
www.allitebooks.com

http://www.allitebooks.org

WCF Multi-tier Services
Development with LINQ

Build SOA applications on the Microsoft platform in this
hands-on guide

Mike Liu

 BIRMINGHAM - MUMBAI

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

WCF Multi-tier Services Development with LINQ

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, its dealers, and distributors will be held liable for any damages caused or
alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2008

Production Reference: 1261108

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-62-0

www.packtpub.com

Cover Image by Parag Kadam (Paragvkadam@gmail.com)

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Mike Liu

Reviewers

Jeff Sanders

Yingwei Yang

Senior Acquisition Editor

David Barnes

Development Editor

Nikhil Bangera

Technical Editor

Dilip Venkatesh

Copy Editor

Sumathi Sridhar

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Rajashree Hamine

Indexer

Monica Ajmera

Proofreader

Dirk Manuel

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mike Liu was born in 1966 in China. He studied Mathematics at Nanjing
University between 1984 and 1988. After graduating with a Bachelor's degree, he
worked as a Programmer / Senior Software Engineer / Architect under Unix and
DOS using C/C++, DBase and Oracle. In 1995 he moved to New Zealand and
studied Business Computing at the Auckland University of Technology in 1996.
During his 5 years New Zealand, he worked as a Senior Software Engineer under
Unix and Windows using C/C++, Java, FoxPro, Informix, Oracle and SQL Server.
He moved to the United States in 2000, and since then has been working as a Web
Developer / Senior Software Engineer / Principal Software Engineer under Unix
and Windows using C/C++, C#, Visual Basic, Java, ASP, ASP.NET, Oracle and
SQL Server. While working in the United States he studied Software Engineering at
Brandeis University, and graduated in 2005 with a Master's degree.

Mike Liu had his first book (MITT: Multi-user Integrated Table-processing Tool Under
Unix) published in 1993, and had his second book (Advanced C# Programming)
published in 2003. He became a Sun Certified Java Programmer (SCJP) in 2000, a
Microsoft Certified Solution Developer (MCSD) for Visual Studio 6.0 in 2001, and an
MCSD for .NET in 2004.

Many thanks to the editors and technical reviewers at Packt
Publishing. Without their help, this book won't be of such high
quality. Thanks also to my wife, Julia Guo, and my two sons, Kevin
and James Liu, for their patience and support while I was working
on this book.

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

 About the Reviewers

Jeff Sanders is a 16 year IT industry veteran with extensive experience in Solutions
Architecture, BizTalk, SharePoint Server, and the .NET framework. Jeff's interests
lie in design patterns of message-based architectures and connected systems design,
EAI, workflow, WCF, and reducing complexity.

Jeff is a Group Manager and Solution Developer for Avanade Inc., a global IT
consultancy specializing in solutions based on the Microsoft Enterprise platform that
help to achieve profitable growth. He proudly works out of the East Region with
some of the most talented and customer-obsessed professionals he has ever met.

Jeff also independently consults as a BizTalk Solutions Architect, Technical Lead, and
Microsoft Certified Trainer for DynamicShift. He speaks at regional and local user
groups on Microsoft technologies and industry-related topics.

With a deep interest in Business Intelligence (BI) and a passion for all things BizTalk,
Jeff currently is writing BizTalk 2009 Business Intelligence, to be published in May
2009. He is also serving as a Technical Editor on a number of other books.

I would like to thank the most important person in my life, Lisa, for
her well of unlimited patience and support that never runs dry. I'm
definitely in love with Italian food.

Yingwei Yang joined Microsoft recently. Before that, he worked for ITG and
Redcats USA. Yingwei enjoys working with .NET technology and is a big fan of
Service Oriented Architecture, Silverlight, and High Performance Computing. He
always thinks that Web Services/Software as a Service brings endless opportunities
and possibilities.

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: SOA—Service Oriented Architecture	 7

What is SOA?	 7
Why SOA?	 9
How do we implement SOA?	 10
SOA from different users' perspectives	 11
Complexities in SOA implementation	 12
Web services	 13

What is a web service?	 14
Web service WSDL	 15
Web service proxy	 15
SOAP	 16

Web services: standards and specifications	 16
WS-I Profiles	 17
WS-Addressing	 17
WS-Security	 17
WS-ReliableMessaging	 18
WS-Coordination and WS-Transaction	 18

Summary	 19
Chapter 2: WCF – Windows Communication Foundation	 21

What is WCF?	 21
Why is WCF used for SOA?	 22
WCF architecture	 24
Basic WCF concepts—WCF ABCs	 25

Address	 25
Binding	 25
Contract	 26

Service contract	 26

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Operation contract	 26
Message contract	 27
Data contract	 28
Fault contract	 29

Endpoint	 29
Behavior	 30
Hosting	 30

Self hosting	 31
Windows services hosting	 31
IIS hosting	 31
Windows Activation Services hosting	 31

Channels	 32
Metadata	 32

WCF production and development environments	 33
Summary	 34

Chapter 3: Implementing a Basic HelloWorld WCF Service	 35
Creating the HelloWorld solution and project	 35
Creating the HelloWorldService service contract interface	 42
Implementing the HelloWorldService service contract	 44
Hosting the WCF service in ASP.NET Development Server	 46

Creating the host application	 46
Testing the host application	 48
ASP.NET Development Server	 49
Adding an svc file to the host application	 50
Adding a web.config file to the host application	 52
Starting the host application	 54

Creating a client to consume the WCF service	 55
Creating the client application project	 55
Generating the proxy and configuration files	 56
Customizing the client application	 57
Running the client application	 58
Setting the service application to AutoStart	 58

Summary	 59
Chapter 4: Hosting and Debugging the HelloWorld WCF Service	 61

Hosting the HelloWorld WCF service	 61
Hosting the service in a managed application	 62

Hosting the service in a console application	 62
Consuming the service hosted in a console application 	 65

Hosting the service in a Windows service	 66
Hosting the service in the Internet Information Server	 66

Preparing the folders and files	 67
Creating the virtual directory	 68

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Starting the WCF service in the IIS	 69
Testing the WCF service hosted in the IIS	 69

Advanced WCF service hosting options	 70
Debugging the HelloWorld WCF service	 70

Debugging from the client application	 71
Starting the debugging process	 71
Debugging on the client application	 73
Enabling debugging of the WCF service	 74
Stepping into the WCF service	 76

Debugging only the WCF service	 77
Starting the WCF Service in debugging mode	 78
Starting the client application in non-debugging mode	 80
Starting the WCF service and client applications in debugging mode	 80

Attaching to a WCF service process	 82
Running the WCF service and client applications in non-debugging mode	 82
Debugging the WCF service hosted in IIS	 82

Just-In-Time debugger	 84
Summary	 87

Chapter 5: Implementing a WCF Service in the Real World	 89
Why layering a service?	 89
Creating a new solution and project using WCF templates	 90

Using the C# WCF service library template	 91
Using the C# WCF service application template	 92

Creating the service interface layer	 94
Creating the service interfaces	 94
Creating the data contracts	 96
Implementing the service contracts	 98
Modifying the app.config file	 99
Testing the service using WCF Test Client	 101
Testing the service using our own client	 106

Adding a business logic layer	 112
Adding the product entity project	 113
Adding the business logic project	 114
Calling the business logic layer from the service interface layer	 118
Testing the WCF service with a business logic layer	 122

Summary	 124
Chapter 6: Adding Database Support and
Exception Handling to the RealNorthwind WCF Service	 125

Adding a data access layer	 126
Creating the data access layer project	 126
Calling the data access layer from the business logic layer	 128
Preparing the database	 130

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Adding the connection string to the configuration file	 132
Querying the database (GetProduct)	 134
Testing the GetProduct method	 136
Updating the database (UpdateProduct)	 140

Adding error handling to the service	 143
Adding a fault contract	 143
Throwing a fault exception	 145
Updating client program to catch the fault exception	 146
Disabling the Just My Code debugging option	 150
Testing the fault exception	 152

Summary	 154
Chapter 7: Modeling a WCF Service with Service Factory	 155

What is the Service Factory?	 155
What are Guidance Packages?	 156
Preparing environments	 157

Installing Guidance Automation packages	 157
Installing Microsoft Service Software Factory	 157

Differences between the December 2006 version and
the February 2008 version	 158
Modeling the data contracts	 158

Creating the solution	 158
Adding the data contract model	 160
Adding the product data contract	 161
Adding the product fault contract	 163

Modeling the service contracts	 164
Adding the ProductService contract model	 164
Adding the GetProduct operation	 165
Adding the message contracts	 166
Adding the service contracts	 167
Adding the connectors	 167

Specifying the implementation technology for the models	 169
Choosing the implementation technology for service contract model	 169
Changing the property values for service contracts	 170
Choosing the implementation technology for the data contract model	 171
Changing the order property for data members	 171

Generating source code	 172
Creating the service projects	 172
Linking contract models to projects	 175
Validating the contract models	 176
Generating the source code	 176

Summary	 178

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

[�]

Chapter 8: Implementing the WCF Service with Service Factory	 179
Creating the business entities	 180
Customizing the data access layer	 181

Adding the connection strings	 181
Adding a reference to the BusinessEntities project	 182
Adding the data access class	 183

Customizing the business logic	 184
Translating the messages	 185
Customizing the Fault contract	 189
Customizing the product service	 191
Modeling the host application and the test client	 193

Modeling the host application	 193
Generating the host application	 197
Adding the test client to the host model	 198
Generating the client proxy	 199

Customizing the client	 201
Testing the service	 204
Summary	 207

Chapter 9: Introducing Language-Integrated Query (LINQ)	 209
What is LINQ	 210
Creating the test solution and project	 210
New data type var	 211
Automatic properties	 212
Object initializer	 213
Collection initializer	 214
Anonymous types	 215
Extension methods	 216
Lambda expressions	 221
Built-in LINQ extension methods and method syntax	 224
LINQ query syntax and query expression	 225
Built-in LINQ operators	 227
Summary	 229

Chapter 10: LINQ to SQL: Basic Concepts and Features	 231
ORM—Object-Relational Mapping	 232

LINQ to SQL	 233
Comparing LINQ to SQL with LINQ to Objects	 234
LINQ to Entities	 235
Comparing LINQ to SQL with LINQ to Entities	 237
Creating LINQ to SQL test application	 238
Modeling the Northwind database	 239

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

[vi]

Adding a LINQ to SQL item to the project	 239
Connecting to the Northwind database	 240
Adding tables and views to the design surface	 242
Generated LINQ to SQL classes	 243

Querying and updating the database with a table	 244
Querying records	 244
Updating records	 245
Inserting records	 245
Deleting records	 245
Running the program	 246

Deferred execution	 248
Checking deferred execution with SQL profiler	 248
Checking deferred execution with SQL logs	 250
Deferred execution for singleton methods	 251
Deferred execution for singleton methods within sequence expressions	 252

Deferred (lazy) loading versus eager loading	 253
Lazy loading by default	 254
Eager loading with load options	 255
Filtered loading with load options	 256
Combining eager loading and filtered loading	 257

Joining two tables	 258
Querying a view	 259
Summary	 259

Chapter 11: LINQ to SQL: Advanced Concepts and Features	 261
Calling a stored procedure	 262

Calling a simple stored procedure	 262
Mapping a stored procedure to an entity class	 263
Handling output parameters, return codes, multiple shapes
of a single result-set, and multiple result-sets	 265

Creating a complex stored procedure	 265
Modeling the stored procedure	 266
Customizing DataContext class for the stored procedure	 267
Testing the stored procedure	 268

Compiled query	 270
Direct SQL	 271
Dynamic query	 272
Inheritance	 273

LINQ to SQL single-table inheritance	 273
Modeling the BaseProduct and Beverage classes	 274
Modeling the Seafood class	 275
The generated classes with inheritance	 276
Testing the inheritance	 277

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

[vii]

Handling simultaneous (concurrent) updates	 279
Detecting conflicts using the Update Check property	 280

Writing the test code	 280
Testing the conflicts	 282

Detecting conflicts using a version column	 283
Adding a version column	 284
Modeling the products table with a version column	 284
Writing the test code	 285
Testing the conflicts	 287

Transactions support	 287
Implicit transactions	 288
Explicit transactions	 288
Participating in existing ADO.NET transactions	 290

Adding validations to entity classes	 292
Debugging LINQ to SQL programs	 293
Summary	 295

Chapter 12: Applying LINQ to SQL to a WCF Service	 297
Creating the LINQNorthwind solution	 298
Modeling the data contracts	 298
Modeling the service contracts	 300
Generating the source code	 301
Modeling the Northwind database	 302
Implementing the data access layer	 303

Adding GetProduct to the data access layer	 304
Adding UpdateProduct to the data access layer	 304

Implementing the business logic layer	 306
Implementing the service interface layer	 307

Modifying the ProductFault class	 307
Modifying the DataContract class	 308
Modifying the ServiceImplementation class	 308

Adding references to the project	 308
Adding a translator class	 309
Implementing the GetProduct and UpdateProduct operations	 310

Creating the host application and the test client	 311
Modeling the host application and the test client	 311
Implementing the GetProduct functionality	 312
Implementing the UpdateProduct functionality	 314

Testing the GetProduct and UpdateProduct operations	 317
Testing concurrent update manually	 318
Testing concurrent update automatically	 321
Summary	 325

Download from Library of Wow! eBook <www.wowebook.com>

Table of Contents

[viii]

Chapter 13: Distributed Transaction Support of WCF	 327
Creating the DistNorthwind solution	 328
Testing the transaction behaviour of the WCF service	 328

Creating a client to call the WCF service sequentially	 329
Testing the sequential calls to the WCF service	 332
Wrapping the WCF service calls in one transaction scope	 333
Testing multiple database support of the WCF service	 334

Modifying the data access layer for the second database support	 335
Modifying the business logic layer for the second database support	 337
Modifying the service interface layer for the second database support	 338
Modifying the service host for the second database support	 341
Modifying the client for the second database support	 342
Testing the WCF service with two databases	 344

Enabling distributed transaction support	 345
Enabling transaction flow in bindings	 346

Enabling transaction flow on the service application	 346
Enabling transaction flow on the client application	 347

Modifying the service operation contract to allow a transaction flow	 348
Modifying the service operation implementation to require
a transaction scope	 349

Understanding distributed transaction support of a WCF service	 350
Testing the distributed transaction support of the WCF service	 351

Propagating a transaction from client to the WCF service	 351
Configuring the Distributed Transaction Coordinator	 353
Configuring the firewall	 355

Summary	 356
Index	 359

Download from Library of Wow! eBook <www.wowebook.com>

Preface
WCF is Microsoft's unified programming model for building service-oriented
applications. It enables developers to build secure, reliable, transacted solutions that
integrate across platforms and interoperate with existing investments.

If you are a C++/C# developer looking for a book to build real-world WCF services,
have probably run into the huge reference tomes currently available in the market.
These books are crammed with more information than you need, and most build
only simple one-tier WCF services. And if you plan to use LINQ in the data access
layer, you will probably need to buy another volume that is just as huge, and just
as expensive.

This book is the quickest and easiest way to learn WCF and LINQ in Visual Studio
2008. It is the first book to combine WCF and LINQ in a multi-tier real-world WCF
service. Multi-tier services provide separation of concerns and better factoring
of code, which gives you better maintainability and the ability to split layers out
into separate tiers, for better scalability. WCF and LINQ are both powerful yet
complex technologies from Microsoft, but this book will get you through. The
mastery of these two topics will quickly get you started on creating service-oriented
applications, and will allow you to take your first steps into the world of Service
Oriented Architecture, without getting overwhelmed.

This book is a step-by-step tutorial with clear instructions and screenshots to guide
you through the creation of a multi-tier real-world WCF service solution. It focuses
on the essentials of using WCF and LINQ, rather than providing a reference to
every single possibility. It leaves the reference material online where it belongs, and
concentrates instead on practical examples, code, and advice.

Download from Library of Wow! eBook <www.wowebook.com>

Preface

[�]

What This Book Covers
Creating, hosting, and consuming your first WCF service, in just a
few minutes
Exploring and learning different hosting and debugging options for a
WCF service
Building a multi-tier real-world WCF service from scratch to understand
every layer of a WCF service, and applying it to your real work
Adding exception handling to your WCF services
Accelerating your WCF service development with Service Factory by
applying best practices
Understanding basic and advanced concepts and features of LINQ and LINQ
to SQL
Communicating securely and reliably with databases by rewriting the data
access layer of your WCF service with LINQ to SQL
Controlling concurrent updates to the databases and adding distributed
transaction support to your WCF services

What You Need for This Book
To run the examples in this book, you need to have Visual Studio 2008 installed
on your computer. As a result, all pre-requisites of Visual Studio 2008 should be
installed as well.

In Chapter 7, you will be guided to download and install Microsoft Web Service
Software Factory. This Service Factory will be used to model all of the WCF services
starting from this chapter.

You need an SQL Server database engine, and in Chapter 6 you will be guided to
download and install the Microsoft sample database Northwind to this database
engine. This sample database will be used for all of the data access layers used in
this book.

You need a second SQL Server database engine on a different computer to hold
another sample database. This database will be used to run examples for the
distributed transaction support of the WCF services described in Chapter 13.

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Preface

[�]

Who is This Book For
This book is for C# and C++ developers who are eager to get started with WCF and
LINQ, and who want a book that is practical and rich with examples from the very
beginning. Developers and architects evaluating SOA implementation technologies
for their company will find this book particularly useful because it gets you started
with Microsoft's tools for SOA, and shows you how to customize our examples for
your prototypes.

This book presumes a basic knowledge of C# or C++. Previous experience with
Visual Studio will be helpful but is not required, as detailed instructions are given
throughout the book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "At this point, we will use the raw
SqlClient adapter to do the database work."

A block of code will be set as follows:

[DataContract]
public class ProductFault
{
 public ProductFault(string msg)
 {
 FaultMessage = msg;
 }

 [DataMember]
 public string FaultMessage;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
 <add key="NorthwindConnectionString"
 value="server=your_db_server\your_db_instance;
 uid=your_user_name; pwd=your_password;
 database=Northwind"/>

Download from Library of Wow! eBook <www.wowebook.com>

Preface

[�]

</appSettings>
 <system.web>
 <compilation debug="true" />

 </system.web>

New terms and important words are introduced in bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Download from Library of Wow! eBook <www.wowebook.com>

Preface

[�]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/6620_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
in the code—we would be grateful if you would report this to us. By doing this you
can save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the let us know link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata added to any list of existing errata. The list of any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented
Architecture

In this chapter, we will explain the concepts and definitions related to SOA, and
clarify some confusions regarding SOA. Let's discuss each of the following in detail:

What is SOA?
Why do we need SOA?
What are the various approaches to implementing SOA and what are the key
differences between them?
What is a web service and how is it related to SOA?
What standards and specifications are there for web services?

What is SOA?
SOA is the acronym for Service Oriented Architecture. As it has come to be known,
SOA is an architectural design pattern by which several guiding principles
determine the nature of the design. Basically, SOA states that every component
of a system should be a service, and the system should be composed of several
loosely-coupled services. A service here means a unit of a program that serves
a business process. "Loosely-coupled" here means that these services should be
independent of each other, so that changing one of them should not affect any
other services.

SOA is not a specific technology, nor a specific language. It is just a blueprint, or
a system design approach. It is an architecture model that aims to enhance the
efficiency, agility, and productivity of an enterprise system. The key concepts of SOA
are services, high interoperability and loose coupling.

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented Architecture

[�]

Several other architecture/technologies such as RPC, DCOM, and CORBA have
existed for a long time, and attempted to address the client/server communication
problems. The difference between SOA and these other approaches is that SOA is
trying to address the problem from the client side, and not from the server side. It
tries to decouple the client side from the server side, instead of bundling them, to
make the client side application much easier to develop and maintain.

This is exactly what happened when object-oriented programming (OOP) came
into play 20 years ago. Prior to object-oriented programming, most designs were
procedure-oriented, meaning the developer had to control the process of an
application. Without OOP, in order to finish a block of work, the developer had to
be aware of the sequence that the code would follow. This sequence was then hard-
coded into the program, and any change to this sequence would result in a code
change. With OOP, an object simply supplied certain operations; it was up to the
caller of the object to decide the sequence of those operations. The caller could mash
up all of the operations, and finish the job in whatever order needed. There was a
paradigm shift from the object side to the caller side.

This same paradigm shift is happening today. Without SOA, every application is a
bundled, tightly coupled solution. The client-side application is often compiled and
deployed along with the server-side applications, making it impossible to quickly
change anything on the server side. DCOM and CORBA were on the right track to
ease this problem by making the server-side components reside on remote machines.
The client application could directly call a method on a remote object, without
knowing that this object was actually far away, just like calling a method on a local
object. However, the client-side applications continue to remain tightly coupled
with these remote objects, and any change to the remote object will still result in a
recompiling or redeploying of the client application.

Now, with SOA, the remote objects are truly treated as remote objects. To the client
applications, they are no longer objects; they are services. The client application is
unaware of how the service is implemented, or of the signature that should be used
when interacting with those services. The client application interacts with these
services by exchanging messages. What a client application knows now is only the
interfaces, or protocols of the services, such as the format of the messages to be
passed in to the service, and the format of the expected returning messages from
the service.

Historically, there have been many other architectural design approaches,
technologies, and methodologies to integrate existing applications. EAI (Enterprise
Application Integration) is just one of them. Often, organizations have many
different applications, such as order management systems, accounts receivable
systems, and customer relationship management systems. Each application has been
designed and developed by different people using different tools and technologies

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[�]

at different times, and to serve different purposes. However, between these
applications, there are no standard common ways to communicate. EAI is the
process of linking these applications and others in order to realize financial and
operational competitive advantages.

It may seem that SOA is just an extension of EAI. The similarity is that they are both
designed to connect different pieces of applications in order to build an enterprise-
level system for business. But fundamentally, they are quite different. EAI attempts
to connect legacy applications without modifying any of the applications, while SOA
is a fresh approach to solve the same problem. And in the following chapters, you
will come to understand why SOA is a better designed approach.

Why SOA?
So why do we need SOA now? The answer is in one word—agility.

Business requirements change frequently, as they always have. The IT department
has to respond more quickly and cost-effectively to those changes. With a traditional
architecture, all components are bundled together with each other. Thus, even a small
change to one component will require a large number of other components to be
recompiled and redeployed. Quality assurance (QA) effort is also huge for any code
changes. The processes of gathering requirements, designing, development, QA, and
deployment are too long for businesses to wait for, and become actual bottlenecks.

To complicate matters further, some business processes are no longer static.
Requirements change on an ad-hoc basis, and a business needs to be able to
dynamically define its own processes whenever it wants. A business needs a system
that is agile enough for its day-to-day work. This is very hard, if not impossible, with
existing traditional infrastructure and systems.

This is where SOA comes into play.

SOA's basic unit is a service. These services are building blocks that business users
can use to define their own processes. Services are designed and implemented so that
they can serve different purposes or processes, and not just specific ones. No matter
what new processes a business needs to build or what existing processes a business
needs need to modify, the business users should always be able to use existing
service blocks, in order to compete with others according to current marketing
conditions. Also, if necessary, some new service blocks can be used.

These services are also designed and implemented so that they are loosely coupled,
and independent of one another. A change to one service does not affect any other
service. Also, the deployment of a new service does not affect any existing service.
This greatly eases release management and makes agility possible.

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented Architecture

[10]

For example, a GetBalance service can be designed to retrieve the balance for a
loan. When a borrower calls in to query the status of a specific loan, this GetBalance
service may be called by the application that is used by the customer service
representatives. When a borrower makes a payment online, this service can also be
called to get the balance of the loan, so that the borrower will know the balance of his
or her loan after the payment. Yet in the payment posting process, this service can
still be used to calculate the accrued interest for a loan, by multiplying the balance
with the interest rate. Even further, a new process can be created by business users to
utilize this service if a loan balance needs to be retrieved.

The GetBalance service is developed and deployed independently from all of
the above processes. Actually, the service exists without even knowing who the
client will be or even how many clients there will be. All of the client applications
communicate with this service through its interface, and its interface will remain
stable once it is in production. If we have to change the implementation of this
service, for example by fixing a bug, or changing an algorithm inside a method of the
service, all of the client applications can still work without any change.

When combined with the more mature Business Process Management (BPM)
technology, SOA plays an even more important role in an organization's efforts to
achieve agility. Business users can create and maintain processes within BPM, and
through SOA they can plug a service into any of the processes. The front-end BPM
application is loosely coupled to the back-end SOA system. This combination of BPM
and SOA will give an organization much greater flexibility in order to achieve agility.

How do we implement SOA?
Now that we've established why SOA is needed by the business, the question
becomes—how do we implement SOA?

To implement SOA in an organization, three key elements have to be
evaluated—people, process, and technology. Firstly, the people in the organization
must be ready to adopt SOA. Secondly, the organization must know the processes
that the SOA approach will include, including the definition, scope, and priority.
Finally, the organization should choose the right technology to implement it.
Note that people and processes take precedence over technology in an SOA
implementation, but they are out of the scope of this book. In this book, we will
assume people and processes are all ready for an organization to adopt SOA.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[11]

Technically, there are many SOA approaches. At certain degrees, traditional
technologies such as RPC, DCOM, CORBA, or some modern technologies such as
IBM WebSphere MQ, Java RMI, and .NET Remoting could all be categorized as
service-oriented, and can be used to implement SOA for one organization. However,
all of these technologies have limitations, such as language or platform specifications,
complexity of implementation, or the ability to support binary transports only.
The most important shortcoming of these approaches is that the server-side
applications are tightly coupled with the client-side applications, which is against
the SOA principle.

Today, with the emergence of web service technologies, SOA becomes a reality.
Thanks to the dramatic increase in network bandwidth , and given the maturity of
web service standards such as WS-Security, and WS-AtomicTransaction, an SOA
back-end can now be implemented as a real system.

In this book, we will discuss how to implement SOA with web services, particularly
with WCF services. We will discuss how to create, host, and consume a WCF service.
Beneath the WCF service, we will use LINQ to SQL as the ORM to manage the
relationships between WCF and the databases.

SOA from different users' perspectives
However, as we said earlier, SOA is not a technology, but only a style of architecture,
or an approach to building software products. Different people view SOA in
different ways. In fact, many companies now have their own definitions for SOA.
Many companies claim they can offer an SOA solution, while they are really just
trying to sell their products. The key point here is—SOA is not a solution. SOA alone
can't solve any problem. It has to be implemented with a specific approach to become
a real solution. You can't buy an SOA solution. You may be able to buy some kinds
of products to help you realize your own SOA, but this SOA should be customized to
your specific environment, for your specific needs.

Even within the same organization, different players will think about SOA in quite
different ways. What follows are just some examples of how different players in an
organization judge the success of an SOA initiative using different criteria. [Gartner,
Twelve Common SOA Mistakes and How to Avoid Them, Publication Date: 26 October
2007 ID Number: G00152446]

To a programmer, SOA is a form of distributed computing in which the
building blocks (services) may come from other applications or be offered to
them. SOA increases the scope of a programmer's product and adds to his
or her resources, while also closely resembling familiar modular software
design principles.

•

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented Architecture

[12]

To a software architect, SOA translates to the disappearance of fences
between applications. Architects turn to the design of business functions
rather than to self-contained and isolated applications. The software architect
becomes interested in collaboration with a business analyst to get a clear
picture of the business functionality and scope of the application. SOA turns
software architects into integration architects and business experts.
For the Chief Investment Officers (CIOs), SOA is an investment in the
future. Expensive in the short term, its long-term promises are lower costs,
and greater flexibility in meeting new business requirements. Re-use is the
primary benefit anticipated as a means to reduce the cost and time of new
application development.
For business analysts, SOA is the bridge between them and the IT
organization. It carries the promise that IT designers will understand them
better, because the services in SOA reflect the business functions in business
process models.
For CEOs, SOA is expected to help IT become more responsive to business
needs and facilitate competitive business change.

Complexities in SOA implementation
Although SOA will make it possible for business parties to achieve agility, SOA
itself is technically not simple to implement. In some cases, it even makes software
development more complex than ever, because with SOA you are building for
unknown problems. On one hand, you have to make sure that the SOA blocks you
are building are useful blocks. On the other, you need a framework within which
you can assemble those blocks to perform business activities.

The technology issues associated with SOA are more challenging than
vendors would like users to believe. Web services technology has turned SOA
into an affordable proposition for most large organizations by providing a
universally-accepted, standard foundation. However, web services play a technology
role only for the SOA backplane, which is the software infrastructure that enables
SOA-related interoperability and integration.

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[13]

The following figure shows the technical complexity of SOA. It has been taken from
Gartner, Twelve Common SOA Mistakes and How to Avoid Them, Publication Date:
26 October 2007 ID Number: G00152446.

Native SOA Application

Application

Non-SOA-Wrapped Application

TPM and EAS

BPM
Application

Portal Product, EAS and
Presentation Integration Server

Composite
Application

Multichannel
Portal

Portal Product,
SES

ESB, MOM, ORB,
TPM, IBS and

Appliances

Services Application Logic

Wrapper
Interface

Wrapper
Interface

Wrapper
Interface

SOA Backplane

BPM Suite

Adapters,
Programmatic

Integration
Servers

As Gartner says, users must understand the complex world of middleware, and
point-to-point web service connections only for small-scale, experimental SOA
projects. If the number of services deployed grows to more than 20 or 30, then use
a middleware-based intermediary—the SOA backplane. The SOA backplane could
be an Enterprise Service Bus (ESB), a Message-Oriented Middleware (MOM), or an
Object Request Broker (ORB). However, in this book, we will not cover it. We will
build only point-to-point services using WCF.

Web services
There are many approaches to realizing SOA, but the most popular and practical one
is—using web services.

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented Architecture

[14]

What is a web service?
A web service is a software system designed to support interoperable
machine-to-machine interaction over a network. A web service is typically hosted
on a remote machine (provider), and called by a client application (consumer) over
a network. After the provider of a web service publishes the service, the client
can discover it and invoke it. The communications between a web service and a
client application use XML messages. A web service is hosted within a web server
and HTTP is used as the transport protocol between the server and the client
applications. The following diagram shows the interaction of web services:

Web Services Directory (UDDI)

Web Services
Client

Web Services
Provider

3. Bind and Invoke

2. Discover 1. Publish

Web services were invented to solve the interoperability problem between
applications. In the early 90s, along with the LAN/WAN/Internet development, it
became a big problem to integrate different applications. An application might have
been developed using C++, or Java, and run on a Unix box, a Windows PC, or even
a mainframe computer. There was no easy way for it to communicate with other
applications. It was the development of XML that made it possible to share data
between applications across hardware boundaries and networks, or even over
the Internet.

For example, a Windows application might need to display the price of a particular
stock. With a web service, this application can make a request to a URL, and/or
pass an XML string such as <QuoteRequest><GetPrice Symble='XYZ'/></
QuoteRequest>. The requested URL is actually the Internet address of a web
service, which, upon receiving the above quote request, gives a response, <QuoteRe
sponse><QuotePrice Symble='XYZ'>51.22</QuotePrice></QuoteResponse/>.
The Windows application then uses an XML parser to interpret the response
package, and display the price on the screen.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[15]

The reason it is called a web service is that it is designed to be hosted in a web server,
such as Microsoft Internet Information Server, and called over the Internet, typically
via the HTTP or HTTPS protocols. This is to ensure that a web service can be called
by any application, using any programming language, and under any operating
system, as long as there is an active Internet connection, and of course, an open
HTTP/HTTPS port, which is true for almost every computer on the Internet.

Each web service has a unique URL, and contains various methods. When calling
a web service, you have to specify which method you want to call, and pass the
required parameters to the web service method. Each web service method will also
give a response package to tell the caller the execution results.

Besides new applications being developed specifically as web services, legacy
applications can also be wrapped up and exposed as web services. So, an IBM
mainframe accounting system might be able to provide external customers with a
link to check the balance of an account.

Web service WSDL
In order to be called by other applications, each web service has to supply a
description of itself, so that other applications will know how to call it. This
description is provided in a language called a WSDL.

WSDL stands for Web Services Description Language. It is an XML format that
defines and describes the functionalities of the web service, including the method
names, parameter names, and types, and returning data types of the web service.

For a Microsoft ASMX web service, you can get the WSDL by adding ?WSDL to the end
of the web service URL, say http://localhost/MyService/MyService.asmx?WSDL.

Web service proxy
A client application calls a web service through a proxy. A web service proxy is a
stub class between a web service and a client. It is normally auto-generated by a tool
such as Visual Studio IDE, according to the WSDL of the web service. It can be re-
used by any client application. The proxy contains stub methods mimicking all of
methods of the web service so that a client application can call each method of the
web service through these stub methods. It also contains other necessary information
required by the client to call the web service such as custom exceptions, custom data
and class types, and so on.

The address of the web service can be embedded within the proxy class, or it can be
placed inside a configuration file.

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

SOA—Service Oriented Architecture

[16]

A proxy class is always for a specific language. For each web service, there could be
a proxy class for Java clients, a proxy class for C# clients, and yet another proxy class
for COBOL clients.

To call a web service from a client application, the proper proxy class first has to be
added to the client project. Then, with an optional configuration file, the address of
the web service can be defined. Within the client application, a web service object can
be instantiated, and its methods can be called just as for any other normal method.

SOAP
There are many standards for web services. SOAP is one of them. SOAP was
originally an acronym for Simple Object Access Protocol, and was designed by
Microsoft. As this protocol became popular with the spread of web services, and its
original meaning was misleading, the original acronym was dropped with version
1.2 of the standard. It is now merely a protocol, maintained by W3C.

SOAP, now, is a protocol for exchanging XML-based messages over computer
networks. It is widely-used by web services and has become its de-facto protocol.
With SOAP, the client application can send a request in XML format to a server
application, and the server application will send back a response in XML format. The
transport for SOAP is normally HTTP / HTTPS, and the wide acceptance of HTTP is
one of the reasons why SOAP is widely accepted today.

Web services: standards and
specifications
Because SOA is an architectural style, and web service is now the de facto for
building SOA applications, we need to know what standards and specifications there
are for web services.

As we discussed in the previous sections, there are many standards and specifications
for web services. Some have been well-developed and widely-accepted, while some
are being developed, and others are just at the proposal stage. These specifications are
in varying degrees of maturity, and are maintained or supported by various standards
and entities. Specifications may complement, overlap, and compete with each other.
As most of these standards committees and specifications are for future web services,
not all of them are implemented in current web service frameworks.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[17]

Web service standards and specifications are occasionally referred to as "WS-*"
although there is not a single managed set of specifications that this consistently
refers to, nor a recognized owning body across all of them. The reference term "WS-*"
is more of a general nod to the fact that many specifications are named with "WS-" as
their prefix.

Besides XML, SOAP, and WSDL, here is a brief list of some other important
standards and specifications for web services.

WS-I Profiles
The Web Services Interoperability Organization (WS-I) is an industry
consortium chartered to promote interoperability across the stack of web
services specifications. It publishes web service profiles, sample applications, and
test tools to help determine profile conformance. One of the popular profiles it has
published is the WS-I Basic Profile. WS-I is governed by a Board of Directors, and
Microsoft is one of the board members. The web address for WS-I organization is
http://www.ws-i.org.

WS-Addressing
WS-Addressing is a mechanism that allows web services to communicate addressing
information. With traditional web services, addressing information is carried by
the transport layer, and the web service message itself knows nothing about its
destination. With this new standard, addressing information will be included in the
XML message itself. A SOAP header can be added to the message for this purpose.
The network-level transport is now responsible only for delivering that message to a
dispatcher capable of reading the metadata.

WS-Security
WS-Security describes how to handle security issues within SOAP messages.
It attaches signature and encryption information as well as security tokens to
SOAP messages. In addition to the traditional HTTP/HTTPS authentications, it
incorporates extra security features in the header of the SOAP message, working in
the application layer. It ensures end-to-end security.

There are several specifications associated with WS-Security, such as
WS-SecureConversation, WS-Federation, WS-Authorization, WS-Policy, WS-Trust,
and WS-Privacy.

Download from Library of Wow! eBook <www.wowebook.com>

SOA—Service Oriented Architecture

[18]

WS-ReliableMessaging
WS-ReliableMessaging describes a protocol that allows SOAP messages to be
delivered reliably between distributed applications.

The WS Reliable Messaging model enforces reliability between the message source
and destination. If a message cannot be delivered to the destination, the model
must raise an exception, or otherwise indicate to the source that the message can't
be delivered.

There are several Delivery Assurance options for WS-ReliableMessaging, including
AtLeastOnce, AtMostOnce, Exactly Once, and InOrder.

WS-Coordination and WS-Transaction
WS-Coordination describes an extensible framework for providing protocols that
coordinate the actions of distributed applications. The framework enables existing
transaction processing, workflow, and other systems for coordination to hide their
proprietary protocols and to operate in a heterogeneous environment. Additionally,
this specification provides a definition for the structure of the context and the
requirements for propagating context between cooperating services.

WS-Transaction describes coordination types that are used with the extensible
coordination framework described in the WS-Coordination specification. It defines
two coordination types: Atomic Transaction (AT) for individual operations, and
Business Activity (BA) for long running transactions.

WS-AtomicTransaction provides the definition of the atomic transaction
coordination type that is to be used with the extensible coordination framework
described in the WS-Coordination specification. This protocol can be used to
build applications that require consistent agreement on the outcome of short-lived
distributed activities that have all-or-nothing semantics.

WS-BusinessActivity provides the definition of the business activity coordination
type that is to be used with the extensible coordination framework described in the
WS-Coordination specification. This protocol can be used to build applications that
require consistent agreement on the outcome of long-running distributed activities.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 1

[19]

Summary
In this chapter, we have learned and clarified many concepts related to SOA. The key
points in this chapter are:

SOA is an architectural design pattern
SOA is designed for business agility
Different users may view SOA in different ways
Web services are the most popular and practical way of realizing SOA today
There are many standards and specifications for web services including, but
not limited to, WSDL, SOAP, WS-I Profiles, and various WS-* standards

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows
Communication Foundation

WCF is the latest technology from Microsoft for building services. In this chapter, we
will explain what WCF is, and what it is composed of. We will also explain various
.NET runtimes, .NET frameworks, Visual Studio versions, the relationships between
them, and what is needed to develop or deploy WCF services. You will see some
code snippets in this chapter that will help you to further understand WCF concepts,
although they are not in a completed WCF project. Once we have grasped the
basic concepts of WCF, we will develop a complete WCF service and create a client
application to consume it in the next chapter.

For now, let us discuss the following in detail:

What WCF is
Use of WCF for SOA
WCF architecture
Basic WCF concepts

What is WCF?
WCF is the acronym for Windows Communication Foundation. It is Microsoft's
latest technology that enables applications in a distributed environment to
communicate with each other.

WCF is Microsoft's unified programming model for building service-oriented
applications. It enables developers to build secure, reliable, transacted solutions that
integrate across platforms and interoperate with existing investments. WCF is built
on the Microsoft .NET Framework and simplifies the development of connected
systems. It unifies a broad array of distributed systems capabilities in a composable,

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[22]

extensible architecture that supports multiple transports, messaging patterns,
encodings, network topologies, and hosting models. It is the next version of several
existing products—ASP.NET's web methods (ASMX) and Microsoft Web Services
Enhancements (WSE) for Microsoft .NET, .NET Remoting, Enterprise Services, and
System.Messaging.

The purpose of WCF is to provide a single programming model that can be used to
create services on the .NET platform for organizations.

Why is WCF used for SOA?
As we have seen in the previous section, WCF is an umbrella technology that
covers ASMX web services, .NET remoting, WSE, Enterprise Service, and System.
Messaging. It is designed to offer a manageable approach to distributed computing,
broad interoperability, and direct support for service orientation. WCF supports
many styles of distributed application development by providing a layered
architecture. At its base, the WCF channel architecture provides asynchronous,
untyped message-passing primitives. Built on top of this base are protocol facilities
for secure, reliable, transacted data exchange and a broad choice of transport and
encoding options.

Let us take an example to see why WCF is a good approach for SOA. Suppose a
company is designing a service to get loan information. This service could be
used by the internal call center application, an Internet web application, and a
third-party Java J2EE application such as a banking system. For interactions with
the call center client application, performance is important. For communication with
the J2EE-based application however, interoperability becomes the highest goal. The
security requirements are also quite different between the local Windows-based
application, and the J2EE-based application running on another operating system.
Even transactional requirements might vary, with only the internal application being
allowed to make transactional requests.

With these complex requirements, it is not easy to build the desired service with
any single existing technology. For example, the ASMX technology may serve well
for the interoperability, but its performance may not be ideal. The .NET remoting
will be a good choice from the performance perspective, but it is not good at
interoperability. Enterprise Services could be used for managing object lifetimes and
defining distributed transactions, but Enterprise Services supports only a limited set
of communication options.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[23]

Now with WCF, it is much easier to implement this service. As WCF has unified a
broad array of distributed systems capabilities, the get loan service can be built with
WCF for all of its application-to-application communication. The following shows
how WCF addresses each of these requirements:

Because WCF can communicate using web service standards, interoperability
with other platforms that also support SOAP, such as the leading J2EE-based
application servers, is straightforward.
You can also configure and extend WCF to communicate with web services
using messages not based on SOAP, for example, simple XML formats
such as RSS.
Performance is of paramount concern for most businesses. WCF was
developed with the goal of being one of the fastest distributed application
platforms developed by Microsoft.
To allow for optimal performance when both parties in a communication
are built on WCF, the wire encoding used in this case is an optimized binary
version of an XML Information Set. Using this option makes sense for
communication with the call center client application, because it is also built
on WCF, and performance is an important concern.
Managing object lifetimes, defining distributed transactions, and other
aspects of Enterprise Services, are now provided by WCF. They are available
to any WCF-based application, which means that the get loan service can use
them with any of the other applications that it communicates with.
Because it supports a large set of the WS-* specifications, WCF helps to
provide reliability, security, and transactions when communicating with any
platform that supports these specifications.
The WCF option for queued messaging, built on Message Queuing,
allows applications to use persistent queuing without using another set of
application programming interfaces.

The result of this unification is greater functionality, and significantly
reduced complexity.

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[24]

WCF architecture
The following diagram illustrates the major layers of the Windows Communication
Foundation (WCF) architecture. This diagram is taken from the Microsoft web site
(http://msdn.microsoft.com/en-us/library/ms733128.aspx):

Application

Contracts

Service Runtime

Messaging

Activation and hosting

Windows
Activation
Service

.EXE
Windows
Service COM+

HTTP
Channel

TCP
Channel

Transaction
Flow

Channel

NamedPipe
Channel

MSMQ
Channel

WS Security
Channel

WS Reliable
Messaging
Channel

Encoders:
Binary/MTOM/Text/

XML

Throttling
Behavior

Error
Behavior

Metadata
Behavior

Instance
Behavior

Message
Inspection

Data
Contract

Message
Contract

Service
Contract

Policy and
Binding

Transaction
Behavior

Dispatch
Behavior

Concurrency
Behavior

Parameter
Filtering

The Contracts layer defines various aspects of the message system. For example, the
Data Contract describes every parameter that makes up every message that a service
can create or consume.

The Service runtime layer contains the behaviors that occur only during the actual
operation of the service, that is, the runtime behaviors of the service.

The Messaging layer is composed of channels. A channel is a component that
processes a message in some way, for example, authenticating a message.

In its final form, a service is a program. Like other programs, a service must be run in
an executable format. This is known as the hosting application.

In the next section, we will explain these concepts in detail.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[25]

Basic WCF concepts—WCF ABCs
There are many terms and concepts around WCF, such as address, binding, contract,
endpoint, behavior, hosting, and channels. Understanding these terms is very helpful
when using WCF.

Address
The WCF Address is a specific location for a service. It is the specific place to which a
message will be sent. All WCF services are deployed at a specific address, listening at
that address for incoming requests.

A WCF Address is normally specified as a URI, with the first part specifying the
transport mechanism, and the hierarchical part specifying the unique location of the
service. For example, http://www.myweb.com/myWCFServices/SampleService
can be an address for a WCF service. This WCF service uses HTTP as its transport
protocol, and it is located on the server www.myweb.com, with a unique service path
of myWCFServices/SampleService. The following diagram illustrates the three parts
of a WCF service address.

http://www.myweb.com/myWCFServices/SampleService

Transport Machine Address Service Path

Binding
Bindings are used to specify the transport, encoding, and protocol details required
for clients and services to communicate with each other. Bindings are what WCF
uses to generate the underlying wire representation of the endpoint. So, most of the
details of the binding must be agreed upon by the parties that are communicating.
The easiest way to achieve this is for clients of a service to use the same binding that
the service uses.

A binding is made up of a collection of binding elements. Each element describes
some aspect of how the service communicates with clients. A binding must include at
least one transport binding element, at least one message encoding binding element
(which can be provided by the transport binding element by default), and any number
of other protocol binding elements. The process that builds a runtime out of this
description allows each binding element to contribute code to that runtime.

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[26]

WCF provides bindings that contain common selections of binding elements. These
can either be used with their default settings, or the default values can be modified
according to user requirements. These system-provided bindings have properties
that allow direct control over the binding elements and their settings.

The following are some examples of the system-provided bindings:
BasicHttpBinding, WSHttpBinding, WSDualHttpBinding, WSFederationHttpBinding,
NetTcpBinding, NetNamedPipeBinding, NetMsmqBinding, NetPeerTcpBinding, and
MsmqIntegrationBinding. Each one of these built-in bindings has predefined required
elements for a common task, and is ready to be used in your project. For instance, the
BasicHttpBinding uses HTTP as the transport for sending SOAP 1.1 messages, and it
has attributes and elements such as receiveTimeout, sendTimeout, maxMessageSize,
and maxBufferSize. You can accept the default settings of its attributes and elements,
or overwrite them as needed.

Contract
A WCF contract is a set of specifications that define the interfaces of a WCF service.
A WCF service communicates with other applications according to its contracts.
There are several types of WCF contracts, such as Service Contract, Operation
Contract, Data Contract, Message Contract, and Fault Contract.

Service contract
A service contract is the interface of the WCF service. Basically, it tells others what
the service can do. It may include service-level settings, such as the name of the
service, the namespace of the service, and the corresponding callback contracts of the
service. Inside the interface, it can define a bunch of methods, or service operations
for specific tasks. Normally, a WCF service has at least one service contract.

Operation contract
An operation contract is defined within a service contract. It defines the parameters
and return type of an operation. An operation can take data of a primitive (native)
data type, such as an integer as a parameter, or it can take a message, which should
be defined as a message contract type. Just as a service contract is an interface, an
operation contract is a definition of an operation. It has to be implemented in order
that the service functions as a WCF service. An operation contract also defines
operation-level settings, such as the transaction flow of the operation, the directions of
the operation (one-way, two-way, or both ways), and fault contract of the operation.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[27]

The following is an example of an operation contract:

[WCF::FaultContract(typeof(MyWCF.EasyNorthwind.FaultContracts.
ProductFault))]
MyWCF.EasyNorthwind.MessageContracts.GetProductResponse
GetProduct(MyWCF.EasyNorthwind.MessageContracts.GetProductRequest
request);

In this example, the operation contract's name is GetProduct, and it takes one input
parameter, which is of type GetProductRequest (a message contract) and has one
return value, which is of type GetProductResponse (another message contract).
It may return a fault message, which is of type ProductFault (a fault contract), to
the client applications. We will cover message contract and fault contract in the
following sections.

Message contract
If an operation contract needs to pass a message as a parameter or return a message,
the type of these messages will be defined as message contracts. A message contract
defines the elements of the message, as well as any message-related settings, such as
the level of message security, and also whether an element should go to the header
or to the body.

The following is a message contract example:

namespace MyWCF.EasyNorthwind.MessageContracts
{
	 /// <summary>
	 /// Service Contract Class - GetProductResponse
	 /// </summary>
	 [WCF::MessageContract(IsWrapped = false)]
	 public partial class GetProductResponse
	 {
		 private MyWCF.EasyNorthwind.DataContracts.Product product;
	 		
		 [WCF::MessageBodyMember(Name = "Product")]
		 public MyWCF.EasyNorthwind.DataContracts.Product Product
		 {
			 get { return product; }
			 set { product = value; }
		 }
	 }
}

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[28]

In this example, the namespace of the message contract is MyWCF.EasyNorthwind.
MessageContracts, and the message contract's name is GetProductResponse. This
message contract has one member, which is of type Product.

Data contract
Data contracts are data types of the WCF service. All data types used by the WCF
service must be described in metadata to enable other applications to interoperate
with the service. A data contract can be used by an operation contract as a parameter
or return type, or it can be used by a message contract to define elements. If a WCF
service uses only primitive (native) data types, it is not necessary to define any
data contract.

The following is an of example data contract:

namespace MyWCF.EasyNorthwind.DataContracts
{
	 /// <summary>
	 /// Data Contract Class - Product
	 /// </summary>
	 [WcfSerialization::DataContract(Namespace = "http://MyCompany.com/
 ProductService/EasyWCF/2008/05", Name = "Product")]
	 public partial class Product
	 {
		 private int productID;
		 private string productName;
		
		 [WcfSerialization::DataMember(Name = "ProductID",
 IsRequired = false, Order = 0)]
		 public int ProductID
		 {
		 get { return productID; }
		 set { productID = value; }
		 }				
		
		 [WcfSerialization::DataMember(Name =
 "ProductName", IsRequired = false, Order = 1)]
		 public string ProductName
		 {
		 get { return productName; }
		 set { productName = value; }
		 }				
	 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[29]

In this example, the namespace of the data contract is MyWCF.EasyNorthwind.
DataContracts, the name of the data contract is Product, and this data contract has
two members (ProductID and ProductName).

Fault contract
In any WCF service operation contract, if an error can be returned to the caller, the
caller should be warned of that error. These error types are defined as fault contracts.
An operation can have zero or more fault contracts associated with it.

The following is a fault contract example:

namespace MyWCF.EasyNorthwind.FaultContracts
{
	 /// <summary>
	 /// Data Contract Class - ProductFault
	 /// </summary>
	 [WcfSerialization::DataContract(Namespace = "http://MyCompany.com/
 ProductService/EasyWCF/2008/05", Name = "ProductFault")]
	 public partial class ProductFault
	 {
		 private string faultMessage;
		
		 [WcfSerialization::DataMember(Name =
 "FaultMessage", IsRequired = false, Order = 0)]
		 public string FaultMessage
		 {
		 get { return faultMessage; }
		 set { faultMessage = value; }
		 }				
	 }
}

In this example, the namespace of the fault contract is MyWCF.EasyNorthwind.
FaultContracts, the name of the fault contract is ProductFault, and the fault
contract has only one member (FaultMessage).

Endpoint
Messages are sent between endpoints. Endpoints are places where messages are
sent or received (or both), and they define all of the information required for the
message exchange. A service exposes one or more application endpoints (as well
as zero or more infrastructure endpoints). A service can expose this information
as the metadata that clients can process to generate appropriate WCF clients and
communication stacks. When needed, the client generates an endpoint that is
compatible with one of the service's endpoints.

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[30]

A WCF service endpoint has an address, a binding, and a service contract
(WCF ABC).

The endpoint's address is a network address where the endpoint resides. It describes,
in a standard-based way, where messages should be sent. Each endpoint normally
has one unique address, but sometimes two or more endpoints can share the
same address.

The endpoint's binding specifies how the endpoint communicates with the world,
including things such as transport protocol (TCP, HTTP), encoding (text, binary),
and security requirements (SSL, SOAP message security).

The endpoint's contract specifies what the endpoint communicates, and is essentially
a collection of messages organized in the operations that have basic Message
Exchange Patterns (MEPs) such as one-way, duplex, or request/reply.

The following diagram shows the components of a WCF service endpoint.

ServiceEndpoint

EndpointAddress

Binding

ContractDescription

Behavior
A WCF behavior is a type, or settings to extend the functionality of the original
type. There are many types of behaviors in WCF, such as service behavior, binding
behavior, contract behavior, security behavior and channel behavior. For example, a
new service behavior can be defined to specify the transaction timeout of the service,
the maximum concurrent instances of the service, and whether the service publishes
metadata. Behaviors are configured in the WCF service configuration file. We will
configure several specific behaviors in the chapters that follow.

Hosting
A WCF service is a component that can be called by other applications. It must be
hosted in an environment in order to be discovered and used by others. The WCF
host is an application that controls the lifetime of the service. With .NET 3.0 and
beyond, there are several ways to host the service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[31]

Self hosting
A WCF service can be self-hosted, which means that the service runs as a standalone
application and controls its own lifetime. This is the most flexible and easiest way of
hosting a WCF service, but its availability and features are limited.

Windows services hosting
A WCF service can also be hosted as a Windows service. A Windows service is
a process managed by the operating system and it is automatically started when
Windows is started (if it is configured to do so). However, it lacks some critical
features (such as versioning) for WCF services.

IIS hosting
A better way of hosting a WCF service is to use IIS. This is the traditional way of
hosting a web service. IIS, by nature, has many useful features, such as process
recycling, idle shutdown, process health monitoring, message-based activation, high
availability, easy manageability, versioning, and deployment scenarios. All of these
features are required for enterprise-level WCF services.

Windows Activation Services hosting
The IIS hosting method, however, comes with several limitations in the
service-orientation world; the dependency on HTTP is the main culprit. With
IIS hosting, many of WCF's flexible options can't be utilized. This is the reason
why Microsoft specifically developed a new method, called Windows Activation
Services, to host WCF services.

Windows Process Activation Service (WAS) is the new process activation
mechanism for Windows Server 2008 that is also available on Windows Vista. It
retains the familiar IIS 6.0 process model (application pools and message-based
process activation) and hosting features (such as rapid failure protection, health
monitoring, and recycling), but it removes the dependency on HTTP from the
activation architecture. IIS 7.0 uses WAS to accomplish message-based activation
over HTTP. Additional WCF components also plug into WAS to provide
message-based activation over the other protocols that WCF supports, such as
TCP, MSMQ, and named pipes. This allows applications that use the non-HTTP
communication protocols to use the IIS features such as process recycling, rapid
fail protection, and the common configuration systems that were only available
to HTTP-based applications.

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[32]

This hosting option requires that WAS be properly configured, but it does not
require you to write any hosting code as part of the application. [Microsoft MSN,
Hosting Services, retrieved on 3/6/2008 from http://msdn2.microsoft.com/
en-us/library/ms730158.aspx]

Channels
As we have seen in the previous sections, a WCF service has to be hosted in an
application on the server side. On the client side, the client applications have to
specify the bindings to connect to the WCF services. The binding elements are
interfaces, and they have to be implemented in concrete classes. The concrete
implementation of a binding element is called a channel. The binding represents
the configuration, and the channel is the implementation associated with that
configuration. Therefore, there is a channel associated with each binding element.
Channels stack on top of one another to create the concrete implementation of the
binding—the channel stack.

The WCF channel stack is a layered communication stack with one or more channels
that process messages. At the bottom of the stack is a transport channel that is
responsible for adapting the channel stack to the underlying transport (for example,
TCP, HTTP, SMTP and other types of transport). Channels provide a low-level
programming model for sending and receiving messages. This programming model
relies on several interfaces and other types collectively known as the WCF channel
model. The following diagram shows a simple channel stack:

Application

Protocol Channel

Protocol Channel

Transport Channel

Metadata
The metadata of a service describes the characteristics of the service that an external
entity needs to understand in order to communicate with the service. Metadata can
be consumed by the ServiceModel Metadata Utility Tool (Svcutil.exe) to generate
a WCF client and the accompanying configuration that a client application can use to
interact with the service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 2

[33]

The metadata exposed by the service includes XML schema documents, which define
the data contract of the service, and WSDL documents, which describe the methods
of the service.

Though WCF services will always have metadata, it is possible to hide the metadata
from outsiders. If you do so, you have to pass the metadata to the client side by
other means. This practice is not common, but it gives your services an extra layer
of security. When enabled via the configuration settings through metadata behavior,
metadata for the service can be retrieved by inspecting the service and its endpoints.
The following configuration setting in a WCF service configuration file will enable
the metadata publishing for HTTP transport protocol:

<serviceMetadata httpGetEnabled="true" />

WCF production and development
environments
WCF was first introduced in Microsoft's .NET Common Language Runtime (CLR)
version 2.0. The corresponding framework is .NET 3.0. To develop and run WCF
services, Microsoft .NET framework 3.0 or above is required.

Visual Studio is the preferred IDE for developing WCF service applications.
The initial version, Visual Studio 2005, did not support WCF service application
development. But with a downloadable package, "Visual Studio 2005 extensions for
.NET Framework 3.0 (WCF & WPF)", Visual Studio 2005 could be used to develop
WCF services. However, when Visual Studio 2008 SP1 was released, Microsoft
stopped this download. So now, Visual Studio 2008 is the only Microsoft IDE
available for WCF service application development. Visual Studio 2008 also
supports application development for .Net framework 2.0, 3.0 and 3.5 (this is called
multi-targeting).

Download from Library of Wow! eBook <www.wowebook.com>

WCF – Windows Communication Foundation

[34]

The following table shows all of the different the versions of the .NET runtimes,
.NET frameworks, and Visual Studios, along with their relationships:

CLR .NET
Framework Components Visual Studio

CLR
2.0

.NET 3.5

LINQ
ASP.
NET
AJAX

REST RSS
VS2008

LINQ
to
SQL

LINQ
to
XML

LINQ
to
Objects

.NET 3.0 WCF WPF WF CardSpace

.NET 2.0 Winforms ASP.NET ADO.NET VS2005VS2008

CLR
1.0

.NET 1.1
Winforms ASP.NET ADO.NET

VS2003
.NET 1.0 VS2002

Summary
In this chapter, we have learned some basic concepts of WCF. The key points in this
chapter include the following:

WCF is a better technology for developing SOA services
A WCF service has at least one service endpoint
A WCF service endpoint has an address, a binding, and a service contract
A WCF service can be self-hosted, or can be hosted in a managed or an
unmanaged application
A WCF service can publish metadata, and communicates with client
applications through channels
.NET framework 3.0 or above is required to develop and run WCF
service applications
Visual Studio 2008 is the preferred IDE for WCF service application
development

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic
HelloWorld WCF Service

In the previous chapter, we learned many WCF concepts and saw a few
code snippets.

In this chapter, we will implement a basic WCF service from scratch. We will build a
HelloWorld WCF service by carrying out the following steps:

1.	 Create the solution and project
2.	 Create the WCF service contract interface
3.	 Implement the WCF service
4.	 Host the WCF service in the ASP.NET Development Server
5.	 Create a client application to consume this WCF service

Creating the HelloWorld solution and
project
Before we can build the WCF service, we need to create a solution for our service
projects. We also need a directory in which to save all the files. Throughout this
book, we will save our project source codes in the D:\SOAwithWCFandLINQ\
Projects directory. We will have a subfolder for each solution we create, and under
this solution folder, we will have one subfolder for each project.

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Implementing a Basic HelloWorld WCF Service

[36]

For this HelloWorld solution, the final directory structure is shown in the
following image:

You don't need to manually create these directories via Windows
Explorer; Visual Studio will create them automatically when you create
the solutions and projects.

Now, follow these steps to create our first solution and the HelloWorld project:

1.	 Start Visual Studio 2008. If the Open Project dialog box pops up, click Cancel
to close it.

2.	 Go to menu File | New | Project. The New Project dialog window
will appear.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[37]

3.	 From the left-hand side of the window (Project types), expand Other Project
Types and then select Visual Studio Solutions as the project type. From
the right-hand side of the window (Templates), select Blank Solution as
the template.

4.	 At the bottom of the window, type HelloWorld as the Name, and
D:\SOAwithWCFandLINQ\Projects\ as the Location. Note that you
should not enter HelloWorld within the location, because Visual Studio will
automatically create a folder for a new solution.

5.	 Click the OK button to close this window and your screen should look like
the following image, with an empty solution.

6.	 Depending on your settings, the layout may be different. But you should still
have an empty solution in your Solution Explorer. If you don't see Solution
Explorer, go to menu View | Solution Explorer, or press Ctrl+Alt+L to bring
it up.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[38]

7.	 In the Solution Explorer, right-click on the solution, and select
Add | New Project… from the context menu. You can also go to menu
File | Add | New Project… to get the same result. The following image
shows the context menu for adding a new project.

8.	 The Add New Project window should now appear on your screen. In the
left-hand side of this window (Project types), select Visual C# as the project
type, and on the right-hand side of the window (Templates), select Class
Library as the template.

9.	 At the bottom of the window, type HelloWorldService as the Name. Leave
D:\SOAwithWCFandLINQ\Projects\HelloWorld as the Location. Again,
don't add HelloWorldService to the location, as Visual Studio will create a
subfolder for this new project (Visual Studio will use the solution folder as
the default base folder for all the new projects added to the solution).

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[39]

You may have noticed that there is already a template for WCF Service
Application in Visual Studio 2008. For the very first example, we will not use
this template. Instead, we will create everything by ourselves so you know
what the purpose of each template is. This is an excellent way for you to
understand and master this new technology. In the next chapter, we will use
this template to create the project, so we don't need to manually type a lot of
code. Also, later in this book, we will use the Microsoft Web Service Software
Factory pattern and practice creating a 3-layer framework for our enterprise
SOA solution. This way, we not only type less code, but also have lots of best
practices embedded in the code automatically.

10.	 Now, you can click the OK button to close this window.

Once you click the OK button, Visual Studio will create several files for you. The first
file is the project file. This is an XML file under the project directory, and it is called
HelloWorldService.csproj.

Visual Studio also creates an empty class file, called Class1.cs. Later, we will
change this default name to a more meaningful one, and change its namespace to our
own one.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[40]

Three directories are created automatically under the project folder—one to hold the
binary files, another to hold the object files, and a third one for the properties files of
the project.

The window on your screen should now look like the following image:

We now have a new solution and project created. Next, we will develop and build
this service. But before we go any further, we need to do two things to this project:

1.	 Click the Show All Files button on the Solution Explorer toolbar. It is the
second button from the left, just above the word Solution inside the Solution
Explorer. If you allow your mouse to hover above this button, you will see
the hint Show All Files, as shown in above diagram. Clicking this button will
show all files and directories in your hard disk under the project folder-rven
those items that are not included in the project. Make sure that you don't
have the solution item selected. Otherwise, you can't see the Show All
Files button.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[41]

2.	 Change the default namespace of the project. From the Solution Explorer,
right-click on the HelloWorldService project, select Properties from
the context menu, or go to menu item Project | HelloWorldService
Properties…. You will see the project properties dialog window. On the
Application tab, change the Default namespace to MyWCFServices.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[42]

Lastly, in order to develop a WCF service, we need to add a reference to the
ServiceModel namespace.

1.	 On the Solution Explorer window, right-click on the HelloWorldService
project, and select Add Reference… from the context menu. You can also go
to the menu item Project | Add Reference… to do this. The Add Reference
dialog window should appear on your screen.

2.	 Select System.ServiceModel from the .NET tab, and click OK.

Now, on the Solution Explorer, if you expand the references of the
HelloWorldService project, you will see that System.ServiceModel has been
added. Also note that System.Xml.Linq is added by default. We will use this later
when we query a database.

Creating the HelloWorldService service
contract interface
In the previous section, we created the solution and the project for the HelloWorld
WCF Service. From this section on, we will start building the HelloWorld WCF
service. First, we need to create the service contract interface.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[43]

1.	 In the Solution Explorer, right-click on the HelloWorldService project, and
select Add | New Item…. from the context menu. The following Add New
Item - HelloWorldService dialog window should appear on your screen.

2.	 On the left-hand side of the window (Categories), select Visual C# Items as
the category, and on the right-hand side of the window (Templates), select
Interface as the template.

3.	 At the bottom of the window, change the Name from Interface1.cs to
IHelloWorldService.cs.

4.	 Click the Add button.

Now, an empty service interface file has been added to the project. Follow the steps
below to customize it.

1.	 Add a using statement:
	 using System.ServiceModel;

2.	 Add a ServiceContract attribute to the interface. This will designate the
interface as a WCF service contract interface.

	 [ServiceContract]

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[44]

3.	 Add a GetMessage method to the interface. This method will take a string
as the input, and return another string as the result. It also has an attribute,
OperationContract.

	 [OperationContract]
	 String GetMessage(String name);

4.	 Change the interface to public.

The final content of the file IHelloWorldService.cs should look like the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;
namespace MyWCFServices
{
 [ServiceContract]
 public interface IHelloWorldService
 {
 [OperationContract]
 String GetMessage(String name);
 }
}

Implementing the HelloWorldService
service contract
Now that we have defined a service contract interface, we need to implement it. For
this purpose, we will re-use the empty class file that Visual Studio created for us
earlier, and modify this to make it the implementation class of our service.

Before we modify this file, we need to rename it. In the Solution Explorer window,
right-click on the file Class1.cs, select rename from the context menu, and rename it
to HelloWorldService.cs.

Visual Studio is smart enough to change all related files, references to use
this new name. You can also select the file, and change its name from the
Properties window.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[45]

Next, follow the steps below to customize this class file.

1.	 Change its namespace from HelloWorldService to MyWCFServices. This is
because this file was added before we changed the default namespace of
the project.

2.	 Make it inherit from the interface IHelloWorldService.
	 public class HelloWorldService: IHelloWorldService

3.	 Add a GetMessage method to the class. This is an ordinary C# method that
returns a string.

	 public String GetMessage(String name)
	 {
	 return "Hello world from " + name + "!";
	 }

The final content of the file HelloWorldService.cs should look like the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace MyWCFServices
{
 public class HelloWorldService: IHelloWorldService
 {
 public String GetMessage(String name)
 {
 return "Hello world from " + name + "!";
 }
 }
}

Now, build the project. If there is no build error, it means that you have successfully
created your first WCF service. If you see a compilation error, such as "'ServiceModel'
does not exist in the namespace 'System'", this is probably because you didn't add
the ServiceModel namespace reference correctly. Revisit the previous section to add
this reference, and you are all set.

Next, we will host this WCF service in an environment and create a client application
to consume it.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[46]

Hosting the WCF service in ASP.NET
Development Server
The HelloWorldService is a class library. It has to be hosted in an environment so
that client applications may access it. In this section, we will explain how to host it
using the ASP.NET Development Server. Later, in the next chapter, we will discuss
more hosting options for a WCF service.

Creating the host application
There are several built-in host applications for WCF services within Visual Studio
2008. However, in this section, we will manually create the host application so that
you can have a better understanding of what a hosting application is really like
under the hood. In subsequent chapters, we will explain and use the built-in
hosting applications.

To host the library using the ASP.NET Development Server, we need to add a new
web site to the solution. Follow these steps to create this web site:

1.	 In the Solution Explorer, right-click on the solution file, and select Add |
New Web Site… from the context menu. The Add New Web Site dialog
window should pop up.

2.	 Select Empty Web Site as the template, and leave the Location set as File
System, and language as Visual C#. Change the web site name from
WebSite1 to HostDevServer, and click OK.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[47]

3.	 Now in the Solution Explorer, you have one more item (HostDevServer)
within the solution. It will look like the following:

4.	 Next, we need to set the website as the startup project. In the Solution
Explorer, right-click on the web site D:\...\HostDevServer, select
Set as StartUp Project from the context menu (or you can first select
the web site from the Solution Explorer, and then select menu item
Website | Set as StartUp Project). The web site D:\...\HostDevServer
should be highlighted in the Solution Explorer indicating that it is now the
startup project.

5.	 Because we will host the HelloWorldService from this web site, we need
to add a HelloWorldService reference to the web site. In the Solution
Explorer, right-click on the web site D:\...\HostDevServer, and select Add
Reference… from the context menu. The following Add Reference dialog
box should appear:

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[48]

6.	 In the Add Reference dialog box, click on the Projects tab, select
HelloWorldService project, and then click OK. You will see that a new
directory (bin) has been created under the HostDevServer web site, and
two files from HelloWorldService project have been copied to this new
directory. Later on, when this web site is accessed, the web server (either
ASP.NET Development Server or IIS) will look for executable code in this
bin directory.

Testing the host application
Now we can run the website inside the ASP.NET Development Server. If you start
the web site HostDevServer, by pressing Ctrl+F5, or select the Debug | Start
Without Debugging… menu, you will see an empty web site in your browser.
Because we have set this website as the startup project, but haven't set any start page,
it lists all of the files and directories inside the HostDevServer directory (Directory
Browsing is always enabled for a website within the ASP.NET Development Server).

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[49]

If you pressed F5 (or selected Debug | Start Debugging from the menu), you
may see a dialog saying Debugging Not Enabled (as shown below). Choose the
option Run without debugging. (Equivalent to Ctrl+F5) and click the OK button to
continue. We will explore the debugging options of a WCF service later. Until then,
we will continue to use Ctrl+F5 to start the website without debugging.

ASP.NET Development Server
At this point, you should have the HostDevServer site up and running. This site is
actually running inside the built-in ASP.NET Development Server. It is a new feature
that was introduced in Visual Studio 2005. This web server is intended to be used
by developers only, and has functionality similar to that of the Internet Information
Services (IIS) server. It also has some limitations; for example, you can run ASP.NET
applications only locally. You can't use it as a real IIS server to publish a web site.

By default, the ASP.NET Development Server uses a dynamic port for the web server
each time it is started. You can change it to use a static port via the Properties page of
the web site. Just change the Use dynamic ports setting to false, and specify a static
port, such as 8080, from the Properties window of the HostDevServer web site. You
can't set the port to 80, because IIS is already using this port. However, if you stop
your local IIS, you can set your ASP.NET Development Server to use port 80.

Even you set its port to 80 it is still a local web server. It can't be accessed
from outside your local PC.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[50]

It is recommended that you use a static port so that client applications know in
advance where to connect to the service. From now on, we will always use port 8080
in all of our examples.

The ASP.NET Development Server is normally started from within Visual
Studio when you need to debug or unit test a web project. If you really need to
start it from outside Visual Studio, you can use a command line statement in the
following format:

start /B WebDev.WebServer [/port:<port number>] /path:<physical path>
[/vpath:<virtual path>]

For our web site, the statement should be like this:

start /B webdev.webserver.exe /port:8080 /path:"D:\SOAwithWCFandLINQ\
Projects\HelloWorld\HostDevServer" /vpath:/HostDevServer

The webdev.webserver.exe is located under your .NET framework installation
directory (C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727).

Adding an svc file to the host application
Although we can start the web site now, it is only an empty site. Currently, it does
not host our HelloWorldService. This is because we haven't specified which service
this web site should host, or an entry point for this web site. Just as an asmx file is
the entry point for a non-WCF web service, a .svc file is the entry point for a WCF
service, if it is hosted on a web server. We will now add such a file to our web site.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[51]

From the Solution Explorer, right-click on the web site D:\...\HostDevServer, and
select Add New Item… from the context menu. The Add New Item dialog window
should appear, as shown below. Select Text File as the template, and change the
Name from TextFile.txt to HelloWorldService.svc in this dialog window.

You may have noticed that there is a template, WCF Service, in the list. We won't use
it now as it will create a new WCF service within this web site for you (we will use
this template later).

After you click the Add button in the Add New Item dialog box, an empty svc file
will be created and added to the web site. Now enter the following line in this file:

<%@ServiceHost Service="MyWCFServices.HelloWorldService"%>

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[52]

Adding a web.config file to the host
application
The final step is to add a web.config file to the web site. As in the previous step,
add a text file named web.config to the web site and enter the following code in
this file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="HTTPBaseAddress" value=""/>
 </appSettings>
 <system.serviceModel>
 <services>
 <service
 name="MyWCFServices.HelloWorldService"
 behaviorConfiguration="MyServiceTypeBehaviors">
 <endpoint
 address=""
 binding="wsHttpBinding"
 contract="MyWCFServices.IHelloWorldService"/>
 <endpoint
 contract="IMetadataExchange"
 binding="mexHttpBinding"
 address="mex" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MyServiceTypeBehaviors" >
 <serviceMetadata httpGetEnabled="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Within this file, we set HTTPBaseAddress to empty, because this WCF service is
hosted inside a web server and we will use the web server default address as the
service address.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[53]

The behavior httpGetEnabled is essential, because we want other applications to be
able to locate the metadata of this service. Without the metadata, client applications
can't generate the proxy and thus won't be able to use the service.

We use wsHttpBinding for this hosting, which means that it is secure (messages are
encrypted while being transmitted), and transaction-aware (we will discuss this in a
later chapter). However, because this is a WS-* standard, some existing applications
(for example: a QA tool) may not be able to consume this service. In this case, you
can change the service to use the basicHttpBinding, which uses plain unencrypted
texts when transmitting messages, and is backward compatible with traditional
ASP.NET web services (asmx web services).

The following is a brief explanation of the other elements in this configuration file:

Configuration is the root node of the file.
Within the appSettings node, you can add application-specific
configurations. In this file, we have added one setting for the base address of
the web site. In a later chapter, we will add a connection strings key to
this node.
system.serviceModel is the top node for all WCF service specific settings.
Within the services node, you can specify WCF services that are
hosted on this web site. In our example, we have only one WCF service
HelloWorldService hosted in this web site.
Each service element defines one WCF service, including its name,
behavior, and endpoint.
Two endpoints have been defined for the HelloWorldService, one for
the service itself (an application endpoint), and another for the metadata
exchange (an infrastructure endpoint).
Within the serviceBehaviors node, you can define specific behaviors for a
service. In our example, we have specified one behavior, which enables the
service meta data exchange for the service.

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[54]

Starting the host application
Now, if you start the web site by pressing Ctrl+F5 (again, don't use F5 or menu
option Debug | Start Debugging until we discuss these, later), you will now find
the file HelloWorldService.svc listed on the web page. Clicking on this file will
give the description of this service, that is, how to get the wsdl file of this service, and
how to create a client to consume this service. You should see a page similar to the
following one. You can also set this file as the start page file so that every time you
start this web site, you will go to this page directly. You can do this by right-clicking
on this file in the Solution Explorer and selecting Set as Start Page from the
context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[55]

Now, click on the wsdl link on this page, and you will get the wsdl xml file for this
service. The wsdl file gives all of the contract information for this service. In the next
section, we will use this wsdl to generate a proxy for our client application.

Close the browser. Then, from the Windows system tray (systray), find the little icon
labeled ASP.NET Development Server – Port 8080 (it is on the lower-right of your
screen, just next to the clock), right-click on it, and select Stop to stop ther service.

Creating a client to consume the WCF
service
Now that we have successfully created and hosted a WCF service, we need a client
to consume the service. We will create a C# client application to consume the
HelloWorldService.

In this section, we will create a Windows console application to call the WCF service.

Creating the client application project
First, we need to create a console application project and add it to the solution.
Follow these steps to create the console application:

1.	 In the Solution Explorer, right-click on the solution HelloWorld, and select
Add | New Project… from the context menu. The Add New Project dialog
window should appear, as shown below.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[56]

2.	 Select Visual C# Windows as the project type, and Console Application
as the template; change the project name from the defaulted value of
ConsoleApplication1 to HelloWorldClient, and leave the location as
D:\SOAwithWCFandLINQ\Projects\HelloWorld. Click the OK button.
The new client project has now been created and added to the solution.

Generating the proxy and configuration files
In order to consume a WCF service, a client application must first obtain or generate
a proxy class.

We also need a configuration file to specify things such as the binding of the service,
the address of the service, and the contract.

To generate these two files, we can use the svcutil.exe tool from the command
line. You can follow these steps to generate the two files:

1.	 Start the service by pressing Ctrl+F5 or by selecting menu option
Debug | Start Without Debugging (at this point your startup project
should still be HostDevServer; if not, you need to set this to be the startup
project). Now, you should see the window for the HelloWorldService
service, as we saw in the previous section.

2.	 After the service has been started, run the command line svcutil.exe tool
with the following syntax:

	 "C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcUtil.exe"
	 http://localhost:8080/HostDevServer/HelloWorldService.svc?wsdl
	 /out:HelloWorldServiceRef.cs /config:app.config

You will see output similar to that shown in the following screenshot:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[57]

Now, two files have been generated— one for the proxy (HelloWorldServiceRef.
cs), and the other for the configuration (app.config).

If you open the proxy file, you will see that the interface of the service
(IHelloWorldService) is mimicked inside the proxy class, and a client class
(HelloWorldServiceClient) is created to implement this interface. Inside this client
class, the implementation of the service operation (GetMessage) is only a wrapper
that delegates the call to the actual service implementation of the operation.

Inside the configuration file, you will see the definitions of the HelloWorldService,
such as the endpoint address, binding, timeout settings, and security behaviors of
the service.

Customizing the client application
Before we can run the client application, we still have some more work to do. Follow
these steps to finish the customization:

1.	 Adding the two generated files to the project: In the Solution Explorer, click
Show All Files to show all the files under the HelloWorldClient folder, and
you will see these two files. However, they are not included in the project.
Right-click on each of them and select Include In Project to include both of
them in the client project. You can also use menu Project | Add Existing
Item … (or the context menu Add | Existing Item …) to add them to
the project.

2.	 Adding a reference to the System.ServiceModel namespace: Just as we did
for the project HelloWorldService, we also need to add a reference to the
WCF .NET System.ServiceModel assembly. From the Solution Explorer,
just right-click on the HelloWorldClient project, select Add Reference… and
choose .NET System.ServiceModel. Then, click the OK button to add the
reference to the project.

3.	 Modify the program.cs to call the service: In program.cs, add the following
line to initialize the service client object:

	 HelloWorldServiceClient client = new HelloWorldServiceClient();

Then, we can call its method just as we would do for any other object:

Console.WriteLine(client.GetMessage("Mike Liu"));

Pass your name as the parameter to the GetMessage method, so that it prints out a
message for you.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a Basic HelloWorld WCF Service

[58]

Running the client application
We are now ready to run this client program.

First, make sure the the HelloWorldService has been started. If you previously
stopped it, start it now.

Then, from the Solution Explorer, right-click on the project HelloWorldClient, select
Set as StartUp Project, and then press Ctrl+F5 to run it.

You will see output as shown in the following image:

Setting the service application to AutoStart
Because we know we have to start the service before we run the client program, we
can make some changes to the solution to automate this task; that is, to automatically
start the service immediately before we run the client program.

To do this, in the Solution Explorer, right-click on the Solution, select Properties
from the context menu, and you will see the Solution 'HelloWorld' Property
Pages dialog box.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 3

[59]

On this page, first select the option button Multiple startup projects. Then, change
the action of D:\...\HostDevServer\ to Start without debugging. Change the
HelloWorldClient to the same action.

The HostDevServer must be above HelloWorldClient. If it is not, use the
arrows to move it to the top.

To try it, first stop the service, and then press Ctrl+F5. You will notice that the
HostDevServer is started first, and then the client program runs without errors.

Note that this will only work inside Visual Studio IDE. If you start the client program
from Windows Explorer (D:\SOAwithWCFandLINQ\Projects\HelloWorld\
HelloWorldClient\bin\Debug\HelloWorldClient.exe) without first starting
the service, the service won't get started automatically and you will get an error
message saying 'Could not connect to http://localhost:8080/HostDevServer/
HelloWorldService.svc'.

Summary
In this chapter, we have implemented a basic WCF service, hosted it within the
ASP.NET Development Server, and created a command line program to reference
and consume this basic WCF service. At this point, you should have a thorough
understanding as to what a WCF is under the hood. You will benefit from this when
you develop WCF services using Visual Studio WCF templates, or automation
guidance packages. The key points covered in this chapter are:

A WCF service is a class library, which defines one or more WCF service
interface contracts
System.ServiceModel assembly is referenced by all of the WCF
service projects
The implementations of a WCF service are just regular C# classes
A WCF service must be hosted in a hosting application
Visual Studio 2008 has a built-in hosting application for WCF services, which
is called ASP.NET Development Server
A client application uses a proxy to communicate with WCF services
A configuration file can be used to specify settings for WCF services

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the
HelloWorld WCF Service

In the previous chapter, we built a basic HelloWorld WCF service, and hosted it with
the ASP.NET Development Server. In this chapter, we will explore more hosting
options for WCF services, including hosting WCF services in a managed application,
in a Windows Service, in IIS, and in some other advanced WCF hosting applications.

We will also explain how to debug WCF services, including debugging from the
client application, debugging only the WCF service, attaching to the WCF service
process, and the Just-In-Time debugger.

In this chapter, we will discuss:

Hosting the service in a console application
Hosting the service in a Windows Service application
Hosting the service in IIS
Testing the service
Debugging the service from the client application
Debugging only the service
Attaching to the service process
Just-In-Time debugger

Hosting the HelloWorld WCF service
In the previous chapter, we hosted our HelloWorldService in the ASP.NET
Development Server. In addition to this, we have several other options for hosting a
WCF service. In this section, we will explore them one by one.

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[62]

Hosting the service in a managed application
We can create a .NET managed application, and host a WCF service inside the
application. The hosting application can be a command line application, a Windows
form application, or a web application. This hosting method gives you full control
over the lifetime of the WCF service. It is very easy to debug and deploy, and
supports all bindings and transports. The drawback of this hosting method is that
you have to start the hosting application manually, and it has only limited support
for high availability, easy manageability, robustness, recoverability, versioning, and
deployment scenarios.

Hosting the service in a console application
For example, what follows are the steps to host HelloWorldService in a
command line application. Note that these steps are very similar to the steps in the
previous section where we hosted a WCF service in the ASP.NET Development
Server. However, we must remember that we don't need a .svc file, and that the
configuration file is called app.config, and not web.config. Refer to the previous
section for diagrams. Also, if you want to host a WCF service in a Windows Form
application, or a web application, you can follow the same steps as we have listed
here simply by creating the project using an appropriate project template.

1.	 Add a console application project to the solution:
In the Solution Explorer, right-click on the solution file, and select Add | New
Project…, from the context menu. The Add New Project dialog box should
appear. Select Visual C# as the project type, and Console Application as the
template. Then, change the name from ConsoleApplication1 to HostCmdLin-
eApp, and click the OK button. A new project is added to the solution.

2.	 Set the project HostCmdLineApp as the startup project:
	 In the Solution Explorer, right-click on the project HostCmdLineApp, and

select Set as StartUp Project from the context menu. You can also select the
project in the Solution Explorer, and click on menu item Project | Set as
StartUp Project to do this.

3.	 Add a reference to the HelloWorldService project.
	 In the Solution Explorer, right-click on the project HostCmdLineApp and

select Add Reference…, from the shortcut menu. The Add Reference dialog
box should appear. Click on the Projects tab, select the HelloWorldService
project, and then click OK. Now, the HelloWorldService is under the
References folder of this project. You will also notice that two files from
HelloWorldService project have been copied to the bin directory under this
project. If you can't see the bin directory, press F4, or click on the Show All
Files icon in the Solution Explorer.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[63]

4.	 Add a reference to System.ServiceModel:
	 This reference is required, as we will manually create a service host

application and start and stop it in the steps that follow. In the Solution
Explorer window, right click on the HostCmdLineApp project, and select
Add Reference… from the context menu. You can also select menu item
Project | Add Reference… to do this. Select System.ServiceModel from
the .NET tab, and click OK.

5.	 Add a configuration file to define the endpoints of the service.
	 The configuration file will be very similar to the configuration file we created

for the HostDevServer project. So, in Windows Explorer, copy the web.
config file from the project folder of HostDevServer to the project folder
of HostCmdLineApp, change its name to app.config, then from Solution
Explorer, include this file in the project HostCmdLineApp (if you can't see
app.config file under this project, click the Show All Files button in the
Solution Explorer, or click the Refresh button to refresh the screen).

	 Open this configuration file, and change the HTTPBaseAddress from empty
to http://localhost:8080/HostCmdLineApp/HelloWorldService/. This means
we will host HelloWorldService using http, at port 8080, and under the
HostCmdLineApp virtual directory.

The following is the full content of the app.config file:
<?xml version="1.0"?>
<configuration>
	 <appSettings>
		 <add key="HTTPBaseAddress" value="http://localhost:8080/
 HostCmdLineApp/HelloWorldService/"/>
	 </appSettings>
	 <system.serviceModel>
		 <services>
			 <service name="MyWCFServices.HelloWorldService"
 behaviorConfiguration="MyServiceTypeBehaviors">
				 <endpoint address="" binding="wsHttpBinding"
 contract="MyWCFServices.IHelloWorldService"/>
				 <endpoint contract="IMetadataExchange"
 binding="mexHttpBinding" address="mex"/>
			 </service>
		 </services>
		 <behaviors>
			 <serviceBehaviors>
				 <behavior name="MyServiceTypeBehaviors">
					 <serviceMetadata httpGetEnabled="true"/>
				 </behavior>

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[64]

			 </serviceBehaviors>
		 </behaviors>
	 </system.serviceModel>
	 <system.web>
		 <compilation debug="true"/></system.web></configuration>

6.	 Now, we need to modify the Program.cs file to write some code to start and
stop the WCF service inside the Program.cs.

	 First, add two using statements as follows:
	 using System.ServiceModel;

	 using System.Configuration;

	 Then, add the following lines of codes within the static Main method:
	 Type serviceType=typeof(MyWCFServices.HelloWorldService);
	 string httpBaseAddress =
	 ConfigurationSettings.AppSettings["HTTPBaseAddress"];
	 Uri[] baseAddress = new Uri[] {new Uri(httpBaseAddress)};
	 ServiceHost host = new ServiceHost(serviceType, baseAddress);
	 host.Open();
	 Console.WriteLine("HelloWorldService is now running. ");
	 Console.WriteLine("Press any key to stop it ...");
	 Console.ReadKey();
	 host.Close();

	 As you can see, we just get the type of the HelloWorldService, construct a
base address for the WCF service, create a service host passing the type and
base address, and call the Open method of the host to start the service. To
stop the service, we just call the Close method of the service host.

	 Below is the full content of the Program.cs file.
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Text;
	 using System.ServiceModel;
	 using System.Configuration;
	
	 namespace HostCmdLineApp
	 {
	 class Program
	 {
	 static void Main(string[] args)
	 {

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[65]

	 Type serviceType=typeof(MyWCFServices.HelloWorldService);

	 string httpBaseAddress =
	 ConfigurationSettings.AppSettings["HTTPBaseAddress"];
	 Uri[] baseAddress = new Uri[] {new Uri(httpBaseAddress)};

	 ServiceHost host =
 new ServiceHost(serviceType, baseAddress);
	 host.Open();
	 Console.WriteLine("HelloWorldService is now running. ");
	 Console.WriteLine("Press any key to stop it ...");
	 Console.ReadKey();
	 host.Close();
	 }
	 }
	 }

7.	 After the project has been successfully built, you can press Ctrl+F5 to start
the service (if you are using Windows Server 2008 or Vista, make sure you
are logged in as an Administrator). You will see a command line window
indicating that the HelloWorldService is available and is waiting
for requests.

Consuming the service hosted in a console
application
To consume the service hosted in the above console application, you can follow
the same steps as described in the section "Creating a Client to Consume the
HelloWorld WCF Service" above, except that you pass http://localhost:8080/
HostCmdLineApp/HelloWorldService/?wsdl and not http://localhost:8080/
HostDevServer/HelloWorldService.svc?wsdl to the SvcUtil.exe when you
generate the proxy class and the configuration file.

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[66]

In fact, you can re-use the same client project, but inside the app.config file, change
the following line:

<endpoint ddress="http://localhost:8080/HostDevServer/
HelloWorldService.svc"

To this line:

<endpoint address="http://localhost:8080/HostCmdLineApp/
HelloWorldService/"

Now, when you run this client program, it will use the WCF service hosted in
our newly created command line application and not the previously-created
HostDevServer application. You will get the same result as before, when
the ASP.NET Development Server was used to host the WCF service.

Hosting the service in a Windows service
If you don't want to manually start the WCF service, you can host it in a Windows
service. In addition to the automatic start, Windows service hosting gives you some
other features such as recovery ability when failures occur, security identity under
which the service is run, and some degree of manageability. Just like the self-hosting
method, this hosting method also supports all bindings and transports. However,
it has some limitations; for example, you have to deploy it with an installer, and
it doesn't fully support high availability, easy manageability, versioning, or
deployment scenarios.

The steps to create such a hosting application are very similar to what we did to
host a WCF service in a command line application, except that you have to create an
installer to install the Windows service in the Service Control Manager (or you can
use the .NET Framework Installutil.exe utility).

Hosting the service in the Internet Information
Server
It is a better option to host a WCF service within the Internet Information Server (IIS),
because IIS provides a robust, efficient, and secure host for the WCF services. IIS also
has better thread and process execution boundaries handling (in addition to many
other features) compared to a regular managed application. Actually, web service
development on IIS has long been the domain of ASP.NET. When ASP.NET 1.0 was
released, a web service framework was part of it. Microsoft leveraged the ASP.NET
HTTP pipeline to make web services a reality on the Windows platform.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[67]

The main drawback of hosting the service within the IIS prior to version 7.0 is the
tight coupling between ASP.NET and Web services, which limits the transport
protocol to HTTP/HTTPs.

Another thing you need to pay particular attention to when hosting WCF in the IIS
is that the process and/or application domain may be recycled if certain conditions
are met. By default, the WCF service session state is not saved in memory so that
each recycle will lose all such information. This will be a big problem if you run a
web site in a load-balanced or web-farm (web-garden) environment. In this case,
you might want to turn on the ASP.NET compatibility mode (add the attribute
AspNetCompatibilityRequirements to your WCF service) so that the session state
can be persisted in an SQL Server database or in the ASP.NET State Server.

Now, we will explain how to host the HelloWorldService within IIS.

Preparing the folders and files
First, we need to prepare the folders and files for the host application. Follow these
steps to create the folders and copy the required files:

1.	 Create the folders:
	 In the Windows Explorer, create a new folder called HostIIS under

D:\SOAwithWCFandLINQ\Projects\HelloWorld, and a new subfolder called
bin under this HostIIS folder. You should now have the following
new folders:

	 D:\SOAwithWCFandLINQ\Projects\HelloWorld\HostIIS
	 D:\SOAwithWCFandLINQ\Projects\HelloWorld\HostIIS\bin

2.	 Copy the files:
	 Now, copy the files HelloWorldService.dll and HelloWorldService.

pdb from the HelloWorldService project folder D:\SOAwithWCFandLINQ\
Projects\HelloWorld\HelloWorldService\bin\Debug to the new folder
we created, D:\SOAwithWCFandLINQ\Projects\HelloWorld\HostIIS\bin.

	 Copy the files HelloWorldService.svc and Web.config from the
HostDevServer project folder D:\SOAwithWCFandLINQ\Projects\
HelloWorld\HostDevServer to the new folder, D:\SOAwithWCFandLINQ\
Projects\HelloWorld\HostIIS.

	 The files under the two new directories now should be like the following:

	 Parent Folder: D:\SOAwithWCFandLINQ\Projects\HelloWorld\

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[68]

Folder HostIIS HostIIS\bin
Files HelloWorldService.svc

Web.config
HelloWorldService.dll
HelloWorldService.pdb

Creating the virtual directory
Next, we need to create a virtual directory named HelloWorldService. Follow these
steps to create this virtual directory in the IIS.

1.	 Open the Internet Information Services (IIS) manager via menu option
Control Panel | Administrative Tools (or, if you prefer, from Category
View in Control Panel, select Performance and Maintenance, and then
Administrative Tools).

2.	 Expand the nodes of the tree in the left-hand pane until the node named
Default Web Site becomes visible.

3.	 Right-click on that node, and choose New | Virtual Directory … from the
context menu.

4.	 In the Virtual Directory Creation Wizard, click the Next button, and enter
HelloWorldService in the Virtual Directory alias screen.

5.	 Click the Next button, and enter D:\SOAwithWCFandLINQ\Projects\
HelloWorld\HostIIS as the path on the Web Site Content Directory screen
of the wizard.

6.	 Click the Next button again, and leave the options Read and Run Scripts
Permissions selected on the wizard's Virtual Directory Access Permissions
screen. Then, click on the Next button, and follow the instructions to exit
from the wizard.

7.	 From the IIS window, right-click on the HelloWorldService virtual directory,
select Properties from the context menu, select the ASP.NET tab, and modify
the ASP.NET Properties to use the ASP.NET 2.0.50727 version.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[69]

Starting the WCF service in the IIS
Once you have the files copied to the HostIIS folder, and have the virtual directory
created, the WCF service is ready to be called by the clients. When a WCF service is
hosted within IIS, we don't need to explicitly start the service. As with other normal
web applications, IIS will control the lifetime of the service. As long as the IIS is
started, client programs can access it.

Testing the WCF service hosted in the IIS
To test the WCF service, open an Internet browser, and enter the following URL in
the address bar of the browser. You will get an almost identical screen to the one you
got previously:

http://localhost/HelloWorldService/HelloWorldService.svc

You don't need to add a port after the host, because it is now hosted in the IIS with
the default HTTP port 80. This also means that you can access it using your real
computer (host) name, and even outside of your network if you are connected to the
Internet. Two example URLs are as follows:

http://[your_pc_name]/HelloWorldService/HelloWorldService.svc
http://[your_pc_name].[your_company_domain].com/HelloWorldService/
HelloWorldService.svc

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[70]

We can re-use the client program we created earlier to consume this WCF service
hosted within the IIS. Just change the endpoint address line from this:

<endpoint address="http://localhost:8080/HostCmdLineAPP/
HelloWorldService.svc"

To this:

<endpoint address="http://localhost/HelloWorldService.svc"

Now, when you run this client program, it will use the WCF service hosted within
the IIS, and not the previously-created HostCmdLineApp application. You will get the
same result as before, when it was hosted in our own host application.

Advanced WCF service hosting options
The hosting methods we previously discussed were the three most popular options
prior to Visual Studio 2008/Internet Information Services (IIS) 7.0 (Windows Vista /
Windows 2008). In addition to these, there are some new advanced hosting methods
for a WCF service in Visual Studio 2008 and IIS 7.0.

In Visual Studio 2008, there is a ready-made, general-purpose WCF Service Host
(WcfSvcHost.exe), which makes the WCF host and development test much easier.
This host will be used by default if you create a WCF service using a WCF Service
Library template. We will cover this new feature in a later chapter.

Another option is to create a WCF service using a WCF Service Application template,
in which case the WCF service project itself is a web site and is ready to run within
its own project folder. We will also cover this new feature later.

With Internet Information Services (IIS) 7 (Windows Vista / Windows Server
2008), there is another new feature called Windows Activation Services (WAS).
This feature makes it possible to host a WCF service using all four WCF transport
protocols (HTTP, NET.TCP, and NET.PIPE, NET.MSMQ), instead of just HTTP/
HTTPS as in the case in IIS 6.0. As we will only use HTTP protocol in this book,
we will not discuss this hosting method. However, in your real projects, you are
recommended to explore this option and use it wherever possible.

Debugging the HelloWorld WCF service
Now that we have a fully-working WCF service, let us have a look at the debugging
options of this service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[71]

Debugging from the client application
The first and most common scenario is to debug from the client program. This means
that you start a client program in debug mode, and then step into your
WCF service.

Starting the debugging process
Follow these steps to start the debugging process from the client application:

1.	 Change the client program's web configuration file to call the
HelloWorldService hosted within the ASP.NET Development Server. Open
the file app.config inside the HelloWorldClient project, and set the address
of the endpoint to this address:

	 http://localhost:8080/HostDevServer/HelloWorldService.svc

2.	 In the Solution Explorer, right-click on the HelloWorldClient project, and
select Set as Startup Project from the context menu.

3.	 Open the Program.cs file inside the HelloWorldClient project, and set a
breakpoint at the following line:

	 HelloWorldServiceClient client = new HelloWorldServiceClient();

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[72]

	 You can set a breakpoint by clicking on the gray area of the left of the line
(the little ball in the diagram above), pressing F9 while the cursor is on the
line, or selecting the menu item Debug | Toggle Breakpoint. You should
ensure that the breakpoint line is highlighted, and if you hover your mouse
over the red breakpoint dot, an information line will pop up.

4.	 Now press F5, or select menu option Debug | Start Debugging, to start the
debugging process.

As soon as you press F5, you will notice a little window pop up in the lower-right
corner of the screen, as shown in the following image:

This is because the client program HelloWorldClient is referencing
HelloWorldService, which is hosted in the ASP.NET Development Server, and you
have the project property Always Start When Debugging set to True.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[73]

Note that this setting is for the WCF hosting project, not for the client or WCF
service project. This is very useful when debugging, because you don't need to start
it explicitly. However, sometimes, it might be annoying, especially when you have
several hosting projects within the same solution. In this case, you can turn it off by
setting it to False. However, you then have to start the Service prior to debugging
the client application. Otherwise, you will get an exception. We will discuss more
about this, later in this chapter.

Debugging on the client application
The cursor should have stopped on the breakpoint line, as you can see in the
following HelloWorld (Debugging) image. The active line is highlighted, and you
can examine the variables just as you do for any other C# applications.

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[74]

At this point, the channel between the client and the hosting server (HostDevServer)
hasn't been created. Press F10, or select menu option Debug | Step Over to skip
over this line. If you don't have the menu option Debug | Step Over, you may have
to reset your development environment settings via menu option Tools | Import
and Export Settings… (select General Development Settings from the Import and
Export Settings Wizard, and check all of the available options).

Now, the following line of source code should be active and highlighted. At this
point, we have a valid client object, which contains all of the information related to
the WCF service, such as the channel, the endpoint, the members, and the security
credentials. The following Locals image shows the details of the Endpoint
local variable.

Enabling debugging of the WCF service
Let us press F11 to step into the WCF service. But instead of stepping in, we will
receive an error message, as shown in the following image stating that the service
debugging is not enabled:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[75]

This is because we haven't enabled debugging for the HostDevServer application.
Click the OK button to dismiss this dialog, and then press Shift+F5, or select menu
option Debug | Stop Debugging, to return to the development mode.

To enable the debugging of HostDevServer, open the web.config file inside the
HostDevServer project and add following nodes to this file:

<system.web>
 <compilation debug="true"/>
</system.web>

Above system.web, nodes should be added as child nodes of the root node
<configuration>, and the content of the web.config file should now be like this:

<?xml version="1.0"?>
<configuration>
	 <appSettings>
		 <add key="HTTPBaseAddress" value=""/>
	 </appSettings>
	 <system.serviceModel>
		 <services>
			 <service name="MyWCFServices.HelloWorldService"
 behaviorConfiguration="MyServiceTypeBehaviors">
				 <endpoint address="" binding="wsHttpBinding"
 contract="MyWCFServices.IHelloWorldService"/>
				 <endpoint contract="IMetadataExchange"
 binding="mexHttpBinding" address="mex"/>
			 </service>
		 </services>
		 <behaviors>
			 <serviceBehaviors>
				 <behavior name="MyServiceTypeBehaviors">
					 <serviceMetadata httpGetEnabled="true"/>
				 </behavior>
			 </serviceBehaviors>
		 </behaviors>
	 </system.serviceModel>
	 <system.web>
 <compilation debug="true"/>
 </system.web>
</configuration>

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[76]

Stepping into the WCF service
Now, press F5 to start debugging again. Press F10 to skip the first line, and then
press F11 to step into the service code. The cursor now resides on the opening
bracket of the GetMessage method of the HelloWorldService. You can now
examine the variables inside HelloWorldService, just as you would for any other
programs. Keep pressing F10, and you should eventually come back to the
client program.

However, if you stay inside the HelloWorldService for too long, when you
come back to HelloWorldClient, you will get an exception window saying that
it has timed out. This is because, by default, the HelloWorldClient will call
HelloWorldService, and wait for a response for a maximum time of one minute.
You can change this to a longer value in the configuration file web.config,
depending on your own needs.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[77]

You may also have noticed that you don't see the output window of the
HelloWorldClient. This is because, in debug mode, once a console application
finishes, the console window is closed. You can add one line to the end of Program.
cs to wait for a keystroke so that you can look at the output before it closes. You can
do this by adding the following line of code:

Console.ReadKey();

Debugging only the WCF service
In the previous section, we started debugging from the client program, and then
stepped into the service program. Sometimes, we may not want to run the client
application in debug mode. For example, if the client application is a third-party
product we won't have the source code, or the client application may be a BPM
product that runs on a different machine. In this case, if we need to, we can run the
service in debugging mode and debug only the service.

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[78]

Starting the WCF Service in debugging mode
To start HelloWorldService in the debug mode, first set HostDevServer as the
startup project. Then open HelloWorldService.cs from the HelloWorldService
project and set a breakpoint at the line inside the GetMessage method, as
shown below.

Now press F5 to start the service in debugging mode.

Once you press F5, the WCF service will be running in debugging mode, waiting for
requests. A browser will open displaying all of the files under the HostDevServer
folder. If you go back to Visual Studio IDE, you may find that a new solution folder,
Script Documents, has been added to the solution. This folder is the actual content
of the web page being displayed in the browser. Because its content is dynamically
generated, this folder will only be included in the solution when the HostDevServer
is being debugged. Whenever you stop the debugging session, this folder will go
away automatically.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[79]

After you press F5 to start a WCF service in debugging mode, you might see an error
message warning you that script debugging is disabled, as shown the following
Script Debugging Disabled image:

For this dialog box, you can do as instructed (clear the checkbox from the Internet
Explorer under Tools | Advanced | Browsing | Disable Script Debugging), or
you can just click the Yes button to continue debugging without enabling script
debugging for Internet Explorer, because we will not debug any script from Internet
Explorer (our application is not a web application).

Once you clicked the Yes button (or you may never see this message box because
you have the correct settings), the service will be started in debugging mode.

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[80]

Starting the client application in non-debugging
mode
Now that we have the WCF service running in debugging mode, we need to start the
client application in non-debugging mode so that the debugging process can start
from the WCF service side, and not from the client side.

For this example, you can't start the HelloWorldClient program from the same
Visual Studio IDE instance. The reason for this is that, once you have started the
HelloWorldService in debugging mode, the solution is in running status. You can't
start another project from the same solution inside the same Visual Studio instance
while the HelloWorldService project is running. Actually, the Set as Startup
Project menu option is disabled, making it impossible to set any other project as the
startup project. Also, a bunch of other menu options are disabled, meaning that you
can't change them while in debugging mode.

There are two ways to start the HelloWorldClient program in non-debugging
mode. The first one is to start it in another instance of Visual Studio. While leaving
the previous instance of Visual Studio running for the HelloWorldService in
debugging mode, start a new Visual Studio instance, and open the HelloWorld
solution. Set HelloWorldClient as the startup project, and then press Ctrl+F5 to
start it in non-debugging mode. As soon as you press Ctrl+F5, you will see that
the previous Visual Studio is active and the cursor has stopped on the breakpoint
line. You can now examine all of the variables inside HelloWorldService, as you
would do for any other program. Press F10 once and you will be taken to the end
of the GetMessage method; press F10 again and you will be taken outside of the
HelloWorldService project. Because the HelloWorldClient is now not running in
debugging mode, you will see the output window immediately.

Another way to start HelloWorldClient is to start it from Windows Explorer. Go
to the D:\SOAwithWCFandLINQ\Projects\HelloWorld\HelloWorldClient\bin\
Debug directory and double click HelloWorldClient.exe file. You will then get the
same result as you did when you started it from inside a new Visual Studio instance.

Starting the WCF service and client applications in
debugging mode
What if you start HelloWorldClient in debugging mode, while
HelloWorldService is also running in the debugging mode? Suppose you have
started HelloWorldService in debugging mode, have set a breakpoint inside the
GetMessage method, and have attached a debugger to the HelloWorldService.
Now, if you start another Visual Studio instance, open the solution, set
HelloWorldClient as the startup project, and press F5 to start HelloWorldClient

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[81]

also in debugging mode, you will get an exception, as shown in the following image
indicating that you attach to the server process:

The main reason for this is that, by default, HostDevServer has the setting Always
Start When Debugging set to True. Because of this setting, when HelloWorldClient
is started in debugging mode, it also tries to start the service. However, as we
have started it in another Visual Studio instance, it will not start a new one.
Instead, it will just re-use the existing one. Now, when the breakpoint inside the
HelloWorldService is hit, the second Visual Studio instance will try to attach to the
HelloWorldService process, which fails because the first Visual Studio instance has
already attached a debugger to it.

To overcome this, just change the setting Always Start When Debugging to False,
and control the startup of each project manually, or when you start debugging from
the client program, don't start the service in advance. The following Properties
image shows the setting of this property:

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[82]

Attaching to a WCF service process
The third common scenario for debugging is when attaching to a running WCF
service. Suppose that HelloWorldService is hosted and running outside Visual
Studio, either in IIS or a managed application such as HostCmdLineApp. The client
application is also running outside of Visual Studio. At a certain point, you may
want to start debugging the running WCF service. In this case, we can attach to the
WCF service process, and start debugging from the middle of a process.

Running the WCF service and client applications in
non-debugging mode
To try this scenario, change the app.config file to use the IIS hosting
HelloWorldService. This means that we use the following address for the endpoint
in the app.config file for the HelloWorldClient project:

http://localhost/HelloWorldService/HelloWorldService.svc

Build the solution, and set a breakpoint inside the GetMessage method of the
HelloWorldService project. Then, run the HelloWorldClient in non-debugging
mode by pressing Ctrl+F5. You will see there is no way to hit the breakpoint we had
previously set inside HelloWorldService. This is because the service is now hosted
by the IIS, and it is not under debugging by any debugger.

Debugging the WCF service hosted in IIS
To debug the service hosted by the IIS, we can attach it to the IIS process. Start Visual
Studio, select menu option Debug | Attach to Process…. The Attach to Process
window should now appear. If you can't see the Debug menu from Visual Studio,
just open any project or, create an empty new project.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[83]

Select process aspnet_wp.exe from the list of available processes, and click the
Attach button. You will find this process attached to the debugger. Open the
HelloWorldService.cs file and set a breakpoint if you haven't done so already.
Now run the HelloWorldClient program in non-debugging mode (use Ctrl+F5)
from another Visual Studio instance or from Windows Explorer, and you will see
that the breakpoint is now hit.

When you have finished debugging HelloWorldService using this method, you
can select menu option Debug | Detach All or Debug | Stop Debugging to exit
debugging mode.

You may also have noticed that when you attach to aspnet_wp.exe, the ASP.NET
Development Server is also started. We will not use it at all at this time. This is again
because the Always Start When Debugging property of HostDevServer is set to
True, and as we did earlier, you can turn it off if you feel it is annoying.

Download from Library of Wow! eBook <www.wowebook.com>

Hosting and Debugging the HelloWorld WCF Service

[84]

Just-In-Time debugger
As you can see, we have to start the HelloWorldService before we can run the
client program. The actual step to start the HelloWorldService varies depending
on the hosting method that you are using. For example, if you are hosting
HelloWorldService in a managed application as we did for HostCmdLineApp, you
have to start the application manually. If you are hosting HelloWorldService in the
ASP.NET Development Server, you can manually start it from Visual Studio, or set
Always Start When Debugging to True. If you are hosting HelloWorldService in
IIS, you don't need to do anything (except to make sure that the IIS service has been
started). Lastly, if you host HelloWorldService in a Windows service, you should
set its startup type to automatic, or you will have to manually start it.

What happens when you run the client program, the service is not started, and it
is not set to automatically start when being referenced? For example, if you have
hosted HelloWorldService in IIS, and for some reason IIS has been stopped, then
what will happen to the client program?

To try this, we need to first stop IIS. There are several ways to stop IIS, and one of
them is to open a command line window (via menu option Start | All Programs
| Accessories | Command Prompt) and run the following command: Net Stop
W3SVC, as shown in following image:

Once IIS has been stopped, HelloWorldService is no longer accessible. If you start
the HelloWorldClient program now, you will get an error. Depending on the mode
in which you are running HelloWorldClient, you will get two different errors.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[85]

First, if you start HelloWorldClient in debugging mode (by pressing F5) from
Visual Studio, it will stop on the line to call the GetMessage method, showing you an
exception. This is because the client program can't connect to the server (the server
has actively refused it). As we haven't added any code to handle exceptions, .NET
runtime throws an unhandled exception. We will discuss exceptions (WCF Fault
Contracts) in one of the following chapters. For now, you have to select menu option
Debug | Stop Debugging to stop the client program.

Download from Library of Wow! eBook <www.wowebook.com>

www.allitebooks.com

http://www.allitebooks.org

Hosting and Debugging the HelloWorld WCF Service

[86]

If you start HelloWorldClient in non-debugging mode (by pressing Ctrl+F5, or
by double-clicking the HelloWorldClient.exe file from Windows Explorer D:\
SOAwithWCFandLINQ\Projects\HelloWorld\HelloWorldClient\bin\Debug\),
you will see the Visual Studio Just-In-Time Debugger screen.

This is a nice feature of the .NET framework, because even though we have started
the program in non-debugging mode, we can still step into the codesif something
unexpected happens (however, the executable must be built with debugging
information, that is, not a release one). In this case, if you click the Yes button, the
Visual Studio window with the HelloWorld solution will be active, and you will see
the same image as when you started the debugging process from Visual Studio. So,
you know it is due to HelloWorldService. This will be very helpful when you are
testing a big application, as you don't need to restart your program in debugging
mode and repeat what you've done to reach the same problem spot. Instead, you
can start the debugging process right on the spot, and then fix it quickly if it is only a
configuration problem.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 4

[87]

In the above example, if the client program is started from Windows Explorer, and
the HelloWorld solution is not open in any Visual Studio IDE, it may even offer to
start a new instance of Visual Studio for debugging. If you have multiple versions
of Visual Studio .NET IDEs installed, it will list all of them for you to pick one. It is
better to choose Visual Studio 2008 because, if you choose others, you may run into
some unexpected problems.

Summary
In this chapter, we have hosted the HelloWorld WCF service in several different
ways and explained the different scenarios of debugging a WCF service. The key
points in this chapter include:

A WCF Service can be hosted in the ASP.NET Development Server, in a
managed application, a Windows Service, IIS, in Visual Studio 2008 WCF
Service Host, or in WAS
IIS is a better WCF hosting option for interacting with legacy applications,
and WAS is even better when interoperability is not the highest priority
You can start the debugging process for a WCF service from the client
application, from the service application, or by attaching to the
service process
The Just-In-Debugger is helpful for determining the reason of the exception
when the application is running outside of Visual Studio

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service
in the Real World

In the previous chapter, we created a basic WCF service. The WCF service we
created, HelloWorldService, has only one method, called GetMessage. Because
this is just an example, we implemented this WCF service in one layer only. Both the
service interface and implementation are all within one deployable component.

In this chapter and the next one, we will implement a WCF Service, which will be
called RealNorthwindService, to reflect a real world solution. In this chapter we
will separate the service interface layer from the business logic layer, and in the next
chapter we will add a data access layer to the service.

In this chapter, we will create and test the WCF service by following these steps:

Create the project using a WCF Service Library template
Create the project using a WCF Service Application template
Create the Service Operation Contracts
Create the Data Contracts
Add a Product Entity project
Add a business logic layer project
Call the business logic layer from the service interface layer
Test the service

Why layering a service?
An important aspect of SOA design is that service boundaries should be explicit,
which means hiding all the details of the implementation behind the service
boundary. This includes revealing or dictating what particular technology was used.

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[90]

Further more, inside the implementation of a service, the code responsible for the
data manipulation should be separated from the code responsible for the business
logic. So in the real world it is always a good practice to implement a WCF service
in three or more layers. The three layers are the service interface layer, the business
logic layer, and the data access layer.

Service interface layer: This layer will include the service contracts and
operation contracts that are used to define the service interfaces that will be
exposed at the service boundary. Data contracts are also defined to pass in to
and out of the service. If any exception is expected to be thrown outside of the
service, then Fault contracts will also be defined at this layer.
Business logic layer: This layer will apply the actual business logic to the
service operations. It will check the preconditions of each operation, perform
business activities, and return any necessary results to the caller of the service.
Data access layer: This layer will take care of all of the tasks needed to
access the underlying databases. It will use a specific data adapter to query
and update the databases. This layer will handle connections to databases,
transaction processing, and concurrency controlling. Neither the service
interface layer nor the business logic layer needs to worry about these things.

Layering provides separation of concerns and better factoring of code, which gives
you better maintainability and the ability to split layers out into separate physical
tiers, for scalability. The data access code should be separated out into its own layer
that focuses on performing translation services between the databases and the
application domain. Services should be placed in a separate service layer that focuses
on performing translation services between the service-oriented external world and
the application domain.

The service interface layer will be compiled into a separate class assembly, and
hosted in a service host environment. The outside world will only know about and
have access to this layer. Whenever a request is received by the service interface
layer, the request will be dispatched to the business logic layer, and the business
logic layer will get the actual work done. If any database support is needed by the
business logic layer, it will always go through the data access layer.

Creating a new solution and project
using WCF templates
We need to create a new solution for this example, and add a new WCF project to
this solution. This time we will use the built-in Visual Studio WCF templates for the
new project.

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[91]

Using the C# WCF service library template
There are two built-in WCF service templates within Visual Studio 2008: Visual
Studio WCF Service Library and Visual Studio Service Application. In this section,
we will use the service library template, and in the next section, we will use the
service application template. Later, we will explain the differences between these
two templates and choose the template that we are going to use for this chapter.

Follow these steps to create the RealNorthwind solution and the project using
service library template:

1.	 Start Visual Studio 2008, select menu option File | New | Project…, and you
will see the New Project dialog box. Do not open the HelloWorld solution
from the previous chapter, as from this point onwards, we will create a
completely new solution and save it in a different location.

2.	 In the New Project window, specify Visual C# | WCF as the project type,
WCF Service Library as the project template, RealNorthwindService as the
(project) name, and RealNorthwind as the solution name. Make sure that the
checkbox Create directory for solution checkbox is selected.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[92]

3.	 Click the OK button, and the solution is created with a WCF project inside it.
The project already has a IService1.cs file to define an service interface and
Service1.cs to implement the service. It also has an app.config file, which
we will cover shortly.

Using the C# WCF service application
template
Instead of using the Visual Studio WCF Service Library template to create our new
WCF project, we can also use the Visual Studio Service Application template to
create the new WCF project.

Because we have created the solution, we will add a new project using the Visual
Studio WCF Service Application template.

1.	 Right-click on the solution item in the Solution Explorer, select menu option
Add | New Project… from the context menu, and you will see the Add New
Project dialog box.

2.	 In the Add New Project window, specify Visual C# as the
project type, WCF Service Application as the project template,
RealNorthwindService2 as the (project) name, and leave the default location
of D:\SOAwithWCFandLINQ\Projects\RealNorthwind unchanged.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[93]

3.	 Click the OK button and the new project will be added to the solution. The
project already has an IService1.cs file to define a service interface, and
Service1.svc.cs to implement the service. It also has a Service1.svc
file, and a web.config file, which are used to host the new WCF service.
It has also had the necessary references added to the project such as
System.ServiceModel.

You can follow these steps to test this service:

Change this new project RealNorthwindService2 to be the startup project
(right-click on it from the Solution Explorer, and select Set as Startup
Project). Then, run it (Ctrl+F5 or F5). You will see that it can now run. You
will see that an ASP.NET Development Server has been started, and a
browser is open listing all of the files under the RealNorthwindService2
project folder. Clicking on the Service1.svc file will open the Metadata page
of the WCF service in this project. This is the same as we had discussed in the
previous chapter for the HostDevServer project.
If you have pressed F5 in the previous step to run this project, you will see
a warning message box asking you if you want to enable debugging for the
WCF service. As we said earlier, you can choose enable debugging or just run
in non-debugging mode.

You may also have noticed that the WCF Service Host is started together with the
ASP.NET Development Server. This is actually another way of hosting a WCF
service in Visual Studio 2008. It has been started at this point because, within the
same solution, there is a WCF service project (RealNorthwindService) created using
the WCF Service Library template. We will cover more of this host in a later section.

So far, we have used two different Visual Studio WCF templates to create two
projects. The first project, using C# WCF Service Library template, is a more
sophisticated one because this project is actually an application containing a WCF
service, a hosting application (WcfSvcHost), and a WCF Test Client. This means
that we don't need to write any other code to host it, and as soon as we have
implemented a service, we can use the built-in WCF Test Client to invoke it. This
makes it very convenient for WCF development.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[94]

The second project, using C# WCF Service Application template, is actually a
website. This is the hosting application of the WCF service, so you don't have to
create a separate hosting application for the WCF service. This is like a combination
of the HelloWorldService and the HostDevServer applications we created in the
previous chapter. As we have already covered them and you now have had a solid
understanding of these styles, we will not discuss them any more. But keep in mind
that you have this option, although in most cases it is better to keep the WCF service
as clean as possible, without any hosting functionalities attached to it.

To focus on the WCF service using the WCF Service Library template, we now need
to remove the project RealNorthwindService2 from the solution.

In the Solution Explorer, right-click on the RealNorthwindService2 project item, and
select Remove from the context menu. Then, you will see a warning message box.
Click the OK button in this message box, and the RealNorthwindService2 project
will be removed from the solution. Note that all the files of this project are still on
your hard drive. You will need to delete them using Windows Explorer.

Creating the service interface layer
In the previous section, we created a WCF project using the WCF Service Library
template. In this section, we will create the service interface layer contracts.

Because two sample files have already been created for us, we will try to re-use them
as much as possible. Then, we will start customizing these two files to create the
service contracts.

Creating the service interfaces
To create the service interfaces, we need to open the IService1.cs file, and do
the following:

1.	 Change its namespace from RealNorthwindService to:
	 MyWCFServices.RealNorthwindService

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[95]

2.	 Change the interface name from IService1 to IProductService. Don't be
worried if you see the warning message before the interface definition line, as
we will change the web.config file in one of the following steps.

3.	 Change the first operation contract definition from this line:
	 string GetData(int value);

To this line:
	 Product GetProduct(int id);

4.	 Change the second operation contract definition from this line:
	 CompositeType GetDataUsingDataContract(CompositeType composite);

To this line:
	 bool UpdateProduct(Product product);

5.	 Change the file's name from IService1.cs to IProductService.cs.

With these changes, we have defined two service contracts. The first one can be used
to get the product details for a specific product ID, while the second one can be used
to update a specific product. The product type, which we used to define these service
contracts, is still not defined. We will define it right after this section.

The content of the service interface for RealNorthwindService.ProductService
should look like this now:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace MyWCFServices.RealNorthwindService
{
 // NOTE: If you change the interface name "IService1" here, you
must also update the reference to "IService1" in App.config.
 [ServiceContract]
 public interface IProductService
 {
 [OperationContract]
 Product GetProduct(int id);

 [OperationContract]
 bool UpdateProduct(Product product);

 // TODO: Add your service operations here
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[96]

This is not the whole content of the IProductService.cs file. The
bottom part of this file now should still have the class CompositeType,
which we will change to our Product type in the next section.

Creating the data contracts
Another important aspect of SOA design is that you shouldn't assume that the
consuming application supports a complex object model. A part of the service
boundary definition is the data contract definition for the complex types that will be
passed as operation parameters or return values.

For maximum interoperability and alignment with SOA principles, you should
not pass any .NET specific types such as DataSet or Exceptions across the service
boundary. You should stick to fairly simple data structure objects such as classes
with properties, and backing member fields. You can pass objects that have nested
complex types such as 'Customer with an Order collection'. However, you shouldn't
make any assumption about the consumer being able to support object-oriented
constructs such as inheritance, or base-classes for interoperable web services.

In our example, we will create a complex data type to represent a product
object. This data contract will have five properties: ProductID, ProductName,
QuantityPerUnit, UnitPrice, and Discontinued. These will be used to
communicate with client applications. For example, a supplier may call the
web service to update the price of a particular product, or to mark a product
for discontinuation.

It is preferable to put data contracts in separate files within a separate assembly, but
to simplify our example, we will put the DataContract within the same file as the
service contract. So, we will modify the file IProductService.cs as follows:

1.	 Change the DataContract name from CompositeType to Product.
2.	 Change the fields from the following lines:
	 bool boolValue = true;
	 string stringValue = "Hello ";

	 To these 7 lines:
	 int productID;
	 string productName;
	 string quantityPerUnit;
	 decimal unitPrice;
	 bool discontinued;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[97]

3.	 Delete the old BoolValue, and StringValue DataMember properties. Then,
for each of the above fields, add a DataMember property. For example, for
productID, we will have this DataMember property:

	 [DataMember]
	 public int ProductID
	 {
	 get { return productID; }
	 set { productID = value; }
	 }

A better way is to take advantage of the automatic property feature of C#, and add
the following ProductID DataMember without defining the productID field:

[DataMember]
public int ProductID { get; set; }

To save some space, we will use the latter format. So, we need to delete all of those
field definitions, and add an automatic property for each field, with the first
letter capitalized.

The data contract part of the finished service contract file IProductService.cs
should now look like this:

[DataContract]
public class Product
{
 [DataMember]
 public int ProductID { get; set; }
 [DataMember]
 public string ProductName { get; set; }
 [DataMember]
 public string QuantityPerUnit { get; set; }
 [DataMember]
 public decimal UnitPrice { get; set; }
 [DataMember]
 public bool Discontinued { get; set; }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[98]

Implementing the service contracts
To implement the two service interfaces that we defined in the previous section,
open the Service1.cs file and do the following:

1.	 Change its namespace from RealNorthwindService to MyWCFServices.
RealNorthwindService.

2.	 Change the class name from Service1 to ProductService. Make it inherit
from the IProductService interface, instead of IService1. The class
definition line should be like this:

 public class ProductService : IProductService

3.	 Delete the GetData and GetDataUsingDataContract methods
4.	 Add the following method, to get a product:
	 public Product GetProduct(int id)
	 {
	 // TODO: call business logic layer to retrieve product
	 Product product = new Product();
	 product.ProductID = id;
	 product.ProductName = "fake product name from service layer";
	 product.UnitPrice = (decimal)10.0;
	 return product;
	 }

In this method, we created a fake product and returned it to the client.
Later, we will remove the hard-coded product from this method, and call
the business logic to get the real product.

5.	 Add the following method to update a product:
 public bool UpdateProduct(Product product)
 {
 // TODO: call business logic layer to update product
 if (product.UnitPrice <= 0)
 return false;
 else
 return true;
 }

Also, in this method, we don't update anything. Instead, we always return
true if a valid price is passed in. In one of the following sections, we will
implement the business logic to update the product and apply some business
logics to the update.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[99]

6.	 Change the file's name from Service1.cs to ProductService.cs. The
content of the ProductService.cs file should be like this:

	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Runtime.Serialization;
	 using System.ServiceModel;
	 using System.Text;
	 namespace MyWCFServices.RealNorthwindService
	 {
	 // NOTE: If you change the class name "Service1" here,
 you must also update the reference to "Service1" in App.config.
	 public class ProductService : IProductService
	 {
	 public Product GetProduct(int id)
	 {
	 // TODO: call business logic layer to retrieve product
	 Product product = new Product();
	 product.ProductID = id;
	 product.ProductName = "fake product name
	 from service layer";
	 product.UnitPrice = (decimal)10;
	 return product;
	 }
	 public bool UpdateProduct(Product product)
	 {
	 // TODO: call business logic layer to update product
	 if (product.UnitPrice <= 0)
	 return false;
	 else
	 return true;
	 }
	 }
	 }

Modifying the app.config file
Because we have changed the service name, we have to make the appropriate
changes to the configuration file.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[100]

Follow these steps to change the configuration file:

1.	 Open app.config file from the Solution Explorer.
2.	 Change the RealNorthwindService string to MyWCFServices.

RealNorthwindService. This is for the namespace change.
3.	 Change the Service1 string to ProductService. This is for the actual

service name change.
4.	 Change the service address port from 8731 to 8080. This is to prepare for the

client application.
5.	 You can also change the Design_Time_Addresses to whatever address you

want, or delete this part from the service, baseAddress. This can be used to
test your service locally.

The content of the app.config file should now look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <!-- When deploying the service library project, the content of
 the config file must be added to the host's app.config file.
 System.Configuration does not support config files for
 libraries. -->
 <system.serviceModel>
 <services>
 <service name="MyWCFServices.RealNorthwindService.
 ProductService" behaviorConfiguration="MyWCFServices.
 RealNorthwindService.ProductServiceBehavior">
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/Design_Time_
 Addresses/MyWCFServices/RealNorthwindService/
 ProductService/" />
 </baseAddresses>
 </host>
 <!-- Service Endpoints -->
 <!-- Unless fully qualified, address is relative to base
 address supplied above -->
 <endpoint address ="" binding="wsHttpBinding"
 contract="MyWCFServices.RealNorthwindService.IProductService">
 <!-- Upon deployment, the following identity element should
 be removed or replaced to reflect the identity under which
 the deployed service runs. If removed, WCF will infer an
 appropriate identity automatically. -->

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[101]

 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <!-- Metadata Endpoints -->
 <!-- The Metadata Exchange endpoint is used by the service
 to describe itself to clients. -->
 <!-- This endpoint does not use a secure binding and should be
 secured or removed before deployment -->
 <endpoint address="mex" binding="mexHttpBinding" contract=
 "IMetadataExchange"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MyWCFServices.RealNorthwindService.
 ProductServiceBehavior">
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata
 endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="True"/>
 <!-- To receive exception details in faults for debugging
 purposes, set the value below to true. Set to false before
 deployment to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Testing the service using WCF Test Client
Because we are using the WCF Service Library template in this example, we are now
ready to test this web service. As we pointed out when creating this project, this
service will be hosted in the Visual Studio 2008 WCF Service Host environment.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[102]

This is a new feature of Visual Studio 2008; if you are using Visual Studio
2005, you won't have this built-in functionality.

To start the service, press F5 or Ctrl+F5. The WcfSvcHost will be started and the
WCF Test Client is also started. This is a Visual Studio 2008 built-in test client for
WCF Service Library projects.

In order to run the WCF Test Client, you have to log in to your machine
as a local administrator.

From this WCF Test Client, we can double-click on an operation to test it. First, let us
test the GetProduct operation.

1.	 In the left panel of the client, double-click on the GetProduct operation; the
GetProduct Request will be shown on the right-side panel.

2.	 In this Request panel, specify an integer for the product ID, and click the
Invoke button to let the client call the service. You may get a dialog box to
warn you about the security of sending information over the network.
Click the OK button to acknowledge this warning (you can check the
'In the future, do not show this message' option, so that it won't be
displayed again).

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[103]

Now the message Invoking Service… will be displayed in the status bar, as the
client is trying to connect to the server. It may take a while for this initial connection
to be made, as several things need to be done in the background. Once the
connection has been established, a channel will be created and the client will call the
service to perform the requested operation. Once the operation has completed on the
server side, the response package will be sent back to the client, and the WCF Test
Client will display this response in the bottom panel.

If you have started the test client in the debugging mode (by pressing F5), you can set
a breakpoint at a line inside the GetProduct method in the RealNorthwindService.
cs file, and when the Invoke button is clicked, the breakpoint will be hit so that you
can debug the service as we explained earlier.

Note that the response is always the same, no matter what product ID you use to
retrieve the product. Specifically, the product name is hard-coded, as shown in
the diagram. Moreover, from the client response panel, we can see that several
properties of the Product object have been assigned default values.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[104]

Also, because the product ID is an integer value from the WCF Test Client, you can
only enter an integer for it. If a non-integer value is entered, when you click the
Invoke button, you will get an error message box to warn you that you have entered
the wrong type.

Now let's test the operation, UpdateProduct.

Double-click the UpdateProduct operation in the left panel, and
UpdateProduct will be shown in the right-side panel, in a new tab.
Enter a decimal value for the UnitPrice parameter, then click the Invoke
button to test it. Depending on the value you entered in the UnitPrice
column, you will get a True or False response package back.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[105]

The Request/Response packages are displayed in grids by default, but you have
the option of displaying them in the XML format. Just select the XML tab from the
bottom of the right-hand side panel, and you will see the XML formatted Request/
Response packages. From these XML strings, you will discover that they are
SOAP messages.

Besides testing operations, you can also look at the configuration settings of the
web service. Just double-click on Config File from the left-side panel and the
configuration file will be displayed in the right-side panel. This will show you the
bindings for the service, the addresses of the service, and the contract for the service.

What you see here for the configuration file is not an exact image of the
actual configuration file. It hides some information, such as debugging
mode and service behavior, and includes some additional information on
reliable sessions and compression mode.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[106]

If you are satisfied with the test results, just close the WCF Test Client, and you will
go back to Visual Studio IDE. Note that as soon as you close the client, the WCF
Service Host is stopped. This is different from hosting a service inside the ASP.NET
Development Server, where after you close the client, the ASP.NET Development
Server still does not stop.

Testing the service using our own client
It is very convenient to test a WCF service using the built-in WCF Test Client, but
sometimes, it is desirable to test a WCF service using your own test client. The
built-in WCF Test Client is limited to only simple WCF services. So for complex
WCF services, we have to create our own test client. For this purpose, we can
use the methods we learned earlier, to host the WCF service in IIS, the ASP.NET
Development Server, or a managed .NET application, and create a test client to test
the service.

In addition to the previous methods we learned, we can also use the built-in WCF
Service Host to host the WCF service. So we don't need to create a host application,
but just need to create a client. In this section, we will use this hosting method, to
save us some time.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[107]

First, let us find a way to get the Metadata for the service. From the Visual Studio
2008 built-in WCF Test Client, you can't examine the WSDL of the service, although
the client itself must have used the WSDL to communicate with the service. To
see the WSDL outside of the WCF Service Test Client, just copy the address of the
service from the configuration file and paste it into a web browser. In our example,
the address of the service is: http://localhost:8080/Design_Time_Addresses/
MyWCFServices/RealNorthwindService/ProductService/. So, copy and paste
this address to a web browser, and we will see the WSDL languages of the service,
just as we have seen many times before.

To get the Metadata for the service, the service host application must
run. The easiest way to start the RealNorthwindService in the WCF
Service Host is to start the WCF Test Client and leave it running.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[108]

Now that we know how to get the Metadata for our service, we can start building
the test client. We can leave the host application running, and manually generate the
proxy classes using the same method that we used earlier. But this time we will let
Visual Studio do it for us. So you can close the WCF Test Client for now.

Follow these steps to build your own client to test the WCF service:

1.	 Add a new Console Application project to the RealNorthwind solution. Let's
call it RealNorthwindClient.

2.	 Add a reference to the WCF service. In the Visual Studio Solution Explorer,
right-click on the RealNorthwindClient project, select Add Service
Reference … from the context menu, and you will see the Add Service
Reference dialog box.

3.	 In the Add Service Reference dialog box, type the following address into the
Address box, and then click the Go button to connect to the service:
http://localhost:8080/Design_Time_Addresses/MyWCFServices/
RealNorthwindService/ProductService/

Also, you can simply click the Discover button (or click on the little arrow next
to the Discover button, and select Services in Solution) to find this service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[109]

In order to connect to or discover a service in the same solution, you don't
have to start the host application for the service. The WCF Service Host
will be automatically started for this purpose. However, if it is not started
in advance, it may take a while for the Add Service Reference window to
download the required Metadata information for the service.

The ProductService should now be listed on the left-hand side of the win-
dow. You can expand it and select the service contract to view its details.

4.	 Next, let's change the namespace of this service from ServiceReference1 to
ProductServiceRef. This will make the reference meaningful in the code.

5.	 If you want to make this client run under .NET 2.0, click the Advanced
button in the Add Service Reference window, and in the Service Reference
Settings pop-up dialog box, click the Add Web Reference button. This will
cause the proxy code will be generated based on the .NET 2.0 web services.

In this example, we won't do this. So, click the Cancel button to discard
these changes.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[110]

6.	 Now click the OK button in the Add Service Reference dialog box to add the
service reference. You will see that a new folder, named ProductServiceRef,
is created under Service References in the Solution Explorer for the
RealNorthwindClient project. This folder contains lots of files, including the
WSDL file, the service map, and the actual proxy code. If you can't see them,
click Show All Files in the Solution Explorer.

A new file, App.config, is also added to the project, as well as
several WCF-related references such as System.ServiceModel and
System.Runtime.Serialization.
At this point, the proxy code to connect to the WCF service and the required
configuration file have both been created and added to the project for us,
without us having to enter a single line of code. What we need to do next is to
write just a few lines of code to call this service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[111]

Just as we did earlier, we will modify Program.cs to call the WCF service.

1.	 First, open Program.cs file, and add the following using line to the file:
using RealNorthwindClient.ProductServiceRef;

2.	 Then, inside the Main method, add the following line of code to create a
client object:

	 ProductServiceClient client = new ProductServiceClient();

3.	 Finally, add the following lines to the file, to call the WCF service to get and
update a product:

	 Product product = client.GetProduct(23);
	 product.UnitPrice = (decimal)20.0;
	 bool result = client.UpdateProduct(product);

The content of the Program.cs file is:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RealNorthwindClient.ProductServiceRef;

namespace RealNorthwindClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ProductServiceClient client = new ProductServiceClient();

 Product product = client.GetProduct(23);
 Console.WriteLine("product name is " +
 product.ProductName);
 Console.WriteLine("product price is " +
 product.UnitPrice.ToString());

 product.UnitPrice = (decimal)20.0;
 bool result = client.UpdateProduct(product);
 Console.WriteLine("Update result is " +
 result.ToString());
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[112]

Now you can run the client application to test the service. Remember that you need
to set RealNorthwindClient to be the startup project before pressing F5 or Ctrl+F5.

If you want to start it in debugging mode (F5), you need to add a Console.
ReadLine(); statement to the end of the program, so that you can see the output of
the program. The WCF Service Host application will be started automatically before
the client is started (but the WCF Test Client won't be started).

If you want to start the client application in non-debugging mode (Ctrl+F5), you
need to start the WCF Service Host application (and the WCF Test Client application)
in advance. You can start it from another Visual Studio IDE instance, or you can
set the RealNorthwindService as the startup project, start it in the non-debugging
mode (Ctrl+F5), leave it running, and then change RealNorthwindClient to be the
startup project, and start it in non-debugging mode. Also, you can set the solution to
start with multiple projects with the RealNorthwindService as the first project to be
run, and RealNorthwindClient as the second project to be run.

The output of this client program is as shown in the following figure:

Adding a business logic layer
Until now, the web service has contained only one layer. In this section, we will add
a business logic layer, and define some business rules in this layer.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[113]

Adding the product entity project
Before we add the business logic layer, we need to add a project for business entities.
The business entities project will hold of all business entity object definitions such
as products, customers, and orders. These entities will be used across the business
logic layer, the data access layer and the service layer. They will be very similar to
the data contracts we defined in the previous section, but will not be seen outside
of the service. The Product entity will have the same properties as the product
contract data, plus some extra properties such as UnitsInStock and ReorderLevel.
These properties will be used internally, and shared by all layers of the service. For
example, when an order is placed, the UnitsInStock should be updated as well.
Also, if the updated UnitsInStock is less than the ReorderLevel, an event should
be raised to trigger the re-ordering process.

The business entities by themselves do not act as a layer. They are just pure C#
classes representing internal data within the service implementations. There is no
logic inside these entities. Also, in our example these entities are very similar to the
data contracts (with only two extra fields in the entity class), but in reality the entity
classes could be very different from the data contracts, from property names and
property types, to data structures.

As with the data contracts, the business entities' classes should be in their own
assembly. So, we first need to create a project for them. Just add a new C# class
library, RealNorthwindEntities, to the Solution. Then, rename the Class1.cs to
ProductEntity.cs, and modify it as follows:

1.	 Change its namespace from RealNorthwindEntities to MyWCFServices.
RealNorthwindEntities

2.	 Change the class name from Class1 to ProductEntity, if it hasn't been
changed already

3.	 Add the following properties to this class:
ProductID, ProductName, QuantityPerUnit, UnitPrice,
Discontinued, UnitsInStock, UnitsOnOrder, ReorderLevel

Five of the above properties are also in the Product service data contract.
The last three properties are for use inside the service implementations.
Actually, we will use UnitsOnOrder to trigger business logic when
updating a product, and update UnitsInStock and ReorderLevel to
trigger business logic when saving an order (inside this book, we will not
create a service for saving an order, but we assume that this is a required
operation and will be implemented later).

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[114]

The following is the code list of the ProductEntity class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyWCFServices.RealNorthwindEntities
{
 public class ProductEntity
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public string QuantityPerUnit { get; set; }
 public decimal UnitPrice { get; set; }
 public int UnitsInStock { get; set; }
 public int ReorderLevel { get; set; }
 public int UnitsOnOrder { get; set; }
 public bool Discontinued { get; set; }
 }
}

Adding the business logic project
Next, let us create the business logic layer project. Again, we just need to add a
new C# class library project, RealNorthwindLogic, to the solution. So, rename the
Class1.cs to ProductLogic.cs, and then modify it as follows:

1.	 Change its namespace from RealNorthwindLogic to MyWCFServices.
RealNorthwindLogic

2.	 Change the class name from Class1 to ProductLogic, if it hasn't
been changed

3.	 Add a reference to the project RealNorthwindEntities, as shown in the
following Add Reference image:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[115]

Now, we need to add some code to the ProductLogic class.

1.	 Add the following using line:
	 using MyWCFServices.RealNorthwindEntities;

2.	 Add the method GetProduct. It should look like this:
	 public ProductEntity GetProduct(int id)
	 {
	 // TODO: call data access layer to retrieve product
	 ProductEntity p = new ProductEntity();
	 p.ProductID = id;
	 p.ProductName = "fake product name from business logic layer";
	 p.UnitPrice = (decimal)20.00;
	 return p;

	 }

In this method, we create a ProductEntity object, assign values to
some of its properties, and return it to the caller. Everything is still
hard-coded so far.

We hard code the product name as "fake product name from business
logic layer", so that we know this is a different product from the one
returned directly from the service layer.

3.	 Add the method UpdateProduct, as follows:
	 public bool UpdateProduct(ProductEntity product)
	 {
	 // TODO: call data access layer to update product
	 // first check to see if it is a valid price
	 if (product.UnitPrice <= 0)
	 return false;
	 // ProductName can't be empty
	 else if (product.ProductName == null || product.ProductName.
 Length == 0)
	 return false;
	 // QuantityPerUnit can't be empty
	 else if (product.QuantityPerUnit == null || product.
 QuantityPerUnit.Length == 0)
	 return false;
	 // then validate other properties
	 else
	 {

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[116]

	 ProductEntity productInDB = GetProduct(product.ProductID);
	 // invalid product to update
	 if (productInDB == null)
	 return false;
	 // a product can't be discontinued if there are
 non-fulfilled orders
	 if (product.Discontinued == true && productInDB.
 UnitsOnOrder > 0)
	 return false;
	 else
	 return true;
	 }
	 }

4.	 Add test logic to the GetProduct method

We still haven't updated anything in a database, but this time, we have
added several pieces of logic to the UpdateProduct method. First, we check
the validity of the UnitPrice property, and return false if it is not a valid
one. We then check the product name and quantity per unit properties, to
make sure they are not empty. We then try to retrieve the product, to see if it
is a valid product to update. We also added a check to make sure that a
supplier can't discontinue a product if there are unfulfilled orders for this
product. However, at this stage, we can't truly enforce this logic, because
when we check the UnitsOnOrder property of a product, it is always 0 as we
didn't assign a value to it in the GetProduct method. For test purposes, we
can change the GetProduct method to include the following line of code:

	 if(id > 50) p.UnitsOnOrder = 30;

Now, when we test the service, we can select a product with an ID that is
greater than 50, and try to update its Discontinued property to see what
result we will get.

After you put all of this together, the content of the ProductLogic.cs file should be
as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using MyWCFServices.RealNorthwindDAL;

namespace MyWCFServices.RealNorthwindLogic
{
 public class ProductLogic
 {

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[117]

 public ProductEntity GetProduct(int id)
 {
 // TODO: call data access layer to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName =
 "fake product name from business logic layer";
 //p.UnitPrice = (decimal)20.0;
 if(id > 50) p.UnitsOnOrder = 30;
 return p;
 }

 public bool UpdateProduct(ProductEntity product)
 {
 // TODO: call data access layer to update product
 // first check to see if it is a valid price
 if (product.UnitPrice <= 0)
 return false;
 // ProductName can't be empty
 else if (product.ProductName == null || product.
 ProductName.Length == 0)
 return false;
 // QuantityPerUnit can't be empty
 else if (product.QuantityPerUnit == null || product.
 QuantityPerUnit.Length == 0)
 return false;
 // then validate other properties
 else
 {
 ProductEntity productInDB =
 GetProduct(product.ProductID);
 // invalid product to update
 if (productInDB == null)
 return false;
 // a product can't be discontinued if there are
 non-fulfilled orders
 else if (product.Discontinued == true && productInDB.
 UnitsOnOrder > 0)
 return false;
 else
 return true;
 }
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[118]

Calling the business logic layer from the
service interface layer
We now have the business logic layer ready, and can modify the service contracts to
call this layer, so that we can enforce some business logic.

First, we want to make it very clear that we are going to change the service
implementations, and not the interfaces. So we will only change the
ProductService.cs file.

We will not touch the file IProductService.cs. All of the existing clients
(if there are any) that are referencing our service will not notice that we are changing
the implementation.

Follow these steps to customize the service interface layer:

1.	 Add a reference to the business logic layer.
In order to call a method inside the business logic layer, we need to add a
reference to the assembly that the business logic is included in. We will also
use the ProductEntity class. So we need a reference to the RealNorthwind-
Entities as well.
To add a reference, from the Solution Explorer, right-click on the project
RealNorthwindService, select Add Reference … from the context menu, and
select RealNorthwindLogic from the Projects tab. Also, select RealNorth-
windEntities as we will need a reference to the ProductEntity inside it.
Just hold down the Ctrl key while you are selecting multiple projects. Click
the OK button to add references to the selected projects.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[119]

2.	 Now we have added two references. We can add the following two using
statements to the ProductService.cs file so that we don't need to type the
full names for their classes.

	 using MyWCFServices.RealNorthwindEntities;
	 using MyWCFServices.RealNorthwindLogic;

3.	 Now, inside the GetProduct method, we can use the following statements to
get the product from our business logic layer:

	 ProductLogic productLogic = new ProductLogic();
	 ProductEntity product = productLogic.GetProduct(id);

4.	 However, we cannot return this product back to the caller, because this
product is of the type ProductEntity, which is not the type that the caller is
expecting. The caller is expecting a return value of the type Product, which is
a data contract defined within the service interface. We need to translate this
ProductEntity object to a Product object. To do this, we add the following
new method to the ProductService class:

 private void TranslateProductEntityToProductContractData(
 ProductEntity productEntity,
 Product product)
 {
 product.ProductID = productEntity.ProductID;
 product.ProductName = productEntity.ProductName;
 product.QuantityPerUnit = productEntity.QuantityPerUnit;
 product.UnitPrice = productEntity.UnitPrice;
 product.Discontinued = productEntity.Discontinued;
 }

Inside this translation method, we copy all of the properties from the
ProductEntity object to the service contract data object, but not the last
three properties—UnitsInStock, UnitsOnOrder, and ReorderLevel. These
three properties are used only inside the service implementations. Outside
callers cannot see them at all.
The GetProduct method should now look like this:

	 public Product GetProduct(int id)
	 {
	 ProductLogic productLogic = new ProductLogic();
	 ProductEntity productEntity = productLogic.GetProduct(id);
	 Product product = new Product();
	 TranslateProductEntityToProductContractData
 (productEntity, product);
	 return product;
	 }

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[120]

We can modify the UpdateProduct method in the same way, making it
like this:

	 public bool UpdateProduct(Product product)
	 {
	 ProductLogic productLogic = new ProductLogic();
	 ProductEntity productEntity = new ProductEntity();
	 TranslateProductContractDataToProductEntity(
 product, productEntity);

	 return productLogic.UpdateProduct(productEntity);
	 }

5.	 Note that we have to create a new method to translate a product contract
data object to a ProductEntity object. In translation, we leave the three
extra properties unassigned in the ProductEntity object, because we
know a supplier won't update these properties. Also, we have to create a
ProductLogic variable in both the methods, so that we can make it a
class member:

	 ProductLogic productLogic = new ProductLogic();

The final content of the ProductService.cs file is as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using MyWCFServices.RealNorthwindLogic;

namespace MyWCFServices.RealNorthwindService
{
 // NOTE: If you change the class name "Service1" here, you must
 also update the reference to "Service1" in App.config.
 public class ProductService : IProductService
 {
 ProductLogic productLogic = new ProductLogic();

 public Product GetProduct(int id)
 {
 /*
 // TODO: call business logic layer to retrieve product
 Product product = new Product();
 product.ProductID = id;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[121]

 product.ProductName =
 "fake product name from service layer";
 product.UnitPrice = (decimal)10.0;
 */
 ProductEntity productEntity = productLogic.GetProduct(id);
 Product product = new Product();
 TranslateProductEntityToProductContractData(
 productEntity, product);

 return product;
 }
 public bool UpdateProduct(Product product)
 {
 /*
 // TODO: call business logic layer to update product
 if (product.UnitPrice <= 0)
 return false;
 else
 return true;
 */

 ProductEntity productEntity = new ProductEntity();
 TranslateProductContractDataToProductEntity(
 product, productEntity);

 return productLogic.UpdateProduct(productEntity);
 }

 private void TranslateProductEntityToProductContractData(
 ProductEntity productEntity,
 Product product)
 {
 product.ProductID = productEntity.ProductID;
 product.ProductName = productEntity.ProductName;
 product.QuantityPerUnit = productEntity.QuantityPerUnit;
 product.UnitPrice = productEntity.UnitPrice;
 product.Discontinued = productEntity.Discontinued;
 }

 private void TranslateProductContractDataToProductEntity(
 Product product,
 ProductEntity productEntity)
 {
 productEntity.ProductID = product.ProductID;
 productEntity.ProductName = product.ProductName;
 productEntity.QuantityPerUnit = product.QuantityPerUnit;
 productEntity.UnitPrice = product.UnitPrice;
 productEntity.Discontinued = product.Discontinued;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[122]

Testing the WCF service with a business logic
layer
We can now compile and test the new service with a business logic layer. We will use
the WCF Test Client to simplify the process.

1.	 Make the project RealNorthwindService the startup project
2.	 Start the WCF Service Host application and WCF Service Test Client, by

pressing F5 or Ctrl+F5
3.	 In the WCF Service Test Client, double-click on the GetProduct operation, to

bring up the GetProduct test screen
4.	 Enter a value of 56 for the ID field and then click the Invoke button

You will see that this time the product is returned from the business logic
layer, instead of the service layer. Also, note that the UnitsOnOrder property
is not displayed as it is not part of the service contract data type. However,
we know that a product has a property UnitsOnOrder, and we will actually
use this for our next test.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 5

[123]

Now, let us try to update a product.

1.	 In the WCF Service Test Client, double-click on the UpdateProduct operation
to bring up the UpdateProduct test screen.

2.	 Enter -10 as the price, and click the Invoke button. You will see that the
Response result is False.

3.	 Enter a valid price, say 25.60, a name, and a quantity per unit, leave the
Discontinued property set to False, and then click the Invoke button. You
will see that the Response result is now True.

4.	 Change the Discontinued value from False to True, and click the Invoke
button again. The Response result is still True. This is because we didn't
change the product ID, and it has defaulted to 0.

5.	 Change the product ID to 51, leave the Discontinued value as True and
product price as 25.60, and click the Invoke button again. This time, you will
see that the Response result is False. This is because the business logic layer
has checked the UnitsOnOrder and Discontinued properties, and didn't
allow us to make the update.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing a WCF Service in the Real World

[124]

Summary
In this chapter, we have created a real world WCF service that has a service contract
layer, and a business logic layer. The key points in this chapter include:

WCF Services should have explicit boundaries
The WCF Service Application template can be used to create WCF services
with a hosting web site created within the project
The WCF Service Library template can be used to create WCF services that
will be hosted by the WCF Service Host, and these can be tested using the
WCF service Test Client
The service interface layer should contain only the service contracts, such as
the operation contracts, and data contracts
The business logic layer should contain the implementation of the service
The business entities represent the internal data of the service shared by all of
the layers of the service, and they should not be exposed to the clients

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support
and Exception Handling to the

RealNorthwind WCF Service
In the previous chapter, we created a WCF service with two layers. We didn't add
the third layer, that is, the data access layer. Therefore, all of the service operations
just returned a fake result from the business logic layer.

In this chapter, we will add the third layer to the WCF service. We will also introduce
message contracts for service message exchange and fault contracts for service
error handling.

We will accomplish the following tasks in this chapter:

Create the data access layer project
Modify the business logic layer to call the data access layer
Prepare the Northwind database for the service
Connect the WCF service to the Northwind database
Test the service with the data access layer
Add a fault contract to the service
Throw a fault contract exception to the client
Catch the fault contract in the client program
Test the service fault contract

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[126]

Adding a data access layer
Now, we have two layers in our solution. We need to add one more layer—the data
access layer. We need to query a real database to get the product information, and
update the database for a given product.

Creating the data access layer project
First, we will create the project for the data access layer. As we did for the
business logic layer, what we need to do is add a C# class library project, named
RealNorthwindDAL, where DAL stands for Data Access Layer, to the solution. Then,
rename the Class1.cs to ProductDAL.cs, and modify it as follows:

1.	 Change its namespace from RealNorthwindDAL to MyWCFServices.
RealNorthwindDAL.

2.	 Change the class name from Class1 to ProductDAL, if it hasn't been
changed already.

3.	 Add a reference to project RealNorthwindEntities.

Now, let's modify ProductDAL.cs for our product service:

1.	 Add the following using statement:
	 using MyWCFServices.RealNorthwindEntities;

2.	 Add two new methods to the ProductDAL class. The first method is
GetProduct, which will be as follows:

	 public ProductEntity GetProduct(int id)
	 {
	 // TODO: connect to DB to retrieve product
	 ProductEntity p = new ProductEntity();
	 p.ProductID = id;
	 p.ProductName = "fake product name from data access layer";
	 p.UnitPrice = (decimal)30.00;
	 return p;
	 }

In this method, all the product information is still hard coded, though we
have changed the product name to be specific to the data access layer. We
will soon modify this method to retrieve the actual product information from
a real Northwind database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[127]

3.	 The second method is UpdateProduct, which will be as follows:
	 public bool UpdateProduct(ProductEntity product)
	 {
	 // TODO: connect to DB to update product
	 return true;

	 }

Again, we didn't update any database in this method. We will also modify this
method soon to update to the real Northwind database.

The content of the ProductDAL.cs file should now be as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCFServices.RealNorthwindEntities;

namespace MyWCFServices.RealNorthwindDAL
{
 public class ProductDAL
 {
 public ProductEntity GetProduct(int id)
 {
 // TODO: connect to DB to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName = "fake product name from data access layer";
 p.UnitPrice = (decimal)30.00;
 if (id > 50) p.UnitsOnOrder = 30;
 return p;
 }

 public bool UpdateProduct(ProductEntity product)
 {
 // TODO: connect to DB to update product
 return true;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[128]

Calling the data access layer from the
business logic layer
Before we modify these two methods to interact with a real database, we will first
modify the business logic layer to call them, so that we know that the three-layer
framework is working.

1.	 Add a reference of this new layer to the business logic layer project. From the
Solution Explorer, just right-click on the RealNorthwindLogic project item,
select Add Reference … from the context menu, select RealNorthwindDAL
from the Projects tab, and then click the OK button.

2.	 Open the ProductLogic.cs file under the RealNorthwindLogic project, and
add a using statement:

	 using MyWCFServices.RealNorthwindDAL;

3.	 Add a new class member:
	 ProductDAL productDAL = new ProductDAL();

4.	 Modify the method GetProduct to contain only this line:
	 return productDAL.GetProduct(id);

We will use the data access layer to retrieve the product information. At this
point, we will not add any business logic to this method.

5.	 Modify the method UpdateProduct to look like this:
	 public bool UpdateProduct(ProductEntity product)
	 {
	 // TODO: call data access layer to update product
	 // first check to see if it is a valid price
	 if (product.UnitPrice <= 0)
	 return false;
	 // ProductName can't be empty
	 else if (product.ProductName.Length == 0)
	 return false;
	 // QuantityPerUnit can't be empty
	 else if (product.QuantityPerUnit.Length == 0)
	 return false;
	 // then validate other properties
	 else
	 {
	 ProductEntity productInDB = GetProduct(product.ProductID);
	 // invalid product to update
	 if (productInDB == null)
	 return false;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[129]

	 // a product can't be discontinued if there are non-
 fulfilled orders
	 if (product.Discontinued == true && productInDB.
 UnitsOnOrder > 0)
	 return false;
	 else
	 return productDAL.UpdateProduct(product);
	 }
	 }

In this method, we have replaced the last return statement to call the data
access layer method UpdateProduct. This means that all of the business logic
is still enclosed in the business logic layer, and the data access layer should
be used only to update the product in the database.

Here is the full content of the ProductLogic.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using MyWCFServices.RealNorthwindDAL;

namespace MyWCFServices.RealNorthwindLogic
{
 public class ProductLogic
 {
 ProductDAL productDAL = new ProductDAL();

 public ProductEntity GetProduct(int id)
 {
 /*
 // TODO: call data access layer to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName =
 "fake product name from business logic layer";
 //p.UnitPrice = (decimal)20.0;
 if(id > 50) p.UnitsOnOrder = 30;
 return p;
 */

 return productDAL.GetProduct(id);
 }

 public bool UpdateProduct(ProductEntity product)
 {
 // TODO: call data access layer to update product
 // first check to see if it is a valid price
 if (product.UnitPrice <= 0)
 return false;
 // ProductName can't be empty

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[130]

 else if (product.ProductName == null || product.
 ProductName.Length == 0)
 return false;
 // QuantityPerUnit can't be empty
 else if (product.QuantityPerUnit == null || product.
 QuantityPerUnit.Length == 0)
 return false;
 // then validate other properties
 else
 {
 ProductEntity productInDB =
 GetProduct(product.ProductID);
 // invalid product to update
 if (productInDB == null)
 return false;
 // a product can't be discontinued if there
 are non-fulfilled orders
 else if (product.Discontinued ==
 true && productInDB.UnitsOnOrder > 0)
 return false;
 else
 return productDAL.UpdateProduct(product);
 }
 }
 }
}

If you run the program and test it using the WCF Test Client, you will get exactly the
same result as before, although now it is a three layer application, and you will see a
different, although obviously still fake product name.

Preparing the database
As we have had the three-layer framework ready, we will now implement the data
access layer to actually communicate with a real database.

In this book, we will use the Microsoft sample database, Northwind. This database is
not installed by default in SQL Server 2005 or SQL Server 2008.

1.	 Download the database package. Just search for "Northwind Sample
Databases" on the Internet, or go to this page:
http://www.microsoft.com/downloads/details.
aspx?FamilyId=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang
=en

and download file SQL2000SampleDb.msi.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[131]

2.	 Install (extract) it to: C:\SQL Server 2000 Sample Databases.
3.	 Open SQL Server 2005/2008 Management Studio.
4.	 Connect to your database engine.
5.	 Right click on the Databases node, and select Attach… from the context

menu, as shown in the SQL Server Management Studio diagram below:

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[132]

6.	 In the pop-up Attach Databases dialog box, click Add, browse to the file
C:\SQL Server 2000 Sample Databases\NORTHWND.MDF, click OK, and
you now have the Northwind database attached to your SQL Server 2005 or
2008 engine.

Adding the connection string to the
configuration file
Now that we have the Northwind database attached, we will modify our data access
layer to use this actual database. At this point, we will use a raw SqlClient
adapter to do the database work. We will replace this layer with LINQ to SQL
in a later chapter.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[133]

Before we start coding, we need to finish the following tasks, to add a connection
string to the configuration file. We don't want to hard-code the connection string in
our project. Instead, we will set it in the App.config file, so that it can be changed on
the fly.

1.	 Add a reference to System.Configuration to the RealNorthwindDAL
project. We will store connection string in the configuration file, and we need
this assembly to read it.

2.	 Add the following configuration settings to the App.config file under the
RealNorthwindService project.

	 <appSettings>
	 <add key="NorthwindConnectionString"
	 value="server=your_db_server\your_db_instance;
	 uid=your_user_name; pwd=your_password;
	 database=Northwind"/>
	 </appSettings>

There are a couple of things to note for this new key in the configuration file.
It should be added to the App.config file in
the RealNorthwindService project, not to the
RealNorthwindDAL project. Actually, there is no file called
App.config in the RealNorthwindDAL project.
The node appSettings should be a child node of the root
configuration node, that is, the highlighted lines should
be placed immediately after the line <configuration>. So,
the first few lines of the App.config file should be as follows
(highlighted lines are new lines to add):

		 <?xml version="1.0" encoding="utf-8" ?>
		 <configuration>
		 <appSettings>

		 <add key="NorthwindConnectionString"

		 value="server=your_db_server\your_db_instance;

		 uid=your_user_name; pwd=your_password;

		 database=Northwind"/>

		 </appSettings>

		 <system.web>
		 <compilation debug="true" />
		 </system.web>

3.	 Replace your_db_server with your actual database server name. If the
database is located on your own machine, you can use local as the db
server name.

°

°

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[134]

4.	 Replace your_db_instance with your database's instance name. If you have
installed your SQL server with the default instance, don't put anything here.

5.	 Replace your_user_name and your_password with your actual logon and
password to the SQL server database. This user must have write access to the
Northwind database.

6.	 If you use sa to log in to your database, make sure that in your database,
the user sa is enabled for login. Some installation may have automatically
disabled sa from logging on to the database (use SQL Server Management
Studio | Login Properties – sa | status | Permission to connect to database
engine and login).

7.	 If you don't have an SQL Server logon, or you just want to use Windows
authentication, you can use trusted connection, or SSPI integrated security
connection. The key for the trusted connection will be:

	 <add key="NorthwindConnectionString" value="server= your_db_
	 server\your_db_instance;database=Northwind;
	 Trusted_Connection=yes" />

The key for the integrated security connection will be:
	 <add key="NorthwindConnectionString" value="server= your_
	 db_server\your_db_instance;database=Northwind;Integrated
	 Security=SSPI" />

Querying the database (GetProduct)
Because we have added the connection string as a new key to the configuration file,
we need to retrieve this key in the DAL class, so that we can use it when we want to
connect to the database. Follow these steps to get and use this new key from within
the DAL class:

1.	 Open the file ProductDAL.cs in the RealNorthwindDAL project, and first
add two using statements:

	 using System.Data.SqlClient;
	 using System.Configuration;

2.	 Add a new class member to the ProductDAL class:
	 string connectionString = ConfigurationManager.AppSettings["Northw
	 indConnectionString"];

We will use this connection string to connect to the Northwind database, for
both the GetProduct and UpdateProduct methods.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[135]

3.	 Modify the GetProduct method to get the product from the database,
as follows:

	 public ProductEntity GetProduct(int id)
	 {
	 /*
	 // TODO: connect to DB to retrieve product
	 ProductEntity p = new ProductEntity();
	 p.ProductID = id;
	 p.ProductName = "fake product name from data access layer";
	 p.UnitPrice = (decimal)30.00;
	 if (id > 50) p.UnitsOnOrder = 30;
	 return p;
	 */
	

	 ProductEntity p = null;
	 using (SqlConnection conn =
 new SqlConnection(connectionString))
	 {
	 SqlCommand comm = new SqlCommand();
	 comm.CommandText =
 "select * from Products where ProductID=" + id;
	 comm.Connection = conn;
	 conn.Open();
	 SqlDataReader reader = comm.ExecuteReader();
	 if (reader.HasRows)
	 {
	 reader.Read();
	 p = new ProductEntity();
	 p.ProductID = id;
	 p.ProductName =
	 (string)reader["ProductName"];
	 p.QuantityPerUnit =
	 (string)reader["QuantityPerUnit"];
	 p.UnitPrice =
	 (decimal)reader["UnitPrice"];
	 p.UnitsInStock =
	 (short)reader["UnitsInStock"];
	 p.UnitsOnOrder =
	 (short)reader["UnitsOnOrder"];
	 p.ReorderLevel =
	 (short)reader["ReorderLevel"];
	 p.Discontinued =
	 (bool)reader["Discontinued"];
	 }
 }
 return p;
}

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[136]

In this method, we first create an SqlConnection to the Northwind database, and
then issue an SQL query to get product details for the ID.

The following statement is a new feature of C# 3.0, and equivalent to the traditional
try…catch…finally… mechanism to deal with SqlConnection matters:

using (SqlConnection conn = new SqlConnection(connectionString))

Testing the GetProduct method
If you now set the RealNorthwindService as the startup project and run the
application, you can get the actual product information from the database, as seen in
the following screenshot:

If you get an error screen, it is probably because you have set your connection string
incorrectly. Double-check the new appSettings key in your App.config file, and
try again until you can connect to your database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[137]

Instead of the connection error message, you might see the following error message:

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[138]

This error will happen when you try to get the product information for a product
with a product ID of 0. The error message doesn't give much detail about what
went wrong here, because we didn't let the server reveal the details of any
error. Let's follow the instructions in the error message to change the setting
IncludeExceptionDetailInFaults to True in the App.config file, and run it again.
Now you will see that the error detail has changed to "Object reference not set to an
instance of an object."

A little investigation will tell us that this is a bug in our ProductService
class. Inside the ProductService GetProduct method, after we call business
logic layer to get the product detail for an ID, we will get a null product if the
ID is not in the database. When we pass this null object to the next method
(TranslateProductEntityToProductContractData), we get the above error
message. Actually, this will happen whenever you enter a product ID outside of the
range 1-77. This is because, in the sample Northwind database, there are only 77
products, with product IDs ranging from 1 to 77. To fix this problem, we can add the
following statement inside the GetProduct method right, immediately after the call
to the business logic layer:

if (productEntity == null)
 throw new Exception("No product found with id " + id);

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[139]

So in the ProductService.cs file, the GetProduct method will now be:

public Product GetProduct(int id)
{
 ProductLogic productLogic = new ProductLogic();
 ProductEntity productEntity = productLogic.GetProduct(id);
 if (productEntity == null)
 throw new Exception("No product found with id " + id);
 Product product = new Product();
 TranslateProductEntityToProductContractData(productEntity,
product);
 return product;
}

For now, we will raise an exception if an invalid product ID is entered. Later, we will
convert this exception to a FaultContract, so that the caller will know in advance
that an error has occurred.

Now run the application again, and if you enter an invalid product ID, say 0, you
will get an error message, "No product found with id 0". This is a much clearer than
the previous "Object reference not set to an instance of an object" error message.

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[140]

Updating the database (UpdateProduct)
Next, we will modify the UpdateProduct method to update the product record
in the database. The UpdateProduct in the RealNorthwindDAL project should be
modified as follows:

public bool UpdateProduct(ProductEntity product)
{
 using (SqlConnection conn = new SqlConnection(connectionString))
 {
 SqlCommand cmd = new SqlCommand("UPDATE products
 SET ProductName=@name,QuantityPerUnit=@unit,UnitPrice=@
 price,Discontinued=@discontinued WHERE ProductID=@id",conn);
 cmd.Parameters.AddWithValue("@name", product.ProductName);
 cmd.Parameters.AddWithValue("@unit", product.QuantityPerUnit);
 cmd.Parameters.AddWithValue("@price", product.UnitPrice);
 cmd.Parameters.AddWithValue("@discontinued", product.
 Discontinued);
 cmd.Parameters.AddWithValue("@id", product.ProductID);
 conn.Open();
 int numRows = comm.ExecuteNonQuery();
 if (numRows != 1)
 return false;
 }

 return true;
}

Inside this method, we have used parameters to specify arguments to the update
command. This is a good practice because it will prevent SQL Injection attacks as the
SQL statement is precompiled instead of being dynamically built.

We can follow these steps to test it:

1.	 Start the WCF Test Client
2.	 Double-click on the UpdateProduct() operation
3.	 Enter a valid product id, name, price and quantity per unit
4.	 Click on Invoke

You should get a True response. To prove it, just go to the GetProduct() page, enter
the same product ID, click on Invoke, and you will see that all of your updates have
been saved to the database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[141]

The content of the ProductDAL.cs file is now:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using System.Data.SqlClient;
using System.Configuration;

namespace MyWCFServices.RealNorthwindDAL
{
 public class ProductDAL
 {
 string connectionString =
 ConfigurationManager.AppSettings["NorthwindConnectionString"];

 public ProductEntity GetProduct(int id)
 {
 /*
 // TODO: connect to DB to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName = "fake product name from data access layer";
 p.UnitPrice = (decimal)30.00;
 if (id > 50) p.UnitsOnOrder = 30;
 return p;
 */

 ProductEntity p = null;
 using (SqlConnection conn =
 new SqlConnection(connectionString))
 {
 SqlCommand comm = new SqlCommand();
 comm.CommandText =
 "select * from Products where ProductID=" + id;
 comm.Connection = conn;
 conn.Open();
 SqlDataReader reader = comm.ExecuteReader();
 if (reader.HasRows)
 {
 reader.Read();
 p = new ProductEntity();
 p.ProductID = id;
 p.ProductName =
 (string)reader["ProductName"];

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[142]

 p.QuantityPerUnit =
 (string)reader["QuantityPerUnit"];
 p.UnitPrice =
 (decimal)reader["UnitPrice"];
 p.UnitsInStock =
 (short)reader["UnitsInStock"];
 p.UnitsOnOrder =
 (short)reader["UnitsOnOrder"];
 p.ReorderLevel =
 (short)reader["ReorderLevel"];
 p.Discontinued =
 (bool)reader["Discontinued"];
 }
 }
 return p;
 }

 public bool UpdateProduct(ProductEntity product)
 {
 using (SqlConnection conn =
 new SqlConnection(connectionString))
 {
 SqlCommand cmd = new SqlCommand("UPDATE products
 SET ProductName=@name,QuantityPerUnit=@
 unit,UnitPrice=@price,Discontinued=@discontinued WHERE
 ProductID=@id", conn);
 cmd.Parameters.AddWithValue("@name", product.
 ProductName);
 cmd.Parameters.AddWithValue("@unit", product.
 QuantityPerUnit);
 cmd.Parameters.AddWithValue(
 "@price", product.UnitPrice);
 cmd.Parameters.AddWithValue("@discontinued",
 product.Discontinued);
 cmd.Parameters.AddWithValue("@id", product.ProductID);
 conn.Open();
 int numRows = cmd.ExecuteNonQuery();
 if (numRows != 1)
 return false;
 }

 return true;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[143]

Adding error handling to the service
In the previous sections, when we were trying to retrieve a product but the product
ID passed in was not a valid one, we just threw an exception. Exceptions are
technology-specific and, therefore, are not suitable for crossing the service boundary
of SOA compliant services. All exceptions generate a fault on the communication
channel, resulting in unhappy proxies, as a recover and retry is not possible. Thus,
for WCF services, we should not throw normal exceptions.

What we need are SOAP faults that meet industry standards for seamless
interoperability.

In the service interface layer, operations that may throw a FaultExceptions
must be decorated with one or more FaultContract attributes, defining the exact
FaultException.

On the other hand, the service consumer should catch specific FaultExceptions to
be in a position to handle the specified exceptions.

Adding a fault contract
We will now change the exception in the GetProduct operation to a FaultContract.

But before we implement our first FaultContract, we need to modify the
App.config file in the RealNorthwindService project. We will change the setting
includeExceptionDetailInFaults back to False, so that every unhandled,
non-Fault exception will be a violation. Client applications won't know the details of
those exceptions.

You can definitely set includeExceptionDetailInFaults to True
when debugging, as this will be very helpful in diagnosing problems
during the development stage. But in production, it should always be set
to False.

So, open the App.config file in the RealNorthwindService project, change
includeExceptionDetailInFaults from True to False, and save it.

Next, we will define the FaultContract. For simplicity, we will define only one
FaultContract, and leave it inside the file IProductService.cs, although in a real
system you can have as many Fault Contracts as you want, and they should also
normally be in their own files.

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[144]

The FaultContract will be as follows:

[DataContract]
public class ProductFault
{
 public ProductFault(string msg)
 {
 FaultMessage = msg;
 }

 [DataMember]
 public string FaultMessage;
}

We then decorate the service operation GetProduct with the following attribute:

[FaultContract(typeof(ProductFault))]

This is to tell the service consumers that this operation may throw a fault of the
type ProductFault.

The content of IProductService.cs should now be:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace MyWCFServices.RealNorthwindService
{
 // NOTE: If you change the interface name "IService1" here, you
 must also update the reference to "IService1" in App.config.
 [ServiceContract]
 public interface IProductService
 {
 [OperationContract]
 [FaultContract(typeof(ProductFault))]
 Product GetProduct(int id);

 [OperationContract]
 bool UpdateProduct(Product product);

 // TODO: Add your service operations here
 }

 [DataContract]
 public class Product
 {
 [DataMember]
 public int ProductID;

 [DataMember]
 public string ProductName;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[145]

 [DataMember]
 public string QuantityPerUnit;

 [DataMember]
 public decimal UnitPrice;

 [DataMember]
 public bool Discontinued;
 }

 [DataContract]
 public class ProductFault
 {
 public ProductFault(string msg)
 {
 FaultMessage = msg;
 }

 [DataMember]
 public string FaultMessage;
 }
}

Throwing a fault exception
Once we have modified the interface, we need to modify the implementation. Open
the ProductService.cs file, and change the following lines:

 if (productEntity == null)
 throw new Exception("No product found with id " + id);

to these lines:
 if (productEntity == null)
 {
 //throw new Exception("No product found with id " + id);
 if (id != 999)
 throw new FaultException<ProductFault>(new ProductFault(
 "No product found with id " + id), "Product Fault");
 else
 throw new Exception("Test Exception");
 }

This will throw a ProductFault exception if an invalid ID is passed to the
GetProduct operation. However, we will throw a normal C# exception if the passed
ID is 999. Later, we will use this special ID to do an extra test.

Now, build the RealNorthwindService project. After has been successfully built,
we will use the client that we built earlier to test this service. We will examine the
channel status after an exception has been thrown. We can't do this with the WCF
Service Test Client, because in WCF Test Client, each request will create a new
channel, and we don't have a way to examine the channel state after the service call.

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[146]

Updating client program to catch the fault
exception
Now, let's update the client program, so that the fault exception is handled.

1.	 First, we need to update the service reference, because we have changed the
contracts for the service. From the RealNorthwindClient project, expand
the Service References node and right-click on ProductServiceRef. Select
Update Service Reference from the context menu, and the Updating Service
Reference dialog box will pop up. The WCF Service Host will be started
automatically, and the updated metadata information will be downloaded
to the client side. Proxy code will be updated with modified and new
service contracts.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[147]

2.	 Then, open Program.cs under RealNorthwindClient project, and add the
following method to the class Program:

	 static void TestException(ProductServiceClient client, int id)
	 {
	 Console.WriteLine("\n\nTest {0} Fault Exception for product id
 {1}...", (id != 999)?"handled":"unhandled", id);
	
	 try
	 {
	 Product product = client.GetProduct(id);
	 }
	 catch (TimeoutException ex)
	 {
	 Console.WriteLine("The service operation timed out. " +
 ex.Message);
	 }
	 catch (FaultException<ProductFault> ex)
	 {
	 Console.WriteLine("ProductFault: " + ex.ToString());
	 }
	 catch (FaultException ex)
	 {
	 Console.WriteLine("Unknown Fault: " + ex.ToString());
	 }
	 catch (CommunicationException ex)
	 {
	 Console.WriteLine("There was a communication problem. " +
 ex.Message + ex.StackTrace);
	 }
	 Console.WriteLine("\n\nChannel Status after the exception: " +
 client.InnerChannel.State.ToString());
	 Console.WriteLine("Press any key to continue ...");
	 Console.ReadKey();
	 }

Inside this method, we first call GetProduct with a passed-in ID. If the ID is
an invalid product ID, the service will throw a ProductFault exception. So
we have to add the catch statement to catch the ProductFault exception.
We examine the channel status after the fault exception. We have also added
several other exceptions, such as timeout exception, communication excep-
tion, and general fault exception, so that we can handle every situation. Note
that the order of the catch statements are very important and shouldn't
be changed.

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[148]

If 999 is passed to this method as the ID, the service will throw an exception,
instead of a fault exception. We will also examine the channel status of this
unhandled exception.

3.	 Now, add the following statements to the end of the function Main in
this class:

	 TestException(client, 0); // channel is still open after a
 FaultException
	 TestException(client, 999); // channel is Faulted after a non
 handled fault exception
	 Console.WriteLine("\n\nTest Faulted client ...");
	 product = client.GetProduct(20); // can't use a client with a
 Faulted channel
	 Console.WriteLine("Press any key to continue ...");
	 Console.ReadLine();

So we will first test the ProductFault exception, followed by the regular C#
exception, and finally we will try to use the faulted channel.

The full content of the Program.cs is now as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RealNorthwindClient.ProductServiceRef;
using System.ServiceModel;

namespace RealNorthwindClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ProductServiceClient client = new ProductServiceClient();

 Product product = client.GetProduct(23);
 Console.WriteLine("product name is " + product.
 ProductName);
 Console.WriteLine("product price is " + product.UnitPrice.
 ToString());

 product.UnitPrice = (decimal)20.0;
 bool result = client.UpdateProduct(product);
 Console.WriteLine("Update result is " + result.
 ToString());

 TestException(client, 0); // channel is still open after
 a FaultException

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[149]

 TestException(client, 999); // channel is Faulted after a
 non handled fault exception

 Console.WriteLine("\n\nTest Faulted client ...");
 product = client.GetProduct(20); // can't use a client
 with a Faulted channel

 Console.WriteLine("Press any key to continue ...");
 Console.ReadLine();
 }
 static void TestException(ProductServiceClient client, int id)
 {
 Console.WriteLine("\n\nTest {0} Fault Exception for
 product id {1}...", (id != 999)?"handled":"unhandled", id);

 try
 {
 Product product = client.GetProduct(id);
 }
 catch (TimeoutException ex)
 {
 Console.WriteLine("The service operation timed out. "
 + ex.Message);
 }
 catch (FaultException<ProductFault> ex)
 {
 Console.WriteLine("ProductFault: " + ex.ToString());
 }
 catch (FaultException ex)
 {
 Console.WriteLine("Unknown Fault: " + ex.ToString());
 }
 catch (CommunicationException ex)
 {
 Console.WriteLine("There was a communication problem.
 " + ex.Message + ex.StackTrace);
 }
 Console.WriteLine("\n\nChannel Status after the exception:
 " + client.InnerChannel.State.ToString());
 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[150]

Disabling the Just My Code debugging option
Before we run the program, we need to change a debugging setting. Select menu
option Tools | Options, go to the Debugging | General tab, deselect the Enable
Just My Code(Managed only) checkbox, as shown in the Options image below:

Enable Just My Code means that while debugging, you look at only the code you
have written, and ignore the third-party code that is inside your application (such as
the framework and libraries). Just My Code hides non-user code so that it does not
appear in the debugger windows. When you step through the code, the debugger
steps through any non-user code but does not stop in it. For example, if you call
a .NET Framework API that throws an exception, you're going to break in your
code that called the API, rather than farther down in the framework. This becomes
particularly useful when user and non-user code call back and forth between each
other. You can set the My Code status on a per-function level, to specify whether you
want certain code debugged.

In our example, if you don't deselect Enable Just My Code, that is, if Just Debug My
Code is selected, what happens is that when you debug the client program, you will
get an exception popped up in Visual Studio after:

throw new FaultException<ProductFault>(new ProductFault("No product
found with id " + id), "Product Fault");

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[151]

It complains that the exception is not being handled by the user, as seen in the
RealNorthwind (Debugging) - Microsoft Visual Studio image below:

Note that this exception window is pointing to the following statement in
Visual Studio:

throw new Exception("Test Exception");

But it is not because this line raised an exception. It is because this line is the line
after the one that raised the exception, which is the throw new FaultException line.
Actually, if you press F5 to continue, the next time the "throw new Exception" line
raises an exception, the popped up window will point to:

Product product = new Product();

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[152]

We know that the ProductFault exception will be handled by our client program,
but now, Visual Studio thinks that it is not. To avoid this annoyance, you can disable
the Just My Code option. However, you should be aware that disabling this option
might have some side effects. For example, Visual Studio will not complain if there
is a real unhandled exception. You may want to enable it after you have completed
your testing.

Testing the fault exception
Once you have changed the Just My Code option, you can press F5 to run the client
program (remember to set the RealNorthwindClient to be the startup project). You
will get the output shown in the following screenshot:

As you can see from the output, the client channel to the service is still open, after the
ProductFault is handled in the client program. Next, we will use the same client to
get the product details for ID 999.

Press Enter, and more output will be shown, with a fault exception as shown in the
image here:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 6

[153]

From the output, we know that the channel has now faulted. This means that now
the client does not have a valid way to communicate with the service. To prove it,
press Enter to try to connect to the service using the same client object, and you will
get an unhandled exception "The communication object, System.ServiceModel.
Channels.ServiceChannel", cannot be used for communication because it is in
the Faulted state", as shown in the RealNorthwind (Debugging) image, below. The
program will not continue, so you have to stop it.

In the source code, if we have to call the service again, we have to abort this client,
and create a new one for the communication.

Download from Library of Wow! eBook <www.wowebook.com>

Adding Database Support and Exception Handling to the RealNorthwind WCF Service

[154]

Summary
In this chapter, we have added the third layer—the data access layer—to the
RealNorthwindService. We have also added exception handling to the service. The
key points covered in this chapter include:

Database connection strings should be stored in configuration files, not in
C# code
The data access layer should contain the code to access the underlying
databases; it should not contain business logic
If service contracts have been changed, the client has to update the reference
to the service
You should throw fault contracts instead of exceptions to the client from
WCF services
A handled fault exception won't make a communication channel invalid but
an exception will

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with
Service Factory

In the previous two chapters, we created a real-world WCF service with three layers.
We created these three layers manually with Visual Studio, and added the required
code, configuration settings, and other files. In this chapter and the next one, we
will establish the same framework with one of Microsoft's Patterns and Practices,
Microsoft Web Service Software Factory. In this chapter, we will use the Service
Factory to create models for all of the contracts, specify implementation technologies
for the models, and generate the source code from those models. In the next chapter,
we will finish the service by adding the necessary code to it and testing it using a
generated Windows client.

In this chapter, we will follow these steps to model the WCF service:

Explain guidance packages and the Service Factory
Download and install the required software
Model the data contracts
Model the service contracts
Specify the implementation technology for the models
Create the service projects
Generate source code from the models

What is the Service Factory?
The Web Service Software Factory (also known as the Service Factory) is an
integrated collection of tools, patterns, source code, and prescriptive guidance. It
is designed to help you quickly and consistently construct WCF and ASMX Web
services that adhere to well-known architecture and design patterns.

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[156]

The Service Factory contains automation and guidance integrated into Visual Studio
for building services. The core of the automation components is a Web services
domain model. This domain model contains elements such as service contracts,
operations, messages, and data contracts. This domain model manifests itself in the
form of three integrated domain-specific languages (DSLs) that are used to model
services: the Service Contract Model, the Data Contract Model, and the Host Model.

According to the Microsoft Service Factory team (Microsoft, Web Service Software
Factory: Modeling Edition, retrieved on 5/2/2008 from http://msdn.microsoft.
com/en-us/library/bb931187.aspx), the design goals of Service Factory are:

The Service Factory will provide higher productivity because it raises the
abstraction level for building services.
Applications built using the Service Factory will have a higher quality
because the generated code encapsulates best practices.
The Service Factory will be designed to be extensible so that it can
adapt to the needs of a particular team's development processes and
organizational environment.
When using the Service Factory, implementation technology related
decisions should be delayed until as late as possible. These decisions include
which messaging platform (WCF and ASMX) to use, and which Visual
Studio projects to use in making up the solution for the service.
Changes to the service and its design should require as little rework
as possible.

What are Guidance Packages?
One of the key requirements of the Service Factory is Guidance Automation
Extensions. So, to fully understand the Service Factory, we also need to know what
Guidance Automation Extensions are.

There are two packages related to guidance automation. One is Guidance
Automation Extension (GAX), and the other is Guidance Automation
Toolkit (GAT).

The Guidance Automation Extension (GAX) expands the capabilities of Visual
Studio by allowing architects and developers to run guidance packages, such as
those included in Software Factories, which automate key development tasks from
within the Visual Studio environment.

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[157]

The Guidance Automation Toolkit (GAT) is an extension to Visual Studio that allows
architects to author-rich, integrated user experiences for re-usable assets including
frameworks, components, and patterns. The resulting Guidance Packages are
composed of templates, wizards, and recipes, which help developers build solutions
in a manner consistent with the architecture guidelines.

For our purposes, we don't need to create our own guidance packages, so we will
neither need to download nor install the Guidance Automation Toolkit. We do need
to download and install the Guidance Automation Extensions, because GAX is a
required component for the Service Factory.

Preparing environments
To use the Service Factory, you have to download and install both the Guidance
Automation Extensions and the Service Factory. You need to first install the
Guidance Automation package, and then install the Service Factory.

Installing Guidance Automation packages
Based on the above information, we will only need to download and install
Guidance Automation Extensions for Visual Studio 2008. You can go to download.
microsoft.com, search for "Guidance Automation Extensions", and you will find
the link for the guidance automation package. You need to sign in to download this
package. After downloading the package, install it on your PC.

Installing Microsoft Service Software Factory
Next, we need to download and install the Service Factory. Go to download.
microsoft.com, search for "web service software factory", and you will find the link
for the Service Factory. Again, you need to sign in to download this package. There
are two versions of the download: one for the binary package, and one for the source
code. We only need the binary one. After downloading the package, install it on your
PC, and we are ready to use it.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[158]

Differences between the December 2006
version and the February 2008 version
If you have used the Service Factory December 2006 version, you will notice that
there are several differences between that one and the 2008 one. Among these
changes, probably the most significant one is that with the 2006 version, you need
to have a database first, and create the Data Contract, Business Entities, and so on,
based on that database, whereas with the 2008 version, you create Data Contracts,
and Service Interfaces before you even decide which language to use. The services
are now designed in a technology-independent manner. The new Service Factory is
more like a modeling tool at the beginning, and a code generation tool at the end.
This is why it is now called "Service Factory: Modeling Edition".

Modeling the data contracts
Now let's start using the Service Factory to build a WCF service. We will build a
three-layer WCF service, similar to what we did in the previous chapters.

We will model the data contracts, then the service contracts, and finally, link the data
contracts to the service contracts. Once we have all of the contracts ready, we will
customize the data access and business logic layers, and host the service in IIS. We
will also create a test client to test the service.

In this section, we will model the data contracts.

Creating the solution
First, we need to create a solution using the Service Factory. Follow these steps to
create the solution:

1.	 Start Visual Studio 2008
2.	 Select menu item File | New | Project….
3.	 Select Guidance Packages | Service Factory: Modeling Edition as the

project type, and Model Project as the template
4.	 Enter EasyNorthwind as the Name, and leave the Location as the default

value (D:\SOAwithWCFandLINQ\Projects)
5.	 When you click the OK button, the New Project dialog box should pop up

on your screen.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[159]

The Guidance Packages project type will be shown only after you have
installed the Guidance packages.

6.	 Next, let's rename the model project. In the Solution Explorer, right-click the
bottom node EasyNorthwind, and rename it to EasyNorthwind Models.
This is the folder where we will store all of the models for this solution.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[160]

Adding the data contract model
Now, the solution has only one empty models folder. Let's add our data contract
model using the following steps:

1.	 In the Solution Explorer, right-click the EasyNorthwind Models.
2.	 Select Add | New Model… to add a new model.
3.	 In the pop-up Service Factory | Specify model options dialog box, select

Data Contract Model type, enter ProductService as the model name, and
http://MyCompany.com/ProductService/EasyWCF/2008/05 as the
XML namespace.

4.	 Click the Finish button.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[161]

Adding the product data contract
Now that the ProductService data contract has been added to the solution models,
we can model the data contracts.

1.	 Open the Toolbox window. If you can't find Toolbox in your left side of
Visual Studio, press Ctrl+Alt+X, or select menu item View | Toolbox, to
open it. The EasyNorthwind – Microsoft Visual Studio image below shows
the toolbox for Data Contract Tools.

2.	 Drag a Data Contract () into the data contract design pane.

3.	 Click on the new data contract shape, and change its name from
DataContract1 to Product.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[162]

4.	 Right-click on this Product data contract and add a Primitive Data
Member to it:

5.	 Rename this data member from PrimitiveDataType1 to ProductID, and,
while the ProductID is still selected, click on the ellipsis button for its type in
the Properties window, and change the primitive's type to be System.Int32.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[163]

6.	 Use the same method to add the following primitive data members, with the
corresponding types shown here:

Member Name Member Data Type
ProductID System.Int32
ProductName System.String
QuantityPerUnit System.String
UnitPrice System.Decimal
Discontinued System.Boolean

Adding the product fault contract
Next, we will add a product fault contract to the product service's data contract
model. Follow these steps to add this fault contract:

1.	 From the Toolbox, drag a Fault Contract shape () into the
ProductService data contract design pane.

2.	 Rename it to ProductFault.
3.	 Right-click on it, and add a new primitive data member FaultMessage to this

fault contract, with the type System.String.

The final diagram of the ProductService Data Contract Model should look like the
following ProductService.datacontract* image below:

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[164]

The Data Contract Explorer, which is a window next to the Solution Explorer, also
provides all of the information about the Data Contracts:

Modeling the service contracts
In the previous sections, we modeled the data contract, and the Fault contract. In this
section, we will model the service contracts, including the service operations, service
contracts, and message contracts. We have to model the data contract and fault
contract first because we will use them when modeling the service contracts.

Adding the ProductService contract model
As for to the Data Contract Model, we now need to add a Service Contract Model.
Follow these steps to add the service contract model:

1.	 From the Solution Explorer, right-click on EasyNorthwind Models.
2.	 Select Add | New Model … to add a new model.
3.	 In the pop-up Service Factory | Specify model options dialog box, select

Service Contract model type, enter ProductService as the model name, and
http://MyCompany.com/ProductService/EasyWCF/2008/05 as the
XML namespace.

4.	 Click Finish to add this model.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[165]

Adding the GetProduct operation
Next, we will add an operation, a request, and response message, a product service
contract, and finally the product service itself.

Let's follow these steps to add the GetProduct operation first:

1.	 Open the Service Contract Toolbox window.
2.	 Drag an Operation shape () onto the service contract design pane.
3.	 Click on the new operation shape, and rename it from Operation1 to

GetProduct.
4.	 Right-click on this GetProduct operation and add a Data Contract Fault

member to it.
5.	 Change the name of this fault contract member from DataContractFault1 to

ProductFault.

6.	 With the ProductFault member still selected, click on the ellipsis button for
its type on its Properties window.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[166]

7.	 In the pop-up DSL Model Element Selector dialog box, select ProductFault
and click the OK button. This fault member is now linked to the data contract
ProductFault.

If you have a blank DSL Model Element Selector screen, it means you
haven't saved your Data Contract Model. You need to click the Save All
button from the menu tools bar, and try again to populate this window.

Adding the message contracts
In the previous section, we have added the GetProduct operation, but we only
defined the fault contract of this operation. We didn't specify its request and
response messages. In this section, we will define the request and response messages
of this operation, and later we will connect these messages to the operation.

Follow these steps to define the request and response messages:

1.	 Open the Toolbox window.
2.	 Drag a Message shape () onto the service contract design pane.
3.	 Click on the new message shape, and rename it from Message1 to

GetProductRequest.
4.	 Right-click on this GetProductRequest message and add a primitive message

part to it.
5.	 Change the name of this part from PrimitiveMessagePart1 to ProductID,

and change its type to be System.Int32.
6.	 Add another message item, rename it to GetProductResponse, and add

a Data Contract Message Part named Product and change its type to
EasyNorthwind Models\ProductService\product.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[167]

You can also put the GetProduct response message into an XML schema
file and load it into the model using XSD message shape.

Adding the service contracts
Before we connect the messages to the operation, we need to add the top level service
contracts. This will include the service contract, and the service itself.

1.	 Open the Toolbox window.
2.	 Drag a Service Contract shape () onto the service contract

design pane.
3.	 Click on the new service contract shape, and rename it from

ServiceContract1 to ProductServiceContract.
4.	 Drag a Service shape onto the service contract design pane.
5.	 Click on the new service shape, and rename it from Service1 to

ProductService.

Adding the connectors
We have now created all of the required items for the service contracts. Next, we
need to connect them together to form the message flow. Follow these steps:

1.	 Open the Toolbox window.
2.	 Click on the Connector shape ().
3.	 Drag it from the GetProductRequest message to the GetProduct operation.
4.	 Click on the Connector again and drag it from the GetProduct operation to

the GetProductResponse.

The direction of the arrow is important, as this indicates the message
flow. That is, it decides which is the request message and which is the
response message.

5.	 Connect the ProductServiceContract service contract to the GetProduct
operation, and the ProductService service to the ProductServiceContract
service contact.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[168]

6.	 We also need to change the serializer type for this Service Contract Model.
Click on any empty space in the Service Contract Model design pane and
change its Serializer Type from XmlSerializer to DataContractSerializer.

A serializer is used to convert the members of the service objects into XML
for communication between the service and the client applications. By
definition, a DataContractSerializer can serialize and de-serialize data
contracts and message contracts, whereas an XmlSerializer can only serialize
and de-serialize data types that are defined using programming constructors
such as properties and fields. Because we have defined data contracts and
message contracts in our service interfaces, we have to change the serializer
type to DataContractSerializer.

The final Service Contract Model for ProductService is shown in the following
ProductService.servicecontract screenshot:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[169]

The same model appears in the Service Contract Explorer as follows:

Specifying the implementation
technology for the models
We have modeled all of the contracts, and are ready to generate code. But before we
ask the code generator to generate the code, we need to specify which technology we
are going to use, so that the code generator will know what kind of code it needs to
generate for us.

Choosing the implementation technology for
service contract model
First, we need to specify which technology we will use to implement the service
contracts. Follow these steps to specify the technology:

1.	 Open the Service Contract Model.
2.	 Click on any empty space in the design pane.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[170]

3.	 In the Properties window, click on the drop-down arrow for Implementation
Technology, and choose WCF Extension. You will have the following
properties window displayed on your screen:

Changing the property values for service
contracts
You have now selected the implementation technology for the service contracts.
Click on a shape on the Service Contract Model, such as the GetProduct operation,
and you will see that several WCF-specific settings have been added to its Properties
window. Next, we need to change some of these settings.

1.	 Select the GetProduct operation.
2.	 Copy its Action property from the Properties window.
3.	 Paste the value into the Reply Action property. Now the Reply Action

property has the same value as the Action property.
4.	 Select the GetProductRequest shape.
5.	 Change its Is Wrapped property to True.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[171]

Choosing the implementation technology for
the data contract model
In the previous section, we set the implementation technology for the service
contracts as WCF Extension. In this section, we will set the implementation
technology for the data contracts.

1.	 Open the Data Contract model.
2.	 Click on an empty space in the design pane.
3.	 In the Properties window, change the model's Implementation Technology

to WCF Extension. The Properties screen is identical to the diagram you saw
in the previous section.

Changing the order property for data
members
Once the implementation technology has been chosen for the Data Contract Model,
we need to change some WCF-specific settings for the data members, as follows:

1.	 While the Data Contract Model diagram is still open, first select Product
Data Contract.

2.	 Click on the ProductName member.
3.	 Change its Order property to 1.
4.	 Change the order property of QuantityPerUnit, UnitPrice, and

Discontinued to 2, 3, and 4 respectively.

You can also do this by right-clicking on an empty space in the data contract model
pane, and selecting Order All Data Members from the context menu, as shown
below. The Service Factory will assign an order to each data member according to
the position in its corresponding data contract.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[172]

Generating source code
At this point, we have specified WCF as the technology for the service
implementation, but we still haven't generated any code. The Solution Explorer only
has few nodes, as shown in the following image:

The solution item ProjectMapping.xml is an empty file, with no project included.
Next, we will create the framework projects for the service, and generate lots of
source code from the models.

Creating the service projects
Before we can generate the source code from the models, we need to create a few
projects, and add them to the solution. Follow these steps to create all of the
required projects:

1.	 From the Solution Explorer, right-click on the top node EasyNorthwind
solution item.

2.	 Select Add | New Project… from the context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[173]

3.	 On the pop-up Add New Project window, select Guidance Packages
| Service Factory: Modeling Edition as the project type, and WCF
Implementation Projects as the template.

4.	 Enter MyWCF.EasyNorthwind as the Name, and leave the Location as the
default directory D:\SOAwithWCFandLINQ\Projects\EasyNorthwind.
The Add New Project dialog box should pop up on your screen:

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[174]

5.	 Click OK.
Service Factory will generate ten projects according to the Service Contract
and Data Contract Models, including the Business Entities projects, Business
Logic projects, Data Access Layer projects, Data Contracts projects, Fault
Contracts projects, Message Contract projects, Service Contracts projects,
and Service Implementation projects. The Solution Explorer is now full of
projects, as shown in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[175]

Inside each project, the Service Factory has added the required references, and some
configuration files. For example, the ServiceContracts project has references to
MyWCF.EasyNorthwind.DataContracts, MyWCF.EasyNorthwind.FaultContracts,
and MyWCF.EasyNorthwind.MessageContracts, as well as System.Runtime.
Serialization, and System.ServiceModel.

It has also generated a hosting application and a testing client for the service, which
we will customize later.

Linking contract models to projects
Now that we have all of the projects generated, we can tell the Service and Data
Contract Models which project they should link to.

Open the Service Contract Model diagram, click on an empty space in the
design pane, and from the Properties window, change the property Project
Mapping Table to MyWCF.EasyNorthwind.
The project mapping table, MyWCF.EasyNorthwind, is an element within
the ProjectMapping.xml file. This element was added to the project mapping
XML file when we created the projects in the previous section. It maps from
solution projects to a set of predefined roles. So, after we specify the Project
Mapping Table of the service contract model to this element, and later
generate the code, the Service Factory will know which project the generated
artifacts should go to.

Open the Data Contract Model diagram, click on an empty space in the
design pane, and from the Properties window, change the property Project
Mapping Table to MyWCF.EasyNorthwind.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[176]

Validating the contract models
At this point, we have finished modeling our service contracts, and have also
specified technologies for the service implementation. Both models should now
be valid.

To see the validation results, right-click on an empty space in the design pane for
either of the contract models, select Validate All from the context menu, and you
will see the following messages in the output window:

------ Validation started: Model elements validated: 17 ------

======== Validation complete: 0 errors, 0 warnings, 0 information messages
=======

If you have tried to validate any model prior to this point, you may have seen a few
validation errors, such as "Project Mapping Table property is empty".

You can compile and build the solution successfully now, though it is not yet
complete (actually, there is no source code to build in the solution at this point).

Generating the source code
The Service Factory has now generated ten projects, but it hasn't generated any
source code from the Service and Data Contract Models. You can build and run it
now, but it won't be functioning as a WCF service. In this section, we will ask Service
Factory to generate all of the necessary source code for the service.

1.	 Open the Data Contract Model.
2.	 Right-click on the design pane.
3.	 Select Generate Code from the context menu.

The Factory will generate source code for all of the defined Data contracts
and Fault contracts in the model.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 7

[177]

4.	 Open the Service Contract Model.
5.	 Right-click on the design pane.
6.	 Select Generate Code from the context menu.

The Factory will generate source code for all of the service interfaces, service
implementations, operations, messages, and any other necessary files.

You may see a warning message saying that a custom tool failed. Do not worry about
this warning. It's ok for us to move on.

You can also right-click on any shape in the Contract Model diagrams, and select
Generate Code for that shape only. This feature is helpful if, later on, you need to
change some of the models.

Now, open a project under the Service Interface folder, such as MyWCF.
EasyNorthwind.DataContracts. You will see the generated files under the
GeneratedCode folder.

This will generate the source code for all of the service interface projects, including
the Data Contracts project, Fault Contracts project, Message Contracts project,
Service Contracts project, and Service Implementation projects. If you check the
business entities project, the business logic project, or the data access project, you
will find that no source code has been generated yet. There is no code generated for
the test client, or the host application either. So the EasyNorthwind solution is still
not a complete WCF service. In the next chapter, we will complete it by generating
and customizing all of the other projects.

Build the solution again. There should be no errors.

Download from Library of Wow! eBook <www.wowebook.com>

Modeling a WCF Service with Service Factory

[178]

Summary
In this chapter, we have used Service Factory to create the framework of a three-layer
WCF service. We used Service Factory to model the data contracts, service contracts,
and we then generated code from these models. We are not only writing less source
code manually, but we are also incorporating lots of best practices into our service.
This version's service is in much better shape than the previous one.

The key points covered in this chapter include:

Guidance Packages and Service Factory are required to model the contracts
Data contracts, including fault contracts, are modeled before service contracts
and data contract models will be used by the service contract models
Connectors are used to connect the service contracts with the operation
contracts, and the message contracts
Implementation technologies are not specified for the contracts in the models,
until the source code is about to be generated
Service Factory will only generate source code for the service interface
projects, and not for the business logic project, the business entities project, or
the data access project

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF
Service with Service Factory

In the previous chapter, we modeled and generated the source code for a WCF
service using Service Factory. Although the service interface code is generated based
on the Contract Models, no business entity, or data access layer, or business logic
layer code has been generated at all. The Modeling Edition of the Service Factory
doesn't give any tool to automatically generate code for them. You may recall that
with the previous version's Service Factory, you could generate business entities
from a database, but this is not the case for this version.

In this chapter, we will manually add code for these projects, so that we have a
completed WCF service. We will also generate the host application and test client
using Service Factory, and then test the WCF service.

We will follow these steps to complete the EasyNorthwind service in this chapter:

Adding the business entities
Adding the data access class
Adding the business logic class
Translating the messages
Customizing the Fault contract class
Modifying the service interface layer to call the business logic layer
Modeling the host application and generating source code for the
host application
Creating the test client
Testing the WCF service using the test client

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[180]

Creating the business entities
First, we will create our business entities for the service. Follow these steps to add
the product entity to the project:

1.	 In the Solution Explorer, right-click on the MyWCF.EasyNorthwind.
BusinessEntities project.

2.	 Select Add | Class… from the context menu.
3.	 In the popped up Add New Item window, enter ProductEntity.cs as

the name.
4.	 Click Add.

Now, customize the ProductEntity.cs file:

Change it to be a public class
Add new members for the product entity

The final ProductEntity class file should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace MyWCF.EasyNorthwind.BusinessEntities
{
 public class ProductEntity
 {
 public int ProductID {get; set;}
 public string ProductName {get; set;}
 public string QuantityPerUnit {get; set;}
 public decimal UnitPrice {get; set;}
 public int UnitsInStock {get; set;}
 public int ReorderLevel {get; set;}
 public int UnitsOnOrder {get; set;}
 public bool Discontinued { get; set; }
 }
}

Build the business entities project, to make sure that there is no build error.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[181]

Customizing the data access layer
We have to do the same thing to the data access layer, that is, manually add the code
to access the databases. In addition, we have to add the connection strings to the
configuration file, and add references to the business entities project.

Adding the connection strings
For this service, we will still use the Northwind sample database. So, we first need to
specify the connection strings to this database.

With Service Factory, the host application is under the MyWCF.EasyNorthwind\
Tests\MyWCF.EasyNorthwind.Host folder. It will use the ASP.NET Development
Server to host the WCF services, and the configuration file is called web.config. We
need to modify this file to specify the connection string.

Open the web.config file in the host folder, and find the following node:
	 <connectionStrings/>

Change it to:
	 <connectionStrings configSource="connections.config"/>

This means that we will have a separate file to hold all of the connection strings, and
this file is called connections.config.

The content of the file connections.config is:

<?xml version="1.0" encoding="utf-8" ?>
<connectionStrings>
 <add name="NorthwindConnectionString"
 providerName="System.Data.SqlProvider"
 connectionString="server=your_db_server\your_db_instance;
 uid=your_user_name; pwd=your_password;
 database=Northwind;" />
</connectionStrings>

Just add a new item (XML file) to the host application project, name it connections.
config, and put the above content inside the file and save it.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[182]

Or you can just replace the line <connectionStrings/> with the following lines in
the web.config file, and not create a new file for this example:

<connectionStrings>
 <add name="NorthwindConnectionString"
 providerName="System.Data.SqlProvider"
connectionString="server=your_db_server\your_db_instance;
 uid=your_user_name; pwd=your_password;
 database=Northwind;" />
</connectionStrings>

But remember to replace the database server name, db instance name, your user
name, and your password, according to your database setup.

You can also use the following connectionString if you are using
windows authentication:

connectionString="server=your_db_server\your_db_instance; database=Nor
thwind;Trusted_Connection=yes"

And use the following connectionString if you are using an integrated
security connection:

connectionString="server=your_db_server\your_db_instance; database=Nor
thwind;Integrated Security=SSPI"

Adding a reference to the BusinessEntities
project
Next, add a reference to the MyWCF.EasyNorthwind.BusinessEntities project in
the data access project.

The data access layer needs to reference the BusinessEntities project, because this
layer communicates with the business logic layer through business entities. It will
retrieve information from the database, store the information in business entities,
and pass the business entities back to the business logic layer. When saving the data
back to the database, it will get the business entities from the business logic layer,
connect to the database, and commit the changes back to the database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[183]

Adding the data access class
Now, add a new class file to the data access project, name it ProductDAL.cs, and
customize it as follows:

1.	 Add three using statements for the BusinessEntities, SqlClient and
Configuration namespaces.

2.	 Change the file to be a public class.
3.	 Add a new method, GetProduct, to retrieve a product from the database.

The final ProductDAL class file should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCF.EasyNorthwind.BusinessEntities;
using System.Data.SqlClient;
using System.Configuration;

namespace MyWCF.EasyNorthwind.DataAccess
{
 public class ProductDAL
 {
 string connectionString = ConfigurationManager.ConnectionStrin
 gs["NorthwindConnectionString"].ConnectionString;

 public ProductEntity GetProduct(int id)
 {
 ProductEntity p = null;
 using (SqlConnection conn =
 new SqlConnection(connectionString))
 {
 SqlCommand comm = new SqlCommand();
 comm.CommandText =
 "select * from Products where ProductID=" + id;
 comm.Connection = conn;
 conn.Open();
 SqlDataReader reader = comm.ExecuteReader();
 if (reader.HasRows)
 {
 reader.Read();
 p = new ProductEntity();
 p.ProductID = id;
 p.ProductName =

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[184]

 (string)reader["ProductName"];
 p.QuantityPerUnit =
 (string)reader["QuantityPerUnit"];
 p.UnitPrice =
 (decimal)reader["UnitPrice"];
 p.UnitsInStock =
 (short)reader["UnitsInStock"];
 p.UnitsOnOrder =
 (short)reader["UnitsOnOrder"];
 p.ReorderLevel =
 (short)reader["ReorderLevel"];
 p.Discontinued =
 (bool)reader["Discontinued"];
 }
 }
 return p;
 }
 }
}

Again, build the data access project, to make sure that there is no build error.

Customizing the business logic
For the business logic project, we need to add a class file, ProductLogic.cs, and
customize it as follows:

1.	 Add two using statements for the BusinessEntities, and
DataAccess namespaces.

2.	 Change it to be a public class.
3.	 Add a new method, GetProduct, to call the data access layer to retrieve a

product from database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[185]

The final ProductLogic class file should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCF.EasyNorthwind.BusinessEntities;
using MyWCF.EasyNorthwind.DataAccess;

namespace MyWCF.EasyNorthwind.BusinessLogic
{
 public class ProductLogic
 {
 ProductDAL productDAL = new ProductDAL();

 public ProductEntity GetProduct(int id)
 {
 return productDAL.GetProduct(id);
 }
 }
}

Build the business logic project, to make sure that there is no build error.

Translating the messages
We have now customized the data access and business logic layers, and connected
them together. Now, we will connect the service interface layer to the business logic
layer, and customize the service contracts.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[186]

First, we will build a translator to translate data between the business entities, and
the data contracts.

1.	 From the Solution Explorer, right-click on the project item, MyWCF.
EasyNorthwind.ServiceImplementation.

2.	 Select Create Translator from the context menu. Note that the
Create Translator context menu item is available only for the service
implementation project. You won't see it if you right-click on any other
project. This is because Service Factory expects you to create translator
classes only for the service implementation project, and it knows which
project is the service implementation project by its role, which is defined in
the ProjectMapping.xml file.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[187]

You will see that the Service Factory: Modeling Edition | Contract Type
Mapper Generator window has popped up. In this window, we will select
two classes from the solution, and create a map between the fields of those
two classes. First, we will select these two classes.

3.	 Click on the ellipsis button for the First class to map. The Browse and Select
a .NET Type window pops up.

All of the referenced assemblies in the current service implementation
project are listed in the leftmost pane, including our own MyWCF *
assemblies, alongwith some system assemblies. You can choose any of
them as the first class to translate from.

4.	 In our example, select MyWCF.EasyNorthwind.BusinessEntities in the
left pane, and ProductEntity in the right pane. The selected type name now
should be MyWCF.EasyNorthwind.BusinessEntities.ProductEntity.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[188]

5.	 Click OK to close this window.
6.	 Select MyWCF.EasyNorthwind.DataContracts.Product as the second class

to map.
7.	 Leave the Mapping class name to the defaulted

TranslateBetweenProductEntityAndProduct, and the Mapping class XML
namespace to MyWCF.EasyNorthwind.ServiceImplementation.

8.	 Click Next.
9.	 The Create Property Mappings window should pop up. In this window,

select ProductID(Int32) from the leftmost pane, and ProductID(Int32) from
the rightmost pane, and then click Map to map them.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[189]

10.	 Follow the same steps to map the other four properties (ProductName,
QuantityPerUnit, UnitPrice and Discontinued). Leave three of the
ProductEntity properties unmapped (UnitsInStock, ReorderLevel and
UnitsOnOrder).

11.	 Finally, click Finish to generate the mapping class code. You will notice a
new file has been added to the project, under the GeneratedCode folder,
with all of the property mapping information for the two mapped classes.

You can now build the service implementation project, to make sure that there is no
build error.

Customizing the Fault contract
If you open the ProductFault.cs file in the FaultContracts project under the
GeneratedCode folder, you will see that the ProductFault class doesn't have a
constructor. To make it easier to throw a ProductFault exception in the product
service, we will customize it to include a constructor with a string parameter as the
fault message.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[190]

We can open the ProductFault.cs file and modify it directly, adding the
constructor as needed. However, because this class is generated by Service Factory,
any change to it will be lost if we ever need to regenerate it. For example, we may
want to add a new member to the fault in the future, such as the feedback method
for a specific fault, at which point we will have to regenerate it.

So we will add another file, called ProductFault.cs, but make it a partial class, to
extend the generated ProductFault class.

Follow these steps to add the partial class:

1.	 In the Solution Explorer, right-click on the project, MyWCF.EasyNorthwind.
FaultContracts.

2.	 Select Add | Class… from the context menu.
3.	 Add a new class file, named ProductFault.cs.

Then, customize the file as follows:

Change it to be a public partial class
Add a constructor with one string parameter

The content of this file should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyWCF.EasyNorthwind.FaultContracts
{
 public partial class ProductFault
 {
 public ProductFault(string message)
 {
 this.faultMessage = message;
 }
 }
}

Again, build the FaultContracts project to make sure that there is no build error.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[191]

Customizing the product service
Now that we have finished customizing the data access layer and business
logic layer, the last step of the service implementation is to customize the
ProductService.cs file. If you open it now, you will find that it contains an empty
method, GetProduct. We will customize it to call the business logic layer to retrieve
a product, and throw a FaultException if no product is found.

We can also open the ProductService.cs file and modify it directly, adding the
required functionality for the method GetProduct. However, because this class
is generated by Service Factory, any change to it will be lost if we ever need to
regenerate it. For example, we may want to add a new operation to the service in the
future, which would necessitate it.

Just as we did for the ProductFault class, we will add another file, called
ProductService.cs, but we will make it a partial class, to extend the generated
ProductService class.

Follow these steps to add the partial class:

1.	 In the Solution Explorer, right-click on the project MyWCF.EasyNorthwind.
ServiceImplementation.

2.	 Select Add | Class… from the context menu.
3.	 Add a new class file named ProductService.cs.

Then, customize this file as follows:

1.	 Change it to make it a public partial class.
2.	 Add six using statements for the BusinessEntities, DataContracts,

MessageContracts, BusinessLogic, FaultContracts, and ServiceModel
namespaces.

3.	 Add a method, GetProduct, to call the business logic layer to retrieve details
for a product, convert the product entity to a product contract, and then
return it as a message.

The content of ProductService.cs should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCF.EasyNorthwind.BusinessEntities;
using MyWCF.EasyNorthwind.DataContracts;
using MyWCF.EasyNorthwind.MessageContracts;

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[192]

using MyWCF.EasyNorthwind.BusinessLogic;
using MyWCF.EasyNorthwind.FaultContracts;
using System.ServiceModel;

namespace MyWCF.EasyNorthwind.ServiceImplementation
{
 public partial class ProductService
 {
 ProductLogic productLogic = new ProductLogic();

 public override GetProductResponse GetProduct(
 GetProductRequest request)
 {
 // call business entity layer to retrieve a product
 ProductEntity productEntity =
 productLogic.GetProduct(request.ProductID);

 // throw a Fault if no product found
 if (productEntity == null)
 throw new FaultException<ProductFault>(new
 ProductFault("No product found with id " +
 request.ProductID), "Product Fault");

 // translate it to a Product Data Contract object
 Product product;
 product = TranslateBetweenProductEntityAndProduct.
 TranslateProductEntityToProduct(productEntity);

 // create a response message
 GetProductResponse response = new GetProductResponse();
 response.Product = product;

 // return the response message
 return response;
 }
 }
}

If you have used the previous version's Service Factory, you may recall that some
of the tasks we put in the service implementation class were handled by a service
adapter. This version's Service Factory doesn't create an adaptor by default. Instead,
it puts all of them in the service implementation class. You can always create your
own adaptor to provide an extra level of decoupling between the business logic and
the service interface.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[193]

You can now build the ServiceImplementation project, to make sure that there is
no build error.

Modeling the host application and the
test client
Now that we have the service ready, we need a host application to host it, and a
client application to test it. But if you open the Host or Client folders in the solution,
you will see that they are not completed. We have to do some extra work to make
them work.

Service Factory does not use WCF Service Host to host the service. Instead, it chooses
to use the ASP.NET Development Server to host the service. It also creates a separate
host application, so that the service projects and the host application are stored in
separate folders.

The test client Service Factory created for us is a Windows application, with a text
box and a Execute button in it.

Service Factory also supplies a host model that we can use to model the host and
client applications. Next, we will use this model to generate the basic host and
client applications. We will host the EasyNorthwind WCF service in this new host
application, and test it with the new test client.

Modeling the host application
Follow these steps to model the host application:

1.	 In the Solution Explorer, right-click on the EasyNorthwind Models item.
2.	 Select Add | New Model from the context menu
3.	 On the pop-up dialog window, choose Host Model as the Model Type, enter

EasyNorthwind as the model name, and enter http://EasyNorthwind.
MyWCF.MyCompany.com as the XML namespace

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[194]

4.	 Click Finish

Now, the Host Model diagram should open up on your screen. As this model
is empty, we can't do anything with this diagram. We first have to add a host
application to the model to enable it.

Follow these steps to add a host application to this host model:

1.	 The Host Explorer should have opened now on the right-hand side (if not, or
you just closed it, select menu item View | Other Windows | Host Explorer
to open it now). From the explorer, right-click on the Host Model item, and
select Add New Host Application from the context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[195]

2.	 Now, in the Properties window, change the name of the new host application
from HostApplication1 to EasyNorthwindHost, select WCF Extensions as
the Implementation Technology, and select MyWCF.EasyNorthwind.Host
as the Implementation Project.

3.	 In the Host Explorer, right-click on the EasyNorthwinHost item, and select
Add New Service Reference from the context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[196]

4.	 From the Properties window, change the name of the new service reference
from ServiceReference1 to ProductServiceRef. Change Enable Metadata
Publishing to True, and select EasyNorthwind Models\productService\
productService as the Service Implementation Type.

Now that we have the host application created, and the service reference added,
we need to define an endpoint for it. Later, in this chapter, the test client will
communicate with this endpoint to test the service.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[197]

1.	 In the Host Explorer, right-click on the ProductServiceRef, and select Add
New Endpoint from the context menu.

2.	 In the Properties window, rename the new endpoint from Endpoint1 to
ProductEndpoint.

Generating the host application
Now that we have finished modeling the host application, we will generate the
source code for the host application from this host model.

But before we can generate the source code for the host application, we need to
validate this host model. You can do this from the Host Explorer, or from within the
Host Model diagram.

1.	 From the Host Explorer, you can right-click on the ProductServiceRef, and
select Validate All from the context menu.

2.	 You can also validate the model from the Host Model diagram by clicking
on the link, Validate Model (the ProductServiceRef must be selected in the
Host Explorer in order to see this link).

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[198]

Once the model has been validated, the Validate Model link will disappear,
and a new link will appear as Generate Service.

3.	 Now, click on the link Generate Service. This will generate the service
reference file ProductServiceRef.svc, populate the configuration file
web.config, and copy all of the service related assemblies to the bin
directory. All of these files are under the folder D:\SOAwithWCFandLINQ\
Projects\EasyNorthwind\MyWCF.EasyNorthwind\Tests\MyWCF.
EasyNorthwind.Host.

4.	 Before we go onto model the client application, we need to change one
property for the host application. In the Solution Explorer, select
D:\...\MyWCF.EasyNorthwind.Host project, change its use dynamic ports
setting to False, and enter 8080 as the port number.

Adding the test client to the host model
The host application has now been generated. Next, we will create the test client
application. We will use this test client to test the service.

As with the host application, Service Factory also allows us to create a test client
from the host model. First, we need to follow these steps to add a client application
to the host model.

1.	 Open the Host Explorer. If it is blank, just double-click on the
EasyNorthwind.host item in the Solution Explorer under the
EasyNorthwind Models folder.

2.	 Right-click on Host Model and select Add New Client Application from the
context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[199]

3.	 In the Properties window, change the name of the new client application
from ClientApplication1 to EasyNorthwindClient, select WCF Extensions
as the Implementation Technology, and select MyWCF.EasyNorthwind.
Client as the Implementation Project.

4.	 Right-click on the EasyNorthwindClient item, and select Add New Proxy
from the context menu.

5.	 Select the new proxy, and change its name from Proxy1 to
EasyNorthwindProxy. Then right-click on it, and select ProductEndpoint for
its Endpoint property.

The final Host Explorer looks like this:

Generating the client proxy
We have added the test client to the host model and added a reference to the
endpoint of the service. Next, we will generate the source code for the test client from
this model.

In this section, we will use Service Factory to generate the proxy classes of the WCF
service for the client application. In one of the previous chapters, we used the tool
SvcUtil.exe to generate the proxy files manually. Here, Service Factory will do this
job for us. After we have generated the proxy files, we will customize the test client
to call the service in the next section.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[200]

Follow the steps below to generate the proxy files:

1.	 First, we need to start the host application. Open the Solution Explorer,
right-click on D:\...\MyWCF.EasyNorthwind.Host\ under the MyWCF.
EasyNorthwind\Tests folder, and select Build Web Site from the context
menu. Right-click on it again, and select View in Browser. The ASP.NET
Development Server will be started, and a browser will open to show all of
the files under the virtual folder MyWCF.EasyNorthwind.Host.

2.	 Now, open the Host Explorer, and click on the EasyNorthwindProxy item
under the EasyNorthwindClient\Proxies\ folder. Then, in the Host Model
diagram, click on the Generate Proxy link. The Add WCF Service Reference
dialog box will pop up.

3.	 In the Add WCF Service Reference dialog box, accept all of the default
settings, and click Next. Service Factory will now download the metadata
of the service, and list all of the endpoints for the service. Accept
ProductEndpoint, click Next, and then click Finish to close the window.

This will generate the service reference file, EasyNorthwindProxy.cs, and
populate the configuration file, app.config. These two files are under the folder:
D:\SOAwithWCFandLINQ\Projects\EasyNorthwind\MyWCF.EasyNorthwind\
Tests\MyWCF.EasyNorthwind.Client.

If you haven't started the host application, when you click Next, you will
get an error saying "can't download metadata".

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[201]

You can now build the client project, to make sure there is no build error.

Customizing the client
In the previous sections, we added the test client to the host model, and generated
the proxy files for the client application from the host model. However, the test
client currently contains only an empty Windows Form, one proxy file, and one
configuration file.

So, the last step is to customize the client application. Service Factory has added the
service reference, and populated the configuration file for us. What is left for us to do
is to add code to call the service, and display the result.

First, we will customize the MainForm of this client application:

1.	 Open the MainForm.cs file, change the Search label text to Product ID.
2.	 Add a label below the product ID textbox, with the text, Product Details.
3.	 Add a textbox control below the product details label, and name it txtResult.

The form should look like this:

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[202]

Now, we need to follow the steps below to add the code in the Form.

1.	 Double-click on the Execute button to add an event handler. This will also
bring the code for the MainForm to the front.

2.	 First, add two using statements for the EasyNorthwindProxy and
ServiceModel namespaces, like this:

	 using MyWCF.EasyNorthwind.Client.EasyNorthwindProxy;
	 using System.ServiceModel;

3.	 Then, modify the ExecuteButton_Click method to call the service to
retrieve the product details, and display the result.

The content of the MainForm.cs file is like this:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using MyWCF.EasyNorthwind.Client.EasyNorthwindProxy;
using System.ServiceModel;

namespace MyWCF.EasyNorthwind.Client
{
 public partial class MainForm : Form
 {
 public MainForm()
 {
 InitializeComponent();
 }

 private void ExecuteButton_Click(object sender, EventArgs e)
 {
 ProductServiceContractClient client =
 new ProductServiceContractClient();
 GetProductRequest request = new GetProductRequest();

 string result = "";
 try
 {
 request.ProductID = Int32.Parse(SearchText.Text.
 ToString());
 Product product = client.GetProduct(request);

 StringBuilder sb = new StringBuilder();

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[203]

 sb.Append("ProductID:" + product.ProductID.ToString()
 + "\r\n");
 sb.Append("ProductName:" + product.ProductName +
 "\r\n");
 sb.Append("QuantityPerUnit:" + product.QuantityPerUnit
 + "\r\n");
 sb.Append("UnitPrice:" + product.UnitPrice.
 ToString("C") + "\r\n");
 sb.Append("Discontinued:" + product.Discontinued.
 ToString());
 result = sb.ToString();
 }
 catch (TimeoutException ex)
 {
 result = "The service operation timed out. " +
 ex.Message;
 }
 catch (FaultException<ProductFault> ex)
 {
 result = "ProductFault returned: " +
 ex.Detail.FaultMessage;
 }
 catch (FaultException ex)
 {
 result = "Unknown Fault: " + ex.ToString();
 }
 catch (CommunicationException ex)
 {
 result = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
 }
 catch (Exception ex)
 {
 result = "Other excpetion: " + ex.Message +
 ex.StackTrace;
 }

 txtResult.Text = result;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[204]

Testing the service
Now, set the MyWCF.EasyNorthwind.Client project as the startup project, and press
F5 to start it. Note that if you start it in non-debugging mode by pressing Ctrl+F5,
you will have to start the host application first, or set the solution to start with
multiple projects, as we did in one of the previous chapters.

You will see the main window for the test client. Enter a valid product ID and click
Execute to get the product details.

You will also notice that another dialog box has popped up, warning that we can't
debug the host.

This is because we haven't enabled the debugging setting for the host application.
Just click OK to close this dialog box, or you can modify the debugging setting to
true in the web.config file, under the MyWCF.EasyNorthwind.Host project:

<compilation debug="true">

Note that after you change the above line in the web.config file in the host
application, and when you rebuild the solution, you will get two messages in the
Error List window.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[205]

This is because the client application configuration file is referencing the host
application project, so after the host application is updated, the client configuration
file will be updated automatically. However, the client application project does not
depend on any other project. So, if you rebuild any other project, Visual Studio won't
rebuild the client application. The client is independent of the server projects. Visual
Studio keeps all project dependencies in the solution's, Property Pages. You can open
this window via menu option View | Property Pages or Project | Properties, while
the solution item is selected in the Solution Explorer.

Download from Library of Wow! eBook <www.wowebook.com>

Implementing the WCF Service with Service Factory

[206]

At the beginning of this section, we tested this service with a valid product ID. Now,
follow these steps to test the service with an invalid product ID:

1.	 Enter an invalid product ID. You will get a No product found
fault exception.

2.	 Enter a string as the product ID. When you click the Execute button, you will
get an invalid format exception.

3.	 And finally, if you shut down the host server (right-click on the little ASP.
NET Development Server icon on your task bar, and select Stop), or if
you start the client without starting the host server, you will get a
communication exception.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 8

[207]

Summary
In this chapter, we completed the EasyNorthwind WCF service. We added the
business entities, the business logic layer, and the data access layer. We modeled the
host application, created the test client, and tested the WCF service. The key points in
this chapter include:

For business entities, the business logic layer, and the data access layer,
Service Factory creates the projects for you, but does not generate the
source code
Service Factory generates translators between business entities and
data contracts
Business entities, the business logic layer, and data access layer objects are
just Plain Old C# Objects (POCO) with no WCF attribute added to them and
there is no need to add a reference to the ServiceModel namespace
When customizing a generated class, you should add a new partial class
instead of modifying the generated class directly
Connection strings can be included in a separate XML file rather than the
main configuration file
In addition to the Service Contract Model, and the Data Contract Model,
there is a Host Model in the Service Factory that allows you to model a host
application and generate source code for the host application
The Host Model can also generate proxy files for a client application

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-
Integrated Query (LINQ)

In the previous two chapters of this book, we used Service Factory to create the
WCF service. In the data access layer, we used the raw ADO.NET SQL adapters to
communicate with the Northwind database. In one of the following chapters, we will
explain how to use LINQ to SQL in our data access layer.

But before using LINQ to SQL in our data access layer, we need to understand what
it actually means by saying LINQ, or LINQ to SQL. Before understanding LINQ, we
first need to understand some new C# features related to LINQ. In this chapter,
we will first explore these new C# features related to LINQ, and then we will
explore LINQ.

In this chapter, we will cover:

What LINQ is
New data type var
Automatic properties
Object initializer and Collection initializer
Anonymous types
Extension methods
Lambda expressions
Built-in LINQ extension methods and method syntax
LINQ query syntax and query expression
Built-in LINQ operators

•

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[210]

What is LINQ
Language-Integrated Query (LINQ) is a set of features in Visual Studio 2008 that
extends powerful query capabilities to the language syntax of C# and Visual Basic.

Let us see an example first. Suppose there is a list of integers like this:

List<int> list = new List<int>() { 1, 2, 3, 4, 5, 6, 100 };

To find all the even numbers in this list, you might write some code like this:

List<int> list1 = new List<int>();
foreach (var num in list)
{
 if (num % 2 == 0)
 list1.Add(num);
}

Now with LINQ, you can select all of the even numbers from this list, and assign the
query result to a variable,in just one sentence, like this:

var list2 = from number in list
 where number % 2 == 0
 select number;

In this example, list2 and list1 are equivalent. list2 contains the same numbers
as list1 does. As you can see, you don't write a foreach loop. Instead, you write an
SQL statement.

But what do from, where and select mean here? Where are they defined? How and
when can I use them? Let us start the exploration now.

Creating the test solution and project
To show these LINQ-related new features, we will need a test project to demonstrate
what they are, and how to use them. So we first need to create the test solution, and
the project.

Follow these steps to create the solution, and the project.

1.	 Start Visual Studio 2008.
2.	 Select menu option File | New | Project… to create a new solution.
3.	 In the New Project window, select Visual C# | Console Application as the

Project type and Template.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[211]

4.	 Enter TestLINQ as the Solution Name, and TestNewFeaturesApp as the
(project) Name.

5.	 Click OK to create the solution and the project.

New data type var
The first new feature that is very important for LINQ is the new data type, var. This
is a new keyword that can be used to declare a variable, and this variable can be
initialized to any valid C# data.

In the C# 3.0 specification, such variables are called implicitly-typed local variables.

A var variable must be initialized when it is declared. The compile-time type of the
initializer expression must not be of null type, but the real time expression can be
null. Once it is initialized, its data type is fixed to the type of the initial data.

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[212]

The following statements are valid uses of the var keyword:

 // valid var statements
 var x = "1";
 var n = 0;
 string s = "string";
 var s2 = s;
 s2 = null;
 string s3 = null;
 var s4 = s3;

At compile time, the above var statements are compiled to IL like this:

 string x = "1";
 int n = 0;
 string s2 = s;

The var keyword is only meaningful to the Visual Studio 2008 compiler. The
compiled assembly is actually a valid .NET 2.0 assembly. It doesn't need any special
instructions or libraries to support this feature.

The following statements are invalid usages of the var keyword:

 // invalid var statements
 var v;
 var nu = null;
 var v2 = "12"; v2 = 3;

The first one is illegal because it doesn't have an initializer.

The second one initializes variable nu to null which is not allowed, although once
defined, a var type variable can be assigned null. If you think that at compile
time, the compiler needs to create a variable using this type of initializer, then you
understand why the initializer can't be null at compile time.

The third one is illegal because once defined, an integer can't be converted to a string
implicitly (v2 is a type of string).

Automatic properties
In the past, for a class member, if we wanted to define it as a property member, we
had to define a private member variable first. For example, for the Product class, we
can define a property, ProductName as follows:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[213]

 private string productName;
 public string ProductName
 {
 get { return productName; }
 set { productName = value; }
 }

This may be useful if we need to add some logic inside the get/set methods.
But if we don't need to, the above format gets tedious, especially if there are
many members.

Now, with the new version of C#, the above property can be simplified into
one statement:

public string ProductName { get; set; }

When Visual Studio compiles this statement, it will automatically create a private
member variable productName, and use the old style's get/set methods to define
the property. This could save on lots of typing.

Just as with the new type var, the automatic properties are only meaningful
to the Visual Studio 2008 compiler. The compiled assembly is actually a valid
.NET 2.0 assembly.

Interestingly, later on, if you find you need to add logic to the get/set methods, you
can still convert this automatic property to the old style's property.

Now, let us create this class in the test project:

 public class Product
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public decimal UnitPrice { get; set; }
 }

We can put this class inside the Program.cs file, within the namespace,
TestNewFeaturesApp. We will use this class throughout this chapter.

Object initializer
In the past, we couldn't initialize an object without using a constructor. For example,
we could create and initialize a Product object like this:

Product p = new product(1, "first candy", 100.0);

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[214]

Or, we could create the object, and then initialize it later, like this:

 Product p = new Product();
 p.ProductID = 1;
 p.ProductName = "first candy";
 p.UnitPrice=(decimal)100.0;

Now with the new object initializer feature, we can do it as follows:

Product product = new Product
{
 ProductID = 1,
 ProductName = "first candy",
 UnitPrice = (decimal)100.0
};

At compile time, the compiler will automatically insert the necessary property
setter code. So, again this new feature is a Visual Studio 2008 compiler feature. The
compiled assembly is actually a valid .NET 2.0 assembly.

We can also define and initialize a variable with an array like this:

var arr = new[] { 1, 10, 20, 30 };

This array is called an implicitly typed array.

Collection initializer
Similar to the object initializer, we can also initialize a collection when we declare it,
like this:

 List<Product> products = new List<Product> {
 new Product {
 ProductID = 1,
 ProductName = "first candy",
 UnitPrice = (decimal)10.0 },
 new Product {
 ProductID = 2,
 ProductName = "second candy",
 UnitPrice = (decimal)35.0 },
 new Product {
 ProductID = 3,
 ProductName = "first vegetable",
 UnitPrice = (decimal)6.0 },
 new Product {
 ProductID = 4,

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[215]

 ProductName = "second vegetable",
 UnitPrice = (decimal)15.0 },
 new Product {
 ProductID = 5,
 ProductName = "third product",
 UnitPrice = (decimal)55.0 }
 };

Here, we created a list and initialized it with five new products. For each new
product, we used the object initializer to initialize its value.

Just as with the object initializer, this new feature collection initializer is
also a Visual Studio 2008 compiler feature, and compiled assembly is valid
.NET 2.0 assembly.

Anonymous types
With the new feature of the object initializer, and the new var data type, we can
create anonymous data types easily in C# 3.0.

For example, if we define a variable like this:

var a = new { Name = "name1", Address = "address1" };

At compile time, the compiler will actually create an anonymous type as follows:

class __Anonymous1
{
 private string name;
 private string address;
 public string Name {
 get{
 return name;
 }
 set {
 name=value
 }
 }
 public string Address {
 get{
 return address;
 }
 set{
 address=value;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[216]

The name of the anonymous type is automatically generated by the compiler, and
cannot be referenced in the program text.

If two anonymous types have the same members with the same data types in their
initializers, then these two variables have the same types. For example, if there is
another variable defined like this:

var b = new { Name = "name2", Address = "address2" };

Then we can assign a to b like this:

b = a;

The anonymous type is particularly useful for LINQ when the result of LINQ can
be shaped to be whatever you like. We will give more examples of this when we
discuss LINQ.

As mentioned earlier, this new feature is again a Visual Studio 2008 compiler feature,
and compiled assembly is a valid .NET 2.0 assembly.

Extension methods
Extension methods are static methods that can be invoked using the instance
method syntax. In effect, extension methods make it possible for us to extend existing
types and constructed types with additional methods.

For example, we can define an extension method as follows:

 public static class MyExtensions
 {
 public static bool IsCandy(this Product p)
 {
 if (p.ProductName.IndexOf("candy") >= 0)
 return true;
 else
 return false;
 }
 }

In this example, the static method IsCandy takes a this parameter of Product
type, and searches for the word candy inside the product name. If it finds a match,
it assumes this is a candy product and returns true. Otherwise, it returns false,
meaning this is not a candy product.

To simplify the example, we put this class inside the same namespace as our main
test application, TestNewFeaturesApp. Now, in the program, we can call this
extension method like this:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[217]

if (product.IsCandy())
 Console.WriteLine("yes, it is a candy");
else
 Console.WriteLine("no, it is not a candy");

It looks as if IsCandy is a real instance method of the Product class. Actually, it is
a real method of the Product class, but it is not defined inside the Product class.
Instead, it is defined in another static class.

Not only does it look like a real instance method, but this new extension method
actually pops up when a dot is typed following the product variable. The following
image shows the intellisense of the product variable within Visual Studio 2008.

Under the hood in Visual Studio 2008, when a method call on an instance is being
compiled, the compiler first checks to see if there is an instance method in the class
for this method. If there is no matching instance method, it looks for an imported
static class, or any static class within the same namespace. It also searches for an
extension method with the first parameter that is the same as the instance type (or
is a super type of the instance type). If it finds a match, the compiler will call that
extension method. This means that instance methods take precedence over extension
methods, and extension methods that are imported in inner namespace declarations
take precedence over extension methods that are imported in outer namespaces.

In our example, when product.IsCandy() is being compiled, the compiler first
checks the Product class and doesn't find a method named IsCandy. It then searches
the static class, MyExtensions, and finds an extension method with the name
IsCandy, and with a first parameter of the type, Product.

At compile time, the compiler actually changes product.IsCandy() to this call:

MyExtensions.IsCandy(product)

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[218]

However, in the source code, this method is the same as another method defined
inside the Product class, and that is why it is called an extension method.

Surprisingly, extension methods can be defined for sealed classes. In our example,
you can change the Product class to be sealed, and it still runs without any problem.
This gives us great flexibility to extend system types, because many of the system
types are sealed.

On the other hand, extension methods are less discoverable, and are harder to
maintain, so they should be used with great caution. If your requirements can be
achieved with an instance method, one should never define an extension method to
do the same work.

Not surprisingly, this new feature is again a Visual Studio 2008 compiler feature, and
compiled assembly is a valid .NET 2.0 assembly.

Extension methods are the base of LINQ. We will discuss the various extension
methods defined by .NET 3. in the namespace System.Linq, later.

Now, the Program.cs file should like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TestNewFeaturesApp
{
 class Program
 {
 static void Main(string[] args)
 {
 // valid var statements
 var x = "1";
 var n = 0;
 string s = "string";
 var s2 = s;
 s2 = null;
 string s3 = null;
 var s4 = s3;
 /*
 string x = "1";
 int n = 0;
 string s2 = s;
 */

 // invalid var statements
 /*

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[219]

 var v;
 var nu = null;
 var v2 = "12"; v2 = 3;
 */

 //object initializer
 /*
 Product p = new product(1, "first candy", 100.0);
 Product p = new Product();
 p.ProductID = 1;
 p.ProductName = "first candy";
 p.UnitPrice=(decimal)100.0;
 */

 Product product = new Product
 {
 ProductID = 1,
 ProductName = "first candy",
 UnitPrice = (decimal)100.0
 };
 var arr = new[] { 1, 10, 20, 30 };

 // collection initializer
 List<Product> products = new List<Product> {
 new Product {
 ProductID = 1,
 ProductName = "first candy",
 UnitPrice = (decimal)10.0 },
 new Product {
 ProductID = 2,
 ProductName = "second candy",
 UnitPrice = (decimal)35.0 },
 new Product {
 ProductID = 3,
 ProductName = "first vegetable",
 UnitPrice = (decimal)6.0 },
 new Product {
 ProductID = 4,
 ProductName = "second vegetable",
 UnitPrice = (decimal)15.0 },
 new Product {
 ProductID = 5,
 ProductName = "third product",
 UnitPrice = (decimal)55.0 }
 };

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[220]

 // anonymous types
 var a = new { Name = "name1", Address = "address1" };
 var b = new { Name = "name2", Address = "address2" };
 b = a;
 /*
 class __Anonymous1
 {
 private string name;
 private string address;
 public string Name {
 get{
 return name;
 }
 set {
 name=value
 }
 }
 public string Address {
 get{
 return address;
 }
 set{
 address=value;
 }
 }
 }
 */

 // extension methods
 if (product.IsCandy()) //if(MyExtensions.IsCandy(product))
 Console.WriteLine("yes, it is a candy");
 else
 Console.WriteLine("no, it is not a candy");
 }
 }

 public sealed class Product
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public decimal UnitPrice { get; set; }
 }

 public static class MyExtensions
 {

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[221]

 public static bool IsCandy(this Product p)
 {
 if (p.ProductName.IndexOf("candy") >= 0)
 return true;
 else
 return false;
 }
 }
}

In this example, we have

Defined several var type variables
Defined a sealed class Product
Created a product list
Created a product with the name of "first candy"
Defined a static class, and added a static method IsCandy with a this
parameter of the type Product, to it making this method an
extension method
Called the extension method on the candy product, and printed out a
message according to its name

If you run the program, the output will look like this:

Lambda expressions
With the C# 3.0 new feature extension method, and the C# 2.0 new feature
anonymous method (or inline method), Visual Studio 2008 introduces a new
expression called lambda expression.

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[222]

Lambda expression is actually a syntax change for anonymous methods. It is just a
new way of writing anonymous methods.

Firstly, in C# 3.0, there is a new generic delegate type, Func<A,R>, which presents a
function taking an argument of type A, and returns a value of type R:

delegate R Func<A,R> (A Arg);

In fact, there are several overloaded versions of Func, of which Func<A,R> is one.

Now, we will use this new generic delegate type to define an extension:

public static IEnumerable<T> Get<T>(this IEnumerable<T> source,
Func<T, bool> predicate)
{
 foreach (T item in source)
 {
 if (predicate(item))
 yield return item;
 }
}

This extension method will apply to an object that extends the IEnumerable
interface, and has one parameter of type Func, which you can think of as a pointer
to a function. This parameter function is the predicate to specify the criteria for the
selection. This method will return a list of objects that match the predicate criteria.

Now we can create a new function as the predicate:

public static bool IsVege(Product p)
{
 return p.ProductName.Contains("vegetable");
}

Then we can use the extension method Get to retrieve all of the vegetable products,
like this:

var veges1 = products.Get(IsVege);

We have now created the products list, with five products, of which two are
vegetables. So veges1 is actually of the IEnumerable<Product> type, and should
contain two products. We can write the following test statements to print out
the results:

Console.WriteLine("\nThere are {0} vegetables:", veges1.Count());
foreach (Product p in veges1)
{
 Console.WriteLine("Product ID: {0} Product name: {1}",
 p.ProductID, p.ProductName);
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[223]

The output will be:

Or we can first create a new variable of type Func, assign the function pointer of
IsVege to this new variable, and then pass this new variable to the Get method
like this:

Func<Product, bool> predicate = IsVege;
var veges2 = products.Get(predicate);

Variable veges2 will contain the same products as veges1.

Now, let us use the C# 2.0 anonymous method to rewrite the above statement, which
will now become:

var veges3 = products.Get(
 delegate (Product p)
 {
 return p.ProductName.Contains("vegetable");
 }
);

At this time, we put the body of the predicate method IsVege inside the extension
method call, with the keyword delegate. So, in order to get the vegetables from the
products list, we don't have to define a specific predicate method. We can specify the
criteria on the spot, when we need it.

The lambda expression comes into play right after the above step. In C# 3.0, with
lambda expression, we can actually write the following one line statement to retrieve
all of the vegetables from the products list:

var veges4 = products.Get(p => p.ProductName.Contains("vegetable"));

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[224]

In the above statement, the parameter of the method Get is a lambda expression.
The first p is the parameter of the lambda expression, just like the parameter p in the
anonymous method when we get veges3. This parameter is implicitly typed and,
in this case, is of the type Product, because this expression is applied to a Products
object, which contains a list of Product objects. This parameter can also be explicitly
typed, like this:

var veges5 = products.Get((Product p) => p.ProductName.
Contains("vegetable"));

The parameter is followed by the => token, and then followed by an expression or a
statement block, which will be the predicate.

So, now we can easily write the following statement to get all of the candy products:

var candies = products.Get(p => p.ProductName.Contains("candy"));

At compile time, all lambda expressions are translated into anonymous methods
according to the lambda expression conversion rules. So, again this feature is only
a Visual Studio 2008 feature. We don't need any special .NET runtime library or
instructions to run an assembly containing lambda expressions.

In short, lambda expressions are just another way of writing anonymous methods in
a more concise, functional syntax.

Built-in LINQ extension methods and
method syntax
With Visual Studio 2008, .NET framework 3.5 defines lots of extension methods in
the namespace System.Linq, including Where, Select, SelectMany, OrderBy,
OrderByDescending, ThenBy, ThenByDescending, GroupBy, Join and GroupJoin.

We can use these extension methods just as we would use our own extension
methods. For example, we can use the Where extension method to get all vegetables
from the Products list, like this:

var veges6 = products.Where(p => p.ProductName.Contains("vegetable"));

This will give us the same result as veges1 through veges5.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[225]

As a matter of fact, the definition of the built-in LINQ extension method Where is just
like our extension method Get, but in a different namespace:

namespace System.Linq
{
 public static class Enumerable
 {
 public static IEnumerable<T> Where<T>(this IEnumerable<T>
 source, Func<T, bool> predicate)
 {
 foreach (T item in source)
 {
 if (predicate(item))
 yield return item;
 }
 }
 }
}

The statements that use LINQ extension methods are called using the LINQ
method syntax.

Unlike the other C# 3.0 new features that we have talked about in previous sections,
these LINQ specific extension methods are defined in .NET framework 3.5. So, to
run an assembly containing any of these methods, you need .NET framework
3.5 installed.

LINQ query syntax and query expression
With built-in LINQ extension methods, and lambda expressions, Visual Studio 2008
allows us to write SQL-like statements in C# when invoking these methods. The
syntax of these statements is called LINQ query syntax, and the expression in query
syntax is called a query expression.

For example, we can change this statement:

var veges6 = products.Where(p => p.ProductName.Contains("vegetable"));

To the following query statement, by using the new LINQ query syntax:

var veges7 = from p in products
 where p.ProductName.Contains("vegetable")
 select p;

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[226]

In the above C# statement, we can directly use the SQL keywords select, from,
and where to "query" an in-memory collection list. In addition to the in-memory
collection lists, we can use the same syntax to manipulate data in XML files, in the
dataset, and in the database. In the following sections, we will see how to query a
database using LINQ to SQL.

Combined with the anonymous data type, we can shape the result of the query in the
following statement:

var candyOrVeges = from p in products
 where p.ProductName.Contains("candy")
 || p.ProductName.Contains("vegetable")
 orderby p.UnitPrice descending, p.ProductID
 select new { p.ProductName, p.UnitPrice };

As you have seen, query syntax is a very convenient, declarative shorthand for
expressing queries using the standard LINQ query operators. It offers a syntax that
increases the readability and clarity of expressing queries in code, and can be easy to
read and write correctly.

Not only is query syntax easy to read and write, Visual Studio actually provides
complete intellisense and compile-time checking support for query syntax. For
example, when typing in p and the following dot, we get all of the Product members
listed in the intellisense list, as shown in the following image:

If there is a typo in the syntax (as is the case in this statement: where
p.productName.Contains("vegetable")), the compiler will tell you exactly where
the mistake is is and why it is wrong. There won't be any run-time error such as
"invalid SQL statement". The following image shows the error message when there is
a typo in the syntax:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[227]

As you can see, you can write a LINQ statement in the query syntax, much like
when you are working with a database in Query Analyzer. However, the .NET
common language runtime (CLR) has no notion itself of the query syntax. Therefore,
at compile time, query expressions are translated to something that the CLR does
understand: method calls. Under the covers, the compiler takes the query syntax
expressions and translates them into explicit method invocation code that utilizes the
new LINQ Extension Method and lambda expression language features in C# 3.0.

For example, the candyOrVeges query expression will be translated to this method
invocation call:

products.Where(p => p.ProductName.Contains("candy") || p.ProductName.
Contains("vegetable")).OrderByDescending(p => p.UnitPrice).
ThenBy(p=>p.ProductID).Select(p=>new { p.ProductName, p.UnitPrice })

In general, query syntax is recommended over method syntax because it is usually
simpler, and more readable. However, there is no semantic difference between
method syntax and query syntax.

Built-in LINQ operators
As we have seen in the previous sections, there are no semantic differences between
method syntax, and query syntax. In addition, some queries, such as those that
retrieve the number of elements matching a specified condition, or those that retrieve
the element that has the maximum value in a source sequence, can be expressed only
as method calls. These kinds of methods are sometimes referred to as .NET Standard
Query Operators and include as Take, ToList, FirstOrDefault, Max and Min.

In addition to those methods that can only be expressed as method calls, all the
extension methods that can be used in either query syntax, or method syntax are also
defined as standard query operators such as select, where, and from. So, the .NET
Standard Query Operators contain all of the LINQ-related methods.

Download from Library of Wow! eBook <www.wowebook.com>

Introducing Language-Integrated Query (LINQ)

[228]

A complete list of these operators can be found at Microsoft MSDN library for class
System.Linq.Enumerable.

To have a quick look at all those operations, in Visual Studio 2008, open the
program.cs file, and type in System.Linq.Enumerable. Then, type in a dot after
Enumerable. You will see the whole list of operators in the intellisense menu.

The methods in this static class provide an implementation of the standard query
operators for querying data sources that implement IEnumerable<(Of <(T>)>). The
standard query operators are general-purpose methods that follow the LINQ pattern
and enable you to express traversal, filter, and projection operations over data in any
.NET-based programming language.

The majority of the methods in this class are defined as extension methods that
extend IEnumerable<(Of <(T>)>). This means that they can be called like an
instance method on any object that implements IEnumerable<(Of <(T>)>).

Note that this class was called System.Query.Sequence, and it was renamed to
System.Linq.Enumerable just before Visual Studio 2008 was released, in February
2008. However, the old name was still used in much of the LINQ documentation,
even in the official C# 3.0 Specification document. So, whenever you see the
namespace System.Query or the class Sequence, or the namespace System.Dlinq,
just substitute it with System.Linq.Enumerable, or System.Data.Linq. In
the release version of .NET 3.5, there is no such thing as System.Query,
or System.Dlinq.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 9

[229]

Summary
In this chapter, we have learned new features related to LINQ, including the
new data type var, object and collection initializers, extension methods, lambda
expressions, LINQ syntax, and query expressions. Now that we have the required
knowledge for LINQ, we are ready to try LINQ to SQL, which will be discussed in
the next chapter.

The key points covered in this chapter include:

The new data type var gives extra flexibility when defining new variables
The Automatic Property feature can be used to define simple properties
Initial values can be assigned to a new object, and collection variables by
using Object initializer and Collection initializer
Actual types will be created for anonymous types at compile time
Extension methods can be used to extend the public contract of an existing
CLR type, without having to subclass or recompile the original type
Lambda expression is just another way of writing anonymous methods in a
more concise, functional syntax
Many LINQ-specific extension methods have been pre-defined in .NET
framework 3.5
All .NET Standard LINQ Query Operators are defined in the static class,
System.Linq.Enumerable

LINQ query syntax can be used to make expressions in method syntax
SQL-like, but there is no semantic difference between the method syntax and
the query syntax
Some LINQ queries can only be expressed in method calls

•

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts
and Features

In the previous chapter, we learned new features of C# 3.0 including LINQ. In this
chapter and the next, we will explain how to use LINQ to query a database, or in
other words, how to use LINQ to SQL in C#. After reading these two chapters,
we will have a good understanding of LINQ to SQL, so that we can rewrite the
data access layer of our WCF service with LINQ to SQL, to securely, and reliably
communicate with the underlying database.

In this chapter, we will cover the basic concepts and features of LINQ to SQL,
which include:

What ORM is
What LINQ to SQL is
What LINQ to Entities is
Comparing LINQ to SQL with LINQ to Objects and LINQ to Entities
Modeling the Northwind Database in LINQ to SQL
Querying and updating a database with a table
Deferred execution
Lazy loading and eager loading
Joining two tables
Querying with a view

In the next chapter, we will cover the advanced concepts and features of LINQ to
SQL, such as stored procedure support, inheritance, simultaneous updating, and
transaction processing.

•

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[232]

ORM—Object-Relational Mapping
LINQ to SQL is considered to be one of Microsoft's new ORM products. So before we
start explaining LINQ to SQL, let us first understand what ORM is.

ORM stands for Object-Relational Mapping. Sometimes it is called O/RM,
or O/R mapping. It is a programming technique that contains a set of classes that
map relational database entities to objects in a specific programming language.

Initially, applications could call specified native database APIs to communicate with
a database. For example, Oracle Pro*C is a set of APIs supplied by Oracle to query,
insert, update, or delete records in an Oracle database from C applications. The
Pro*C pre-compiler translates embedded SQL into calls to the Oracle runtime
library (SQLLIB).

Then, ODBC (Open Database Connectivity) was developed to unify all of
the communication protocols for various RDBMS. ODBC was designed to be
independent of programming languages, database systems, and operating systems.
So with ODBC, one application can communicate with different RDBMS by using the
same code, simply by replacing the underlying ODBC drivers.

No matter which method is used to connect to a database, the data returned from a
database has to be presented in some format in the application. For example, if an
Order record is returned from the database, there has to be a variable to hold the
Order number, and a set of variables to hold the Order details. Alternatively, the
application may create a class for the Orders, and another class for Order details.
When another application is developed, the same set of classes may have to be
created again, or if it is designed well, they can be put into a library, and re-used by
various applications.

This is exactly where ORM fits in. With ORM, each database is represented by an
ORM context object in the specific programming language, and database entities
such as tables are represented by classes, with relationships between these classes.
For example, the ORM may create an Order class to represent the Order table, and
an OrderDetail class to represent the Order Details table. The Order class will
contain a collection member to hold all of its details. The ORM is responsible for the
mappings and the connections between these classes and the database. So, to the
application, the database is now fully-represented by these classes. The application
only needs to deal with these classes, instead of with the physical database. The
application does not need to worry about how to connect to the database, how to
construct the SQL statements, how to use the proper locking mechanism to ensure
concurrency, or how to handle distributed transactions. These databases-related
activities are handled by the ORM.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[233]

The following diagram shows the three different ways of accessing a database from
an application. There are some other mechanisms to access a database from an
application, such as JDBC, and ADO.NET. However, to keep the diagram simple,
they have not been shown here.

Application

1. Native
Database APIs

2. ODBC APIs 3. ORM

Database

LINQ to SQL
LINQ to SQL is a component of the .NET framework 3.5 that provides a run-time
infrastructure for managing relational data as objects.

In LINQ to SQL, the data model of a relational database is mapped to an object
model expressed in the programming language of the developer. When the
application runs, LINQ to SQL translates the language-integrated queries in the
object model into SQL, and sends them to the database for execution. When the
database returns the results, LINQ to SQL translates the results back to objects that
you can work with in your own programming language.

LINQ to SQL fully supports transactions, views, stored procedures, and user-defined
functions. It also provides an easy way to integrate data validation and business
logic rules into your data model, and supports single table inheritance in the
object model.

LINQ to SQL is one of Microsoft's new ORM products and competes with
many existing ORM products for the .NET platform, such as open source
products NHibernate and NPersist, and commercial products LLBLGen and
WilsonORMapper. LINQ to SQL has many overlaps with other ORM products, but
because it is designed and built specifically for .NET and SQL Server, it has many
advantages over other ORM products. For example, it takes the advantages of all of
the LINQ features, and it fully supports SQL Server stored procedures. You get all
of the relationships (foreign keys) for all of the tables, and the fields of each table
just become properties of its corresponding object. You even have the intellisense

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[234]

popup when you type in an entity (table) name, which will list all of the table's
fields in the database. Also, all the fields and the query results are strongly-typed,
which means that you will get a compilation error instead of a runtime error if
you have misspelled the query statement or have cast the query result to a wrong
type. In addition, because it is part of the .NET framework, you don't need to
install and maintain any third-party ORM product in your production or
development environments.

Under the hood of LINQ to SQL, ADO.NET SqlClient adapters are used to
communicate with the actual SQL Server databases. We will show how to capture
the generated SQL statements in runtime later in this book.

The following diagram shows the use of LINQ to SQL in a .NET application:

Application

LINQ to SQL

ADO.NET

SQL
Server

Database

We will explore detailed LINQ to SQL features in the following two chapters, and
use LINQ to SQL in our WCF services later in this book.

Comparing LINQ to SQL with LINQ to
Objects
In the previous chapter, we used LINQ to query in-memory objects. Before we dive
further into the world of LINQ to SQL, we first need to look at the relationships
between LINQ to SQL and LINQ to Objects.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[235]

Some key differences between LINQ to SQL and LINQ to Objects are:

LINQ to SQL needs a Data Context object. The DataContext object is the
bridge between LINQ and the database. LINQ to Objects doesn't need any
intermediate LINQ provider or API.
LINQ to SQL returns data of type IQueryable<T> whereas LINQ to Objects
returns data of type IEnumerable<T>.
LINQ to SQL queries are translated to SQL by way of Expression Trees,
which allow them to be evaluated as a single unit, and translated to
appropriate and optimal SQL Statements. LINQ to Objects queries do not
need to be translated.
LINQ to SQL queries are translated to SQL calls and executed on the
specified Database while LINQ to Objects queries are executed in the local
machine memory.

The similarities shared by all aspects of LINQ are the syntax. They all use the same
SQL-like syntax and share the same groups of standard query operators. From the
language syntax perspective, working with a database is the same as working with
in-memory objects.

LINQ to Entities
For LINQ to SQL, another product that you will want to compare it with is the .NET
Entity Framework. Before comparing LINQ to SQL with Entity Framework, let's first
explain what Entity Framework is.

ADO.NET Entity Framework (EF) was first released with Visual Studio 2008 and
.NET framework 3.5 Service Pack 1. So far, many people view EF as just another
ORM product from Microsoft, although by design, it is supposed to be much more
powerful than just an ORM tool.

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[236]

With Entity Framework, developers work with a conceptual data model—an Entity
Data Model, or EDM—instead of the underlying databases. The conceptual data
model schema is expressed in the Conceptual Schema Definition Language (CSDL),
the actual storage model is expressed in the Storage Schema Definition Language
(SSDL), and the mapping between the two is expressed in the Mapping Schema
Language (MSL). A new data-access provider, EntityClient, is created for this
new framework. But under the hood, the ADO.NET data providers are still being
used to communicate with the databases. The following diagram, which has been
taken from the July 2008 issue of the MSDN Magazine, shows the architecture of
Entity Framework:

Metadata Workspace

Object Metadata
(0-Space)

0-C Map

Conceptual Schema
(C-Space)

C-S Map

Store Schema
(S-Space)

CSDL

MSL

SSDL

Entity SQL

Entity SQL LINQ

“SELECT Value
Customer FROM...”

“SELECT VALUE
Customer FROM...”

CCT

CCT

Object Services

Data Reader

Data Reader

IEnumerable<T>

ADO.NET Entity Framework

Client View Engine
EntityClient Data Provider

Native SQL

“Select ID.
CompanyName,...

FROM...”

ADO.NET Data Providers

ObjectContext
ObjectQuery<T>
Data Classes

EntityConnection
EntityCommand

ExecuteReader

SQLConnection
SQLCommand

ExecuteReader

ADO.NET 2.0

From the diagram, you can see that LINQ is one of the query languages that can be
used to query against Entity Framework Entities. LINQ to Entities allows developers
to create flexible, strongly-typed queries against the Entity Data Model (EDM) by
using LINQ expressions and standard LINQ query operators. This is just the same
as what LINQ to SQL can do, although LINQ to Entities supports more features
than LINQ to SQL, such as multiple-table inheritance, and it also supports many
other mainstream RDBMS databases such as Oracle, DB2, and MySQL in addition to
Microsoft SQL Server.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[237]

Comparing LINQ to SQL with LINQ to
Entities
As described earlier, LINQ to Entities applications work against a conceptual data
model (EDM). All mappings between the languages and the databases go through
the new EntityClient mapping provider. The application no longer connects
directly to a database, or sees any database-specific constructs. The entire application
operates in terms of the higher-level EDM.

This means that you can no longer use the native database query language. Not only
will the database not understand the EDM model, but also current database query
languages do not have the constructs required to deal with the elements introduced
by the EDM, such as inheritance, relationships, complex-types, and so on.

On the other hand, for developers who do not require mapping to a conceptual
model, LINQ to SQL enables developers to experience the LINQ programming
model directly over existing database schema.

LINQ to SQL allows developers to generate .NET classes that represent data. Rather
than map to a conceptual data model, these generated classes map directly to
database tables, views, stored procedures, and user defined functions. Using LINQ
to SQL, developers can write code directly against the storage schema using the same
LINQ programming pattern as was previously described for in-memory collections,
Entities, or the Data Set, as well as for other data sources such as XML.

Compared to LINQ to Entities, LINQ to SQL has some limitations, mainly because
of its direct mapping against the physical relational storage schema. For example,
you can't map two different database entities into one single C# or VB object,
and if the underlying database schema changes, this might require significant client
application changes.

So, in a summary, if you want to work against a conceptual data model, use
LINQ to Entities. If you want to have a direct mapping to the database from your
programming languages, use LINQ to SQL.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[238]

The following table lists some of the features supported by these two data
access methodologies:

Features LINQ to SQL LINQ to Entities
Conceptual Data Model No Yes
Storage Schema No Yes
Mapping Schema No Yes
New Data Access Provider No Yes
Non-SQL Server Database Support No Yes
Direct Database Connection Yes No
Language Extensions Support Yes Yes
Stored Procedures Yes Yes
Single-table Inheritance Yes Yes
Multiple-table Inheritance No Yes
Single Entity from Multiple Tables No Yes
Lazy Loading Support Yes Yes

We will use LINQ to SQL in this book, because we will use it in the data access layer,
and the data access layer is only one of the three layers for a WCF service. LINQ to
SQL is much less complex than LINQ to Entities, so we can still cover it in the same
book with WCF. However, once you have learned how to develop WCF services
with LINQ to SQL through this book, and have learned how to use LINQ to Entities
through some other means, you can easily migrate your data access layer to using
LINQ to Entities.

Creating LINQ to SQL test application
Now that we have explained some of the basic concepts of LINQ to SQL, let us start
exploring LINQ to SQL with some real examples. We will apply the skills we are
going to learn in the following two chapters to the data access layer of our WCF
service, so that from the WCF service we can communicate with the database and
LINQ to SQL, instead of the raw ADO.NET data adapter.

First, we need to create a new project to test LINQ to SQL. Just follow these steps to
add this test application to the solution:

1.	 Open the solution TestLINQ
2.	 From the Solution Explorer, right-click on the Solution item and select

Add | New Propject… from the context menu

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[239]

3.	 Select Visual C# | Windows as the project type, and Console Application as
the project template, enter TestLINQToSQLApp as the (project) Name, and
D:\SOAwithWCFandLINQ\Projects\TestLINQ\TestLINQToSQLApp as
the Location

4.	 Click OK

Modeling the Northwind database
The next thing to do is to model the Northwind database. We will now drag and
drop two tables and one view from the Northwind database into our project, so that
later on we can use them to demonstrate LINQ to SQL.

Adding a LINQ to SQL item to the project
To start with, let us add a new item to our project TestLINQToSQLApp. The new item
added should be of type LINQ to SQL Classes, and named Northwind.dbml as
shown in the following Add New Item dialog window:

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[240]

After you click Add, the following three files will be added to the project:
Northwind.dbml, Northwind.dbml.layout, and Northwind.designer.cs. The first
file holds the design interface for the DB model, while the second one is the XML
format of the model. Only one of them can remain open inside Visual Studio IDE.
The third one is the code for the model, which defines the DataContext of the model.

At this point, the Visual Studio LINQ to SQL designer should be open and empty, as
shown in the following image:

Connecting to the Northwind database
Now, we need to connect to our Northwind sample database, in order to drag and
drop objects from the database.

1.	 Open the Server Explorer window from the left most side of the IDE. You
can hover your mouse over Server Explorer and wait for a second, or click on
Server Explorer to open it. If it is not visible in your IDE, select menu option
View | Server Explorer, or press Ctrl+Alt+S, to open it.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[241]

2.	 In Server Explorer, right-click on Data Connections, and select Add
Connection to open the Add Connection dialog box. In this dialog box,
specify your server name (including your instance name if this is not a
default installation), login information, and choose Northwind as the
database. You can click Test Connection to make sure everything is
set correctly.

3.	 Click OK to add this connection. From now on, Visual Studio will use this
database as the default database for your project. You can look at the new file
Properties\Settings.Designer.cs for more information.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[242]

Adding tables and views to the design surface
The new connection Northwind.dbo should appear in the Server Explorer now.
Next, we will drag and drop two tables and one view onto the LINQ to SQL
design pane.

1.	 Expand the Connection until all of the tables are listed, and drag the
Products to the Northwind.dbml design pane. You should then have a
screen similar to:

2.	 Next, drag the Categories table from the Server Explorer to the Northwind.
dbml design pane.

3.	 We will also need to query data using a view. So drag view Current Product
List from Server Explorer to the Northwind.dbml design pane.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[243]

The Northwind.dbml design pane on your screen should now look like the
following image:

Generated LINQ to SQL classes
If you open file Northwind.Designer.cs, you will find that the following classes
have been generated for the project:

public partial class NorthwindDataContext : System.Data.Linq.
DataContext
public partial class Product : INotifyPropertyChanging,
INotifyPropertyChanged
public partial class Category : INotifyPropertyChanging,
INotifyPropertyChanged
public partial class Current_Product_List

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[244]

In the above four classes, the DataContext class is the main conduit through which
we'll query entities from the database, as well as apply changes back to it. It contains
various flavors of types and constructors, partial validation methods, and property
members for all of the included tables. It inherits from the System.Data.Linq.
DataContext class, which represents the main entry point for the LINQ to
SQL framework.

The next two classes are for the two tables that we are interested in. They implement
the INotifyPropertyChanging and INotifyPropertyChanged interfaces. These
two interfaces define all of the related property changing, and property changed
event methods, which we can extend to validate properties before and after
the change.

The last class is for the view. This is a simple class with only two property members.
Because we are not going to update the database through this view, it doesn't define
any property change or changed event method.

Querying and updating the database with
a table
Now that we have the entity classes created, we will use them to interact with the
database. We will first work with the products table to query and update records, as
well as to insert and delete records.

Querying records
First, we will query the database to get some products.

To query a database using LINQ to SQL, we first need to construct a DataContext
object, like this:

NorthwindDataContext db = new NorthwindDataContext();

We can then use LINQ query syntax to retrieve records from the database:

IEnumerable<Product> beverages = from p in db.Products
 where p.Category.CategoryName == "Beverages"
 orderby p.ProductName
 select p;

The preceding code will retrieve all of the products in the Beverages category,
sorted by product name.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[245]

Updating records
We can update any of the products that we have just retrieved from the
database, like this:

// update one product
Product bev1 = beverages.ElementAtOrDefault(10);
if (bev1 != null)
{
 Console.WriteLine("The price of {0} is {1}. Update to 20.0",
 bev1.ProductName, bev1.UnitPrice);
 bev1.UnitPrice = (decimal)20.00;
}

// submit the change to database
db.SubmitChanges();

We used the ElementAtOrDefault method, and not the ElementAt method just in
case there is no product at element 10. There are 12 beverage products in the sample
database, and the 11th (element 10 starting from index 0) is Steeleye Stout, whose
unit price is 18.00. We changed this price to 20.00, and called db.SubmitChanges()
to update the record in the database. After you run the program, if you query the
product with ProductID 35, you will find that its price is now 20.00.

Inserting records
We can also create a new product, and then insert this new product into the database
by using the following code:

Product newProduct = new Product {ProductName="new test product" };
db.Products.InsertOnSubmit(newProduct);
db.SubmitChanges();

Deleting records
To delete a product, we first need to retrieve it from the database, and then call the
DeleteOnSubmit method, as shown in the following code:

// delete a product
Product delProduct = (from p in db.Products
 where p.ProductName == "new test product"
 select p).FirstOrDefault();
if(delProduct != null)
 db.Products.DeleteOnSubmit(delProduct);
db.SubmitChanges();

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[246]

Running the program
The f﻿ile Program.cs has been used so far. Note that we declared db as a class member,
and added one method to it to contain all of the test cases for table operations. We will
now add more methods to test other LINQ to SQL functionalities.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Linq;

namespace TestLINQToSQLApp
{
 class Program
 {
 // create data context
 static NorthwindDataContext db = new NorthwindDataContext();

 static void Main(string[] args)
 {
 // CRUD operations on tables
 TestTables();

 Console.ReadLine();
 }

 static void TestTables()
 {
 // retrieve all Beverages
 IEnumerable<Product> beverages = from p in db.Products
 where p.Category.
 CategoryName == "Beverages"
 orderby p.ProductName
 select p;
 Console.WriteLine("There are {0} Beverages",
 beverages.Count());

 // update one product
 Product bev1 = beverages.ElementAtOrDefault(10);
 if (bev1 != null)
 {
 Console.WriteLine("The price of {0} is {1}.
 Update to 20.0", bev1.ProductName, bev1.UnitPrice);
 bev1.UnitPrice = (decimal)20.0;
 }

 // submit the change to database
 db.SubmitChanges();

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[247]

 // insert a product
 Product newProduct = new Product { ProductName =
 "new test product" };
 db.Products.InsertOnSubmit(newProduct);
 db.SubmitChanges();

 Product newProduct2 = (from p in db.Products
 where p.ProductName == "new test product"
 select p).SingleOrDefault();
 if (newProduct2 != null)
 {
 Console.WriteLine("new product inserted with product
 ID {0}", newProduct2.ProductID);
 }

 // delete a product
 Product delProduct = (from p in db.Products
 where p.ProductName == "new test product"
 select p).FirstOrDefault();
 if (delProduct != null)
 {
 db.Products.DeleteOnSubmit(delProduct);
 }
 db.SubmitChanges();
 }
 }
}

If you run the program now, the output will be:

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[248]

Deferred execution
One important thing to remember when working with LINQ to SQL is the deferred
execution of LINQ.

The standard query operators differ in the timing of their execution, depending
on whether they return a singleton value or a sequence of values. Those methods
that return a singleton value (for example, Average and Sum) execute immediately.
Methods that return a sequence defer the query execution, and return an enumerable
object. These methods do not consume the target data until the query object is
enumerated. This is known as deferred execution.

In the case of the methods that operate on in-memory collections, that is, those
methods that extend IEnumerable<(Of <(T>)>), the returned enumerable object
captures all of the arguments that were passed to the method. When that object is
enumerated, the logic of the query operator is employed, and the query results
are returned.

In contrast, methods that extend IQueryable<(Of <(T>)>) do not implement
any querying behavior, but build an expression tree that represents the query to
be performed. The query processing is handled by the source IQueryable<(Of
<(T>)>) object.

Checking deferred execution with SQL
profiler
There are two ways to check when a query has been executed. The first is:

1.	 Open Profiler (All Programs\Microsoft SQL Server 2005(or 2008)\
Performance Tools\SQL 2005(or 2008) Profiler).

2.	 Start a new trace on the Northwind database engine.
3.	 Debug the program.

For example, when the following statement is executed, there is nothing in
the Profiler:

IEnumerable<Product> beverages = from p in db.Products
 where p.Category.CategoryName == "Beverages"
 orderby p.ProductName
 select p;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[249]

However, when the following statement is being executed, you will see from the
profiler that a query has been executed in the database:

Console.WriteLine("There are {0} Beverages", beverages.Count());

The query executed in the database is like this:

exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName],
[t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit],
[t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder],
[t0].[ReorderLevel], [t0].[Discontinued]
FROM [dbo].[Products] AS [t0]
LEFT OUTER JOIN [dbo].[Categories] AS [t1] ON [t1].[CategoryID] =
[t0].[CategoryID]
WHERE [t1].[CategoryName] = @p0
ORDER BY [t0].[ProductName]',N'@p0 nvarchar(9)',@p0=N'Beverages'

The profiler window should look as shown the following image:

From the Profiler, we know that, under the hood, LINQ actually called
sp_executesql, and it also used a left outer join to get the categories of products.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[250]

Checking deferred execution with SQL logs
Another way to trace the execution time of a LINQ statement is to use the logs. The
DataContext class provides a method to log every SQL statement it executes. To see
the logs, we can first add the following statement to the beginning of the program,
immediately after the Main statement:

 db.Log = Console.Out;

Then, we can add the following statement immediately after the variable beverages
is defined, but before its count is referenced:

Console.WriteLine("After query syntax is defined, before it is
referenced.");

So the first few lines of the program are now:

static void Main(string[] args)
{
 // log database query statements to stand out
 db.Log = Console.Out;

 // CRUD operations on tables
 TestTables();

 Console.ReadLine();
}

static void TestTables()
{
 // retrieve all Beverages
 IEnumerable<Product> beverages = from p in db.Products
 where p.Category.CategoryName == "Beverages"
 orderby p.ProductName
 select p;
 Console.WriteLine("After query syntax beverages is defined, before
it is referenced.");
 Console.WriteLine("There are {0} Beverages", beverages.Count());
// rest of the file

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[251]

Now, if you run the program, the output will look like this:

From the logs, we see that the query is not executed when the query syntax is
defined. Instead, it is executed when beverages.Count() is being called.

Deferred execution for singleton methods
If the query expression will return a singleton value, the query will be executed as
soon as it is defined. For example, we can add this statement to get the average price
of all products:

decimal? averagePrice = (from p in db.Products
 select p.UnitPrice).Average();

Console.WriteLine("After query syntax averagePrice is defined, before
it is referenced.");
Console.WriteLine("The average price is {0}", averagePrice);

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[252]

The output is like this:

From this output, we know that the query is executed at the same time as the query
syntax is defined.

Deferred execution for singleton methods
within sequence expressions
However, just because a query is using one of the singleton methods such as sum,
average, or count, this doesn't mean that the query will be executed as soon as it
is defined. If the query result is a sequence, the execution will still be deferred. The
following is an example of this kind of query:

// deferred execution2
var cheapestProductsByCategory =
 from p in db.Products
 group p by p.CategoryID into g
 select new
 {
 CategoryID = g.Key,
 CheapestProduct =
 (from p2 in g
 where p2.UnitPrice == g.Min(p3 => p3.UnitPrice)
 select p2).FirstOrDefault()
 };

Console.WriteLine("Cheapest products by category:");
foreach (var p in cheapestProductsByCategory)
{
 Console.WriteLine("categery {0}: product name: {1} price: {2}",
p.CategoryID, p.CheapestProduct.ProductName, p.CheapestProduct.
UnitPrice);
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[253]

If you run the above query, you will see that it is executed when the result is being
printed, and not when the query is being defined. An extract of the results looks
like this:

From this output, you can see that when the result is being printed, it first goes to the
database to get the minimum price for each category. Then, for each category, it goes
to the database again to get the first product with that price. In a real application, you
probably wouldn't want to write such a complex query in your code. So, you would
put it in a stored procedure.

Deferred (lazy) loading versus eager
loading
In one of the above examples, we retrieved the category name of a product using
this expression:

p.Category.CategoryName == "Beverages"

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[254]

Even though there is no such field called categoryname in the Products table, we
can still get the category name of a product because there is an association between
Products and Category table. In the Northwind.dbml design pane, click on the line
that connects the Products table and the Categories table and you will see all of the
properties of the association. Note that its participating properties are Category.
CategoryID -> Product.CategoryID, meaning that category ID is the key field to
link these two tables.

Because of this association, we can retrieve the category for each product, and on the
other hand, we can also retrieve products for each category.

Lazy loading by default
However, even with an association, the associated data is not loaded when the query
is executed. For example, suppose we retrieve all of the categories like this:

var categories = from c in db.Categories select c;

Later on, if we need to get products for each category, the database has to be queried
again. The following diagram shows the result of executing the query:

From this diagram, we know that LINQ first goes to the database to query all of the
categories. Then, for each category, when we need to get the total count of products,
it goes to the database again to query all of the products for that category.

This is because by default lazy loading is set to true, meaning that the loading of all
associated data (children) is deferred until the data is needed.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[255]

Eager loading with load options
To change this behavior, we can use the LoadWith method to tell the DataContext to
automatically load the specified children during the initial query:

// eager loading products of categories
DataLoadOptions dlo2 = new DataLoadOptions();
dlo2.LoadWith<Category>(c => c.Products);
// create another data context, because we can't change LoadOptions of
db
// once a query has been executed against it
NorthwindDataContext db2 = new NorthwindDataContext();
db2.Log = Console.Out;
db2.LoadOptions = dlo2;
var categories2 = from c in db2.Categories select c;
foreach (var category2 in categories2)
{
 Console.WriteLine("There are {0} products in category {1}",
category2.Products.Count(), category2.CategoryName);
}
db2.Dispose();

Note that DataLoadOptions is in the namespace System.Data.Linq. So you have to
add a using statement to the program:

using System.Data.Linq;

Also, we have to create a new DataContext instance for this test, because we have
run some queries in the original db DataContext, and it is no longer possible to
change its LoadOptions.

Now, after the category is loaded, all of its children (products) will be loaded too.
This can be confirmed in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[256]

As you can see from this image, all products for all categories are loaded during the
first query.

Filtered loading with load options
While LoadWith is used to eager load all children, AssociateWith can be used
to filter the children that are to be loaded. For example, if we only want to load
products for categories 1 and 2, we can use this query:

// eager loading only certain children
DataLoadOptions dlo3 = new DataLoadOptions();
dlo3.AssociateWith<Category>(c => c.Products.Where(p => p.CategoryID
== 1 || p.CategoryID == 2));
// create another data context, because we can't change LoadOptions of
db
// once query has been executed against it
NorthwindDataContext db3 = new NorthwindDataContext();
db3.LoadOptions = dlo3;
db3.Log = Console.Out;
var categories3 = from c in db3.Categories select c;
foreach (var category3 in categories3)
{
 Console.WriteLine("There are {0} products in category {1}",
category3.Products.Count(), category3.CategoryName);
}
db3.Dispose();

Now, if we query all of the categories, and print out the product count for each
category, we will find that only the first two categories contain products, and all
other categories have no products at all, as seen in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[257]

Combining eager loading and filtered loading
However, from the output above, you can see that this uses lazy loading. If you want
the eager loading of products with some filters, you can combine LoadWith and
AssociateWith, as shown in the following code:

DataLoadOptions dlo4 = new DataLoadOptions();
dlo4.LoadWith<Category>(c => c.Products);
dlo4.AssociateWith<Category>(c => c.Products.Where(p => p.CategoryID
== 1 || p.CategoryID == 2));
// create another data context, because we can't change LoadOptions of
db
// once q query has been executed
NorthwindDataContext db4 = new NorthwindDataContext();
db4.Log = Console.Out;
db4.LoadOptions = dlo4;
var categories4 = from c in db4.Categories select c;
foreach (var category4 in categories4)
{
 Console.WriteLine("There are {0} products in category {1}",
category4.Products.Count(), category4.CategoryName);
}
db4.Dispose();

The output of this query is shown in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[258]

For each field of an entity, you can also set its Delay Loaded property
to change its loading behavior. This is different from the child lazy/eager
loading, as it only affects one property of that particular entity.

Joining two tables
Although associations are a kind of join in LINQ, we can also explicitly join two
tables using the keyword Join, as shown in the following code:

var categoryProducts =
 from c in db.Categories
 join p in db.Products on c.CategoryID equals p.CategoryID into
products
 select new {c.CategoryName, productCount = products.Count()};
foreach (var cp in categoryProducts)
{
 Console.WriteLine("There are {0} products in category {1}",
cp.CategoryName, cp.productCount);
}

This is not so useful in the above example, because the tables Products and
Categories are associated with a foreign key relationship. If there is no foreign key
association between two tables, this will be particularly useful.

From the following output, we can see that only one query is executed to get
the results:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 10

[259]

In addition to joining two tables, you can also:

Join three or more tables
Join a table to itself
Create left, right, and outer joins
Join using composite keys

Querying a view
Querying a view is the same as querying a table. For example, you can query the
view "current product lists" like this:

var currentProducts = from p in db.Current_Product_Lists
 select p;
foreach (var p in currentProducts)
{
 Console.WriteLine("Product ID: {0} Product Name: {1}",
p.ProductID, p.ProductName);
}

This will get all of the current products, using the view.

Summary
In this chapter, we have learned what an ORM is, why we need an ORM, and
what LINQ to SQL is. We also compared LINQ to SQL with LINQ to Entities, and
explored some basic features of LINQ to SQL.

The key points covered in this chapter include:

An ORM product can greatly ease data access layer development
LINQ to SQL is one of Microsoft's ORM products that uses LINQ against
SQL Server databases
The built-in LINQ to SQL designer in Visual Studio 2008 can be used to
model databases
You can connect to a database in Visual Studio 2008 Server Explorer, and
then drag and drop database items onto the LINQ to SQL design pane
The class System.Data.Linq.DataContext is the main class for LINQ to
SQL applications
LINQ methods that return a sequence, defer the query execution and you can
check the timing of the execution of a query with Profiler, or SQL logs

•

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Basic Concepts and Features

[260]

LINQ query expressions that return a singleton value will be executed as
soon as they are defined
By default, the loading of associated data is deferred (lazy loading). You can
change this behavior with the LoadWith option
Associated data results can be filtered with the AssociateWith option
The options LoadWith and AssociateWith can be combined together to
eager load associated data and filter it at the same time
The Join operator can be used to join multiple tables and views
Views can be used to query a database in LINQ to SQL in the same way
as for tables

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced
Concepts and Features

In the previous chapter, we learned some basic concepts and features of LINQ to
SQL, such as querying and updating databases with tables and views, and changing
loading behaviors by using load options.

In this chapter, we will learn some advanced features of LINQ to SQL such as stored
procedure support, concurrency control, and transactional processing. After this
chapter, we will rewrite the data access layer of our WCF service to utilize LINQ to
SQL technology.

In this chapter, we will cover:

Calling a stored procedure
Compiled queries
Direct SQL
Dynamic querying
Inheritance support
Concurrency control
Transaction support
Entity class validation
Debugging LINQ to SQL programs

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[262]

Calling a stored procedure
Calling a stored procedure is different from a table or a view, because a stored
procedure can have input parameters, output parameters, and it can return multiple
result-sets. It can also return different result-sets dynamically, which makes it even
harder to interpret the results. The modeling of a stored procedure is also different
from modeling a table or view. In the following sections, we will explain how to call
a simple stored procedure, how to map the returned result of a stored procedure to
an entity class, and how to handle output parameters, return codes, and multiple
result-sets.

We will re-use the same application that we used in the previous chapter, and add
more testing methods to the program.

Calling a simple stored procedure
First, we will try to call a simple stored procedure. In the sample database, there is
a stored procedure called "Ten Most Expensive Products". We will call this stored
procedure to get the top ten most expensive products.

Before we can call this stored procedure, we need to model it.

1.	 Open the Northwind.dbml designer.
2.	 In the Server Explorer, expand the node Stored Procedures.
3.	 Drag the stored procedure Ten Most Expensive Products to the right-hand

panel of the Northwind.dbml design window.

This will add the method Ten_Most_Expensive_Products to the
NorthwindDataContext class, and add a new class, Ten_Most_Expensive_
ProductsResult, as the result data type of the stored procedure.

Now, from the Program.cs, we can call this stored procedure as follows:

var tenProducts = from p in db.Ten_Most_Expensive_Products() select
p;
foreach (var p in tenProducts)
{
 Console.WriteLine("Product Name: {0}, Price; {1}", p.TenMostExpensi
veProducts, p.UnitPrice);
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[263]

Because we know exactly the return result of the stored procedure, we can also
replace the var data type with the specific return type, as in the following code:

IEnumerable<Ten_Most_Expensive_ProductsResult> tenProducts = from p in
db.Ten_Most_Expensive_Products() select p;
foreach (Ten_Most_Expensive_ProductsResult p in tenProducts)
{
 Console.WriteLine("Product Name: {0}, Price; {1}", p.TenMostExpensi
veProducts, p.UnitPrice);
}

The output will look like the following image:

Mapping a stored procedure to an entity class
In the above example, LINQ to SQL creates a new type for the return result of the
stored procedure. It actually just added the word "Result" after the stored procedure
name, to create the name of the return data type. If we know that the return result is
a kind of entity, we can tell LINQ to SQL to use that specific entity as the return type
instead of creating a new type.

For example, let us create a stored procedure like this:

Create PROCEDURE [dbo].[GetProduct]
 (
 @ProductID int
)
AS
 SET NOCOUNT ON
 Select * from Products where ProductID = @ProductID

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[264]

You can create this stored procedure in Microsoft SQL Server Management Studio,
or by right-clicking on the Stored Procedures node in the Server Explorer of Visual
Studio 2008, and selecting Add New Stored Procedure from the context menu.

After the stored procedure has been created, drag and drop it into the Product class
on the Northwind.dbml design pane. Now, LINQ to SQL will use the Product class
as the return type of this stored procedure. The method for this stored procedure will
be as follows:

[Function(Name="dbo.GetProduct")]
public ISingleResult<Product> GetProduct([Parameter(Name="ProductID",
DbType="Int")] System.Nullable<int> productID)
{
	 IExecuteResult result = this.ExecuteMethodCall(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())), productID);
	 return ((ISingleResult<Product>)(result.ReturnValue));
}

From the signature of the method, we know that the return type is of the
Product class.

Interestingly, if you drag and drop the same stored procedure to the right-hand
panel of the Northwind.dbml design window, instead of the Product class, LINQ to
SQL will automatically create a new class for the return type. The new method might
be as follows:

[Function(Name="dbo.GetProduct")]
public ISingleResult<GetProductResult> GetProduct1([Parameter(Name="Pr
oductID", DbType="Int")] System.Nullable<int> productID)
{
	 IExecuteResult result = this.ExecuteMethodCall(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())), productID);
return ((ISingleResult<GetProductResult>)(result.ReturnValue));
}

The generated return type class GetProductResult is almost identical to the
Product class, except that there are no event handling methods.

Another difference between the GetProduct and GetProduct1 methods is that
the product you retrieved using GetProduct is within the DataContext. So,
any changes you made to it will be committed back to the database if you call
db.SubmitChanges() later. However, the product you retrieved using GetProduct1
is not within the DataContext, and thus won't be committed back to the database if
you call db.SubmitChanges() later.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[265]

Also, when a stored procedure is dropped to an entity class, LINQ to SQL will first
check the return result of the stored procedure to make sure it is compatible with the
target class. If not, you will get a warning message, and the stored procedure won't
be mapped on the model. For example, if you drag and drop the stored procedure
Ten Most Expensive Products to the Product class, you will see a dialog box
like this:

Handling output parameters, return codes,
multiple shapes of a single result-set, and
multiple result-sets
Now that we have a basic understanding of LINQ to SQL stored procedure
processing, we will create a fairly complex stored procedure with an input
parameter, an output parameter, a return code, multiple shapes of a single result-set,
and multiple result-sets.

Creating a complex stored procedure
Before we explain the LINQ to SQL comprehensive stored procedure support,
we need to create a complex stored procedure. We will create a stored procedure
called GetCategoryDetails. The stored procedure will have one input parameter,
CategoryID, which will specify which category it is for, and one output parameter
AveProductPrice, which will return the average price of all the products in
that category.

The first result-set of this stored procedure will give some information about the
category, depending on the value of another input parameter, FullOrPartial.
If FullOrPartial is true (1), this result-set will contain all of the columns of the
Categories table for the requested category. Otherwise, it will contain only the
CategoryID and CategoryName columns of the category.

The second result-set will contain all of the products for the category.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[266]

If the input parameter is not a valid category ID, the procedure returns an error code
of 10001, and stops. Otherwise, it returns 0 at the end of the stored procedure, to
indicate a success.

The SQL to create this stored procedure is:

CREATE PROCEDURE [dbo].[GetCategoryDetails]
	 @CategoryID int,
	 @FullOrPartial bit,
	 @AveProductPrice money OUTPUT
AS
	 SET NOCOUNT ON

	 if not exists (select 1
				 from categories
				 where categoryID = @categoryID)
		 return 10001

	 if @FullOrPartial = 1
		 select * from Categories
		 where categoryID = @categoryID
	 else
		 select categoryID, categoryName from Categories
		 where categoryID = @categoryID

	 select * from products
	 where categoryID = @categoryID

	 select @AveProductPrice = avg(UnitPrice)
	 from products
	 where categoryID = @CategoryID

return 0

Modeling the stored procedure
In order to call this complex stored procedure, we first need to add it into the
Northwind.dbml model. Just drag and drop it from the Server Explorer to the
right-hand panel of the Northwind.dbml design window. If you have created it in
the SQL Management Studio and can't see it in the Server Explorer, try to refresh
your Server Explorer.

LINQ to SQL designer will create the following method in the class
NorthwindDataContext within the file, Northwind.designer.cs:

[Function(Name="dbo.GetCategoryDetails")]
public ISingleResult<GetCategoryDetailsResult> GetCategoryDetails(
[Parameter(Name="CategoryID", DbType="Int")] System.Nullable<int>
categoryID, [Parameter(Name="FullOrPartial", DbType="Bit")] System.
Nullable<bool> fullOrPartial, [Parameter(Name="AveProductPrice",
DbType="Money")] ref System.Nullable<decimal> aveProductPrice)
{

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[267]

	 IExecuteResult result = this.ExecuteMethodCall(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())), categoryID,
fullOrPartial, aveProductPrice);
	 aveProductPrice = ((System.Nullable<decimal>)(result.
GetParameterValue(2)));
	 return ((ISingleResult<GetCategoryDetailsResult>)(result.
ReturnValue));
}

Note that the variable aveProductPrice is passed to the method call
ExecuteMethodCall, but its actual value doesn't come back after the call. The output
value has to be retrieved using result.GetParameterValue.

This class is also added to the return result (this is really the first result-set in the
stored procedure):

public partial class GetCategoryDetailsResult

However, this is not what we want. The GetCategoryDetails method only returns
one result-set, instead of two. We have to customize it for our needs.

Customizing DataContext class for the stored
procedure
In the previous sections, we modeled the stored procedure with LINQ to SQL
designer, but the retuning result is not correct. In this section, we will customize it.

1.	 Extend the class NorthwindDataContext by adding a new class file called
NorthwindDataContext.cs.

2.	 Inside the new class file NorthwindDataContext.cs, add the following
using statements:

	 using System.Data.Linq;
	 using System.Data.Linq.Mapping;
	 using System.Reflection;

3.	 Add the following class inside the file NorthwindDataContext.cs, for one of
the return results:

	 public class PartialCategory
	 {
	 public int CategoryID;
	 public string CategoryName;
	 }

This class is parallel to the NorthwindDataContext class. Next, we will use
this class to define a new method.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[268]

4.	 Change the class definition to the following code (note that it should be
changed to a partial class):

	 public partial class NorthwindDataContext
	 {
	 // modified GetCategoryDetails, to overwrite the generated one
	 [Function(Name = "dbo.GetCategoryDetails")]
	 [ResultType(typeof(PartialCategory))]
	 [ResultType(typeof(Category))]
	 [ResultType(typeof(Product))]
	 public IMultipleResults GetWholeOrPartialCategoryDetails(
	 [Parameter(Name="CategoryID", DbType="Int")]
	 System.Nullable<int> categoryID,
	 [Parameter(Name="FullOrPartial", DbType="Bit")]
	 System.Nullable<bool> fullOrPartial,
	 [Parameter(Name="AveProductPrice", DbType="Money")]
	 ref System.Nullable<decimal> aveProductPrice)
	 {
	 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), categoryID,
 fullOrPartial, aveProductPrice);
	 aveProductPrice = ((System.Nullable<decimal>)(result.
 GetParameterValue(2)));
	 return ((IMultipleResults)(result.ReturnValue));
	 }
	 }

As you can see, we defined a method GetWholeOrPartialCategoryDetails to map
the results of the stored procedure to different types.

We can also modify the generated method inside of the Northwind.designer.cs file
to meet our needs. However, it is recommended that we don't do so, because if you
modify this file, and it is regenerated later on, you will lose all your changes.

Testing the stored procedure
Now, inside the file program.cs, we can add this test method:

static void TestComplexStoredProcedure(int categoryID, bool
wholeOrPartial)
{
 decimal? avePrice = 0;
 IMultipleResults result = db.GetWholeOrPartialCategoryDetails(cate
 goryID, wholeOrPartial, ref avePrice);
 int returnCode = (int)result.ReturnValue;

 if (returnCode == 0)

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[269]

 {
 if (wholeOrPartial == true)
 {
 Category wholeCategory = result.GetResult<Category>().
 FirstOrDefault();
 Console.WriteLine("Category name: {0}", wholeCategory.
 CategoryName);
 Console.WriteLine("Category description: {0}",
 wholeCategory.Description);
 }
 else
 {
 PartialCategory partialCategory =
 result.GetResult<PartialCategory>().FirstOrDefault();
 Console.WriteLine("Category name: {0}",
 partialCategory.CategoryName);
 }
 Console.WriteLine("Average product price: {0}", avePrice);
 IEnumerable<Product> products = result.GetResult<Product>();
 Console.WriteLine("Total products in category: {0}",
 products.Count());
 }
 else
 {
 Console.WriteLine("No category is retrieved,
 return code : {0}", returnCode);
 }
}

Inside the Main method, we call the above method three times as follows:

// get full category details
TestComplexStoredProcedure (2, true);

// get partail category details
TestComplexStoredProcedure (6, false);

// invalid category ID
TestComplexStoredProcedure (999, true);

The first call will return the full category information for category two, including
category ID, name, description, and picture. The second call will return only partial
information for category six, including category ID, and name. In both of the cases,
it will return the products in the category, and the average product price in that
category. The third call will print an error message because there is no category with
ID 999.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[270]

The output is as shown in the following image:

Compiled query
It is common in many applications to execute structurally-similar queries many
times. In such cases, it is possible to increase performance by compiling the query
once, and executing it several times in the application with different parameters. This
result is obtained in LINQ to SQL by using the CompiledQuery class.

The following code shows how to define a compiled query:

Func<NorthwindDataContext, string, IQueryable<Product>> fn =
CompiledQuery.Compile((NorthwindDataContext db2, string category) =>
 from p in db2.Products
 where p.Category.CategoryName == category
 select p);
var products1 = fn(db, "Beverages");
Console.WriteLine("Total products in category Beverages: {0}",
products1.Count());
var products2 = fn(db, "Seafood");
Console.WriteLine("Total products in category Seafood: {0}",
products2.Count());

As you can see, a compiled query is actually a function. The function contains a
compiled LINQ query expression, and can be called just like a regular function.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[271]

Direct SQL
LINQ to SQL is a part of the ADO.NET family of technologies. It is based on services
provided by the ADO.NET provider model. Therefore, it is possible to mix LINQ
to SQL code with existing ADO.NET applications. For example, you can create a
DataContext using an existing ADO.NET connection.

In some cases, you might find that the query or submit changes facility of the
DataContext is insufficient for the specialized task that you want to perform. In
these cases, it is possible to use the DataContext to issue raw SQL commands
directly to the database.

The ExecuteQuery() method lets you execute a raw SQL query, and converts the
result of your query directly into objects.

The ExecuteCommand() method lets you directly execute SQL commands against
the database.

For example, the following code will retrieve all discontinued products, and update
the price for one product:

var products = db.ExecuteQuery<Product>(
 "SELECT ProductID, ProductName " +
 "FROM Products " +
 "WHERE Discontinued = 0 " +
 "ORDER BY ProductName;"
);
Console.WriteLine("Total discontinued products :{0}", products.
Count());

int rowCount = db.ExecuteCommand(
 " update products "
 + "set UnitPrice=UnitPrice+1 "
 + "where productID=35");
if (rowCount < 1)
 Console.WriteLine("No product is updated");
else
 Console.WriteLine("Product price is updated");

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[272]

Dynamic query
In addition to using LINQ syntax, we can also build queries dynamically at runtime
using Expressions. For example, the following code will create two method
expressions, one for the where clause, and one for the order by clause:

ParameterExpression param = Expression.Parameter(typeof(Product),
"p");

Expression left = Expression.Property(param, typeof(Product).GetProper
ty("UnitPrice"));
Expression right = Expression.Constant((decimal)100.00, typeof(System.
Nullable<decimal>));
Expression filter = Expression.GreaterThanOrEqual(left, right);
Expression pred = Expression.Lambda(filter, param);

IQueryable products = db.Products;

Expression expr = Expression.Call(typeof(Queryable), "Where",
 new Type[] { typeof(Product) }, Expression.Constant(products),
pred);

expr = Expression.Call(typeof(Queryable), "OrderBy",
 new Type[] { typeof(Product), typeof(string) }, expr, Expression.
Lambda(Expression.Property(param, "ProductName"), param));

IQueryable<Product> query = db.Products.AsQueryable().Provider.CreateQ
uery<Product>(expr);

foreach (var p in query)
 Console.WriteLine("Product name: {0}", p.ProductName);

To build the first expression, we first created a left expression, and a right
expression. Then, we used them to create a filter expression. The predicate
expression is then created based on this filter expression.

As the second expression takes the first expression as an argument, it expands the
first expression to include an order by expression.

The statement with the CreateQuery method is the one that creates the query
dynamically, according to the expressions that we have created before this
statement. And, of course, the query won't get executed until the foreach
statement is executed.

Before running this program, you need to add the following using statement to
the beginning:

using System.Linq.Expressions;

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[273]

The output of the above code looks as shown in the following image:

Inheritance
The LINQ to SQL Object Relational Designer (O/R Designer) supports the concept
of single-table inheritance as it is often implemented in relational systems. In the
following sections, we will explore what single-table inheritance is, and how to use it
with LINQ.

LINQ to SQL single-table inheritance
In single-table inheritance, there is a single database table that contains fields for
both parent information and child information. With relational data, a discriminator
column contains the value that determines which class any given record belongs to.

For example, consider a Persons table that contains everyone employed by a
company. Some people are employees, and some are managers. The Persons table
contains a column named EmployeeType that has a value of 1 for managers and a
value of 2 for employees; this is the discriminator column.

In this scenario, you can create a subclass of employees, and populate the class with
only records that have an EmployeeType value of 2. You can also remove columns
that do not apply, from each of the classes.

In our Northwind database, the Products table contains all of the products in eight
different categories. Suppose that all products share some common properties,
and each category also has some unique properties of its own. We can then define
a BaseProduct entity class for all of the common properties of the products, and
define a unique child entity class for each category.

We assume that all products have the following properties:

ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit, UnitPrice,
UnitsInStock, UnitsOnOrder.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[274]

To simplify the example, we will define only two child entity classes in this example:
one for beverage products, and another for sea food products. We assume that a
beverage product has one more property of Discontinued and a sea food product
has one more property of ReorderLevel.

Modeling the BaseProduct and Beverage classes
We will first model these classes with LINQ to SQL designer.

1.	 Open the Server Explorer, and drag the Products table to Northwind.dbml
design pane. Change the entity class name from Product1 to BaseProduct,
and delete its member properties of Discontinued, and ReorderLevel.

2.	 Drag another instance of the Products table from the Server Explorer to
the Northwind.dbml design pane, and change its name from Product1 to
Beverage. Click the the association line between Category and Beverage, and
delete it. Then, delete all of the new table's properties except Discontinued.

3.	 Now, we need to set up the inheritance relationship between the
BaseProduct and Beverage class. Open the Object Relational Designer
Toolbox, and click the shape Inheritance.

4.	 While the cursor is changed, click the Beverage class, and then click the
BaseProduct class, to connect them together.

5.	 Click the newly-created association line between the BaseProduct and
Beverage classes, and set the following properties:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[275]

Property Value Explanation
Inheritance Default BaseProduct a Product without a derived class will be

of type BaseProduct
Base Class Discriminator
Value

0 the default product type's discriminator
value

Derived Class Discriminator
Value

1 the Beverage type's discriminator value

Discriminator Property CategoryID the column CategoryID is used to identify
derived classes

The properties of the association between BaseProduct and Beverage should look
like this:

Modeling the Seafood class
Next, we need to model the Seafood class. This class will inherit from the
BaseProduct class, but will have an extra property of ReorderLevel.

1.	 Drag another instance of the Products table from the Server Explorer to the
Northwind.dbml design surface, and change its name from Product1
to Seafood.

2.	 Click the association line between Category and Seafood, and delete it. Then,
delete all of the new table's properties except ReorderLevel.

3.	 Do the same thing as we did for the Beverage class, to set up the inheritance
relationship between the BaseProduct class and the Seafood class, except
that you need to set the Derived Class Discriminator Value to 8. Actually,
this is the only inheritance value you need to set for this class because all of
the other three properties (Inheritance Default, Base Class Discriminator
Value, and Discriminator Property) have been set previously.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[276]

The finished model should be as shown in the following image:

The generated classes with inheritance
Save the model, and open the Northwind.designer.cs file. You will find that three
classes have been added to the DataContext. The first class is the BaseProduct class,
which has this signature:

[Table(Name="dbo.Products")]
[InheritanceMapping(Code="0", Type=typeof(BaseProduct),
IsDefault=true)]
[InheritanceMapping(Code="1", Type=typeof(Beverage))]
[InheritanceMapping(Code="8", Type=typeof(Seafood))]
public partial class BaseProduct : INotifyPropertyChanging,
INotifyPropertyChanged

Its class body is almost identical to the Product class, except without the properties
ReorderLevel and Discontinued. The three inheritance mapping attributes are
generated from the inheritance properties we set in the model.

So, why don't we just use the existing Product class as the base class?

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[277]

Actually, this is OK and realistically it should be the preferred way to use the
Product class as the base class. However, we have used the Product class in all
of our previous examples, and if we delete two of its properties, some of those
examples might not work. So, we decided to create a new class from the same table
for this example only.

The other two classes are for the derived classes; each has only one property:

public partial class Beverage : BaseProduct
public partial class Seafood : BaseProduct

Testing the inheritance
Now we can write a query to show the inheritance between the BaseProduct and
the two derived classes.

First, we can retrieve all of the beverage products by using the is operator like this:

var beverages1 = from b in db.BaseProducts
 where b is Beverage
 select b;

We can also use the OfType operator to retrieve the same products, as follows:

var beverages2 = from b in db.BaseProducts.OfType<Beverage>()
 select b;

Console.WriteLine("Total number of beverage products: {0}",
beverages1.Count());
Console.WriteLine("Total number of beverage products: {0}",
beverages2.Count());

Run the program, and you will see both queries return 12.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[278]

We can also use the as operator to search for all the products that are beverages:

var beverages3 = from b in db.BaseProducts
 select b as Beverage;

foreach (var b in beverages3)
{
 if (b != null)
 {
 Console.WriteLine("Found a beverage: {0}, it is {1}
 discontinued", b.ProductName, (b.Discontinued?"":"not"));
 }
}

In the above code, if there are no products that are beverages, the routine will
return null.

In all of the above three queries, Discontinued is a property of the returning item,
which means it is of the Beverage type. Also, all of the BaseProduct properties are
available, because the returning item's data type is a child of the BaseProduct type.

Similarly, we can retrieve all sea food products, and use its ReorderLevel
property, as follows:

var seafood = from s in db.BaseProducts.OfType<Seafood>()
 select s;

foreach (var s in seafood)
 Console.WriteLine("Product name: {0} Reorder level: {1}",
 s.ProductName, s.ReorderLevel);

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[279]

The output of this is shown in the following image:

Handling simultaneous (concurrent)
updates
If two users are updating the same record at the same time, a conflict will occur.
There are normally three different ways to handle this conflict. The first method is to
let the last update win, so no controlling mechanism is needed. The second one is to
use a pessimistic lock, in which case, before updating a record, a user will first lock
the record, and then process and update the record. At the same time, all other users
will have to wait for the lock to be released in order to start the updating process.

The third and most common mechanism in an enterprise product is the optimistic
locking. A user doesn't lock a record for update when the data is retrieved, but
when the application is ready to commit the changes, it will first check to see if any
other user has updated the same record since that data was retrieved. If nobody
else has changed the same record, the update will be committed. If any other user
has changed the same record, the update will fail, and the user has to decide what
to do with the conflict. Some possible options include overwriting the previous
changes, discarding their own changes, or refreshing the record and then reapplying
(merging) the changes.

LINQ to SQL supports optimistic concurrency control in two ways. Next, we will
explain both of them.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[280]

Detecting conflicts using the Update Check
property
The first way is to use the Update Check property. At design time, this property can
be set for a column to be one of these three values:

Always

Never

WhenChanged

For a column, there are three values to remember: the original value before update,
the current value to be updated, and the database value when the change is
submitted. For example, consider the case where you fetch a product record from the
database with a UnitPrice of 25.00, and update it to 26.00. After you fetched this
product, but before you submit your changes back to database, somebody else may
have updated this product's price to 27.00. In this example, the original value of the
price is 25.00, the current value to update is 26.00, and the database value when the
change is submitted is 27.00.

When the change is submitted to the database, the original value and the database
value are compared. If they are different, a conflict is detected.

Now, let us look at these three settings. The first setting of the property Update Check
is Always, which means that the column will always be used for conflict detecting.
Whenever a record is being changed, this column will always be checked to see if it has
been updated by other users. If it has been, it raises a conflict. This is the default setting
of this property. So by default, all columns will be used for conflict detecting.

The second setting, Never, means that column will never be used for conflict
checking. When a change is submitted to the database, the application will not check
the status of this column. So even if this column has been updated by other users, it
won't raise an error.

The third setting, WhenChanged, is in between the two previous settings. It will be
used for conflict detecting, but only if the current process has changed its value. If
the current process hasn't changed its value, the application won't care if some other
processes have updated its value.

Writing the test code
To show how to use these three settings, we can write the following code:

// first user
Console.WriteLine("First User ...");
Product product = (from p in db.Products

•
•
•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[281]

 where p.ProductID == 2
 select p).First();
Console.WriteLine("Original price: {0}", product.UnitPrice);
product.UnitPrice = 26;
Console.WriteLine("Current price to update: {0}", product.UnitPrice);
// process more products

// second user
Console.WriteLine("Second User ...");
NorthwindDataContext db2 = new NorthwindDataContext();
Product product2 = (from p in db2.Products
 where p.ProductID == 2
 select p).First();
Console.WriteLine("Original price: {0}", product2.UnitPrice);
product2.UnitPrice = 26;
Console.WriteLine("Current price to update: {0}", product2.UnitPrice);
db2.SubmitChanges();
db2.Dispose();

// first user is ready to submit changes
Console.WriteLine("First User ...");
try
{
 db.SubmitChanges();
}
catch (ChangeConflictException)
{
 Console.WriteLine("Conflict is detected");
 foreach (ObjectChangeConflict occ in db.ChangeConflicts)
 {
 MetaTable metatable = db.Mapping.GetTable(occ.Object.
GetType());
 Product entityInConflict = (Product)occ.Object;
 Console.WriteLine("Table name: {0}", metatable.TableName);
 Console.Write("Product ID: ");
 Console.WriteLine(entityInConflict.ProductID);
 foreach (MemberChangeConflict mcc in occ.MemberConflicts)
 {
 object currVal = mcc.CurrentValue;
 object origVal = mcc.OriginalValue;
 object databaseVal = mcc.DatabaseValue;
 MemberInfo mi = mcc.Member;
 Console.WriteLine("Member: {0}", mi.Name);
 Console.WriteLine("current value: {0}", currVal);
 Console.WriteLine("original value: {0}", origVal);
 Console.WriteLine("database value: {0}", databaseVal);
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[282]

In this example, we first retrieved product 2 and updated its price from 19.00 to
26.00. Then, we simulated another user to retrieving the same product, and also
updated its price to 26.00. The second user submitted the changes first with no
error, but when the first user tried to submit the changes, a conflict was detected
because at that time the original value of 19.00 was different from the database
value of 26.00. We can also use ChangeConflicts of the DataContext to get the list
of conflicts.

Testing the conflicts
Now, add the following using statements first:

using System.Data.Linq.Mapping;
using System.Reflection;

Run the program. You will get an output as shown in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[283]

Now, open Northwind.dbml, click on the UnitPrice member of the Product class,
change its Update Check property to Never, and run the program again. You won't
see the exception this time, because this column is not used for conflict detecting. The
output is as follows (you will need to change its price back to 19.00 before you re-
run the program):

Detecting conflicts using a version column
The second and a more efficient way provide conflict control is by using a version
column. If you add a column of type Timestamp, or ROWVERSION, when you
drag this table to the OR/M designer pane, this column will be marked as
IsVersion = True.

Version numbers are incremented, and timestamp columns are updated every
time the associated row is updated. Before the update, if there is a column with
IsVersion=true, LINQ to SQL will first check this column to make sure that this
record has not been updated by any of the other users. This column will also be
synchronized immediately after the data row is updated. The new values are visible
after SubmitChanges finishes.

When there is a column marked IsVersion=true, LINQ to SQL will use only this
column for conflict detecting. All other columns' Update Property will be ignored,
even if they have been set to Always or WhenChanged.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[284]

Adding a version column
Now, let us try this in the Products table. First, we need to add a new column called
LastUpdateVersion, which is of type timestamp. You can add it within Visual
Studio 2008 in the Server Explorer by right-clicking on the table Products, and
selecting Open Table Definition, as shown in the following image:

You can also open SQL Server Management Studio, and add the column from there.

Modeling the products table with a version column
After saving the changes, drag the Products table from the Server Explorer to the
Northwind.dbml design pane, and keep the name Product1. This table now has a
version controlling column, LastUpdateVersion, with properties as shown in the
Properties dialog box image.

Note that its Update Check Property is set to Never. Actually, all other members'
Update Check properties have been set to Never, because for this class, only the
LastUpdateVersion column will be used for conflict detecting.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[285]

Open the Northwind.designer.cs file, and you will see that the column
LastUpdateVersion has the following attributes:

[Column(Storage="_LastUpdateVersion", AutoSync=AutoSync.Always,
DbType="rowversion NOT NULL", CanBeNull=false, IsDbGenerated=true,
IsVersion=true, UpdateCheck=UpdateCheck.Never)]
public System.Data.Linq.Binary LastUpdateVersion

Writing the test code
We can write similar code to test this new version controlling mechanism:

// first user
Console.WriteLine("First User ...");
Product product = (from p in db.Products
 where p.ProductID == 3
 select p).First();
Console.WriteLine("Original unit in stock: {0}", product.
UnitsInStock);
product.UnitsInStock = 26;
Console.WriteLine("Current unit in stock to update: {0}", product.
UnitsInStock);
// process more products

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[286]

// second user
Console.WriteLine("Second User ...");
NorthwindDataContext db2 = new NorthwindDataContext();
Product product2 = (from p in db2.Products
 where p.ProductID == 3
 select p).First();
Console.WriteLine("Original unit in stock: {0}", product2.
UnitsInStock);
product2.UnitsInStock = 27;
Console.WriteLine("Current unit in stock to update: {0}", product2.
UnitsInStock);
db2.SubmitChanges();
db2.Dispose();

// first user is ready to submit changes
Console.WriteLine("First User ...");
try
{
 db.SubmitChanges();
}
catch (ChangeConflictException)
{
 Console.WriteLine("Conflict is detected");
 foreach (ObjectChangeConflict occ in db.ChangeConflicts)
 {
 MetaTable metatable =
 db.Mapping.GetTable(occ.Object.GetType());
 Product entityInConflict = (Product)occ.Object;
 Console.WriteLine("Table name: {0}", metatable.TableName);
 Console.Write("Product ID: ");
 Console.WriteLine(entityInConflict.ProductID);
 foreach (MemberChangeConflict mcc in occ.MemberConflicts)
 {
 object currVal = mcc.CurrentValue;
 object origVal = mcc.OriginalValue;
 object databaseVal = mcc.DatabaseValue;
 MemberInfo mi = mcc.Member;
 Console.WriteLine("Member: {0}", mi.Name);
 Console.WriteLine("current value: {0}", currVal);
 Console.WriteLine("original value: {0}", origVal);
 Console.WriteLine("database value: {0}", databaseVal);
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[287]

Testing the conflicts
This time we tried to update UnitInStock for product 3. From the output, we can
see a conflict was detected again, when the first user submitted their changes to
the database.

Transactions support
In the previous section, we learned that simultaneous changes by different users can
be controlled by using a version column or the Update Check property. Sometimes,
the same user may have made several changes, and some of the changes might not
succeed. In this case, we need a way of controlling the behavior of the overall update
result. This is handled by transaction support.

LINQ to SQL uses the same transaction mechanism as ADO.NET, that is, uses
implicit or explicit transactions. It can also participate in an existing ADO.NET
transaction to let the outsider code decide on the result of the updates.

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[288]

Implicit transactions
By default, LINQ to SQL uses an implicit transaction for each SubmitChanges call.
All updates between two SubmitChanges calls are wrapped within one transaction.

For example, in the following code, we are trying to update two products. The
second update will fail due to a constraint, so both updates will fail. Nothing will be
written to the database.

Product prod1 = (from p in db.Products
 where p.ProductID == 4
 select p).First();
Product prod2 = (from p in db.Products
 where p.ProductID == 5
 select p).First();
prod1.UnitPrice += 1;
// update will fail because UnitPrice can't be < 0
prod2.UnitPrice = -5;
// both updates will fail because they are wihtin one transaction
db.SubmitChanges();

The output will look like this :

Explicit transactions
In addition to implicit transactions, you can also define a transaction scope, to
explicitly control the update behavior. All updates within a transaction scope will be
within a single transaction, Thus, they will either all succeed or all fail.

For example, in the following code, we started a transaction scope first. Then, within
this transaction scope, we updated one product, and submitted the change to the
database. However, at this point, the update had not really been committed, because
the transaction scope was still not closed. We then tried to update another product,
which failed due to the same constraint as mentioned in the previous example. The
final result is that neither of these two products have been updated; nor can we say
that the first update has been rolled back.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[289]

using (TransactionScope ts = new TransactionScope())
{
 try
 {
 Product prod1 = (from p in db.Products
 where p.ProductID == 4
 select p).First();
 prod1.UnitPrice += 1;
 db.SubmitChanges();

 // now let's try to update another product
 Product prod2 = (from p in db.Products
 where p.ProductID == 5
 select p).First();
 // update will fail because UnitPrice can't be < 0
 prod2.UnitPrice = -5;
 db.SubmitChanges();
 }
 catch (System.Data.SqlClient.SqlException e)
 {
 // both updates will fail because they are wihtin one
transaction
 Console.WriteLine("Updates failed. Error Message: {0}",
e.Message);
 }
}

Note that TransactionScope is in .NET Assembly System.Transactions. So you
need to add a reference to System.Transactions first, and then add the following
using statement to the Program.cs file:

using System.Transactions;

The output of the program is the same as shown in the previous example, in which
an implicit transaction was used.

If you start the program in debugging mode, after the first SubmitChanges is called,
you can go to SQL Server Management Studio, and query product 4's price using the
following statement:

select UnitPrice from products (nolock) where productID = 4

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[290]

The nolock hint is equivalent to READUNCOMMITTED, and it is used to retrieve dirty
data that has not been committed. With this hint, you can see its price has been
increased by the first change. Then, after the second SubmitChanges is called, an
exception is thrown, and the transaction scope is closed. At this point, if you run the
query again, you will see that product 4's price is rolled back to its original value.

After the first call to the SubmitChanges method, you shouldn't use the
following statement to query the price value of the product:
select UnitPrice from products where productID = 4
If you do so, you will not be able to get back any result. Instead, you will
be waiting forever, as it is waiting for the transaction to be committed.

Participating in existing ADO.NET
transactions
Because LINQ to SQL is a part of the ADO.NET family, it can also participate in an
existing ADO.NET transaction. Regardless of whether the updates are done in the
traditional ADO.NET code, or in LINQ to SQL, all of them will be committed at the
same time, or all rolled back if any of them fails.

In the following code, we will first update a product using a traditional ADO.NET
connection, and then update another product using LINQ to SQL. The second update
will fail, making the whole transaction roll back.

string connString = "Server=your_db_name\\your_db_instance;initial cat
aLog=Northwind;user=your_user_name;pwd=your_password";

SqlConnection conn = null;
SqlCommand cmd = null;

try
{
 // open the connection
 conn = new SqlConnection(connString);
 conn.Open();

 // Use pre-existing ADO.NET connection to create DataContext:
 NorthwindDataContext db2 = new NorthwindDataContext(conn);

 SqlTransaction trans = conn.BeginTransaction();
 try
 {
 //update first product using ADO.NET
 using (cmd = new SqlCommand())
 {

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[291]

 cmd.CommandText = "UPDATE Products SET UnitPrice =
 UnitPrice+1 WHERE ProductID = 4";
 cmd.Connection = conn;
 cmd.Transaction = trans;
 cmd.ExecuteNonQuery();
 }

 // update second product using LINQ to SQL
 // Share pre-existing ADO.NET transaction:
 db2.Transaction = trans;
 Product prod2 = (from p in db2.Products
 where p.ProductID == 5
 select p).First();
 // update will fail because UnitPrice can't be < 0
 prod2.UnitPrice = -5;
 db2.SubmitChanges();

 db2.Dispose();

 //commit the transaction
 trans.Commit();
 }
 catch (Exception e)
 {
 // both updates will fail because they are wihtin one
 transaction Console.WriteLine("Updates failed. Error
 Message: {0}", e.Message);
 }
}
catch (Exception e)
{
 Console.WriteLine("Can not connect to database. Error: {0}",
 e.Message);
}
finally
{
 if (cmd != null)
 cmd.Dispose();
 if (conn != null)
 conn.Dispose();
}

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[292]

There are two things to note in the above code.

1.	 First, we can't re-use this connection string:
	 global::TestLINQToSQLApp.Properties.Settings.Default.
	 NorthwindConnectionString

This is because the password has been stripped out from this string.
2.	 Secondly, the following using statement has to be added at the beginning of

the Program.cs file:
	 using System.Data.SqlClient;

The output of the program is still the same as shown in the previous examples.

Adding validations to entity classes
Validating data is the process of confirming that the values entered into data objects
comply with the constraints in an object's schema, in addition to the rules established
for your application. Validating data before you send updates to the underlying
database is a good practice that reduces both errors and the potential number of
round trips between an application and the database.

The Object Relational Designer (O/R Designer) provides partial methods that
enable users to extend the designer-generated code that runs during Inserts,
Updates, and Deletes of complete entities, and also during and after individual
column changes.

These validation methods are all partial methods. Therefore, there is no overhead
at all if you don't implement them, because unimplemented partial methods are not
compiled into IL.

You can implement a validation method in another partial class. In our example, we
can add the following method to the existing NorthwindDataContext.cs file:

public partial class Product
{
 partial void OnProductNameChanging(string value)
 {
 if (value.IndexOf("@") >= 0)
 throw new Exception("ProductName can not contain @");
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[293]

Note that this method should be placed inside the partial class Product, and not
inside NorthwindDataContext.

Now, we can test it using the following code:

Product product = (from p in db.Products
 where p.ProductID == 5
 select p).First();
try
{
 product.ProductName = "Name @ this place";
 db.SubmitChanges();
}
catch (Exception e)
{
 Console.WriteLine("Update failed. Reason: {0}", e.Message);
}

Run this program, and you will get an output as shown in the following image:

You can implement any of the validation methods for any properties, before or after
the change.

Debugging LINQ to SQL programs
Within Visual Studio 2008, when debugging a LINQ to SQL program, we can use
the traditional either of the Watch or QuickWatch windows to inspect a variable.
For example, after the following line is executed, we can right-click on the products
variable, and select QuickWatch … or Add Watch to see the contents of this variable:

var products = from p in db.Products
 where p.CategoryID == 1
 select p;

Download from Library of Wow! eBook <www.wowebook.com>

LINQ to SQL: Advanced Concepts and Features

[294]

The QuickWatch window will look like this:

We can also hover our mouse over the products variable, and wait for the Quick
Info pop-up window to appear, and then inspect it on the fly. The pop-up Quick Info
window will appear as shown in the following image:

In the Watch window, we can inspect the returned result of the variable, its
properties, and even its children.

This inspection may trigger a real query to the database. For example,
if you let your mouse hover over db.Products, and then try to open
Results View, the database will be queried to get all of the products. In an
environment with a big database, this may cause some problems.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 11

[295]

Summary
In this chapter, we have learned some advanced features of LINQ to SQL. At this
point, we have a good understanding of LINQ to SQL. In the next chapter, we will
apply these skills to the data access layer of our WCF service, to connect to databases
securely and reliably with LINQ to SQL.

The key points covered in this chapter include:

LINQ to SQL fully supports stored procedures with return codes, output
parameters, and multiple result sets
Compiled queries can increase the performance of repeatedly-executed
LINQ queries
LINQ to SQL allows SQL queries to the database
Dynamic Queries can be built at runtime, using Expressions
LINQ to SQL supports single-table inheritance via the discriminator column
Concurrent updates can be controlled using an Update Check property or a
Version column
By default, LINQ to SQL updates are within one implicit transaction
Explicit transactions can be defined for LINQ to SQL updates by using
TransactionScope

LINQ to SQL updates can also participate in traditional
ADO.NET transactions
Customized validation code can be added to LINQ to SQL entity classes
A debugging process may trigger a real query to the database

•

•

•

•

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a
WCF Service

Now that we have learned all of the new features for C# 3.0, including LINQ and
LINQ to SQL, we will use them in the data access layer of a WCF service. We will
create a new WCF service, which is very similar to the one we created in the previous
chapters, but in this service, we will use LINQ to SQL to connect to the Northwind
database, to retrieve and update a product.

In the data access layer, we will use LINQ to SQL to retrieve product information
from the database, and return it to the business logic layer. You will see that with
LINQ to SQL, we will need only one LINQ statement in the GetProduct method,
and we will no longer need to worry about the database connection, or the actual
query statement.

In this chapter, we will also learn how to update a product with LINQ to SQL in
the data access layer. We will see how to attach an entity object to LINQ to SQL
DataContext, and leave all of the update work to LINQ to SQL, and will also see
how to control the concurrency of updates with LINQ to SQL.

In this chapter, we will cover:

Creating the solution using Service Factory
Modeling the WCF service using Service Factory
Generating source code for the service
Modeling the Northwind database in LINQ to SQL designer
Implementing the data access layer using LINQ to SQL
Implementing the business logic layer
Implementing the service interface layer

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[298]

Modeling the host application and the test client
Implementing the test client
Testing the get and update operations of the WCF service
Testing concurrent updates with LINQ to SQL

Creating the LINQNorthwind solution
From this point on on, in the first few sections of this chapter, we will use Service
Factory for creating the solution files, modeling the service, and generating the
source code. The steps here are very similar to those discussed in Chapter 7, so we
will not have screenshots for every step. You can follow the steps here to quickly
create the solution, and refer back to Chapter 7 for detailed instructions if you have
any doubts. You can also download the source code for this chapter, if you don't
want to repeat all of these steps.

One thing that is different here is that we will add an operation of UpdateProduct in
this chapter, so that we can test the concurrent updates with LINQ to SQL later on.

To start, follow these steps to create the initial solution files:

1.	 Start Visual Studio 2008.
2.	 Select menu option File | New | Project…..
3.	 Select Guidance Packages | Service Factory: Modeling Edition as the

Project type, and Model Project as the Template.
4.	 Enter LINQNorthwind as the Name, and leave the Location as the default

value (D:\SOAwithWCFandLINQ\Projects).
5.	 Click OK.

The Guidance Packages project type will be shown only after you have
the Guidance Packages installed. You should have installed Guidance
Packages in Chapter 7.

6.	 Change the model project name from LINQNorthwind to
LINQNorthwind Models.

Modeling the data contracts
Next, we will add a data contract model, a Product data contract, and a Product
Fault contract to the model.

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[299]

1.	 Add a Data Contract Model with the name ProductService.
2.	 Add a Data Contract to the model with the name Product. This data contract

should have the following data members with these data types: ProductID
(Int32), ProductName (String), QuantityPerUnit (String), UnitPrice
(Decimal), and Discontinued (Boolean).

3.	 Add a Fault Contract to the model with the name ProductFault. This fault
contract should have one data member: FaultMessage (String).

In this model, we didn't specify the unit price as type Decimal?, even though it
should really be Decimal?. This is because Service Factory doesn't support nullable
data types.

Also, we didn't add LastUpdateVersion as a data member, even though we need to
pass this member to the client to that when the product is passed back, we can check
if this product has been updated by other applications. The reason why we didn't
include this data member in the model is that Service Factory doesn't support Binary
data types.

We will adjust these two data members in the data contract in a later section, after we
have generated the source code.

The detailed steps, and the final data contract model should be the same as described
in Chapter 7. To refresh your memory, your data contract model should look like this:

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[300]

Modeling the service contracts
Now, we will add a service contract model, and add operations to the service model.

1.	 Add a Service Contract Model with the name ProductService.
2.	 Add an Operation with the name GetProduct to the model.
3.	 Add two Message Contracts with the names GetProductRequest, and

GetProductResponse respectively.
4.	 Add an Operation with name UpdateProduct. This operation should have a

fault with the name UpdateProductFault and of type ProductFault.
4.	 Add two Message Contracts with the names UpdateProductRequest, and

UpdateProductResponse respectively. The request message contract should
have a data part Product that is of type Product, and the response contract
should have a data part UpdateResult that is of type Boolean.

5.	 Add a Service Contract with the name ProductServiceContract.
6.	 Add a Service with the name ProductService.
7.	 Connect the service, the service contract, the service operations, and the

message contracts together.

The service contract model is very similar to the one described in Chapter 7, except
that there is one more operation (UpdateProduct), and two more message contracts
(UpdateProductRequest and UpdateProductResponse). It should look like this :

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[301]

Next, we need to change some values for these contracts. Follow these steps:

1.	 Specify Implementation Technologies for both the data contract and service
contract models, just as we did in Chapter 7. As a result, both models should
have WCF Extension as the implementation technology.

2.	 Change the property value of Reply Action to be the same as the property
value of Action for both GetProduct and UpdateProduct operations.

3.	 Change the property value of Is Wrapped to be True for both for
GetProductRequest and UpdateProductRequest messages.

4.	 Change the service contract model's Serializer Type from XmlSerializer to
DataContractSerializer.

5.	 Order all of the data members for the data contract model.

Again, you can refer to Chapter 7 for detailed instructions and screenshots.

Generating the source code
At this point, we have finished modeling the WCF service. So, we can now
generate the source code. Follow these steps to generate the source code for the
new WCF service:

1.	 Add WCF Implementation Projects to the solution, with MyWCF.
LINQNorthwind as the Project name. Service Factory should generate ten
projects for you, including service interface layer projects, business logic
layer projects, and data access layer projects.

2.	 Link both the service contract and data contract models, to the projects
by setting the value of the model's property Project Mapping Table to be
MyWCF.LINQNorthwind.

3.	 Validate the data contract and the service contract models.
4.	 Generate source code for all of the projects from the data contract and service

contract models.

At this point, you should have the source code generated for the service interface
layer projects. The detailed steps are same as described in Chapter 7, so you can refer
back to that chapter for more information and screenshots if necessary.

Next, we will implement the data access layer of the service with LINQ to SQL, and
then implement the business logic layer of the service. Many steps in the following
sections are similar to those described in Chapter 8, with a few differences that we
will discuss in detail.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[302]

Modeling the Northwind database
For the data access layer, we will use LINQ to SQL instead of the raw ADO.NET
data adapters. As you will see in the next section, we will use one LINQ statement
to retrieve product information from the database, and the update LINQ statements
will handle the concurrency control for us easily and reliably.

As you may recall, to use LINQ to SQL in the data access layer of our WCF service,
we first need to add a LINQ to SQL model class to the project. The following steps
are very similar to those described in Chapter 10. So, you can refer back to that
chapter for more information and screenshots if necessary.

1.	 In the Solution Explorer, right-click on the project item MyWCF.
LINQNorthwind.DataAccess, select menu option Add | New Item…, and
then choose LINQ to SQL Classes as the Template, and enter Northwind.
dbml as the Class name.

2.	 After Northwind.dbml has been added to the project, add a connection
to the Northwind database in the Server Explorer, if a connection to the
database is not there.

3.	 Then, in the Server Explorer, drag the Products table onto the Northwind.
dbml design pane. Rename the entity class from Product to ProductEntity.

4.	 The new column LastUpdateVersion should be in the Products table, as we
added it in the previous chapter. If it is not there, add it to the table with a
type of Timestamp, and recreate the entity class.

Just as in the previous chapters, this will generate a class file called
 Northwind.designer.cs, which contains the data context for the
Northwind database.

This same file also contains the ProductEntity class, which will be shared by all
three layers of the WCF service. By design, LINQ to SQL includes all of the entity
classes inside this same file. So if you have many entity classes, this file could be
very big.

There is a standalone project, MyWCF.LINQNorthwind.BusinessEntities, in
the solution. As you may recall, this is the project where we define all of the data
entities for the WCF service. However, because the entity classes are all contained
inside the LINQ to SQL designer class now, this project will contain no more entity
classes in the solution. We will leave this project in the solution, but won't use it at
all. However, if you think this is confusing, you can delete this project (and all the
references to this project) from the solution.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[303]

Implementing the data access layer
Now that we have the Northwind.dbml added to the project file, we will need to add
a new class file to the data access project. We will implement the data access layer
inside this new class.

1.	 Open the web.config file in the MyWCF.LINQNorthwind.Host project
folder. Change the <connectionStrings/> element to this:

	 <connectionStrings configSource="connections.config"/>

2.	 Add a new XML file connections.config to the project MyWCF.
LINQNorthwind.Host, with the following content:

	 <?xml version="1.0" encoding="utf-8" ?>
	 <connectionStrings>
	 <add name="NorthwindConnectionString"
	 providerName="System.Data.SqlProvider"
	 connectionString="server=your_db_server\your_db_instance;
	 uid=your_user_name; pwd=your_password;
	 database=Northwind;"/>
	 </connectionStrings>

As you have learned in the previous chapters, you should change this con-
nection string according to your specific database environment, and you
can also change it to use a Windows trusted connection, or an SSPI integrated
security connection.

3.	 Add a new class called ProductDAL to the data access project.
4.	 Change the ProductDAL class to make it a public class.
5.	 Define connectionString variable as a class member like this:
	 string connectionString = ConfigurationManager.ConnectionStrings["
	 NorthwindConnectionString"].ConnectionString;

6.	 Add a using statement to the assembly System.Configuration.

You may recall that in Chapter 8, we added a reference to the BusinessEntities
project, because the data access project will use entities defined in the
BusinessEntities project. However, in this solution, because all entities will be
inside the data access layer within the LINQ to SQL designer class, we no longer
need to reference the BusinessEntities project from the data access project. So we
don't need to add a reference to the BusinessEntities project here.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[304]

Adding GetProduct to the data access layer
We can now add the GetProduct method to the data access layer class ProductDAL,
like this:

public ProductEntity GetProduct(int id)
{
 NorthwindDataContext db = new NorthwindDataContext(connectionString
);
 ProductEntity productEntity = (from p in db.ProductEntities
 where p.ProductID == id
 select p).FirstOrDefault();
 return productEntity;
}

You will recall that in the previous chapters, for the GetProduct method, we had
to create an ADO.NET connection, create an ADO.NET command object with that
connection, specify the command text, connect to the Northwind database, and send
the SQL statement to the database for execution. After the result was returned from
the database, we had to loop through the DataReader, and cast the columns to our
entity object one by one.

Here, with LINQ to SQL, as you can see, we only construct one LINQ to SQL
statement, and everything else is handled by LINQ to SQL. Not only do we need
to write less code, but now the statement is also strongly typed. We won't have a
runtime error like "invalid query syntax", or "invalid column name". Also, an SQL
Injection attack is no longer an issue, as LINQ to SQL will also take care of this when
translating LINQ expressions to underlying SQL statements.

Adding UpdateProduct to the data access
layer
In the previous section, we have added the GetProduct method to the data access
layer. Now, let's add the UpdateProduct method to the data acces layer, as follows:

public bool UpdateProduct(ProductEntity productEntity)
{
 // check product ID
 NorthwindDataContext db = new
 NorthwindDataContext(connectionString);
 ProductEntity productEntityInDB = (from p in
 db.ProductEntities
 where p.ProductID ==
 productEntity.ProductID

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[305]

 select p).FirstOrDefault();
 db.Dispose();
 // check product
 if (productEntityInDB == null)
 {
 throw new Exception("No product with ID " +
 productEntity.ProductID);
 }

 // preserve these properties (they should not be updated by
client)
 productEntity.SupplierID = productEntityInDB.SupplierID;
 productEntity.CategoryID = productEntityInDB.CategoryID;
 productEntity.UnitsInStock = productEntityInDB.UnitsInStock;
 productEntity.UnitsOnOrder = productEntityInDB.UnitsOnOrder;
 productEntity.ReorderLevel = productEntityInDB.ReorderLevel;

 // use another DataCOntext to update the product
 NorthwindDataContext db2 = new
 NorthwindDataContext(connectionString);
 db2.ProductEntities.Attach(productEntity, true);
 db2.SubmitChanges();
 db2.Dispose();

 return true;
}

Inside this method, we first check to see if the product to be updated is a valid
product in our database. If not, processing will stop, and an exception will
be thrown.

Then, we assign the database values of columns SupplierID, CategoryID,
UnitsInStock, UnitsOnOrder, and ReorderLevel to associated properties of the
product entity that is passed in from the service interface layer. Remember that the
data contract doesn't have these properties. So the client won't see them at all. Thus,
when the product is passed back to the service, and converted to a product entity, all
of these properties will be empty. We need to make sure that we don't change any
of them.

However, the LastUpdateVersion property will be of the same value as when the
client fetches the product, and this value shouldn't be changed by the client. This is
very important, because this property is used to control the optimistic update.

Now that the productEntity object holds all of the values that we want to commit
to the database, we need to create another DataContext object, and attach this object
to the DataContext.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[306]

Note that we can't attach it to the original DataContext, because one DataContext
can't have two objects with the same primary key, and there is no way to detach an
object from a DataContext.

We use the following syntax to attach this object to the DataContext:

db2.ProductEntities.Attach(productEntity, true);

The parameter true means that the attached product is the current object to be
updated, and DataContext should treat all of its properties as having changed.

As you can see, the logic to update a product is the same as in the previous chapters,
but this time we implemented it using LINQ to SQL. Just like in the previous
GetProduct method, here you won't see any activities like managing database
connection, or checking update conflicts. All of these issues have been taken care of
by the LINQ to SQL engine. We just need to concentrate on the real application logic.

In the previous chapters, if you ever tried to start up two client applications, and
update the same product at the same time from each client application, you will
have seen that those WCF services don't handle this very well. You will find that
some updates have overwritten other updates, making the result unpredictable. To
overcome this, you will have to add a lot more code to the UpdateProduct method,
with ADO.NET.

Now with this piece of code, concurrent update is handled very well by LINQ
to SQL. Just as we had learned from the previous LINQ to SQL chapters, the
LastUpdateVersion column has been used by LINQ to SQL to provide concurrent
update control for this service. We don't need to do any more work to gain this.
Later in this chapter, we will explain and test how this small piece of code has had
concurrent update control embedded, with optimistic locking mechanisms being
implemented without any extra effort from us.

Implementing the business logic layer
Now that we have the data access layer ready, we can modify the business logic
layer to call this layer.

1.	 Add a new class file called ProductLogic.cs.
2.	 Change the ProductLogic class to be a public class.
3.	 Define the productDAL variable as a class member, like this:
	 ProductDAL productDAL = new ProductDAL();

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[307]

4.	 Add the GetProduct method as follows:
	 public ProductEntity GetProduct(int id)
	 {
	 return productDAL.GetProduct(id);
	 }

	 Add UpdateProduct method like this:
	 public bool UpdateProduct(ProductEntity productEntity)
	 {
	 return productDAL.UpdateProduct(productEntity);
	 }

This class is very similar to the business logic class in the previous chapters, except
that in the previous chapters this project references the BusinessEntities project,
whereas here it only references the data access project. As we said earlier, this is
because the product entity is now embedded inside the data access project LINQ to
SQL designer class file, instead of being in a separate BusinessEntities project.

Implementing the service interface layer
In the service interface layer, we need to modify a few classes, including the product
fault class, the data contract class, and the service implementation classes.

Modifying the ProductFault class
We need to add a new file called ProductFault.cs to the project FaultContracts.
This will be used to create a constructor with one string parameter.

The partial ProductFault class should look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyWCF.LINQNorthwind.FaultContracts
{
 public partial class ProductFault
 {
 public ProductFault(string message)
 {
 this.faultMessage = message;
 }
 }
}

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[308]

Modifying the DataContract class
For the data contract class, we need to make the following changes:

1.	 Open the file Product.cs under the GeneratedCode folder in the project
DataContracts.

2.	 Change the type of the private variable unitPrice from decimal to decimal?.
3.	 Change the type of the public property UnitPrice from decimal to decimal?.
4.	 Add a reference to System.Data.Linq.
5.	 Add a using statement like this:
	 using System.Data.Linq;

6.	 Add the following private variable:
	 private Binary lastUpdateVersion;

7.	 Add the following public property:
	 [WcfSerialization::DataMember(Name = "lastUpdateVersion",
	 IsRequired = true, Order = 5)]
	 public Binary LastUpdateVersion
	 {
	 get { return lastUpdateVersion; }
	 set { lastUpdateVersion = value; }
	 }

The reason we have to change the type for the member UnitPrice from decimal to
decimal? is that in the database, the column UnitPrice is nullable, but in Service
Factory, you can't specify a property of an entity class to be a nullable data type.

Also, Service Factory doesn't support the data type Binary (timestamp), so we have
to manually add the LastUpdateVersion property to the product data contract.

Modifying the ServiceImplementation class
We also need to change the ServiceImplementation project. We will need to add a
reference to the DataAccess project, add a translator class, modify the data contract
class, and implement the GetProduct and UpdateProduct operations.

Adding references to the project
We need to add two references to the ServiceImplementation project.

Add a reference to the DataAccess project. This is because we have to
reference the ProductEntity class, which is now embedded inside the data
access layer LINQ to SQL designer class.

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[309]

Add a reference to the System.Data.Linq assembly. This is because in
this project, we need to translate the LastUpdateVersion, which is of type
System.Data.Linq.Binary.

Adding a translator class
In this solution, we can't ask the Service Factory to create the translator classes. This
is because we now have to translate between the data contracts and the data entities
defined within the LINQ to SQL designer class, while Service Factory is restricted to
translating between the data contracts and the business entities defined within the
BusinessEntities project.

Because we can't use Service Factory, we have to manually add a translator class to
translate between the ProductEntity and the Product data contract. We will call
this translator class TranslateBetweenProductEntityAndProduct, and the source
code is very similar to the code in the previous chapters, except that now there is one
more property to translate—LastUpdateVersion.

The ProductEntity class here is the one inside the DataAccess layer
assembly, and not the one inside the BusinessEntities assembly.

The translator class should be as follows:

using System;
using MyWCF.LINQNorthwind.DataContracts;
using MyWCF.LINQNorthwind.DataAccess;

namespace MyWCF.LINQNorthwind.ServiceImplementation
{
 public static class TranslateBetweenProductEntityAndProduct
 {
 public static MyWCF.LINQNorthwind.DataAccess.ProductEntity
 TranslateProductToProductEntity(MyWCF.LINQNorthwind.
 DataContracts.Product from)
 {
 MyWCF.LINQNorthwind.DataAccess.ProductEntity to =
 new MyWCF.LINQNorthwind.DataAccess.ProductEntity();
 to.ProductID = from.ProductID;
 to.ProductName = from.ProductName;
 to.QuantityPerUnit = from.QuantityPerUnit;
 to.UnitPrice = from.UnitPrice;
 to.Discontinued = from.Discontinued;
 to.LastUpdateVersion = from.LastUpdateVersion;
 return to;

•

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[310]

 }

 public static MyWCF.LINQNorthwind.DataContracts.Product
 TranslateProductEntityToProduct(MyWCF.LINQNorthwind.
 DataAccess.ProductEntity from)
 {
 MyWCF.LINQNorthwind.DataContracts.Product to =
 new MyWCF.LINQNorthwind.DataContracts.Product();
 to.ProductID = from.ProductID;
 to.ProductName = from.ProductName;
 to.QuantityPerUnit = from.QuantityPerUnit;
 to.UnitPrice = from.UnitPrice;
 to.Discontinued = from.Discontinued;
 to.LastUpdateVersion = from.LastUpdateVersion;
 return to;
 }
 }
}

Implementing the GetProduct and UpdateProduct
operations
Finally, for the WCF service, we need to implement the operations in the service
contract. The Service Factory only generates empty operation methods, and we have
to write the code by ourselves.

To implement the two get and update operations, we need to add a new partial
class ProductService.cs to the project, and customize this to contain the
GetProduct and UpdateProduct methods. The GetProduct method is the same as
the one in Chapter 8, and the UpdateProduct method should be as follows:

public override UpdateProductResponse UpdateProduct(UpdateProductRequ
est request)
{
 ProductEntity productEntity;
 productEntity = TranslateBetweenProductEntityAndProduct.TranslateP
roductToProductEntity(request.Product);

 // call business entity layer to update a product
 bool updateResult = false;
 try
 {
 updateResult = productLogic.UpdateProduct(productEntity);
 }
 catch (Exception e)
 {

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[311]

 throw new FaultException<ProductFault>(new ProductFault("could
not update product. Error message:" + e.Message));
 }

 // create a response message
 UpdateProductResponse response = new UpdateProductResponse();
 response.UpdateResult = updateResult;

 // return the response message
 return response;
}

Inside this method, we first translate the Product object from the request message to
a ProductEntity object, and then call the business logic layer to update this project.
If there is anything wrong with this update, we throw a Fault back to the client.
Otherwise, we return a response message back to the client.

As you can see, the source code in the interface layer is almost identical to the code in
previous chapters, except for the different references to the ProductEntity class.

Creating the host application and the test
client
Now that we have the WCF service ready, we need to create a host application to
host it, and a test client to test it. We will use the Service Factory to model the Host,
and then customize it in subsequent sections. Once we have finished creating the
host and test applications, we will test the WCF service. We will see how LINQ to
SQL can help us to enhance the WCF service. Note that many steps here are very
similar to those described in Chapter 8, so you can refer to that chapter for more
information and screenshots if necessary.

Modeling the host application and the test
client
First, we need to model the host application, and generate a test client to test
the WCF service. We will use this test client to test the normal get and update
operations of the service, and then test the concurrent update control of the service.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[312]

Follow these steps to model the host application and the test client:

1.	 Add a new Host Model to the solution model project, with the name
LINQNorthwind.

2.	 Add a New Host Application to the LINQNorthwind Host model,
with the name LINQNorthwindHost, select WCF Extensions as the
Implementation Technology, and select MyWCF.LINQNorthwind.Host as
the Implementation Project.

3.	 Add a New Service Reference of LINQNorthwind ProductService to the
LINQNorthwind host application, with the name ProductServiceRef, and
change this reference's Enable Metadata Publishing property to True.

4.	 Add a New Endpoint for the Host application, with the name
ProductEndpoint.

5.	 Validate the model, and generate the Host application from the model.
6.	 Change the Host website MyWCF.LINQNorthwind.Host to use static port

number 8080.
7.	 Add a New Client Application to the Host model with the name

LINQNorthwindClient, select WCF Extensions as the Implementation
Technology, and select MyWCF.LINQNorthwind.Client as the
Implementation Project.

8.	 Add a New Proxy to the test client, with the name LINQNorthwindProxy,
and select ProductEndpoint for its Endpoint property.

9.	 Validate the model, and generate the client from the model. Don't forget that
you will need to start the host application before you can generate the client
application code.

Implementing the GetProduct functionality
Now that we have the Host application, and the test client generated, we will
customize the client application to test the new WCF service.

First, we would need to customize the test client to call the WCF service to get a
product from the database, so that we can test the GetProduct operation with LINQ
to SQL.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[313]

To simplify the process, we will customize the main form just as we did in Chapter 8.
So, the main form should be as shown in the following screenshot:

And the event handler of the Execute button should be as follows:

private void ExecuteButton_Click(object sender, EventArgs e)
{
 ProductServiceContractClient client =
 new ProductServiceContractClient();
 GetProductRequest request = new GetProductRequest();

 string result = "";
 try
 {
 request.ProductID = Int32.Parse(SearchText.Text.ToString());
 Product product = client.GetProduct(request);

 StringBuilder sb = new StringBuilder();
 sb.Append("ProductID:" + product.ProductID.ToString() +
 "\r\n");
 sb.Append("ProductName:" + product.ProductName + "\r\n");
 sb.Append("QuantityPerUnit:" + product.QuantityPerUnit +
 "\r\n");
 sb.Append("UnitPrice:" + product.UnitPrice.ToString() +
 "\r\n");
 sb.Append("Discontinued:" + product.Discontinued.ToString() +
 "\r\n");
 sb.Append("LastUpdateVersion:" + product.lastUpdateVersion.
 ToString());
 result = sb.ToString();
 }
 catch (TimeoutException ex)
 {
 result = "The service operation timed out. " + ex.Message;
 }
 catch (FaultException<ProductFault> ex)

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[314]

 {
 result = "ProductFault returned: " + ex.Detail.FaultMessage;
 }
 catch (FaultException ex)
 {
 result = "Unknown Fault: " + ex.ToString();
 }
 catch (CommunicationException ex)
 {
 result = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
 }
 catch (Exception ex)
 {
 result = "Other excpetion: " + ex.Message + ex.StackTrace;
 }

 txtResult.Text = result;
}

As you can see, this is almost identical to the code given in Chapter 8, except that the
formatting of the property UnitPrice is a little different here. This is because LINQ
to SQL has defined this property as System.Nullable<decimal>, and we have to
change the data type of this property in the data contract from Decimal to Decimal?.

We have also added the LastUpdateVersion to the displayed text, so that we know
the version of the record in the database.

Before you build this test client, you need to add the following using statements to
the class:

using MyWCF.LINQNorthwind.Client.LINQNorthwindProxy;
using System.ServiceModel;

Implementing the UpdateProduct functionality
Next, we need to modify the client program to call the UpdateProduct operation
of the web service. This method is particularly important to us, because we will use
this method to test the concurrent update control of LINQ to SQL. We will also need
it to explain the distributed transaction support of WCF in the next chapter. As this
functionality was not implemented in Chapter 8, we will explain how to implement
it in detail in this section.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[315]

First, we need to add some more controls to the form. We will modify the form UI
as follows:

1.	 Open the file MainForm.cs in the MyWCF.LINQNorthwind.Client project.
2.	 Add a label with text Product ID.
3.	 Add a textbox named txtProductID.
4.	 Add a button named updateButton with text &Update Price.
5.	 Add a label with text Update Result.
6.	 Add a textbox control named txtUpdateResult.

The form should now appear as shown in the following screenshot:

Now, double-click the Update Price button, and add the following event
handler method:

private void updateButton_Click(object sender, EventArgs e)
{
 ProductServiceContractClient client =
 new ProductServiceContractClient();
 GetProductRequest getRequest = new GetProductRequest();

 string result = "";
 try
 {
 // first get the product from database
 getRequest.ProductID = Int32.Parse(txtProductID.Text.
 ToString());
 Product product = client.GetProduct(getRequest);

 // then update its price by 1

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[316]

 product.UnitPrice += 1;

 // submit to database
 UpdateProductRequest updateRequest =
 new UpdateProductRequest();
 updateRequest.Product = product;
 result = client.UpdateProduct(updateRequest).ToString();
 }
 catch (TimeoutException ex)
 {
 result = "The service operation timed out. " + ex.Message;
 }
 catch (FaultException<ProductFault> ex)
 {
 result = "ProductFault returned: " + ex.Detail.FaultMessage;
 }
 catch (FaultException ex)
 {
 result = "Unknown Fault: " + ex.ToString();
 }
 catch (CommunicationException ex)
 {
 result = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
 }
 catch (Exception ex)
 {
 result = "Other excpetion: " + ex.Message + ex.StackTrace;
 }

 txtUpdateResult.Text = result;
}

Inside the Update Price button even handler listed above, we first get the product
from the database, then just update its price by 1, and submit it back to the database.
As you can see, we didn't do anything specific about the concurrent update control
of the update, but later we will explain how LINQ to SQL inside the WCF service
handles this for us.

As we did in the previous chapters, here too, we will capture all kinds of exceptions
and display appropriate messages for them.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[317]

Testing the GetProduct and
UpdateProduct operations
We can build and run the program to test the GetProduct and UpdateProduct
operations now.

1.	 On the Client form UI, enter 10 as the product ID in the top Product ID text
box, and click Execute to get the product details. Note that the unit price is
now 31.0000, as shown in following screenshot:

2.	 Now enter 10 as the product ID in the bottom Product ID text box, and click
the Update Price button to update its price. The Update Result should
be True.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[318]

3.	 Finally, click the Execute button again to get the product details for this
product, and you will see that the unit price has been updated to 32.0000.

Testing concurrent update manually
We can also test concurrent updates by using the client application.

In this section, we will start two clients and update the same product from these
two clients at same time. We will start one of the clients in debugging mode, so we
can control the execution time of the update. We will create a conflict between the
updates from these two clients so we can test if this conflict is properly handled by
LINQ to SQL.

The test sequence will be like this:

1.	 First client starts.
2.	 Second client starts.
3.	 First client reads the product information.
4.	 Second client reads the same product information.
5.	 Second client updates the product successfully.
6.	 First client tries to update the product, and fails.

The last step is where the conflict occurs, as the product has been updated in
between the read and the update by the first client.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[319]

Thee steps are described in detail below:

1.	 Start the host application in non-debugging mode.
2.	 Set a breakpoint on the following line in the MainForm.cs file, within the

updateButton_Click method (line 77):
	 product.UnitPrice += 1;

3.	 Start the client application in debugging mode by pressing F5. We will refer
to this client as the first client.

4.	 In this first client application, enter 10 in the top Product ID text box, and
click the Execute button to get the product's details. Note that the unit price
is 32.0000.

5.	 Now, still in this client application, enter 10 in the bottom Product ID
text box, and click the Update Price button. The program should stop at
the breakpoint we set earlier, and should be waiting for us to press F5
to continue.

6.	 From the Windows Explorer, go to the LINQNorthwindClient directory:
D:\SOAwithWCFandLINQ\Projects\LINQNorthwind\MyWCF.
LINQNorthwind\Tests\MyWCF.LINQNorthwind.Client\bin\Debug\

7.	 Double-click on the following client executable file to start another client. We
will refer to this client as the second client:
MyWCF.LINQNorthwind.Client.exe

8.	 In the second client application, enter 10 in the bottom Product ID text box,
and click the Update Price button.

9.	 The second client update is committed to the database, and the Update
Result value should be True. The price of this product has now been
increased by 1 in the database, and the LastUpdateVersion should also have
been updated to a new value.

10.	 In the second client, enter 10 in the top Product ID text box, and click the
Execute button to get product details. Note that the unit price is now 33.0000.

11.	 Go to Visual Studio 2008, and press F5 to let the first client application
continue. This client will first update the product, and then try to commit the
update back to the database.

12.	 The first client update fails with an error message could not update product.
Error message: Row not found or changed.

13.	 In the second client, click Execute again to get the product's details. You
will see that the unit price is still 33.0000, which means that the first client's
update didn't get committed to the database.

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[320]

The following image is for the second client. You can see the Update Result is True,
and the price after the update is 33.0000.

The following image is for the first client. You can see that the price before the
update is 32.0000, and the update fails with an error message.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[321]

From the test above, we know that the concurrent update is controlled by LINQ to
SQL. An optimistic locking mechanism is enforced, and one client's update won't
overwrite another client's update. The client that has a conflict will be notified by a
fault message.

Concurrent update locking is applied at the record level in the database. If two
clients try to update different records in the database, they will not interfere with
each other. For example, if you repeat the above steps to update product 10 in one
client and 11 in another client, there will be no problem at all.

Testing concurrent update automatically
In the previous section, we tested the concurrent update control of LINQ to SQL, but
as you can see, it is very complex, time consuming, and requires many steps. In this
section, we will use another way to test it. We will add new functionality to update
one product 100 times, and let two clients compete with each other, until one of the
updates fails.

This time, we will add another button called AutoButton, with the text Auto
Update, and then add the following OnClick event handler for this new button:

private void AutoButton_Click(object sender, EventArgs e)
{
 ProductServiceContractClient client =
 new ProductServiceContractClient();
 GetProductRequest getRequest = new GetProductRequest();
 bool bException = true;

 string result = "";
 try
 {
 getRequest.ProductID = Int32.Parse(txtProductID.Text.
 ToString());

 for (int i = 0; i < 100; i++)
 {
 // first get the product from database
 Product product = client.GetProduct(getRequest);

 // then update its price by 1
 product.UnitPrice += 1;

 // submit to database
 UpdateProductRequest updateRequest =
 new UpdateProductRequest();
 updateRequest.Product = product;
 result = client.UpdateProduct(updateRequest).ToString();

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[322]

 txtUpdateResult.Text = "Updated price to " +
 product.UnitPrice.ToString() + ", result is " + result;
 txtUpdateResult.Refresh();
 }
 bException = false;
 }
 catch (TimeoutException ex)
 {
 result = "The service operation timed out. " + ex.Message;
 }
 catch (FaultException<ProductFault> ex)
 {
 result = "ProductFault returned: " + ex.Detail.FaultMessage;
 }
 catch (FaultException ex)
 {
 result = "Unknown Fault: " + ex.ToString();
 }
 catch (CommunicationException ex)
 {
 result = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
 }
 catch (Exception ex)
 {
 result = "Other excpetion: " + ex.Message + ex.StackTrace;
 }

 if (bException)
 txtUpdateResult.Text = result;
}

The concept here is that once this button is clicked, it will keep updating the price
of the selected product 100 times, with a price increase of 1.00 with each iteration.
If two clients are running, and this button is clicked on both the clients, one of the
updates will fail as the other client will also updating the same record.

The sequence of the updates will be as follows:

1.	 The first client reads the product's details, updates the product, and commits
the changes back to the database.

2.	 The second client reads the product's details, updates the same product, and
commits the changes back to the database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[323]

3.	 At some point, these two sets of processes will cross, so the following events
will happen:

The first client reads the product's details
The first client processes the product in memory
The second client reads the product's details
The first client finishes processing, and commits the changes
back to the database
The second client finishes processing, and tries to commit the
changes back to the database
The second client update fails because it finds that the
product has been updated while it (the second client) was still
processing the product
The second client stops
The first client keeps updating the product until it has done
so 100 times

Now, follow these steps to finish this test:

1.	 Build the solution.
2.	 Run the program twice in non-debugging mode by pressing Ctrl+F5. Two

clients should be up and running.
3.	 From each client, enter 3 in the top Product ID text box, and click Execute to

get the product details. Both clients should display the price as 10.0000.
4.	 Enter 3 in the bottom Product ID box in each client, and click the Auto

Update button on each client. You should do this in quick succession in each
of the clients.

You will see that one of the client update fails while another one is keeping the
updates to the end of 100 times. Now the test is very easy, although the result is
the same.

°

°

°

°

°

°

°

°

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[324]

The following image shows the results in the successful client. As you can see, the
initial price of the product was 10.0000, but after the updates, it has been changed to
111.0000. From the source code, we know that this client only updates the price 100
times, with an increase of 1.00 each time, so we know that another client has updated
this product once.

The following image shows the results in the failed client. As you can see, the initial
price of the product is 10.000 but when this client tries to update the price, it fails
with the error message Row not found or changed. From this image, we don't know
how many times this client has updated the product successfully before it fails. But
from the results in the other client, we know that this client has updated the product
only once.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 12

[325]

However, if you enter two different product IDs in each client, both client updates
will be successful until all 100 updates have been made. This proves that locking is
applied on a record level of the database.

Summary
In this chapter, we have used LINQ to SQL to communicate with the database in
the data access layer, rather than use the raw ADO.NET APIs. We have used only
one LINQ statement to retrieve product information from the database, and as you
have seen, the updates with LINQ to SQL prove to be much easier than with the
raw ADO.NET data adapters. Now, WCF and LINQ are combined together for our
services, so we can take advantage of both technologies.

The key points covered in this chapter include:

Service Factory can be used to model the service, and generate source code
for the service interface layer projects.
The data access layer should be modeled with LINQ to SQL designer.
Business entity classes are all located inside the LINQ to SQL designer file,
within the data access layer.

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Applying LINQ to SQL to a WCF Service

[326]

The service interface layer and the business logic layer have to reference the
data access layer in order to use the entity classes.
Client applications still communicate with the service by exchanging
messages. The LINQ to SQL objects are not exposed to clients, and the
technology used in the data access layer is transparent to the clients.
When updating the database in the data access layer, the updated entity has
to be attached to a fresh LINQ to SQL DataContext object.
Concurrent updates are handled by LINQ to SQL naturally and easily. We
just need to add one more column to the database, and LINQ to SQL will do
the rest for us.

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction
Support of WCF

In the chapters so far, we have created a WCF service using LINQ to SQL in the
data access layer. Next, we will apply some settings so that this WCF service will
be a distributed service, which means that it can participate in distributed client
transactions, if there are any. Client applications will control the transaction scope
and decide whether a service should commit or rollback its transaction.

In this chapter, we will first verify that the LINQNorthwind WCF service that we built
in the previous chapter does not support distributed transaction processing. We will
then explain how to enhance this WCF service to support distributed transaction
processing, and how to configure all related computers to enable distributed
transaction support. As a proof, we will propagate a transaction from the client to the
WCF service, and verify that all sequential calls to the WCF service are within one
single distributed transaction. We will also explain the multiple database support
of the WCF service, and discuss how to configure MSDTC and the firewall for the
distributed WCF service.

We will cover the following topics in this chapter:

Creating the solution files
Testing the transaction behavior of the LINQNorthwind WCF service
Enabling transaction flow in the service bindings
Modifying the service operation contract to allow transaction flow
Modifying the service operation implementation to require a
transaction scope
Propagating a transaction from the client to the WCF service
Testing the multiple database support of the distributed WCF service

•

•

•

•

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[328]

Configuring the Distributed Transaction Coordinator for the distributed
WCF service
Configuring the firewall for the distributed WCF service

Creating the DistNorthwind solution
In this chapter, we will create a new solution based on the LINQNorthwind solution.
We will copy all of the source code from the LINQNorthwind directory to a new
directory, and then customize it to suit our needs.

Follow these steps to create the new solution:

1.	 Create a new directory named DistNorthwind under the existing
D:\SOAwithWCFandLINQ\Projects\ directory.

2.	 Copy all of files under the D:\SOAwithWCFandLINQ\Projects\
LINQNorthwind directory to the D:\SOAwithWCFandLINQ\Projects\
DistNorthwind directory.

3.	 Start Visual Studio 2008.
4.	 Open the solution LINQNorthwind under the DistNorthwind directory.
5.	 In the Solution Explorer, rename the solution to DistNorthwind. We will

leave all of other files as LINQ-something, but renaming the solution is
necessary, otherwise we may get confused as to which solution we are
working on.

6.	 Rebuild the DistNorthwind solution.

Testing the transaction behaviour of the
WCF service
Before explaining how to enhance this WCF service to support distributed
transactions, we will first confirm that the existing WCF service doesn't support
distributed transactions. In this section, we will test the following scenarios:

1.	 Create a client to call the service twice in one method.
2.	 The first service call should succeed and the second service call should fail.
3.	 Verify that the update in the first service call has been committed to the

database, which means that the WCF service does not support distributed
transactions.

4.	 Wrap the two service calls in one TransactionScope and redo the test.

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[329]

5.	 Verify that the update in the first service call has still been committed to
the database, which means the WCF service does not support distributed
transactions even if both service calls are within one transaction scope.

6.	 Add a second database support to the WCF service.
7.	 Modify the client to update both databases in one method.
8.	 The first update should succeed and the second update should fail.
9.	 Verify that the first update has been committed to the database, which

means the WCF service does not support distributed transactions with
multiple databases.

Creating a client to call the WCF service
sequentially
The first scenario to test is that, within one method of the client application, two
service calls will be made and one of them will fail. We then verify whether the
update in the successful service call has been committed to the database. If it has
been, it will mean that the two service calls are not within a single atomic transaction,
and will indicate that the WCF service doesn't support distributed transactions.

You can follow these steps to create a client for this test case:

1.	 In the Solution Explorer, right-click on the Tests folder under the solution
MyWCF.LINQNorthwind, and select Add | New Project … from the
context menu.

2.	 Select Visual C# | Console Application as the template.
3.	 Enter DistributedClient as the Name.
4.	 Click the OK button to create the new client project.

Now, the new test client should have been created and added to the solution. Let's
follow these steps to customize this client, so that we can call ProductService twice
within one method, and test the distributed transaction support of this WCF service:

1.	 Add a reference System.ServiceModel to this DistributedClient project.
2.	 Add a service reference of the product service to this

DistributedClient project. The namespace of this service reference
should be ProductServiceProxy, and the URL of the product service
should be like this:
http://localhost:8080/MyWCF.LINQNorthwind.Host/
ProductServiceRef.svc

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[330]

3.	 Add the following using statements to the Program.cs file:
	 using DistributedClient.ProductServiceProxy;
	 using System.ServiceModel;

4.	 Customize the Program.cs file like this:
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Text;
	 using DistributedClient.ProductServiceProxy;
	 using System.ServiceModel;
	
	 namespace DistributedClient
	 {
	 class Program
	 {
	 static void Main(string[] args)
	 {
	 MultiCallTest();
	 }
	 static void MultiCallTest()
	 {
	 ProductServiceContractClient client = new
 ProductServiceContractClient();
 GetProductRequest getRequest = new GetProductRequest();
 UpdateProductRequest updateRequest =
 new UpdateProductRequest();

 string exception = "";
 StringBuilder sb = new StringBuilder();
 sb.Append("Prices before update:");
 Product product;
 try
 {
 // update product 30
 // first get the product from database
 getRequest.ProductID = 30;
 product = client.GetProduct(getRequest);
 sb.Append(product.UnitPrice.ToString() + " ");

 // then update its price by 1
 product.UnitPrice += 1;

 // submit to database

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[331]

 updateRequest.Product = product;
 bool result1 = client.UpdateProduct(updateRequest);

 // update product 31
 // first get the product from database
 getRequest.ProductID = 31;
 product = client.GetProduct(getRequest);
 sb.Append(product.UnitPrice.ToString() + "\r\n");

 // then update its price
 product.UnitPrice = -10;

 // submit to database -- this update will fail
 updateRequest.Product = product;
 bool result2 = client.UpdateProduct(updateRequest);
 }
 catch (TimeoutException ex)
 {
 exception = "The service operation timed out. "
 + ex.Message;
 }
 catch (FaultException<ProductFault> ex)
 {
 exception = "ProductFault returned: " +
 ex.Detail.FaultMessage;
 }
 catch (FaultException ex)
 {
 exception = "Unknown Fault: " + ex.ToString();
 }
 catch (CommunicationException ex)
 {
 exception = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
 }
 catch (Exception ex)
 {
 exception = "Other excpetion: " + ex.Message +
 ex.StackTrace;
 }

 sb.Append("Prices after update:");
 getRequest.ProductID = 30;
 product = client.GetProduct(getRequest);
 sb.Append(product.UnitPrice.ToString() + " ");

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[332]

	 getRequest.ProductID = 31;
	 product = client.GetProduct(getRequest);
	 sb.Append(product.UnitPrice.ToString() + "\r\n");
	

	 Console.WriteLine(sb.ToString() + exception);
	 }
	 }
	 }

In the above test function, we first create a client object to the service, then update the
product 30's price by 1. We then try to update product 31's price to an invalid value.
At the end of the method, we display the prices of both products, both before and
after the update, so that they can be compared.

We know that the second update will fail due to a database constraint, but what
about the first update? Will it be committed to database, or will it be rolled back due
to the failure of the second update?

Testing the sequential calls to the WCF
service
Let's run the program now, to find out. Set the solution to start with the Host and
the DistributedClient, and then press F5 or Ctrl+F5 to run this program. We
will get an error message saying "could not update product", as shown in the
following image:

We know that the exception is due to the second service call, so the second update
should not be committed to the database. From the test result, we know this is true
(the second product price didn't change). However, from the test result, we also
know that the first update in the first service call has been committed to the database
(the first product price has been changed). This means that the first call to the service
is not rolled back even when a subsequent service call has failed. Therefore, each
service call is in a separate standalone transaction. In other words, the two sequential
service calls are not within one atomic transaction.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[333]

Wrapping the WCF service calls in one
transaction scope
But this test is not a complete distributed transaction test. On the client side, we
didn't explicitly wrap the two updates in one transaction. We should test to see what
will happen if we put the two updates within once transaction scope.

Follow these steps to wrap the two service calls in one transaction scope:

1.	 Add a reference to System.Transactions in the client project.
2.	 Add a using statement to the Program.cs file like this:
	 using System.Transactions;

3.	 Add a using statement to put both updates within one transaction scope.
Part of the source code should appear as shown here (we have omitted the
try/catch blocks inside this method):

	 static void MultiCallTest()
	 {
	 ProductServiceContractClient client = new
 ProductServiceContractClient();
	 GetProductRequest getRequest = new GetProductRequest();
	 UpdateProductRequest updateRequest =
 new UpdateProductRequest();

	 string exception = "";
	 StringBuilder sb = new StringBuilder();
	 sb.Append("Prices before update:");
	 Product product;
	 using (TransactionScope ts = new TransactionScope())
	 {
	 // the original try/catch blocks in this method
	 }

	 sb.Append("Prices after update:");
	 getRequest.ProductID = 30;
	 product = client.GetProduct(getRequest);
	 sb.Append(product.UnitPrice.ToString() + " ");
	 getRequest.ProductID = 31;
	 product = client.GetProduct(getRequest);
	 sb.Append(product.UnitPrice.ToString() + "\r\n");
	
	 Console.WriteLine(sb.ToString() + exception);
	 }

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[334]

Run the client program again, and you will find that even though we have wrapped
both updates within one transaction scope, the first update is still committed to the
database—it is not rolled back, even though the outer transaction on the client side
fails and requests all participating parties to roll back.

At this point, we have proved that the WCF service does not support distributed
transactions with multiple sequential service calls. Irrespective of whether the two
sequential calls to the service have been wrapped in one transaction scope or not,
each service call is treated as a standalone separate transaction, and they do not
participate in any distributed transaction.

Testing multiple database support of the WCF
service
In the previous sections, we tried to call the WCF service sequentially to update
records in the same database. We have proved that this WCF service does not
support distributed transactions. In this section, we will do one more test, that is,
to add a new operation—UpdateCategoryDesc—to this WCF service, to update
records in another database on another computer, and call this new operation
together with the original UpdateProduct operation, and then verify whether the
two updates to the two databases will be within one distributed transaction.

This new operation is very important for our distributed transaction support test,
because the distributed transaction coordinator will only be activated if more than
two servers are involved in the same transaction. For test purposes, we can't just
update two databases on the same SQL server, even though a transaction within
a single SQL server that spans two or more databases is actually a distributed
transaction. This is because the SQL server manages the distributed transaction
internally; to the user it operates as a local transaction.

We will follow these steps for this test:

1.	 Modify the data access layer to update a second database.
2.	 Modify the business logic layer to call the new data access layer methods.
3.	 Modify the service interface layer to expose a new service contract with two

new service operations.
4.	 Modify the host application to add a new endpoint for the new

service interface.
5.	 Modify the client to call the existing and new WCF service operations to

update two databases.
6.	 One of the updates will fail.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[335]

7.	 Verify that another update is committed to the database, which means
that the WCF service does not support distributed transactions, even with
multiple databases on different computers.

Modifying the data access layer for the second
database support
We will start from the data access layer. We will add a second database support to
the data access layer in this section. Follow these steps to add the necessary files to
this layer:

1.	 Discover another machine with the SQL server installed. We will refer to this
machine as the remote machine, going forward.

2.	 Install a Northwind database to this SQL server.
3.	 Open the DistNorthwind solution in Visual Studio 2008.
4.	 Open the connections.config file under the MyWCF.LINQNorthwind.

Host project.
5.	 Insert the following line to this file:
	 <add name="RemoteNorthwindConnectionString" providerName="System.
	 Data.SqlProvider" connectionString="server=remote_pc_name\
	 remote_db_instance;uid=your_db_user_name; pwd=your_db_password;
	 database=Northwind;" />

This defines a connection string to another Northwind database on another
computer, which we will use in the new operation.
Remember that you need to change this connection string according to your
real database environment, and you can also choose to use either Windows
trusted or SSPI security connections.

6.	 In the Solution Explorer, open Server Explorer, and add a connection to the
remote Northwind database.

7.	 Add a new LINQ to the SQL Class to the DataAccess project, with the name
RemoteNorthwind.dbml.

8.	 In the Server Explorer, drag the Categories table from the remote
Northwind database to the LINQ to SQL designer pane, and rename it to
CategoryEntity.

9.	 Add a new class file named CategoryDAL.cs to the DataAccess project.
10.	 Customize this new DAL class to look like this:
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[336]

	 using System.Text;
	 using System.Configuration;

	 namespace MyWCF.LINQNorthwind.DataAccess
	 {
	 public class CategoryDAL
	 {
	 string connectionString = ConfigurationManager.ConnectionS
 trings["RemoteNorthwindConnectionString"].ConnectionString;
	 public string GetCategoryDesc(int id)
	 {
	 RemoteNorthwindDataContext db = new RemoteNorthwindDat
 aContext(connectionString);
	 CategoryEntity categoryEntity =
 (from c in db.CategoryEntities
 where c.CategoryID == id
 select c).FirstOrDefault();
	 db.Dispose();

	 return categoryEntity.Description;
	 }
	 public bool UpdateCategoryDesc(int id, string desc)
	 {
	 // update a record in a remote database
	 RemoteNorthwindDataContext db = new RemoteNorthwindDat
 aContext(connectionString);
	 CategoryEntity categoryEntity =
 (from c in db.CategoryEntities
 where c.CategoryID == id
 select c).FirstOrDefault();
	 categoryEntity.Description = desc;
	 db.SubmitChanges();
	 db.Dispose();

	 return true;
	 }
	 }
	 }

As you can see, we have defined two methods in this new class. The first
method will get the description of a category from the remote Northwind
database, and the second one will update the description of a category in the
remote Northwind database.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[337]

To simplify the process, we didn't add error handling to these two methods.
However, in a real project, error handling should be built in from the very
beginning of the coding process.

Modifying the business logic layer for the second
database support
In this section, we will customize the business logic layer to support the second
database. Follow these steps to customize this layer:

1.	 Add a new class file CategoryLogic.cs to the BusinessLogic project.
2.	 Customize this new class to look like this:
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Text;
	 using MyWCF.LINQNorthwind.DataAccess;
	
	 namespace MyWCF.LINQNorthwind.BusinessLogic
	 {
	 public class CategoryLogic
	 {
	 CategoryDAL categoryDAL = new CategoryDAL();
	 public string GetCategoryDesc(int id)
	 {
	 return categoryDAL.GetCategoryDesc(id);
	 }
	 public bool UpdateCategoryDesc(int id, string desc)
	 {
	 return categoryDAL.UpdateCategoryDesc(id, desc);
	 }
	 }
	 }

In this layer, we just delegate the calls to the data access layer. In a real
project, there might be lots of logic applied here.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[338]

Modifying the service interface layer for the second
database support
Now, we can modify the service interface layer to expose two new operations.
We need to add three files to the FaultContracts, ServiceContracts, and
ServiceImplementation projects. Follow these steps to customize this layer:

1.	 Add a new class file called CategoryFault.cs to the MyWCF.
LINQNorthwind.FaultContracts project.

2.	 Customize this new class to look like this:
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Text;
	 using WcfSerialization = global::System.Runtime.Serialization;
	
	 namespace MyWCF.LINQNorthwind.FaultContracts
	 {
	 /// <summary>
	 /// Data Contract Class - CategoryFault
	 /// </summary>
	 [WcfSerialization::DataContract(Namespace = "http://mycompany.
 com", Name = "CategoryFault")]
	 public class CategoryFault
	 {
	 private string faultMessage;

	 [WcfSerialization::DataMember(Name = "FaultMessage",
 IsRequired = false, Order = 0)]
	 public string FaultMessage
	 {
	 get { return faultMessage; }
	 set { faultMessage = value; }
	 }				
	 public CategoryFault(string message)
	 {
	 this.faultMessage = message;
	 }
	 }
	 }

3.	 Add a new interface file named ICategoryServiceContract.cs to the
MyWCF.LINQNorthwind.ServiceContracts project.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[339]

4.	 Customize this new interface to look like this:
	 using System;
	 using System.Net.Security;
	 using WCF = global::System.ServiceModel;
	 using System.ServiceModel;
	
	 namespace MyWCF.LINQNorthwind.ServiceContracts
	 {
	 /// <summary>
	 /// Service Contract Class - CategoryServiceContract
	 /// </summary>
	 [WCF::ServiceContract(Namespace = "http://mycompany.com",
 Name = "CategoryServiceContract", SessionMode = WCF::
 SessionMode.Allowed, ProtectionLevel = ProtectionLevel.None)]
	 public interface ICategoryServiceContract
	 {
	 [WCF::FaultContract(typeof(MyWCF.LINQNorthwind.
 FaultContracts.CategoryFault))]
	 [WCF::OperationContract(IsTerminating = false,
 IsInitiating = true, IsOneWay = false, AsyncPattern
 = false, Action = "http://mycompany.com/
 CategoryServiceContract/UpdateCategoryDesc", ReplyAction
 = "http://mycompany.com/CategoryServiceContract/
 UpdateCategoryDesc", ProtectionLevel = ProtectionLevel.
 None)]
	 bool UpdateCategoryDesc(int id, string desc);

	 [WCF::OperationContract(IsTerminating = false,
 IsInitiating = true, IsOneWay = false, AsyncPattern =
 false, Action = "http://mycompany.com/
 CategoryServiceContract/GetCategoryDesc", ReplyAction
 = "http://mycompany.com/CategoryServiceContract/
 GetCategoryDesc", ProtectionLevel = ProtectionLevel.None)]
	 string GetCategoryDesc(int id);
	 }
	 }

5.	 Add a new class file named CategoryService.cs to the project MyWCF.
LINQNorthwind.ServiceImplementation.

6.	 Customize this new class to look like this:
	 using System;
	 using System.Collections.Generic;
	 using System.Linq;
	 using System.Text;
	 using MyWCF.LINQNorthwind.BusinessLogic;

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[340]

	 using WCF = global::System.ServiceModel;
	 using System.ServiceModel;
	 using MyWCF.LINQNorthwind.FaultContracts;
	 namespace MyWCF.LINQNorthwind.ServiceImplementation
	 {
	

	 /// <summary>
	 /// Service Class - CategoryService
	 /// </summary>
	 [WCF::ServiceBehavior(Name = "CategoryService",
	 Namespace = "http://mycompany.com",
	 InstanceContextMode = WCF::InstanceContextMode.PerSession,
	 ConcurrencyMode = WCF::ConcurrencyMode.Single)]
	 public class CategoryService : MyWCF.LINQNorthwind.
 ServiceContracts.ICategoryServiceContract
	 {
	 #region CategoryServiceContract Members
	 CategoryLogic categoryLogic = new CategoryLogic();

	 public virtual bool UpdateCategoryDesc(int id, string desc)
	 {
	 bool result;
	 try
	 {
	 result = categoryLogic.UpdateCategoryDesc(id, desc);
	 }
	 catch (Exception e)
	 {
	 throw new FaultException<CategoryFault>(
 new CategoryFault("could not update category.
 Error message:" + e.Message));
	 }
	 return result;
	 }

	 public virtual string GetCategoryDesc(int id)
	 {
	 return categoryLogic.GetCategoryDesc(id);
	 }
	

	 #endregion
	 }
	 }

In the ServiceContracts and ServiceImplementation projects, we just added
two service operations to get and update a category description. Here, we
didn't introduce any new data contract or message contract, so that we could
concentrate on the distributed transaction support test.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[341]

Modifying the service host for the second database
support
In the previous sections, we modified the WCF service to expose one more service
contract with two new operations. Now we need to modify the host application to
publish this new service contract.

Follow these steps to publish this new service contract:

1.	 Add a new text file to the MyWCF.LINQNorthwind.Host project, with the
name CategoryService.svc.

2.	 Type the following line into this new file:
	 <%@ ServiceHost language="c#" Debug="true" Service="MyWCF.
	 LINQNorthwind.ServiceImplementation.CategoryService" %>

3.	 Open the file web.config and add the following node as a child node of
<serviceBehaviors>:

	 <behavior name="MyWCF.LINQNorthwind.ServiceImplementation.
 CategoryService_Behavior">
	 <serviceDebug includeExceptionDetailInFaults="false" />
	 <serviceMetadata httpGetEnabled="true" />
	 </behavior>

4.	 Still in the file web.config, add the following node as a child node of
<services>:

	 <service behaviorConfiguration="MyWCF.LINQNorthwind.
 ServiceImplementation.CategoryService_Behavior"
	 name="MyWCF.LINQNorthwind.ServiceImplementation.CategoryService">
	 <endpoint address="" binding="basicHttpBinding"
 name="CategoryEndpoint"
	 bindingNamespace="http://mycompany.com" contract="MyWCF.
 LINQNorthwind.ServiceContracts.ICategoryServiceContract" />
	 <endpoint address="mex" binding="mexHttpBinding" contract=
 "IMetadataExchange" />
	 </service>

The above changes will publish the new service contract. You can follow these steps
to confirm this:

1.	 Save all of the files.
2.	 Rebuild the solution.
3.	 In the Solution Explorer, right-click on the project

MyWCF.LINQNorthwind.Host.
4.	 Select View in Browser from the context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[342]

Now, when the ASP.NET Development Server is be started, and an Internet browser
should pop up with the title of Directory Listing -- /MyWCF.LINQNOrthwind.
Host. Within this browser, two svc files should be listed. Click on the
CategoryService.svc, and you will see the introduction of this new service
and the WSDL link of this service.

Modifying the client for the second database
support
At this point, we have the new service implemented and hosted. Now, we can
modify the client to test the multi-database support of the WCF service. We will
prove that at this point the WCF service does not support distributed transactions
among multiple databases. Later in this chapter, after we have enhanced the
service, we will see that the WCF service supports distributed transactions among
multiple databases.

Follow these steps to modify the client:

1.	 Start the Host application in the ASP.NET Development Server.
2.	 In the Solution Explorer, right-click on the project DistributedClient.
3.	 Select Add Service Reference from the context menu.
4.	 Select or type the following address in the Address list box of the Add

Service Reference dialog window:
http://localhost:8080/MyWCF.LINQNorthwind.Host/
CategoryService.svc

You can also click the Discover button to discover this service.
5.	 Type CategoryServiceProxy as the namespace of the service reference.
6.	 Click OK to add the service reference.
7.	 Open the Program.cs file.
8.	 Add the following using statement to the class:
	 using DistributedClient.CategoryServiceProxy;

9.	 Add a new method call of MultiDBTest to the Main method. The Main
method now should look like this:

	 static void Main(string[] args)
	 {
	 MultiCallTest();
	 MultiDBTest();
	 }

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[343]

10.	 Add a new method called MultiDBTest to this file:
	 static void MultiDBTest()
	 {
	 ProductServiceContractClient productClient =
 new ProductServiceContractClient();
	 GetProductRequest getRequest = new GetProductRequest();
	 UpdateProductRequest updateRequest =
 new UpdateProductRequest();
	 CategoryServiceContractClient categoryClient =
 new CategoryServiceContractClient();

	 string exception = "";
	 StringBuilder sb = new StringBuilder();
	 sb.Append("Description and price before update:");
	 Product product;
	 using (TransactionScope ts = new TransactionScope())
	 {
	 try
	 {
	 // first get the category desc from database
	 sb.Append(categoryClient.GetCategoryDesc(4) + " ");
	 // first get the product from database
	 getRequest.ProductID = 30;
	 product = productClient.GetProduct(getRequest);
	 sb.Append(product.UnitPrice.ToString() + "\r\n");

	 // update category description
	 // submit to database
	 bool result1 = categoryClient.UpdateCategoryDesc(
 4,"Description updated at " + DateTime.Now.
 ToLongTimeString());

	 // update product price
	 product.UnitPrice = -10;
	 // submit to database -- this update will fail
	 updateRequest.Product = product;
	 bool result2 = productClient.UpdateProduct(
 updateRequest);
	 }
	 catch (TimeoutException ex)
	 {
	 exception = "The service operation timed out. " +
 ex.Message;
	 }
	 catch (FaultException<ProductFault> ex)
 {
 exception = "ProductFault returned: " + ex.Detail.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[344]

	 FaultMessage;
	 }
	 catch (FaultException<CategoryFault> ex)
	 {
	 exception = "CategoryFault returned: " +
 ex.Detail.FaultMessage;
	 }
	 catch (FaultException ex)
	 {
	 exception = "Unknown Fault: " + ex.ToString();
	 }
	 catch (CommunicationException ex)
	 {
	 exception = "There was a communication problem. " +
 ex.Message + ex.StackTrace;
	 }
	 catch (Exception ex)
	 {
	 exception = "Other excpetion: " + ex.Message +
 ex.StackTrace;
	 }
	 }

	 sb.Append("Description and price after update:");
	 sb.Append(categoryClient.GetCategoryDesc(4) + " ");
	 getRequest.ProductID = 30;
	 product = productClient.GetProduct(getRequest);
	 sb.Append(product.UnitPrice.ToString() + "\r\n");

	 Console.WriteLine(sb.ToString() + exception);
	 }

In this method, we first call the CategoryService to update the description of
category 4 in the remote Northwind database, then call the ProductService to
update product 30's price to make it an invalid price. We know the second update
will fail due to the database CHECK constraint, but what about the first service call?
Will the update of the category description be committed to the
remote database?

Testing the WCF service with two databases
Now, let's run the program to find out. Again, we will get an error message saying
"could not update product", as shown in the following image:

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[345]

Just as in the previous test, we know that the exception is due to the second service
call, so the second update is not committed to the database. From the test result, we
know this is true (product 30's price didn't change). However, from the test result,
we also know that the first update of the first service call has been committed to the
remote database (category 4's description has been changed). This means that the
first call to the service is not rolled back even when a subsequent service call has
failed. Each service call is in a separate standalone transaction. In other words, the
two sequential service calls are not within one atomic transaction.

From the output of the program, we also noticed that the price of product 30 has
been updated by 1.00 in the first method call (MultiCallTest).

Enabling distributed transaction support
In the previous sections, we verified that the WCF service currently does not support
distributed transactions, irrespective of whether these are two sequential calls to
the same service, or two sequential calls to two different services, either with one
database or with two databases.

In the following sections we will explain how to allow this WCF service to support
distributed transactions. We will allow this WCF service to participate in the client
transaction. From another point of view, we will explain how to flow or propagate a
client transaction across the service boundaries so that the client can include service
operation calls on multiple services in the same distributed transaction.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[346]

Enabling transaction flow in bindings
The first thing that we need to pay attention to is the bindings. As we learned in the
previous chapters, the three elements of a WCF service end point are the address, the
binding, and the contract (WCF ABC). Although the address has nothing to do with
the distributed transaction support, the other two elements do.

For the bindings, we know that WCF supports several different bindings, but not all
of these bindings are capable of propagating a transaction across service boundaries.
Actually, a transaction can only be propagated from a client application into a
WCF service with the following bindings: NetTcpBinding, NetNamedPipeBinding,
WSHttpBinding, WSDualHttpBinding, and WSFederationHttpBinding. In this
chapter, we will use WSHttpBinding as an example.

However, using a transaction-aware binding doesn't mean that a transaction will
be propagated to the service. Actually, the transaction propagation is disabled by
default. We have to enable it manually. Unsurprisingly, the attribute to enable
transaction flow in the bindings is called transactionFlow.

In the following two sections, we will do the following to enable the
transaction propagation:

Use wsHttpBinding on both the host and client applications as bindings
Set the value of the transactionFlow attribute to true on both the host and
client application binding configurations

Enabling transaction flow on the service application
In this section, we will enable transaction flow in bindings for both ProductService
and CategoryService.

1.	 In the Solution Explorer, open the web.config file under the folder
D:\...\MyWCF.LINQNorthwind.Host.

2.	 Change the following line:
	 <endpoint address="" binding=
 "basicHttpBinding" name="ProductEndpoint"

To this line:
	 <endpoint address="" binding="wsHttpBinding" bindingConfiguration=
 "transactionalWsHttpBinding" name="ProductEndpoint"

3.	 Change the following line:
	 <endpoint address="" binding=
 "basicHttpBinding" name="CategoryEndpoint"

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[347]

To this line:
	 <endpoint address="" binding="wsHttpBinding" bindingConfiguration=
 "transactionalWsHttpBinding" name="CategoryEndpoint"

4.	 Add the following node to the web.config file inside the node
system.serviceModel and in parallel with node services:

	 <bindings>
	 <wsHttpBinding>
	 <binding name="transactionalWsHttpBinding"
 transactionFlow="true" receiveTimeout="00:10:00"
 sendTimeout="00:10:00" openTimeout="00:10:00"
 closeTimeout="00:10:00" />
	 </wsHttpBinding>
	 </bindings>

In the above configuration file, we changed the bindings for both ProductService
and CategoryService from basicHttpBinding to wsHttpBinding, and set the
attribute transactionFlow of the binding to true. This will enable distributed
transaction support from the WCF service side.

Enabling transaction flow on the client application
Now the service is able to participate in a propagated transaction from the client
application, but the client is still not able to propagate a distributed transaction into
the service. In this section, we will enable the client to propagate a transaction to
the service.

We can modify the client configuration files directly, just as we did for the service
host application web.config file. However, in this example, we will ask Visual
Studio to regenerate the proxy and the configuration files for us.

1.	 Rebuild the solution.
2.	 In the Solution Explorer, right-click on the Host project, and select View in

Browser to start the Host application.
3.	 Right-click on the CategoryServiceProxy under the Service References

directory of the DistributedClient project.
4.	 Select Update Service Reference from the context menu.
5.	 Right-click on the ProductServiceProxy under the Service References

directory of the DistributedClient project.
6.	 Select Update Service Reference from the context menu.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[348]

Once the proxy files have been regenerated, the binding on the client side will be
changed from basicHttpBinding to wsHttpBinding, and the transactionFlow
attribute will be in the app.config file. However, at this time, the value of the
transactionFlow attribute is set to false in the app.config file. This is because the
code generator didn't find any operation that allows transaction propagation in the
service. It might find it to be wasteful to propagate a transaction to a service if this
propagated transaction is not going to be used anyway. For now, just leave it as
it is, because after we have modified the service operations we will modify this
value anyway.

You can build and run the client program now, but the result will be the same as
before; that is, the first update is still committed while the second one fails. This
is because even though the client transaction is now able to be propagated to the
service, the client chooses not to propagate it. And even though the service is now
ready to participate in the propagated transaction, no service operation has opted
to participate in this transaction. Next, we will explain how to configure service
operations to participate in the propagated transaction inside the service, and we
will also change the client to really propagate a transaction into the service.

Modifying the service operation contract to
allow a transaction flow
As we said in the previous section, the service operation needs to opt in to participate
in a distributed transaction. By default, it is opted out.

Two things need to be done in order to allow an operation to participate in a
propagated transaction. The first thing is to enable the transaction flow in operation
contracts. Follow these steps to enable this option:

1.	 Open the IProductServiceContract.cs file under the
MyWCF.LINQNorthwind.ServiceContracts project

2.	 Add a using statement such as this:
	 using System.ServiceModel;

3.	 Add the following line before the UpdateProduct method:
	 [WCF::TransactionFlow(TransactionFlowOption.Allowed)]

4.	 Open the ICategoryServiceContract.cs file under the
MyWCF.LINQNorthwind.ServiceContracts project.

5.	 Add a using statement such as this:
	 using System.ServiceModel;

6.	 Add the following line before method UpdateCategoryDesc:
	 [WCF::TransactionFlow(TransactionFlowOption.Allowed)]

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[349]

In the above code, we set the TransactionFlowOption of both UpdateProduct and
UpdateCategoryDesc operations to be Allowed. This means a transaction can be
propagated from the client to these two operations.

The three transaction flow options for a WCF service operation are Allowed,
NotAllowed and Mandatory, as shown in the following table:

Option Description
NotAllowed A transaction should not be flowed; this is

the default value
Allowed Transaction may be flowed
Mandatory Transaction must be flowed

Modifying the service operation
implementation to require a transaction scope
The second thing we need to do is to specify the TransactionScopeRequired
behavior for the service operation. This has to be done on the service
implementation project.

1.	 Open the ProductService.cs file under the MyWCF.LINQNorthwind.
ServiceImplementation project.

2.	 Add a using statement such as this:
	 using System.ServiceModel;

3.	 Add the following line before the UpdateProduct method:
	 [OperationBehavior(TransactionScopeRequired = true)]

4.	 Open the CategoryService.cs file under the MyWCF.LINQNorthwind.
ServiceImplementation project.

5.	 Add a using statement such as this:
	 using System.ServiceModel;

6.	 Add the following line before the UpdateCategoryDesc method:
	 [OperationBehavior(TransactionScopeRequired = true)]

The TransactionScopeRequired attribute means that for the UpdateProduct and
UpdateCategoryDesc methods, the whole service operation will always be executed
inside one transaction. If a transaction is propagated from the client application, this
operation will participate in this existing distributed transaction. If no transaction
is propagated, a new transaction will be created and this operation will be running
within this new transaction.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[350]

If you are interested, you can examine the ambient transaction inside the
WCF service (Transaction.Current), and compare it with the ambient
transaction of the client, to see if they are the same. You can also examine the
TransactionInformation property of the ambient transaction object to see if it is
a local transaction (TransactionInformation.LocalIdentifier), or a distributed
transaction (TransactionInformation.DistributedIdentifier).

Getting back to our example, we now need to regenerate the service proxy and the
configuration files from the client project, because we have changed the service
interfaces. However, in your real project, you shouldn't change any service interface;
once it goes live, you should version your service, and allow the client applications
to migrate to the new versions of the service.

These are the steps to regenerate the configuration and proxy files:

1.	 Rebuild the solution.
2.	 In the Solution Explorer, right-click on the Host project, and select View in

Browser to start the Host application.
3.	 Right-click on the CategoryServiceProxy under the Service References

directory of the DistributedClient project.
4.	 Select Update Service Reference from the context menu.
5.	 Right-click on the ProductServiceProxy under the Service References

directory of the DistributedClient project.
6.	 Select Update Service Reference from the context menu.

This time, after you have all of the configuration and proxy files regenerated, you
will find that the transactionFlow attribute is correctly populated as true in the
app.config file, because the code generator finds that some operations now really
allow transaction propagation.

Understanding distributed transaction
support of a WCF service
As we have seen now, distributed transaction support of a WCF service depends
on the binding of the service, the operation contract attribute, the operation
implementation behavior, and the client applications.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[351]

The following table shows some possible combinations of the WCF distributed
transaction support:

Binding permits
transaction flow

Client flows
transaction

Service
contract opts in
transaction

Service
operation
requires
transaction
scope

Possible result

True Yes Allowed or
mandatory

True Service executes
under the
flowed in
transaction

True or false No Allowed True Service creates
and executes
within a new
transaction

True Yes or No Allowed False Service executes
without a
transaction

True or false No Mandatory True or False SOAP exception
True Yes NotAllowed True or False SOAP exception

Testing the distributed transaction
support of the WCF service
Now that we have all of the supporting distributed transactions of the service and
the client, we will test this service. We will propagate a transaction from the client
to the service, test the multiple database support of the WCF service, and discuss
the Distributed Transaction Coordinator and Firewall settings for the distributed
transactions support of the WCF service.

Propagating a transaction from client to the
WCF service
In this section, we will re-run the distributed test client, and verify the distributed
transaction support of the enhanced WCF service.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[352]

Just press F5 or Ctrl+F5 to start the host and client applications. From the source
code, we know that in the first method it will try to update two products (30 and
31). Both updates are wrapped in one client transaction, which will be propagated
into the service, and the service will participate in this distributed transaction. Due to
the failure of the second update, the client application will roll back this distributed
transaction at the end, and the service should also roll back every update that is
within this distributed transaction. So, in the end, the first update should not be
committed to the database.

In the second method, it will try to update a category description (category 4) and
a product price (product 30). Both updates are wrapped in one client transaction,
which will be propagated into the service, and the service will participate in this
distributed transaction. Due to the failure of the second update, the client application
will roll back this distributed transaction at the end, and the service should also roll
back every update that is within this distributed transaction. So, in the end, the first
update should not be committed to the database.

From the output window, we can see that the first transaction fails due to the
database constraint. And we can also see that the prices of both products remain the
same, which proves that the first update has been rolled back. The second transaction
also fails due to the database constraint. We can also see that both the category
description and the product price remain the same, which proves that the first
update has been rolled back, too. From this output, we know that both method calls
are within a distributed transaction, and the WCF service now fully supports the
distributed transaction.

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[353]

If you didn't get a similar output as shown here, and instead got one of the following
error messages:

MSDTC on server 'xxxxxx' is unavailable
Network access for Distributed Transaction Manager(MSDTC) has
been disabled
The transaction has already been implicitly or explicitly committed
or aborted

Then it is possible that you haven't set your Distributed Transaction Coordinator or
firewall correctly. In this case, you can follow the instructions in the next two sections
to configure these settings.

Configuring the Distributed Transaction
Coordinator
In the previous section, when we called two services to update two databases on two
different computers, a distributed transaction was started. In this case, Microsoft
Distributed Transaction Coordinator (MSDTC) was activated to manage this
distributed transaction. If MSDTC hadn't been started or configured properly, the
distributed transaction would have failed.

To test this, we can disable MSDTC on the remote machine, and try to run the same
test to see what happens. You can follow these steps to disable MSDTC on the
remote machine:

1.	 Open Component Services from Control Panel | Administrative Tools on
the remote machine.

2.	 In the Component Services window, expand Component Services and
Computers, and then right-click on My Computer.

3.	 Select Properties from the context menu.
4.	 On the My Computer Properties window, click on the MSDTC tab.
5.	 Click the Security Configuration button.
6	 Uncheck Network DTC Access.

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[354]

Now, MSDTC on the remote machine is disabled. If you run the client again, you
may get this result:

Description and price before update:Description updated at 8:16:46 PM 55.8900

Description and price after update:Description updated at 8:16:46 PM 55.8900

CategoryFault returned: could not update category. Error message:MSDTC on
server '[remote_pc_name]' is unavailable.

If you uncheck Network DTC Access or Allow Outbound in the MSDTC Security
Configuration window on your local computer where your client application is
running, you may get this error message:

Description and price before update:Description updated at 8:16:46 PM 55.8900

Description and price after update:Description updated at 8:16:46 PM 55.8900

CategoryFault returned: could not update category. Error message:Network access
for Distributed Transaction Manager (MSDTC) has been disabled. Please enable
DTC for network access in the security configuration for MSDTC using the
Component Services Administrative tool.

This test tells us that the MSDTC must be enabled for the WCF service to support
distributed transactions. Now, change the settings back to the original values so
that we can continue our next test. You should have the following settings in your
MSDTC Security Configuration window for both your local and remote computers
(if your remote computer is a Windows 2003 box, you may need to select No
Authentication Required):

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[355]

You may have to restart the MSDTC service and your host application
after you have changed your MSDTC settings for the changes to
take effect.

Configuring the firewall
Even though the Distributed Transaction Coordinator has been enabled, the
distributed transaction may still have failed if the firewall is turned on and hasn't
been set up properly for MSDTC.

Download from Library of Wow! eBook <www.wowebook.com>

Distributed Transaction Support of WCF

[356]

To test this, follow these steps:

1.	 Open the Windows Firewall window from the Control Panel.
2.	 If the firewall is off, turn it on.
3.	 If Don't allow exceptions is checked, you can skip the next two steps.
4.	 Click on the Exceptions tab.
5.	 Uncheck (windows\system32\)msdtc.exe, if it is in the list.

Now, the firewall will block msdtc.exe. If you run the client again, you may get
this result:

Description and price before update:Description updated at 8:16:46 PM 55.8900

Description and price after update:Description updated at 8:16:46 PM 55.8900

CategoryFault returned: could not update category. Error message:The transaction
has already been implicitly or explicitly committed or aborted.

This means that the distributed transaction can't be started due to the firewall
blocking msdtc.exe. So, to run the distributed transaction, you need to either turn
off the firewall, or add windows\system32\msdtc.exe to the firewall exception list.

You may need to restart your host application after you have changed
your firewall settings. In some cases, you may also have to stop and then
restart your firewall for the changes to take effect.

Summary
In this chapter, we have discussed how to enable distributed transaction support
for a WCF service. Now, we can wrap sequential WCF service calls within one
transaction scope, and flow the distributed transaction into the WCF services. We
can also update multiple databases on different computers all within one single
distributed transaction.

The key points discussed in this chapter include:

Only certain bindings allow transactions to flow from the client to the WCF
service using the transactionFlow attribute
A WCF service operation contract can opt to participate in a propagated
transaction using the TransactionFlow attribute

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Chapter 13

[357]

A WCF service operation can specify its transaction behavior using the
TransactionScopeRequired attribute
MSDTC network access must be enabled for distributed transactions support
among multiple computers
The firewall has to be configured to allow msdtc.exe for a distributed
transaction to succeed

•

•

•

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Index
Symbols
.NET framework 33, 34
.NET Standard Query Operators 227

A
ADO.NET Entity Framework (EF)

about 235, 236
Conceptual Schema Definition Language

(CSDL) 236
Mapping Schema Language (MSL) 236
Storage Schema Definition Language

(SSDL) 236
anonymous types, LINQ 215, 216
automatic properties, LINQ 212, 213

B
business entities, creating 180
business logic, customizing 184, 185
business logic layer

about 90
adding 112
business logic project, adding 114-117
calling, from service interface layer 118, 119
implementing 306, 307
product entity project, adding 113, 114
WCF service, testing 122, 123

C
C# features. See LINQ
client, customizing 201, 202, 203
collection initializer, LINQ 214

concurrent update, LINQ to SQL
testing, automatically 321-325
testing, manually 318-321

D
data access layer

about 90
adding 126
calling, from business logic layer 128-130
connection string, adding to configuration

file 132-134
database, preparing 130, 132
database, querying (GetProduct) 134-136
database, updating (UpdateProduct)

140-142
GetProduct method, testing 136-139
implementing 303
project, creating 126, 127

data access layer, customizing
about 181
BusinessEntities project, reference adding

to 182
connection strings, adding 181, 182
data access class, adding 183, 184

database, LINQ to SQL
program, running 246, 247
records, deleting 245
records, inserting 245
records, querying 244
records, updating 245

data contracts, modeling 298, 299
data contracts modeling, service factory

about 158
data contract model, adding 160

Download from Library of Wow! eBook <www.wowebook.com>

[360]

product data contract, adding 161-163
product fault contract, adding 163, 164
solution, creating 158, 159

debugging, WCF service
about 77
client application, starting in debugging

mode 81
client application, starting in

non-debugging mode 80
WCF service, starting in debugging mode

78-80
debugging from client application,

HelloWorld WCF service
about 73, 74
debugging, enabling 74-76
debugging process, starting 71-73

deferred execution, LINQ to SQL
about 248
checking, SQL logs used 250, 251
checking, SQL profiler used 248, 249
for singleton methods 251, 252
for singleton methods, within sequence

expressions 252, 253
deferred loading

eager loading, with load options 255, 256
eager loading and filtered loading, merging

257
filtered loading, with load options 256
lazy loading 254
versus eager loading 253, 254

DistNorthwind solution, creating 328
distributed transaction support, enabling

service operation contract, modifying
348, 349

service operation implementation,
modifying 349, 350

transaction flow, enabling in bindings 346
transaction flow, enabling on client

application 347, 348
transaction flow, enabling on service

applications 346, 347
distributed transaction support,

WCF service
about 350, 351
enabling 346
testing 351

distributed transaction support testing,
WCF service

distributed transaction coordinator,
configuring 353-355

firewall, configuring 355, 356
transaction, propogating from client to

WCF service 351-353

E
eager loading

and filtered loading, merging 257
with load options 255, 256

EAI 8, 9
Enterprise Application Integration. See EAI
environment preparing, service factory

guidance automation packages, installing
157

microsoft service software factory,
installing 157

error handling, adding to service
client program, updating 146-150
fault contract, adding 143, 144
fault exception, testing 152-154
fault exception, throwing 145
just my code debugging option, disabling

150-152
extension methods, LINQ 216-221

F
fault contract, customizing 189, 190

G
GAT 157
GAX 156
Guidance Automation Extension. See GAX
Guidance Automation Toolkit. See GAT
guidance packages, service factory

Guidance Automation Extension (GAX)
156

Guidance Automation Toolkit (GAT) 157

H
HelloWorld solution, creating 35, 36
HelloWorld WCF service. See also WCF

service
debugging 70

Download from Library of Wow! eBook <www.wowebook.com>

[361]

hosting 61
HelloWorld WCF service, debugging

attaching, to WCF service process 82
from client application 71
just-in-time debugger 84-87
only WCF service 77
WCF service process, attaching to 82

HelloWorld WCF service, hosting
console application service, consuming 65
in console application 62-65
in internet information server 66
in managed application 62
in windows service 66

HelloWorld WCF service, hosting in
internet information server

files, creating 67
folders, creating 67
virtual directory, creating 68
WCF service, starting 69
WCF service, testing 69, 70

host application
adding, to host model 194-196
endpoint, adding 196, 197
generating 197, 198
modeling 193, 194

I
implementing, business logic layer 306, 307
implementing, data access layer

about 303
GetProduct, adding 304
UpdateProduct, adding 304-306

implementing, service interface layer
DataContract class, modifying 308
GetProduct operation implementing,

ServiceImplementation project
310, 311

ProductFault class, modifying 307
references, adding to

ServiceImplementation project 308
ServiceImplementation class,

modifying 308
translator class adding,

ServiceImplementation project
309, 310

UpdateProduct operation implementing,
ServiceImplementation project 310, 311

J
join operator, LINQ to SQL 258

L
lambda expressions, LINQ 221-224
Language-Integrated Query. See LINQ
lazy loading. See deferred loading
LINQ

about 210
anonymous types 215, 216
automatic properties 212, 213
built-in extension methods 224, 225
built-in operators 227, 228
collection initializer 214
extension methods 216-221
implicitly typed array 214
lambda expressions 221-224
method syntax 224, 225
new data type var 211, 212
object initializer 213, 214
project, creating 210
query expression 225-227
query syntax 225, 226, 227
test solution, creating 210

LINQNorthwind solution, creating 298
LINQ to Entities

and LINQ to SQL, differences 237, 238
LINQ to Objects

and LINQ to SQL, differences 235
LINQ to SQL

about 233, 234
advanced features 261
and LINQ to Entities, differences 237, 238
and LINQ to Objects, differences 235
applying, to WCF service 297
compiled query 270, 271
concurrent update, testing automatically

321-325
concurrent update, testing manually

318-321
concurrent updates, handling 279
database, querying 244
database, updating 245
deferred execution 248
direct SQL 271, 272

Download from Library of Wow! eBook <www.wowebook.com>

[362]

dynamic query 272, 273
GetProduct operation, testing 317
inheritance 273
LINQNorthwind solution, creating 298
Northwind database, modeling

239, 302, 303
programs, debugging 293-295
stored procedure, calling 262
test application, creating 238
transactions, support 287, 288
two tables, joining 258
UpdateProduct operation, testing 317
using, in .NET application 234
validations, adding to entity classes

292, 293
view, querying with 259

M
messages, translating 185-189
Microsoft Distributed Transaction

Coordinator. See MSDTC
models, implementation technology

for data contract model 171
for service contract model 169, 170
order property, changing for data members

171
property values, changing for service

contracts 170, 171
MSDTC 353, 354
multiple database support testing,

WCF service
business logic layer, modifying 337, 338
client, modifying 342-344
data access layer, modifying 335-337
service host, modifying 341, 342
service interface layer, modifying 338-340
steps 334
WCF service, testing with two databases

344, 345
multitargeting 34

N
new data type var, LINQ 211, 212
Northwind database, LINQ to SQL

connecting to 240, 241
LINQ to SQL, generated classes 243, 244

LINQ to SQL item, adding to project 239
modeling 239
tables, adding to design surface 242
views, adding to design surface 243

Northwind database, modeling 239, 302

O
O/R. See ORM
O/R mapping. See ORM
Object-Relational Mapping. See ORM
object initializer, LINQ 213, 214
ODBC 232
Open Database Connectivity. See ODBC
ORM

about 232
database, accesing from application 233
LINQ to SQL 233, 234

P
product service, customizing 191, 192
project, creating

C# WCF service application template used
92-94

C# WCF service library template used
91, 92

WCF templates used 90
project, LINQ

creating 210

Q
query expression, LINQ 225-227
query syntax, LINQ 225-227

S
service, layering

need for 89, 90
service, testing 204-207
service contracts, modeling 300, 301
service contracts modeling, service factory

connectors, adding 167-169
GetProduct operation, adding 165, 166
message contracts, adding 166, 167
ProductService contract model, adding

164, 165

Download from Library of Wow! eBook <www.wowebook.com>

[363]

service contracts, adding 167
service factory

about 155
data contracts, modeling 158
december 2006 and february 2008 version,

differences 158
environment, preparing 157
goals 156
Guidance Automation Extension (GAX)

156
guidance packages 156, 157
models, implementation technology

specifying 169
service contracts, modeling 164
source code, generating 172, 176, 177

service interface layer
about 90
app.config file, modifying 99-101
creating 94
data contracts, creating 96, 97
implementing 307
service contracts, implementing 98, 99
service interfaces, creating 94-96
service testing, own client used 106-112
service testing, WCF test client used

101-106
Service Oriented Architecture. See SOA
Simple Object Access Protocol. See SOAP
SOA

about 7, 8
and BPMN 10
from user perspective 11, 12
implementation, issues 12, 13
implementing, ways 10, 11
need for 9, 10
uses 9, 10

SOAP 16
source code, service factory

contract models, linking to projects 175, 176
contract models, validating 176
generating 176, 177
service projects, creating 172-175

source code generating, WCF service 301

T
tables joining, LINQ to SQL 258, 259

test application, LINQ to SQL
creating 238

test client
adding, to host model 198
client proxy, generating 199-201

test solution, LINQ
creating 210

V
version, service factory

december 2006 and february 2008,
differences 158

view, LINQ to SQL
querying with 259

visual studio 34

W
WAS 31
WCF

.NET frameworks 34
about 21, 22
architecture 24
concepts 25
production environment 33
using, for SOA 22, 23
visual studio 33

WCF address 25
WCF architecture 24
WCF channel stack 32
WCF concepts

address 25
behavior 30
bindings 25, 26
channels 32
contract 26
contract, data contract 28, 29
contract, fault contract 29
contract, message contract 27
contract, operation contract 26, 27
contract, service contract 26
endpoint 29, 30
hosting 30
hosting, IIS hosting 31
hosting, self hosting 31
hosting, windows activation services

hosting 31, 32

Download from Library of Wow! eBook <www.wowebook.com>

[364]

hosting, windows services hosting 31
metadata 32
service address, parts 25
service contract 26
WCF channel stack 32
WCF service endpoint, components 30

WCF contract 26
WCF service

business entities, creating 180
business logic layer, customizing 184
client, customizing 201-203
client proxy, generating 199-201
concurrent update, testing automatically

321-325
concurrent update, testing manually

318-321
data access layer 126
data access layer, customizing 181
data contracts, modeling 298, 299
debugging 77
DistNorthwind solution, creating 328
distributed transaction support,

combinations 351
distributed transaction support, enabling

345, 346
distributed transaction support, testing 351
error handling, adding to service 143
fault contract, customizing 189
GetProduct functionality, implementing

312-314
GetProduct operation, testing 317, 318
HelloWorldService service contract,

implementing 44, 45
HelloWorldService service contract

interface 42-44
HelloWorld solution, creating 35-42
host application, adding to host model

194-196
host application, creating 311
host application, modeling 193, 311, 312
hosting options 70
implementing, service factory used 180
LINQ to SQL, applying 297
messages, translating 185-189
modeling, service factory used 155
product service, customizing 191, 192
sample, EasyNorthwind service 179

service, testing 204-207
service contracts, modeling 300, 301
source code, generating 301
test client, adding to host model 198
test client, modeling 311, 312
transaction behavior, testing 328, 329
UpdateProduct functionality, implementing

314-316
UpdateProduct operation, testing 317, 318

WCF service, consuming
client application, customizing 57
client application, running 58
client application project, creating 55, 56
configuration files, generating 56, 57
proxy class, generating 56, 57
service application, setting to autostart

58, 59
WCF service, hosting options 70
WCF service, transaction behavior testing

client, creating 329-332
multiple database support, testing 334
sequential calls, testing 332
steps 328, 329
WCF service calls, wrapping in one transac-

tion scope 333, 334
WCF service contract interface 42
WCF service hosting, ASP.NET

development server used
ASP.NET development server 49, 50
host application, creating 46-48
host application, starting 54, 55
host application, testing 48, 49
svc file, adding to host application 50, 51
web.config file, adding to host application

52, 53
WCF service process, attaching to

client applications, running in non
debugging mode 82

WCF service, running in non debugging
mode 82

web services
about 14, 15
proxy 15, 16
SOAP 16
standards and specifications 16
WSDL 15

Download from Library of Wow! eBook <www.wowebook.com>

[365]

web services, standards and specifications
about 16
Web Services Interoperability Organization

(WS-I Profiles) 17
 WS-Addressing 17
WS-AtomicTransaction (AT) 18
WS-BusinessActivity (BA) 18
WS-Coordination 18
WS-ReliableMessaging 18
WS-Security 17
WS-Transaction 18

Web Services Description Language. See
WSDL

Web Services Interoperability Organization.
See WS-I Profiles

Web Service Software Factory. See service
factory

Windows Communication Foundation.
See WCF

Windows Process Activation Service 31
WS-Addressing 17
WS-AtomicTransaction (AT) 18
WS-BusinessActivity (BA) 18
WS-Coordination 18
WS-I Profiles 17
WS-ReliableMessaging 18
WS-Security 17
WS-Transaction 18
WSDL 15

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Thank you for buying
WCF Multi-tier Services
Development with LINQ

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Download from Library of Wow! eBook <www.wowebook.com>

Programming Windows Workflow
Foundation
ISBN: 1-904811-21-3 Paperback: 300 pages

A C# developer’s guide to the features and
programming interfaces of Windows
Workflow Foundation

1.	 Add event-driven workflow capabilities to your
.NET applications

2.	 Highlights the libraries, services and internals
programmers need to know

3.	 Builds a practical “bug reporting” workflow
solution example app

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-847195-50-0 Paperback: 239 pages

Build robust, scalable ASP.NET applications quickly
and easily

1.	 Master the architectural options in ASP.NET to
enhance your applications

2.	 Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one

3.	 Design scalable and maintainable web
applications rapidly

4.	 Implement ASP.NET MVC framework to
manage various components independently

Please check www.PacktPub.com for information on our titles

Download from Library of Wow! eBook <www.wowebook.com>

LINQ Quickly
ISBN: 978-1-847192-54-7 Paperback: 250 pages

A Practical Guide to Programming Language
Integrated Query with C#

1.	 LINQ to Objects

2.	 LINQ to XML

3.	 LINQ to SQL

4.	 LINQ to DataSets

5.	 LINQ to XSD

Software Testing with Visual
Studio Team System 2008
ISBN: 978-1-847195-58-6 Paperback: 350 pages

A comprehensive and concise guide to testing your
software applications with Visual Studio Team
System 2008

1.	 Test your software applications with Visual
Studio Team System 2008 and rest assured of
its quality

2.	 Create a structured testing environment for
your applications to produce reliable products

3.	 Comprehensive yet concise guide with a lot of
examples and clear explanations

4.	 No knowledge of software testing is required,
only basic knowledge of Visual Studio 2008
operation is expected

Please check www.PacktPub.com for information on our titles

Download from Library of Wow! eBook <www.wowebook.com>

	Cover
	Table of Contents
	Preface
	Chapter 1: SOA—Service Oriented Architecture
	What is SOA?
	Why SOA?
	How do we implement SOA?
	SOA from different users' perspectives
	Complexities in SOA implementation
	Web services
	What is a web service?
	Web service WSDL
	Web service proxy
	SOAP

	Web services: standards and specifications
	WS-I Profiles
	WS-Addressing
	WS-Security
	WS-ReliableMessaging
	WS-Coordination and WS-Transaction

	Summary

	Chapter 2: WCF – Windows Communication Foundation
	What is WCF?
	Why is WCF used for SOA?
	WCF architecture
	Basic WCF concepts—WCF ABCs
	Address
	Binding
	Contract
	Service contract
	Operation contract
	Message contract
	Data contract
	Fault contract

	Endpoint
	Behavior
	Hosting
	Self hosting
	Windows services hosting
	IIS hosting
	Windows Activation Services hosting

	Channels
	Metadata

	WCF production and development environments
	Summary

	Chapter 3: Implementing a Basic HelloWorld WCF Service
	Creating the HelloWorld solution and project
	Creating the HelloWorldService service contract interface
	Implementing the HelloWorldService service contract
	Hosting the WCF service in ASP.NET Development Server
	Creating the host application
	Testing the host application
	ASP.NET Development Server
	Adding an svc file to the host application
	Adding a web.config file to the host application
	Starting the host application

	Creating a client to consume the WCF service
	Creating the client application project
	Generating the proxy and configuration files
	Customizing the client application
	Running the client application
	Setting the service application to AutoStart

	Summary

	Chapter 4: Hosting and Debugging the HelloWorld WCF Service
	Hosting the HelloWorld WCF service
	Hosting the service in a managed application
	Hosting the service in a console application
	Consuming the service hosted in a console application

	Hosting the service in a Windows service
	Hosting the service in the Internet Information Server
	Preparing the folders and files
	Creating the virtual directory
	Starting the WCF service in the IIS
	Testing the WCF service hosted in the IIS

	Advanced WCF service hosting options

	Debugging the HelloWorld WCF service
	Debugging from the client application
	Starting the debugging process
	Debugging on the client application
	Enabling debugging of the WCF service
	Stepping into the WCF service

	Debugging only the WCF service
	Starting the WCF Service in debugging mode
	Starting the client application in non-debugging mode
	Starting the WCF service and client applications in debugging mode

	Attaching to a WCF service process
	Running the WCF service and client applications in non-debugging mode
	Debugging the WCF service hosted in IIS

	Just-In-Time debugger

	Summary

	Chapter 5: Implementing a WCF Service in the Real World
	Why layering a service?
	Creating a new solution and project using WCF templates
	Using the C# WCF service library template
	Using the C# WCF service application template

	Creating the service interface layer
	Creating the service interfaces
	Creating the data contracts
	Implementing the service contracts
	Modifying the app.config file
	Testing the service using WCF Test Client
	Testing the service using our own client

	Adding a business logic layer
	Adding the product entity project
	Adding the business logic project
	Calling the business logic layer from the service interface layer
	Testing the WCF service with a business logic layer

	Summary

	Chapter 6: Adding Database Support and Exception Handling to the RealNorthwind WCF Service
	Adding a data access layer
	Creating the data access layer project
	Calling the data access layer from the business logic layer
	Preparing the database
	Adding the connection string to the configuration file
	Querying the database (GetProduct)
	Testing the GetProduct method
	Updating the database (UpdateProduct)

	Adding error handling to the service
	Adding a fault contract
	Throwing a fault exception
	Updating client program to catch the fault exception
	Disabling the Just My Code debugging option
	Testing the fault exception

	Summary

	Chapter 7: Modeling a WCF Service with Service Factory
	What is the Service Factory?
	What are Guidance Packages?
	Preparing environments
	Installing Guidance Automation packages
	Installing Microsoft Service Software Factory

	Differences between the December 2006 version and the February 2008 version
	Modeling the data contracts
	Creating the solution
	Adding the data contract model
	Adding the product data contract
	Adding the product fault contract

	Modeling the service contracts
	Adding the ProductService contract model
	Adding the GetProduct operation
	Adding the message contracts
	Adding the service contracts
	Adding the connectors

	Specifying the implementation technology for the models
	Choosing the implementation technology for service contract model
	Changing the property values for service contracts
	Choosing the implementation technology for the data contract model
	Changing the order property for data members

	Generating source code
	Creating the service projects
	Linking contract models to projects
	Validating the contract models
	Generating the source code

	Summary

	Chapter 8: Implementing the WCF Service with Service Factory
	Creating the business entities
	Customizing the data access layer
	Adding the connection strings
	Adding a reference to the BusinessEntities project
	Adding the data access class

	Customizing the business logic
	Translating the messages
	Customizing the Fault contract
	Customizing the product service
	Modeling the host application and the test client
	Modeling the host application
	Generating the host application
	Adding the test client to the host model
	Generating the client proxy

	Customizing the client
	Testing the service
	Summary

	Chapter 9: Introducing Language-Integrated Query (LINQ)
	What is LINQ
	Creating the test solution and project
	New data type var
	Automatic properties
	Object initializer
	Collection initializer
	Anonymous types
	Extension methods
	Lambda expressions
	Built-in LINQ extension methods and method syntax
	LINQ query syntax and query expression
	Built-in LINQ operators
	Summary

	Chapter 10: LINQ to SQL: Basic Concepts and Features
	ORM—Object-Relational Mapping
	LINQ to SQL

	Comparing LINQ to SQL with LINQ to Objects
	LINQ to Entities
	Comparing LINQ to SQL with LINQ to Entities
	Creating LINQ to SQL test application
	Modeling the Northwind database
	Adding a LINQ to SQL item to the project
	Connecting to the Northwind database
	Adding tables and views to the design surface
	Generated LINQ to SQL classes

	Querying and updating the database with a table
	Querying records
	Updating records
	Inserting records
	Deleting records
	Running the program

	Deferred execution
	Checking deferred execution with SQL profiler
	Checking deferred execution with SQL logs
	Deferred execution for singleton methods
	Deferred execution for singleton methods within sequence expressions

	Deferred (lazy) loading versus eager loading
	Lazy loading by default
	Eager loading with load options
	Filtered loading with load options
	Combining eager loading and filtered loading

	Joining two tables
	Querying a view
	Summary

	Chapter 11: LINQ to SQL: Advanced Concepts and Features
	Calling a stored procedure
	Calling a simple stored procedure
	Mapping a stored procedure to an entity class
	Handling output parameters, return codes, multiple shapes of a single result-set, and multiple result-sets
	Creating a complex stored procedure
	Modeling the stored procedure
	Customizing DataContext class for the stored procedure
	Testing the stored procedure

	Compiled query
	Direct SQL
	Dynamic query
	Inheritance
	LINQ to SQL single-table inheritance
	Modeling the BaseProduct and Beverage classes
	Modeling the Seafood class
	The generated classes with inheritance
	Testing the inheritance

	Handling simultaneous (concurrent) updates
	Detecting conflicts using the Update Check property
	Writing the test code
	Testing the conflicts

	Detecting conflicts using a version column
	Adding a version column
	Modeling the products table with a version column
	Writing the test code
	Testing the conflicts

	Transactions support
	Implicit transactions
	Explicit transactions
	Participating in existing ADO.NET transactions

	Adding validations to entity classes
	Debugging LINQ to SQL programs
	Summary

	Chapter 12: Applying LINQ to SQL to a WCF Service
	Creating the LINQNorthwind solution
	Modeling the data contracts
	Modeling the service contracts
	Generating the source code
	Modeling the Northwind database
	Implementing the data access layer
	Adding GetProduct to the data access layer
	Adding UpdateProduct to the data access layer

	Implementing the business logic layer
	Implementing the service interface layer
	Modifying the ProductFault class
	Modifying the DataContract class
	Modifying the ServiceImplementation class
	Adding references to the project
	Adding a translator class
	Implementing the GetProduct and UpdateProduct operations

	Creating the host application and the test client
	Modeling the host application and the test client
	Implementing the GetProduct functionality
	Implementing the UpdateProduct functionality

	Testing the GetProduct and UpdateProduct operations
	Testing concurrent update manually
	Testing concurrent update automatically
	Summary

	Chapter 13: Distributed Transaction Support of WCF
	Creating the DistNorthwind solution
	Testing the transaction behaviour of the WCF service
	Creating a client to call the WCF service sequentially
	Testing the sequential calls to the WCF service
	Wrapping the WCF service calls in one transaction scope
	Testing multiple database support of the WCF service
	Modifying the data access layer for the second database support
	Modifying the business logic layer for the second database support
	Modifying the service interface layer for the second database support
	Modifying the service host for the second database support
	Modifying the client for the second database support
	Testing the WCF service with two databases

	Enabling distributed transaction support
	Enabling transaction flow in bindings
	Enabling transaction flow on the service application
	Enabling transaction flow on the client application

	Modifying the service operation contract to allow a transaction flow
	Modifying the service operation implementation to require a transaction scope

	Understanding distributed transaction support of a WCF service
	Testing the distributed transaction support of the WCF service
	Propagating a transaction from client to the WCF service
	Configuring the Distributed Transaction Coordinator
	Configuring the firewall

	Summary

	Index

