdClient is to start it from Windows Explorer. Go to
the C:\SOAwithWCFandLINQ\Projects\Hellowor 1d\Hel loWorldClient\bin\Debug
directory and double-click on the HelloWorldClient.exe file. You will then get the
same result as you did when you started it from inside a new Visual Studio instance.

Starting the WCF service and client applications
in debugging mode

What if you start Hel lowor IdCl ient in debugging mode while HelloWorldService
is also running in debugging mode? Suppose you have started Hel lowor IdService in
debugging mode and have set a breakpoint inside the GetMessage method. Now,

if you start another Visual Studio instance, open the solution, set Hel lowor IdClient
as the startup project, and press F5 to start Hel loWor IdClient also in debugging
mode, you will be able to step inside the service from the client. This is actually the
same as when you start the client application in debugging mode first and then attach
another Visual Studio instance to ASP.NET Development Server, as we did in the
previous section.

Attaching to a WCF service process

Another common scenario for debugging is when attaching to a running WCF
service. Suppose that Hel loWor IdService is hosted and running outside Visual
Studio, either in IIS or a managed application such as HostCmdL ineApp. The client
application is also running outside of Visual Studio. At a certain point, you may
want to start debugging the running WCF service. In this case, we can attach to the
WCEF service process and start debugging from the middle of a process.

Running the WCF service and client applications
in non-debugging mode

To test this scenario, change the app.config file to use the IIS hosting

HelloWorldService. This means that we use the following address for
the endpoint in the app.config file for the Hel lowor IdClient project:

http://1ocalhost/Hel loWorldService/Hel loWorldService.svc

Build the solution and set a breakpoint inside the GetMessage method of the
HelloWorldService project. Then run Hel loWor IdClient in non-debugging
mode by pressing Ctrl + F5. You will see there is no way to hit the breakpoint
we had previously set inside Hel loWor IdService. This is because the service
is now hosted by IIS, and it is not under debugging by any debugger.

[77]

Hosting and Debugging the HelloWorld WCF Service

Debugging the WCF service hosted in IIS

To debug the service hosted by IIS, we can attach it to the IIS process. But before we
can debug it, we have to enable debugging for the web application. Just open the
web . config file under the Hostl 1S folder and change the debug value to True.

Now start Visual Studio and select menu option Debug | Attach to Process.... The
Attach to Process window should now appear. If you can't see the Debug menu
from Visual Studio, just open any project or create an empty new project.

Attach to Process -- ‘ - - - ——— - ’ - —-— &IéJ
Transport: lDeFauIt v]

Transport Information

The default transport lets you select processes on this computer or a remote computer running the Microsoft Visual Studio Remote Debugging
Monitor (MSVSMOM.EXE).

Attach to: Automatic: Mative code
Axailable Processes
Process i} Title Type User Name Session m
igfxsrvc.exe 2812 86 DADSLAPTOP\admin 1
igftray.exe 2756 xB6 DADSLAPTOP\admin 1
ITISSECES.EXE 3016 186 DADSLAPTOP\admin 1
smaxd pnp.exe 2748 x86 DADSLAPTOPVadmin 1
SynTPEnh.exe 3204 «B6 DADSLAPTOP\admi.. 1
SynTPStart.exe 2884 x86 DADSLAPTOPVadmin 1
taskhost.exe 2056 *B6 DADSLAPTOP\admin 1 =
V5Tracelog.exe 5140 Managed (v4... DADSLAPTOP\admin 1
w3wp.exe 1304 x86]
WINWORD.EXE 3878 1481_03_Draft.docx - Microsoft Word 86 DADSLAPTOP\admin 1
[Show processes from all users Show processes in all sessions
[Attach l [Cancel I

Select the process, w3wp .exe (aspnet_wp.exe if you are using Windows XP), from
the list of available processes and click on the Attach button. Note that you need

to check Show processes in all sessions in order to see w3wp.exe in the available
processes list. If it still is not there, run Hel loWor IdClient once and hit the Refresh
button. w3wp.exe will appear in the list.

Now you will find the IIS worker process attached to the debugger. Open the
HelloWorldService.cs file and set a breakpoint if you haven't done so already.
Now run the HelloWor IdClient program in non-debugging mode (use Ctrl + F5)
from another Visual Studio instance or from Windows Explorer, and you will see
that the breakpoint is now hit.

[78]

Chapter 3

If you are not able to set a breakpoint inside the Hel loWor IdService.cs file (or
the breakpoint is disabled after you attach to the w3wp . exe process), make sure you
have enabled debugging for the HostlIS application (as we did at the beginning of
this section), and the folder, Host11S\bin, contains the latest binary files from the
Hel loWor IdService folder.

If you didn't start Visual Studio as an administrator, you will get a dialog window
asking you to restart Visual Studio in a different credential. Select Restart under
different credentials and you will be able to continue.

Microseft Visual Studio ot S

- This task requires the application to have elevated permissions.

Why is using the Administrator or other account necessary?

. ® Restart under different credentials
Saves the current changes and then restarts Microsoft Visual Studio. You will be
prompted to change your user account,

2 Cancel the task and return to Microsoft Visual Studio

w | View error information Cancel

When you have finished debugging Hel loWor IdService using this method, you
can select menu option Debug | Detach All or Debug | Stop Debugging to exit
debugging mode.

You may also have noticed that when you attach to w3wp.exe (or aspnet_wp.exe),
ASP.NET Development Server is also started, even though we will not use it at all
at this time. This is again because the Always Start When Debugging property of
HostDevServer is set to True and, as we did earlier, you can turn it off if you feel it
is annoying.

[79]

Hosting and Debugging the HelloWorld WCF Service

Just-In-Time debugger

As you can see, we have to start Hel loWor IdService before we can run the client
program. The actual step to start Hel loWwor IdService varies depending on the
hosting method that you are using. For example, if you are hosting
HelloWorldService in a managed application as we did for HostCmdLineApp, you
have to start the application manually. If you are hosting Hel loWor IdService in
ASP.NET Development Server, you can manually start it from Visual Studio or set
Always Start When Debugging to True. If you are hosting Hel loWorldService in
IIS, you don't need to do anything (except to make sure that the IIS web application
has been started). Lastly, if you host Hel loWorldService in a Windows service, you
should set its startup type to automatic or you will have to manually start it.

What happens when you run the client program, the service is not started, and it
is not set to automatically start when being referenced? For example, if you have
hosted Hel loWorldService in IIS and for some reason IIS has been stopped, then
what will happen to the client program?

To test this, we need to first stop IIS. Just open Internet Information Services Manager,
select Default Web Site, and click on Stop from the Content View window.

Once IIS has been stopped, Hel loWor IdService is no longer accessible. If you start
the Hel lowWorIdClient program now, you will get an error. Depending on the mode
in which you are running HellowWorIdClient, you will get two different errors.

First, if you start Hel lowWor IdClient in debugging mode (by pressing F5) from
Visual Studio, it will stop on the line to call the GetMessage method, showing you an
exception. This is because the client program can't connect to the server (the server
has actively refused it). As we haven't added any code to handle exceptions, .NET
runtime throws an unhandled exception. We will discuss exceptions (WCF Fault
Contracts) in one of the following chapters. For now, you have to select menu option
Debug | Stop Debugging to stop the client program.

[80]

Chapter 3

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help
gj'ﬂ'ﬁlﬂlﬂ|¥'—ﬂ-ﬂ’.|"’""‘“"—_f';|5' Debug Mixed Platforms |E};

P00 b e I E20WI @SN b U@ a|»s=lE%] G Hx %@
i Process: | [5340] HelloWarldClientvshost.exs =| Thread: | [5584] Main Thread B R4

Solution Explorer
=] = ElE
4 |F HelloWorldClient -
> [=d| Properties

|+3] References

HelloWorldServiceRef.cs 3 [EldaEaelyiil] HelloWorldService.cs i -

HelloWorldServiceClient «| “wGethMessage(string name) -
g i

base(binding, remoteAddress) [ES
i .
¥

public string GetMessage(string name)

m

app.config

Y LallalAloeld = _.p

Message ﬁame‘i"é
i EndpointNotFoundException was unhandled

5

There was no endpoint listening at http://localhost/HelloWorldService/HelloWorldService.sve that
could accept the message, This is often caused by an incorrect address or S0AP action. See
InnerException, if present, for more details.

Troubleshooting tips:
Get general help for this exception. .

InnerException: Check the Response property of the exception to determine why the request failed.
Name Value c 2 5 - £
| . InnerException: Check the Status property of the exception to determine why the request failed.
=] _f base.Channel {System.Runtime. Remoti T * |
& name Mike Lin™ Get general help for the inner exception. -
H @ this {HelloWorldServiceClient} cearch for maore Help Online... A

Actions:
View Detail...
Copy exception detail to the clipboard

RN 5 Locals B Watchl

| Ready Ln 58 Col9 Ch9 INS

If you start Hel lowor IdClient in non-debugging mode (by pressing Ctrl + F5 or
by double-clicking the Hel loWor IdClient.exe file from Windows Explorer C:\

SOAwithWCFandLINQ\Projects\Hel lowor1d\Hel loWorldClient\bin\Debug\),
you will see the Visual Studio Just-In-Time Debugger screen.

An unhandled Microsoft .NET Framework exception occurred in
HelloWarldClient.exe [2323].

Possible Debuggers:

HelloWorld - Microsoft Visual Studio (Administrator): Microsoft Visual Stud

Mew instance of Microsoft Visual Studio 2010

4| 11} | 3

Set the currently selected debugger as the default,

[T Manually choose the debugging engines.

Do you want to debug using the selected debuager?

b Yes | | No

[81]

Hosting and Debugging the HelloWorld WCF Service

This is a nice feature of the .NET framework because even though we have started
the program in non-debugging mode, we can still step into the code if something
unexpected happens (however, the executable must be built with debugging
information, that is, not a release one). In this case, if you click on the Yes button, the
Visual Studio window with the Hel loWor Id solution will be active, and you will see
the same image as when you started the debugging process from Visual Studio. So
you know it is due to Hel loWorldService. This will be very helpful when you are
testing a big application, as you don't need to restart your program in debugging
mode and repeat what you've done to reach the same problem spot. Instead, you
can start the debugging process right on the spot and then fix it quickly if it is only a
configuration problem.

In the previous example, if the client program is started from Windows Explorer and
the Hel loWor Id solution is not open in any Visual Studio IDE, it may even offer to
start a new instance of Visual Studio for debugging. If you have multiple versions of
Visual Studio .NET IDEs installed, it will list all of them for you to pick one.

Summary

In this chapter, we have hosted the Hel loWor 1d WCF service in several different
ways and explained different scenarios when debugging a WCF service. The key
points in this chapter include:

e A WCEF service can be hosted in ASP.NET Development Server, in a
managed application, in a Windows service, or in IIS
o IISis a better WCF hosting option for interacting with legacy applications

* You can start the debugging process for a WCF service from the
client application, from the service application, or by attaching to
the service process

o The Just-In-Debugger is helpful for determining the reason for the
exception when the application is running outside of Visual Studio

[82]

Implementing a WCF Service
in the Real World

In the previous chapter, we created a basic WCF service. The WCF service we
created, Hel loWor ldService, has only one method, called GetMessage. Because this
was just an example, we implemented this WCF service in one layer only. Both the
service interface and implementation are within one deployable component.

Note that the service we will create in the next two chapters is only a simplified
version of a real-world WCEF service. In a real-world situation, there is no doubt that
the WCEF service would contain more custom scenarios, more business logics, and
more data constraints. For learning purposes, here we will just create a WCF service
in three layers, with minimum business logic and some basic functionality. After you
have acquired the basic skills to create the framework for a layered WCF service, you
can customize this solution to your own needs.

Another thing I want to mention here is the design pattern that the next two chapters
will talk about is exactly what the Microsoft Service Software Factory is doing. In

a previous version of this book, we dedicated two chapters to discussing Service
Factory, but since Service Factory for Visual Studio 2010 is still not available (at

the time of writing this version), we have to skip it. However, you will have a

solid understanding of the layered WCF service structures after you have finished
following these two chapters, and at that time you should go to the Microsoft Service
Factory website (http://www.codeplex.com/servicefactory) to check if Service
Factory is available. If it is available, you should consider using Service Factory to
create your WCF service structures.

Implementing a WCF Service in the Real World

Returning to our example in this book, in this chapter and the next one, we will
implement a WCF service, which will be called RealNorthwindService, to reflect
a real-world solution. In this chapter, we will separate the service interface layer
from the business logic layer, and in the next chapter, we will add a data access
layer to the service.

In this chapter, we will create and test the WCF service by following these steps:

e Create the project using a WCF Service Library template

e Create the project using a WCF Service Application template
e Create the Service Operation Contracts

e Create the Data Contracts

e Add a Product Entity project

e Add a business logic layer project

e (all the business logic layer from the service interface layer

e Test the service

Why layer a service?

An important aspect of SOA design is that service boundaries should be explicit,
which means hiding all the details of the implementation behind the service
boundary. This includes revealing or dictating what particular technology was used.

Furthermore, inside the implementation of a service, the code responsible for the
data manipulation should be separated from the code responsible for the business
logic. So in the real world, it is always good practice to implement a WCF service
in three or more layers. The three layers are the service interface layer, the business
logic layer, and the data access layer.

e Service interface layer: This layer will include the service contracts and
operation contracts that are used to define the service interfaces that will be
exposed at the service boundary. Data contracts are also defined to pass in
and out of the service. If any exception is expected to be thrown outside of
the service, then Fault contracts will also be defined at this layer.

¢ Business logic layer: This layer will apply the actual business logic to
the service operations. It will check the preconditions of each operation,
perform business activities, and return any necessary results to the caller
of the service.

[84]

Chapter 4

e Data access layer: This layer will take care of all of the tasks needed to
access the underlying databases. It will use a specific data adapter to query
and update the databases. This layer will handle connections to databases,
transaction processing, and concurrency controlling. Neither the service
interface layer nor the business logic layer needs to worry about these things.

Layering provides separation of concerns and better factoring of code, which gives
you better maintainability and the ability to split out layers into separate physical
tiers for scalability. The data access code should be separated into its own layer that
focuses on performing translation services between the databases and the application
domain. Services should be placed in a separate service layer that focuses on
performing translation services between the service-oriented external world and the
application domain.

The service interface layer will be compiled into a separate class assembly and hosted
in a service host environment. The outside world will only know about and have
access to this layer. Whenever a request is received by the service interface layer, the
request will be dispatched to the business logic layer, and the business logic layer
will get the actual work done. If any database support is needed by the business logic
layer, it will always go through the data access layer.

Creating a new solution and project
using WCF templates

We need to create a new solution for this example and add a new WCF project
to this solution. This time we will use the built-in Visual Studio WCF templates
for the new project.

Using the C# WCF service library template

There are a few built-in WCF service templates within Visual Studio 2010; two
of them are Visual Studio WCF Service Library and Visual Studio WCF Service
Application. In this section, we will use the service library template, and in the
next section, we will use the service application template. Later, we will explain
the differences between these two templates and choose the template that we are
going to use for this chapter.

[85]

[vww allitebooks.cond

http://www.allitebooks.org

Implementing a WCF Service in the Real World

Follow these steps to create the RealNorthwind solution and the project using the
service library template:

1. Start Visual Studio 2010, select menu option File | New | Project..., and
you will see the New Project dialog box. Do not open the Hel loWor Id
solution from the previous chapter as, from this point onwards, we will
create a completely new solution and save it in a different location.

2. Inthe New Project window, specify Visual C# | WCF | WCF Service
Library as the project template, RealNorthwindService as the (project)
name, and RealNorthwind as the solution name. Make sure that the
checkbox Create directory for solution is selected.

F

New Project M
Recent Templates I.NET Framewaork 4 - | Sort by: IDefauIt - Search Installed Tem |
Installed Templates

P Type: Visual C&
e Cﬁ“iii WCF Service Library Visual C# Y
SharePoint A project for creating a WCF service class
= 5 L - library (.dil})
Silverlight Cﬁ"ii WCF Service Application Visual C#
Test
WCF Cﬁ"ifi WCF Workflow Service Appli... Visual C#
Workflow
Visual C = ﬂﬂ
!sua J_r+ | CH., Syndication Service Library Visual C&
Visual F# —“55
Other Project Types |
Database
Online Templates
MName: RealMorthwindService
Location: CASOAWIthWCFandLINQ \Projects - Browse... |
Solution name: RealMorthwind |V Create directory for solution
|1 Add to source contral

ﬂ

3. (Click on the OK button, and the solution is created with a WCF project inside
it. The project already has an IServicel.cs file to define a service interface
and Servicel.cs to implement the service. It also has an app.config file,
which we will cover shortly.

[86]

Chapter 4

Using the C# WCF service application
template

Instead of using the Visual Studio WCF Service Library template to create our new
WCEF project, we can use the Visual Studio Service Application template to create
the new WCF project.

Because we have created the solution, we will add a new project using the Visual
Studio WCF Service Application template.

1. Right-click on the solution item in Solution Explorer, select menu option
Add | New Project... from the context menu, and you will see the
Add New Project dialog box.

2. Inthe Add New Project window, specify Visual C# | WCF Service
Application as the project template, RealNorthwindService2 as the
(project) name, and leave the default location of C:\
SOAWithWCFandLINQ\Projects\RealNorthwind unchanged.

T R e
Recent Templates I.NET Framework 4 - | Sort by: IDefauIt ¥ | | Search Installed Tem @ |
Installed Templates - o] “ Type: Visual C#

: ; - ch Sitlverlight Application Visual C#
Visual Basic W ol A project for creating WCF services
4 Visual C# '_'1
T : ;-
Wiz o Silverlight Class Library Visual C#
Web N
Office = .Cﬁ‘\ﬁ WCF Service Application Visual C# B
Cloud
Reporting ;g ASP.MET MVC 2 Empty Web... Visual C# E
SharePoint o
Silverlight l% ASP.NET Dynamic Data Entiti... Visual C2 =i
Test
WCF @ Enable Windows Azure Tools Visual C#
Workflow
Online Templates ﬂ?: Excel 2010 Workbook Visual C# "
MName: RealMorthwindSenviced|
Location: CASOAWIthWCFandLING'\Projects\RealNorthwind v Browse...
|

3. Click on the OK button and the new project will be added to the solution.
The project already has an IServicel.cs file to define a service interface,
and Servicel.svc.cs to implement the service. It also has a Servicel.svc
file and a web.config file, which are used to host the new WCEF service. It
has also had the necessary references added to the project such as System.
ServiceModel.

[87]

Implementing a WCF Service in the Real World

You can follow these steps to test this service:

e Change this new project, RealNorthwindService2, to be the startup project
(right-click on it from Solution Explorer and select Set as Startup Project).
Then run it (Ctrl + F5 or F5). You will see that it can now run. You will see
that ASP.NET Development Server has been started, and a browser is open
listing all of the files under the RealNorthwindService2 project folder.
Clicking on the Servicel.svc file will open the metadata page of the WCF
service in this project. This is the same as we discussed in the previous
chapter for the HostDevServer project.

e If you have pressed F5 in the previous step to run this project, you might see
a warning message box asking you if you want to enable debugging for the
WCF service. As we said earlier, you can choose enable debugging or just run
in the non-debugging mode.

You may also have noticed that the WCF Service Host is started together with ASP.
NET Development Server. This is actually another way of hosting a WCF service

in Visual Studio 2010. It has been started at this point because, within the same
solution, there is a WCF service project (RealNorthwindService) created using the
WCF Service Library template. We will cover more of this host in a later section.

So far we have used two different Visual Studio WCF templates to create two
projects. The first project, using the C# WCEF Service Library template, is a more
sophisticated one because this project is actually an application containing a WCF
service, a hosting application (WcfSvcHost), and a WCF Test Client. This means
that we don't need to write any other code to host it, and as soon as we have
implemented a service, we can use the built-in WCF Test Client to invoke it. This
makes it very convenient for WCF development.

The second project, using the C# WCF Service Application template, is actually

a website. This is the hosting application of the WCF service so you don't have to
create a separate hosting application for the WCF service. This is like a combination
of the Hel loWor IdService and the HostDevServer applications we created in

the previous chapter. As we have already covered them and you now have a solid
understanding of these styles, we will not discuss them further. But keep in mind
that you have this option, although in most cases it is better to keep the WCF service
as clean as possible, without any hosting functionalities attached to it.

To focus on the WCF service using the WCF Service Library template, we now need
to remove the project RealNorthwindService2 from the solution.

[88]

Chapter 4

In Solution Explorer, right-click on the RealNorthwindService2 project item and
select Remove from the context menu. Then you will see a warning message box.
Click on the OK button in this message box and the RealNorthwindService2 project
will be removed from the solution. Note that all the files of this project are still on
your hard drive. You will need to delete them using Windows Explorer.

Microsoft Visual Studio [

! . 'RealMorthwindService?' will be removed.

Ok | I Cancel ‘

Creating the service interface layer

In the previous section, we created a WCF project using the WCF Service Library
template. In this section, we will create the service interface layer contracts.

Because two sample files have already been created for us, we will try to reuse
them as much as possible. Then we will start customizing these two files to create
the service contracts.

Creating the service interfaces

To create the service interfaces, we need to open the IServicel.cs file and do
the following:

1. Change its namespace from RealNorthwindService to:
MyWCFServices._RealNorthwindService

2. Change the interface name from IServicel to IProductService. Don't be
worried if you see the warning message before the interface definition line,
as we will change the web. config file in one of the following steps.

3. Change the first operation contract definition from this line:
string GetData(int value);

to this line:
Product GetProduct(int id);

[89]

Implementing a WCF Service in the Real World

4. Change the second operation contract definition from this line:
CompositeType GetDataUsingDataContract(CompositeType composite);

to this line:
bool UpdateProduct(Product product);

5. Change the filename from IServicel.cs to IProductService.cs.

With these changes, we have defined two service contracts. The first one can be used

to get the product details for a specific product ID, while the second one can be used

to update a specific product. The product type, which we used to define these service
contracts, is still not defined. We will define it right after this section.

The content of the service interface for RealNorthwindService.ProductService
should look like this now:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.Text;

namespace MyWCFServices.RealNorthwindService

{
[ServiceContract]
public interface IProductService
{
[OperationContract]
Product GetProduct(int id);
[OperationContract]
bool UpdateProduct(Product product);
// TODO: Add your service operations here
}
}

This is not the whole content of the 1ProductService.cs file. The
%j%‘\ bottom part of this file should still have the class, CompositeType,
’ which we will change to our Product type in the next section.

[90]

Chapter 4

Creating the data contracts

Another important aspect of SOA design is that you shouldn't assume that the
consuming application supports a complex object model. One part of the service
boundary definition is the data contract definition for the complex types that
will be passed as operation parameters or return values.

For maximum interoperability and alignment with SOA principles, you should not
pass any .NET-specific types such as DataSet or Exceptions across the service
boundary. You should stick to fairly simple data structure objects such as classes
with properties and backing member fields. You can pass objects that have nested
complex types such as 'Customer with an Order collection'. However, you shouldn't
make any assumption about the consumer being able to support object-oriented
constructs such as inheritance or base-classes for interoperable web services.

In our example, we will create a complex data type to represent a product object. This
data contract will have five properties: ProductlD, ProductName, QuantityPerUnit,
UnitPrice, and Discontinued. These will be used to communicate with client
applications. For example, a supplier may call the web service to update the price of a
particular product or to mark a product for discontinuation.

It is preferable to put data contracts in separate files within a separate assembly but,
to simplify our example, we will put DataContract in the same file as the service
contract. We will modify the file, IProductService.cs, as follows:

1. Change the DataContract name from CompositeType to Product.

2. Change the fields from the following lines:

bool boolValue = true;
string stringValue = "Hello ";

to these seven lines:

int productlD;

string productName;
string quantityPerUnit;
decimal unitPrice;
bool discontinued;

3. Delete the old boolValue and StringValue DataMember properties. Then,
for each of the above fields, add a DataMember property. For example, for
productlD, we will have this DataMember property:

[DataMember]
public int ProductlD

{
get { return productlD; }

[91]

Implementing a WCF Service in the Real World

set { productlD = value; }
}

A better way is to take advantage of the automatic property feature of C#, and
add the following ProductID DataMember without defining the productlD field:

[DataMember]
public int ProductID { get; set; }

To save some space, we will use the latter format. So, we need to delete all of
those field definitions and add an automatic property for each field, with the
first letter capitalized.

The data contract part of the finished service contract file, IProductService.cs,
should now look like this:

[DataContract]
public class Product

{
[DataMember]

public int ProductID { get; set; }
[DataMember]

public string ProductName { get; set; }
[DataMember]

public string QuantityPerUnit { get; set; }
[DataMember]

public decimal UnitPrice { get; set; }
[DataMember]

public bool Discontinued { get; set; }

Implementing the service contracts

To implement the two service interfaces that we defined in the previous section,
open the Servicel.cs file and do the following:

1. Change its namespace from RealNorthwindService to MyWCFServices.
RealNorthwindService.

2. Change the class name from Servicel to ProductService. Make it inherit
from the IProductService interface, instead of 1Servicel. The class
definition line should be like this:

public class ProductService : IProductService

3. Delete the GetData and GetDataUsingDataContract methods.

[92]

Chapter 4

4. Add the following method, to get a product:
public Product GetProduct(int id)

{

// TODO: call business logic layer to retrieve product
Product product = new Product();

product.ProductlID = id;

product.ProductName = 'fake product name from service layer";
product.UnitPrice = (decimal)10.0;

return product;

In this method, we created a fake product and returned it to the client.
Later, we will remove the hard-coded product from this method and
call the business logic to get the real product.

Add the following method to update a product:

public bool UpdateProduct(Product product)

{
// TODO: call business logic layer to update product
if (product.UnitPrice <= 0)
return false;
else
return true;
}

Also, in this method, we don't update anything. Instead, we always return
true if a valid price is passed in. In one of the following sections, we will
implement the business logic to update the product and apply some business
logic to the update.

Change the filename from Servicel.cs to ProductService.cs. The content

of the ProductService.cs file should be like this:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.Text;

namespace MyWCFServices.RealNorthwindService

{

[93]

Implementing a WCF Service in the Real World

public class ProductService : IProductService
{

public Product GetProduct(int id)

{
// TODO: call business logic layer to retrieve product
Product product = new Product();
product.ProductlD = id;
product.ProductName = "fake product name
from service layer";
product._UnitPrice = (decimal)10;
return product;

}

public bool UpdateProduct(Product product)

{
// TODO: call business logic layer to update product
if (product.UnitPrice <= 0)

return false;
else
return true;
}

Modifying the app.config file

Because we have changed the service name, we have to make the appropriate
changes to the configuration file. Note that when you rename the service, if you have
used the refactor feature of Visual Studio, some of the following tasks may have been
done by Visual Studio.

Follow these steps to change the configuration file:

1.
2.

Open the app.config file from Solution Explorer.

Change all instances of the RealNorthwindService string except the one in
baseAddress to MyWCFServices.RealNorthwindService. This is for the
namespace change.

Change the RealNorthwindService string in baseAddress to
MyWCFServices/RealNorthwindService.

Change all instances of the Servicel string to ProductService. This is for
the actual service name change.

[94]

Chapter 4

5. Change the service address port from 8731 to 8080. This is to prepare for
the client application, which we will create soon.

6. You can also change Design_Time_Addresses to whatever address you
want, or delete the baseAddress part from the service. This can be used to
test your service locally. We will leave it unchanged for our example.

The content of the app.config file should now look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<compilation debug="true" />
</system.web>
<I-- When deploying the service library project, the content of the
config file must be added to the host"s app.config file.
System.Configuration does not support config files for libraries. -->
<system.serviceModel>
<services>
<service name="MyWCFServices.RealNorthwindService.
ProductService">
<endpoint address=""" binding="wsHttpBinding"
contract="MyWCFServices.
RealNorthwindService. IProductService">
<identity>
<dns value="localhost" />
</identity>
</endpoint>
<endpoint address="mex" binding="mexHttpBinding"
contract=""IMetadataExchange" />
<host>
<baseAddresses>
<add baseAddress="http://localhost:8080/Design_Time_
Addresses/MyWCFServices/
RealNorthwindService/ProductService/" />
</baseAddresses>
</host>
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior>
<I-- To avoid disclosing metadata information,
set the value below to false and remove the metadata
endpoint above before deployment -->
<serviceMetadata httpGetEnabled="True"/>

[95]

Implementing a WCF Service in the Real World

<I-- To receive exception details in faults for debugging
purposes, set the value below to true. Set to false before

deployment

to avoid disclosing exception information -->
<serviceDebug includeExceptionDetaillnFaults="False" />

</behavior>

</serviceBehaviors>

</behaviors>

</system.serviceModel>

</configuration>

Testing the service using WCF Test Client

Because we are using the WCF Service Library template in this example, we are now
ready to test this web service. As we pointed out when creating this project, this
service will be hosted in the Visual Studio 2010 WCF Service Host environment.

To start the service, press F5 or Ctrl + F5. WcFSvcHost will be started and WCF Test
Client is also started. This is a Visual Studio 2010 built-in test client for WCF Service

Library projects.

. Inorder to run the WCF Test Client you have to log into your
machine as a local administrator. You also have to start Visual Studio
= as an administrator because we have changed the service port from

8732 to 8080 (port 8732 is pre-registered but 8080 is not).

G T Crenl

l File Tools Help

http:/Aocalhost: 8080/ Design_Time_Addr
5” |Product Service (WS Http Binding_|Prc
i~ GetProduct()

¢ UpdateProduct()

------ =) Corfig File

|| P T | b

Start Page

To add a service:
. Select “"Add Service™ from the File menu or the contexd menu of the "My Service Projects”
. Enter the service metadata address in the input area, and click "OK"

To test a service operation:

. Double click the operation you want to test from the tree on the left pane
. A new tab page will appear on the right pane

. Enter the value of parameters in the Request Area of the right pane

. Click "Invoke" button

Service added successfully.

[96]

Chapter 4

Again, if you get an Access is denied error, make sure you run Visual Studio as
an administrator (under Windows XP you need to log on as an administrator).

Now from this WCF Test Client we can double-click on an operation to test it.
First, let us test the GetProduct operation.

1. In the left panel of the client double-click on the GetProduct() operation;
GetProduct Request will be shown on the right-side panel.

2. In this Request panel specify an integer for the product ID and click on the
Invoke button to let the client call the service. You may get a dialog box to
warn you about the security of sending information over the network. Click
on the OK button to acknowledge this warning (you can check the In the
future, do not show this message option so that it won't be displayed again).

Now the message Invoking Service... will be displayed in the status bar as the client
is trying to connect to the server. It may take a while for this initial connection to

be made as several things need to be done in the background. Once the connection
has been established, a channel will be created and the client will call the service

to perform the requested operation. Once the operation has been completed on the
server side, the response package will be sent back to the client, and the WCF Test
Client will display this response in the bottom panel.

% WCF TestClient - —— =)
File Tools Help
:E:--iﬁ'j My Service Projects GetProduct
= 2,-] http:/Aocalhost:2080/Design_Time_Addr
'0"’ IProduct Service (WSHttpBinding_|Pre| || Request
w GetProduct()
& UpdateProduct() MName Value Type
-2} Config File id 46 System.Int32
e [] Start & new proxy I
MName Value Type
a MyWCFServices RealMorthwind Servi
Discortinued False System Boolean
Product!D 46 System Int32
ProductMame "fake product name from service layer” |.5tring
QuantityPerUnit {rwlly MullObject
LUnitPrice 10 System Decimal
< | I | 3 Formatted |XM|- |
Service invocation completed.

[97]

Implementing a WCF Service in the Real World

If you started the test client in debugging mode (by pressing F5), you can set a
breakpoint at a line inside the GetProduct method in the RealNorthwindService.
cs file, and when the Invoke button is clicked, the breakpoint will be hit so that you
can debug the service as we explained earlier. However, unlike in previous chapters
where you had to attach to ASP.NET Development Server, here you don't need to
attach to the WCF Service Host.

Note that the response is always the same, no matter what product ID you use to
retrieve the product. Specifically, the product name is hard-coded, as shown in
the diagram. Moreover, from the client response panel, we can see that several
properties of the Product object have been assigned default values.

Also, because the product ID is an integer value from the WCF Test Client, you can
only enter an integer for it. If a non-integer value is entered, when you click on the
Invoke button, you will get an error message box to warn you that you have entered
a value with the wrong type.

Microsoft WCF Test Client]

[g} ‘abc’ is not a valid value for this type

=

Now let's test the operation, UpdateProduct.

e Double-click on the UpdateProduct() operation in the left panel, and
UpdateProduct() will be shown in the right-side panel in a new tab.

e Enter a decimal value for the UnitPrice parameter and then click on
the Invoke button to test it. Depending on the value you entered in the
UnitPrice column, you will get a True or False response package back.

[98]

Chapter 4

File Tools Help

= @ My Service Projects

= _ﬁj http:/Aocalhost: 8080/ Design_Time_Addr
-5 IProductService (WSHttpBinding_IPre| || Request

- GetProduct()
‘4 UpdateProduct()
Carfig File

Ea| 1

GdF‘mdudl UpdateProduct |

Name Value Type
4 product My WCF Services. RealNorthwind S MyWCFServices. RealMorthwind Servi
Digcontinued False System.Boolezn
Product!D a System.int32
ProductName (wlly System String
Quantity PerUnit (il System. String
UnitPrice -10 System.Decimal

[Start & new praxy
Response

Name Type
{retumy) System.Boolean

Formatted | XML

Service invocation completed.

The Request/Response packages are displayed in grids by default but you have

the option of displaying them in XML format. Just select the XML tab at the bottom

of the right-side panel, and you will see the XML-formatted Request/Response
packages. From these XML strings, you can see that they are SOAP messages.

File Tools Help

B--% My Service Projects

Bg] http:/Aocalhost: 8080/ Design_Time_Addr
=57 IProductService (WSHttpBinding_IPrc

“i GetProduct()
-4 UpdateProduct()
Corfig Fle

4 1

GetProduct | UpdateProduct

Request

<s:Envelope umins:a="http //www w3.org/2005/08/addressing" xanins:s="http ./ www w3.0rg/2003/0¢ »
<s:Header> Il
<a:Action s:imust Understand="1">http:/tempuri.org/IProduct Service/Update Product </a:Action> | =
<a:Message|D>umuuid:32296a97-1f 37-4aec-a3a8-bbldealdec 1f</a:MessagelD>
<aReplyTo>
<a:Address>hittp:/Awww.w3.org/2005/08/addressing /anonymous</a:Address>
</a:ReplyTo>
<fz:Header>
<s:Body>

4 i b

Response

<s:Envelope amins:s="http//www w3 org/2003/05/s0ap-envelope" xmins a="http ./ www w3.0rg/200. »
<s:Header> El
<a:Action s:mustUnderstand="1" u:ld="_2">http:/Aempuri.org/|Product Service /Update Product Hespu
<a:RelatesTo u:ld="_3">um:uuid b0b&fd07-48b6-4fdf b 104-2110270F5747</a RelatesTo>
<a:Securty s:must Understand="1" xmins :0="http://docs oasis-open org/wss/2004,/01 /oasis-200401
<u:Timestamp u:ld="uuid-4757516b-dc 2a-40dc-a98c-573906cccd4e- 14"
<u:Created=2010-03-19T20:52:09.3927 </u:Created:»
<u:Bxpires>2010-03-15T20:57:09.3927 </u: Expires>

</u Timestamp>
<c:DerivedKey Token u:ld="uuid-4757516b-dc23-40dc-a98c-573906ccedde- 7" amins:c="http://sct il
4 L} 3
[Formatted | KML |

Service invocation completed.

[99]

Implementing a WCF Service in the Real World

Besides testing operations, you can also look at the configuration settings of the

web service. Just double-click on Config File from the left-side panel and the
configuration file will be displayed in the right-side panel. This will show you the
bindings for the service, the addresses of the service, and the contract for the service.

What you see here for the configuration file is not an exact image of the

% actual configuration file. It hides some information such as debugging
L mode and service behavior, and includes some additional information on
reliable sessions and compression mode.

%) WCF Test Client

File Tools Help

B--% My Service Projects
=2 ﬂ http:/Aocalhost:8080/Design_Time_~Addre
257 IProductService (WSHttpBinding_IPrc

Corfig File

4| i | +

| GetProduct | UpdateProduct | Client il corfig

k%ml version="1.0" encoding="utf-8"?>
<configuration> B
<gystem serviceModel>
<bindings>
zwsHttp Binding >
<binding name="W5SHttpBinding_|Product Service” close Timeout="00:01:00"
open Timeout="00:01:00" receive Timeout="00:10:00" send Timeout="00:01:00"
bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongVt
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" text Encoding="utf-8" use DefaultWeb Proogy="true"
allowCookies="false">
<readerQuotas maxDepth="32" maxStringCortentLength="8132" maxAmaylength="16384" | _
maxBytesPerRead="40596" maxMName TableCharCount="16384" /= 3
<reliable Session ordered="true" inactivity Timeout="00.10.00"
enabled="false" />
<securty mode="Message">
<transport clientCredential Type="Windows" proxyCredential Type="None"
realm="" /=
<message clientCredential Type="Windows" negotiate ServiceCredential="true"
algorthmSute=""Default" />
</securty>
</binding>
</wsHitp Binding>
</bindings> b
<client>
<endpoint address="http:/localhost:B080/Design_Time_Addresses,/MyWCFServices/RealMorth
binding="wsHttpBinding" bindingConfiguration="W5Http Binding_|Product Service™
contract="|Product Service" name="WSHittpBinding_|Product Service™>
<dentity> -

»

4 [| +

Service invocation completed.

If you are satisfied with the test results, just close the WCF Test Client, and you will
go back to Visual Studio IDE. Note that as soon as you close the client, the WCF
Service Host is stopped. This is different from hosting a service inside ASP.NET
Development Server, where ASP.NET Development Server still stays active even

after you close the client.

[100]

Chapter 4

Testing the service using our own client

It is very convenient to test a WCF service using the built-in WCF Test Client, but
sometimes it is desirable to test a WCF service using your own test client. The built-in
WCEF Test Client is limited to only simple WCEF services. For complex WCF services,
we have to create our own test client. For this purpose, we can use the methods we
learned earlier to host the WCEF service in IIS, ASP.NET Development Server, or a
managed .NET application, and create a test client to test the service.

In addition to the previous methods we learned, we can also use the built-in WCF
Service Host to host the WCF service. So we don't need to create a host application
but just need to create a client. In this section, we will use this hosting method to
save us some time.

First, let us find a way to get the metadata for the service. From the Visual Studio
2010 built-in WCF Test Client, you can't examine the WSDL of the service, although
the client itself must have used the WSDL to communicate with the service. To

see the WSDL outside of the WCF Service Test Client, just copy the address of the
service from the configuration file and paste it into a web browser. In our example,
the address of the service is: http://localhost:8080/Design_Time_Addresses/
MyWCFServices/RealNorthwindService/ProductService/. So copy and paste this
address to a web browser, and we will see the WSDL languages of the service, just as
we have seen many times before.

e Sl & it/ /localhost8080/Design Time_ v | 42| X [8ing

File Edit View Favorites Tools Help

7. Favorites & ProductService Senvice

ProductService Service

You have created a service.

To test this service, yvou will need to create a client and use it to call the service. You can do this using the
svcutil.exe tool from the command line with the following syntax:

avcutil.exe http://localhost:8080/Design Time Addresses/MyWCEServices/RealNor s
This will generate a configuration file and a code file that contains the client class. Add the two files to your
client application and use the generated client class to call the Service. For example:

Cc#
class Test
i
static void Main()

f

ProductServiceClient client = new ProductServiceClient():;
// Use the 'client' variable to call operations on the service.

f/ Alwawva close the client.
client.Clase();

4 m b

€& Local intranet | Protected Mode: Off ‘a4~ H100% -
————— e — |

[101]

Implementing a WCF Service in the Real World

To get the metadata for the service, the service host application must

run. The easiest way to start RealNorthwindService in the WCF
’ Service Host is to start the WCF Test Client and leave it running,.

Now that we know how to get the metadata for our service, we can start building
the test client. We can leave the host application running, and manually generate
the proxy classes using the same method that we used earlier. But this time we
will let Visual Studio do it for us, So you can close the WCF Test Client for now.

Follow these steps to build your own client to test the WCF service:

1. Add anew Console Application project to the RealNorthwind solution.
Let's call it RealNorthwindClient.

2. Add areference to the WCF service. In Visual Studio Solution Explorer,
right-click on the RealNorthwindClient project, select Add Service
Reference... from the context menu, and you will see the Add Service
Reference dialog box.

—— e v
Add Service Reference - &I&J

e .

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:
n_Time_Addresses/MyWCFServices/RealNorthwindService/ProductService/ Twsdlied I Go l [[Disco\rer :'l

Services: Operations:

(&] ProductService W GetProduct
57 IProductService wUpdateProduct

1 service(s) found at address
'http://localhost:8080/Design_Time_Addresses/MyWCFServices/RealNorthwindService/ProductService/ Twsdl',

I Mamespace:
| ProductServiceRef|

o e

[102]

Chapter 4

3.

In the Add Service Reference dialog box, type the following address into
the Address box, and then click on the Go button to connect to the service:
http://1ocalhost:8080/Design_Time_Addresses/MyWCFServices/
RealNorthwindService/ProductService/

You can also simply click on the Discover button (or click on the little
arrow next to the Discover button, and select Services in Solution) to

find this service.

In order to connect to or discover a service in the same solution you don't
have to start the host application for the service. The WCF Service Host

%“ will be automatically started for this purpose. However, if it is not started

Y

in advance, it may take a while for the Add Service Reference window to
download the required metadata information for the service.

ProductService should now be listed on the left-hand side of the window.
You can expand it and select the service contract to view its details.

Next, let's change the namespace of this service from ServiceReferencel to
ProductServiceRef. This will make the reference meaningful in the code.

If you want to make this client run under .NET 2.0, click on the Advanced...
button in the Add Service Reference window, and in the Service
Reference Settings pop-up dialog box, click on the Add Web Reference...
button. This will cause the proxy code to be generated based on .NET 2.0
web service standards.

Service Reference Seﬂings'- -~ _—

P ——

Client

Access level for generated classes: |Pub\ic "

[”] Generate asynchronous operations

Data Type
[T] Always generate message contracts
Collection type: [System.Auray -
Dictionary collection type: |Systam‘Co\lemons.Ganeric‘Dictionary VJ

[#] Reuse types in referenced assemblies
@ Reusetypes in all referenced assemblies

(") Reuse types in specified referenced assemblies:

U
-«
P8
ot
3
m

(3 System.Data.DataSetExtensions
|| +3 System.Runtime.Serialization -

Compatibility

Add a Web Reference instead of a Service Reference. This will generate code based on NET Framework 2.0
Web Services technelegy.

Add Web Reference...

=

[103]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Implementing a WCF Service in the Real World

In this example, we won't do this, So click on the Cancel button to discard
these changes.

6. Now click on the OK button in the Add Service Reference dialog box
to add the service reference. You will see that a new folder named
ProductServiceRef is created under Service References in Solution
Explorer for the RealNorthwindClient project. This folder contains lots
of files including the WSDL file, the service map, and the actual proxy
code. If you can't see them, click on Show All Files in Solution Explorer.

Solution Explorer v [X

._£||3£=||E|£¢

[Show AllFiles | il
4 |7 Service References
4 ﬁ; ProeductServiceRef
4] configuration.svcinfo

4] configurationdl.svcinfo
Iﬂ iterm.xsd

,Q iternl xsd

Iﬂ itemn2 xsd

¥ ProductService.wsdl
4] Reference.svermnap

m

i bin
L..i obj
i app.config I
] Program.cs

I:i:.‘ N 7 Team B, B2 Class View

A new file, App.config, is also added to the project as well as several
WCF-related references such as System.ServiceModel and
System.Runtime.Serialization.

At this point, the proxy code to connect to the WCF service and the required
configuration file have both been created and added to the project for us
without us having to enter a single line of code. What we need to do next is
to write just a few lines of code to call this service.

[104]

Chapter 4

Just as we did earlier, we will modify Program.cs to call the WCF service.

1. First open the Program.cs file, and add the following using line to the file:
using RealNorthwindClient.ProductServiceRef;

2. Then inside the Main method add the following line of code to create a
client object:

ProductServiceClient client = new ProductServiceClient();

3. Finally add the following lines to the file to call the WCF service to get and
update a product:

Product product = client.GetProduct(23);
product.UnitPrice = (decimal)20.0;
bool result = client.UpdateProduct(product);

The content of the Program.cs file is:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using RealNorthwindClient.ProductServiceRef;

namespace RealNorthwindClient
{

class Program

{

static void Main(string[] args)

{

ProductServiceClient client = new ProductServiceClient();

Product product = client.GetProduct(23);

Console_WriteLine("'product name is " +
product.ProductName);

Console_WriteLine("product price is " +
product._UnitPrice.ToString());

product.UnitPrice = (decimal)20.0;
bool result = client.UpdateProduct(product);

Console_WriteLine(""Update result is " +
result.ToString());

[105]

Implementing a WCF Service in the Real World

Now you can run the client application to test the service. Remember that you need
to run Visual Studio as an administrator.

If you want to start it in debugging mode (F5), you need to add a Console.
ReadLine(); statement to the end of the program so that you can see the
output of the program. Also remember to set the RealNorthwindClient
application as the startup project. The WCF Service Host application will be
started automatically before the client is started (but the WCF Test Client
won't be started).

If you want to start the client application in non-debugging mode (Ctrl + F5),
you need to start the WCF Service Host application (and the WCF Test Client
application) in advance. You can start the WCF Service Host application (and
the WCF Test Client) from another Visual Studio IDE instance, or you can

set RealNorthwindService as the startup project, start it in non-debugging
mode (Ctrl + F5), leave it running, and then change RealNorthwindClient
to be the startup project, and start it in non-debugging mode. Also, you can
set the solution to start with multiple projects with RealNorthwindService
as the first project to be run and RealNorthwindClient as the second

project to be run. In my environment, I set the solution to start with multiple
projects, so I am sure that the WCF service is always started before the client
application, no matter whether it is in debugging mode or not.

The output of this client program is as shown in the following figure:

EX C:\Windows\system32\cmd.exe |ﬂ|&]

product name is fake product name from service layer
product price is 18

lIpdate result is True

FPress any key to continue . . .

[106]

Chapter 4

Adding a business logic layer

Until now the web service has contained only one layer. In this section, we will
add a business logic layer and define some business rules in this layer.

Adding the product entity project

Before we add the business logic layer, we need to add a project for business entities.
The business entities project will hold all business entity object definitions such as
products, customers, and orders. These entities will be used across the business

logic layer, the data access layer, and the service layer. They will be very similar to
the data contracts we defined in the previous section, but will not be seen outside

of the service. The Product entity will have the same properties as the product
contract data, plus some extra properties such as UnitsInStock and ReorderLevel.
These properties will be used internally and shared by all layers of the service. For
example, when an order is placed, UnitsInStock should be updated as well. Also, if
the updated UnitsInStock is less than ReorderLevel, an event should be raised to
trigger the reordering process.

The business entities by themselves do not act as a layer. They are just pure C#
classes representing internal data within the service implementations. There is no
logic inside these entities. Also, in our example, these entities are very similar to the
data contracts (with only two extra fields in the entity class). In reality, the entity
classes could be very different from the data contracts, from property names and
property types to data structures.

As with the data contracts, the business entities' classes should be in their own
assembly. So we first need to create a project for them. Just add a new C# class
library, RealNorthwindEntities, to the Solution. Then rename Class1.cs

to ProductEntity.cs, and modify it as follows:

1. Change its namespace from RealNorthwindEntities to
MyWCFServices._RealNorthwindEntities.
Change the class name from Class1 to ProductEntity.
Add the following properties to this class:

ProductlID, ProductName, QuantityPerUnit, UnitPrice, Discontinued,
UnitsInStock, UnitsOnOrder, and ReorderLevel.

[107]

Implementing a WCF Service in the Real World

Five of the above properties are also in the Product service data contract.
The last three properties are for use inside the service implementations.
+ Wewill use UnitsOnOrder to trigger business logic when updating
% a product, and update UnitsInStock and ReorderLevel to trigger
"~ business logic when saving an order (in this book we will not create a
service for saving an order but we assume that this is a required operation
and will be implemented later).

The following is the code list of the ProductEntity class:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace MyWCFServices.RealNorthwindEntities
{
public class ProductEntity
{
public int ProductlD { get; set; }
public string ProductName { get; set; }
public string QuantityPerUnit { get; set; }
public decimal UnitPrice { get; set; }
public int UnitsinStock { get; set; }
public int ReorderLevel { get; set; }
public int UnitsOnOrder { get; set; }
public bool Discontinued { get; set; }

Adding the business logic project

Next, let us create the business logic layer project. Again, we just need to add a
new C# class library project, RealNorthwindLogic, to the solution. So rename
Classl.cs to ProductLogic.cs, and modify it as follows:

1. Change its namespace from RealNorthwindLogic to MyWCFServices.
RealNorthwindLogic.

2. Change the class name from Class1 to ProductLogic.

[108]

Chapter 4

3. Add areference to the project, RealNorthwindEntities, as shown in the
following Add Reference image:

ea Add Reference @ﬂ

p——n

Projects | Browse | Recent
Project Mame : Project Directory
RealMorthwindClient CASOAWIthWCFandLINQ\Projects\Real
RealMeorthwindEntities CAS0AWthWCFandLINGQProjects\Real
RealMorthwindService CASOAWIthWCFandLING\Projects\Real
] I ’ I
[OK] [Cancel]

Now we need to add some code to the ProductLogic class.

1. Add the following using line:
using MyWCFServices.RealNorthwindEntities;

2. Add the method, GetProduct. It should look like this:

public ProductEntity GetProduct(int id)
{
// TODO: call data access layer to retrieve product
ProductEntity p = new ProductEntity();
p-ProductID = id;
p-ProductName = '"fake product name from business logic layer";
p-UnitPrice = (decimal)20.00;
return p;
}
In this method we create a ProductEntity object, assign values to some of its
properties, and return it to the caller. Everything is still hardcoded so far.

[109]

Implementing a WCF Service in the Real World

We hardcode the product name as 'fake product name from business logic
6. layer'so that we know this is a different product from the one returned
directly from the service layer.

3. Add the method, UpdateProduct, as follows:

public bool UpdateProduct(ProductEntity product)
{
// TODO: call data access layer to update product
// First check to see if it is a valid price
ifT (product.UnitPrice <= 0)
return false;
// ProductName can"t be empty
else if (product._ProductName == null
|1 product.ProductName. Length == 0)
return false;
// QuantityPerUnit can"t be empty
else if (product.QuantityPerUnit == null
|l product. QuantityPerUnit.Length == 0)
return false;
// then validate other properties
else
{
ProductEntity productInDB = GetProduct(product.ProductlD);
// invalid product to update
if (productInDB == null)
return false;

// a product can®"t be discontinued if there are
// non-fulfilled orders

if (product.Discontinued == true
&& productInDB. UnitsOnOrder > 0)
return false;
else
return true;

[110]

Chapter 4

4. Add test logic to the GetProduct method.

We still haven't updated anything in a database but this time we have added
several pieces of logic to the UpdateProduct method. First, we checked the
validity of the UnitPrice property and returned false if it was not valid.
We then checked the product name and quantity per unit properties to make
sure they were not empty. We then tried to retrieve the product to see if it
was a valid product to update. We also added a check to make sure that a
supplier can't discontinue a product if there are unfulfilled orders for this
product. However, at this stage, we can't truly enforce this logic because
when we check the UnitsOnOrder property of a product it is always 0 as we
didn't assign a value to it in the GetProduct method. For test purposes, we
can change the GetProduct method to include the following line of code:

if(id > 50) p.UnitsOnOrder = 30;

Now, when we test the service, we can select a product with an ID that is
greater than 50, and try to update its Discontinued property to see what
result we will get.

After you put all of this together the content of the ProductLogic.cs file should be
as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using MyWCFServices.RealNorthwindEntities;

namespace MyWCFServices.RealNorthwindLogic

{

public class ProductlLogic

{
public ProductEntity GetProduct(int id)

{
// TODO: call data access layer to retrieve product
ProductEntity p = new ProductEntity();
p-ProductID = id;

p-ProductName =
"fake product name from business logic layer™;

p-UnitPrice = (decimal)20.0;
if(id > 50) p.UnitsOnOrder = 30;
return p;
}
public bool UpdateProduct(ProductEntity product)
{

[111]

Implementing a WCF Service in the Real World

// TODO: call data access layer to update product
// First check to see if it is a valid price
if (product.UnitPrice <= 0)
return false;
// ProductName can"t be empty
else if (product.ProductName == null || product.
ProductName.Length == 0)
return false;
// QuantityPerUnit can"t be empty
else if (product.QuantityPerUnit == null || product.
QuantityPerUnit.Length == 0)
return false;
// then validate other properties
else
{
ProductEntity productInDB =
GetProduct(product.ProductiD);
// invalid product to update
if (productInDB == null)
return false;

// a product can"t be discontinued if there are
// non-fulfilled orders

else if (product.Discontinued == true && productinDB.
UnitsOnOrder > 0)

return false;
else
return true;

Calling the business logic layer from the
service interface layer

We now have the business logic layer ready and can modify the service contracts
to call this layer so that we can enforce some business logic.

First, we want to make it very clear that we are going to change the
service implementations and not the interfaces. So we will only change the
ProductService.cs file.

[112]

Chapter 4

We will not touch the file, IProductService.cs. All of the existing clients
(if there are any) that are referencing our service will not notice that we are
changing the implementation.

Follow these steps to customize the service interface layer:

1.

Add a reference to the business logic layer.

In order to call a method inside the business logic layer we need to add a
reference to the assembly that the business logic is included in. We will also
use the ProductEntity class. So we need a reference to the RealNorthwind-
Entities as well.

To add the references from Solution Explorer right-click on the project,
RealNorthwindService, select Add Reference... from the context menu,
and select RealNorthwindLogic from the Projects tab. Also, select
RealNorthwindEntities, as we will need a reference to ProductEntity
inside it. Just hold down the Ctrl key if you want to select multiple projects.
Click on the OK button to add references to the selected projects.

Now we have added two references. We can add the following two using
statements to the ProductService.cs file so that we don't need to type the
full names for their classes.

using MyWCFServices.RealNorthwindEntities;

using MyWCFServices.RealNorthwindLogic;

Now, inside the GetProduct method, we can use the following statements
to get the product from our business logic layer:

ProductLogic productLogic = new ProductLogic();

ProductEntity product = productLogic.GetProduct(id);

However, we cannot return this product back to the caller because this
product is of the type, ProductEntity, which is not the type that the caller is
expecting. The caller is expecting a return value of the type, Product, which
is a data contract defined within the service interface. We need to translate
this ProductEntity object to a Product object. To do this, we add the
following new method to the ProductService class:
private void TranslateProductEntityToProductContractData(
ProductEntity productEntity,
Product product)

product.ProductlD = productEntity.ProductlD;
product.ProductName = productEntity.ProductName;

product.QuantityPerUnit = productEntity.
QuantityPeruUnit;

[113]

Implementing a WCF Service in the Real World

product.UnitPrice = productEntity.UnitPrice;
product._Discontinued = productEntity.Discontinued;

}

Inside this translation method we copy all of the properties from the
ProductEntity object to the service contract data object, but not the last
three properties —UnitsInStock, UnitsOnOrder, and ReorderLevel. These
three properties are used only inside the service implementations. Outside
callers cannot see them at all.

The GetProduct method should now look like this:
public Product GetProduct(int id)

{
ProductLogic productLogic = new ProductLogic();
ProductEntity productEntity = productlLogic.GetProduct(id);
Product product = new Product();
TranslateProductEntityToProductContractData
(productEntity, product);
return product;
}
We can modify the UpdateProduct method in the same way, making it
like this:
public bool UpdateProduct(Product product)
{
ProductLogic productLogic = new ProductLogic();
ProductEntity productEntity = new ProductEntity();
TranslateProductContractDataToProductEntity(
product, productEntity);
return productLogic.UpdateProduct(productEntity);
}

5. Note that we have to create a new method to translate a product contract
data object to a ProductEntity object. In translation we leave the three
extra properties unassigned in the ProductEntity object because we
know a supplier won't update these properties. Also, we have to create
a ProductLogic variable in both the methods so that we can make it a
class member:

ProductLogic productLogic = new ProductLogic();

[114]

Chapter 4

The final content of the ProductService.cs file is as follows:

using
using
using
using
using
using
using
using

System;

System.Collections.Generic;
System._Ling;
System._Runtime.Serialization;
System.ServiceModel ;

System.Text;
MyWCFServices.RealNorthwindEntities;
MyWCFServices.RealNorthwindLogic;

namespace MyWCFServices.RealNorthwindService

{

// NOTE:

{

IT you change the class name "Servicel”™ here, you must

also update the reference to "Servicel™ in App.config.
public class ProductService : IProductService

ProductLogic productLogic = new ProductLogic();

public Product GetProduct(int id)

{

}

/*

// TODO: call business logic layer to retrieve product
Product product = new Product();

product.ProductlD = id;

product.ProductName =
"fake product name from service layer™;

product._UnitPrice = (decimal)10.0;

*/

ProductEntity productEntity = productLogic.GetProduct(id);
Product product = new Product();

TranslateProductEntityToProductContractData(
productEntity, product);

return product;

public bool UpdateProduct(Product product)

{

/*
// TODO: call business logic layer to update product
it (product.UnitPrice <= 0)
return false;
else
return true;
*/
ProductEntity productEntity = new ProductEntity();

[115]

Implementing a WCF Service in the Real World

}

TranslateProductContractDataToProductEntity(
product, productEntity);

return productlLogic.UpdateProduct(productEntity);

private void TranslateProductEntityToProductContractData(

}

ProductEntity productEntity,
Product product)

product.ProductlD = productEntity.ProductlD;
product.ProductName = productEntity.ProductName;
product.QuantityPerUnit = productEntity.QuantityPerUnit;
product.UnitPrice = productEntity.UnitPrice;
product.Discontinued = productEntity.Discontinued;

private void TranslateProductContractDataToProductEntity(

Product product,
ProductEntity productEntity)

productEntity.ProductlD = product.ProductlD;
productEntity.ProductName = product.ProductName;
productEntity.QuantityPerUnit = product.QuantityPerUnit;
productEntity.UnitPrice = product.UnitPrice;
productEntity.Discontinued = product.Discontinued;

Testing the WCF service with a business
logic layer

We can now compile and test the new service with a business logic layer.
We will use the WCF Test Client to simplify the process.

1.
2.

Make the project, RealNorthwindService, the startup project.

Start the WCF Service Host application and WCF Service Test Client
by pressing F5 or Ctrl + F5.

In the WCEF Service Test Client, double-click on the GetProduct
operation to bring up the GetProduct test screen.

Enter a value of 56 for the ID field and then click on the Invoke button.

[116]

Chapter 4

You will see that this time the product is returned from the business logic
layer, instead of the service layer. Also note that the UnitsOnOrder property
is not displayed as it is not part of the service contract data type. However,
we know that a product has a property, UnitsOnOrder, and we will use this
for our next test.

Fi

- = =
%) WCF Test Client 4 il T e - ol 50
— g P =
File Tools Help
:E:--@ My Service Projects GetProduct ‘
=] g hitp-/Aocalhost-8080/Design_Time _Addre

Toent [T] Start a new proxy T

Name Value Type

4 MyWCFServices. RealNorthwind Servi
Discontinued False System Boolean
Product!D 56 System.Int32
Product Name "fake product name from business logic layer” |
QuantityPerlUnit {null} NullObject
LnitPrice 20 System.Decimal

[T | 3 Formatted | KL |

|ProductService (WSHitpBinding_IPrc| || Request

=4 UpdateProduct() Name Value Type
Corfig File id 56 System.Int32

Service invocation completed,

Now let us try to update a product.

1.

In the WCF Service Test Client, double-click on the UpdateProduct()
operation to bring up the UpdateProduct() test screen.

Enter -10 as the price and click on the Invoke button. You will see that the
Response result is False.

Enter a valid price, say 25.60, a name, and a quantity per unit, and leave the
Discontinued property set to False, and then click on the Invoke button. You
will see that the Response result is now True.

Change the Discontinued value from False to True and click on the Invoke
button again. The Response result is still True. This is because we didn't
change the product ID and it has defaulted to 0. This is because in our
business logic layer GetProduct operation, for a product with id <= 50,

we didn't set the property, UnitsOnOrder, thus it defaults to 0, and in our
business logic UpdateProduct operation, it is okay to set the Discontinued
property to be True, if UnitsOnOrder is < 0.

[117]

Implementing a WCF Service in the Real World

5.

Change the product ID to 51, leave the Discontinued value as True and the
product price as 25.60, and click on the Invoke button again. This time you
will see that the Response result is False. This is because the business logic
layer has checked the UnitsOnOrder and Discontinued properties and
didn't allow us to make the update.

5 WCF Test Client 000 O s T o

File Tools Help
E:--5§j My Service Projects |_éeﬁ;jad_| UpdateProduct |
= 2,-] http:/Aocalhost:8080./Design_Time_Addr
“ |Product Service (WSHttpBinding_|Pro Request
¢ GetProduct()
i & UpdateProduct() Mame Value Type
6 Cortfig File 4 product MyWCFServices RealMNorthwindS MyWCFServices RealNothwind Servi
Discontinued True System.Boolean
Product|D 51 System.Int32
ProductMame: new name System.String
QuantityPerlnit new unit System.String
UnitPrice 256 System.Decimal
R [] Start a new proxy e
Mame Value Type
{retum} System Boolean
| I " b Formatted |XM|- |

Service invocation completed.

Summary

In this chapter, we have created a real world WCF service that has a service contract
layer and a business logic layer. The key points in this chapter include:

WCEF services should have explicit boundaries

The WCEF Service Application template can be used to create WCF services
with a hosting website created within the project

The WCEF Service Library template can be used to create WCF services that
are hosted by the WCF Service Host, and these can be tested using the WCF
service Test Client

The service interface layer should contain only the service contracts such as
the operation contracts and data contracts

The business logic layer should contain the implementation of the service

The business entities represent the internal data of the service shared by all
of the layers of the service and they should not be exposed to the clients

[118]

Adding Database Support

and Exception Handling to the

RealNorthwind WCF Service

In the previous chapter, we created a WCF service with two layers. We didn't add
the third layer, that is, the data access layer. Therefore, all of the service operations
just returned a fake result from the business logic layer.

In this chapter, we will add the third layer to the WCF service. We will also introduce
message contracts for service message exchange and fault contracts for service
error handling.

We will accomplish the following tasks in this chapter:

Create the data access layer project

Modify the business logic layer to call the data access layer
Prepare the Northwind database for the service

Connect the WCF service to the Northwind database

Test the service with the data access layer

Add a fault contract to the service

Throw a fault contract exception to the client

Catch the fault contract in the client program

Test the service fault contract

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

Adding a data access layer

We have two layers in our solution. We need to add one more layer — the data access
layer. We need to query a real database to get the product information and update
the database for a given product.

Creating the data access layer project

First we will create the project for the data access layer. As we did for the
business logic layer, what we need to do is add a C# class library project named
RealNorthwindDAL, where DAL stands for Data Access Layer, to the solution.
Then rename the Class1.cs to ProductDAO. cs and modify it as follows:

e Change its namespace from RealNorthwindDAL to MyWCFServices.
RealNorthwindDAL.

e Change the class name from Class1 to ProductDAOQ.

e Add areference to the project, RealNorthwindEntities.
Now let's modify ProductDAO. cs for our product service:

e Add the following using statement:
using MyWCFServices.RealNorthwindEntities;

e Add two new methods to the ProductDAO class. The first method is
GetProduct, which should be as follows:

public ProductEntity GetProduct(int id)
{
// TODO: connect to DB to retrieve product
ProductEntity p = new ProductEntity();
p-ProductID = id;
p.ProductName = 'fake product name from data access
layer";
p-UnitPrice = (decimal)30.00;
return p;

}

In this method all the product information is still hardcoded, though we
have changed the product name to be specific to the data access layer.

We will soon modify this method to retrieve the actual product information
from a real Northwind database.

[120]

Chapter 5

e The second method is UpdateProduct which should be as follows:

public bool UpdateProduct(ProductEntity product)
{
// TODO: connect to DB to update product
return true;

}

Again, we didn't update any database in this method. We will also modify this
method soon to update to the real Northwind database.

The content of the ProductDAO. cs file should now be as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using MyWCFServices.RealNorthwindEntities;

namespace MyWCFServices.RealNorthwindDAL

{
public class ProductDAO
{
public ProductEntity GetProduct(int id)
{
// TODO: connect to DB to retrieve product
ProductEntity p = new ProductEntity();
p-ProductlID = id;
p-.ProductName = "fake product name from data access layer";
p-UnitPrice = (decimal)30.00;
return p;
}
public bool UpdateProduct(ProductEntity product)
{
// TODO: connect to DB to update product
return true;
}
}

[121]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

Calling the data access layer from the
business logic layer

Before we modify these two methods to interact with a real database, we will first
modify the business logic layer to call them so that we know that the three-layer
framework is working.

1. Add areference of this new layer to the business logic layer project. From
Solution Explorer, just right-click on the RealNorthwindLogic project item,
select Add Reference... from the context menu, select RealNorthwindDAL
from the Projects tab, and then click on the OK button.

2. Open the ProductLogic.cs file under the RealNorthwindLogic project and
add a using statement:

using MyWCFServices._RealNorthwindDAL;

3. Add a new class member:
ProductDAO productDAO = new ProductDAO(Q);

4. Modify the method, GetProduct, to contain only this line:
return productDAO.GetProduct(id);

We will use the data access layer to retrieve the product information. At this point
we will not add any business logic to this method.

e Modify the last line of the method, UpdateProduct, to call the data access
layer. The method should look like this:
public bool UpdateProduct(ProductEntity product)
{
// TODO: call data access layer to update product
// First check to see if it is a valid price
if (product.UnitPrice <= 0)
return false;
// ProductName can"t be empty
else if (product._ProductName.Length == 0)
return false;
// QuantityPerUnit can®t be empty
else if (product.QuantityPerUnit.Length == 0)
return false;
// then validate other properties
else

{
ProductEntity productInDB =

[122]

Chapter 5

GetProduct(product.ProductiD);
// invalid product to update
if (productInDB == null)
return false;

// a product can"t be discontinued if there are
non-fulfilled orders

if (product.Discontinued == true && productInDB.
UnitsOnOrder > 0)

return false;
else
return productDAO.UpdateProduct(product);

In this method we have replaced the last return statement to call the data
access layer method, UpdateProduct. This means that all of the business logic
is still enclosed in the business logic layer and the data access layer should be
used only to update the product in the database.

Here is the full content of the ProductLogic.cs file:

using
using
using
using
using
using

System;

System._Collections._Generic;
System.Linq;

System.Text;
MyWCFServices.RealNorthwindEntities;
MyWCFServices.RealNorthwindDAL;

namespace MyWCFServices.RealNorthwindLogic

{

public class ProductLogic

{

ProductDAO productDAO = new ProductDAO(Q);
public ProductEntity GetProduct(int id)

{

/*
// TODO: call data access layer to retrieve product
ProductEntity p = new ProductEntity();
p-ProductlD = id;
p-ProductName =
"fake product name from business logic layer";
p-UnitPrice = (decimal)20.0;
return p;
*/
return productDAO.GetProduct(id);

[123]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

}
public bool UpdateProduct(ProductEntity product)
{
// TODO: call data access layer to update product
// First check to see if it is a valid price
if (product.UnitPrice <= 0)
return false;
// ProductName can"t be empty
else if (product.ProductName == null || product.
ProductName.Length == 0)
return false;
// QuantityPerUnit can"t be empty
else if (product.QuantityPerUnit == null || product.
QuantityPerUnit.Length == 0)
return false;
// then validate other properties
else
{
ProductEntity productInDB =
GetProduct(product.ProductiD);
// invalid product to update
if (productInDB == null)
return false;
// a product can"t be discontinued if there
are non-fulfilled orders
else if (product.Discontinued ==
true && productInDB.UnitsOnOrder > 0)
return false;
else
return productDAO.UpdateProduct(product);
}
}

}

If you run the program and test it using the WCF Test Client, you will get exactly the
same result as before, although now it is a three-layer application and you will see a
different, but obviously still fake, product name.

[124]

Chapter 5

Preparing the database

As we have the three-layer framework ready we will now implement the data access
layer to actually communicate with a real database.

In this book we will use the Microsoft sample database, Northwind. This database is
not installed by default in SQL Server 2005 or SQL Server 2008.

Download the database package. Just search for "Northwind Sample
Databases download" on the Internet, or go to this page:

http://www.microsoft.com/downloads/details.
aspx?Family1d=06616212-0356-46A0-8DA2-BC53A68034&displaylang=en

and download the file, SQL2000SampleDb.msi. Note that this sample
database was designed for SQL Server 2000 but it can also be used with SQL
Server 2005 and SQL Server 2008.

Install (extract) it to: C:\SQL Server 2000 Sample Databases.

Change the security of both Northwnd.mdf and Northwnd. Idf to be
read/write-able to your SQL Server service account user (or just give
everyone full access).

Open SQL Server 2005/2008 Management Studio.
Connect to your database engine.

Right-click on the Databases node and select Attach... from the context
menu, as shown in the SQL Server Management Studio diagram below:

File Edit View Tools Window Community Help

Q‘Newuernybf"Eﬁ'E&%‘ | H S |8

Connect~ S} 80 wm 7 3
=] [3 MyLaptop (SQL Server 10.0.2531 - sa)
53
3 Syst] MNew Database...
£3 sty Attach...
|3 Pub|
|J Rep
[j Rep Restore Files and Filegroups...
3 Secutity gt powerShell
3 Server g
[Replicat Reports
3 Manag:
5QL Ser

Restore Database...

Refresh

[125]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

| Attach Databases.

In the pop up Attach Databases dialog box, click on Add, browse to the file,
C:\SQL Server 2000 Sample Databases\NORTHWND.MDF, click on OK,
and you now have the Northwind database attached to your SQL Server 2005
or 2008 engine.

8 Script + [Help

Databases to attach:

MDF File Location Database ... Atach As Owner
CASQL Server 200... [..] Nothwind Nothwind sa

Status

Message

Add...] [Remove
"Morthwind” database details:
Original File Mame File Type Current File Path Message
Connection " Data CASQL Server2000Sa... [o)
i " Log CASQL Server 2000 Sa... [o)
MyLaptop

Connection:
53

_"!3.‘ View connection properties

Progress : o

Ready

Adding the connection string to the
configuration file

Now that we have the Northwind database attached, we will modify our data access
layer to use this actual database. At this point we will use a raw SqlClient adapter
to do the database work. We will replace this layer with LINQ to Entities in a

later chapter.

Before we start coding we need to finish the following tasks to add a connection string
to the configuration file. We don't want to hardcode the connection string in our project.
Instead, we will set it in the App.config file so that it can be changed on the fly.

[126]

Chapter 5

Add a reference to System.Configuration to the RealNorthwindDAL project.
We will store a connection string in the configuration file and we need this
assembly to read it.

Add the following configuration settings to the App.config file under
the RealNorthwindService project (note this connection string is for the
SQL login account, other login account types will be explained later in
this section).
<connectionStrings>
<add name ="NorthwindConnectionString"
connectionString="server=your_db_server\your_db_instance;

uid=your_user_name;pwd=your_password;database=Northwind"™ />
</connectionStrings>

There are a couple of things to note for this new key in the configuration file.

° It should be added to the App.config file in the
RealNorthwindService project, not to the RealNorthwindDAL
project. Actually, there is no file called App.config in the
RealNorthwindDAL project.

The node, connectionStrings, should be a child node of the
root configuration node, that is, the highlighted lines should
be placed immediately after the line, <configuration>. The
first few lines of the App.config file should be as follows
(highlighted lines are new lines to add):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<connectionStrings>
<add name ="NorthwindConnectionString"
connectionString="server=your_db_server\
your_db_instance;
uid=your_user_name; pwd=your_password;
database=Northwind" />
</connectionStrings>

<system.web>
<compilation debug=""true" />
</system.web>

Replace your_db_server with your actual database server name. If the
database is located on your own machine, you can use localhost as the
db server name.

Replace your_db_instance with your database's instance name. If you have
installed your SQL server with the default instance, don't put anything here.

[127]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

Replace your_user_name and your_password with your actual login and
password to the SQL server database. This user must have write access to
the Northwind database.

If you use sa to log into your database, make sure that, in your database,

the sa user is enabled for login. Some installations may automatically
disable sa from logging into the database (inside SQL Server Management
Studio, right-click on Security | Logins | sa and select Properties, then
click on Status to enable sa). Also make sure that, in your database, SQL
Server authentication mode is turned on (inside SQL Server Management
Studio, right click on the root node of your Database server/instance, select
Properties, then click on Security, and choose SQL Server and Windows
Authentication mode).

If you don't have a SQL Server login or you just want to use Windows
authentication, you can use a trusted connection or an SSPl-integrated
security connection.

The connection string for the trusted connection should be:
"'server=your_db_server\your_db_instance;database=Northwind;
Trusted_Connection=yes"

The connection string for the integrated security connection should be:
"server=your_db_server\your_db_instance;database=Northwind;

Integrated Security=SSPI"
Or you can use this format for the connection string;:

""Data Source=your_db_server\your_db_instance; Initial
Catalog=Northwind; Integrated Security=True"

Querying the database (GetProduct)

Because we have added the connection string as a new key to the configuration file,
we need to retrieve this key in the DAO class so that we can use it when we want to
connect to the database. Follow these steps to get and use this new key from within
the DAO class:

Open the file, ProductDAO.cs, in the RealNorthwindDAL project and first
add two using statements:

using System.Data.SqlClient;

using System.Configuration;

Add a new class member to the ProductDAO class (note the following code
should be in one line in Visual Studio, we break them into three lines just
for printing purposes):

[128]

Chapter 5

string connectionString = ConfigurationManager.
ConnectionStrings["NorthwindConnectionString"].
ConnectionString;

We will use this connection string to connect to the Northwind database for
both the GetProduct and UpdateProduct methods.

Modify the GetProduct method to get the product from the database
as follows:

public ProductEntity GetProduct(int id)

{
/*
// TODO: connect to DB to retrieve product
ProductEntity p = new ProductEntity();
p-ProductlD = id;
p.ProductName = 'fake product name from data access

layer";

p-UnitPrice = (decimal)30.00;
if (id > 50) p-UnitsOnOrder = 30;
return p;
*/

ProductEntity p = null;

using (SqlConnection conn =
new SqglConnection(connectionString))

{
SqlCommand comm = new SqglCommand();

comm.CommandText =
"select * from Products where ProductlD=" + id;

comm.Connection = conn;
conn.Open();
SqlDataReader reader = comm.ExecuteReader();
if (reader.HasRows)
{
reader.Read();
p = new ProductEntity();
p-ProductlD = id;
p-.ProductName =
(string)reader["ProductName'] ;
p-QuantityPerUnit =
(string)reader["QuantityPerUnit"];
p-UnitPrice =
(decimal)reader["UnitPrice"];
p-UnitsinStock =
(short)reader["UnitsInStock'];

[129]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

p-UnitsOnOrder =
(short)reader["UnitsOnOrder'];

p-ReorderLevel =
(short)reader["'ReorderLevel'];

p-Discontinued =
(bool)reader["Discontinued"];

}
}

return p;

}

In this method we first create a SqlConnection to the Northwind database and then
issue a SQL query to get product details for the ID.

The following statement is a new feature of C# and an equivalent to the traditional
try..catch..finally.. mechanism to deal with SqlConnection matters:

using (SqlConnection conn = new SglConnection(connectionString))

Testing the GetProduct method

If you now set RealNorthwindService as the startup project and run the
application, you can get the actual product information from the database,
as seen in the following screenshot:

(&% WCF Test Client (G G e X]

File Tools Help

E:i!j My Service Projects GetProduct |
[ﬁhﬁp://lccalhast:EDEDfDeswgn_'I'ime_}\ddr!
-5 |ProductService (WSHttpBinding_IPrc| || Request
v GetProduct()

% UpdateProduct() Name Type
|5 Corfig File id System.Int32

Start
Response [Start a new proxy [Invoke

Name Value Type
4 (retum) MyWCFServices. RealMorthwind Servi
Discontinued False System.Boolean
Product!D 23 System.Int32
ProductName "Tunnbrod" System . String
QuartityPerlnit "12 - 250 g phgs." System . String
UritPrice 5.0000 System.Decimal

‘[m_ B Formatted |XML |

Service invocation completed,

[130]

Chapter 5

If you get an error screen it is probably because you have set your connection string
incorrectly. Double-check the new connection string node in your App.config file

and try again until you can connect to your database.

Microsoft WCF Test Client [

Failed to invoke the service. Possible causes: The service is offine or inaccessible; the

__ client-side configuration does not match the proxy; the existing proxy is invalid. Referto

I-” & the stack trace for more detail. You can try to recover by starting a new proxy, restoring
'S to default configuration, or refreshing the service.

Emor Details

Login failed for user sa". -

Server stack trace:
at System ServiceModel Channels. ServiceChannel ThrowfFault Understood(Message reply, Messac| =
at System.ServiceModel Channels. ServiceChannel. Handle Rephy(ProxyOperation Runtime operation,
at System ServiceModel Channels. ServiceChannel Call{String action, Boolean oneway, ProxyOperall—
at System.ServiceModel Channels. ServiceChannel Proxy. Invoke Service (IMethodCallMessage methe
at System ServiceModel Channels. ServiceChannel Proxy Invoke({lMessage message)

1| 1] 3

Instead of the connection error message you might see the following error message:

Micrasoft WCF Test Client |t

Failed to invoke the service. Possible causes: The service is offine or inaccessible; the
___ client-side corfiguration does not match the proegy; the existing prosgy is invalid. Referto
@I the stack trace for mare detail. You can try to recover by starting a new proxy, restoring

I-\._ ' (o default configuration, or refreshing the service.

Emor Details

The server was unable to process the request due to an intemal emar. For more information about the .«

Server stack trace:
at System ServiceModel Channels ServiceChannel ThrowlfFault Understood(Message reply, Messac| =
at System ServiceModel Channels ServiceChannel Handle Rephy{ProooOperation Burtime aperation,
at System ServiceModel Channels ServiceChannel Call{String action, Boolean oneway, ProxyOperal
at System ServiceModel Channels ServiceChannel Proxy InvokeService(IMethodCallMessage methc
at System ServiceModel Channels ServiceChannel Prosy Invoke(Meassage message)

« | n §

Close

[131]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

This error will happen when you try to get the product information for a product
with a product ID of 0. The error message doesn't give much detail about what
went wrong here because we didn't let the server reveal the details of any

error. Let's follow the instructions in the error message to change the setting,
IncludeExceptionDetail InFaults, to True in the App.conTfig file and run

it again. Now you will see that the error detail has changed to Object

reference not set to an instance of an object.

Microsoft WCF Test Client ==

Failed to invoke the service. Possible causes: The senvice is offline or inaccessible; the
__client-side configuration does not match the proxy; the existing proxy is invalid. Referto
| the stack trace for more detail. You can try to recover by starting a new proy, restoring
g/ to default configuration, or refreshing the service.

Ermor Details
Object reference not set to an instance of an object |

Server stack trace:
at System.ServiceModel Channels. ServiceChannel. ThrowlfFault Understood (Message reply, Messag| =
at System ServiceModel Channels ServiceChannel Handle Rephy{ProxyOperationRurtime operation.,
at System.ServiceModel Channels.ServiceChannel Call{String action, Boolean oneway, ProgyOperat
at System ServiceModel Channels. ServiceChannel Proxy Invoke Service(|MethodCallMessage methe
at System.ServiceModel Channels. ServiceChannel Prowy Invoke(|Message message)

4 I 2

A little investigation will tell us that this is a bug in our ProductService class.
Inside the ProductService GetProduct method, after we call the business logic
layer to get the product detail for an ID, we will get a null product if the ID is not a
valid product ID in the database. When we pass this null object to the next method
(TranslateProductEntityToProductContractData) we get the above error
message. Actually, this will happen whenever you enter a product ID outside the
range of 1 to 77. This is because, in the sample Northwind database, there are only 77
products, with product IDs ranging from 1 to 77. To fix this problem we can add the
following statement inside the GetProduct method right after the call to the business
logic layer:

it (productEntity == null)
throw new Exception(*'No product found with id " + id);

In the ProductService.cs file, the GetProduct method will now be:

public Product GetProduct(int id)

{
ProductLogic productLogic = new ProductLogic();
ProductEntity productEntity = productlLogic.GetProduct(id);
if (productEntity == null)
throw new Exception(*'No product found with id " + id);

[132]

Chapter 5

Product product = new Product();
TranslateProductEntityToProductContractData(

productEntity, product);

return product;

}

For now, we will raise an exception if an invalid product ID is entered. Later, we will
convert this exception to a FaultContract so that the caller will know in advance
that an error has occurred.

Now run the application again, and if you enter an invalid product ID, say 0, you
will get an error message, No product found with id 0. This is much clearer than
the previous Object reference not set to an instance of an object error message.

Updating the database (UpdateProduct)

Microsoft WCF Test Client -

Failed to invoke the service. Possible causes: The service is offline orinaccessible; the

_ client-side configuration does not match the proxy; the existing proxy is invalid. Refer to
'0] the stack trace for more detail. You can try to recover by starting a new proxy, restoring
! ! to default configuration, or refreshing the service.

Emor Details
o product found with id 0| &+

Server stack trace:
at System.Service Model Channels. ServiceChannel. Throwlf Fault Understood{Message reply, Messag | =
at System.Service Model Channels. ServiceChannel Handle Rephy(ProxyOperation Rurtime operation,
at System.Service Model Channels. ServiceChannel Call{Sting action, Boolean oneway, ProgyOperal
at System.Service Model Channels. ServiceChannel Proxy. Invoke Service(IMethodCal Message methe
at System.Service Model Channels. ServiceChannel Proxy . Involkce(|Message message)

4 11 [

Close

Next, we will modify the UpdateProduct method to update the product record

in the database. UpdateProduct in the RealNorthwindDAL project should

be modified as follows:

public bool UpdateProduct(ProductEntity product)

{

using (SglConnection conn = new SqlConnection(connectionString))

{

SqlCommand cmd = new SqlCommand("'UPDATE products

SET ProductName=@name,QuantityPerUnit=@unit,UnitPrice=
@price,Discontinued=@discontinued

WHERE ProductlID=@id",conn);

cmd.Parameters._AddWithValue("'@nhame", product.ProductName);

cmd.Parameters._AddWithvValue(""@unit",

[133]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

product.QuantityPerUnit);
cmd.Parameters.AddWithvValue("@price', product.UnitPrice);
cmd.Parameters.AddWithvValue(""@discontinued”,
product.Discontinued);
cmd.Parameters.AddWithvValue("@id", product.ProductlD);
conn.Open();
int numRows = cmd.ExecuteNonQuery();
if (numRows != 1)
return false;

}
return true;

}

Inside this method we have used parameters to specify arguments to the update
command. This is a good practice because it will prevent SQL Injection attacks,
as the SQL statement is precompiled instead of being dynamically built.

We can follow these steps to test it:

1. Start the WCF Test Client.

2. Double-click on the UpdateProduct() operation.

3. Enter a valid product ID, name, price, and quantity per unit.
4

Click on Invoke.

You should get a True response. To prove it, just go to the GetProduct() page, enter
the same product ID, click on Invoke, and you will see that all of your updates have
been saved to the database.

The content of the ProductDAO. cs file is now:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using MyWCFServices.RealNorthwindEntities;
using System.Data.SqlClient;

using System.Configuration;

namespace MyWCFServices.RealNorthwindDAL

{
public class ProductDAO

{
string connectionString =
ConfigurationManager.

[134]

Chapter 5

ConnectionStrings["NorthwindConnectionString"].
ConnectionString;

public ProductEntity GetProduct(int id)

{
/*
// TODO: connect to DB to retrieve product
ProductEntity p = new ProductEntity();
p-ProductlID = id;
p-ProductName = "fake product name from data access

layer™;
p-UnitPrice = (decimal)30.00;
return p;
*/

ProductEntity p = null;

using (SqlConnection conn =
new SqglConnection(connectionString))

{
SqlCommand comm = new SqglCommand();
comm.CommandText =
"select * from Products where ProductlID=" + id;
comm.Connection = conn;
conn.Open();
SqlDataReader reader = comm.ExecuteReader();
iT (reader.HasRows)
{
reader.Read();
p = new ProductEntity();
p-ProductlID = id;
p-ProductName =
(string)reader["ProductName'];
p-QuantityPerUnit =
(string)reader["QuantityPerUnit'];
p-UnitPrice =
(decimal)reader["UnitPrice"];
p-UnitsInStock =
(short)reader["UnitsInStock'];
p-UnitsOnOrder =
(short)reader["'UnitsOnOrder'];
p-ReorderLevel =
(short)reader["'ReorderLevel'];
p-Discontinued =
(bool)reader["Discontinued"];
}
}

[135]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

return p;
}
public bool UpdateProduct(ProductEntity product)
{

using (SqlConnection conn =
new SqglConnection(connectionString))

{
SqlCommand cmd = new SqlCommand(*"UPDATE products
SET ProductName=@name,QuantityPerUnit=0
unit,UnitPrice=@price,Discontinued=@discontinued
WHERE ProductID=@id", conn);
cmd.Parameters.AddWithvalue(*'@name™,
product.ProductName);
cmd.Parameters.AddWithvValue("@unit", product.
QuantityPerUnit);
cmd.Parameters.AddWithValue(
"@price', product.UnitPrice);
cmd.Parameters.AddWithvValue(""@discontinued”,
product.Discontinued);
cmd.Parameters.AddWithvValue("@id",
product.ProductlD);
conn.Open();
int numRows = cmd.ExecuteNonQuery();
if (numRows != 1)
return false;

}

return true;

Adding error handling to the service

In the previous sections, when we were trying to retrieve a product but the product
ID passed in was not a valid one, we just threw an exception. Exceptions are
technology-specific and therefore are not suitable for crossing the service boundary
of SOA-compliant services. All exceptions generate a fault on the communication
channel, resulting in unhappy proxies, as a recover and retry is not possible. Thus,
for WCF services, we should not throw normal exceptions.

What we need are SOAP faults that meet industry standards for
seamless interoperability.

[136]

Chapter 5

In the service interface layer operations that may throw Faul tExceptions
must be decorated with one or more FaultContract attributes, defining the
exact FaultException.

On the other hand, the service consumer should catch specific Faul tExceptions to
be in a position to handle the specified exceptions.

Adding a fault contract

We will now change the exception in the GetProduct operation to a FaultContract.

Before we implement our first FaultContract we need to modify the App.
config file in the RealNorthwindService project. We will change the setting,
includeExceptionDetai l InFaults, back to False so that every unhandled,
non-Fault exception will be a violation. Client applications won't know the
details of those exceptions.

You can set includeExceptionDetail InFaults to True when

debugging, as this will be very helpful in diagnosing problems
= during the development stage. In production, it should always be set

to False.

Open the App.config file in the RealNorthwindService project, change
includeExceptionDetai l InFaults from True to False, and save it.

Next, we will define FaultContract. For simplicity, we will define only one
FaultContract and leave it inside the file, IProductService.cs, although in a real
system you can have as many FaultContracts as you want, and they should also
normally be in their own files.

FaultContract should be as follows:

[DataContract]
public class ProductFault
{
public ProductFault(string msg)
{
FaultMessage = msg;
b
[DataMember]

public string FaultMessage;

[137]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

We then decorate the service operation, GetProduct, with the following attribute:
[FaultContract(typeof(ProductFault))]

This is to tell the service consumers that this operation may throw a fault of the
type, ProductFault.

The content of 1ProductService.cs should now be:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;
namespace MyWCFServices.RealNorthwindService
{
[ServiceContract]
public interface IProductService
{
[OperationContract]
[FaultContract(typeof(ProductFault))]
Product GetProduct(int id);
[OperationContract]
bool UpdateProduct(Product product);

// TODO: Add your service operations here

}
[DataContract]
public class Product
{
[DataMember]
public int ProductlD;
[DataMember]
public string ProductName;
[DataMember]
public string QuantityPerUnit;
[DataMember]
public decimal UnitPrice;
[DataMember]
public bool Discontinued;
}
[DataContract]
public class ProductFault
{

public ProductFault(string msg)
{

}

FaultMessage = msg;

[138]

Chapter 5

[DataMember]
public string FaultMessage;

Throwing a fault exception

Once we have modified the interface we need to modify the implementation. Open
the ProductService.cs file and change the following lines:

if (productEntity == null)
throw new Exception(*'No product found with id " + id);

to these lines:

if (productEntity == null)

{
//throw new Exception(*'No product found with id " + id);
if (id 1= 999)
throw new FaultException<ProductFault>(new ProductFault(
"No product found with id " + id), "Product Fault™);
else
throw new Exception("'Test Exception™);
}

This will throw a ProductFault exception if an invalid ID is passed to the
GetProduct operation. However, we will throw a normal C# exception if the
passed ID is 999. Later, we will use this special ID to do an extra test.

Now build the RealNorthwindService project. After it has been successfully built, we
will use the client that we built earlier to test this service. We will examine the channel
status after an exception has been thrown. We can't do this with the WCF Service Test
Client because in WCF Test Client, each request will create a new channel and we don't
have a way to examine the channel state after the service call.

[139]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

Updating the client program to catch the

fault exception
Now let's update the client program so that the fault exception is handled.

1. First we need to update the service reference because we have changed the
contracts for the service. From the RealNorthwindClient project, expand the
Service References node and right-click on ProductServiceRef. Select Update
Service Reference from the context menu and the Updating Service Reference
dialog box will pop up. The WCF Service Host will be started automatically,
and the updated metadata information will be downloaded to the client side.
Proxy code will be updated with modified and new service contracts.

[File Edit View Project Build Debug Team Data Architecture Test Tools Analyze Window Help
1 =& | b ||Debug -| & o g e el R -
(T2 0PP W35 6:
IProductService.cs App.config ProductDAO.cs ProductLogic.cs ProductService.es X -SDIut\nn Explorer
45 MyWCFServices.RealNorthwindService ProductSe -] ¥ GetProduct(int id) Q=22 E
// NOTE: You can use the "Rename” command on the "Refactor” menu to change$ z Solution 'RealMorthwind' (5 projects)
] public elass ProductService : IProductService « N 4 (3 RealNerthwindClient

{ =4 Properties
Productlogic productlogic = new ProductLogic(); . [l References

gi Logi

i —r e 4 | Service References
bl Product GetP ctfint 1id)
Eu 5 & = E‘LFEH'atlln;Sew?c'eRefereme'DmductSewiceRef 65 ProductServiceRef
bin
obj

¥og|ooy . 0idig saniag e B

Generation of service reference client code complete.

ann.confin

2] Solut’ion.. W% Team Exp.. BB Class View
v ox

oductServiceRef Folder Properties

e =

Error List

@ 0Emers | .1\ 0 Warnings ‘ i) 0 Messages Folder Name ProductServiceRef

Description File Column Project

4 Error List [= e

Service reference update complete.
=

2. Then open Program.cs under the RealNorthwindClient project and add
the following method to the class Program:

static void TestException(ProductServiceClient client, int

id)
{

Console.WriteLine("\n\nTest {0} Fault Exception for
product id {1}...", (id I=
999)?"handled" :""'unhandled", id);

[140]

Chapter 5

}

try

{

Product product = client.GetProduct(id);

}

catch (TimeoutException ex)

{

Console_WriteLine(""The service operation timed
out." + ex.Message);

}

catch (FaultException<ProductFault> ex)

{

Console_WriteLine("ProductFault: " +
ex.ToString());

}

catch (FaultException ex)

{

Console_WriteLine("'Unknown Fault: " +
ex.ToString());

}

catch (CommunicationException ex)

{

Console_WriteLine(""There was a communication
problem. " + ex_.Message +
ex.StackTrace);

}

Console_WriteLine(""\n\nChannel Status after the
exception: " +
client._InnerChannel .State.ToString());

Console_WriteLine("Press any key to continue ...");

Console.ReadKey();

Inside this method we first call GetProduct with a passed-in ID. If the ID is an
invalid product ID the service will throw a ProductFault exception. So we
have to add the catch statement to catch the ProductFault exception. We
examine the channel status after the fault exception. We have also added sev-
eral other exceptions such as timeout exception, communication exception, and
general fault exception, so that we can handle every situation. Note that the
order of the catch statements is very important and shouldn't be changed.

If 999 is passed to this method as the ID the service will throw an exception
instead of a fault exception. We will also examine the channel status after this
unhandled exception.

[141]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

3. Now add the following statements to the end of the function, Main, in

this class:

TestException(client, 0); // channel

is still open after a

Faul tException

TestException(client, 999); // channel is Faulted after a
non handled fault exception

Console_WriteLine(""\n\nTest Faulted
product = client.GetProduct(20); //

Console_WriteLine("Press any key to
Console.ReadLine();

client __..");

can"t use a client with
a Faulted channel

continue ...");

So we will first test the ProductFault exception, followed by the regular
C# exception, and finally we will try to use the faulted channel.

4. You need to add a using statement at the beginning of the file:

using System.ServiceModel;

5. Finally, set the RealNorthwindClient project as the startup project.

The full content of Program.cs is now as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using RealNorthwindClient.ProductServiceRef;
using System.ServiceModel;

namespace RealNorthwindClient

{

class Program

{

static void Main(string[] args)

{

ProductServiceClient client = new

ProductServiceClient();

Product product = client._GetProduct(23);

Console_WriteLine(*product name is

+ product.
ProductName) ;

Console_WriteLine("product price is " +
product._UnitPrice.ToString());

product._UnitPrice = (decimal)20.0;

bool result = client.UpdateProduct(product);
Console_WriteLine("Update result is " +
result_ToString());

[142]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Chapter 5

TestException(client, 0); // channel is still open after
a FaultException

TestException(client, 999); // channel is Faulted after a
non handled fault exception

Console._WriteLine(""\n\nTest Faulted client ...");

product = client.GetProduct(20); // can"t use a client
with a Faulted channel

Console._WriteLine(""Press any key to continue ...");
Console.ReadLine();
}
static void TestException(
ProductServiceClient client, int id)

{

Console._WriteLine("\n\nTest {0} Fault Exception for
product id {1}...", (id '= 999)?"handled":"unhandled”, id);

try
{
Product product = client.GetProduct(id);
}
catch (TimeoutException ex)
{
Console._WriteLine(""The service operation timed out. "
+ ex.Message);
}
catch (FaultException<ProductFault> ex)
{
Console._WriteLine("ProductFault: " + ex.ToString());
}
catch (FaultException ex)
{
Console._WriteLine(""Unknown Fault: " + ex.ToString());
}
catch (CommunicationException ex)
{
Console._WriteLine(""There was a communication problem.
" + ex.Message + ex.StackTrace);
}
Console.WriteLine(""\n\nChannel Status after the exception:
" + client.InnerChannel.State.ToString());
Console._WriteLine("Press any key to continue ...");
Console.ReadKey();

}

[143]

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

Testing the fault exception

Now you can press F5 to run the client program (remember to set
RealNorthwindClient to be the startup project). You will get the output
shown in the following screenshot:

product name is Tunnbrod
product price is 20.08008
Update result is True

Test handled Fault Exception for product id B. ..

ProductFault: System.ServiceModel.FaultException'1[RealMorthwindClient .ProductSe
ruiceRef .ProductFaultl: Product Fault <Fault Detail is egqual to RealNorthuwindC1li]
ent.ProductServiceRef . ProductFaultl.

Channel Status after the exception: Opened
Press any key to continue ...

As you can see from the output, the client channel to the service is still open, after
ProductFaultis handled in the client program. Next, we will use the same client
to get the product details for ID 999.

Press Enter and more output will be shown, with a Fault Exception as shown in
the screenshot here:

Test unhandled Fault Exception for product id 999...

Unknouwn Fault: System.ServiceModel.FaultException: The server was unable to proc
ess the request due to an internal error. For more information about the error,
either turn on IncludeExceptionDetaillnFaults (either from ServiceBehaviorfittri
bute or from the {gerviceDebug> configuration behavior> on the zerver in order t
o send the exception information back to the client. or turn on tracing as per t
he Microsoft .MET Framework 3.8 SDK documentation and inspect the server trace 1
ogs .

Server stack trace:

at System.ServiceModel.Channels.ServiceChannel.ThrowlfFaultUnderstood{Message
reply. MessageFault fault, String action., Messagelersion version, FaultConverte
+ FaultConuerter)

at Systen.ServiceModel.Channels.ServiceChannel.HandleReply(ProxyOperationRunt
ime operation, ProxyRpck rpcd

at System.ServiceModel.Channels.ServiceChannel.Call{8tring action,. Boolean on

ProxyOperationRuntime operation, Object[l] ins, Object[l] outs, TimeSpan tim|

at Systen.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCall
Message methodCall, ProxyOperationRuntime operation2
at Systen.ServiceModel.Channels _ServiceChannelProxy.Inuoke (IMessage meszage)

Exception rethrown at [B1:

at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage req]
Mzg. IMeszage wretMs

at System.Runtime.Remoting.Proxies.RealProxy.Privatelnvoke (MeszageDatad msgDal
ta, Int32 type

at RealNorthwindClient.Product8erviceRef .IProduct8ervice.GetProduct{Int32 id>

at RealNorthwindClient .ProductServiceRef .ProductServiceClient .GetProduct<{Int3
2 id> in C:\80AWithWCFandLING“Projects“RealMorthwind“RealMorthwindClient\Service
References\ProductS8erviceRef“Reference.cs:line 21

at RealMorthwindClient.Program.TestException(ProductS8erviceClient client, Int
32 idi_in gé\soﬂwithHCFandLINQ\PPojects\RealNoPthuind\RealNoPthuindClient\PPugPa
m.cs:line

[Channel Status after the exception: Faulted
Press any key to continue ...

[144]

Chapter 5

From the output we know that the channel has now faulted. This means that the
client does not now have a valid way to communicate with the service. To prove it
press Enter to try to connect to the service using the same client object and you will
get an unhandled exception The communication object, System.ServiceModel.
Channels.ServiceChannel, cannot be used for communication because it is in the
Faulted state, as shown in the next image. The program will not continue so you
have to stop it.

i. CommunicationObjectFaultedException was unhandled x

The communication ohject, System.ServiceModel.Channels.ServiceChannel,
cannot be used for communication because it is in the Faulted state,

Troubleshooting tips:
i Get general help for this exception. |

m |

1

Search for more Help Online...

Actions:
View Detail...
Copy exception detail to the clipboard

In the source code, if we have to call the service again, we have to abort this client,
and create a new one for the communication.

Summary

In this chapter, we have added the third layer —the data access layer —to
RealNorthwindService. We have also added exception handling to the service.
The key points covered in this chapter include:

e Database connection strings should be stored in configuration files, not
in C# code

o The data access layer should contain the code to access the underlying
databases, it should not contain business logic

o If service contracts have been changed, the client has to update the reference
to the service

¢ You should throw fault contracts instead of exceptions to the client from
WCF services

¢ A handled fault exception won't make a communication channel invalid,
but an exception will

[145]

LINQ—Language Integrated
Query

In the previous chapters of this book we created one WCF service with three layers.
In the data access layer we used the raw ADO.NET SQL adapters to communicate
with the Northwind database. In one of the following chapters we will explain how
to use LINQ to Entities in our data access layer.

Before using LINQ to Entities in our data access layer we need to understand what
LINQ or LINQ to Entities actually mean. Before understanding LINQ, we first need
to understand some new C# features related to LINQ. In this chapter we will first
explore these new C# features related to LINQ, then we will explore LINQ. In next
two chapters we will explore LINQ to Entities, and after that we will apply LINQ to
Entities to our WCF service data access layer.

In this chapter we will cover:

e What LINQ is

e New data type var

e Automatic properties

e Object initializer and Collection initializer

¢ Anonymous types

e Extension methods

e Lambda expressions

e Built-in LINQ extension methods and method syntax
e LINQ query syntax and query expression

e Built-in LINQ operators

LINQ — Language Integrated Query

What is LINQ

Language Integrated Query (LINQ) is a set of extensions to the NET Framework
that encompass language-integrated query, set, and transform operations. It extends
C# and Visual Basic with native language syntax for queries and provides class
libraries to take advantage of these capabilities.

Let us see an example first. Suppose there is a list of integers like this:
List<int> list = new List<int>() { 1, 2, 3, 4, 5, 6, 100 };
To find all the even numbers in this list, you might write some code like this:

List<int> listl = new List<int>();
foreach (var num in list)

{
it (num % 2 == 0)
listl.Add(num);

}

Now with LINQ, you can select all of the even numbers from this list and assign the
query result to a variable in just one sentence like this:

var list2 = from number in list
where number % 2 == 0
select number;

In this example list2 and listl are equivalent. 1ist2 contains the same numbers
as listl does. As you can see, you don't write a foreach loop. Instead you write a
SQL statement.

But what do from, where, and select mean here? Where are they defined? How and
when can I use them? Let us start the exploration now.

Creating the test solution and project

To show these LINQ-related new features we will need a test project to demonstrate
what they are and how to use them. So we first need to create the test solution
and the project.

Follow these steps to create the solution and the project.

1. Start Visual Studio 2010.
2. Select menu option File | New | Project... to create a new solution.

3. In the New Project window, select Visual C# | Console Application as
the Template.

[148]

Chapter 6

o Enter TestLINQ as the Solution Name and TestNewFeaturesApp as
the (project) Name.

e C(lick on OK to create the solution and the project.

New data type var

The first new feature that is very important for LINQ is the new data type, var. This
is a new keyword that can be used to declare a variable and this variable can be
initialized to any valid C# data.

In the C# 3.0 specification such variables are called implicitly-typed local variables.

A var variable must be initialized when it is declared. The compile-time type of the
initializer expression must not be of nul I type but the runtime expression can be
null. Once it is initialized its data type is fixed to the type of the initial data.

The following statements are valid uses of the var keyword:

// valid var statements
var x = "1";

var n = 0;

string s = "'string";
var s2 = s;

s2 = null;

string s3 = null;

var s4 = s3;

At compile time, the above var statements are compiled to IL, like this:

string x = "1";
int n = 0;

string s2 = s;
string s4 = s3;

The var keyword is only meaningful to the Visual Studio compiler. The compiled
assembly is actually a valid .NET 2.0 assembly. It doesn't need any special
instructions or libraries to support this feature.

The following statements are invalid usages of the var keyword:

// invalid var statements
var v;

var nu null;

var v2 = "12"; v2 = 3;

The first one is illegal because it doesn't have an initializer.

[149]

LINQ — Language Integrated Query

The second one initializes variable nu to null, which is not allowed, although once
defined, a var type variable can be assigned nul 1. If you think that at compile
time the compiler needs to create a variable using this type of initializer then you
understand why the initializer can't be nul I at compile time.

The third one is illegal because, once defined, an integer can't be converted to a string
implicitly (v2 is of type string).

Automatic properties

In the past, if we wanted to define a class member as a property member, we had to
define a private member variable first. For example, for the Product class, we can
define a property, ProductName, as follows:

private string productName;
public string ProductName

{

get { return productName; }
set { productName = value; }

}

This may be useful if we need to add some logic inside the get or set methods. But if
we don't need to the above format gets tedious, especially if there are many members.

Now, with C# 3.0 and above, the previous property can be simplified into
one statement:

public string ProductName { get; set; }

When Visual Studio compiles this statement it will automatically create a private
member variable, productName, and use the old style's get or set methods to
define the property. This could save lots of typing.

Just as with the new type, var, the automatic properties are only meaningful to the
Visual Studio compiler. The compiled assembly is actually a valid .NET 2.0 assembly.

Interestingly, later on, if you find you need to add logic to the get or set methods,
you can still convert this automatic property to the old style's property.

Now let us create this class in the test project:

public class Product

{
public int ProductlD { get; set; }
public string ProductName { get; set; }
public decimal UnitPrice { get; set; }

[150]

Chapter 6

We can put this class inside the Program. cs file within the namespace,
TestNewFeaturesApp. We will use this class throughout this chapter to test C#
features related to LINQ.

Object initializer
In the past we couldn't initialize an object without using a constructor. For example,

we could create and initialize a Product object like this if the Product class had a
constructor with three parameters:

Product p = new product(l, "first candy', 100.0);
Or we could create the object and then initialize it later, like this:

Product p = new Product();
p-ProductID = 1;
p-ProductName = *"first candy";
p-UnitPrice=(decimal)100.0;

Now with the new object initializer feature we can do it as follows:

Product product = new Product

{
ProductlID = 1,
ProductName = "first candy",
UnitPrice = (decimal)100.0
};

At compile time the compiler will automatically insert the necessary property setter
code. So again this new feature is a Visual Studio compiler feature. The compiled
assembly is actually a valid .NET 2.0 assembly.

We can also define and initialize a variable with an array, like this:
var arr = new[] { 1, 10, 20, 30 };

This array is called an implicitly typed array.

Collection initializer

Similar to the object initializer, we can also initialize a collection when we declare it,
like this:

List<Product> products = new List<Product> {
new Product {
ProductlID = 1,

[151]

LINQ — Language Integrated Query

ProductName = "first candy",
UnitPrice = (decimal)10.0 },

new Product {
ProductlID = 2,
ProductName = "second candy",
UnitPrice = (decimal)35.0 },

new Product {
ProductlID = 3,
ProductName = "first vegetable",
UnitPrice = (decimal)6.0 3},

new Product {
ProductlID = 4,
ProductName = "second vegetable",
UnitPrice = (decimal)15.0 },

new Product {
ProductID = 5,
ProductName = "another product",
UnitPrice = (decimal)55.0 }

¥

Here we created a list and initialized it with five new products. For each new
product we used the object initializer to initialize its value.

Just as with the object initializer this new feature, collection initializer, is also a Visual
Studio compiler feature and the compiled assembly is a valid .NET 2.0 assembly.

Anonymous types

With the new feature of the object initializer and the new var data type we can create
anonymous data types easily in C# 3.0.

For example, if we define a variable like this:

var a = new { Name = "namel", Address = "addressl" };

at compile time, the compiler will actually create an anonymous type, as follows:

class __Anonymousl
{
private string name;
private string address;
public string Name {
get{
return name;

}

[152]

Chapter 6

set {
name=value
}
}
public string Address {
get{
return address;
}
set{
address=value;
}
}

}

The name of the anonymous type is automatically generated by the compiler and
cannot be referenced in the program text.

If two anonymous types have the same members with the same data types in their
initializers, then these two variables have the same types. For example if there is
another variable defined like this:

var b = new { Name = "name2'", Address = "address2" };

then we can assign a to b like this:
b = a;

The anonymous type is particularly useful for LINQ when the result of LINQ can
be shaped to be whatever you like. We will give more examples of this when we
discuss LINQ.

As mentioned earlier, this new feature is again a Visual Studio compiler feature and
the compiled assembly is a valid .NET 2.0 assembly.

Extension methods

Extension methods are static methods that can be invoked using the instance method
syntax. In effect extension methods make it possible for us to extend existing types and
constructed types with additional methods.

For example, we can define an extension method as follows:

public static class MyExtensions

{
public static bool IsCandy(this Product p)

{

[153]

LINQ — Language Integrated Query

if (p-ProductName. IndexOf(**'candy') >= 0)
return true;

else
return false;

}

In this example the static method, IsCandy, takes a this parameter of Product
type and searches for the word, candy, inside the product name. If it finds a match
it assumes this is a candy product and returns true. Otherwise it returns false,
meaning this is not a candy product.

Because all extension methods must be defined in top-level static classes here to
simplify the example, we put this class inside the same namespace as our main test
application, TestNewFeaturesApp, and made this class on the same level as the
Program class so that it is a top level class. Now, in the program, we can call this
extension method like this:

if (product.l1sCandy())

Console._WriteLine(''yes, it is a candy");
else

Console_WriteLine("'no, it Is not a candy');

It looks as if IsCandy is a real instance method of the Product class. Actually it is a real
method of the Product class but it is not defined inside the Product class. Instead it is
defined in another static class to extend the functionality of the Product class. This is
why it is called an extension method.

Not only does it look like a real instance method but this new extension method
actually pops up when a dot is typed following the product variable. The following
image shows the IntelliSense of the product variable within Visual Studio.

[154]

Chapter 6

File Edit View Refactor Project Build Debug Team Data Architecture Test Tools Analyze Window Help
TR I R e N - i o s
iBhheflEsE2|00E30sqa5 3.

Program.cs® X Solution Explorer

f% TestNewFeaturesApp.Program -l.JVMam(strmg[] args) =) ‘ é: [#] | [=] gl
[TestNewFeaturesApp
// extension methods >[5 Properties
if(product.| 3l References
W Equals 4] Program.cs
‘W GetHashCode
@ GetType
; IsCandy |(exten;inn) bool PmductIsCandin
f ProductlD

¥0q|00]| . 1a10jdig ;3Aig He

2 ProductName EREIEL W % Team Exp... BR Class View

W ToString > 31X
f UnitPrice

Show output from: | Build R R =g |
C:\SOAWIthWCFandLINQ\Projects\TestLINQ\TestNewFeaturesApp\Program.cs(13,17):
C:\SOAWIthWCFandLINQ\Projects\TestLINQ\TestNewFeaturesApp\Program.cs(14,17): 1«

Compile complete -- 8 errors, 2 warnings
TestNewFeaturesApp -> C:\SOA&WithWCFandLINQ\Projects)\TestLINQ\ TestNewFeature:
Build: 1 succeeded or up-to-date, 8 failed, 8 skipped

mn |
Error List JEReI{04

Col 24

Under the hood in Visual Studio, when a method call on an instance is being compiled,
the compiler first checks to see if there is an instance method in the class for this
method. If there is no matching instance method it looks for an imported static class or
any static class within the same namespace. It also searches for an extension method
with the first parameter that is the same as the instance type (or is a super type of the
instance type). If it finds a match the compiler will call that extension method. This
means that instance methods take precedence over extension methods, and extension
methods that are imported in inner namespace declarations take precedence over
extension methods that are imported in outer namespaces.

In our example, when product. IsCandy() is being compiled the compiler first checks
the Product class and doesn't find a method named IsCandy. It then searches the static
class, MyExtensions, and finds an extension method with the name, IsCandy,

and with a first parameter of the type Product.

At compile time the compiler actually changes product. IsCandy() to this call:

MyExtensions. IsCandy(product)

Surprisingly, extension methods can be defined for sealed classes. In our example
you can change the Product class to be sealed and it still runs without any problem.
This gives us great flexibility to extend system types because many of the system
types are sealed.

[155]

LINQ — Language Integrated Query

On the other hand, extension methods are less discoverable and are harder to maintain,
so they should be used with great caution. If your requirements can be achieved with
an instance method you should not define an extension method to do the same work.

Not surprisingly, this new feature is again a Visual Studio compiler feature and the
compiled assembly is a valid .NET 2.0 assembly.

Extension methods are the bases of LINQ. We will discuss the various extension
methods defined by .NET 3.5 in the namespace, System.Linq, later.

Now the Program.cs file should be like this:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace TestNewFeaturesApp

{
class Program
{
static void Main(string[] args)
{
// valid var statements
var x = "1";
var n = 0;
string s = ''string";
var s2 = s;
s2 = null;

string s3 = null;
var s4 = s3;

/*

string x = "1";
int n = 0;
string s2
string s4
*/

// invalid var statements

/*

var v;

var nu = null;

var v2 = "12"; v2 = 3;

*/

// old way to create and initialize an object
/*

S;
s3;

[156]

Chapter 6

Product p = new product(l, "first candy', 100.0);
Product p = new Product();
p-ProductID = 1;

p-ProductName = "first candy";
p-UnitPrice=(decimal)100.0;
*/

//object initializer

Product product = new Product
{
ProductlID = 1,
ProductName = "first candy",
UnitPrice = (decimal)100.0
};
var arr = new[] { 1, 10, 20, 30 };
// collection initializer
List<Product> products = new List<Product> {
new Product {
ProductlID = 1,
ProductName = "first candy",
UnitPrice = (decimal)10.0 },
new Product {
ProductlID = 2,
ProductName = "second candy",
UnitPrice = (decimal)35.0 },
new Product {
ProductlID = 3,
ProductName = "first vegetable",
UnitPrice = (decimal)6.0 },
new Product {
ProductlID = 4,
ProductName = "second vegetable",
UnitPrice = (decimal)15.0 },
new Product {
ProductID = 5,
ProductName = "third product”,
UnitPrice = (decimal)55.0 }
};
// anonymous types
var a = new { Name
var b = new { Name
b = a;
/*
class __Anonymousl

"namel™, Address
"name2", Address

"addressl" };
"address2" };

[157]

LINQ — Language Integrated Query

{
private string name;
private string address;
public string Name {
get{
return name;
}
set {
name=value
}
}
public string Address {
get{
return address;
}
set{
address=value;
}
}
}
*/

// extension methods

if (product.IsCandy()) //if(MyExtensions.IsCandy(product))
Console._WriteLine("'yes, it is a candy");

else
Console_WriteLine("'no, it is not a candy");

}
}
public sealed class Product
{
public int ProductlD { get; set; }
public string ProductName { get; set; }
public decimal UnitPrice { get; set; }
}
public static class MyExtensions
{
public static bool IsCandy(this Product p)
{
it (p-ProductName. IndexOf(*"'candy') >= 0)
return true;
else
return false;
}
}

[158]

Chapter 6

So far in Program.cs, we have

e Defined several var type variables

e Defined a sealed class, Product

e Created a product with the name of "first candy"
e Created a product list containing five products

e Defined a static class and added a static method, IsCandy, with a this
parameter of the type, Product, to it, making this method an
extension method

e C(Called the extension method on the candy product and printed out a
message according to its name

If you run the program the output will look like this:

r

B C\Windows\system32\cmd.exe _ == &

yes, it iz a candy -
Presz any key to continue . . .

Lambda expressions

With the C# 3.0 new feature extension method and the C# 2.0 new feature anonymous
method (or inline method), Visual Studio introduces a new expression called
lambda expression.

Lambda expression is actually a syntax change for anonymous methods. It is just
a new way of writing anonymous methods. Next, let's explain what a lambda
expression is, step by step.

First, in C# 3.0, there is a new generic delegate type, Func<A,R>, which presents a
function taking an argument of type A and returns a value of type R:

delegate R Func<A,R> (A Arg);

In fact there are several overloaded versions of Func of which Func<A,R> is one.

[159]

LINQ — Language Integrated Query

Now we will use this new generic delegate type to define an extension:

public static IEnumerable<T> Get<T>(this IEnumerable<T> source,
Func<T, bool> predicate)

{
foreach (T item in source)
{
if (predicate(item))
yield return item;
}
}

This extension method will apply to an object that extends the 1Enumerable

interface and has one parameter of type, Func, which you can think of as a pointer
to a function. This parameter function is the predicate to specify the criteria for the
selection. This method will return a list of objects that match the predicate criteria.

Now we can create a new function as the predicate:

public static bool IsVege(Product p)
{

return p.ProductName.Contains(''vegetable');

}

Then we can use the extension method, Get, to retrieve all of the vegetable products,
like this:

var vegesl = products.Get(lsVege);

In previous sections we created a products list with five products of which two are
vegetables. So vegesl is actually of the 1Enumerable<Product> type and should
contain two products. We can write the following test statements to print out

the results:

Console_WriteLine(""\nThere are {0} vegetables:", vegesl.Count());
foreach (Product p in vegesl)
{
Console_WriteLine("'Product ID: {0} Product name: {1}",
p-ProductlD, p.ProductName);

[160]

Chapter 6

The output will be:

e —— [

yes,. it is a candy -

There are 2 wvegetahles:
Product ID: 3 Product name: first vegetahle
Product ID: 4 Product name: second vegetahle
Preszszs any key to continue . .

Or we can first create a new variable of type, Func, assign the function pointer of
IsVege to this new variable and then pass this new variable to the Get method
like this:

Func<Product, bool> predicate = IsVege;
var veges2 = products.Get(predicate);

The Variable, veges2, will contain the same products as vegesl1.

Now let us use the C# 2.0 anonymous method to rewrite the above statement which
will now become:

var veges3 = products.Get(
delegate (Product p)
{
return p.ProductName.Contains(''vegetable');
}
)

At this time we put the body of the predicate method, IsVege, inside the extension
method call with the keyword, delegate. In order to get the vegetables from the
products list we don't have to define a specific predicate method. We can specify the
criteria on the spot when we need it.

The lambda expression comes into play right after the above step. In C# 3.0, with
lambda expression, we can actually write the following one line statement to
retrieve all of the vegetables from the products list:

var veges4 = products.Get(p => p.ProductName.Contains(*'vegetable™));

[161]

LINQ — Language Integrated Query

In the above statement the parameter of the method, Get, is a lambda expression.
The first p is the parameter of the lambda expression, just like the parameter p in the
anonymous method when we get veges3. This parameter is implicitly typed and, in
this case, is of the type, Product, because this expression is applied to a Products
object which contains a list of Product objects. This parameter can also be explicitly
typed like this:

var veges5 = products.Get((Product p) => p.ProductName.
Contains("'vegetable™));

The parameter is followed by the => token and then followed by an expression or a
statement block which will be the predicate.

So now we can easily write the following statement to get all of the candy products:

var candies = products.Get(p => p.ProductName.Contains(‘‘candy'));

At compile time all lambda expressions are translated into anonymous methods
according to the lambda expression conversion rules. So again this feature is only a
Visual Studio feature. We don't need any special .NET runtime library or instructions
to run an assembly containing lambda expressions.

In short, lambda expressions are just another way of writing anonymous methods in
a more concise, functional syntax.

Built-in LINQ extension methods and
method syntax

NET framework 3.5 defines lots of extension methods in the namespace, System.
Ling, including Where, Select, SelectMany, OrderBy, OrderByDescending, ThenBy,
ThenByDescending, GroupBy, Join, and GroupJoin.

We can use these extension methods just as we would use our own extension methods.
For example, we can use the Where extension method to get all vegetables from the
Products list, like this:

var veges6 = products.Where(p => p.ProductName.Contains(‘'vegetable'));
This will give us the same result as veges1 through veges5.

As a matter of fact the definition of the built-in LINQ extension method, Where, is
just like our extension method, Get, but in a different namespace:

namespace System.Linq

{

[162]

Chapter 6

public static class Enumerable

{
public static IEnumerable<T> Where<T>(this IEnumerable<T>
source, Func<T, bool> predicate)
{
foreach (T item in source)
{
if (predicate(item))
yield return item;
}
}
}

}

The statements that use LINQ extension methods are called using the LINQ
method syntax.

Unlike the other C# 3.0 new features that we have talked about in previous sections,
these LINQ-specific extension methods are defined in .NET framework 3.5. So, to run
an assembly containing any of these methods you need .NET framework 3.5 or
above installed.

LINQ query syntax and query expression

With built-in LINQ extension methods and lambda expressions, Visual Studio allows
us to write SQL-like statements in C# when invoking these methods. The syntax of
these statements is called LINQ query syntax and the expression in query syntax is
called a query expression.

For example we can change this statement:

var veges6 = products.Where(p => p.ProductName.Contains(''vegetable'));

to the following query statement by using the new LINQ query syntax:

var veges7 = from p in products
where p.ProductName.Contains('vegetable'™)
select p;

In the above C# statement we can directly use the SQL keywords, select, from,
and where, to "query" an in-memory collection list. In addition to the in-memory
collection lists we can use the same syntax to manipulate data in XML files, in the
dataset, and in the database. In the following chapters we will see how to query a
database using LINQ to Entities.

[163]

LINQ — Language Integrated Query

Combined with the anonymous data type, we can shape the result of the query in the
following statement:

var candyOrVeges = from p in products
where p.ProductName.Contains(''candy')
|l p-ProductName.Contains(''vegetable')
orderby p.UnitPrice descending, p-ProductlD
select new { p.ProductName, p.UnitPrice };

As you have seen, query syntax is a very convenient, declarative shorthand for
expressing queries using the standard LINQ query operators. It offers a syntax that
increases the readability and clarity of expressing queries in code and can be easy to
read and write correctly.

Not only is query syntax easy to read and write, Visual Studio actually provides
complete IntelliSense and compile-time checking support for query syntax. For
example, when typing in p and the following dot, we get all of the Product
members listed in the IntelliSense list, as shown in the following screenshot:

File Edit View Refactor Project Build Debug Team Data Architecture Test Tools Analyze Window Help
b DB 90|y DS R EEO-.
Db afEEEE2 000 6350l

Program.cs® X Solution Explorer

i TestNewFeaturesApp.Program vlz,"Main(string[] args) li2) | EZP [#] | [=] 9%.
// query expresion =] TestNewFeaturesApp
var veges7 = from p in products » [=d| Properties
where F"l -a] References
% Equals 4] Program.cs
% GetHashCode
W GetType
W5 IsCandy
f ProductlD
'fi“ ProductMame
% ToString Properties X
ﬁ UnitPrice

X0q100] . si0|dK3 ;ARs He

l:? LRI I Team Exp... B2 Class View

Show output from: | Build

e B 5

C:\SOAWIthWCFandLINQ\Projects\TestLINQ\TestNewFeaturesApp\Program.cs(14,17): 1 °
C:\SOAWIthWCFandLINQ\Projects\TestLINQ\TestNewFeaturesApp\Program.cs(128,13): [

Compile complete -- 8 errors, 3 warnings
TestMewFeaturesApp -»> C:\SOAWithWCFandLINQ\Projects\TestLINQ\TestNewFeature:
Build: 1 succeeded, @ failed, 8 up-to-date, @ skipped

m]
‘{_ Error List JEReN

Build succeeded Col 34

[164]

Chapter 6

If there is a typo in the syntax (as is the case in this statement: where
p.productName.Contains(‘'vegetable'), the compiler will tell you exactly
where the mistake is and why it is wrong. There won't be any run-time error
such as "invalid SQL statement". The following screenshot shows the error
message when there is a typo in the statement:

"
o0 TestlINQ - Microsoft Visual Studio (Administrator) P —- = | =]
File Edit View Refactor Project Build Debug Team Data Architecture Test Tools Analyze Window Help

P | kB9 b SRR EBT- .
e e e e e e
ﬁ Program.cs ~ Solution Explorer

% TestNewFeaturesApp.Program vlﬁ“Main(string[] args) = N j | [=] i‘l

// Ling extension method = _‘E TestNewFeaturesApp
var vegesé = products.Where(p => p.ProductName.Contains("veget » = Properties

3 References
Program.cs

7/ query syntax
// query expresion
var veges7 = from p in products
where p.productName.Contains("vegetable")

%0q|00] . 1310(dx3 RARS

‘TestNewFeaturesApp.Product’ does not contain a definition for 'productMame’ and no extension methed 'productMame’ accepting a first argy
‘TestMewFeaturesApp.Preduct’ could be found (are you missing a using directive or an assembly reference?)

var candyOrVeges = from p in products

where p.ProductName.Contains("candy™) || p. ™
I | 2

Error List
& 1 Error | 1 0 Wamnings | 1) D Messages

Description File Li.. Colu.. Project
@1 'TestNewFeaturesApp.Product’ does not contain a Prograi 137 34 TestNewFeaturesfpp
definition for ‘productName’ and no extension
method 'productMName’ accepting a first argument of
type TestMewFeaturesApp.Product’ could be found
(are you missing a using directive or an assembly
reference?)

_‘,3 Error List

Col 42

As you can see, you can write a LINQ statement in the query syntax, much like when
you are working with a database in Query Analyzer. However, the NET Common
Language Runtime (CLR) has no notion itself of the query syntax. Therefore, at
compile time, query expressions are translated to something that the CLR does
understand: method calls. Under the covers, the compiler takes the query syntax
expressions and translates them into explicit method-invocation code that utilizes the
new LINQ Extension Method and lambda expression language features in C# 3.0.

For example, the candyOrVeges query expression will be translated to this method
invocation call:

products._Where(p => p.ProductName.Contains("'candy'™) || p-ProductName.
Contains("'vegetable™)) .OrderByDescending(p => p-UnitPrice).
ThenBy(p=>p.ProductlD).Select(p=>new { p.ProductName, p.UnitPrice })

[165]

LINQ — Language Integrated Query

You can print out and compare the results for using query syntax and method syntax
to make sure they are equivalent. The following statements will print out the product
name and unit price for the products in the query result using query syntax:

foreach (var p in candyOrVeges)

{
Console._WriteLine("{0} {1}, p-ProductName, p.UnitPrice);

}

Do the same for the results using method syntax and you will get a printout like this:

yes, it is a candy

There are 2 vegetahles:
Product ID: 3 Product name: first vegetahle
Product ID: 4 Product name: second vegetahle

Candy or vegetahle in descending price order by guery syntax:
=econd candy 35

second vegetahle 15

first candy 18

first vegetable 6

Candy or vegetable in descending price order by method syntax:
zecond candy 35

zecond vegetahle 15

first candy 18

first vegetable 6

Press any key to continue . . .

In general query syntax is recommended over method syntax because it is usually
simpler and more readable. However, there is no semantic difference between
method syntax and query syntax.

Built-in LINQ operators

As we have seen in previous sections, there are no semantic differences between
method syntax and query syntax. In addition, some queries such as those that retrieve
the number of elements matching a specified condition or those that retrieve the
element that has the maximum value in a source sequence, can be expressed only as
method calls. These kinds of methods are sometimes referred to as .NET Standard
Query Operators and include Take, ToList, FirstOrDefault, and Max and Min.

In addition to those methods that can only be expressed as method calls, all the
extension methods that can be used in either query syntax or method syntax are also
defined as standard query operators such as select, where, and from. So the NET
Standard Query Operators contains all of the LINQ-related methods.

A complete list of these operators can be found at the Microsoft MSDN library for
the class, System.Ling.Enumerable.

[166]

Chapter 6

To have a quick look at all those operators, open the program.cs file in Visual Studio
and type in System.Linq.Enumerable. Then type in a dot after Enumerable. You will
see the whole list of operators in the IntelliSense menu.

oo TestLINQ - Microsoft Visual Studio {(Administrator) -

|
L e 1

PO b e lfE|EE| S

L Program.cst x

2 08B 83858 -

File Edit View Refactor Project Build Debug Team Data Architecture Test Tools Analyze Window Help

P | 90 b o | G B -

Solution Explorer

jSTestNeeraturesApp.Program - | ¥ Mainistring[] args)

=S E S

}

foreach (var p in candyOrVeges2)
{

}

¥0q|oo] . iiojdig ARG

System.Ling.Enumerable.|

}

;. Aggregate=>
public static bool IsVege(Pv‘r’ Alle

{ 5 Any<>
4 1 . | W5 AsEnumerable<:
W, Average
Error List o :

W Average<>
3 Errors 1\ 0 Warnings i) 0 Messages
9 9

Wy Cast<»
Description ¥ Concate >

@1 Onlyassignment, call, increment, decrement, 2 % Contains=>

Console.WriteLine("\nCandy or vegetable in descending price or

Console.WriteLline("{@} {1}", p.ProductName, p.UnitPrice);

20 (5 TestNewFeaturesApp
- =d| Properties
-3 References
] Program.cs

ERSINGLI N % Team Exp.. B2 Class View

-0 x

ewFeaturesApp

new ohject expressions can be used ac a statement
Q2
@ 3 Identifier expected

; expected Prograi 157 36

Prograi 157 36

_'E. Error List

Build succeeded

TestMewFeatureshpp
TestMewFeaturesApp

The methods in this static class provide an implementation of the standard query

operators for querying data sources that implement 1Enumerable<(0f <(T>)>). The
standard query operators are general-purpose methods that follow the LINQ pattern
and enable you to express traversal, filter, and projection operations over data in any

.NET-based programming language.

The majority of the methods in this class are defined as extension methods that
extend 1Enumerable<(0f <(T>)>). This means that they can be called like an
instance method on any object that implements 1Enumerable<(0f <(T>)>).

[167]

LINQ — Language Integrated Query

Summary

In this chapter, we have learned new features related to LINQ including the new data
type, var, object and collection initializers, extension methods, lambda expressions,
LINQ syntax, and query expressions. Now that we have the required knowledge

for LINQ, we are ready to try LINQ to Entities, which will be discussed in the

next chapters.

The key points covered in this chapter include:

The new data type, var, gives extra flexibility when defining new variables
The Automatic Property feature can be used to define simple properties

Initial values can be assigned to a new object and collection variables by
using Object initializer and Collection initializer

Actual types will be created for anonymous types at compile time

Extension methods can be used to extend the public contract of an existing
CLR type without having to subclass or recompile the original type

Lambda expression is just another way of writing anonymous methods in
a more concise and functional syntax

Many LINQ-specific extension methods have been pre-defined in
.NET framework 3.5

All NET Standard LINQ Query Operators are defined in the static class,
System.Ling.Enumerable

LINQ query syntax can be used to make expressions in method syntax
but there is no semantic difference between the method syntax and the
query syntax

Some LINQ queries can only be expressed in method calls

[168]

LINQ to Entities: Basic
Concepts and Features

In the previous chapter, we learned new features of C# 3.0 including LINQ. In this
chapter and the next, we will explain how to use LINQ to query a database, or in other
words, how to use LINQ to Entities in C#. After reading these two chapters we will
have a good understanding of LINQ to Entities so that we can rewrite the data access
layer of our WCF service with LINQ to Entities, to securely and reliably communicate
with the underlying database.

In this chapter, we will cover the basic concepts and features of LINQ to Entities,
which include:

What ORM is

What LINQ to Entities is

What LINQ to SQL is

Comparing LINQ to Entities with LINQ to Objects and LINQ to SQL
Modeling the Northwind database with LINQ to Entities

Querying and updating a database with a table

Deferred execution

Lazy loading and eager loading

Joining two tables

Querying with a view

In the next chapter, we will cover the advanced concepts and features of LINQ to
Entities such as stored procedure support, inheritance, simultaneous updating,
and transaction processing.

LINQ to Entities: Basic Concepts and Features

ORM—Object-Relational Mapping

LINQ to Entities is considered to be one of Microsoft's new ORM products. So
before we start explaining LINQ to Entities let us first understand what ORM is.

ORM stands for Object-Relational Mapping. Sometimes it is called O/RM or O/R
mapping. It is a programming technique that contains a set of classes that map
relational database entities to objects in a specific programming language.

Initially applications could call specified, native database APIs to communicate with
a database. For example, Oracle Pro*C is a set of APIs supplied by Oracle to query,
insert, update, or delete records in an Oracle database from C applications. The
Pro*C pre-compiler translates embedded SQL into calls to the Oracle runtime
library (SQLLIB).

Then ODBC (Open Database Connectivity) was developed to unify all of the
communication protocols for various RDBMS. ODBC was designed to be independent
of programming languages, database systems, and operating systems. So with ODBC,
one application can communicate with different RDBMS by using the same code
simply by replacing the underlying ODBC drivers.

No matter which method is used to connect to a database the data returned from a
database has to be presented in some format in the application. For example, if an
Order record is returned from the database, there has to be a variable to hold the Order
number and a set of variables to hold the Order details. Alternatively the application
may create a class for Orders and another class for Order details. When another
application is developed the same set of classes may have to be created again, or, if it

is designed well, they can be put into a library and reused by various applications.

This is exactly where ORM fits in. With ORM, each database is represented by an
ORM context object in the specific programming language and database entities
such as tables are represented by classes with relationships between these classes.
For example, ORM may create an Order class to represent the Order table and

an OrderDetail class to represent the Order Details table. The Order class will
contain a collection member to hold all of its details. ORM is responsible for the
mappings and the connections between these classes and the database. So, to the
application, the database is now fully represented by these classes. The application
only needs to deal with these classes, instead of with the physical database. The
application does not need to worry about how to connect to the database, how to
construct the SQL statements, how to use the proper locking mechanism to ensure
concurrency, or how to handle distributed transactions. These database-related
activities are handled by ORM.

[170]

Chapter 7

Entity Framework

Since LINQ to Entities is based on Entity Framework, let's explain what Entity
Framework is now.

ADO.NET Entity Framework (EF) is a new addition to the Microsoft ADO.NET
family. It enables developers to create data access applications by programming
against a conceptual application model instead of programming directly against
a relational storage schema. The goal is to decrease the amount of code and
maintenance required for data-oriented applications. Entity Framework
applications provide the following benefits:

e Applications can work in terms of a more application-centric conceptual
model including types with inheritance, complex members, and relationships

e Applications are freed from hardcoded dependencies on a particular data
engine or storage schema

e Mappings between the conceptual model and the storage-specific schema
can change without changing the application code

e Developers can work with a consistent application object model that can
be mapped to various storage schemas, possibly implemented in different
database management systems

e Multiple conceptual models can be mapped to a single storage schema

e Language Integrated Query (LINQ) support provides compile-time syntax
validation for queries against a conceptual model

With Entity Framework, developers work with a conceptual data model, an Entity
Data Model, or EDM, instead of the underlying databases. The conceptual data

model schema is expressed in the Conceptual Schema Definition Language (CSDL),
the actual storage model is expressed in the Storage Schema Definition Language
(SSDL), and the mapping in between is expressed in the Mapping Schema Language
(MSL). A new data-access provider, EntityClient, is created for this new framework,
but under the hood, the ADO.NET data providers are still being used to communicate
with the databases.

[171]

LINQ to Entities: Basic Concepts and Features

The following diagram shows the high-level architectures of
Entity Framework.

Entity Framework [SR

Object Services
ObjectQuery

| Entity SQL | | Entity SQL |
I [
| Entity Client |
|

| Conceptual | CSDL |
| Mapping _[WSL]
| Logical [SSDL |

—

LINQ to Entities

Now let's have a look at what LINQ to Entities is.

LINQ to Entities provides Language Integrated Query (LINQ) support that enables
developers to write queries against Entity Framework conceptual model using
Visual Basic or Visual C#. Queries against the Entity Framework are represented
by command-tree queries which execute against the object context. LINQ to Entities
converts Language Integrated Queries (LINQ) queries to command-tree queries,
executes the queries against Entity Framework, and returns objects that can be

used by both Entity Framework and LINQ.

LINQ to Entities allows developers to create flexible, strongly-typed queries against
the Entity Data Model (EDM) by using LINQ expressions and standard LINQ query
operators. To certain degrees, LINQ to Entities is similar to LINQ to SQL, but LINQ
to Entities is a true ORM product from Microsoft and it supports more features than
LINQ to SQL, such as multiple-table inheritance. LINQ to Entities also supports many
other mainstream RDBMS databases such as Oracle, DB2, and MySQL, in addition to
Microsoft SQL Server.

[172]

Chapter 7

Comparing LINQ to Entities with LINQ
to Objects

In the previous chapter, we used LINQ to query in-memory objects. Before we dive
further into the world of LINQ to Entities we first need to look at the relationships
between LINQ to Entities and LINQ to Objects.

Some key differences between LINQ to Entities and LINQ to Objects are:

e LINQ to Entities needs an Object Context object. The ObjectContext object
is the bridge between LINQ and the database (we will explain more about
ObjectContext later). LINQ to Objects doesn't need any intermediate LINQ
provider or APL

e LINQ to Entities returns data of type, 1Queryable<T>, whereas LINQ to
Objects returns data of type, IEnumerable<T>.

e LINQ to Entities queries are translated to SQL by way of Expression
Trees, which allow them to be evaluated as a single unit and translated to
appropriate and optimal SQL Statements. LINQ to Objects queries do not
need to be translated.

e LINQ to Entities queries are translated to SQL calls and executed on the
specified database, while LINQ to Objects queries are executed in the local
machine memory.

The similarities shared by all aspects of LINQ are the syntax. They all use the same
SQL-like syntax and share the same groups of standard query operators. From the
language syntax perspective working with a database is the same as working with
in-memory objects.

LINQ to SQL

Before LINQ to Entities Microsoft released another ORM product, LINQ to SQL.
Both LINQ to SQL and LINQ to Entities can be used in the data access layer

to interact with databases but they are quite different. In this section we will
explain what LINQ to SQL is and in the next section we will compare these

two technologies.

In short, LINQ to SQL is a component of the .NET framework 3.5 that provides
a run-time infrastructure for managing relational data as objects.

[173]

LINQ to Entities: Basic Concepts and Features

In LINQ to SQL the data model of a relational database is mapped to an object model
expressed in the programming language of the developer. When the application runs
LINQ to SQL translates the language-integrated queries in the object model into SQL
and sends them to the database for execution. When the database returns the results
LINQ to SQL translates the results back to objects that you can work with in your own
programming language.

Unlike LINQ to Entities, with LINQ to SQL developers don't need to create an extra
data model between their applications and the underlying database. Under the hood
of LINQ to SQL, ADO.NET SqlClient adapters are used to communicate with the
actual SQL Server databases.

The following diagram shows the use of LINQ to SQL in a .NET application:

Application

LINQ to SQL

SQL
Server
Database

Comparing LINQ to SQL with LINQ

to Entities

Now we know what LINQ to Entities is and what LINQ to SQL is. Next in this
section, let's compare these two technologies.

As described earlier, LINQ to Entities applications work against a conceptual data
model (EDM). All mappings between the languages and the databases go through the
new EntityClient mapping provider. The application no longer connects directly to
a database or sees any database-specific constructs. The entire application operates in
terms of the higher level EDM.

[174]

Chapter 7

This means that you can no longer use the native database query language. Not only
will the database not understand the EDM model, but also current database query
languages do not have the constructs required to deal with the elements introduced
by EDM such as inheritance, relationships, complex-types, and so on.

On the other hand, for developers who do not require mapping to a conceptual
model LINQ to SQL enables developers to experience the LINQ programming
model directly over existing database schema.

LINQ to SQL allows developers to generate .NET classes that represent data. Rather
than map to a conceptual data model these generated classes map directly to database
tables, views, stored procedures, and user-defined functions. Using LINQ to SQL,
developers can write code directly against the storage schema using the same LINQ
programming pattern as was previously described for in-memory collections,
Entities, or the Data Set, as well as for other data sources such as XML.

Compared to LINQ to Entities, LINQ to SQL has some limitations, mainly because of
its direct mapping against the physical relational storage schema. For example, you
can't map two different database entities into one single C# or VB object and if

the underlying database schema changes this might require significant client
application changes.

In a summary, if you want to work against a conceptual data model use LINQ
to Entities. If you want to have a direct mapping to the database from your
programming languages use LINQ to SQL.

The following table lists some of the features supported by these two data
access methodologies:

Features LINQ to SQL LINQ to Entities
Conceptual Data Model No Yes
Storage Schema No Yes
Mapping Schema No Yes
New Data Access Provider No Yes
Non-SQL Server Database Support No Yes
Direct Database Connection Yes No
Language Extensions Support Yes Yes
Stored Procedures Yes Yes
Single-table Inheritance Yes Yes
Multiple-table Inheritance No Yes
Single Entity from Multiple Tables No Yes
Lazy Loading Support Yes Yes

[175]

LINQ to Entities: Basic Concepts and Features

Interestingly some say LINQ to SQL was an intermediate solution. The fact is that
LINQ to SQL was made by the C# team instead of the ADO.NET team. It was of
great importance for the C# team to release an O/RM mapper together with their
new LINQ technology. Without a LINQ to databases implementation the C# team
would have had a hard time evangelizing LINQ.

In November 2008 the ADO.NET team announced that Microsoft would continue to
make some investments in LINQ to SQL but they also made it pretty clear that LINQ
to Entities is the recommended data access solution in future frameworks. Microsoft
will invest heavily in the Entity framework. So in this book we will use LINQ to
Entities in our data access layer.

Creating a LINQ to Entities test
application

Now that we have explained some of the basic concepts of LINQ to Entities let us start
exploring LINQ to Entities with some real examples. We will apply the skills we are
going to learn in the following two chapters to the data access layer of our WCF service
so that from the WCF service we can communicate with the database using LINQ to
Entities instead of the raw ADO.NET data adapter.

First we need to create a new project to test LINQ to Entities. Just follow these steps
to add this test application to the solution:

1. Open the solution, TestLINQ.

2. From Solution Explorer, right-click on the Solution item and select
Add | New Project... from the context menu.

3. Select Visual C# | Console Application as the project template, enter
TestLINQToEntitiesApp as the (project) Name, and leave the default
value C:\SOAWithWCFandLINQ\Projects\TestLINQ as the Location.

4. Click on OK.

Creating the Data Model

To use LINQ to Entities we need to add a conceptual data model —an Entity Data
Model or EDM — to the project. There are two ways to create the EDM: create from
a database, or create manually. Here we will create the EDM from the Northwind
database. We will add two tables and one view from the Northwind database into
our project so that later on we can use them to demonstrate LINQ to Entities.

[176]

Chapter 7

Adding a LINQ to Entities item to the project

To start with let us add a new item to our project: TestLINQToEntitiesApp. The
new item added should be of the ADO.NET Entity Data Model type and named
Northwind.edmx, as shown in the following Add New Item dialog window:

Add New Item - TestLINQToEntitiesApp iiw ® .-_ “_ [s

Installed Templates Sort by: |De‘Fau|t T | | Search Installed Templates P ‘
4 Visual C# Items

s Type: Visual C# It
Code @ Component Class Visual C# Items IEEREE I
B — A project item for creating an ADO.NET
A L - | Entity Data Model.
General |¢:| User Control (WPF) Visual C#tems |~ |
Web B
Windows Forms & _| AboutBox Visual C2 ltems
WPF
Reporting

- ADO.MNET Entity Data Mo... Visual C# Items
Worldflow

Online Templates ADO.MET EntityObject G... Visual C# ltems

% ADO.MET Self-Tracking E...Visual CZ Items

Application Configuratio.., Visual C# Iterns

i‘«‘ﬁ Annliratinn Manifest File Wisnal C# Tterns =

Marne: Morthwind edrmzx

After you click on the Add button the Entity Data Model Wizard window will pop
up. Follow these steps to finish this wizard:

1. On the Choose Model Contents page, select Generate from database. Later
we will connect to the Northwind database and let Visual Studio generate the
conceptual data model for us. If you choose the Empty model option here
you will have to manually create the data model which may be applicable in
certain circumstances like when you do not have a physical database while
you do the modeling. You can even create your physical database from your
model later if you choose this option and have finished your model.

[177]

LINQ to Entities: Basic Concepts and Features

2. Click on the Next button on this window.

| J»)] Choose Model Contents
— ==

‘What should the model contain?

EELEEE Empty model

from
database|

Generates the model from a database. Classes are generated from the model when the project is compiled.
This wizard also lets you specify the database connection and database objects to include in the model.

Mext = Finisk Cancel

3. Now the Choose Your Data Connection window should be displayed.
As this is our first LINQ to Entities application there is no existing data

connection to choose from, so let's click on the button New Connection...
and set up a new data connection.

o

First choose Microsoft SQL Server as the data source and
leave .NET Framework Data Provider for SQL Server as the
data provider. Click on the OK button to close this window.

Change Data Source m

Data source: o
Microsoft SQL Server Description

Microsoft SQL Server Compact 3.5 Use this selection to connect to
Microsoft SQL Server Database File Microsoft SQL Server 2005 or above, or
<other=

to Microsoft SQL Azure using the NET
Framework Data Provider for SQL Server.

Data provider:

[.NEI' Framework Data Provider for SQL & V]

[] Always use this selection [

[178]

Chapter 7

The Connection Properties window should be displayed next
on the screen. On this window enter your database server
name together with your database instance name if your
database instance is not the default one on your server. If it is
on your machine you can enter localhost as the server name.

Then specify the login details to your database.

Click on the Test Connection button to test your database
connection settings. You should get a Test connection
succeeded message. If not, modify your server name or login
details and make sure your SQL Server service is started. If
your SQL Server is on another computer and your firewall

is turned on remember to enable the SQL Server port on the
SQL Server machine.

Now select Northwind as the database name. If you

don't see Northwind in the database list you need to install
it to your SQL server (refer to the previous chapter for
installation details).

The Connection Properties window should be like this now:

' Connection Proj i EE‘

Enter information to connect to the selected data source or click "Change" to
choose a different data source and/or provider.

Data source:

Microsoft 5L Server (SqlClient) Change...

Server name:

localhost - Refresh

L Log on to the server i

1 Use Windows Authentication
@) Use SQL Server Authentication
User name: sa
Password:

[#] Save my password

Connect to a database

@ Select or enter a database name:
orthwind| i

) Attach a database file:

|
Advanced...
| Test Connection [aK]| Cancel I

LINQ to Entities: Basic Concepts and Features

° Click on the OK button on the Connection Properties
window to go back to the Entity Data Model Wizard.

The Entity Data Model Wizard should be like this now:

& AJJ—/ Choose Your Data Connection

Which data connection should your application use to connect to the database?

Imylaptop.l\lorthwind.dbo v‘ [MNew Connection...]

Entity connection string:

metadata=res://*/Northwind.csdl|res://*/Northwind.ssdl| »
res://*/Northwind.msl;provider=5ystern.Data.SqlClient; provider connection string="Data
Source=localhostInitial Catalog=Northwind;Persist Security Info=Trug;User ID=5a"

Save entity connection settings in App.Config as:

MNorthwindEntities

l < Previous H Mext = l Finis

4. On the Choose Your Database Objects page, select table Products,
Categories and view Current Product List, then click on the Finish button:

[180]

Chapter 7

! 4;) Choose Your Database Objects

Which database objects do you want to include in your model?

4 [V15 Tables|
. J Eétegories (dbo)
[[3 CustomerCustormerDemo (dbo)
== | CustomerDemographics (dbao)
[Customers (dbo)
[T Employees (dbo)
FE EmployeeTerritories (dbo)
[C123 Order Details {dbe)
[7]=3 Orders (dbo)
[V Preducts (dba)
[T]=] Region (dbo)
[T shippers (dbo)
[T Suppliers (dbo)
[T Territories (dba)
4 _\'@ Views
Dﬁ Alphabetical list of products (dbe) |
D’ﬁ Category Sales for 1997 (dbe)
Current Product List (dbo) —

»

m

Pluralize or singulanze generated object names
[¥] Include foreign key columns in the model
Model Namespace:

MorthwindModel

| Fnisn || cance |

After you click on the Finish button the following two files will be added to the
project: Northwind.edmx and Northwind.designer.cs. The first file holds the
model of the entities including the entity sets, entity types, conceptual models,
and the mappings. The second one is the code for the model which defines the
ObjectContext of the model.

[181]

LINQ to Entities: Basic Concepts and Features

At this point the Visual Studio LINQ to Entities designer should be open, as shown

in the following image:

File Edit View Project Build Debug Team Data

Architecture Test Tools

Analyze Window Help

S e e N T

xoqioo] . uojdg jamas =}

MNorthwind.edmx® 3 Badellel K

“#: Category

= Properties
i<} CategorylD
F CategoryName
4 Desc ripticn
ﬁ‘ Picture
= Navigation Properties

'-”—EI. Products

Program.cs

¢ Product

= Properties
'@ﬂ ProductlD
' ProductName
o SupplierD
= CategorylD
2 Qua ntityPerUnit
5 UnitPrice

5 UnitsInStock
:.t_::. Currenl_Fmdu (2_ 7 UnitsOnOrder
ﬁ‘? ReorderLevel
f Discontinued
=] Navigation Properties
= Category

= Properties
#4 ProguctlD
@ﬁ ProductMName

= Mavigation Properties

Mapping Details - Current Product List

Type here to search

1 PRt Northwind.edmx
4 [&] NorthwindMode!
[Entity Types
[Complex Types
[Associations
@ EntityContainer: NorthwindEntit
4 | J| NorthwindModel.Store
[Tables / Views
(33 Stored Procedures
(X Constraints

. m
‘ﬁ__ Solu.. W Tea.. EB Clas..

Properties * 0 x
MorthwindModel.Current_Product_List E ~

Ha

Abstract False
Access Public

Base Type (Mone)

Column Op.. Value/ Property

5 | 4 Tables
4 7] Mapsto Current Produ
B8 <Add a Condition>
4 [Column Mappings

Documentation
Entity Set Mame Current_Product_Lists
Name Current_Product_List

Name
The name of the entity.

‘_,',; ErrorList B Output @ Mapping Details

Generated LINQ to Entities classes

If you open the file, Northwind.Designer.cs (you need to switch from the
Model Browser to Solution Explorer to open this file), you will find that the
following classes have been generated for the project:

public partial class NorthwindEntities

ObjectContext

public partial class Product : EntityObject
public partial class Category : EntityObject

public partial class Current_Product_List

In the above four classes, the NorthwindEntities class is the main conduit through
which we'll query entities from the database as well as apply changes back to it. It
contains various flavors of types and constructors, partial validation methods, and
property members for all of the included tables. It inherits from the ObjectContext

: EntityObject

class which represents the main entry point for the LINQ to Entities framework.

[182]

Chapter 7

The next two classes are for the two tables that we are interested in. They implement
the EntityObject interface. This interface defines all of the related property
changing and property changed event methods which we can extend to validate
properties before and after the change.

The last class is for the view. This is a simple class with only two property members.
Because we are not going to update the database through this view it doesn't define
any property change or changed event method.

Querying and updating the database with
a table

Now that we have the entity classes created, we will use them to interact with the
database. We will first work with the products table to query and update records
as well as to insert and delete records.

Querying records

First we will query the database to get some products.

To query a database using LINQ to Entities we first need to construct an
ObjectContext object, like this:

NorthwindEntities NWEntities = new NorthwindEntities();

We can then use LINQ query syntax to retrieve records from the database:

IEnumerable<Product> beverages = from p in NWEntities.Products
where p.Category.CategoryName == "Beverages"
orderby p.ProductName
select p;

The preceding code will retrieve all of the products in the Beverages category sorted
by product name.

You can use this statement to print out the total number of beverage products in the
Northwind database:

Console._WriteLine(""There are {0} Beverages', beverages.Count());

[183]

LINQ to Entities: Basic Concepts and Features

Updating records

We can update any of the products that we have just retrieved from the database,
like this:

// update a product

Product bevl = beverages.ElementAtOrDefault(10);
if (bevl = null)

{
decimal newPrice = (decimal)bevl._UnitPrice + 10.00m;
Console_WriteLine(""The price of {0} is {1}. Update to {2}",

bevl.ProductName, bevl.UnitPrice, newPrice);

bevl.UnitPrice = newPrice;
// submit the change to database
NWEntities.SaveChanges();

}

We used the ElementAtOrDefault method, not the ElementAt method, just in case

there was no product at element 10. We know that there are 12 beverage products in
the sample database so we increased the eleventh product's price by 10.00 and called
NWEntities.SaveChanges() to update the record in the database. After you run the

program, if you query the database, you will find that the eleventh beverage's price
is increased by 10.00.

Inserting records

We can also create a new product and then insert this new product into the database
by using the following code:

// add a product

Product newProduct = new Product {ProductName="new test product" };
NWEntities.Products.AddObject(newProduct);
NWEntities.SaveChanges();

Console._WriteLine("'Added a new product with name
"new test product®");

Deleting records

To delete a product we first need to retrieve it from the database and then call the
DeleteObject method, as shown in the following code:

// delete a product
IQueryable<Product> productsToDelete =
from p in NWEntities.Products
where p.ProductName == "new test product”

[184]

Chapter 7

select p;

if (productsToDelete.Count() > 0)

{

foreach (var p in productsToDelete)

{

}

NWEntities.DeleteObject(p);
Console.WriteLine(''Deleted product {0}", p-ProductlD);

NWEntities.SaveChanges();

}

Note that here we used a variable of the type, 1Queryable<Product>, instead of
IEnumerable<Product>, to hold the result of the LINQ to Entities query. Since
IQueryable extends the interface, IEnumerable, we can use either one of them
though with 1Queryable we can do much more, as we will see in next section.

Running the program

The file, Program.cs, has been used so far. Note that we added one method to contain
all of the test cases for table operations. We will add more methods later to test other
LINQ to Entities functionalities. The following is the content of this file now.

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace TestLINQToEntitiesApp

{

class Program

{

static void Main(string[] args)

{

}

// CRUD operations on tables
TestTables();

Console_WriteLine(""Press any key to continue ...");
Console_ReadKey();

static void TestTables()

{

NorthwindEntities NWEntities = new NorthwindEntities();

// retrieve all Beverages
IEnumerable<Product> beverages =
from p in NWEntities.Products

[185]

LINQ to Entities: Basic Concepts and Features

where p.Category.CategoryName == "'Beverages"
orderby p.ProductName
select p;

Console. _WriteLine("There are {0} Beverages",
beverages.Count());

// update one product
Product bevl = beverages.ElementAtOrDefault(10);
if (bevl = null)

{
decimal newPrice = (decimal)bevl.UnitPrice + 10.00m;
Console._WriteLine(""The price of {0} is {1}.
Update to {2}",
bevl.ProductName, bevl.UnitPrice, newPrice);
bevl.UnitPrice = newPrice;
}

// submit the change to database

NWEntities.SaveChanges();

// insert a product

Product newProduct = new Product { ProductName =
"new test product™ };

NWEntities.Products.AddObject(newProduct);

NWEntities.SaveChanges();

Console._WriteLine(""Added a new product™);

// delete a product
IQueryable<Product> productsToDelete =
from p in NWEntities.Products

where p.ProductName == "new test product™
select p;
if (productsToDelete.Count() > 0)
{
foreach (var p in productsToDelete)
{
NWEntities.DeleteObject(p);
Console_WriteLine("'Deleted product {0}",
p-ProductlD);
}
NWEntities.SaveChanges();
}

NWEntities.Dispose();

[186]

Chapter 7

If you run the program now the output will be:

.
B C:\Windows\system32\cmd.exe - | ER X

iThere are 12 Beverages

The price of Sasquatch Ale is 14.8880. Update to 24.0008
fidded a new product

Deleted product 78

Press any key to continue ...

View Generated SQL statements

You may wonder which actual SQL statements are used by LINQ to Entities to
interact with the databases. In this section we will explain two ways to view the
generated SQL statements used by LINQ to Entities queries.

There are two ways to view the generated LINQ to Entities SQL statements. The first

one is to use the ObjectQuery.ToTraceString method and the second one is to use
SQL Profiler.

View SQL statements using ToTraceString

First let's write a new test method to contain one LINQ to SQL query:

static void ViewGeneratedSQL()

{
NorthwindEntities NWEntities = new NorthwindEntities();

IQueryable<Product> beverages =
from p in NWEntities.Products
where p.Category.CategoryName == '‘Beverages"
orderby p.ProductName
select p;

NWEntities.Dispose();

[187]

LINQ to Entities: Basic Concepts and Features

As we have learned from the previous section the variable, beverages, is

of the type, IQueryable<Product>, which is a derived class of the type,
IEnumerable<Product>. Actually this type is also a subtype of System.Data.
Objects.ObjectQuery<Product> which has a method, ToTraceString, we can

use to view the generated SQL statements. To make it easier for us to call the
ObjectQuery.ToTraceString method we now define an extension method like this:

public static class MyExtensions

{
public static string ToTraceString<T>(this IQueryable<T> t)
{
string sql = "";
ObjectQuery<T> oqt = t as ObjectQuery<T>;
if (oqt '= null)
sgql = ogt.ToTraceString(Q);
return sql;
}
}

Note that this extension method is inside a non-generic static class, MyEntensions, and
we put this class inside the namespace, TestLINQToEntitiesApp, which is the same
namespace as our test class so we can use it inside our test method without worrying
about importing its namespace.

Now we can print out the SQL statement of the LINQ to Entities query using
this statement:

// view SQL using ToTraceString method
Console._WriteLine(""The SQL statement is:" +
beverages.ToTraceString());

and we also need to add a using statement to import the namespace for the
QueryObject class:

using System.Data.Objects;

The file, Program.cs, should now be like this:

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Data.Objects;

namespace TestLINQToEntitiesApp
{

class Program

[188]

Chapter 7

static void Main(string[] args)

// CRUD operations on tables
//TestTables();

ViewGeneratedSQL();

Console._WriteLine(""Press any key to continue ...");
Console.ReadKey();

static void TestTables()

// the body of this method is omitted to save space

static void ViewGeneratedSQL()

NorthwindEntities NWEntities = new NorthwindEntities();

IQueryable<Product> beverages =
from p in NWEntities.Products
where p.Category.CategoryName == "‘Beverages"
orderby p.ProductName
select p;

// view SQL using ToTraceString method
Console._WriteLine("The SQL statement is:\n" +
beverages.ToTraceString());

NWEntities.Dispose();

public static class MyExtensions

public static string ToTraceString<T>(this IQueryable<T> t)

{
{
}
{
}
{
}
}
{
{
}
}

string sql = """
ObjectQuery<T> ogt = t as ObjectQuery<T>;
if (oqt '= null)
sql = oqt.ToTraceString();
return sql;

[189]

LINQ to Entities: Basic Concepts and Features

Run this program and you will see following output:

BN C\Windows\system32\cmd.exe |£|E|J—hj

The SQL statement is: -
. [FroductID] AS [ProductID],.

. [ProductMame] AS [ProductMamel.
- [SupplierID] AS [SupplierID].
.[CategorylD] AS [CategoryIDl,
.[QuantityPerUnit] AS [QuantityPerlnit].
. [UnitPricel AS [UnitPricel.
.[UnitsInStock] AS [UnitsInStockl.
. [UnitgOnOrder] AS [UnitsOnOrder].
. [ReorderLevel] AS [ReorderLevell.
. [Discontinued] AS [Discontinued]
[dho 1. [Products] AS [Extentl]
INNER JOIN [dhol.[Categories] AS L[Extent2] ON [Extentll.[CategoryID] = [Extent2]
.[CategorylD]
WWHERE N’ Beverages' = [Extent2].[CategoryMamel
ORDER BY [Extentll.[ProductNamel ASC
Press any key to continue ...

View SQL statements using Profiler

With the ToTraceString method we can view generated SQL statements for some
LINQ to Entities expressions but not all of them. For example when we add a new
product to the database or when we execute a stored procedure in the database there
is no 1Queryable object for us to use to view the generated SQL statements. In this
case we can use the SQL profiler to view the SQL statements. But if you go to view
the generated SQL statements for the above query you may be confused as there is no
SQL statement displayed in SQL profiler. We will not explain the steps to view SQL
statements in Profiler here but we will explain it in the next section together with the
explanation of another important LINQ to Entities feature — deferred execution.

Deferred execution

One important thing to remember when working with LINQ to Entities is the
deferred execution of LINQ.

Standard query operators differ in the timing of their execution depending on
whether they return a singleton value or a sequence of values. Those methods

that return a singleton value (for example Average and Sum) execute immediately.
Methods that return a sequence defer the query execution and return an enumerable
object. These methods do not consume the target data until the query object is
enumerated. This is known as deferred execution.

In the case of the methods that operate on in-memory collections, that is, those
methods that extend 1Enumerable<(0f <(T>)>), the returned enumerable object
captures all of the arguments that were passed to the method. When that object is
enumerated the logic of the query operator is employed and the query results

are returned.

[190]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Chapter 7

In contrast, methods that extend 1Queryable<(0f <(T>)>) do not implement
any querying behavior but build an expression tree that represents the query to
be performed. The query processing is handled by the source 1Queryable<(0f

<(T>)>) object.

Checking deferred execution with
SQL profiler

To test the deferred execution of LINQ to Entities, let's first add the following
method to our Program.cs file:

static void TestDeferredExecution()

{

}

NorthwindEntities NWEntities = new NorthwindEntities();

// SQL is not executed
IQueryable<Product> beverages =
from p in NWEntities.Products
where p.Category.CategoryName == ''Beverages"
orderby p.ProductName
select p;

// SQL is executed on this statement
Console_WriteLine("'There are {0} Beverages",
beverages.Count());

NWEntities.Dispose();

Call this method from the Main method of the program and comment out the calls
to the two previous test methods, then do the following;:

1.

4.

Open Profiler (A1l Programs\Microsoft SQL Server 2005(Cor 2008)\
Performance Tools\SQL 2005(or 2008) Profiler).

Start a new trace on the Northwind database engine.

Go back to Visual Studio and set a break point on the first line of the
TestDeferredExecution method.

Press F5 to start debugging the program.

The program is now running and the cursor should be stopped on the first line of the
method. Press F10 to move to the next line of code and press F10 again to step over

this line of code:

IQueryable<Product> beverages =
from p in NWEntities.Products

[191]

LINQ to Entities: Basic Concepts and Features

where p.Category.CategoryName == "Beverages"
orderby p.ProductName
select p;

Switch to Profile and you will find that there is nothing in there.

However, when you press /10 in Visual Studio and before the following
statement is executed, you will see from the profiler that a query has been
executed in the database:

Console_WriteLine(""There are {0} Beverages', beverages.Count());

The query executed in the database is like this:

SELECT
[GroupBy1].-[Al1] AS [C1]
FROM (SELECT
COUNT(1) AS [A1]
FROM [dbo].[Products] AS [Extentl]

INNER JOIN [dbo].[Categories] AS [Extent2] ON [Extentl].[CategorylD]
= [Extent2].[CategorylD]

WHERE N"Beverages®™ = [Extent2].[CategoryName]
) AS [GroupBy1l]

The Profiler window should look as shown the following image:

. — | =)
f] SQL Server Profiler - [Untitled - 1 (MyLaptop]] I —— =
k¥ File Edit View Replay Tools Window Help —[|=] %
dNSefac(r s BEANG & P
| EvertClass TextData] ApplicationMName N
Audit Login -- network protocol: LPC set quote... .Net SglcClient Data Provider
SQL:BatchStarting SELECT [GroupBy1l].[A1] AS [C1] F... .Net Sgiclient Data Provider
SgL:BatchCompleted SELECT [GroupByl].[A1] AS [C1] F... .Net SglicClient Data Provider

4 1 b

SELECT
[GroupBy1].[A1] AS [C1]
FROM [SELECT
COUNT1) AS [A1]
FROM [dbo].[Products] As [Extenti]
INNER JOIN [dbo].[Categories] AS [Extent2] ON [Extenti].[CategoryID] = [Extentz].[CategoryID]
WHERE N'Beverages' = [Extent2].[categoryName]
) AS [GroupBy1l]

mn

| m g

Ready. Rows: &

Connections: 1

From Profiler we know that, under the hood, LINQ actually first created a
sub-query to get the total beverage products count then got this count from the
sub-query result. It also used an inner join to get the categories of products.

[192]

Chapter 7

Note that with LINQ to SQL we can set the DataContext object's Log property to
Console.Out and then view the generated SQL statements from the stand output
for all subsequent LINQ to SQL expressions. Unfortunately, with LINQ to Entities,
the ObjectContext does not have such a property to let us view generated SQL
statements. We have to use either ToTraceString or Profiler to view the generated
SQL statements.

Deferred execution for singleton methods

If the query expression returns a singleton value the query will be executed as soon
as it is defined. For example, we can add this statement to our test deferred execution
method to get the average price of all products:

// SQL is executed on this statement

decimal? averagePrice = (from p in NWEntities.Products
select p.UnitPrice).Average();

Console._WriteLine(""The average price is {0}", averagePrice);

Start SQL Profiler then press F5 to start debugging the program. When the cursor is
stopped on the line to print out the average price, from the Profiler window, we see a
query has been executed to get the average price and when the printing statement is
being executed no more query is executed in database.

The Profiler window is like this:

| 2 SQL server Profiler - [Un

53 File Edit View Replay Tools Window Help NEE
By e N =, T -
HOgEfac|rn ZEAAG HE| P
| EventClass TextData] ApplicationMame NTUserName | Logi
Audit Login -- network protocol: LPC set guote... .Net Sglclie... sa
SqQL:Batchstarting SELECT [Groupey1].[A1] ASs [C1] F... .Net sglcldie... sa
SqL:BatchCompleted SELECT [GroupBy1].[A1] AS [C1] F... -Net SglicClie... sa
4| L1} | 2
ELECT a
[GroupByi].[A1] AS [Ci] A
FROM (SELECT |
AVG([Extenti]. [UnitPrice])] AS [Al] |
FROM [dbo]. [Products] AS [Extenti] |=
1 AS [GroupByi]
1 1 T
Trace is running. Ln3, Col2 |Rows:3
Connections: 1

[193]

LINQ to Entities: Basic Concepts and Features

Deferred execution for singleton methods
within sequence expressions

However, just because a query is using one of the singleton methods such as sum,
average, or count, this doesn't mean that the query will be executed as soon as it
is defined. If the query result is a sequence the execution will still be deferred.
The following is an example of this kind of query:

// SQL is not executed even there is a singleton method
var cheapestProductsByCategory =

from p in NWEntities.Products

group p by p.CategorylD into g

select new

{
CategorylD = g.Key,
CheapestProduct =
(from p2 in g
where p2.UnitPrice == g.Min(p3 => p3.UnitPrice)
select p2).FirstOrDefault()
};

// SQL is executed on this statement
Console._WriteLine(""Cheapest products by category:');
foreach (var p in cheapestProductsByCategory)

{

Console._WriteLine("categery {0}: product name: {1} price: {2}",
p.CategorylD, p.CheapestProduct.ProductName,
p.CheapestProduct.UnitPrice);

}

Start SQL Profiler then press F5 to start debugging the program. When the cursor is
stopped at the beginning of the foreach line, from Profiler, we don't see the query
statement to get the minimum price for any product. When we press F10 again the
cursor is stopped on the variable, cheapestProductsByCategory, in the foreach
line of code but we still don't see the query statement to get the cheapest products.

Then after we press F10 again the cursor is stopped on the in keyword in the
foreach line of code and this time, from Profiler, we see the query is executed.

[194]

Chapter 7

File Edit View Project Build Debug Teamn Data Architecture Test Tools Analyze Window Help
Hﬂl&ﬁdﬁlq'“ ‘leebug |'—3§_ﬂa$\Eﬁﬂﬂ';-i-_jﬂg,%azlﬁl

MNorthwind.edmx CEIEGR<E Program.cs @ ~ IntelliTrace v I X

| EE RS

_AfSTestLINQTDEntlt\esApp Program | 5% TestDeferredExecution() - &
CategoryID = g.Key, =0 2l Categorl = || All Threads[= |
CheapestProduct = N h” — —|
(from p2 in g eare
where p2.UnitPrice == g.Min(p3 => p3.UnitPrice) oDehugger'BEgmninc
select p2).FirstOrDefault() '“I}ehugger Breakgoin
b Cotorie vt g o I
i (8) Debugger: Step Reco
/7 SQL is executed on this statement ._)Dehngger Step Reco
Console.WriteLine(“Cheapest products by category:™); :
= foreach (var p in cheapestProductsByCategory) = QDehugger:Step Reco
{ R | O Debugger: Step Reco
Console.WriteLine("categery {8}: product name: b price: {2}| e —
p. [atEgor‘yID p ChaapestPrnduct Productlame # ADO.NET: Execute Re
A + linditDod 1 Dhoae
ﬁSQLSErVErPraﬂer [Untitled - 1 (MyLaptop]] l == x bl
ﬂ % File Edit View Rep\ay Tools Window Help [¢
EFEEEE IR : HREETE
”] EventClass i TextData | ApplicationMame | NTUserName LoginMame
| | Audit Login -- network protocol: LPC sSet quote... .Net sqlclie... sa
| SQL:BatchStarting SELECT 1 AsS [C1], [GroupByl].[K... .Net sglclie... sa
SQL:BatchCompleted SELECT 1 AS [C1], [GroupBy1].[K... .Net sglclie... s5a
| < i J ’
[SELECT A
h As [c1], e
[GroupByi].[K1] AS [CategoryID], L4
[Limit1]. [ProductID] AS [ProductID],
;L'!m'ltl] [ProductName] AS [ProductName],
[Limit1]. [SupplierID] AS [SupplierID],
[Limiti].[CategoryID] AS [CategoryID1],
[Limit1]. [QuantityPerUnit] AS [QuantityPerunit], o
[imit11. [UnitPricel AS MlinitPricel.
« | I dl 3
Traceis running.] i‘LnZ, Col2 |Rows:3

[Connections: 1

The actual SQL statements for this LINQ to Entities expression are like this:

SELECT
1 AS [C1],
[GroupByl1].[K1] AS [CategorylD],
[Limitl].[ProductliD] AS [ProductlD],
[Limitl].[ProductName] AS [ProductName],
[Limitl].[SupplierID] AS [SupplierliD],
[Limitl].[CategorylD] AS [CategorylD1],
[Limitl].[QuantityPerUnit] AS [QuantityPerUnit],
[Limitl].[UnitPrice] AS [UnitPrice],
[Limitl].[UnitsInStock] AS [UnitsInStock],
[Limitl].[UnitsOnOrder] AS [UnitsOnOrder],
[Limitl].[ReorderLevel] AS [ReorderLevel],
[Limitl].[Discontinued] AS [Discontinued]
FROM (SELECT

[Extentl].[CategorylD] AS [K1],

MIN([Extentl].[UnitPrice]) AS [A1l]

FROM [dbo].[Products] AS [Extentl]

GROUP BY [Extentl].[CategorylD]) AS [GroupBy1l]

[195]

LINQ to Entities: Basic Concepts and Features

OUTER APPLY (SELECT TOP (1)
[Extent2].[ProductlD] AS [ProductlD],
[Extent2].[ProductName] AS [ProductName],
[Extent2].[SupplierID] AS [SupplierliD],
[Extent2].[CategorylD] AS [CategorylD],
[Extent2].[QuantityPerUnit] AS [QuantityPeruUnit],
[Extent2].[UnitPrice] AS [UnitPrice],
[Extent2].[UnitsInStock] AS [UnitsInStock],
[Extent2].[UnitsOnOrder] AS [UnitsOnOrder],
[Extent2].[ReorderLevel] AS [ReorderlLevel],
[Extent2].[Discontinued] AS [Discontinued]
FROM [dbo].[Products] AS [Extent2]
WHERE (([GroupBy1].[K1] = [Extent2].[CategorylD]) OR (([GroupByl].
[K1] 1S NULL) AND ([Extent2].[CategorylID] IS NULL))) AND ([Extent2].
[UnitPrice] = [GroupByl].-[Al1])) AS [Limitl]

From this output you can see that when the variable, cheapestProductsByCategory,
is accessed it first calculates the minimum price for each category. Then, for each
category, it returns the first product with that price. In a real application you probably
wouldn't want to write such a complex query in your code. Instead you may want to
put it in a stored procedure which we will discuss in the next chapter.

The test method is like this:

static void TestDeferredExecution()

{

NorthwindEntities NWEntities = new NorthwindEntities();

// SQL is not executed
IQueryable<Product> beverages =
from p in NWEntities.Products
where p.Category.CategoryName == "‘Beverages"
orderby p.ProductName
select p;

// SQL is executed on this statement
Console._WriteLine(""There are {0} Beverages",
beverages.Count());

// SQL is executed on this statement

decimal? averagePrice = (from p in NWEntities.Products
select p.UnitPrice).Average();

Console._WriteLine(""The average price is {0}", averagePrice);

// SQL is not executed even there is a singleton method
var cheapestProductsByCategory =

from p in NWEntities.Products

group p by p.CategorylD into g

[196]

Chapter 7

select new

{
CategorylD = g.Key,
CheapestProduct =
(from p2 in g
where p2.UnitPrice == g.Min(p3 => p3.UnitPrice)
select p2).FirstOrDefault()
};

// SQL is executed on this statement
Console._WriteLine('"Cheapest products by category:');
foreach (var p in cheapestProductsByCategory)

{
Console.WriteLine(
"categery {0}: product name: {1} price: {2}",
p-CategorylD, p.CheapestProduct.ProductName,
p-CheapestProduct.UnitPrice);
}

NWEntities.Dispose();
T

If you comment out all other test methods (TestTables and ViewGeneratedSQL) and
run the program you should get an output similar to the following image:

BN ChiWindows\systern32icmd.exe |£|Eli:—hj

There are 12 Beverages
The average price is 29._4861
Cheapest products hy category:
1: product name: Guarand Fantastica price: 4.5008
2: name:= Aniseed Syrup price: 10.06088
name:= Teatime Chocolate Biscuits price:
name: Geitost price: 2.5888
name:= Filo Mix price:
name: Tourtiére price:
name:= Longlife Tofu pricg:

=P
= product name: Konhuw price: 6.888
Fress any key to continue ...

Deferred (lazy) loading versus
eager loading

In one of the above examples we retrieved the category name of a product using
this expression:

p.Category.CategoryName == '‘Beverages"

[197]

LINQ to Entities: Basic Concepts and Features

Even though there is no field called categoryname in the Products table we can
still get the category name of a product because there is an association between the
Products and Category tables. In the Northwind.edmx design pane, click on the
line that connects the Products table and the Categories table and you will see all of
the properties of the association. Note that its Referential Constraint properties are
Category.CategoryID -> Product.CategoryID, meaning that category ID is the key
field to link these two tables.

Because of this association we can retrieve the category for each product and also
retrieve products for each category.

Lazy loading by default

However, even with an association the associated data is not loaded when the query
is executed. For example, suppose we use the following test method to retrieve all of
the categories, then access the products for each category:

static void TestAssociation()

{
NorthwindEntities NWEntities = new NorthwindEntities();

var categories = from c in NWEntities.Categories select c;
foreach (var category in categories)
{
Console_WriteLine("'There are {0} products in category {1}",
category.Products.Count(), category.CategoryName);
}
NWEntities.Dispose();

}

Start SQL Profiler then press F5 to start debugging the program. When the cursor is
stopped on the foreach line (after you press F10 twice to move the cursor to the in
keyword), from Profiler, we see this SQL statement:

SELECT

[Extentl]. [CategorylD] AS [CategorylD],
[Extentl]. [CategoryName] AS [CategoryName],
[Extentl]. [Description] AS [Description],
[Extentl].[Picture] AS [Picture]

FROM [dbo].[Categories] AS [Extentl]

When you press F10 to execute the printout line, from Profiler, we see this
SQL statement:

exec sp_executesql N*"SELECT
[Extentl]. [ProductlD] AS [ProductlD],

[198]

Chapter 7

[Extentl].[ProductName] AS [ProductName],
[Extentl].[SupplierID] AS [SupplierliD],
[Extentl].[CategorylD] AS [CategorylD],
[Extentl].[QuantityPerUnit] AS [QuantityPeruUnit],
[Extentl].[UnitPrice] AS [UnitPrice],
[Extentl].[UnitsInStock] AS [UnitsInStock],
[Extentl].[UnitsOnOrder] AS [UnitsOnOrder],
[Extentl].[ReorderLevel] AS [ReorderlLevel],
[Extentl].[Discontinued] AS [Discontinued]

FROM [dbo].[Products] AS [Extentl]

WHERE [Extentl].[CategorylID] = @EntityKeyValuel” ,N*"@EntityKeyValuel
int",@EntityKeyValuel=1

From these SQL statements we know that the Entity framework first goes to the
database to query all of the categories. Then, for each category, when we need to get
the total count of products, it goes to the database again to query all of the products for
that category.

This is because, by default, lazy loading is set to true, meaning that the loading of all
associated data (children) is deferred until the data is needed.

Eager loading the with Include method

To change this behavior we can use the Include method to tell ObjectContext to
automatically load the specified children during the initial query:

static void TestEagerLazylLoading()

{

}

NorthwindEntities NWEntities = new NorthwindEntities();

// eager loading products of categories
var categories = from c
in NWEntities.Categories. Include("Products'™)

select c;
foreach (var category in categories)
{
Console._WriteLine(""There are {0} products in category {1}",
category.Products.Count(), category.CategoryName);
T

NWEntities.Dispose();

As you can see, inside this test method, when constructing the LINQ to Entities
query, we added an Include clause to tell the framework to load all products
when loading the categories.

[199]

LINQ to Entities: Basic Concepts and Features

To test it start SQL Profiler and then press F5 to start debugging the program. When
the cursor is stopped on the foreach line (at the in keyword), from Profiler, you will
see this SQL statement:

SELECT

[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].

[CategorylID] AS [CategorylD],
[CategoryName] AS [CategoryName],
[Description] AS [Description],
[Picture] AS [Picture],

[C1] AS [C1],

[ProductiID] AS [ProductliD],
[ProductName] AS [ProductName],
[SupplierliD] AS [SupplierliD],
[CategorylD1] AS [CategorylD1],
[QuantityPerUnit] AS [QuantityPerUnit],
[UnitPrice] AS [UnitPrice],
[UnitsInStock] AS [UnitsInStock],
[UnitsOnOrder] AS [UnitsOnOrder],
[ReorderLevel] AS [ReorderLevel],
[Discontinued] AS [Discontinued]

FROM (SELECT

[Extentl].
[Extentl].
[Extentl].
[Extentl].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].
[Extent2].

CASE WHEN

[CategorylID] AS [CategorylD],
[CategoryName] AS [CategoryName],
[Description] AS [Description],
[Picture] AS [Picture],

[ProductID] AS [ProductiD],
[ProductName] AS [ProductName],
[SupplieriD] AS [SupplierliD],
[CategorylD] AS [CategorylD1],
[QuantityPerUnit] AS [QuantityPerUnit],
[UnitPrice] AS [UnitPrice],
[UnitsInStock] AS [UnitsInStock],
[UnitsOnOrder] AS [UnitsOnOrder],
[ReorderLevel] AS [ReorderlLevel],
[Discontinued] AS [Discontinued],
([Extent2].[ProductiD] IS NULL) THEN CAST(NULL AS int)

ELSE 1 END AS [C1]
FROM [dbo].[Categories] AS [Extentl]
LEFT OUTER JOIN [dbo].[Products] AS [Extent2] ON [Extentl].
[CategorylD] = [Extent2].[CategorylD]
) AS [Projectl]
ORDER BY [Projectl].[CategorylID] ASC, [Projectl].[C1] ASC

As you can see from this SQL statement all products for all categories are loaded
during the first query.

[200]

Chapter 7

In addition to preloading one child entity with the Include method you

can also traverse multiple child entities together. For example, you can use
Include(""Products.Orders") to preload products and orders for all categories,
if Orders is also added as an Entity to the model. You can also chain multiple
Includes to preload multiple child entities on the same level like Customers.
Include('Orders'™) . Include("'Contacts") if there is a Contacts table for
customers and customers, orders, and contacts are all added as entities to

the model.

Note that with LINQ to SQL you can set associations and eager loading
configurations with DatalLoadOptions and you can even preload some objects
with conditions. With LINQ to Entities, you don't have any other choice. You have
to preload an entity entirely.

Another difference between LINQ to SQL and LINQ to Entities is, with LINQ to SQL,
you have strong typed load options for eager loading such as LoadWith<Category>,
but with LINQ to Entities you have to put the entity names in a string expression
which might cause a runtime exception if you make a mistake in the entity names.

Joining two tables

Although associations are a kind of join in LINQ we can also explicitly join two
tables using the keyword, Join, as shown in the following code:

static void TestJoin()

{
NorthwindEntities NWEntities = new NorthwindEntities();
var categoryProducts =
from c in NWEntities.Categories
join p in NWEntities.Products
on c.CategorylD equals p.CategorylD
into productsByCategory
select new {
c.CategoryName,
productCount = productsByCategory.Count()
};
foreach (var cp in categoryProducts)
{
Console_WriteLine("'There are {0} products in category {1}",
cp.-productCount, cp.CategoryName);
}
NWEntities.Dispose();
}

[201]

LINQ to Entities: Basic Concepts and Features

This is not so useful in the above example because the tables, Products and
Categories, are associated with a foreign key relationship. If there is no foreign key
association between two tables or if we hadn't added the associations between these
two tables this will be particularly useful.

From the following SQL statement we can see that only one query is executed to get
the results:

SELECT
[Extentl].[CategorylD] AS [CategorylD],
[Extentl].[CategoryName] AS [CategoryName],
(SELECT
COUNT(1) AS [A1]
FROM [dbo]-[Products] AS [Extent2]
WHERE [Extentl].[CategorylID] = [Extent2].[CategorylD]) AS [C1]
FROM [dbo]-[Categories] AS [Extentl]

In addition to joining two tables you can also:

e Join three or more tables
e Join a table to itself
e Create left, right, and outer joins

e Join using composite keys

Querying a view
Querying a view is the same as querying a table. For example you can query the
view "current product lists" like this:

static void TestView()

{
NorthwindEntities NWEntities = new NorthwindEntities();
var currentProducts = from p
in NWEntities.Current_Product Lists
select p;
foreach (var p in currentProducts)
{
Console._WriteLine("Product ID: {0} Product Name: {1},
p-ProductlD, p.ProductName);
}
NWEntities.Dispose();
}

This will get all of the current products using the view.

[202]

Chapter 7

Summary

In this chapter, we have learned what an ORM is, why we need an ORM, and
what LINQ to Entities is. We also compared LINQ to SQL with LINQ to Entities
and explored some basic features of LINQ to Entities.

The key points covered in this chapter include:

An ORM product can greatly ease data access layer development

LINQ to Entities is one of Microsoft's ORM products that uses LINQ
against a .NET Conceptual Entity Model

The built-in LINQ to Entities designer in Visual Studio 2010 can be used
to model the Conceptual Entity Model

You can generate the Conceptual Entity Model from a physical database
in the Visual Studio 2010 Entity Model designer

The class, System.Data.Objects.ObjectContext, is the main class for
LINQ to Entities applications

LINQ methods that return a sequence defer the query execution and you
can check the timing of the execution of a query with Profiler

LINQ query expressions that return a singleton value will be executed as
soon as they are defined

By default the loading of associated data is deferred (lazy loading).
You can change this behavior with the Include method

The Join operator can be used to join multiple tables and views

Views can be used to query a database in LINQ to Entities in the same way
as for tables

[203]

LINQ to Entities: Advanced
Concepts and Features

In the previous chapter, we learned some basic concepts and features of LINQ
to Entities such as querying and updating databases with tables and views and
changing loading behaviors by using the Include method.

In this chapter, we will learn some advanced features of LINQ to Entities such as
stored procedure support, concurrency control, and transactional processing. After
this chapter, we will rewrite the data access layer of our WCF service to utilize LINQ
to Entities technology.

In this chapter we will cover:

e Calling a stored procedure
e Compiled queries

e Direct SQL

¢ Dynamic querying

e Inheritance support

e Concurrency control

e Transaction support

e Entity class validation

e Debugging LINQ to Entities programs

LINQ to Entities: Advanced Concepts and Features

Calling a stored procedure

Calling a stored procedure is different from calling a table or a view because a stored
procedure can't be called directly. A function import has to be added for the stored
procedure and its result set has to be mapped. The modeling of a stored procedure
is also different from modeling a table or view. In the following sections we will
explain how to call a simple stored procedure, how to map the returned result of a
stored procedure to an entity class, and how to create a new entity for the result set.

We will reuse the same application that we used in the previous chapter and add
more testing methods to the program.

Mapping a stored procedure to a new
entity class

First we will try to call a simple stored procedure. In the sample database there is
a stored procedure called "Ten Most Expensive Products". We will call this stored
procedure to get the top ten most expensive products.

Modeling a stored procedure

Before we can call this stored procedure we need to model it.

1. Open the Northwind.edmx designer.

2. Right-click on an empty space of the designer surface and select
Update Model from Database....

Add k
Diagram r
Zoom K
Grid r
Scalar Property Format 4

Select All

<§_‘| Mapping Details

|L'a1'| Model Browser
Update Model from Database...
Generate Database from Model...
Add Code Generation Item...
Validate

‘== Properties Alt+Enter

[206]

Chapter 8

3. From the Update Wizard | Choose Your Database Objects window, make
sure the Add tab is selected, then expand the Stored Procedures node, check
Ten Most Expensive Products (dbo), and then click on the Finish button.

 Tables
3 Views
a |45 Stored Procedures

-] CustOrderHist (dbo)
-] CustOrdersDetail (dbo)
;I CustOrdersOrders (dba)
-] Employee Sales by Country (dbo)
-] Sales by Year (dbo)
=] SalesByCategory (dbo)

J1:2] Ten Most Expensive Products (dbo)

4. On the designer surface, right-click on an empty space, and select Add
from the context menu, then select Function Import....

Entity...
Association..,
Inheritance...
Complex Type

Function Import...

5. On the Add Function Import window, select Ten_Most_Expensive_Products
as the stored procedure name them retype this name as the Function
Import Name.

6. Click on the Get Column Information button to populate the resultant set
of the stored procedure.

7. Click on the Create New Complex Type button to create a new entity type
for the result set of this stored procedure (if the Create New Complex
Type button is disabled it is because you didn't click on the Get Column
Information button).

8. Complex should be selected as Returns a Collection Of and
Ten_Most_Expensive_Products_Result should be the complex type.
Leave this unchanged.

[207]

LINQ to Entities: Advanced Concepts and Features

9. Click on the OK button.

Add Function Impart 3 m
L W e =

Function Import Name:
Ten_Most_Expensive_Products

Stored Procedure Name:

Ten_Most_Expensive_Products -

Returns a Collection Of
) None

) Scalars:

@ Complex en_Most_Expensive Products Result] -

7} Entities:

Stored Procedure Column Information

l Get Column Information I
L]
MName EDM Type Db Type MNullable MaxLength Precis |
TenMostExpensiveProducts String nvarchar false 40 i
I UnitPrice Decimal money true 19

| L]

€|] | 3
’ Create New Complex Type l N

This will add the method, Ten_Most_Expensive_Products, to the
NorthwindEntities class and add a new class, Ten_Most_Expensive_Products_
Result, as the resultant data type of the stored procedure.

Querying a stored procedure
Now, from Program.cs, we can call this stored procedure as follows:
var tenProducts = from p in

NWEntities.Ten_Most_Expensive_Products()
select p;

[208]

Chapter 8

foreach (var p in tenProducts)

{
Console.WriteLine(""Product Name: {0}, Price: {1}"",

p-TenMostExpensiveProducts, p.UnitPrice);

}

Because we know the return result of the stored procedure we can also replace
the var data type with the specific return type, as in the following code:

IEnumerable<Ten_Most_Expensive_Products_Result> tenProducts =
from p
in NWEntities.Ten_Most_Expensive_Products()
select p;

foreach (Ten_Most_Expensive_Products Result p in tenProducts)

{

Console.WriteLine(""Product Name: {0}, Price; {1}°",

p.-TenMostExpensiveProducts, p.UnitPrice);

}
The SQL statement is pretty straightforward, like this:

exec [dbo].[Ten Most Expensive Products]

and the output will look like the following screenshot:

N C\Windows\system32\cmd.exe |%‘

Name: Ciote de Blaye, Price; 263.5880

Mame : Thiiringer Rostbratwurst,. Price; 123.7788
Name: Mishi Kobe Miku, Price; 97.80008

Name: Sir Rodney's Marmalade, Price; 81.080608
Mame : Carnarvon Tigers, Price: 62.5008

Name: Raclette Courdavault, Price; 55.8008
Mame: Manjimup Dried Apples, Price; 53.0008
Mame: Tarte au sucre,. Price; 47.3888

Hame: Ipoh Coffee,. Price; 46.0800
Product Mame: Rissle Zauwerkraut,. Price; 45.6008
Press any key to continue ...

[209]

LINQ to Entities: Advanced Concepts and Features

Mapping a stored procedure to an existing
entity class

In the above example LINQ to Entities creates a new type for the return result of the
stored procedure. It actually just added the word, Result, after the stored procedure
name to create the name of the return data type. If we know that the return result is
a kind of entity we can tell LINQ to Entities to use that specific entity as the return
type instead of creating a new type.

For example let us create a stored procedure like this:

Create PROCEDURE [dbo].[GetProduct]
¢
@ProductlID int
)
AS
SET NOCOUNT ON
Select * from Products where ProductlD = @ProductlD

You can create this stored procedure in Microsoft SQL Server Management Studio
or by right-clicking on the Stored Procedures node in Server Explorer of Visual
Studio 2010 and selecting Data Connections | Northwind.dbo | Add New Stored
Procedure from the context menu.

After the stored procedure has been created add it to the Entity data model and add
a function import as well.

This time, on the Add Function Import window, you can check Entities as the
Returns a Collection Of and choose Product as the entity type. Now LINQ to
Entities will use the Product class as the return type of this stored procedure.
The method for this stored procedure will be as follows:

public ObjectResult<Product> GetProduct(Nullable<global::System. Int32>
productlID)
{

ObjectParameter productlDParameter;

if (productlD.HasValue)

{
productlDParameter = new ObjectParameter(""ProductlID"",
productlD);
}
else
{

productlDParameter = new ObjectParameter(""ProductlID"",
typeof(global: :System. Int32));

[210]

Chapter 8

}

return base.ExecuteFunction<Product>(""GetProduct™",
productlDParameter);

}

From the signature of the method we know that the return type is of the
Product class.

To call this method you can write a statement like this:

Product getProduct = NWEntities.GetProduct(l).FirstOrDefault();

The complete test method for the stored procedure should be like this:

static void TestStoredProcedure()

{
NorthwindEntities NWEntities = new NorthwindEntities();

IEnumerable<Ten_Most_Expensive_Products_Result> tenProducts =
from p
in NWEntities.Ten_Most_Expensive_Products()
select p;
Console._WriteLine("""Ten Most Expensive Products:"");
foreach (Ten_Most_Expensive_Products_Result p in tenProducts)
{
Console._WriteLine(""Product Name: {0}, Price; {1}"",
p-TenMostExpensiveProducts, p.UnitPrice);
}
// map a stored procedure to an entity class
Product getProduct = NWEntities.GetProduct(l).FirstOrDefault();
Console._WriteLine("'""\nProduct name for product 1:{0}"",
getProduct.ProductName);

NWEntities.Dispose();

[211]

LINQ to Entities: Advanced Concepts and Features

And if you run the program you should have an output like the following:

F

2 ChWindowssystem32\emd.exe F= |5 e

Product
Product

Mame =
Mame =
Hame =
Hame =
L ET T
Hame =
Hame :
Hame =

Ten Most Expensive Products: ”

Céte de Blaye. Price; 263.5088

Thiiringer Rostbhratwurst, Price; 123.7708
Mishi Kobe Niku. Price; 27.0888

Sir Rodney’s Marmalade. Price: 81.09868
Carnarvon Tigers, Price; 62_5000
Raclette Courdavault, Price: 55.0008
Hanjimup Dried Apples, Price; 53.00608
Tarte au sucre. Price; <49.3088

Hame :

Ipoh Coffee,. Price:

46 . 88688

Hame : Riossle Sauwerkraut, Price; 45.6008

name for product 1:Chai
Prezz any key to continue

Interestingly you can add another function for the same stored procedure but with
a different function name and, for the new function, you can even create a new
complex type for the result of the stored procedure instead of using the Product
class. LINQ to Entities will automatically create a new class for the return type. If
you do so the new method should be as follows:

public ObjectResult<GetProduct Result> GetProductl(Nullable<global::Sy

stem. Int32> productlD)

{
ObjectParameter productlDParameter;
it (productlD.HasValue)
{
productlDParameter = new ObjectParameter(""ProductlID"",
productiD);
}
else
{
productlDParameter = new ObjectParameter(""ProductlID"",
typeof(global::System.Int32));
}
return base.ExecuteFunction<GetProduct_Result>(""GetProductl*®",
productlDParameter);
}

The generated return type class, GetProduct_Result, is almost identical to the
Product class.

[212]

Chapter 8

Another difference between the GetProduct and GetProductl methods is that the
product you retrieved using GetProduct is managed by the Entity, ObjectContext.
Any changes you made to it will be committed back to the database if you call
SaveChanges() later. However the product you retrieved using GetProductl is
not managed by the Entity, ObjectContext, and thus won't be committed back to
the database if you call SaveChanges() later.

One thing to keep in mind is Entity Framework version 1.0 only has limited support
for stored procedures. For example it can't handle multiple result sets from the same
stored procedure, not to mention dynamic result sets (the stored procedure returns
different result sets according to different input parameters). Microsoft promises to
have better stored procedure support in version 2.0.

If you really need stored procedure support for multiple result sets or
%‘\ dynamic result sets you can download and install the Entity Framework
’ Extensions at http://code.msdn.microsoft.com/EFExtensions.

Compiled query

It is common in many applications to execute structurally similar queries many
times. In such cases it is possible to increase performance by compiling the query
once and executing it several times in the application with different parameters.
This result is obtained in LINQ to Entities by using the Compi ledQuery class.

The following code shows how to define a compiled query:

static void TestCompiledQuery()

{
NorthwindEntities NWEntities = new NorthwindEntities();

Func<NorthwindEntities, string, lQueryable<Product>> fn
= CompiledQuery.Compile((NorthwindEntities NW, string category) =>
from p in NW._Products
where p.Category.CategoryName == category
select p);
var productsl = fn(NWEntities, ""Beverages™™);
Console_WriteLine(""Total products in category Beverages: {0}"",
productsl.Count());
var products2 = fn(NWEntities, ""Seafood"™);
Console._WriteLine(""Total products in category Seafood: {0}"",
products2.Count());

NWEntities.Dispose();

[213]

LINQ to Entities: Advanced Concepts and Features

As you can see, a compiled query is actually a function. The function contains a
compiled LINQ query expression and can be called just like a regular function.

Direct SQL

LINQ to Entities is a part of the ADO.NET family of technologies. It is based on
services provided by the ADO.NET provider model. Therefore it is possible to
mix LINQ to Entities code with existing ADO.NET applications.

In some cases you might find that the query or submit changes facility of
ObjectContext is insufficient for the specialized task that you want to perform.
In these cases it is possible to use ObjectContext to issue raw SQL commands
directly to the database.

The ExecuteStoreQuery() method lets you execute a raw SQL query and converts
the result of your query directly into objects.

The ExecuteStoreCommand() method lets you directly execute SQL commands
against the database.

For example, the following code will retrieve all discontinued products and update
the price for one product:

var products = NWEntities.ExecuteStoreQuery<Product>(
""SELECT * =" +
""FROM Products """ +
""WHERE Discontinued = 0 """ +
""ORDER BY ProductName;""

):

Console._WriteLine(""Total discontinued products :-{0}"",
products.Count());

int rowCount = NWEntities.ExecuteStoreCommand(
""" update products
+ ""set UnitPrice=UnitPrice+l *"
+ ""where productlD=35"");
if (rowCount < 1)
Console_WriteLine(""No product is updated™™);
else
Console._WriteLine(""Product price is updated™');

[214]

Chapter 8

Dynamic query
In addition to using LINQ syntax we can also build queries dynamically. There are

two ways to build a query dynamically — using expressions and using parameters.
In this section we will explain both of these two methods.

Dynamic query with expressions
First let's build a dynamic query with expressions. The following code will create
two method expressions: one for the where clause and one for the order by clause:

static void TestDynamicQuery()

{
NorthwindEntities NWEntities = new NorthwindEntities();

ParameterExpression param = Expression.Parameter(typeof(Product),
Pt

Expression left = Expression.Property(param, typeof(Product).
GetProperty(""UnitPrice"™™));

Expression right = Expression.Constant((decimal)100.00, typeof(System.
Nullable<decimal>));

Expression filter = Expression.GreaterThanOrEqual (left, right);
Expression pred = Expression.Lambda(filter, param);

IQueryable products = NWEntities.Products;

Expression expr = Expression.Call(typeof(Queryable), ""Where®",
new Type[] { typeof(Product) }, Expression.Constant(products),

pred);

expr = Expression.Call(typeof(Queryable), ""OrderBy"",

new Type[] { typeof(Product), typeof(string) }, expr, Expression.
Lambda(Expression.Property(param, ""ProductName®'), param));

IQueryable<Product> query = NWEntities.Products.AsQueryable().
Provider.CreateQuery<Product>(expr);
foreach (var p in query)
Console._WriteLine(""Product name: {0}"", p-ProductName);
NWEntities.Dispose();
}

To simplify our example we save all code in one file. In a real

project it might be better to save some common code such as
lambda expressions and LINQ queries in a separate file.

[215]

LINQ to Entities: Advanced Concepts and Features

To build the first expression we first created a left expression and a right
expression and then used them to create a i lter expression. The predicate
expression is then created based on this filter expression.

As the second expression takes the first expression as an argument, it expands
the first expression to include an order by expression.

The statement with the CreateQuery method is the one that creates the query
dynamically according to the expressions that we have created before this statement.
And, of course, the query won't get executed until the foreach statement is executed.

Before running this program you need to add the following using statement to
the beginning:

using System.Ling.Expressions;

The output of the above code looks like the following screenshot:

-
B C\Windows\systemn32\cmd exe | == -E‘H-J

Product name: Cite de Blaye i
Product name: Thiiringer Rosthratuurst
Press any key to continue ...

Dynamic query with parameters

In the previous section we created a dynamic query with expressions. Besides
expressions we can also build a dynamic query string with parameters and then pass
different parameters to query the database at runtime. For example we can build a
query string like this:

string queryString =
@"""SELECT VALUE Product
FROM NorthwindEntities.Products
AS Product
WHERE Product.ProductID = @id"";

And from this query string we can build a dynamic query to the entity context:

ObjectQuery<Product> productQuery =
new ObjectQuery<Product>(queryString, NWEntities);

[216]

Chapter 8

Then at runtime we can pass in parameters to this query as:

productQuery.Parameters.Add(new ObjectParameter(""id"", 1));

Now we can query the database using LINQ, just as we did before with a regular
LINQ to Entities query:

foreach (var p in productQuery)

{

Console._WriteLine(""Product name: {0}"", p-ProductName);

}

Inheritance

LINQ to Entities supports three types of inheritance: Table Per Hierarchy (TPH)
inheritance, Table Per Type (TPT) inheritance, and Table Per Concrete (TPC)
inheritance. As table per concrete inheritance is not used as often as table per
hierarchy and table per type inheritance, in this book we will only cover the first
two inheritance types.

LINQ to Entities Table per Hierarchy
inheritance

In Table per Hierarchy inheritance there is a single database table that contains
fields for both parent information and child information. With relational data a
discriminator column contains the value that determines which class any given
record belongs to.

For example, consider a Persons table that contains everyone employed by a
company. Some people are employees and some are managers. The Persons table
contains a column named EmployeeType that has a value of 1 for managers and a
value of 2 for employees; this is the discriminator column.

In this scenario you can create a child entity of employees and populate the class
only with records that have an EmployeeType value of 2. You can also remove
columns that do not apply from each of the classes.

In our Northwind database the Customers table contains all of the customers in
different countries. Suppose that all customers share some common properties and
customers from each country also have some unique properties of their own. We
can then define a BaseCustomer entity class for all of the common properties of the
customers and define a unique child entity class for each country.

[217]

LINQ to Entities: Advanced Concepts and Features

We assume that all customers have the following properties:

Customer 1D, CompanyName, ContactName, ContactTitle, Address, City, Region,
PostalCode.

To simplify the example we will define only two child entity classes in this example:

one for customers in USA (called USACustomers) and another for customers in UK

(UKCustomers). We assume that a USACustomer has one more property of Phone and
a UKCustomer has one more property of Fax.

Modeling the BaseCustomer and USACustomer

entities
We will first model these entities with the LINQ to Entities designer.

1. Open the entities conceptual model, Northwind. edmx, right-click on an
empty space on the designer surface, then from the context menu choose
Update Model from Database... and add the Customers table to the model,
in the same way as we did for the Products table in the previous chapter.
Change the entity class name from Customer to BaseCustomer (the Entity
Set Name should be changed to BaseCustomer automatically).

2. Right-click on an empty space on the designer surface, then choose
Add | Entity... from the context menu.

Entity...
Aszociation...
Inheritance...
Complex Type

Function Import...

3. On the Add Entity window, enter USACustomer as the Entity Name, and
select BaseCustomer as the Base type. Click on OK to close this window.

[218]

Chapter 8

Propertes
Entity name:

| USACustomer

Base type
[B&se(u;lm -

Entity Set:

BaceCustomers

=

On the entity model designer surface, right-click on the Phone property of
the BaseCustomer entity, and select Cut from the context menu.

Still on the entity model designer surface, right-click on the Properties node
of the USACustomer entity, and select Paste from the context menu.

Right-click on the Country property of the BaseCustomer entity, and select
Delete from the context menu. We need to delete this property because we
will use this property as our discriminator.

Now select the USACustomer entity on the model designer, and go to the
Mapping Details window (it should be next to your Output window or
you can open it from menu View | Other Windows | Entity Data Model
Mapping Details).

On the Mapping Details window, click on <Add a Table or View>, and
select Customers from the drop-down list. Make sure Phone is mapped
to Phone and Country is not mapped.

[219]

LINQ to Entities: Advanced Concepts and Features

9. Again on the Mapping Details window, click on <Add a Condition>, and
select Country from the drop-down list. Select = as the operator, and enter
USA as the Value / Property.
Mapping Details - USACustomer *AX
Colurmn Operator Value / Property
B | 4 Tables
4 7] Maps to Customers
£3 When Country = LsA]
B <Add a Condition>
4 [Column Mappings
=] Country : nvarchar - o
=] Phone: nvarchar - % Phone: String
B <Add a Table or View>

W Error List | Output [YERERIEETH

10. Now we have finished modeling the base customer and USA customer

entities. If you build the solution now you should see no errors.

Modeling the UKCustomer entity

Next we need to model the UKCustomer entity. This entity will inherit from the
BaseCustomer entity but will have an extra property of Fax.

1.

On the Northwind.edmx Entity Designer surface, right-click on an empty
space, then choose Add | Entity from the context menu.

On the Add Entity window, enter UKCustomer as the Entity Name, and
select BaseCustomer as the Base type. Click on OK to close this window.

On the entity model designer surface, right-click on the Fax property of the
BaseCustomer entity, and select Cut from the context menu.

Still on the entity model designer surface, right-click on the Properties node
of the UKCustomer entity, and select Paste from the context menu.

Now select the UKCustomer entity on the model designer, and go to the
Mapping Details window (it should be next to your Output window

or you can open it from menu View | Other Windows | Entity Data
Model Mapping Details).

On the Mapping Details window, click on <Add a Table or View>, and
select Customers from the drop-down list. Make sure Fax is mapped
to Fax and Country is not mapped.

[220]

Chapter 8

7. On the same window, click on <Add a Condition>, and select Country
from the drop-down list. Select = as the operator and enter UK as the
Value / Property.

8. Now the TPH inheritance model is finished. The model for the customer
part should be like this image:

| #+ BaseCustomer 2 | #= USACustomer R
=* BaseCustomer

I = Properties _ | = Properties
#4 CustomerD “ Dhone
j"iompan}fName | = Mavigation Properties
ﬁ} ContactMame
= ContactTitle
“M Address _
g,. | #z UKCustomer £
= Ky =* BaseCustomer
E3" Region E= i
E3 PostalCode i F'r.-.:-pertles

= Fax

| =l Navigation Prope...
! | = Mavigation Properties

Generated classes with TPH inheritance

Save the model and open the Northwind.designer .cs file. You will find that
three classes have been added to the model. The first class is the BaseCustomer
class which has this signature:

[EdmEntityTypeAttribute(NamespaceName="""NorthwindModel """,
Name="""BaseCustomer"'")]

[Serializable()]

[DataContractAttribute(lsReference=true)]

[KnownTypeAttribute(typeof(USACustomer))]

[KnownTypeAttribute(typeof(UKCustomer))]

public partial class BaseCustomer : EntityObject

Note that its class body neither contains the properties, Phone and Fax, nor Country.
This is because Phone is now contained in, entity, USACustomer, and Fax in
UKCustomer, and Country is used as the discriminator for the inheritance. The two
KnownTypeAttribute attributes are generated from the inheritance properties we set
in the model.

[221]

LINQ to Entities: Advanced Concepts and Features

The other two classes are for the derived classes; each has only one property:

public partial class USACustomer : BaseCustomer
public partial class UKCustomer : BaseCustomer

Testing the TPH inheritance

Now we can write a query to show the inheritance between the BaseCustomer and
the two derived classes.

First we can retrieve all of the USA customers by using the is operator like this:

var USACustomersl = from c
in NWEntities.BaseCustomers
where c is USACustomer
select c;

We can also use the OfType operator to retrieve the same products, as follows:

var USACustomers2 = from c
in NWEntities.BaseCustomers.O0fType<USACustomer>()
select c;

Console._WriteLine(""Total number of USA customers: {0}"",
USACustomersl.Count());

Console._WriteLine(""Total number of USA customers: {0}"",
USACustomers2.Count());

Run the program and you will see both queries return 13.

We can also use the as operator to search for all the customers that are USA
customers:

var USACustomers3 = from c
in NWEntities.BaseCustomers
select c as USACustomer;

In all of the above three queries Phone is a property of the returning item which
means it is of the USACustomer type. Also, all of the BaseCustomer properties are
available because the returning item's data type is a child of the BaseCustomer type.

Similarly we can retrieve all UKCustomers and use its Fax property, as follows:

var UKCustomers = from c
in NWEntities.BaseCustomers.O0fType<UKCustomer>()
select c;

[222]

Chapter 8

The test method should be like this:

static void TestTPHInheritance()

{

NorthwindEntities NWEntities = new NorthwindEntities();

var USACustomersl = from c
in NWEntities.BaseCustomers
where c is USACustomer
select c;

var USACustomers2 = from c
in NWEntities.BaseCustomers.OfType<USACustomer>()
select c;

Console_WriteLine(""Total number of USA customers: {0}"",
USACustomersl.Count());

Console_WriteLine(""Total number of USA customers: {0}"",
USACustomers2.Count());

var USACustomers3 = from c
in NWEntities.BaseCustomers
select ¢ as USACustomer;

foreach (var c in USACustomers3)

{
if (c = null)
{
Console._WriteLine(""'USA customer: {0}, Phone: {1}"",
c.CompanyName, c.Phone);
}
}

var UKCustomers = from c
in NWEntities.BaseCustomers.OfType<UKCustomer>()
select c;

foreach (var c in UKCustomers)
Console_WriteLine("""UK customer: {0}, Fax: {1}°",
c.CompanyName, c.Fax);

NWEntities.Dispose();

[223]

LINQ to Entities: Advanced Concepts and Features

The output of this is shown in the following screenshot:

EE C\Windows\system32icmd.exe |ﬂl-£—h]

Total number of USA customers: 13

Total number of USA customers: 13

A customer: Great Lakes Food Market. Phone: (583> 55576555
customer: Hungry Coyote Import Store. Phone: (583> 555-6874
customer: Lazy K Hountry Store, Phone: (589> 555-7969
customer: Let’s Stop N Shop. Phone: (415> 555-5938
customer: Loneszome Pine Restauwrant, Phone: (5@3>» L55-7573
customer: 0ld World Delicatessen. Phone: (987> 555-7584

Save—a—lot Markets,. Phone: (208> L55-8B@77
Eplit Rail Beer & Ale,. Phone: <387> L55-4688
The Big Cheese. Phone: (583> 555-3612
The Cracker Box. Phone: (486> 555-5834
customer: Trail's Head Gourmet Provisionewrs, Phone: 286> 5558257
customer: White Clover Markets., Phone: (286> 5554112
customer: Arouwnd the Horn. Fax: (171> 5556758
customer: B's Beuverages, Fax:
customer: Consolidated Holdings, Fax: (171> 555-917%9
customer: Eastern Connection,. Fax: (171> 555-3373
customer: Island Trading. Fax:
customer: Morth-sSouth. Fax: (171> L555-2L30
customer:= Seven Seas Imports,. Fax: (171> 555-5646
ess any key to continue ...

customer
customer
customer
customer

custnmEP; Rattlesnake Canyon Grocery, Phone: (585> 555-5939

LINQ to Entities Table per Type inheritance

In Table per Type inheritance there is a parent database table that contains fields
for parent information and a separate database table that contains additional fields
for child information. With relational data a foreign key constraint links those tables
together to provide the detailed information for each entity.

For example, let's consider the same Persons table that contains common properties
for everyone employed by a company. Some people are employees and some are
managers. All employee-specific information is saved in a separate table, Employees,
while all manager-specific information is saved in the table, Managers.

In this scenario you can create a parent entity for people, and two child entities —one
for employees and another for managers.

Again in our Northwind database, the Customers table contains all of the customers
in different countries. Suppose that all customers share some common properties
and customers from each country also have some unique properties of their own.
We can then define a BaseCustomer entity class for all of the common properties

of the customers and define a unique child entity class for each country.

[224]

Chapter 8

We assume that all customers have the following properties:

Customer 1D, CompanyName, ContactName, ContactTitle, Address, City, Region,
PostalCode.

To simplify the example we will define only two child entity classes in this example:
one for customers in USA (called USACustomers) and another for customers in UK
(UKCustomers). We assume that a USACustomer has one more property of Phone and
a UKCustomer has one more property of Fax.

However this time we will create those two child entities from two new database
tables, not from the same Customers table as we did in the last section.

Preparing database tables

We first need to create those two new database tables so that later on we can add
them to our model.

1. Open SQL Management Studio and execute the following SQL statements to
create two new tables. These two statements also fill in these two new tables
with some initial data from the Customers table:
select CustomerlID,Phone
into USACustomers
from Customers
where Country = "USAT

select CustomerlD,Fax
into UKCustomers
from Customers

where Country = "UK"

2. Set CustomerID as the primary keys for both tables.

[225]

LINQ to Entities: Advanced Concepts and Features

3. Add a foreign key relationship between the USACustomers table and the

Customers table. The column, Customer 1D, should be used for the foreign
key. Do the same for the UKCustomers table. The foreign key mappings for
USACustomers should be as shown in the following screenshot:

Foreign Key Relaticnships

)

Selected Relaticnship:

FK_USACustemers_Customers™ Editing properties for new relationship. The 'Tables And Columns
Specification’ property needs to be filled in before the new relationship will be
accepted.

B (General) B

Check Existing Data On Creatio Yes

2] Tables And Columns Specifical ()

Foreign Key Base Table USACustomers
Foreign Key Columns CustormerID 3
Primary/Unique Key Base Ta Customers
Primary/Unique Key Columt CustomerlD
Bl Identity
(Mame) FK_USACustomers_Customers
Description
B Table Designer il

Add || Delete

Modeling USACustomer1 and UKCustomer1 entities

Now that we have the database tables ready we need to go to the Entity designer to
add them to our model.

1.

From Visual Studio, open the Northwind.edmx Entity designer, right-click

on an empty space and select Update Model from Database.... Add the two
new tables USACustomers and UKCustomers, to the model. Note that the entity
names for these two tables are USACustomerl and UKCustomer1 as there are
already two entities with the name of USACustomer and UKCustomer.

Because of the foreign keys between those two tables and the Customers
table, there is an association between USACustomerl and BaseCustomer as
well as between UKCustomer1l and BaseCustomer. Right-click on each of
these two associations and delete them.

[226]

Chapter 8

3. Then right-click on an empty space and select Add | Inheritance... from the
context menu. Specify BaseCustomer as the base entity and USACustomer1
as the derived entity. Click on OK to close this window. Also add an
inheritance between UKCustomerl and BaseCustomer.

Add Inheritance | 7 -r:h1

Select the base and derived entities to create a new inheritance relationship.

-

Select a base entity:

| BazeCustomer - |

Select a derived entity:
| USACustomerl - |

OK | | Cancel |

e ———— ———

4. Select CustomerID from the USACustomerl entity and delete it. Also delete
CustomerID from the UKCustomer1 entity.

5. Select the USACustomerl entity, go to the Mapping Details window, and
map CustomerID : nchar to CustomerID : String. Do the same mapping for
the CustomerID property in the UKCustomer1 entity.

The finished model should now contain eight entities. The part of the model that
contains the two new customer entities should look like the following image:

G:; USACustomerl @g BaseCustomer %g USACustomer
=>» BaseCustomer = BaseCustomer
= Properties = Properties = Properties
f Phone @ﬂ CustomerlD ﬁ: Phone
= Mavigation Properties ' CompanyName = Navigation Properties
ﬁ-‘ ContactMame
f ContactTitle
g » Add : -
& UKCustomerl =) } ress <z UKCustomer
= BaseCustomer g City = BaseCustomer
Regicn
= i - +— & i
Properties f PostalCode] Properties
= Fax = Navigation Prope... ' Fax
=l Navigation Properties y, = Navigation Properties

[227]

LINQ to Entities: Advanced Concepts and Features

Generated classes with TPT inheritance

Save the model and open the Northwind.designer.cs file. You will find that
two classes have been added to the model, each having only one property:

public partial class USACustomerl : BaseCustomer
public partial class UKCustomerl : BaseCustomer

You will also find that the class, BaseCustomer, now has four KnownTypeAttribute
attributes instead of two.

Testing the TPT inheritance

Now we can write a query to show the inheritance between BaseCustomer and the
two new derived classes.

For example, the following code will retrieve the first USA customer from
USACustomers table, and print out its phone:

var usaCustomerl = (from c
in NWEntities.BaseCustomers.OfType<USACustomerl>()
select c¢).FirstOrDefault();

var phonel = *""";

if (usaCustomerl != null)

{
phonel = usaCustomerl.Phone;
Console._WriteLine("""Phone for USA customerl:{0}"",
phonel);
}

The following code will retrieve and print out the first UK customer's fax:

var ukCustomerl = (from c
in NWEntities.BaseCustomers.O0fType<UKCustomerl>()
select c)._FirstOrDefault();

var faxl = """";
if (ukCustomerl != null)
{

faxl = ukCustomerl.Fax;
Console._WriteLine("""Fax for UK customerl:{0}"",
fax1);

[228]

Chapter 8

In the same way as with the test result in previous sections when we used TPH
inheritance in the previous query to the USACustomer1 entity, Phone is a property

of the returning item and all of the BaseCustomer properties are also available
because the returning item's data type is a child of the BaseCustomer type. To the
UKCustomer1l entity it has all of the properties from the BaseCustomer entity plus the
Fax property.

Then what about the Phone column in the BaseCustomer entity? We know that there
is a Phone column in database table, Customers, and now USACustomerl inherits
BaseCustomer. Does this mean the Phone property in the child entity overrides the
Phone property in the parent entity? The answer is no. Actually there is no Phone
property in the parent entity, BaseCustomer, because we have moved it to another
child entity, USACustomer.

We can get the Phone value in the database table, Customers, through the
USACustomer entity, like in this code:

var usaCustomer = (from c
in NWEntities.BaseCustomers.O0fType<USACustomer>()
where c.CustomerlID == usaCustomerl.CustomerlD
select c
)-SingleOrDefault();

There is no compiling error for this code, but if you run the program now, you will
get an error like the following:

i. NotSupportedbxception was unhandled X

All objects in the EntitySet 'NorthwindEntities.BaseCustomers’ must have unique
primary keys, However, an instance of type

TestLINQToEntitiesApp. USACustomer' and an instance of type
TestlLINQToEntitiesApp. USACustomerl' both have the same primary key value,
‘EntitySet=BaseCustomers; CustomerlD=GREAL".

Troubleshooting tips:

i Check to determine if there is a class that supports this functionality, i -

m

Get general help for this exception.

Search for more Help Online...

Actions:

View Detail...

Copy exception detail to the clipboard

[229]

LINQ to Entities: Advanced Concepts and Features

This is because within the same object context there should be only one entity for

a primary key. In our model both USACustomer and USACustomer1 share the same
primary key, customerID. So if two entity objects are pointing to the same record
in the database we have a problem. To test this we can change the previous code to
compare the phone properties of both entities:

var usaCustomer = (from c
in NWEntities.BaseCustomers.O0fType<USACustomer>()
where c.CustomerlID == usaCustomerl.CustomerID
select new { CustomerlID = "'new PK"", c.Phone }
) -SingleOrDefault();

If you run the program you will see that both phones for the first USA customer are
the same as our two different child entities. If you are not sure if they are all retrieved
from the right tables you can go to database, change one of the phones to a different
value, run it again, and verify that each child entity is from the correct database table.

The test method should be like this:

static void TestTPTInheritance()

{
NorthwindEntities NWEntities = new NorthwindEntities();

var usaCustomerl = (from c
in NWEntities.BaseCustomers.O0fType<USACustomerl>()
select c¢).FirstOrDefault();

var phonel = """";
if (usaCustomerl != null)
{

phonel = usaCustomerl.Phone;
Console._WriteLine("""Phone for USA customerl:{0}"",
phonel);
}

var ukCustomerl = (from c
in NWEntities.BaseCustomers.O0fType<UKCustomerl>()
select c¢).FirstOrDefault();

var faxl = """";
if (ukCustomerl != null)
{

faxl = ukCustomerl.Fax;
Console._WriteLine("""Fax for UK customerl:{0}"",
fax1);

}

var usaCustomer = (from c
in NWEntities.BaseCustomers.O0fType<USACustomer>()

[230]

Chapter 8

where c.CustomerlID == usaCustomerl.CustomerlD
select new { CustomerlID = ""new PK"'", c.Phone }
) -SingleOrDefault();

if (usaCustomer != null)

{
var phone = usaCustomer.Phone;
Console._WriteLine(

"""Phone for USA customer from Customers table:{0}"",
phone);
}
NWEntities.Dispose();
}
The output of this is shown in the following screenshot:
B ChiWindows\system3Z2homd exe |ﬂ|ﬂ“

Phone for USA customerl:{5H3)> 5557555
Fax for UK customerl:<171> 555-675%8
Phone for USA customer from Customers table:(583)> 555-7555

Press any key to continue ...

Handling simultaneous (concurrent)
updates

If two users are updating the same record at the same time a conflict will occur.
There are normally three different ways to handle this conflict. The first method is to
let the last update win so no controlling mechanism is needed. The second one is to
use a pessimistic lock, in which case, before updating a record, a user will first lock
the record and then process and update the record. At the same time all other users
will have to wait for the lock to be released in order to start the updating process.

[231]

LINQ to Entities: Advanced Concepts and Features

The third and most common mechanism in an enterprise product is the optimistic
locking. A user doesn't lock a record for update when the data is retrieved but

when the application is ready to commit the changes it will first check to see if any
other user has updated the same record since that data was retrieved. If nobody

else has changed the same record the update will be committed. If any other user
has changed the same record the update will fail and the user has to decide what

to do with the conflict. Some possible options include overwriting the previous
changes, discarding their own changes, or refreshing the record and then reapplying
(merging) the changes.

LINQ to Entities supports optimistic concurrency control in two ways. Next we
will explain both of them.

Detecting conflicts using a data column

The first way is to use a regular data column to detect the conflicts. We can use
the Concurrency Mode property for this purpose.

Explaining the Concurrency Mode property

At design time the Concurrency Mode property can be set for a column to be one
of these two values:

e Fixed

e None

For a column there are three values to remember: the original value before update,
the current value to be updated, and the database value when the change is
submitted. For example, consider the case where you fetch a product record from the
database with a UnitPrice of 25.00 and update it to 26.00. After you fetched this
product, but before you submit your changes back to the database, somebody else
may have updated this product's price to 27.00. In this example, the original value
of the price is 25.00, the current value to update is 26.00, and the database value
when the change is submitted is 27.00.

When the change is submitted to the database the original value and the database
value are compared. If they are different a conflict is detected.

Now let us look at these two settings. The first setting of the property, Concurrency
Mode, is Fixed, which means that the column will be used for conflict detecting.
Whenever this column is being changed its current value and database value will
be checked to see if it has been updated by other users. If it has been a conflict will
be raised.

[232]

Chapter 8

The second setting, None, means that column will not be used for conflict checking.
When a change is submitted to the database the application will not check the status
of this column. So even if this column has been updated by other users it won't raise
an error. This is the default setting of this property. So, by default, no column will be
used for conflict detecting.

Adding another Entity Data Model

To test the concurrency of Entity Framework we have to add a second Entity Data
Model to the project for the same database. The reason is that, with Entity Framework,
each database record has a unique entity key within the Entity Data Model. All entity
instances of the same database record will share the same entity key in the data

model —even the entities are created within different object contexts.

To explain why this will stop us from testing the concurrency support of Entity
Framework let's first list the steps we will take to test the concurrency control.

Below is the list of steps we will make to test the concurrency control of Entity
Framework:
1. Retrieve a product from the database.
Update its price in memory.
Retrieve the same product from the database.
Update its price in memory again.

Submit the changes made in step 4 to the database.

AN N

Submit the changes made in step 2 to the database.

Theoretically, with the concurrency control, the commit in step 6 should fail because
the product price has been changed by another user/process. However, if we use the
same Entity Data Model, the product that is retrieved in step 1 will be cached. So in
step 3 the product object from the cache will be returned, thus the update in step 4 will
be based on the update in step 2. The commit to the database in step 5 will actually
contain both changes in step 2 and step 4, therefore the commit to the database in step
6 will not fail because it really doesn't change anything in the database.

That's why we need to add another Entity Data Model to the project, so we can have
two independent entity objects pointing to the same record in the database. The
following are the steps to add this new Entity Data Model:

1. From Visual Studio Solution Explorer, right-click on the project,
TestLINQToEntitiesApp, and select Add | New Item.

2. Select Visual C# Items | ADO.NET Entity Data Model as the template
and change the item name to Northwindl.edmx.

[233]

LINQ to Entities: Advanced Concepts and Features

3. Select Generate from database as the Model Contents.

Select the existing Northwind connection as the Data Connection.
Choose the table, Products, as the Database Objects.

Click on the Finish button to add the model to the project.

Open Northwindl.edmx and select the entity, Product.

Change its Entity Set Name to Productls.

Change its Name to Productl.

o X NS 9o

. Steps 8 and 9 are essential because there is already a public class the
% Product, in our project. If you leave it unchanged and try to build/run
/— the solution you will find your Northwindl.designer.cs file is empty
because the designer can't generate it due to the name conflicts.

Writing the test code

Now that we have a new Entity Data Model added to the project we can write the
following code to test the concurrency control of Entity Framework:

// first user
Console._WriteLine(""First User ..."");
Product product = (from p in NWEntities.Products
where p.ProductlID == 2
select p).First();
Console._WriteLine(""Original price: {0}"", product.UnitPrice);
product.UnitPrice += 1.0m;
Console._WriteLine("""Current price to update: {0}"",
product.UnitPrice);
// process more products

// second user
Console._WriteLine("'""\nSecond User ..."");
NorthwindEntitiesl NWEntitiesl = new NorthwindEntitiesl();
Productl productl = (from p in NWEntitiesl.Productls
where p.ProductlID == 2
select p).First();
Console._WriteLine(""Original price: {0}"", productl.UnitPrice);
productl.UnitPrice += 2.0m;
Console._WriteLine("""Current price to update: {0}"",
productl.UnitPrice);
NWEntitiesl.SaveChanges();
Console_WriteLine(""Price update submitted to database™);
NWEntitiesl.Dispose();

[234]

Chapter 8

// First user is ready to

Console._WriteLine("""\nFirst User ..

NWEntities.SaveChanges();
Console._WriteLine(""Price

submit changes

;s

update submitted to database"');

In this example, we will first retrieve product 2 and increase its price by 1.0. Then we
will simulate another user to retrieve the same product and increase its price by 2.0.
The second user will submit the changes first with no error. When the first user tries
to submit the changes and the price has already been changed by the second user
the update will still be saved to the database without any problem. This is because,
by default, the concurrency control is not turned on so the later change will always

overwrite the previous change.

Testing the conflicts

Now run the program. You will get an output as shown in the following screenshot:

BN C\Windows'\system32\cmd.exe

First User ...
Original price: J0.00608
Current price to update:

Second User ...

Original price: J8.0088
Current price to update:
P update subnmitted to

User ...
update submitted to
Fress

any key to continue ...

=] E S
31 .9A688
32 06088
database

database

From this image we know both updates have been submitted to the database without

any problem. If you query the databas

e you will find the price of product 2 is now

31, not 32, because the first user's update overwrote the second user's update.

[235]

LINQ to Entities: Advanced Concepts and Features

Turning on concurrency control

Now open Northwind.edmx, click on the UnitPrice member of the Product entity
and change its Concurrency Mode to Fixed, as shown in following screenshot:

Properties *AX
NorthwindModel.Product.UnitPrice Property -
= %
4 -
Precision 19
Scale 4
a4
Fixced [=]=
Default Value i
- Documentation MNone
Entity Key Farse
MName UnitPrice -
Concurrency Mode

Make sure you open the Northwind.edmx model, not the new Northwindl.edmx
model, because the second user within the new Northwind1.edmx model will
submit to database first meaning that there will be no conflict for this update.

Run the program again. You will see an exception this time because the price
column is now used for conflict detecting. If you query the database now you will
find the price for product 2 is now 33 because it hasn't been overwritten by the first
user's update, which would have updated its price to 32 if it hadn't failed due to the
concurrent conflict.

The output is like this:

B Ch\Windows\system32\omd.exe i |ﬂlﬁj

ice: 31.0000
[Current price to update: 32.00688

Becond User ...

Original m : 31.A088

Current price to update: 33.88688
Price update submitted to database

First User ...

Inhandled Exception: System.Data.OptimisticConcurrencyException: Store update,. i
nsert, or delete statement affected an uwnexpected number of ro {@>. Entities m|
lay have been modified or deleted since entities were loaded. Refresh ObjectState
Manager entries.
System.Data.Mapping.Update.Internal.UpdateTranslator.ValidateRowshAffected(
Affected. UpdateCommand sourced
em.Data.Mapping.Update.Internal.UpdateTranslator.Update(IEntityStateMa
ateManager, I[EntityAdapter adapter)
ystem.Data.EntityClient.Entityfidapter . Update{IEntityStateManager entityCal

System.Data.0bjects.ObjectContext.SaveChanges(SavelOptions options?
System.Data.0bjects.ObjectContext .SaveChanges{>
TeﬂtLINQToEntltleﬂﬂpp Program. TeﬁtSlmultaneou“Chang g{> in C:=~S0AWithWCFan
ine 489
at Te"tLINQToEntltleﬂﬂpp Program. I‘Ialn(Stl 1ng[] in GC:~80AWithWCFandLINGg4
Proje tg\TegtLINQ\TeutLINQToEntlt1eaﬂpp\P1uglam cs: [
Press any key to continue . .

[236]

Chapter 8

To resolve this conflict we can add an exception handling block around the first
user's update, like in this code:

// First user is ready to submit changes
Console._WriteLine(""\nFirst User ..."");
try
{
NWEntities.SaveChanges();
Console._WriteLine(""Price update submitted to database"');
}
catch (OptimisticConcurrencyException e)
{
Console_WriteLine("""Conflicts detected. Refreshing ..."");
NWEntities.Refresh(RefreshMode.ClientWins, product);
NWEntities.SaveChanges();
Console._WriteLine(""Price update submitted to database after

refresh™'");

}

You need to add a using block to the Program.cs file for the concurrency
exception type:

using System.Data;

The complete test method should be like this:

static void TestSimultaneousChanges()

{

NorthwindEntities NWEntities = new NorthwindEntities();

// Tirst user
Console_WriteLine(""First User ..."");
Product product = (from p in NWEntities.Products
where p.ProductlD ==
select p).First();
Console._WriteLine(""Original price: {0}"", product.UnitPrice);
product._UnitPrice += 1.0m;
Console_WriteLine(""Current price to update: {0}"",
product._UnitPrice);
// process more products

// second user
Console_WriteLine("""\nSecond User ..."");
NorthwindEntitiesl NWEntitiesl = new NorthwindEntitiesl();
Productl productl = (from p in NWEntitiesl.Productls
where p.ProductlD ==
select p).First();

[237]

LINQ to Entities: Advanced Concepts and Features

Console._WriteLine(""Original price: {0}"", productl.UnitPrice);

productl.UnitPrice += 2.0m;

Console._WriteLine("""Current price to update: {0}"",
productl._UnitPrice);

NWEntitiesl.SaveChanges();

Console._WriteLine(""Price update submitted to database™);

NWEntitiesl.Dispose();

// First user is ready to submit changes
Console_WriteLine(""\nFirst User ..."");
try
{
NWEntities.SaveChanges();
Console._WriteLine(""Price update submitted to database™);

}

catch (OptimisticConcurrencyException e)
{
Console._WriteLine("""Conflicts detected. Refreshing ..."");
NWEntities.Refresh(RefreshMode.ClientWins, product);
NWEntities.SaveChanges();
Console._WriteLine(""Price update submitted to database after
refresh™");
}
NWEntities.Dispose();

}

Run the program now and you will get an output like in following screenshot:

B C\Windows'\systerm32\cmd.exe | =R |-'§3""J

First User ...
Original price: 33.080608
Current price to update: 34.0088

Becond User ...

Original price: 33.00608

Current price to update: 35.06808
rice update submitted to database

irst User ...
Exception detected. Refreshing ...
Price update submitted to databhase after refresh
Press any key to continue ...

[238]

Chapter 8

From this output we know the first user's update failed due to the concurrency conflict
but, after the refresh, it won the conflict so the final price in the database should be 34 —
the second user's update has been overwritten by the first user's update.

With this mechanism only the involved column is protected for
concurrent updates. All other columns can still be updated by multiple
* users or processes without causing conflicts. For example, if you
% change the previous code to update the UnitsInStock property you
"~ won't get a concurrency exception because the concurrency mode of
UnitslInStock is not set to Fixed and the concurrency setting of
UnitPrice doesn't check the UnitsInStock column in the database.

Detecting conflicts using a version column

The second and more efficient way to provide conflict control is to use a version
column. If you add a column of type, Timestamp or ROWERSION, when you add
this table to the entity model, this column will be marked as a concurrency control
version property.

Version numbers are incremented and timestamp columns are updated every time
the associated row is updated. Before the update, if there is a column of this type,
LINQ to Entities will first check this column to make sure that this record has not
been updated by any of the other users. This column will also be synchronized
immediately after the data row is updated. The new values are visible after
SaveChanges finishes.

[239]

LINQ to Entities: Advanced Concepts and Features

Adding a version column

Now let us try this in the Products table. First we need to add a new column
called RowVersion which is of the type, timestamp. You can add it within SQL
Server Management Studio, as shown in the following image:

Column MName Data Type Allow Mulls -
% ProductlD int [l
ProductMame nvarchar{40) [l
SupplierlD int
CategorylD int

QuantityPerUnit nvarchar(20))

UnitPrice money 1
UnitsInStodk smallint
UnitsOnOrder smallint
ReorderLevel smallint
Discontinued bit [l
} Rowersion timestamp

Modeling the Products table with a version column

After saving the changes we need to refresh our data model to take this change to the
data model. Follow these steps to refresh the model:

1. From Visual Studio, open the Northwind.edmx Entity designer, right-click
on an empty space, and select Update Model from Database.... Click on
the Refresh tab and you will see Products in the refresh list.

2. Click on the Finish button.

Add | Refresh | Delete |

a |3 Tables
iz | Categories (dbo)
] Customers (dbo)
] Products (dba)
] UKCustemers (dbo)
] UsACustomers (dbo)
- L Views
- |5 Stored Procedures

[240]

Chapter 8

Now a new property, RowVersion, has been added to the Northwind.edmx data
model. However, its Concurrency Mode is set to None now so you need to change
it to Fixed. Note that its StoreGeneratedPattern is set to Computed which is to
make sure this property will be refreshed every time after an update. The following
screenshot displays the Concurrency Mode and StoreGeneratedPattern properties
of the new RowVersion entity property:

Properties * A X
NorthwindModel.Product.RowVersion Property ~
o= 515
StoreGeneratedPattern Computed e
a
Fixed Length True
Max Length 8
a4
fxed [3]
Default Value (Mone)
> Documentation =
Entity Key False
Mame RowVersion
Mullable (Mone)
Type Binary -
Concurrency Mode

Writing the test code

We can write similar code to test this new version controlling mechanism:

static void TestVersionControl ()

{
NorthwindEntities NWEntities = new NorthwindEntities();

// first user
Console_WriteLine(""First User ..."");
Product product = (from p in NWEntities.Products
where p.ProductlD ==
select p).First(Q);
Console_WriteLine(""Original unit in stock: {0}"",
product._UnitsInStock);
product.UnitsinStock += 1;

Console._WriteLine("""Current unit in stock to update: {0}""

[241]

LINQ to Entities: Advanced Concepts and Features

product.UnitsInStock);
// process more products

// second user
Console._WriteLine("'""\nSecond User ..."");
NorthwindEntitiesl NWEntitiesl = new NorthwindEntitiesl();
Productl productl = (from p in NWEntitiesl.Productls
where p.ProductlD ==
select p).First();
Console_WriteLine(""Original unit in stock: {0} ",
productl.UnitsInStock);
productl.UnitsInStock += 2;
Console._WriteLine("""Current unit in stock to update: {0}"",
productl.UnitsInStock);
NWEntitiesl.SaveChanges();
Console._WriteLine(""update submitted to database"');
NWEntitiesl.Dispose();

// First user is ready to submit changes
Console_WriteLine(""\nFirst User ..."");
try
{
NWEntities.SaveChanges();
}
catch (OptimisticConcurrencyException)
{
Console.WriteLine(""Conflicts detected. Refreshing ..."");
NWEntities.Refresh(RefreshMode.ClientWins, product);
NWEntities.SaveChanges();

Console.WriteLine(""update submitted to database after
refresh™™");

}

NWEntities.Dispose();

[242]

Chapter 8

Testing the conflicts

This time we tried to update UnitlInStock for product 3. From the output we
can see a conflict was detected again when the first user submitted changes to
the database.

BN C\Windows\system32iemd.exa | =HEE X

irst User ..
Original unlt in stock: 14
Current unit in stock to update:- 15

Second User ..

Original wunit in stock: 14

Current unit in stock to update: 16
update submitted to database

irst User

Conf licts dét-:ectecl Hefreshing ..
update submitted to database after vefresh
Press any key to continue ...

[

4 11}
i

Transaction support

In the previous section we learned that simultaneous changes by different users
can be controlled by using a version column or the Concurrency Mode property.
Sometimes the same user may have made several changes and some of the changes
might not succeed. In this case we need a way to control the behavior of the overall
update result. This is handled by transaction support.

LINQ to Entities uses the same transaction mechanism as ADO.NET, that is, it uses
implicit or explicit transactions.

Implicit transactions

By default, LINQ to Entities uses an implicit transaction for each SaveChanges call.
All updates between two SaveChanges calls are wrapped within one transaction.

For example, in the following code, we are trying to update two products. The
second update will fail due to a constraint. However, as the first update is in a
separate transaction, the update has been saved to the database and the first update
will stay in the database:

static void TestimplicitTransaction()

{
NorthwindEntities NWEntities = new NorthwindEntities();

[243]

LINQ to Entities: Advanced Concepts and Features

}

Product prodl = (from p in NWEntities.Products
where p.ProductlID == 4
select p).First(Q);
Product prod2 = (from p in NWEntities.Products
where p.ProductlID == 5
select p).First();
prodl.UnitPrice += 1;
// update will be saved to database
NWEntities.SaveChanges();
Console._WriteLine(""First update saved to database™™);

prod2.UnitPrice = -5;
// update will fail because UnitPrice can"t be < 0
// but previous update stays in database

try
{
NWEntities.SaveChanges();
Console.WriteLine(""Second update saved to database®');
}
catch (Exception)
{
Console.WriteLine(""Second update not saved to database®');
}

NWEntities.Dispose();

The output will look like this:

irst update saved to database
Second update not saved to database
Press any key to continue ...

BN C\Windows\system32\cmd exe |£‘£-J

[244]

Chapter 8

Explicit transactions

In addition to implicit transactions you can also define a transaction scope to
explicitly control the update behavior. All updates within a transaction scope
will be within a single transaction. Thus they will all either succeed or fail.

For example, in the following code, we start a transaction scope first. Then, within
this transaction scope, we update one product and submit the change to the
database. However, at this point, the update has not really been committed because
the transaction scope is still not closed. We then try to update another product which
fails due to the same constraint as in the previous example. The final result is that
neither of these two products has been updated in database.

static void TestExplicitTransaction()

{

NorthwindEntities NWEntities = new NorthwindEntities();
using (TransactionScope ts = new TransactionScope())

{
try
{
Product prodl = (from p in NWEntities.Products
where p.ProductlD == 4
select p).First(Q);
prodl.UnitPrice += 1;
NWEntities.SaveChanges();
Console._WriteLine(""First update saved to database,
but not commited."");

// now let"s try to update another product

Product prod2 = (from p in NWEntities.Products
where p.ProductlD == 5
select p).First(Q);

// update will fail because UnitPrice can"t be < 0

prod2_UnitPrice = -5;

NWEntities.SaveChanges();

}

catch (Exception e)
{
// both updates will fail because they are wihtin one
transaction
Console_WriteLine(""Both updates failed.
Rollback the first update.™™);

}
}

NWEntities.Dispose();

[245]

LINQ to Entities: Advanced Concepts and Features

Note that TransactionScope is in .NET Assembly System.Transactions. So you
need to add a reference to System.Transactions first and then add the following
using statement to the Program.cs file:

using System.Transactions;

The output of the program is shown below:

EN C\Windows\system32\cmd.exe _

First update saved to database,. but not commited.
Both wpdates failed. Rollback the first update.
Press any key to continue ...

To use TransactionScope you need to have Microsoft Distributed
. Transaction Coordinator (MSDTC) configured properly. We will
% cover distributed transaction in detail in a subsequent chapter, so if
L you encounter any problem related to MSDTC here you can refer to
that chapter to set up your MSDTC environment or you can just skip
this section for now and come back later after reading that chapter.

If you start the program in debugging mode, after the first SaveChanges is called,
you can go to SQL Server Management Studio and query the price of product 4
using the following statement:

select UnitPrice from products (nolock) where productlD = 4

The nolock hint is equivalent to READUNCOMMITTED and it is used to retrieve dirty data
that has not been committed. With this hint you can see its price has been increased by
the first change. Then after the second SaveChanges is called, an exception is thrown,
and the transaction scope is closed. At this point if you run the query again you will
see that the price of product 4 is rolled back to its original value.

[246]

Chapter 8

After the first call to the SaveChanges method you shouldn't use the
following statement to query the price value of the product:

% select UnitPrice from products where productlD = 4
i

If you do so you will not get back a result. Instead you will be waiting
forever as it is waiting for the transaction to be committed.

Adding validations to entity classes

Validating data is the process of confirming that the values entered into data objects
comply with the constraints in an object's schema, in addition to the rules established
for your application. Validating data before you send updates to the underlying
database is a good practice that reduces both errors and the potential number of
round trips between an application and the database.

The Entity designer provides partial methods that enable users to extend the
designer-generated code that runs during Inserts, Updates, and Deletes of
complete entities and also during and after individual column changes.

These validation methods are all partial methods. Therefore, there is no overhead
at all if you don't implement them because unimplemented partial methods are
not compiled into IL.

You can implement a validation method in another partial class. In our example
we can add the following method to the Program.cs file:

public partial class Product

{
partial void OnProductNameChanging(string value)
{
it (value.IndexOF(""@""") >= 0)
throw new Exception(""ProductName can not contain @"');
}
}

You can add this class right after the test methods and before the extension class.
You can also add a new file to contain only this class.

[247]

LINQ to Entities: Advanced Concepts and Features

Now we can test it using the following code:

static void TestValidations()

{
NorthwindEntities NWEntities = new NorthwindEntities();

Product product = (from p in NWEntities.Products
where p.ProductlD ==
select p).First();

try

{

product.ProductName = *""Name @ this place™";
NWEntities.SaveChanges();

}

catch (Exception e)

{

Console_WriteLine(""Update failed. Reason: {0}"", e.Message);
}
NWEntities.Dispose();
}

Run this program and you will get an output as shown in the following screenshot:

e

BN C\Windowshsystem32cmd.exe | =12 |—¢°:5-J

llpdate failed. Reason: ProductMame can not contain 0@
Prezz any key to continue ...

4 L] 3 .J

You can implement any of the validation methods for any properties before or after
the change.

[248]

Chapter 8

Debugging LINQ to Entities programs

In Visual Studio 2010, when debugging a LINQ to Entities program, we can use the
traditional Watch or Autos windows to inspect a variable. For example, after the
following line is executed, we can go to the Autos window to see the contents of the
products variable:

var products = from p in NWEntities.Products
where p.CategorylD ==
select p;

The Autos window should look like this:

Autos * [0 X
Marne Value Type <
E @ products {System . Data. Objects. ObjectQuery < TestLINQToEntitiesApp. System.Li

@ base {5ystem . Data. Objects. ObjectQuery < Testl INQToEntitiesApp. System.D
& _name "it" 4, - siring
il Name "it” 3, | string

iy Results View Expanding the Results View will enumerate the IEnumerable

B Locals ;ﬁ; Watch 1

We can also hover our mouse over the products variable, wait for the Quick Info
pop-up window to appear, and then inspect it on the fly. The pop-up Quick Info
window will appear as shown in the following image:

static void TestDebug() - 4 .E TestLINQToEntities
{ : [zd Properties
- |+2] References
% App.Config
4 & Nerthwind.edm:

orthwindEntities NWEntities = new NorthwindEntities(};

// inspect with Debugger Visualizer
var products = from n in MWEntities Products) A
=+ products {System.Data.Objects. ObjectQuery <TestLINQToEntitiesApp. Product =} % Northwind.C|
@ base {System.Data.Objects. ObjectQuery} {System.Data. Objects. ObjectQuery <Test INQToEntitiesApp. Product:
_name Q- it
2 Mame 4 - it
h'I.iE ntities.Di “# Results View ¢/ Expanding the Results View will enumerate the IEnumerable

} | L

In either of the windows we can inspect the returned result of the variable, its
properties, and even its children.

. This inspection may trigger a real query to the database. For example,

if you try to open Results View, the database will be queried to get all

" of the products that meet the search criteria. This may have some side
effects if you don't expect the query to be executed at this point.

[249]

LINQ to Entities: Advanced Concepts and Features

Summary

In this chapter, we have learned some advanced features of LINQ to Entities. At this
point we should have a good understanding of LINQ to Entities. In the next chapter,
we will apply these skills to the data access layer of our WCF service to connect to
databases securely and reliably with LINQ to Entities.

The key points covered in this chapter include:

e LINQ to Entities fully supports stored procedures

e Compiled queries can increase the performance of repeatedly-executed
LINQ queries

e LINQ to Entities allows SQL-like queries to the conceptual data model
¢ Dynamic Queries can be built at runtime using expressions or parameters

e LINQ to Entities supports table per hierarchy, table per type, and table per
concrete inheritance

e Concurrent updates can be controlled using a Concurrency Mode property
or a Version column

e By default, LINQ to Entities updates are within one implicit transaction

e Explicit transactions can be defined for LINQ to Entities updates by using
TransactionScope

e Customized validation code can be added to LINQ to Entities entity classes

e A debugging process may trigger a real query to the database

[250]

Applying LINQ to Entities to a
WCF Service

Now that we have learned all of the features related to LINQ and LINQ to Entities
we will use them in the data access layer of a WCF service. We will create a new WCF
service very similar to the one we created in the previous chapters but in this service
we will use LINQ to Entities to connect to the Northwind database to retrieve and
update a product.

In the data access layer we will use LINQ to Entities to retrieve product information
from the database and return it to the business logic layer. You will see that with LINQ
to Entities we will need only one LINQ statement to retrieve the product details from
the database in the GetProduct method and we will no longer need to worry about the
database connection or the actual query statement.

In this chapter, we will also learn how to update a product with LINQ to Entities in
the data access layer. We will see how to attach an entity object to LINQ to Entities
ObjectContext and leave all of the update work to LINQ to Entities and will also
see how to control the concurrency of updates with LINQ to Entities.

In this chapter, we will cover:

e Creating the solution

e Modeling the Northwind database in LINQ to Entities designer
¢ Implementing the data access layer using LINQ to Entities

e Modifying the business logic layer

e Modifying the service interface layer

¢ Implementing the test client

o Testing the get and update operations of the WCF service

e Testing concurrent updates with LINQ to Entities

Applying LINQ to Entities to a WCF Service

Creating the LINQNorthwind solution

The first thing we need to do is to create a test solution. In this chapter we will
modify a copy of our last solution, RealNorthwind, to test LINQ to Entities in
the data access layer.

Note that you can create the solution from scratch if you like or you can just copy and
reuse the RealNorthwind solution without any modification. If you are going to reuse
the RealNorthwind solution, wherever you see LINQNorthwind in this chapter, you
can just replace it with RealNorthwind and continue.

Here we will make a copy first then rename and change all the words Real to LINQ
so that we will have a dedicated solution to test LINQ to Entities.

Now follow these steps to create this solution:

1. Open Windows Explorer and create a new folder, LINQNorthwind,
under C:\SOAWithWCFandLINQ\Projects.

2. Copy all files and folders from the RealNorthwind project folder
C:\SOAWithWCFandL INQ\Projects\RealNorthwind to the new folder
C:\SOAWithWCFandLINQ\Projects\LINQNorthwind.

3. Under the new folder, LINQNorthwind, remove these two subfolders:
RealNorthwindService2 and RealNorthwindClient.

4. Change all the folder names under the new folder, LINQNorthwind,
from RealNorthwindxxx to L INQNorthwindxxx.

5. Change the solution file name from RealNorthwind.slIn to LINQNorthwind.
sIn and also from RealNorthwind.suo to LINQNorthwind.suo.

The structure and content of the new folder, LINQNorthwind, should be as shown
in the next screenshot:

Organize = Include in library = Share with « Mew folder

-
ProgramData A Mame

4 SOAWiIthWCFandLING
Ll Projects
HelloWorld

LINGMerthwindDAL
LINGMerthwindEntities
LINQNerthwindLogic
. LINQMerthwindService
12 LINGQNorthwind.sln
LINQMorthwind.suo

File folder
File folder

File folder

LINGQMorthwind
RealMorthwind
» | TestlLING
SQL Server 2000 Sample Databases

T

File folder

Microsoft Visual 5.

Visual Studio Solu,
+

6 items

Chapter 9

Now we have the file structures ready for the new solution but all the file contents
and the solution structure are still for the old solution. Next we need to change
them for the new solution.

We will first change all the related WCF service files. Once we have the service up
and running we will create a new client to test this new service. Follow these steps
to change the service files:

1. Start Visual Studio 2010 and open this solution: C:\SOAWi thWCFandL INQ\
Projects\LINQNorthwind\LINQNorthwind.sln.

2. Click on the OK button to close this warning dialog:

Microsoft Visual Studic

I

One or more projects in the solution were not loaded correctly.
! . Please see the Qutput Window for details,

3. Remove all five projects from Solution Explorer (they should all
be unavailable).

4. Right-click on the solution item and select Add | Existing Projects... to add
these four projects to the solution. Note that these are the projects under the
LINQNorthwind folder, not the ones under the RealNorthwind folder:

RealNorthwindEntities.csproj, RealNorthwindDAL.csproj,
RealNorthwindLogic.csproj, and RealNorthwindService.csproj.

5. In Solution Explorer, change all of the above four projects' names from
RealNorthwindxxx to LINQNorthwindxxx.

6. InSolution Explorer, right-click on each project, select Properties (or
select menu Project | LINQNorthwindxxx Properties), then change the
Assembly name from RealNorthwindxxx to LINQNorthwindxxx and
change the Default namespace from MyWCFServices.RealNorthwindxxx
to MyWCFServices. LINQNorthwindxxx

[253]

Applying LINQ to Entities to a WCF Service

The project properties for LINQNorthwindEntities are shown here:

LINQMorthwindLogic* *OXx
Application™
N/A
Build
MN/A

Build Events
Debug Assembly name: Default namespace: -

LINQMorthwindLegic FServices. LINQMorthwing
Resources

Target framework: Qutput type:
Services |.NET Framework 4 v| |C|ass Library E
Settings Startup object:

|(N0t set) '| Assel
Reference Paths
Signing Resources

Specify how application resources will be managed:
Code Analysis
@ Icon and manifest
A manifest determines specific settings for an application. To embed a custom manif ~
Ll m 3

7. Open the following files and change the word, RealNorthwind to
LINQNorthwind in these files:

ProductEntity.cs, ProductDAO.cs, ProductLogic.cs,
IProductService.cs, and ProductService.cs.

8. Open the file, app.config, in the LINQNorthwindService project and
change the word, RealNorthwind to LINQNorthwind in this file.

9. Set the project, LINQNorthwindService, as the startup project and you should
now be able to run the program. The output should be same as the one we had
for the project, Realnorthwind.

Modeling the Northwind database

In the previous section we renamed the RealNorthwind solution, LINQNorthwind
solution. Next we will apply LINQ to Entities to this new solution, LINQNorthwind.

For the data access layer, we will use LINQ to Entities instead of the raw ADO.NET
data adapters. As you will see in the next section, we will use one LINQ statement to
retrieve product information from the database and the update LINQ statements will
handle the concurrency control for us easily and reliably.

[254]

Chapter 9

As you may recall, to use LINQ to Entities in the data access layer of our WCF service,
we first need to add an Entity data model to the project. The following steps are very
similar to those described in the previous chapter. You can refer back to that chapter
for more information and screenshots if necessary.

e In Solution Explorer, right-click on the project item, L INQNorthwindDAL,
select menu option Add | New Item..., and then choose Visual C# Items |
ADO.NET Entity Data Model as the Template and enter Northwind.edmx
as the name.

o Select Generate from database, choose the existing Northwind connection,
and add the Products table to the model.

e The new column, RowVersion, should be in the Product entity as we added
it in the previous chapter. If it is not there, add it to the table with a type of
Timestamp, and refresh the entity data model.

Just as in the previous chapter, this will generate a file called Northwind.designer.
cs which contains the object context for the Northwind database. This file also
contains the Product entity class.

There is a standalone project, LINQNorthwindEntities, in the solution. As you
may recall, this is the project where we define all of the data entities for the WCF
service. However, because the entity classes are all contained inside the LINQ to
Entities designer class, this project is no longer needed. We can simply reference the
LINQNorthwindDAL project in all three layers and use the Product entity class from
the LINQNorthwindDAL project in all three layers. However there is a drawback to
this approach, that is, all three layers will have full access to the LINQNorthwindDAL
assembly. It is possible for the service interface layer to go to the data access layer
directly, bypassing the business logic layer. This is not a good practice as it is against
our layering principals. All three layers have to reference the DAL assembly, which
makes it impossible to decouple the service layer from the data access layer.

To solve this issue, here we will keep the ProductEntity project and inside the data
access layer, after we get a product from the entity model, we will convert it to our
ProductEntity type and then still return a ProductEntity object to the business logic
layer from the data access layer. In this way we don't need to expose the data access
layer at all. We also don't need to change the service interface layer or the business
logic layer because the data access method signatures are the same as before. We will
explain more when we modify the data access layer later in this chapter.

[255]

Applying LINQ to Entities to a WCF Service

Copying the connection string to the
service layer

In the previous section we added an entity model to the data access layer project. The
connection string is stored in the App.config file in the LINQNorthwindDAL project.
However this configuration file is only used by the NET Entity Modeler to retrieve
schema information from the database at design time. At runtime the configuration
file in the service interface layer is used to get the actual database connection string.
So, in this section, we will copy and paste this connection string to the service
interface layer project.

The following are the steps to add this connection string to the service interface layer:

1.
2.

Open the file, App.config, in the LINQNorthwindDAL project.

Copy the connection strings part in this file which should be like this:

<connectionStrings>

<add name="NorthwindEntities" connectionString="metadat
a=res://*/Northwind.csdl|res://*/Northwind.ssdl|res://*/
Northwind.msl;provider=System.Data.SqlClient;provider connection
string="Data Source=localhost;Initial Catalog=Northwind;User
ID=sa;MultipleActiveResultSets=True"" providerName="System.
Data.EntityClient"” />

</connectionStrings>

Open the file, App.config, in the LINQNorthwindService project.

Replace the old connectionStrings node with the above
connectionStrings node. Note that the old connection string is using
SglClient but the new connection string is using EntityClient.

Open the file, ProductDAO.cs, in the LINQNorthwindDAL project.

Remove the following line of code from this file:

string connectionString =

ConfigurationManager .ConnectionStrings['NorthwindConnectionSt
ring'].ConnectionString;

The top part of the App.config file in the LINQNorthwindService project should
be like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<connectionStrings>

[256]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Chapter 9

<add name="NorthwindEntities" connectionString="metadata=res://*/
Northwind.csdl|res://*/Northwind.ssdl|res://*/

Northwind.msl ;provider=System.Data.SqlClient;provider connection
string="Data Source=localhost;Initial Catalog=Northwind;

User ID=sa;MultipleActiveResultSets=True"" providerName="System.
Data.EntityClient" />

</connectionStrings>

<system.web>
<compilation debug="true" />
</system.web>

As mentioned at the beginning of this section, the WCF service runtime will look at the
service interface layer app.config file for the connection string. If you don't put this
connection string at the service interface layer you may get this error later when you
test this service:

Microsoft WCF Test Client |

Failed to invoke the service. Possible causes: The service is offline or inaccessible; the client-side configuration does not
match the proxgy; the existing prowy is invalid. Refer to the stack trace for more detail. You can try to recover by starting a new
I-Q-I proxy, restoring to default configuration, or refreshing the service.

Emor Details

m

Server stack trace:
at System.ServiceModel Channels. ServiceChannel. Throwf Fault Understood{Message reply, MessageFault fault, String action, MessageVer
at System.ServiceModel Channels. ServiceChannel. Handle Rephy(ProxyOperationRuntime operation, ProsyRpcé pc)
at System.ServiceModel Channels. ServiceChannel Call{String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Obji
at System.ServiceModel Channels. ServiceChannel Proxy. Invoke Service({|MethodCallMessage methodCall, ProxyOperation Runtime operatio +
4 1 [3

Close

You should leave the original connection string untouched in the
App.config file in the data access layer project. This connection
a string is used by the Entity Model Designer at design time. It is not
Lo used at all during runtime, but if you remove it, whenever you open
the entity model designer in Visual Studio, you will be prompted to
specify a connection to your database.

[257]

Applying LINQ to Entities to a WCF Service

Using LINQ to Entities in the data
access layer

Now we have the solution, the Entity model, and the connection string. Next we will
modify the data access layer to use LINQ to Entities to retrieve and update products.
We will first modify GetProduct to retrieve a product from the database and then
modify UpdateProduct to update a product in the database. In this section the
UpdateProduct method will not have concurrency control. It will simply commit the
changes to the database even though the product has been changed by other users.
In the upcoming section, Adding concurrency support, we will make further changes to
the service so that concurrent updates can be controlled properly.

Modifying GetProduct in the data access layer

We can now modify the GetProduct method in the data access layer class,
ProductDAQ, to use LINQ to Entities to retrieve a product from the database. Just as
we did in the previous chapter, we will first create an Entity, ObjectContext, and then
use LINQ to Entities to get the product from ObjectContext. The product we get from
ObjectContext will be a conceptual entity model object. We don't want to pass this
product object back to the upper-level layer because we don't want to tightly couple
the business logic layer with the data access layer. Therefore we will convert this Entity
model product object to a ProductEntity object and then pass this ProductEntity
object back to the upper-level layers.

The modified GetProduct method should be like this:

public ProductEntity GetProduct(int id)
{
NorthwindEntities NWEntities = new NorthwindEntities();
Product product = (from p in NWEntities.Products
where p.ProductID == id
select p).FirstOrDefault();
ProductEntity productEntity = null;
if (product !'= null)
{
productEntity = new ProductEntity()
{
ProductlID = product.ProductliD,
ProductName = product.ProductName,
QuantityPerUnit = product.QuantityPerUnit,
UnitPrice = (decimal)product.UnitPrice,
UnitsInStock = (int)product.UnitslInStock,
ReorderLevel = (int)product.ReorderLevel,

[258]

Chapter 9

UnitsOnOrder = (int)product.UnitsOnOrder,
Discontinued = product.Discontinued,

T
NWEntities.Dispose();

return productEntity;
}

You will recall that in the previous chapter, for the GetProduct method, we had

to create an ADO.NET connection, create an ADO.NET command object with that
connection, specify the command text, connect to the Northwind database, and send
the SQL statement to the database for execution. After the result was returned from
the database we had to loop through the DataReader and cast the columns to our
entity object one by one.

With LINQ to Entities, we only construct one LINQ to Entities statement and
everything else is handled by LINQ to Entities. Not only do we need to write less
code but now the statement is also strongly typed. We won't have a runtime error like
invalid query syntax or invalid column name. Also, an SQL Injection attack is no
longer an issue, as LINQ to Entities will also take care of this when translating LINQ
expressions to underlying SQL statements.

Modifying UpdateProduct in the data
access layer

In the previous section, we modified the GetProduct method in the data access layer
to use LINQ to Entities instead of ADO.NET. Now in this section, we will modify
the UpdateProduct method to use LINQ to Entities instead of ADO.NET. In this
section we will update a product in the database using LINQ to Entities but we will
not put concurrency control to this update. In a following section, we will turn on
concurrency control on the entity model and modify a few more lines of code to
utilize LINQ to Entities concurrency control to make sure simultaneous updates are
handled properly.

Let's modify the UpdateProduct method in the data access layer, as follows:

public bool UpdateProduct(ProductEntity productEntity)
{
// check product ID
NorthwindEntities NWEntities = new NorthwindEntities();

Product productInDB =
(from p
in NWEntities.Products

[259]

Applying LINQ to Entities to a WCF Service

where p.ProductlD == productEntity.ProductlD
select p).FirstOrDefault();
// check product
if (productInDB == null)
{
throw new Exception(*'No product with ID " +
productEntity.ProductlD);
}

// update product price

productInDB.ProductName = productEntity.ProductName;
productInDB.QuantityPerUnit = productEntity.QuantityPerUnit;
productInDB.UnitPrice = productEntity.UnitPrice;
productInDB.Discontinued = productEntity.Discontinued;
//productInDB.RowVersion = productEntity.RowVersion;

NWEntities.SaveChanges();
NWEntities.Dispose();

return true;

}

Inside this method we first retrieve the product from database then check to see if the
product to be updated is a valid product in our database. If not, processing will stop,
and an exception will be thrown.

Then we update the values of the columns, ProductName, UnitPrice,
Discontinued, and QuantityPerUnit to associated properties of the product

entity that is passed in from the service interface layer. After we call the
SaveChanges method of the entity model these columns are updated in the database.

Testing LINQ to Entities with the
WCF Test Client

Now we can run the program to test the GetProduct and UpdateProduct operations
with the WCF Test Client.

First set LINQNorthwindService as the startup project and then press Ctrl + F5 to
start the WCF Test Client. Click on GetProduct, enter a valid product ID, and click
on the Invoke button. The detailed product information should be retrieved and
displayed on the screen.

Now click on UpdateProduct, enter a valid product ID, and specify a name, price,
quantity per unit, and then click on Invoke. This product will be updated in
the database.

[260]

Chapter 9

@) WCF Test Client = | B
File Tools Help
—"ijj My Service Projects GetProduct | UpdateProduct
= ﬁ http:/Aocalhost: 8080
=5 |ProductService ||| Request
----- GetProduct{)
..... & UpdateProdu MName Value Type
@ Config File 4 product MyWCFServices. LINGNorth MyWCF Services. LING Northwin
Discontinued False System.Boolean
Product|D 55 System.Int32
ProductMame new name System.String
GuantityPerlnit 20 System.String
UnitPrice 56.78 System.Decimal
Ters Start a new proxy Invoke
Mame Value Type
{retum) True System.Boolean
<« [m 3 Formatted | #ML
Service invocation completed.

If you get a False result make sure the product ID is valid (between 0 and 77), the
product name and quantity per unit are not empty, and the unit price is greater than
0. Remember these are the conditions for the UpdateProduct operation we added in
the business logic layer.

If you get an error like The specified named connection is either not found in the
configuration, not intended to be used with the EntityClient provider, or not valid,
make sure you have copied the entity connection string to your service layer project
App.config file, as described earlier in this chapter.

Adding concurrency support

You may have noticed that in the section, Modifying UpdateProduct in the data access
layer, we commented out a line of code about the RowVersion in the ProductDAO.cs
file. This is because in our ProductEntity class there is no property for Rowversion.
Concurrent updates are not supported by this service now. Next we will modify a few
classes to add concurrent update control.

[261]

Applying LINQ to Entities to a WCF Service

Turning on RowVersion concurrency mode

At the beginning of this chapter, when we added the Products table to our entity data
model, we didn't turn on concurrency mode for the RowVersion column, even though
its data type is timestamp. We just changed the data access layer from ADO.NET to
LINQ to Entities without concurrency control. Even if we had turned on concurrency
mode for the RowVersion column on the Entity data model at that time, we still
wouldn't have concurrency control. We need to modify a few more classes to achieve
concurrency control. In this section we will explain how to add concurrency control to
our service.

To add concurrency support to our WCF service the first thing we need to do is to
turn on concurrency mode for the RowVersion column on the Entity data model.

To turn it on, just as we did in the previous chapter, open the Northwind.edmx model,
select the RowVersion property, and change its Concurrency Mode from None to
Fixed. Note that its StoreGeneratedPattern should remain as Computed. You can look
at the Turning on concurrency control section in the previous chapter for a screenshot.

Modifying the ProductEntity class

Next we need to modify the ProductEntity class to support concurrent updates.
We need to add a new property to this class to hold the RowVersion value.

To do this, open the ProductEntity.cs file in the LINQNorthwindEntities project
and add this property to the class:

public Byte[] RowVersion { get; set; }

The ProductEntity class should be like this now:

public class ProductEntity

{
public int ProductlD { get; set; }
public string ProductName { get; set; }
public string QuantityPerUnit { get; set; }
public decimal UnitPrice { get; set; }
public int UnitsInStock { get; set; }
public int ReorderLevel { get; set; }
public int UnitsOnOrder { get; set; }
public bool Discontinued { get; set; }
public Byte[] RowVersion { get; set; }

[262]

Chapter 9

Modifying the ProductDAO class

Then we need to modify the ProductDAO class to support concurrent updates. We
need to modify both the get and update methods in this layer for concurrency support.

Modifying the GetProduct method

First we need to modify the GetProduct method to return the RowVersion property
from the database. Follow these steps to make this change:

1.
2.

Open the ProductDAO. cs file in the LINQNorthwindDAL project.

Add this line of code to the GetProduct method, after the line of
Discontinued:

RowVersion = product.RowVersion

The GetProduct method in the ProductDAO class should be like this now:

public ProductEntity GetProduct(int id)

{

NorthwindEntities NWEntities = new NorthwindEntities();
Product product = (from p in NWEntities.Products
where p.ProductlID == id
select p).FirstOrDefault();
ProductEntity productEntity = null;
if (product !'= null)
{
productEntity = new ProductEntity()
{
ProductlID = product.ProductlD,
ProductName = product.ProductName,
QuantityPerUnit = product.QuantityPerUnit,
UnitPrice = (decimal)product.UnitPrice,
UnitsInStock = (int)product.UnitsInStock,
ReorderLevel = (int)product.ReorderLevel,
UnitsOnOrder = (int)product.UnitsOnOrder,
Discontinued = product.Discontinued,
RowVersion = product.RowVersion

T
NWEntities.Dispose();

return productEntity;

[263]

Applying LINQ to Entities to a WCF Service

Modifying UpdateProduct method

To modify the UpdateProduct method to support concurrent updates we need to
"force" the entity framework to treat the RowVersion value from the client as the
current RowVersion value for the variable product, InDB. It should not use the cached
entity's RowVersion value when submitting to the database. Fortunately, with Entity
Framework 4.0, we can use the detach and attach methods to achieve this.

Besides using the client side RowVersion value when updating database, we also
need to return the new RowVersion value back to the client so that the client can do
consecutive updates to the same product without causing concurrency exceptions.

The following are the specific steps to make the UpdateProduct method support
concurrent updates:
1. Retrieve the product from the database.

2. Detach it from the object context so that we can update the
RowVersion value.

Update the product's properties, including RowVersion.
Attach the product to the object context.

Mark the product entity as Modified.

Submit the product entity to the database.

NS Gk

Change the productEntity parameter to ref type, refresh its RowVersion
value after the above step so that the client can get the latest RowVersion
value after an update.

The modified method, UpdateProduct, is like this:

public bool UpdateProduct(ref ProductEntity productEntity)

{
// check product ID

NorthwindEntities NWEntities = new NorthwindEntities();

// save productlD in a variable
int productlD = productEntity.ProductlD;

Product productInDB =
(from p
in NWEntities.Products
where p.ProductlD == productlD
select p).FirstOrDefault();

// check product
if (productInDB == null)

{

[264]

Chapter 9

}

throw new Exception(*No product with ID " +
productEntity.ProductlD);
}

// First detach the object
NWEntities.Detach(productInDB);

// update product

productInDB.ProductName = productEntity.ProductName;
productInDB.QuantityPerUnit = productEntity.QuantityPerUnit;
productInDB.UnitPrice = productEntity.UnitPrice;
productInDB.Discontinued = productEntity.Discontinued;
productInDB.RowVersion = productEntity.RowVersion;

// now attach the object again

NWEntities.Attach(productinDB);

NWEntities.ObjectStateManager.ChangeObjectState(productinDB,
System.Data.EntityState.Modified);

NWEntities.SaveChanges();

//refresh the RowVersion property
productEntity.RowVersion = productInDB.RowVersion;

NWEntities.Dispose();

return true;

A few notes for the above code:

You have to save productlID in a new variable and then use it in the
LINQ query. Otherwise you will get an error saying Cannot use ref or
out parameter 'productEntity’ inside an anonymous method, lambda
expression, or query expression.

If Detach and Attach are not called, RowVersion from the database and not
from the client, will be used when submitting to database even though you
have updated its value before submitting to the database. The update will
still succeed but without concurrency control.

If Detach is not called, when you call the Attach method you will get
an error The object cannot be attached because it is already in the
object context.

If ChangeObjectState is not called Entity framework will not honor your
change to the entity object and you will not be able to save any change to
the database.

[265]

Applying LINQ to Entities to a WCF Service

Modifying the business logic layer classes

Now that we have changed the UpdateProduct method in the ProductDAO class
we need to change the business logic class to call it using the new signature. We
also need to change the UpdateProduct method in this layer to pass back the new
RowVersion value to the client:

1. Open the file, ProductLogic.cs, in the project, LINQNorthwindLogic.

2. Change the UpdateProduct function definition to be like this:
public bool UpdateProduct(ref ProductEntity product)

3. Change the last line of the UpdateProduct method to be like this:
return productDAO.UpdateProduct(ref product);

Modifying the service interface layer classes

As we have changed the signature of the business logic layer classes we need to
change the service interface layer classes to call the business logic layer with the new
signature. We also need to change the service interface layer to pass back the new
RowVersion value after an update to the client so that the client code can use the
new RowVersion to make consecutive updates.

For the service interface layer classes, we need to make the following changes to
support the concurrent updates:

e Open the file, IProductService.cs, in the project, LINQNorthwindService.

¢ Add the following property to the Product class:

[DataMember]
public Byte[] RowVersion { get; set; }

e Change the UpdateProduct definition to be like this:
bool UpdateProduct(ref Product product);

e Open the ProductService.cs file in the same project.

e Add the following line of code to the end of the method,
TranslateProductEntityToProductContractData:

product._RowVersion = productEntity.RowVersion;

[266]

Chapter 9

e Add the following line of code to the end of the method,
TranslateProductContractDataToProductEntity:

productEntity.RowVersion = product.RowVersion;

e Change the UpdateProduct method to be like this:.

public bool UpdateProduct(ref Product product)

{
/*
// TODO: call business logic layer to update product
if (product.UnitPrice <= 0)
return false;
else
return true;
*/
ProductEntity productEntity = new ProductEntity();
TranslateProductContractDataToProductEntity(product,
productEntity);
bool result = productLogic.UpdateProduct(ref productEntity);
if(result == true)
product._RowVersion = productEntity.RowVersion;
return result;
}

Testing concurrency with WCF
Test Client

Now we have concurrent support added to the service let's test it with the built-in
WCEF Test Client.

[267]

Applying LINQ to Entities to a WCF Service

Press Ctrl + F5 to start the program. Click on GetProduct, enter a valid product ID,
and then click on the Invoke button to get the product details. You should have a
screen like the following image.

&% WCF Test Client - e . . | E)
File Tools Help
=% My Servics Projects GetFroduct
=] "] http:/Aocalhost:8080/Desi
IProductService (WSH| || Request
- = GetProduct{)
=4 UpdateProduct{) MName Value Type
3 Corfig Flle i M System.int32
Femorue) Sat anew ey nvoke
MName: Value Type
4 fretum) MyWCFServices. LINGNorthwindSe »
Discontinued False System.Boolean 1
Product!D 34 System.Int32
ProductMame "Sasquatch Als” System.String
QuantityPerUnit "24 - 12 oz bottles” System.String
4 RowVersion length=8 System Byte]]
[0 0 System.Byte It |
m 0 System. Byte 17
2 0 System Byte
[31 0 System.Byte
[[4] 0 System Byte
51 0 System.Byte
I 161 43 System.Byte
[71 93 System Byte
UnitPrics 54.0000 System.Decimal o
<[) Formatted |XM|— !
Service invocation completed.

From this image we know the product, RowVersion, is returned from the database
to the client. It is of the Byte[] type.

Now click on UpdateProduct and enter the same product ID, a new name, quantity
per unit, and unit price. However, you can't enter a value to the RowVersion field
for this update because it is of the byte[] type.

If you click on the Invoke button to call the service you will get an exception like this:

_
Microsoft WCF Test Client [

Failed to invoke the service. Possible causes: The service is offiine or inaccessible; the
client-side configuration does not match the prosy; the existing praxy is invalid. Referta
\ the stack trace for more detail. *You can try to recover by starting a new proegy, restoring
o default configuration, or refreshing the service.

Emor Details
Store update, insert, or delete statement affected an unexpected number of rows (0). Entties may hav

Server stack trace:
at System.ServiceModel Channels. ServiceChannel. ThrowifFault Understood({Message reply, Messag| &
at System ServiceModel Channels ServiceChannel Handle Reply(ProxyOperation Rurtime operation,
at System.ServiceModel Channels. ServiceChannel Call{String action, Boolean oneway, ProxyOperat
at System.ServiceModel Channels. ServiceChannel Proogy. Involee Service(|MethodCallMessage methc
at System.ServiceModel Channels. ServiceChannel Proxy . Invoke(IMessage message)

4 1 3

[268]

Chapter 9

From this image we can see that the update failed due to concurrency control
(actually a concurrency exception is thrown in the data access layer). The reason is
that we didn't pass in the original RowVersion for the object to be updated and the
entity framework thinks this product has been updated by some other user.

Testing concurrency with our own client

Creating the test client

Now that the service is ready we need to create a client to test it. In this section we will
create a WinForm client to get the product details and update price for a product.

Follow these steps to create the test client:

e In Solution Explorer, right-click the solution item, and select
Add | New Project...

e Select Visual C# | Windows Forms Application as the template and change
the name to LINQNorthwindClient. Click on the OK button to add the
new project.

¢ On the form designer, add the following five controls:
° A label named 1blProductID with text, Product ID
° A textbox named txtProductID

° A button named btnGetProduct with text,
&Get Product Details

° A label named 1blProductDetails with text, Product Details

° A textbox named txtProductDetails with the Multiline
property set to True

The layout of the form is like this:

o5 Forml EI @

Product ID: Get Product Details |

Product Details

[269]

Applying LINQ to Entities to a WCF Service

e In Solution Explorer, right-click on the LINQNorthwindClient project and
select Add Service Reference....

e On the Add Service Reference window, click on the Discover button, wait
a minute until the service is displayed, then change the Namespace from
ServiceReferencel to ProductServiceRef, and click on the OK button.

The Add Service Reference window should be like the next screenshot:

Add Service Reference I B

To see a list of available services on a specific server, enter a service URL and click Go. Te browse for available
services, click Discowver.

Address:
http://localhost:3080/Design_Time_Addresses/MyWCFServices/LINQNorthwindS » | Go
Services: Operations:
(O] @; Design_Time_Addresses/MyWCF | =% GetProduct
] ProductService % UpdateProduct
5~ IProductService
e 1 - b

I 1 service(s) found at address
‘http://localhost:B080/Design_Time_Addresses/MyWCFServices/LINQMNorthwindService/ProductService/mex’,

MNamespace:
ProductServiceRef|

| Advanced... [oK] [Cancel |

Implementing the GetProduct functionality

Now that we have the test client created we will customize the client application
to test the new WCF service.

First we need to customize the test client to call the WCF service to get a
product from the database so that we can test the GetProduct operation with
LINQ to Entities.

[270]

Chapter 9

We will call a WCF service through the proxy so let's add the following lines using
statements to the form class in the file, Forml .cs:

using LINQNorthwindClient.ProductServiceRef;
using System.ServiceModel;

Then on the forms designer, double-click on the btnGetProductDetails button and
add an event handler for this button, as follows:

private void btnGetProduct_Click(object sender, EventArgs e)
{

ProductServiceClient client = new ProductServiceClient();

string result = ;

try

{
int productlD = Int32._Parse(txtProductlD.Text.ToString());
Product product = client.GetProduct(productlD);

StringBuilder sb = new StringBuilder();
sb.Append(*'ProductID:" +
product.ProductID.ToString() + "\r\n");
sb.Append(*'ProductName:"" +
product.ProductName + "\r\n');
sb.Append(*'QuantityPerUnit:" +
product.QuantityPerUnit + "\r\n');
sb.Append(""'UnitPrice:" +
product.UnitPrice.ToString() + "\r\n");
sb.Append(*'Discontinued:" +
product.Discontinued.ToString() + "\r\n");
sb.Append(*'RowVersion:");
foreach (var x in product.RowVersion.AsEnumerable())

{
sb.Append(x.ToString());
sb.Append(" ");
}
result = sb.ToString();
}
catch (TimeoutException ex)
{
result = "The service operation timed out. " +
ex.Message;
}
catch (FaultException<ProductFault> ex)
{

[271]

Applying LINQ to Entities to a WCF Service

result = "ProductFault returned: " +
ex.Detail .FaultMessage;
}
catch (FaultException ex)
{
result = "Unknown Fault: " +
ex.ToString(Q);
}
catch (CommunicationException ex)
{
result = "There was a communication problem. " +
ex.Message + ex.StackTrace;
}
catch (Exception ex)
{
result = "Other excpetion: " +
ex.Message + ex.StackTrace;
}

txtProductDetails.Text = result;

Implementing the UpdateProduct functionality

Next we need to modify the client program to call the UpdateProduct operation of
the web service. This method is particularly important to us because we will use it
to test the concurrent update control of LINQ to Entities.

First we need to add some more controls to the form. We will modify the form Ul
as follows:
1. Open the file, Forml.cs, in the LINQNorthwindClient project.
Add a label named 1bINewPrice with text, New Price.
Add a textbox named txtNewPrice.
Add a button named btnUpdatePrice with text, &Update Price.
Add a label named IblUpdateResult with text, Update Result.

Add a textbox control named txtUpdateResult with Multiline property
set to True and Scrollbars set to Both.

AL N

[272]

Chapter 9

The form should now appear as shown in the following screenshot:

& Form E=S =~
Product ID: Get Product Details

Product Details

Update Price

Update Result

Now double-click on the Update Price button and add the following event handler
method for this button:

private void btnUpdatePrice_Click(object sender, EventArgs e)
{

string result = "";
it (product !'= null)
{

try

{

// update its price
product._UnitPrice =
Decimal .Parse(txtNewPrice.Text.ToString());

ProductServiceClient client = new ProductServiceClient();
StringBuilder sb = new StringBuilder();
sb._Append(*'Price updated to ');
sb.Append(txtNewPrice.Text._ToString());
sb._Append(*"\r\n");
sb._Append(*'Update result:™);
sb._Append(client._UpdateProduct(ref product).ToString());
sb._Append(*"\r\n"");
sb._Append(*'New RowVersion:');
foreach (var x in product.RowVersion.AsEnumerable())
{

sb.Append(x.-ToString(Q));

sb.Append(* ");

}
result = sb._ToString();

[273]

Applying LINQ to Entities to a WCF Service

}
catch (TimeoutException ex)
{
result = "The service operation timed out. " +
ex.Message;
}
catch (FaultException<ProductFault> ex)
{
result = "ProductFault returned: " +
ex.Detail .FaultMessage;
}
catch (FaultException ex)
{
result = "Unknown Fault: " +
ex.ToString();
}
catch (CommunicationException ex)
{
result = "There was a communication problem. " +
ex.Message + ex.StackTrace;
}
catch (Exception ex)
{
result = "Other excpetion: " +
ex.Message + ex.StackTrace;
}
}
else
{
result = "Get product details first";
}

txtUpdateResult.Text = result;
}

Note that inside the Update Price button event handler listed above we don't get

the product from database first. Instead we reuse the same product object from the
btnGetProduct_Click method, which means we will update whatever product we
get when we click on the Get Product Details button. In order to do this we need to
move the product variable outside of the private method, btnGetProduct_Click, to
be a class variable like this:

Product product;

[274]

Chapter 9

Inside the btnGetProduct_Click method, we need not define another variable
product, but use the class member product now. The first few lines of code for
the class, Form1, should be like this now:

public partial class Forml : Form

{

Product product;
public Form1()

¢ InitializeComponent();
}
private void btnGetProduct_Click(object sender, EventArgs e)
{
ProductServiceClient client = new ProductServiceClient();
string result = "";
try
{

int productlD =
Int32_Parse(txtProductlID.Text.ToString());

product = client.GetProduct(productlD);

// More code to follow

As you can see, we didn't do anything specific with the concurrent update control
of the update, but later in the section, Testing concurrent update manually, within this
chapter, we will explain how LINQ to Entities inside the WCF service handles this
for us.

As in previous chapters, we will also capture all kinds of exceptions and display
appropriate messages for them.

Testing the GetProduct and UpdateProduct
operations

We can build and run the program to test the GetProduct and UpdateProduct
operations now. Because we are still using the WCF Service Host to host our
service, we need to start it first.

1. Make sure the project, LINQNorthwindService, is still the startup project
and press Ctrl + F5 to start it. WCF Test Client will also be started. Don't
close it or the WCF Service Host will be closed and you will not be able to
run the client application.

[275]

Applying LINQ to Entities to a WCF Service

2.

5.

Make the project, LINQNorthwindCl ient, the startup project and press
Ctrl + F5 to start it.

Alternatively you can set the solution to start up with multiple projects with

the project, LINQNorthwindService, to be started up first and the project,
LINQNorthwindClient, to be started up next. In some cases you may have to
do this because as soon as you press Ctrl + F5 to start the client project, the WCF
Service Host (and the WCF Test Client) may be closed automatically, making
the client unable to connect to the service. You may also start the service first
and then start the client from Windows Explorer by double-clicking on the
executable file of the client application.

On the Client form, Ul, enter 10 as the product ID in the Product ID textbox
and click on the Get Product Details button to get the product details. Note
that the Unit Price is now 31.0000 and the RowVersionis0000004 88, as
shown in following screenshot:

B Forml [E=NEE
Product ID: 10| | Get Product Details |
Product Details
ProductiD:10

ProductName:lkura

I QuantityPerUnit: 12 - 200 ml jars
UnitPrice:31.0000
Discontinued:False
RowVersion D 000004 88

New Price Update Price
Update Result

Now enter 32 as the product price in the New Price textbox and click on the
Update Price button to update its price. The Update Result should be True.
Note that the RowVersion has been changed to 0000 00 90 61.

[276]

Chapter 9

& Form1 - [EEEE R
PoductID: 10 | Get Product Details |
Product Details
ProductiD:10

Productame:lkura
CQuantityPerlnit:12 - 200 ml jars
UnitPrice:31.0000
Discontinued:False
RowVersion:0 000004 88

New Price 32 | Update Price |
Update Result
Price updated to 32

Update result: True
Mew RowVersion:0 00 00050 61

6. To verify the new price, click on the Get Product Details button again to get
the product details for this product and you will see that the unit price has
been updated to 32.0000.

Testing concurrent update manually

We can also test concurrent updates by using the client application,
LINQNorthwindClient.

In this section, we will start two clients and update the same product from these two
clients at same time. We will create a conflict between the updates from these two
clients so that we can test if this conflict is properly handled by LINQ to Entities.

The test sequence will be like this:

1. First client starts.

2. Second client starts.

3. First client reads the product information.

4. Second client reads the same product information.
5. Second client updates the product successfully.

6. First client tries to update the product but fails.

The last step is where the conflict occurs as the product has been updated in between
the read and the update by the first client.

[277]

Applying LINQ to Entities to a WCF Service

The steps are described in detail below:

1.

10.

11.

Start the WCF Service Host application in non-debugging mode if you
have stopped it (you have to set LINQNorthwindService as the startup
project first).

Start the client application in non-debugging mode by pressing Control + F5
(you have to make LINQNorthwindClient the startup project). We will refer
to this client as the first client. As we said in the previous section, you have
options such as how to start the WCF service and the client applications at
same time.

In this first client application, enter 10 in the Product ID textbox and click on
the Get Product Details button to get the product's details. Note that the unit
price is 32.0000 and the RowVersion is 0000 00 90 61.

Start another client application in non-debugging mode by pressing
Control + F5. We will refer to this client as the second client.

In the second client application, enter 10 in the Product ID textbox, and click
on the Get Product Details button to get the product's details. Note that the
unit price is still 32.0000 and the RowVersion is 0000 0 0 90 61. The second
client form window should be identical to the first client form window.

On the second client form, Ul, enter 33 as the product price in the New Price
textbox and click on the Update Price button to update its price.

The second client update is committed to the database and the Update
Result value is True. The price of this product has now been updated to 33
and the RowVersion has been updated to a new value of 0000 0 0 90 62.

In the second client, click on the Get Product Details button to get the
product details to verify the update. Note that the unit price is now
33.0000 and RowVersion is now 0000 0 0 90 62.

On the first client form, UI, enter 34 as the product price in the New Price
textbox and click on the Update Price button to update its price.

The first client update fails with an error message, Entities may have been
modified or deleted since entities were loaded.

In the second client, click on the Get Product Details button again to get

the product's details. You will see that the unit price is still 33.0000 and the
RowVersion is still 0 0 0 0 0 0 90 62, which means that the first client's update
didn't get committed to the database.

[278]

Chapter 9

The following image is for the second client. You can see the Update Result is True
and the price after the update is 33.

o5l Forml | = | =l é]
Froduct 1D: 10 Get Product Dietails
Product Details
Product|D:10

Producthame:lkura
CQuantityPerlnit:12 - 200 ml jars
UnitPrice:33.0000
Discontinued:False
RowVersion:0 0000 050 62

MNew Price i3 Update Price
Update Result
Price updated to 33 -

Update result: True
Mew RowVersion:0 00 00050 62

The following image is for the first client. You can see that the price before the
update is 32.0000 and the update fails with an error message. This error message
is caught as an unknown fault from the client side because we didn't handle the
concurrency exception in our service.

rnf Form1 = ||E|

Product ID: 10 | Get Product Details |

Product Details

Product!D:10
ProductMName:lkura
QuantityPerUnit: 12 - 200 ml jars
UnitPrice:32.0000
Discontinued:False
RowVersion:0 00000 30 61

New Price 3 | Update Price |
Update Result

Unknown Fault: System.ServiceModel . Fault Exception™ [+]
[System.ServiceModel. Ew:ept|onDeta|I] Store update |nsert or delete
D -

From the test above we know that the concurrent update is controlled by LINQ to
Entities. An optimistic locking mechanism is enforced and one client's update won't
overwrite another client's update. The client that has a conflict will be notified by a

fault message.

[279]

Applying LINQ to Entities to a WCF Service

Concurrent update locking is applied at the record level in the
database. If two clients try to update different records in the database

they will not interfere with each other. For example, if you repeat the
/S
previous steps to update product 10 in one client and product 11 in

another client, there will be no problem at all.

Testing concurrent update automatically

In the previous section, we tested the concurrent update control of LINQ to Entities
but, as you can see, the timing of the update is fully controlled by our input. We know
exactly when the conflict will happen. In a real production a conflict may happen at
any time, with no indication as to when and how it will happen. In this section, we
will simulate a situation such that a conflict happens randomly. We will add a new
functionality to update one product 100 times and let two clients compete with each
other until one of the updates fails.

For this test we will put the actual updates in a background worker thread so that
the main UI thread won't be blocked.

1. Open the file, Forml.cs, in the project, LINQNorthwindClient.

2. Add a new class member to the form class for the worker thread like this:

BackgroundWorker bw;

3. Go to Forml.cs design mode.
Add another button called btnAutoUpdate with the text &Auto Update.

5. Add the following click event handler for this new button:

private void btnAutoUpdate Click(object sender, EventArgs e)
{
if (product !'= null)
{
btnAutoUpdate.Text = "Updating Price ...";
btnAutoUpdate.Enabled = false;

bw = new BackgroundWorker();
bw.WorkerReportsProgress = true;
bw.DoWork += AutoUpdatePrice;
bw.ProgressChanged += PriceChanged;
bw.RunWorkerCompleted += AutoUpdateEnd;
bw.RunWorkerAsync(Q);

else

[280]

Chapter 9

}

txtUpdateResult._Text = "Get product details First";

private void AutoUpdateEnd(object sender,
RunWorkerCompletedEventArgs e)

{

}

btnAutoUpdate.Text = "&Auto Update';
btnAutoUpdate.Enabled = true;

private void PriceChanged(object sender, ProgressChangedEventArgs

e)

{

}

txtUpdateResult.Text = e._UserState.ToString(Q);

// Scroll to end of textbox

txtUpdateResult._SelectionStart = txtUpdateResult.TextLength-4;
txtUpdateResult.ScrollToCaret();

private void AutoUpdatePrice(object sender, DoWorkEventArgs e)

{

ProductServiceClient client = new ProductServiceClient();

string result = ;

try
{

// update its price
for (int i = 0; 1 < 100; i++)

{

// refresh the product first
product = client.GetProduct(product.ProductlD);

// update its price
product.UnitPrice += 1.0m;

StringBuilder sb = new StringBuilder();
sb._Append(*'Price updated to ");
sb.Append(product.UnitPrice.ToString(Q));
sb.Append(*"\r\n");

sb._Append(*'Update result:');

bool updateResult = client.UpdateProduct(ref product);
sb.Append(updateResult.ToString());

sb._Append(*"\r\n');

[281]

Applying LINQ to Entities to a WCF Service

sb.Append(*'New RowVersion:');

foreach (var x in product.RowVersion.AsEnumerable())

{
sb._Append(x.ToString());

sb._Append(*" ");

}
sb.Append('\r\n"");

sb._Append(*'Price updated ');
sb.Append((i + 1).ToString());
sb._Append(** times\r\n\r\n*);

result += sb.ToString();

// report progress
bw.ReportProgress(i+l, result);

// sleep a while

Random random = new Random();

int randomNumber = random.Next(0, 1000);
System.Threading.Thread.Sleep(randomNumber) ;

}
}
catch (TimeoutException ex)
{
result += "The service operation timed out. " +
ex.Message;
}

catch (FaultException<ProductFault> ex)

{

result += "ProductFault returned: " +
ex.Detail .FaultMessage;
}
catch (FaultException ex)
{
result += "Unknown Fault: " +
ex.ToString();
}
catch (CommunicationException ex)
{
result += "There was a communication problem. " +
ex._.Message + ex.StackTrace;
}

[282]

Chapter 9

catch (Exception ex)
{
result += "Other excpetion: " +
ex.Message + ex.StackTrace;

}

// report progress
bw.ReportProgress(100, result);

}

The concept here is that once this button is clicked it will keep updating the price of
the selected product 100 times, with a price increase of 1.00 in each iteration. If two
clients are running and this button is clicked on both the clients one of the updates
will fail as the other client will also be updating the same record.

The sequence of the updates will be as follows:

1. The first client reads the product's details, updates the product, and
commits the changes back to the database.

The first client sleeps for a while then repeats the above step.

The second client reads the product's details, updates the same product,
and commits the changes back to the database.

The second client sleeps for a while then repeats the above step.

5. At some point these two sets of processes will cross so the following events
will happen:

[e]

The first client reads the product's details

o

The first client processes the product in memory

[e]

The second client reads the product's details

The first client finishes processing and commits the changes
back to the database

The second client finishes processing and tries to commit the
changes back to the database

The second client update fails because it finds that the
product has been updated while it was still processing the
product

The second client stops

The first client keeps updating the product until it has done
so 100 times

[283]

Applying LINQ to Entities to a WCF Service

Now follow these steps to finish this test:

1. Start the WCF Service Host application in non-debugging mode if
you had stopped it (you have to set LINQNorthwindService as the
startup project first).

2. Make LINQNorthwindClient the startup project and then run it twice
in non-debugging mode by pressing Ctrl + F'5. Two clients should be up
and running.

3. From each client, enter 3 in the Product ID textbox, and click on Get Product
Details to get the product details. Both clients should display the price
as 10.0000.

4. Click on the Auto Update button on each client.

You will see that one of the clients fails while another one is keeping the updates to
the end of 100 times.

The following image shows the results in the successful client. As you can see, the
initial price of the product was 10.0000 but, after the updates, it has been changed to
132.0000. From the source code we know that this client only updates the price 100
times with an increase of 1.00 each time so we know that another client has updated
this product 22 times.

o2 Forml | = | =] ﬁ
Poduct ID: 3 | Get Product Details |
Product Details
Praduct|D:3

ProductName: Aniseed Symup
QuartityPerlnit: 12 - 550 ml bottles
UnitPrice:10.0000
Discontinued:False

RowVersion:0 00000 110 180

New Price | Update Price |
Update Result | Auto Update |
Price updated to 132.0000 [#]
Update result: True p

New RowVersion:0 00000111 47
Price updated 100 times b

The following image shows the results in the failed client. As you can see, the initial
price of the product was 10.000. After updating the price 22 times, when this client
tries to update the price again, it fails with the error message Entities may have been
modified or deleted since entities were loaded. From the results of the other client
we also know that this client has updated the product 22 times.

[284]

Chapter 9

ol Forml | = | E é]
Product ID: 3 | Get Product Details |
Product Details
Product!D:3
ProductMame:Aniseed Syrup

QuantityPerUnit:12 - 550 ml bottles
UnitPrice:10.0000
Discontinued:False

RowVersion:0 00000 110180

MNew Price | Update Price |
Update Resutt | Auto Update J
Price updated 22 times -

Unknown Fault: System. ServiceModel Fault Exception™
[System. ServiceModel . ExceptionDetail]: Store update, insert, or delete ~

. However if you enter two different product IDs in each
& client, both client updates will be successful until all 100
= updates have been made. This again proves that locking is
applied on a record level of the database.

Summary

In this chapter, we have used LINQ to Entities to communicate with the database
in the data access layer rather than use the raw ADO.NET APIs. We have used only
one LINQ statement to retrieve product information from the database and, as you
have seen, the updates with LINQ to Entities prove to be much easier than with the
raw ADO.NET data adapters. Now, WCF and LINQ are combined together for our
services so we can take advantage of both technologies.

The key points covered in this chapter include:

e The data access layer can be modeled with the LINQ to Entities designer.

¢ Business entity classes are all located inside the LINQ to Entities designer
file within the data access layer.

o Itis better to separate our own entities classes from the generated
entities classes so we can decouple the data access layer from the
service interface layer.

[285]

Applying LINQ to Entities to a WCF Service

Client applications still communicate with the service by exchanging
messages. The LINQ to Entities objects are not exposed to clients and
the technology used in the data access layer is transparent to the clients.

When updating the database in the data access layer the updated entity
has to be attached to a LINQ to Entity ObjectContext object.

Concurrent updates are handled by LINQ to Entities naturally and easily.
We just need to add one more column to the database and LINQ to Entities
will do the rest for us.

[286]

10

Distributed Transaction
Support of WCF

In previous chapters we have created a WCF service using LINQ to Entities in the data
access layer. Next we will apply settings so that this WCF service will be a distributed
service, which means that it can participate in distributed client transactions, if there
are any. Client applications will control the transaction scope and decide whether a
service should commit or rollback its transaction.

In this chapter, we will first verify that the LINQNorthwind WCF service that we built
in the previous chapter does not support distributed transaction processing. We will
then explain how to enhance this WCF service to support distributed transaction
processing and how to configure all related computers to enable distributed
transaction support. To demonstrate this, we will propagate a transaction from the
client to the WCF service and verify that all sequential calls to the WCF service are
within one single distributed transaction. We will also explain the multiple database
support of the WCF service and discuss how to configure MSDTC and the firewall
for the distributed WCF service.

We will cover the following topics in this chapter:

Creating the solution files

Testing the transaction behavior of the DistNorthwind WCF service
Enabling transaction flow in the service bindings

Modifying the service operation contract to allow transaction flow

Modifying the service operation implementation to require a
transaction scope

Configuring the Distributed Transaction Coordinator for the distributed
WCEF service

Distributed Transaction Support of WCF

o Configuring the firewall for the distributed WCF service
e Propagating a transaction from the client to the WCF service

o Testing the multiple database support of the distributed WCF service

Creating the DistNorthwind solution

In this chapter, we will create a new solution based on the L INQNorthwind solution.
We will copy all of the source code from the LINQNorthwind directory to a new
directory and then customize it to suit our needs. The steps here are very similar

to the steps in the previous chapter when we created the L INQNorthwind solution.
Please refer to the previous chapter for diagrams.

Follow these steps to create the new solution:

1. Create a new directory named DistNorthwind under the existing
C:\SOAwi thWCFandLINQ\Projects\ directory.

2. Copy all of the files under the C:\SOAwithWCFandL INQ\Projects\
LINQNorthwind directory to the C:\SOAwithWCFandLINQ\Projects\
DistNorthwind directory.

3. Remove the folder, LINQNorthwindClient. We will create a new client
for this solution.

4. Change all the folder names under the new folder, DistNorthwind,
from LINQNorthwindxxx to DistNorthwindxxx.

5. Change the solution files' names from LINQNorthwind.slIn to
DistNorthwind.sln, and also from LINQNorthwind.suo to
DistNorthwind.suo.

Now we have the file structures ready for the new solution but all the file contents
and the solution structure are still for the old solution. Next we need to change them
to work for the new solution.

We will first change all the related WCEF service files. Once we have the service up
and running we will create a new client to test this new service.

1. Start Visual Studio 2010 and open this solution: C:\SOAWi thWCFandL INQ\
Projects\DistNorthwind\DistNorthwind.sln.

2. Click on the OK button to close the projects were not loaded correctly
warning dialog.

3. From Solution Explorer, remove all five projects (they should all
be unavailable).

[288]

Chapter 10

4. Right-click on the solution item and select Add | Existing Projects... to add
these four projects to the solution. Note that these are the projects under the
DistNorthwind folder, not under the LINQNorthwind folder:

LINQNorthwindEntities.csproj, LINONorthwindDAL.csproj,
LINQNorthwindLogic.csproj, and LINQNorthwindService.csproj.

5. In Solution Explorer, change all four projects' names from
LINQNorthwindxxx to DistNorthwindxxx.

6. InSolution Explorer, right-click on each project, select Properties (or
select menu Project | DistNorthwindxxx Properties), then change the
Assembly name from LINQNorthwindxxx to DistNorthwindxxx, and
change the Default namespace from MyWCFServices.LINQNorthwindxxx
to MyWCFServices.DistNorthwindxxx.

7. Open the following files and change the word LINQNorthwind to
DistNorthwind wherever it occurs:

ProductEntity.cs, ProductDAO.cs, ProductLogic.cs, IProductService.
cs, and ProductService.cs.

8. Open the file, app.config, in the DistNorthwindService project and
change the word LINQNorthwind to DistNorthwind in this file.

The screenshot below shows the final structure of the new solution, DistNorthwind:

Solution Explorer * A X

= b | @ (2] | = E]
j Solution ‘DistMorthwind' (4 projects)
DistNorthwindDAL
< DistNorthwindEntities
(= DistMorthwindLogic
4 [DistNorthwindService
=d| Properties
| References
i bin

.. obj
5 App.config
] IProductService.cs

#] ProductService.cs

[289]

Distributed Transaction Support of WCF

Now we have finished modifying the service projects. If you build the solution now
you should see no errors. You can set the service project as the startup project, run
the program, and the output should be same as in the last chapter.

Hosting the WCF service in IS

The WCEF service is now hosted within WCF Service Host. You may still remember
in the last chapter we had to start the WCF Service Host before we ran our test client.
Not only do you have to start the WCF Service Host, you also have to start the WCF
Test client and leave it open. This is not that nice. In addition, we will add another
service later in this chapter to test distributed transaction support with two databases
and it is not that easy to host two services with one WCF Service Host.

So, in this section, we will first decouple our WCF service from Visual Studio to

host it in IIS.

As we did in the previous chapter, you can follow these steps to host this WCF
service in IIS:

1. In Windows Explorer, go to the directory C:\SOAWithWCFandL INQ\
Projects\DistNorthwind\DistNorthwindService.

2. Within this folder create a new text file, ProductService.svc, to contain
the following one line of code:

<%@ServiceHost Service="MyWCFServices.DistNorthwindService.
ProductService"%>

3. Again within this folder copy the file, App.config, to Web.config and
remove the following lines from the new Web.config file:

<host>
<baseAddresses>
<add baseAddress="http://localhost:8080/

Design_Time_Addresses/MyWCFServices/
DistNorthwindService/ProductService/" />

</baseAddresses>
</host>

4. Now open IIS Manager, add a new application, DistNorthwindService, and
set its physical path to C:\SOAWithWCFandL INQ\Projects\DistNorthwind\
DistNorthwindService. If you choose to use the default application
pool, DefaultAppPool, make sure it is a .NET 4.0 application pool.

If you are using Windows XP you can create a new virtual directory,
DistNorthwindService, set its local path to the above directory, and
make sure its ASP.NET version is 4.0.

[290]

Chapter 10

From Visual Studio, in Solution Explorer, right-click on the project item,
DistNorthwindService, select Properties, then click on the Build Events
tab, and enter the following code to the Post-build event command line box:

copy -*_.* _.\

With this Post-build event command line, whenever DistNorthwindService
is rebuilt the service binary files will be copied to the C:\SOAWithWCFandL INQ\
Projects\DistNorthwind\DistNorthwindService\bin directory so that the
service hosted in IIS will always be up-to-date.

DistNorthwindService A X

Application
N/A
Build
N/A
Build Events

Pre-build event command line: -
Debug

Resources

Services ~

Settings Edit Pre-build .. |

Reference Paths Post-build event command line:
. copy AN
Signing
WCF Options -
3
Code Analysis

Edit Post-build ...

a ’ ’ Tl 3

6. From Visual Studio, in Solution Explorer, right-click on the project item,
DistNorthwindService, and select Rebuild.

Now you have finished setting up the service to be hosted in IIS. Open Internet
Explorer, go to the following address, and you should see the ProductService
description in the browser:

http://localhost/DistNorthwindService/ProductService.svc

[291]

Distributed Transaction Support of WCF

Testing the transaction behavior of the
WCF service

Before explaining how to enhance this WCF service to support distributed
transactions, we will first confirm that the existing WCF service doesn't support
distributed transactions. In this section, we will test the following scenarios:

1. Create a WPF client to call the service twice in one method.

2. The first service call should succeed and the second service call should fail.

3. Verify that the update in the first service call has been committed to
the database, which means that the WCF service does not support
distributed transactions.

Wrap the two service calls in one TransactionScope and redo the test.

5. Verify that the update in the first service call has still been committed to
the database which means the WCF service does not support distributed
transactions even if both service calls are within one transaction scope.

Add a second database support to the WCF service.
Modify the client to update both databases in one method.
The first update should succeed and the second update should fail.

o * N

Verify that the first update has been committed to the database, which
means the WCF service does not support distributed transactions with
multiple databases.

Creating a client to call the WCF service
sequentially

The first scenario to test is that within one method of the client application two
service calls will be made and one of them will fail. We then verify whether the
update in the successful service call has been committed to the database. If it has
been, it will mean that the two service calls are not within a single atomic transaction
and will indicate that the WCF service doesn't support distributed transactions.

You can follow these steps to create a WPF client for this test case:
1. In Solution Explorer, right-click on the solution item and select
Add | New Project... from the context menu.
2. Select Visual C# | WPF Application as the template.

3. Enter DistributedWPF as the Name.
4. Click on the OK button to create the new client project.

[292]

Chapter 10

Now the new test client should have been created and added to the solution. Let's
follow these steps to customize this client so that we can call ProductService twice
within one method and test the distributed transaction support of this WCF service:

1. On the WPF MainWindow designer surface, add the following controls (you
can double-click on the MainWindow. xaml item to open this window and
make sure you are on the design mode, not the XAML mode):

[e]

o

[e]

A label with Content Product ID
Two textboxes named txtProductID1 and txtProductID2

A button named btnGetProduct with Content Get Product
Details

A separator to separate above controls from below controls

Two labels with content Productl Details and Product2
Details

Two textboxes named txtProductlDetails and
txtProduct2Details, with the following properties:

° AcceptsReturn: checked
° Background: Beige

° HorizontalScrollbarVisibility: Auto

° VerticalScrollbarVisibility: Auto

° IsReadOnly: checked
A separator to separate above controls from below controls
A label with content New Price
Two textboxes named txtNewPricel and txtNewPrice2
A button named btnUpdatePrice with Content Update Price
A separator to separate above controls from below controls

Two labels with content Updatel Results and Update2
Results

Two textboxes named txtUpdatelResults and
txtUpdate2Results with the following properties:

o

AcceptsReturn: checked
° Background: Beige

° HorizontalScrollbarVisibility: Auto
° VerticalScrollbarVisibility: Auto

° IsReadOnly: checked

[293]

Distributed Transaction Support of WCF

[e]

Your MainWindow design surface should look like the
following screenshot:

[00%]

Product ID: Get Product Details
Productl Details Product? Details

MNew Price: Update Price
Updatel Results Update? Results

£r

2. InSolution Explorer, right-click on the DistNorthwindWPF project item,
select Add Service Reference... and add a service reference of the product
service to the project. The namespace of this service reference should be
ProductServiceProxy and the URL of the product service should be like this:

http://1ocalhost/DistNorthwindService/ProductService.svc

If you get an error saying An error (Details) occurred while
attempting to find service and the error details are Metadata contains
a reference that cannot be resolved, you may need to give your IIS
identity proper access rights to your windows\ temp directory.

3. On the MainWindow.xaml designer surface, double-click on the Get Product
Details button to create an event handler for this button.

4. Inthe MainWindow.xaml .cs file, add the following using statement:
using DistNorthwindWPF.ProductServiceProxy;

[294]

Chapter 10

3. Again in the MainWindow.xaml .cs file, add the following two
class members:

Product productl, product2;

4. Now add the following method to the MainWindow.xaml .cs file:

private string GetProduct(TextBox txtProductlD, ref Product

product)

{
string result = "";
try
{

}

int productlD = Int32._Parse(txtProductlD.Text.ToString());
ProductServiceClient client = new ProductServiceClient();
product = client.GetProduct(productlD);

StringBuilder sb = new StringBuilder();
sb._Append(*'ProductlID:" +
product.ProductID.ToString() + "\n");
sb._Append(*'ProductName:"" +
product.ProductName + "\n");
sb_Append(""UnitPrice:" +
product.UnitPrice.ToString() + "\n");
sb.Append(*'RowVersion:");
foreach (var x in product.RowVersion.AsEnumerable())
{
sb.Append(x.-ToString());
sb.Append(*" ");

}
result = sb.ToString();

catch (Exception ex)

{
}

result = "Exception: + ex.Message.ToString(Q);

return result;

}

This method will call the product service to retrieve a product from the
database, format the product details to a string, and return the string. This
string will be displayed on the screen. The product object will also be returned
so that later on we can reuse this object to update the price of the product.

[295]

Distributed Transaction Support of WCF

5. Inside the event handler of the Get Product Details button, add the following
two lines of code to get and display the product details:

txtProductlDetails.Text = GetProduct(txtProductlDl, ref productl);

txtProduct2Detai ls.Text = GetProduct(txtProductlD2, ref product2);

Now we have finished adding code to retrieve products from the database through
the Product WCF service. Set DistNorthwindWPF as the startup project, press

Ctrl + F5 to start the WPF test client, enter 30 and 31 as the product IDs, and then
click on the Get Product Details button. You should get a window like this image:

B 7 MainWindow E@ﬂ

Product IO -3[]. 11 I Get Product Details i
N Productl Details Product2 Details
ProductlD:30 Productil:31
ProductMame:Nord-Ost Matj ProductMame:Gorgonzola Tel
UnitPrice:25.8900 UnitPrice:12,5000

RowVersion:0 000004 115 RowVersion0 000004116

‘| n C ‘| m | »

Mew Price: . . . l Update Price |

U_pdatel Results U.pdate2 Results

From the preceding image we see product 30's price is now 25.89 and product 31's
price is now 12.5. Next we will write code to update the prices of these two products
to test the distributed transaction support of the WCF service.

To update the prices of these two products follow these steps to add the code to
the project:

1. On the MainWindow.xaml design surface and double-click on the Update
Price button to add an event handler for this button.

[296]

Chapter 10

2. Add the following method to the MainWindow.xaml . cs file:
private string UpdatePrice(
TextBox txtNewPrice,
ref Product product,
ref bool updateResult)

string result = "";

try

{

product.UnitPrice =
Decimal .Parse(txtNewPrice.Text.ToString());

ProductServiceClient client =

new ProductServiceClient();
updateResult =
client._UpdateProduct(ref product);
StringBuilder sb = new StringBuilder();

if (updateResult == true)

{

else

}

sb.
sb.
sb.

sb

sb.
sb.
sb.
sb.
sb.
sb.
sb.

Append(*'Price updated to ');
Append(txtNewPrice.Text.ToString());
Append(*'\n'");

-Append(*"Update result:");
sb.
sb.
sb.

Append(updateResult._ToString());
Append(*'\n'");
Append(*'New RowVersion:');

Append("'Price not updated to ");
Append(txtNewPrice.Text.ToString());
Append(*'\n'");

Append(“'Update result:™);
Append(updateResult._ToString());
Append(*'\n'");

Append(*'Old RowVersion:');

foreach (var x in product.RowVersion.AsEnumerable())

{

sb.

Append(x.ToString());

[297]

Distributed Transaction Support of WCF

sb.Append("' ");

}
result = sb._ToString();
}
catch (Exception ex)
{
result = "Exception: " + ex.Message;
}

return result;

}

This method will call the product service to update the price of a product in
the database. The update result will be formatted and returned so that later
on we can display it. The updated product object with the new RowVersion
will also be returned so that later on we can update the price of the same
product again and again.

5. Inside the event handler of the Update Price button, add the following code
to update the product prices:

if (productl == null)

{
txtUpdatelResults.Text = "Get product details first";
¥
else if (product2 == null)
{
txtUpdate2Results._Text = "Get product details first";
b
else
{
bool updatelResult = false, update2Result = false;
txtUpdatelResults.Text = UpdatePrice(
txtNewPricel, ref productl, ref updatelResult);
txtUpdate2Results.Text = UpdatePrice(
txtNewPrice2, ref product2, ref update2Result);
b

[298]

Chapter 10

Testing the sequential calls to the WCF
service

Let's run the program now to test the distributed transaction support of the WCF
service. We will first update two products with two valid prices to make sure our code
works with normal use cases. Then we will update one product with a valid price and
another with an invalid price. We will verify that the update with the valid price has
been committed to the database, regardless of the failure of the other update.

Let's follow these steps for this test:

1. Press Ctrl + F5 to start the program.

2. Enter 30 and 31 as product IDs in the top two textboxes and click on the
Get Product Details button to retrieve the two products. Note that the
prices for these two products are 25.89 and 12.5 respectively.

3. Enter 26.89 and 13.5 as new prices in the middle two textboxes and click on
the Update Price button to update these two products. The update results
are true for both updates, as shown in following screenshot:

11 Mainwindow T locnlol=

Praduct [D: .3[} 31 [Get Product Details I
__ Product] Details Product? Details.
ProductiD:30 ProductiD:31
ProductMame:Nord-Ost Mat) ProductMame:Gorgonzola Tel
UnitPrice:25.8900 UnitPrice:12,5000

RowVersion:0 000004 115 RowVersion:0 000004 116

Mew Price: 2689 . 135 . E Update Price i
Ulpdatel Results Ulpdate‘? Results

Price updated to 26.89 Price updated to 13.5

Update result:True Update result:True

Mew Row\Version:00 0000 MNew RowVersion:00000C

[299]

Distributed Transaction Support of WCF

4. Now enter 27.89 and -14.5 as new prices in the middle two textboxes and
click on the Update Price button to update these two products. This time the
update result for product 30 is still True but for the second update the result
is False. Click on the Get Product Details button again to refresh the product
prices so that we can verify the update results.

i3 MainWindow I [
Product ID: .30 . 31 E Get Preduct Details i

Product] Details _Product? Details.

ProductiD:30

ProductlD:31
ProductiName:Nord-Ost Matj ProductiName:Gorgonzola Tel
UnitPrice:27 8800 UnitPrice:13.5000
RowVersion:0 00000137 7 RowVersion:0 00 000137 7¢
‘| m b - m b
Mew Price: 2}'39 : _14_5 B l Update Price |

U_pdatel Results

Price updated to 27.89 Price not updated to -14.5
Update result:True Update result:False
New RowVersion:0 000 00 Old RowVersion:0 0000 0

Update? Results

4 m F 4 m [

We know that the second service call should fail so the second update should not

be committed to the database. From the test result we know this is true (the second
product price didn't change). However from the test result we also know that the
first update in the first service call has been committed to the database (the first
product price has been changed). This means that the first call to the service is not
rolled back even when a subsequent service call has failed. Therefore each service
call is in a separate standalone transaction. In other words, the two sequential service
calls are not within one distributed transaction.

[300]

Chapter 10

Wrapping the WCF service calls in one
transaction scope

This test is not a complete distributed transaction test. On the client side we didn't
explicitly wrap the two updates in one transaction scope. We should test to see what
will happen if we put the two updates within once transaction scope.

Follow these steps to wrap the two service calls in one transaction scope:

1. Add areference to System.Transactions in the client project.

2. Add a using statement to the MainWindow.xaml . cs file like this:
using System.Transactions;

3. Add a using statement to put both updates within one transaction scope.
The click event handler for the Update Price button should be like this now:

if (productl == null)

{
txtUpdatelResults.Text = "Get product details first";
}
else if (product2 == null)
{
txtUpdate2Results._Text = "Get product details first";
}
else
{
bool updatelResult = false, update2Result = false;
using (TransactionScope ts = new TransactionScope())
{
txtUpdatelResults.Text = UpdatePrice(
txtNewPricel, ref productl, ref updatelResult);
txtUpdate2Results.Text = UpdatePrice(
txtNewPrice2, ref product2, ref update2Result);
if (updatelResult == true && update2Result == true)
ts.Complete();
}
}

[301]

Distributed Transaction Support of WCF

Run the client program again, still using 30 and 31 as product IDs, and enter 28.89
and -14.5 as new prices and you will find that even though we have wrapped
both updates within one transaction scope the first update is still committed to
the database —it is not rolled back even though the outer transaction on the client
side does not complete and requests all participating parties to roll back. After the
updates, product 30's price will be changed to 28.89 and product 31's price will
remain as 13.5.

At this point we have proved that the WCF service does not support distributed
transactions with multiple sequential service calls. Irrespective of whether the two
sequential calls to the service have been wrapped in one transaction scope or not,
each service call is treated as a standalone separate transaction and they do not
participate in any distributed transaction.

Testing multiple database support of
the WCF service

In the previous sections, we tried to call the WCF service sequentially to update
records in the same database. We have proved that this WCF service does not
support distributed transactions. In this section, we will do one more test, to add a
new WCF service —DistNorthwindRemoteService —to update records in another
database on another computer. We will call the UpdateProduct operation in this
new service together with the original UpdateProduct operation in the old service
and then verify whether the two updates to the two databases will be within one
distributed transaction.

This new service is very important for our distributed transaction support test
because the distributed transaction coordinator will only be activated if more than
two servers are involved in the same transaction. For test purposes we can't just
update two databases on the same SQL server even though a transaction within

a single SQL server that spans two or more databases is actually a distributed
transaction. This is because the SQL server manages the distributed transaction
internally — to the user it operates as a local transaction.

[302]

Chapter 10

Creating a new WCF service

First we will add a new WCEF service to update a product in a remote database.
We will reuse the same WCF service we created for this solution but just change
the connection string to point to a remote database in a remote machine.

Follow these steps to add this new service:

1.

Discover another machine with the SQL server installed. We will refer to
this machine as the remote machine from now on.

Install a Northwind database to this SQL server on the remote machine.
Make sure you add a new column, RowVersion, to the Products table in
this remote Northwind database. This is all we need to do on the remote
machine in this section.

On the local server, in Windows Explorer, create a new folder,
DistNorthwindRemoteService, under the DistNorthwind solution folder:
C:\SOAWithWCFandLINQ\Projects\DistNorthwind.

Copy the following items from the DistNorthwindService folder to the
new DistNorthwindRemoteService folder:

Web.config, ProductService.svc, and bin.

Open the file, Web.config, in the new service folder and change the Data
Source part within the connectionString node from localhost to the
remote machine name with a new Northwind database installed.

In IIS Manager, add a new application, DistNorthwindRemoteService, and
set its physical path to the new DistNorthwindRemoteService folder. If you
are running XP just add a new virtual directory. You can open this address in
Internet Explorer to verify that the new service is up and running;:

http://1ocalhost/DistNorthwindRemoteService/ProductService.svc

To make it easier to maintain this new service, from Visual Studio in Solution
Explorer, add a new solution folder DistNorthwindRemoteService, to the
solution and add the two files and bin folder of this new service to be under
the new solution folder.

Also from Visual Studio, in Solution Explorer, right-click on the project item,
DistNorthwindService, select Properties, then click on the Build Events tab,
and add the following to the Post-build event command line box, below the
original line of the copy command:

copy -*.* _.\..\..\DistNorthwindRemoteService\bin

Again this Post-build event command line will make sure the remote service folder
will always contain the latest service binary files.

[303]

Distributed Transaction Support of WCF

Calling the new WCF service in the client
application

The new service is now up and running. Next we will add a checkbox to the WPF
client. If this checkbox is checked when the button, Get Product Details, is clicked,
we will get the second product from the remote database using the new WCF
service. And when the button, Update Price, is clicked, we will also update its price
in the remote database using the new WCF service.

Now follow these steps to modify the WPF client application to call the new service:

1.

From Visual Studio, in Solution Explorer, right-click on the
DistNorthwindWPF project item and add a service reference to the new
WCEF service, DistNorthwindRemoteService. The namespace of this
service reference should be RemoteProductServiceProxy and the URL
of the product service should be like this:

http://1ocalhost/DistNorthwindRemoteService/ProductService.svc

Open the MainWindow.xaml file, go to design mode, and add a checkbox to
indicate we are going to get and update a product in the remote database
using the remote service. Set this checkbox's properties as this:

° Content: Get and Update 2nd Product in Remote Database

o

Name: chkRemote

Open the MainWindow.xaml .cs file and add a new class member:

RemoteProductServiceProxy.Product remoteProduct;

Still in the MainWindow. xaml _cs file, copy the method, GetProduct,
and paste it as a new method, GetRemoteProduct. Change the Product
type within this new method to be RemoteProductServiceProxy.
Product and change the client type to RemoteProductServiceProxy.
ProductServiceClient. The new method should be like this:

private string GetRemoteProduct(TextBox txtProductlD,

{

ref RemoteProductServiceProxy.Product product)

string result = ;

try
{
int productlD = Int32_Parse(txtProductID.Text.ToString());
RemoteProductServiceProxy.ProductServiceClient client =
new RemoteProductServiceProxy.ProductServiceClient();

[304]

Chapter 10

product = client.GetProduct(productlD);

StringBuilder sb = new StringBuilder();
sb.Append(**ProductlID:" +
product.ProductID.ToString() + "\n");
sb.Append(*'ProductName:" +
product.ProductName + '"\n'");
sb.Append(""UnitPrice:" +
product._UnitPrice.ToString() + "\n");
sb.Append(*'RowVersion:");
foreach (var x in product.RowVersion.AsEnumerable())

{
sb.Append(x.ToString());
sb_Append(*" ');
}
result = sb._ToString();
}
catch (Exception ex)
{
result = "Exception: " + ex.Message.ToString();
}

return result;

}

5. Change the method, btnGetProduct_Click, to call the new service if the
checkbox is checked, like this:
private void btnGetProduct Click(object sender, RoutedEventArgs e)
{
txtProductlDetails.Text = GetProduct(
txtProductlDl, ref productl);
if(chkRemote. IsChecked == true)
txtProduct2Details.Text = GetRemoteProduct(
txtProductlD2, ref remoteProduct);
else
txtProduct2Details.Text = GetProduct(
txtProductlD2, ref product2);

[305]

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Distributed Transaction Support of WCF

6. Copy the method, UpdatePrice, and paste it as a new method,
UpdateRemotePrice. Change the Product type within this new method
to RemoteProductServiceProxy.Product and change the client type to
RemoteProductServiceProxy.ProductServiceClient.

The new method should be like this:

private string UpdateRemotePrice(
TextBox txtNewPrice,
ref RemoteProductServiceProxy.Product product,
ref bool updateResult)

string result = "";

try
{
product.UnitPrice =
Decimal .Parse(txtNewPrice.Text.ToString());

RemoteProductServiceProxy.ProductServiceClient client =
new RemoteProductServiceProxy.ProductServiceClient();
updateResult =
client._UpdateProduct(ref product);
StringBuilder sb = new StringBuilder();

if (updateResult == true)

{
sb._Append(*'Price updated to ");
sb._Append(txtNewPrice.Text.ToString());
sb.Append(*'\n"");
sb.Append(""Update result:™);
sb.Append(updateResult._ToString());
sb.Append(*'\n"");
sb.Append(*'New RowVersion:');

}

else

{

sb.Append(*'Price not updated to ');
sb.Append(txtNewPrice.Text._ToString());
sb.Append(*'\n"");

sb._Append(*'Update result:');
sb_Append(updateResult.ToString());
sb.Append(*'\n"");

sb_Append(*'Old RowVersion:'");

[306]

Chapter 10

}
foreach (var x in product.RowVersion.AsEnumerable())
{
sb.Append(x.ToString());
sb._Append(*" ");
}
result = sb.ToString();
}
catch (Exception ex)
{
result = "Exception: " + ex.Message;
}

return result;

}

7 Change the method, btnUpdatePrice_Click, to call the new service if the
checkbox is checked.

The new method should be like this:

private void btnUpdatePrice_Click(object sender, RoutedEventArgs
e)

{
if (productl == null)
{
txtUpdatelResults._Text = "Get product details first";
}

else if (chkRemote.lsChecked == false && product2 == null ||
chkRemote. IsChecked == true && remoteProduct == null)

{

txtUpdate2Results.Text = "Get product details First";
}

else

{
bool updatelResult = false, update2Result = false;

using (TransactionScope ts = new TransactionScope())

{

txtUpdatelResults.Text = UpdatePrice(
txtNewPricel, ref productl, ref updatelResult);
if(chkRemote. IsChecked == true)
txtUpdate2Results.Text = UpdateRemotePrice(
txtNewPrice2, ref remoteProduct,

[307]

Distributed Transaction Support of WCF

ref update2Result);
else
txtUpdate2Results.Text = UpdatePrice(
txtNewPrice2, ref product2, ref
update2Result);
if (updatelResult == true && update2Result == true)
ts.Complete();

Testing the WCF service with two databases

Now let's run the program to test the distributed transaction support of the WCF
service with two databases.

Follow these steps for this test:

1.

2.
3.
4

Press Ctrl + F5 to start the client application.
Check the checkbox, Get and Update 2nd Product in Remote Database.
Enter 30 and 31 as product IDs in the top two textboxes.

Click on the Get Product Details button to get product details for product ID
30 and 31. Note that product 31's details are now retrieved from the remote
database. Product 30's price should be 28.89 and product 31's price should be
still 12.5 in the remote database.

If you get an exception like Exception: An error occurred while executing
the command definition. See the inner exception for details. in the second
product details textbox, make sure you have specified the connection string
in the Web. config file of the new WCEF service and make sure you have
added the RowVersion column in the Products table of the remote North-
wind database.

If there is a firewall on the remote machine make sure you have the SQL
Server port open so that your client application can connect to it through
the firewall. The SQL Server port number should be 1433 by default.

If you see the price for product 31 is not 12.5 but 13.5, it is likely that you
didn't check the remote database checkbox. For this test we need to involve
the remote database so you need to check the remote database checkbox and
again click on the button, Get Product Details, before you continue the test.

[308]

Chapter 10

5. Enter 29.89 and -14.5 as the new prices in the middle two textboxes and
click on the button, Update Price.

6. The update result for the first product should be True and for the second
product should be False. This means the second product in the remote
database has not been updated.

7. Click on the Get Product Details button to refresh the product details so
that we can verify the update results.

B MainWindow @Elg
Get and Update 2nd Product in Remote Database
Product ID: n n E Get Product Details i
1
Productl Details Product2 Details
ProductiD:30 ProductiD:31
\ ProductMame:Nord-Ost Matj Productiame:Gorgonzaola Tel
UnitPrice:29.8900 UnitPrice:12.5000
! Row\Version:0 00 000 160 1. RowVWersion0 000004 116
|
i 4 {1} 2 El m 3
N o =
i Mew Price: 2989 -14.5 [Update Price J
]] Updatel Results UpdateZ Results
i Price updated to 29.89 Price not updated to -14.5
i Update result:True Update result:False
Mew RowVersion:0 00000 Old RowVersion:0 00000
|| - I
] m b 4| m 3
[|

Just as in the previous test we know that the second service call fails due to the
invalid price so the second update is not committed to the database. From the
refreshed product details, we know this is true (product 31's price didn't change).
However from the refreshed product details we also know that the first update of
the first service call has been committed to the remote database (product 30's price
has been changed). This means that the first call to the service is not rolled back
even when a subsequent service call has failed. Each service call is in a separate
standalone transaction. In other words, the two sequential service calls are not
within one distributed transaction.

[309]

Distributed Transaction Support of WCF

Enabling distributed transaction support

In the previous sections, we verified that the WCF service currently does not support
distributed transactions irrespective of whether these are two sequential calls to

the same service or two sequential calls to two different services, either with one
database or with two databases.

In the following sections, I will explain how to allow this WCF service to support
distributed transactions. We will allow the WCF service to participate in the client
transaction. From another point of view, I will explain how to flow or propagate a
client transaction across the service boundaries so that the client can include service
operation calls on multiple services in the same distributed transaction.

For more information about WCF transaction support you can
visit the MSDN MCF transaction support site at http://msdn.
T microsoft.com/enus/library/ms730266.aspx.

Enabling transaction flow in service binding

The first thing that we need to pay attention to is the bindings. As we learned in
previous chapters, the three elements of a WCF service end point are the address,
the binding, and the contract (WCF ABC). Although the address has nothing to do
with the distributed transaction support the other two elements do.

We know that WCF supports several different bindings but not all of these bindings
are capable of propagating a transaction across service boundaries. A transaction
can only be propagated from a client application into a WCF service with the
following bindings: NetTcpBinding, NetNamedPipeBinding, WSHttpBinding,
WSDualHttpBinding, and WSFederationHttpBinding. In this chapter, we will use
WSHttpBinding as our example.

However using a transaction-aware binding doesn't mean that a transaction will be
propagated to the service. The transaction propagation is disabled by default and we
have to enable it manually. Unsurprisingly, the attribute to enable transaction flow
in the bindings is called transactionFlow.

In the following section, we will do the following to enable the
transaction propagation:
e Use WSHttpBinding on the host application as binding

e Set the value of the transactionFlow attribute to true on the host
application binding configuration

[310]

Chapter 10

Enabling transaction flow on the service hosting
application

In this section, we will enable transaction flow in bindings for both ProductService
and RemoteProductService.

1.

In Solution Explorer, open the web.config file under the folder C:\
SOAWithWCFandLINQ\Projects\DistNorthwind\ DistNorthwindService.

Change the following line:
<endpoint address="" binding="wsHttpBinding"
contract="MyWCFServices.DistNorthwindService. IProductService'>
To this line:
<endpoint address=""" binding="wsHttpBinding"
contract="MyWCFServices.DistNorthwindService. IProductService"
bindingConfiguration=""transactionalWsHttpBinding">

Add the following node to the web.config file inside the node,
system.serviceModel, and in parallel with node services:
<bindings>
<wsHttpBinding>
<binding name="transactionalWsHttpBinding"
transactionFlow=""true" receiveTimeout="00:10:00"

sendTimeout="00:10:00" openTimeout="00:10:00"
closeTimeout="00:10:00" />

</wsHttpBinding>
</bindings>

Make the same changes to the web.config file under the folder
C:\SOAWithWCFandLINQ\Projects\DistNorthwind\
DistNorthwindRemoteService.

In the above configuration files we have verified and left the bindings for both
ProductService and RemoteProductService to wsHttpBinding and set the
attribute, transactionFlow, of the binding to true. This will enable distributed
transaction support from the WCF service binding side.

[311]

Distributed Transaction Support of WCF

Modifying the service operation contract to
allow a transaction flow

Now the service is able to participate in a propagated transaction from the client
application but the client is still not able to propagate a distributed transaction into
the service. Before we enable the distributed transaction support from the client side,
we need to make some more changes to the service side code, that is, modify the
service operation to opt in to participate in a distributed transaction. By default, it is
opted out.

Two things need to be done in order to allow an operation to participate in a
propagated transaction. The first thing is to enable the transaction flow in operation
contracts. Follow these steps to enable this option:

1. Open the IProductServiceContract.cs file under the
DistNorthwindService project.

2. Add the following line before the UpdateProduct method:

[TransactionFlow(TransactionFlowOption.Allowed)]

In the above code we set TransactionFlowOption in the UpdateProduct
operation to be Al lowed. This means a transaction can be propagated from
the client to this operation.

The three transaction flow options for a WCF service operation are Al lowed,
NotAl lowed, and Mandatory, as shown in the following table:

Option Description

NotAl lowed A transaction should not be flowed; this is
the default value

Allowed Transaction may be flowed

Mandatory Transaction must be flowed

Modifying the service operation
implementation to require a transaction scope

The second thing we need to do is to specify the TransactionScopeRequired
behavior for the service operation. This has to be done on the service implementation
project.

1. Open the ProductService.cs file under the DistNorthwindService
project.

[312]

Chapter 10

2. Add the following line before the UpdateProduct method:

[OperationBehavior(TransactionScopeRequired = true)]

The TransactionScopeRequired attribute means that, for the UpdateProduct
method, the whole service operation will always be executed inside one transaction. If
a transaction is propagated from the client application this operation will participate in
this existing distributed transaction. If no transaction is propagated a new transaction
will be created and this operation will be running within this new transaction.

If you are interested, you can examine the ambient transaction inside the

WCEF service (Transaction.Current), and compare it with the ambient
transaction of the client to see if they are the same. You can also examine the
TransactionInformation property of the ambient transaction object to see if it is
a local transaction (TransactionInformation.Local Identifier) or a distributed
transaction (Transactionlnformation.Distributedldentifier).

Getting back to our example, we now need to regenerate the service proxy and

the configuration files on the client project because we have changed the service
interfaces. However, in your real project, you shouldn't change any service interface.
Once it goes live you should version your service and allow the client applications
to migrate to the new versions of the service. To simplify our example we will just
update the proxy and configuration files and recompile our client application.

These are the steps to regenerate the configuration and proxy files:

1. Rebuild the solution. As we have set up the post-build event for the
DistNorthwindService project to copy all assembly files to two IIS
directories, both ProductService and RemoteProductService now should
contain the latest assemblies with distributed transaction support enabled.

3. InSolution Explorer, right-click on RemoteProductServiceProxy
under the Service References directory of the DistNorthwindWPF project.

Select Update Service Reference from the context menu.

5. Right-click on ProductServiceProxy under the Service References
directory of the DistNorthwindWPF project.

6. Select Update Service Reference from the context menu.
Open the App.config file under the DistNorthwindWPF project. You will find that

the transactionFlow attribute is now populated as true because the code generator
finds that some operations in the service now allow transaction propagation.

[313]

Distributed Transaction Support of WCF

Understanding the distributed
transaction support of a WCF service

As we have seen, distributed transaction support of a WCF service depends on the
binding of the service, the operation contract attribute, the operation implementation
behavior, and the client applications.

The following table shows some possible combinations of the WCF-distributed
transaction support:

Binding permits Clientflows Service Service operation Possible result
transaction flow transaction contract opts requires
in transaction transaction scope
True Yes Allowed or True Service executes
Mandatory under the
flowed in
transaction
True or False No Allowed True Service creates

and executes
within a new

transaction
True Yes or No Allowed False Service executes

without a

transaction
True or False No Mandatory True or False SOAP exception
True Yes NotAllowed True or False SOAP exception

Testing the distributed transaction
support of the WCF service

Now that we have changed the service to support distributed transaction and let the
client propagate the transaction to the service, we will test this. We will propagate

a transaction from the client to the service, test the multiple database support of the
WCF service, and discuss the Distributed Transaction Coordinator and Firewall
settings for the distributed transaction support of the WCF service.

[314]

Chapter 10

Configuring the Distributed Transaction
Coordinator

In a subsequent section, we will call two services to update two databases on two
different computers. As these two updates are wrapped within one distributed
transaction, Microsoft Distributed Transaction Coordinator (MSDTC) will

be activated to manage this distributed transaction. If MSDTC is not started or
configured properly the distributed transaction will not be successful. In this
section, we will explain how to configure MSDTC on both machines.

You can follow these steps to configure MSDTC on your local and remote machines:

Open Component Services from Control Panel | Administrative Tools.

In the Component Services window, expand Component Services, then
Computers, and then right-click on My Computer.

3. Select Properties from the context menu.
On the My Computer Properties window, click on the MSDTC tab.

5. If this machine is running Windows XP, click on the Security
Configuration button.

6. If this machine is running Windows 7, verify that Use local coordinator
is checked and then close the My Computer Properties window. Expand
Distributed Transaction Coordinator under My Computer node, right-click
on Local DTC, select Properties from the context menu, and then from the
Local DTC Properties window, click on the Security tab.

7. You should now see the Security Configuration for DTC on this machine.
Set it as in the following screenshot.

[315]

Distributed Transaction Support of WCF

8. Remember you have to make these changes for both your local and
remote machines.

“Local DTC Properties R |-) |

— ——

Tracing | Logging | Securty
Securty Settings

Cliert anmd .Hdministr.c;tion

Allow Bemote Clients [7] Allow Remate Administration
Transaction Manager Communication

Allow Inbound Alow Outbound

) Mutual Authentication Required

) Incoming Caller Authentication Required

@ No Authentication Required

| Enable ¥A Transactions [] Enable SNA LU 6.2 Transactions
||
DTC Logon Account
Accourt: NT AUTHORITY \Network Service Browse. .
Password: | |
Confim password: | |

Leam more about getting these properties.

ok J[Cencel || seoty |

You have to restart the MSDTC service after you have changed your
MSDTC settings, for the changes to take effect.

Also, to simplify our example, we have chosen the No Authentication
%@‘ Required option. You should be aware that not needing authentication is
a serious security issue in production. For more information about WCF
security, you can go to the MSDN WCF security website at this address:
http://msdn.microsoft.com/en-us/library/ms735093.aspx.

[316]

Chapter 10

Configuring the firewall

Even though Distributed Transaction Coordinator has been enabled the distributed
transaction may still fail if the firewall is turned on and hasn't been set up properly
for MSDTC.

To set up the firewall for MSTC, follow these steps:

1.
2.
3.

Open the Windows Firewall window from the Control Panel.
If the firewall is not turned on you can skip this section.

Go to the Allow a program or feature through Windows Firewall window
(for Windows XP, you need to allow exceptions and go to the Exceptions tab
on the Windows Firewall window).

Add Distributed Transaction Coordinator to the program list (windows\
system32\msdtc.exe) if it is not already on the list. Make sure the checkbox
before this item is checked.

Again you need to change your firewall setting for both your local and
remote machines.

@©'|0 <« Win..._b Allowed... - |¢1~| | Search Control Panel 2 |

Allow programs to communicate through Windows Firewall

To add, change, or remove allowed programs and ports, click Change settings.

What are the risks of allowing a program to communicate?l__@.'ﬂa_gglf :Ettin_g:_l

Allowed programs and features:

Mame Home/Work (Private) Public =

[BranchCache - Hosted Cache Server...
I (] BranchCache - Peer Discovery (Uses ...
(] Connect to a Netwark Projector
d Core Networking
File and Printer Sharing
HomeGroup

| -
Pl e i I LSRR

F 0K || cancel | q

ROOO
OO0
m
I

=

00O 0O

— JEE

[317]

Distributed Transaction Support of WCF

Now the firewall will allow msdtc.exe to go through so our next test won't fail due
to the firewall restrictions.

You may have to restart IIS after you have changed your firewall

settings. In some cases you may also have to stop and then restart
T your firewall for the changes to take effect.

Propagating a transaction from the client to
the WCF service

Now we have the services and MSDTC ready. In this section, we will rerun the
distributed test client and verify the distributed transaction support of the enhanced
WCEF service.

Testing distributed transaction support with one
database

First we will test the distributed transaction support of the WCF service within

one database. We will try to update two products (30 and 31). The first update will
succeed but the second update will fail. Both updates are wrapped in one client
transaction which will be propagated into the service and the service will participate
in this distributed transaction. Due to the failure of the second update, the client
application will roll back this distributed transaction at the end and the service
should also roll back every update that is within this distributed transaction.

So, in the end, the first update should not be committed to the database.

Now follow these steps to do this test:

1. Press Ctrl + F5 to start the client application.

2. Enter 30 and 31 as product IDs in the top two textboxes.

3. Make sure Get and Update 2nd Product in Remote Database is not checked.
4

Click on the Get Product Details button. The prices for these two products
should be 29.89 and 13.5, respectively.

Enter 30.89 and -14.5 as new prices in the middle two textboxes.
Click on the Update Price button.

Click on the Get Product Details button to refresh the product details so
that we can verify the results.

o

[318]

Chapter 10

B ' MainWindow E@g

[[] Get and Update 2nd Product in Remote Database

Product ID: 0 11 E Get Product Details l
Productl Details Product? Details
PraductlD:30 ProductiD:31
ProductName:Nord-Ost Matj ProductName:Gorgonzola Tel
UnitPrice:29.8900 UnitPrice:13.5000

RowWersion:0 00 000 160 1. RowWersion:0 00 00 0 137 7¢

Mew Price: 20,89 -14.5 [Update Price]
Updatel Results Update2 Results

Price updated to 30.80 Price not updated to -14.5

Update result:True Update result:False

Mew RowVerzion:000000 Old RowVersion:0 00000

From the output window we can see that the prices of both products remain the
same which proves that the first update has been rolled back. From this output
we know that both service calls are within a distributed transaction and the WCF
service now fully supports the distributed transaction within one database.

Testing distributed transaction support with two

databases

Next we will test the distributed transaction support of the WCF service with

two databases or machines involved. As mentioned before, this is a true distributed
transaction test as MSDTC will be activated only when the machine boundary

is crossed.

In this test, we will try to update two products (product 30 and 31). But this time
the second product (product 31) is in a remote database on another machine. As in
the previous test the first update will succeed but the second update will fail. Both
updates are wrapped in one client transaction which will be propagated into the
service and the service will participate in this distributed transaction. Due to the
failure of the second update, the client application will roll back this distributed
transaction at the end and the service should also roll back every update that is
within this distributed transaction. The first update should finally not be committed
to the database.

[319]

Distributed Transaction Support of WCF

Now follow these steps to carry out this test:

1. Press Ctrl + F5 to start the client application.

2. Enter 30 and 31 as product IDs in the top two textboxes.

3. Make sure Get and Update 2nd Product in Remote Database is checked.
4

Click on the Get Product Details button. The prices for these two products
should be 29.89 and 12.5, respectively.

Enter 30.89 and -14.5 as new prices in the middle two textboxes.
Click on Update Price.

Then click on the Get Product Details button to refresh the product details
so that we can verify the results.

17 MainWindow E@g

Get and Update 2nd Product in Remote Database

o

Product ID: 0 11 E Get Product Details !
Productl Details Product? Details
PraductiD:30 PraductiD:31
ProductName:Nord-Ost Matj ProductName:Gorgonzola Tel
UnitPrice:29.8900 UnitPrice:12.5000

RowWersion:0 00 000 160 1. RowWersion0 000004 116

Mew Price: 20,89 -14.5 [Update Price]
Updatel Results Update2 Results

Price updated to 30.80 Price not updated to -14.5

Update result:True Update result:False

MNew RowVersion:0 00000 Old RowVersion:0 00000

From the output window we can see that the prices of both products remain the same
which proves that the first update has been rolled back. From this output we know that
both service calls are within a distributed transaction and the WCF service now fully
supports the distributed transaction with multiple databases involved.

[320]

Chapter 10

With the previous tests, you might not get an output as shown here, but instead
a message like Exception: The underlying provider failed to Open in your
Update Result textbox. If you debug your code, inside the UpdatePrice or
UpdateRemotePrice method, you may see one of the following error messages:

¢ MSDTC on server 'xxxxxx' is unavailable

e Network access for Distributed Transaction Manager(MSDTC) has
been disabled

e The transaction has already been implicitly or explicitly committed
or aborted

This might be because you haven't set your Distributed Transaction Coordinator
or firewall correctly. In this case you need to follow the instructions in the previous
sections to configure these settings, then come back and redo these tests.

Summary

In this chapter, we have discussed how to enable distributed transaction support
for a WCF service. Now we can wrap sequential WCF service calls within one
transaction scope and flow the distributed transaction into the WCF services. We
can also update multiple databases on different computers all within one single
distributed transaction.

The key points discussed in this chapter include:
e Only certain bindings allow transactions to flow from the client to the

WCF service using the transactionFlow attribute

o A WCEF service operation contract can opt to participate in a propagated
transaction using the TransactionFlow attribute

e A WCEF service operation can specify its transaction behavior using the
TransactionScopeRequired attribute

e MSDTC network access must be enabled for distributed transaction
support among multiple computers

o The firewall has to be configured to allow msdtc.exe for a distributed
transaction to succeed

[321]

Symbols

NET Frameworks
NET 1.0 26
NET 1.1 26
NET 2.0 26
NET 3.0 26
NET 3.5 26
NET 3.55P1 26
NET 4.0 26

.NET Standard Query Operators
FirstOrDefault 166
Max 166
Min 166
Take 166
ToList 166

.svc file 46

A

Allowed option 312
anonymous data types
creating 152, 153
app.config file
about 61, 86
content, viewing 95, 96
modifying 94
modifying, steps 94, 95
service testing, own client used 101-106
service testing, WCF Test Client
used 96-100
asmx file 46
ASP.NET Development Server
about 45
WCEF service, hosting in 41-48
aspnet_regiis.exe 64

Index

From library of Wow! eBook

B

BaseCustomer class 221
basic concepts, WCF
address 17
address, parts 17
behavior 23
binding 17, 18
channel 24
contract 18
endpoint 22
hosting 23
metadata 25
system-provided bindings, examples 18
basicHttpBinding
using 48
bin folder 63
btnGetProduct_Click method 274
btnUpdatePrice_Click method 307
business logic layer
calling, from service interface layer 112-114
product entity project, adding 107, 108
project, adding 108-112
WCF service, testing 116, 117

C

candyOrVeges query expression 165, 166
C# client application, WCF service
console application, creating 50
customizing 52
files, generating 50, 51
running 52, 53
service application, setting 53, 54
Classl.cs file 34
CLR 25,165

Boykma
Text Box
From library of Wow! eBook

collection
initializing 151, 152
collection initializer 151, 152
Common Language Runtime. See CLR
compiled query
defining 213, 214
CompiledQuery class 213
Conceptual Schema Definition
Language. See CSDL
Concurrency Mode property 232
concurrency support
business logic layer classes, modifying 266
ProductDAO class, modifying 263
ProductEntity class, modifying 262
RowVersion concurrency mode, turning
on 262
service interface layer classes,
modifying 266, 267
testing, own client used 269
testing, WCF Test Client used 267-269
concurrent updates
testing automatically 280-282
testing automatically, sequence 283
testing automatically, steps 284, 285
testing manually 277
testing manually, steps 278, 279
configuration file, elements
Configuration 48
HelloWorldService 48
serviceBehaviors node 48
system.serviceModel 48
conflict
detecting, data column used 232
detecting, version column used 239
handling 231
conflict detecting, data column used
concurrency control, turning on 235-239
Concurrency Mode property 232
conflicts, testing 235
Entity Framework concurrency control,
testing 233
second Entity Data Model, adding 233
test code, writing 234
conflict detecting, version column used
about 239
conflicts, testing 243
Products table, modeling 240, 241

test code, writing 241, 242

version column, adding 239
connection string

copying, to service interface layer 256, 257
contract, WCF

about 18

data contract 20

fault contract 21

message contract 19

operation contract 19

service contract 18
CreateQuery method 216
CSDL 171

D

DAL 120
data access layer
adding 120
calling, from business layer 122,124
connection string, adding to configuration
file 126-128
database, preparing 125, 126
database, querying 128-130
GetProduct method, testing 130-133
GetProduct, modifying 258, 259
LINQ to Entities, using 258
project, creating 120, 121
UpdateProduct method,
modifying 133-136, 259, 260
Data Access Layer. See DAL
database
records, deleting 184, 185
records, inserting 184
records, querying 183
records, running 185, 186
records, updating 184
data column
using, for conflict detection 232-239
DataMember property 91
data validation
validation method, implementing 247, 248
deferred executions
about 190
checking, SQL profiler used 191, 192
for singleton methods 193

[324]

for singleton methods, within sequence
expressions 194-197
deferred loading 197
DeleteObject method 184
Direct SQL 214
DistNorthwind solution
creating 288, 289
final structure, viewing 289
distributed transaction support
configuration files, regenerating 313
enabling 310
firewall, configuring 317, 318
in WCEF service 314
proxy files, regenerating 313
service operation contract, modifying 312
service operation implementation,
modifying 312, 313
testing 314
transaction client, propagating to WCF
service 318
transaction flow, enabling in service
binding 310
transaction flow, enabling on service
hosting application 311
transaction propagation, enabling 310
distributed transaction support, testing
MSDTC, configuring 315, 316

E

eager loading
include method, using 199-201
EDM
about 172,176
creating, ways 176
Entity Data Model Wizard window 177
generated LINQ to Entities classes 182, 183
LINQ to Entities item, adding to project
177-181
EF
about 171
benefits 171
conceptual data model schema 171
high-level architecture 172
ElementAtOrDefault method 184
entity class validation 247
Entity Data Model. See EDM

Entity Framework. See EF
Entity Framework Extensions
installing, URL 213
error handling, adding to WCF service
about 136, 137
client program, updating 140-143
fault contract, adding 137, 138
fault exception, testing 144, 145
fault exception, throwing 139
ExecuteStoreCommand() method 214
ExecuteStoreQuery() method 214
extension methods
about 153
defining 153-155
Program.cs file, viewing 156-158

F

fault contract
about 21
adding 137,138
testing 144, 145
throwing 139

G

generated SQL statements

viewing, Profiler used 190

viewing, ToTraceString method

used 187-190

viewing, ways 187
GetMessage method 39
GetProduct method

about 114

modifying 263

testing 275, 276

testing, sequence 277
GetRemoteProduct method 304

H

HelloWorldService.cs file
about 78
final view 40
HelloWorld WCEF service
attaching, to WCF service 77
debugging 67
debugging, from client application 67

[325]

debugging, only WCEF service 73
final directory structure 30
first solution, creating 30-34
hosting 55
hosting, in IIS 62
hosting, in managed application 56
hosting, in Windows service 61
hosting, options 66
project, creating 30-34
service contract interface, implementing 39,
40
System.ServiceModel namespace, adding
reference to 36, 37
Visual Studio Just-In-Time debugger 80-82
HelloWorld WCEF service, attaching to WCF
service process
about 77
IIS hosted service, debugging 78, 79
running, in debugging mode 77
HelloWorld WCEF service, building
service contract interface, creating 38, 39
HelloWorld WCF service, debugging from
client application
ASP.NET Development Server, attaching
to 70,71
process, starting 67-69
WCF service, stepping into 72,73
HelloWorld WCEF service, debugging only
WOCF service
about 73
client application, in debug mode 74-76
client application in non-debugging
mode 76
HelloWorld WCEF service, hosting in
managed application
about 56
hosted service, consuming 61
hosting, in console application 56-60
HelloWorld WCF service, hosting in
Windows service
about 61
files, copying 63
folders, creating 62
hosted WCF service in IIS, testing 66
hosting, in IIS 62
IIS application, creating 64, 65
IIS, turning on 64

WCEF service, starting in IIS 65
HostDevServer 54
hosting, WCF

about 23

IIS hosting 23

self-hosting 23

Windows Activation Services hosting 24

Windows services hosting 23

IIS 45
implicitly typed array 151
Include method 201
inheritance
TPC 217
TPH 217
TPT 217
Internet Information Services. See IIS
IProductService.cs file 113
IServicel.cs file 86

L

lambda expression 159-162
Language Integrated Query. See LINQ
layers, WCF service

about 85

business logic layer 84

business logic layer, adding 107

data access layer 85

service interface layer 84

service interface layer, creating 89
lazy loading 198
LINQ

about 148

built-in extension methods 162, 163

built-in operators 166, 167

example 148

project, creating 148

query expression 163-165

query syntax 163-165

solution, creating 148

to Entities 172

var datatype 149
LINQNorthwindEntities

project properties 254

[326]

LINQNorthwind solution
creating 252
creating, steps 252-254

LINQ to Entities
about 172
comparing, with LINQ to objects 173
comparing, with LINQ to SQL 174-176
concurrency control, handling 232, 239
deferred executions 190
inheritance, types 217
LINQ to Objects, key differences 173

LINQ to SQL, differentiating between 172

programs, debugging 249
test applications, creating 176
TPH 217

TPT 224

using, in data access layer 258

LINQ to Entities, using in data access layer

about 258

GetProduct, modifying 258, 259

testing, WCF Test Client used 260, 261

UpdateProduct, modifying 259, 260
LINQ to Objects

LINQ to Entities, key differences 173
LINQ to SQL

about 174

comparing, with LINQ to Entities 174-176

LINQ to Entities, differences 174
using, in .NET application 174
loosely-coupled services 7

Main method 58
MainWindow.xaml.cs file 295, 299
Mandatory option 312
Mapping Schema Language. See MSL
MEPs 22
Message Exchange Patterns. See MEPs
Microsoft Distributed Transaction
Coordinator. See MSDTC

Microsoft Service Factory

website 83
MSDTC 246, 315
MSL 171

multiple database support, WCF service
distributed transaction support testing,
two databases used 308, 309
new WCEF service, creating 303
testing 302
WPF client application modifying, calling
in client application 304-308

N

NetNamedPipeBinding 310
NetTcpBinding 310
Northwind 125
Northwind database
modeling 254, 255
Northwind.designer.cs file 221
testing 228
NorthwindEntities class 182
NotAllowed option 312
NWEntities.SaveChanges() 184

(0

object

creating 151

initializing 151
ObjectContext class 182
object initializer

using 151
ObjectQuery.ToTraceString method 187
Object-Relational Mapping. See ORM
ODBC 170
Open Database Connectivity. See ODBC
OrderDetail class 170
ORM 170

P

predicate expression 216

ProductDAO class
about 120
modifying 263

ProductDAO class, modifying
GetProduct method, modifying 263
modified UpdateProduct method,

viewing 264, 265

UpdateProduct method, modifying 264

[327]

ProductDAO.cs file
content 134, 136
ProductEntity class
code list 108
modifying 262
ProductID 91
ProductLogic class
code, adding 109
ProductLogic.cs file 123
ProductName 91
defining 150
ProductService class 113
ProductService.cs file
final content 115
Program.cs file
about 58, 151, 250
content 59, 105
modifying 105

Q

QuantityPerUnit 91

query, building dynamically
expressions, using 215, 216
methods 215
parameters, using 216, 217

Quick Info window 249

R

RealNorthwindService 84

RealNorthwind solution and project
creating, service library template used 86

RowVersion entity property 241

S

SaveChanges method 247

Servicel.cs file 92

Servicel.svc file 88

ServiceContract attribute
adding 38

service interface layer
app.config file, modifying 94, 95
connection string, copying to 256, 257
data contracts, creating 91, 92
data contracts, properties 91
service contracts, implementing 92, 93

service interfaces, creating 89, 90
ServiceModelReg.exe 64
Service Oriented Architecture. See SOA
Simple Object Access Protocol. See SOAP
SOA
about 7
loosely-coupled services 7
web services 8
SOAP 11
SSDL 171
Storage Schema Definition Language. See
SSDL
stored procedure
calling 206
mapping, to existing entity class 210-213
mapping, to new entity class 206-209
modeling 206
modeling, steps 206-208
querying 208, 209
svcutil.exe tool 51
System.Ling.Enumerable class 166

T

Table Per Concrete. See TPC inheritance
Table Per Hierarchy. See TPH inheritance
Table Per Type. See TPT inheritance
tables, joining

JOIN, using 201, 202
test client, creating

GetProduct, implementing 270-272

steps 269

UpdateProduct, implementing 272-275
ToTraceString method

using, for generated SQL statement viewing

187-190

TPC inheritance 217
TPH inheritance

about 217

BaseCustomer entity, modeling 218, 220

example 217

generated class 221

testing 222-224

UKCustomer entity, modeling 220

USACustomer entity, modeling 218, 220
TPT inheritance

about 217,224

[328]

database tables, preparing 225 view

examples 224 querying 202
generated classes 228 Visual Studios
testing 229-231 versions 26

UKCustomerl entity, modeling 226, 227
USACustomer] entity, modeling 226,227 W
transaction behavior, WCF service

multiple database support, testing 302 WAS 24
sequential calls, testing 299, 300 WCF
testing 292 about 13

architecture 16

two service calls, wrapping in one :
basic concepts 17

transaction scope 301

WPF client, creating 292-298 requ'irements,'addressing 15
transaction client, propagating to WCF service endpoints 22
service using for, SOA 14
distributed transaction support testing, WOCF architecture
one database used 318, 319 Cpntracts layer 16
distributed transaction support testing, dlagram 16
two databases used 319, 320 Messaging layer 16

transactionFlow 310 Service runtime layer 16
TransactionScope WOCEF service
using 246 bindings 310

TransactionScopeRequired attribute 313 C# client application, creating 49
transaction support distributed transaction support 314

about 243 distributed transaction support, testing 314
explicit transaction 245, 246 hosting, ASP.NET Development Server
implicit transaction 243, 244 used 41
hosting, in IIS 290, 291
U layering, need for 84
layers 84
UnitPrice parameter 98 testing, business logic layer used 116, 117
UnitsOnOrder property 111, 117 transaction behavior, testing 292
UpdatePrice method 306 WCF service hosting, ASP.NET
UpdateProduct method Development Server used
adding 110 ASP NET Development Server 45
modifying 114, 264 host application, creating 41, 42, 43
testing 275, 276 host application, starting 48, 49
host application, testing 44
\) SVC file, adding 46
web.config file, modifying 47, 48
var datatype WCF templates
about 149,150 C# WCEF service application template,
uses 149 testing 88
version column C# WCEF service application template,
adding 239 using 87
Products table, modeling 240, 241 C# WCEF service library template,
test code, writing 241, 242 using 85, 86

using, for conflict detection 239

[329]

WCEF Test Client

using, for concurrency support test 267-269

using, for LINQ to Entities testing 260, 261

using, for service testing 96-100
web.config file 87

modifying 47, 48
webdev.webserver.exe file 46
web services

about 8,9

calling 9

interaction diagram 8

proxy 10

proxy class 10

SOAP 11

specifications 11

standards 11

WS-Addressing 12

WS-AtomicTransaction 13

WS-BusinessActivity 13

WS-Coordination 13

WSDL 10

WS-I Profiles 12

WS-ReliableMessaging 12

WS-Security 12

WS-Transaction 13

Web Services Description Language. See
WSDL

Web Services Enhancements. See WSE

Web Services Interoperability Organization.
See WS-I Profiles

Windows Communication Foundation. See
WCF

Windows Process Activation Services. See
WAS

WS-Addressing 12

WS-AtomicTransaction 13

WS-BusinessActivity 13

WS-Coordination 13

WSDL 10

wsdl file 49

wsdl xml file 49

WSDualHttpBinding 310

WSE 14

WSFederationHttpBinding 310

WSHttpBinding

about 310
using 48

WS-I Profiles 12

WS-ReliableMessaging 12

WS-Security 12

WS-Transaction 13

[330]

enTerprise

professional expertise distilled

PUBLISHING

Thank you for buying
WCF 4.0 Multi-tier Services Development
with LINQ to Entities

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

PUBLISHING

SOA Patterns with

BizTalk Server 2009

SOA Patterns with BizTalk

Server 2009
ISBN: 978-1-847195-00-5 Paperback: 400 pages

Implement SOA strategies for BizTalk Server
solutions

1. Discusses core principles of SOA and shows
them applied to BizTalk solutions

2. The most thorough examination of BizTalk
and WCEF integration in any available book

3. Leading insight into the new WCF SQL Server
Adapter, UDDI Services version 3, and ESB
Guidance 2.0

LINQ Quickly

LINQ Quickly
ISBN: 978-1-847192-54-7 Paperback: 252 pages

A Practical Guide to Programming Language
Integrated Query with C#

1. LINQ to Objects

LINQ to XML
3. LINQto SQL
4. LINQ to DataSets
5. LINQ to XSD

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

Microsoft Silverlight 4 Data
and Services Cookbook

GillCleeren Kevin Dockx

Microsoft Silverlight 4 Data and

Services Cookbook
ISBN: 978-1-847199-84-3 Paperback: 476 pages

Over 80 practical recipes for creating rich, data-driven
business applications in Silverlight

1. Design and develop rich data-driven business
applications in Silverlight

2. Rapidly interact with and handle multiple
sources of data and services within Silverlight
business applications

3. Understand sophisticated data access
techniques in your Silverlight business
applications by binding data to Silverlight
controls, validating data in Silverlight, getting
data from services into Silverlight applications
and much more!

Entity Framework Tutorial

Entity Framework Tutorial
ISBN: 978-1-847195-22-7 Paperback: 228 pages
Learn to build a better data access layer with

the ADO.NET Entity Framework and ADO.NET
Data Services

1. Clear and concise guide to the ADO.NET Entity
Framework with plentiful code examples

2. Create Entity Data Models from your database
and use them in your applications

3. Learn about the Entity Client data provider and
create statements in Entity SQL

Please check www.PacktPub.com for information on our titles

L, k1S
Eugeen A.
KathovshY

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introducing Web Services and Windows Communication Foundation
	What is SOA?
	Web services
	What is a web service?
	Web service WSDL
	Web service proxy
	SOAP

	Web services: standards and
specifications
	WS-I Profiles
	WS-Addressing
	WS-Security
	WS-ReliableMessaging
	WS-Coordination and WS-Transaction

	WCF: Windows Communication
Foundation
	What is WCF?
	Why is WCF used for SOA?
	WCF architecture
	Basic WCF concepts—WCF ABCs
	Address
	Binding
	Contract
	Service contract
	Operation contract
	Message contract
	Data contract
	Fault contract

	Endpoint
	Behavior
	Hosting
	Self hosting
	Windows services hosting
	IIS hosting
	Windows Activation Services hosting

	Channels
	Metadata

	WCF production and development
environments
	Summary

	Chapter 2: Implementing a Basic HelloWorld WCF Service
	Creating the HelloWorld solution and project
	Creating the HelloWorldService service contract interface
	Implementing the HelloWorldService service contract
	Hosting the WCF service in ASP.NET
Development Server
	Creating the host application
	Testing the host application
	ASP.NET Development Server
	Adding an SVC file to the host application
	Modifying the web.config file
	Starting the host application

	Creating a client to consume the
WCF service
	Creating the client application project
	Generating the proxy and configuration files
	Customizing the client application
	Running the client application
	Setting the service application to AutoStart

	Summary

	Chapter 3: Hosting and Debugging the HelloWorld WCF Service
	Hosting the HelloWorld WCF service
	Hosting the service in a managed application
	Hosting the service in a console application
	Consuming the service hosted in a console application

	Hosting the service in a Windows service
	Hosting the service in Internet Information Server
	Preparing the folders and files
	Turn on Internet Information Services
	Creating the IIS application
	Starting the WCF service in IIS
	Testing the WCF service hosted in IIS

	Other WCF service hosting options

	Debugging the HelloWorld WCF service
	Debugging from the client application
	Starting the debugging process
	Debugging on the client application
	Attaching to ASP.NET Development Server
	Stepping into the WCF service

	Debugging only the WCF service
	Starting the WCF Service in debugging mode
	Starting the client application in non-debugging mode
	Starting the WCF service and client applications in debugging mode

	Attaching to a WCF service process
	Running the WCF service and client applications in non-debugging mode
	Debugging the WCF service hosted in IIS

	Just-In-Time debugger

	Summary

	Chapter 4: Implementing a WCF Service in the Real World
	Why layer a service?
	Creating a new solution and project
using WCF templates
	Using the C# WCF service library template
	Using the C# WCF service application template

	Creating the service interface layer
	Creating the service interfaces
	Creating the data contracts
	Implementing the service contracts
	Modifying the app.config file
	Testing the service using WCF Test Client
	Testing the service using our own client

	Adding a business logic layer
	Adding the product entity project
	Adding the business logic project
	Calling the business logic layer from the service interface layer
	Testing the WCF service with a business
logic layer

	Summary

	Chapter 5: Adding Database Support and Exception Handling to the RealNorthwind WCF Service
	Adding a data access layer
	Creating the data access layer project
	Calling the data access layer from the business logic layer
	Preparing the database
	Adding the connection string to the configuration file
	Querying the database (GetProduct)
	Testing the GetProduct method
	Updating the database (UpdateProduct)

	Adding error handling to the service
	Adding a fault contract
	Throwing a fault exception
	Updating the client program to catch the
fault exception
	Testing the fault exception

	Summary

	Chapter 6: LINQ—Language Integrated Query
	What is LINQ
	Creating the test solution and project
	New data type var
	Automatic properties
	Object initializer
	Collection initializer
	Anonymous types
	Extension methods
	Lambda expressions
	Built-in LINQ extension methods and method syntax
	LINQ query syntax and query expression
	Built-in LINQ operators
	Summary

	Chapter 7: LINQ to Entities: Basic Concepts and Features
	ORM—Object-Relational Mapping
	Entity Framework
	LINQ to Entities
	Comparing LINQ to Entities with LINQ
to Objects
	LINQ to SQL

	Comparing LINQ to SQL with LINQ
to Entities
	Creating a LINQ to Entities test
application
	Creating the Data Model
	Adding a LINQ to Entities item to the project
	Generated LINQ to Entities classes

	Querying and updating the database with a table
	Querying records
	Updating records
	Inserting records
	Deleting records
	Running the program

	View Generated SQL statements
	View SQL statements using ToTraceString
	View SQL statements using Profiler

	Deferred execution
	Checking deferred execution with
SQL profiler
	Deferred execution for singleton methods
	Deferred execution for singleton methods within sequence expressions

	Deferred (lazy) loading versus
eager loading
	Lazy loading by default
	Eager loading the with Include method

	Joining two tables
	Querying a view
	Summary

	Chapter 8: LINQ to Entities: Advanced Concepts and Features
	Calling a stored procedure
	Mapping a stored procedure to a new
entity class
	Modeling a stored procedure
	Querying a stored procedure

	Mapping a stored procedure to an existing entity class

	Compiled query
	Direct SQL
	Dynamic query
	Dynamic query with expressions
	Dynamic query with parameters

	Inheritance
	LINQ to Entities Table per Hierarchy inheritance
	Modeling the BaseCustomer and USACustomer entities
	Modeling the UKCustomer entity
	Generated classes with TPH inheritance
	Testing the TPH inheritance

	LINQ to Entities Table per Type inheritance
	Preparing database tables
	Modeling USACustomer1 and UKCustomer1 entities
	Generated classes with TPT inheritance
	Testing the TPT inheritance

	Handling simultaneous (concurrent)
updates
	Detecting conflicts using a data column
	Explaining the Concurrency Mode property
	Adding another Entity Data Model
	Writing the test code
	Testing the conflicts
	Turning on concurrency control

	Detecting conflicts using a version column
	Adding a version column
	Modeling the Products table with a version column
	Writing the test code
	Testing the conflicts

	Transaction support
	Implicit transactions
	Explicit transactions

	Adding validations to entity classes
	Debugging LINQ to Entities programs
	Summary

	Chapter 9: Applying LINQ to Entities to a WCF Service
	Creating the LINQNorthwind solution
	Modeling the Northwind database
	Copying the connection string to the service layer
	Using LINQ to Entities in the data
access layer
	Modifying GetProduct in the data access layer
	Modifying UpdateProduct in the data
access layer
	Testing LINQ to Entities with the
WCF Test Client

	Adding concurrency support
	Turning on RowVersion concurrency mode
	Modifying the ProductEntity class
	Modifying the ProductDAO class
	Modifying the GetProduct method
	Modifying UpdateProduct method

	Modifying the business logic layer classes
	Modifying the service interface layer classes

	Testing concurrency with WCF
Test Client
	Testing concurrency with our own client
	Creating the test client
	Implementing the GetProduct functionality
	Implementing the UpdateProduct functionality

	Testing the GetProduct and UpdateProduct operations
	Testing concurrent update manually
	Testing concurrent update automatically

	Summary

	Chapter 10: Distributed Transaction Support of WCF
	Creating the DistNorthwind solution
	Hosting the WCF service in IIS
	Testing the transaction behavior of the WCF service
	Creating a client to call the WCF service sequentially
	Testing the sequential calls to the WCF service
	Wrapping the WCF service calls in one transaction scope
	Testing multiple database support of
the WCF service
	Creating a new WCF service
	Calling the new WCF service in the client application
	Testing the WCF service with two databases

	Enabling distributed transaction support
	Enabling transaction flow in service binding
	Enabling transaction flow on the service hosting application

	Modifying the service operation contract to allow a transaction flow
	Modifying the service operation implementation to require a transaction scope

	Understanding the distributed
transaction support of a WCF service
	Testing the distributed transaction
support of the WCF service
	Configuring the Distributed Transaction Coordinator
	Configuring the firewall
	Propagating a transaction from the client to the WCF service
	Testing distributed transaction support with one database
	Testing distributed transaction support with two databases

	Summary

	Index

