S R
E AT

Profess.i Expertise Dist

WS-BPEL 2.0 for SOA Composite
Applications with Oracle SOA Suite 11g

Foreword by

Clemens Utschig-Utschig, Sr. Principal Product Manager, Oracle SOA Suite
Harish Gaur, Director, Product Management, Oracle Fusion Middleware
Markus Zirn, VP Product Management, Oracle Fusion Middleware

professional expertise disfilled

Matjaz B. Juric Marcel Krizevnik [PACKT] emerprise&!

PUBLISHING

http://www.allitebooks.org

WS-BPEL 2.0 for SOA
Composite Applications with
Oracle SOA Suite 11g

Define, model, implement, and monitor real-world BPEL
business processes with SOA-powered BPM

Matjaz B. Juric

with Marcel Krizevnik

enterprise 8

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

WS-BPEL 2.0 for SOA Composite Applications with
Oracle SOA Suite 11g

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010
Production Reference: 1010910

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847197-94-8
www . packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Matjaz B. Juric

Co-Author
Marcel Krizevnik

Reviewers
Harish Gaur

Clemens Utschig-Utschig

Acquisition Editor
James Lumsden

Development Editor
Wilson D'souza

Technical Editors
Neha Damle

Vinodhan Nair

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukher;ji

Project Coordinator
Prasad Rai

Proofreader
Sandra Hopper

Graphics
Nilesh R. Mohite

Production Coordinator
Kruthika Bangera

Adline Swetha Jesuthas

Cover Work
Kruthika Bangera

[vww allitebooks.cond

http://www.allitebooks.org

Foreword

Before the advent of SOA, integration was nothing less than an IT nightmare. Any
integration project imposed a tremendous financial and resource burden on the
IT department. In many cases, integration was solved with point solutions: here a
database link, there a file transfer.

With SOA, things started to look better. SOA allowed organizations to take on
integration challenges head-on. SOA provided an opportunity for organizations to
build services once and reuse everywhere. Reusability fastened the implementation
timelines and reduced the maintenance costs.

As SOA started becoming mainstream and the de-facto choice for standards-based
integration, organizations have started expanding their SOA footprint and its

use. SOA is no longer just about faster integration. With SOA and the advent of
BPM, organizations are now looking to optimize inefficient processes, bring agility
through a rules-driven approach, determine visibility into key business metrics,
and empower business users to participate in the SOA lifecycle, and so on. These
requirements go beyond a simple integration between two applications. SOA is fast
becoming an approach to drive IT agility.

However, this expanded role of SOA is not without its own perils. For SOA to
optimize business processes, drive agility, and improve visibility, organizations have
to bring several technologies together — orchestration engine, rules engine, process
modeling tools, process monitoring tools, and data service bus. With different tools
from different vendors, the integration challenge has moved to a new level now.
Before integrating processes and data, organizations have to first integrate tools and
technologies. In short, the solution is now the new problem.

[vww allitebooks.cond

http://www.allitebooks.org

This is where Oracle SOA Suite brings sanity back in the integration landscape.
Oracle SOA Suite 11¢ has been created to provide a unified and integrated
experience throughout the entire SOA lifecycle. It has been designed with a

goal of shielding developers, IT operations, and business users from underlying
infrastructure complexity and providing an experience they would have gotten had
they used just one single tool. Oracle SOA Suite 11¢ brings together an orchestration
engine (BPEL Process Manager), a rules engine (Oracle Business Rules), modeling
tools (JDeveloper integration with BPA Suite), a process monitoring tool (Oracle
BAM), and a data service bus (Oracle Service Bus). But, what makes Oracle SOA
Suite really stand apart is how integrated this stack is.

When you read this book, you will see how developers don't have to leave their
unified console to business SOA applications and work with all SOA artifacts
(processes, rules, activity sensors, services, XML, SQL). Similarly, IT administrators
have a single application to install, cluster, and manage their entire SOA deployment,
greatly simplifying their duties. And the good news is everything is standards based.

As you start building SOA applications, this book will be your trustworthy companion.
Along with how-to tutorials, you will also get to hear interesting insights on competing
standards, architecture patterns, and best practices. This book is a true successor of
Oracle BPEL. We would like to thank Matjaz for putting this together.

May SOA force be with you!

Clemens Utschig-Utschig, Sr. Principal Product Manager, Oracle SOA Suite
Harish Gaur, Director, Product Management, Oracle Fusion Middleware

Markus Zirn, VP Product Management, Oracle Fusion Middleware

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Matjaz B. Juric holds a Ph.D. in computer and information science. He is a professor
at the university and head of the Cloud Computing and SOA Competence Center.
Matjaz is Java Champion and Oracle ACE Director. He has more than 15 years

of work experience. He has authored/coauthored Business Process Driven SOA using
BPMN and BPEL, Business Process Execution Language for Web Services (English and
French editions), BPEL Cookbook: Best Practices for SOA-based integration and composite
applications development (award for best SOA book in 2007 by SOA World Journal),

SOA Approach to Integration, Professional J2EE EAI, Professional E|B, J2EE Design Patterns
Applied, and .NET Serialization Handbook. He has published chapters in More Java

Gems (Cambridge University Press) and in Technology Supporting Business Solutions
(Nova Science Publishers). He has also published in journals and magazines, such

as SOA World Journal, Web Services Journal, Java Developer's Journal, Java Report,
Java World, EAI Journal, Theserverside.com, OTN, ACM journals, and presented at
conferences such as OOPSLA, Java Development, XML Europe, OOW, SCI, and others.
He is a reviewer, program committee member, and conference organizer. Matjaz has
been involved in several large-scale projects.

In cooperation with IBM Java Technology Centre, he worked on performance
analysis and optimization of RMI-IIOP, an integral part of the Java platform. Matjaz
is also a member of the BPEL Advisory Board.

My efforts in this book are dedicated to my family. Special thanks
to my dear beautiful Ana. Thanks to my friends at SOA, Cloud
Computing Center, and at Packt Publishing.

[vww allitebooks.cond

http://www.allitebooks.org

Marcel Krizevnik is a researcher at the University of Maribor, where he is
preparing a Ph.D. in computer and information science. Marcel started his career

as a software developer of chemistry information systems. Now, his main research
areas are service-oriented architecture and cloud computing. He is also a member

of the SOA Competency Center and Cloud Computing Center. In the last three years,
he has been involved in several SOA technology projects.

I would like to thank my dear and beautiful Lucija for standing
beside me throughout my career and while writing this book.

vww allitebooks.conl

http://www.allitebooks.org

About the Reviewers

Harish Gaur has more than thirteen years of experience in the enterprise software
industry, including more than seven years at Oracle. He is currently the Director of
Product Management for Fusion Middleware at Oracle. In his current role, he works
closely with strategic customers implementing SOA and BPM using Oracle Fusion
Middleware. He is co-author of BPEL Cookbook (2007) and Fusion Middleware Patterns
(September, 2010).

Before Oracle, he worked as a Solution Specialist with Vitria Technology, educating
customers about the benefits of Business Process Management. Prior to that, he
helped Fortune 500 companies architect scalable integration solutions using EAI
tools like webMethods and CrossWorlds (now IBM).

Harish holds an engineering degree in Computer Science and has an MBA from
Haas School of Business, UC Berkeley.

Clemens Utschig-Utschig works as Platform Architect for the SOA Product
Management team at Oracle Headquarters, USA.

As a native Austrian, he started his career years back at the local consulting branch,
helping customers designing their next generation JEE and SOAs, as well as doing
crisis management for projects abroad.

Since his transfer almost five years ago into engineering, Clemens is responsible
for cross-product integration and strategic standards, as well as being a member
of Oracle's SOA platform steering committee. In his current role, he serves on the
OASIS TC for Service Component Architecture (SCA) and supports customers all
around the world on their journey towards implementing enterprise-wide SOA.

In 2006 Clemens co-founded the "Masons-of-SOA", an inter-company network
founded by architects of Oracle Germany, Opitz, SOPEra (Eclipse Project Swordfish
founders), and EDS, with the mission of spreading knowledge, fostering discussion,
and supporting SOA programs across companies and borders.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Introduction to BPEL and SOA 7
Why business processes matter 8
Business and IT alignment 10
Service-Oriented Architecture 11
BPEL 13
Services 13
How to develop services 14
SOA concepts 15
Services 16
Interfaces 16
Messages 16
Loose Coupling 17
Reusability 17
Registries and repositories 17
Quality of Service 17
Composition of services into business processes 18
SOA building blocks 18
BPEL for process automation 21
Web Services 23
How Web Services differ from their predecessors 24
Web Services technology stack 25
Enterprise Service Bus 26
ESB features 27
Registry and repository 29
Human task support and identity management 31
Process Monitoring or Business Activity Monitoring 32
Business Rules Management Systems (BRMS) or Rule Engine 34
Adapters 34

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Service Component Architecture 35
SOA governance 38
Understanding BPEL 38
BPEL features 40
Orchestration and choreography 41
Executable and abstract processes 43
Relation of BPEL to other languages 44
XLANG 45
WSFL 46
BPML 46
ebXML BPSS 47
YAWL 48
WSCL 48
WSCI 49
WS-CDL 49
BPMN 50
BPEL servers overview 52
The future of BPEL 54
Summary 54
Chapter 2: Service Composition with BPEL 55
Developing business processes with BPEL 56
Core concepts 57
Invoking services 61
Invoking asynchronous services 63
Synchronous/Asynchronous business processes 64
Understanding links to partners 65
Partner link types 67
Defining partner links 70
BPEL process tag 71
Variables 72
Providing the interface to BPEL processes: <invoke>,
<receive>, and <reply> 73
<invoke> 74
<receive> 74
<reply> 75
Assignments 76
Validating variables 80
Accessing variables in expressions 80
XSLT transformations 82
Conditions 83

Lii]

Table of Contents

Activity names 84
Documentation 85
BPEL business process example 85
Involved services 88
Employee Travel Status service 88
Airline service 91
WSDL for the BPEL process 94
Partner link types 95
Business process definition 98
BPEL process outline 100
Partner links 100
Variables for the Travel Process 102
BPEL process main body 103
Asynchronous BPEL example 107
Modify the BPEL Process WSDL 108
Modify partner link types 109
Modify the BPEL process definition 110
Summary 111
Chapter 3: Advanced BPEL 113
Advanced activities 114
Loops 114
While 115
Repeat Until 116

For Each 17
Delays 119
Deadline and duration expressions 120
Empty activities 122
Ending a process 122
Fault handling and signaling 122
WSDL faults 123
Signaling faults 124
Signaling faults to clients in synchronous replies 125
Signaling faults to clients in asynchronous scenarios 127
Handling faults 129
Selection of a fault handler 131
Synchronous example 132
Asynchronous example 134
Propagating faults 136
Default fault handler 136
Inline fault handling 136
Scopes 139
Example 141
First scope 145
Second scope 147
Third scope 150

[iii]

Table of Contents

Isolated scopes 151
Compensation 152
Compensation handlers 153
Example 155
Default compensation handler 156
Invoking compensation handlers 156
Termination handler 158
Default termination handler 158
Managing events 159
Pick activity 160
Message events 160
Alarm events 161
Example 162
Event handlers 163
<onEvent> 164
<onAlarm> 166
Business process lifecycle 168
Correlation and message properties 170
Message properties 171
Mapping properties to messages 172
Extracting properties 174
Properties and assignments 174
Correlation sets 175
Using correlation sets 176
Concurrent activities and links 178
Sources and targets 179
Example 180
Transition conditions 189
Join conditions and link status 191
Join failures 192
Suppressing join failures 193
Dynamic partner links 194
Message exchanges 197
From-parts and to-parts 198
<fromParts> 199
<toParts> 200
Abstract business processes 201
Generating BPEL from BPMN diagrams 203
Summary 204
Chapter 4: Using BPEL with Oracle SOA Suite 11g 205
Overview 206
BPEL Component Designer 206
BPEL Service Engine 207

[iv]

Table of Contents

Database 208
Enterprise Manager Console (EM) 208
Building composite applications with SOA Composite Editor 209
Service components 210
Binding components 211
Wires 212
Development of BPEL processes in JDeveloper 213
Defining XML schemas 215
Defining a WSDL interface 216
Creating an SOA composite application 217
Adding the BPEL Process service component 219
Adding references 222
BPEL process implementation 224
Adding partner links 226
Adding variables 227
Adding process activities 229
Validating BPEL processes 239
Testing SOA composite applications 240
Deploying SOA composite applications 247
Deploying from JDeveloper 248
Creating configuration plans in JDeveloper 254
Deploying using Ant Scripts 256
Managing SOA composite applications 257
Managing SOA composites using JDeveloper 258
Managing SOA composites using Enterprise Manager Console 259
Deploying and undeploying SOA composite applications 260
Initiating an SOA composite application test instance 264
Viewing the SOA composite instances flow trace 266
Automatic testing of SOA composite instances 270
Developing and deploying BPEL 2.0 processes 273
Summary 276
Chapter 5: BPEL Extensions, Dynamic Parallel Flow, Dynamic
Partner Links, Notification Service, Java Embedding, and Fault
Management Framework 277
Extension functions and activities 278
Transformation and query support 280
Data and array manipulation 281
XML manipulation 283
Date and time expressions 284
Process identification 285
LDAP access and user management 285

[v]

Table of Contents

Dynamic parallel flow 285
Dynamic flow example 287
Providing a list of partner links 288
Dynamic parallel invocation of airline services 289
Dynamic partner links 290
Offer selection loop 291
Testing the example 293

Notification Service 294
Setting the Email Driver 296
Sending e-mail notifications 298

Review of code 301
Testing the example 302

Java code embedding 303
Invoking a Java class from embedded code 305

Fault management framework 309
Creating a fault policy 310

Summary 316

Chapter 6: Entity Variables, Master and Detail Processes,
Security, and Business Events in BPEL 317

Entity variables 318
Altering the EMPLOYEES table 320
Creating the data source 320
Creating the ADF-BC service 322
Modifying the SOA composite application 329
Testing the entity variable 334

Master and Detail processes 337
Creating the Detail process 339
Modifying the Master process 342
Adding <signal> and <receiveSignal> activities 343
Testing the Master-Detail coordination 348

Securing SOA composite applications 349
Attaching and detaching policies in JDeveloper 351
Managing policies in the Enterprise Manager console 352
Testing security 354

Using business events in BPEL 354
Defining the business event 355
Modifying the BPEL process 356
Testing the SOA composite application 360

Summary 363

[vil

Table of Contents

Chapter 7: Human Interactions in BPEL 365
Human interactions in business processes 366
Human Tasks in BPEL 368

Human Task integration with BPEL 370
Oracle Human Workflow concepts 370
Workflow patterns 373
Creating Human Task definitions 374
Configuring a Human Task title and outcomes 376
Configuring Human Task payload 378
Configuring Human Task assignments 379
Configuring Human Task deadlines 380
Configuring Human Task notifications 381
Using Human Tasks in BPEL processes 382
Creating variable and adding <switch> activity 382
Adding a Human Task 383
Configuring Human Task case branches 387
Creating Human Tasks forms 389
Auto-generating a task form 389
Modifying the task form 391
Deploying the SOA composite and task form 393
Using the Oracle BPM Worklist application 394
Logging into the BPM Worklist application 394
Completing the task 396
Testing Human Task expiration 396
BPEL4People 397
Brief look at WS-HumanTask 398
Overall structure 398
Human Tasks 399
Escalations 400
Notifications 401
Programming interface 402
Brief look at BPEL4People 402
Overall structure 403
People assignments 404
People activities 405
Summary 406

Chapter 8: Monitoring BPEL Processes with BAM 407
Business Activity Monitoring 408
Oracle BAM architecture and features 409

Oracle BAM Server 410
Oracle BAM web applications 41

[vii]

Table of Contents

Gathering BAM data from a BPEL process 411
Monitoring objects 412
Sensors and sensor actions 413

Introduction to demonstration scenario 414

Enabling activity monitoring 416

Using monitoring objects 418
Creating a Business Indicator monitoring object 419

Using sensors 422
Creating BAM data objects 422
Creating a BAM server connection 425
Creating sensors and sensor actions 426

Using the BAM Adapter partner link 432

Deploying an SOA composite application 436
Checking created data objects 436
Testing data objects 437

Building the BAM dashboard 439
Creating a report and choosing a report template 439
Displaying a list of process instances 441
Displaying the percentage of confirmed flight tickets 442
Displaying the number of reserved tickets by airline 444
Displaying the effectiveness of the Approval Manager 445
Testing the dashboard 448

Summary 450

Chapter 9: BPEL with Oracle Service Bus and Service Registry 451

Oracle Service Bus architecture and features 452
Proxy services and business services 454
Message flow modeling 455

Oracle Service Registry 456
Logging into Oracle Service Registry 457
Publishing a business entity 458
Publishing a business service 459

Using Oracle Service Bus Console 460
Creating a project and importing resources from OSR 461

Creating a connection to Oracle Service Registry 463
Importing resources from Oracle Service Registry 464
Configuring a business service 466
Enabling service result caching 466
Enabling service monitoring 467
Testing a business service 467
Creating an Alert destination 469
Creating a proxy service 470
Configuring Message Flow 472

[viii]

Table of Contents

Testing a proxy service 476
Publishing a proxy service to the Oracle Service Registry 479
Re-wiring an SOA composite application 479
Oracle Service Bus use case 481
Modifying the Proxy message flow 482
Testing an SOA composite application 485
Summary 486
Chapter 10: BPMN to BPEL Round-tripping with BPA Suite
and SOA Suite 487
Oracle BPA Suite architecture and features 488
Round-tripping between BPMN and BPEL 489
Steps for BPMN-BPEL round-tripping 490
Mapping of BPMN constructs to BPEL 491
Mapping of BPEL constructs to BPMN 493
Demonstration scenario 494
Business process modeling in Business Process Architect 494
Creating the database 495
Modeling a business process 499
Creating a new model 499
Adding process activities and defining activity flow 501
Editing object properties 502
Adding a start event 504
Adding automated activities 504
Adding a human task 510
Completing the Process model 512
Transforming a business process into BPEL 515
Using BPEL Blueprints in Oracle JDeveloper 518
Creating a connection to the BPA Repository 518
Creating an application and an SOA Project 520
Understanding the generated BPEL code 521
BPMN-BPEL round-tripping 525
Propagating changes from BPMN to BPEL 525
Modifying the BPMN model 526
Refreshing BPEL Blueprint 526
Propagating changes from BPEL to BPMN 529
Adding process steps to the BPEL 530
Updating the BPMN model 531
Summary 532
Chapter 11: Integrating BPEL with BPMN using BPM Suite 533
Oracle BPM Suite architecture and features 534
Demonstration scenario 536

[ix]

Table of Contents

Business Process Modeling and implementation

in Oracle BPM Studio 536
Creating a BPM application and project 536
Creating a BPMN process 538
Overview of Oracle BPM Studio 544
Implementing a BPMN process 547

Creating data objects 547
Configuring start and end events 548
Invoking synchronous service 550
Adding the first BPEL process 554
Invoking a BPEL process from BPMN 558
Adding a human task 561
Adding a second BPEL process 566
Completing the process 569
Deploying a BPM project 572

Testing an SOA composite application 572
Initiating an SOA composite instance 572
Completing the human task using Oracle BPM Workspace 575

Summary 577

Appendix A

This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/
7948 AppendixA.pdf

Appendix B

This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/

7948 AppendixB.pdf
Index 579

[x]

Preface

Business Process Execution Language for Web Services (BPEL, WS-BPEL, or
BPEL4WS) is the commonly accepted standard for defining business processes

with composition of services. It is the cornerstone of Service-Oriented Architecture
(SOA). With its ability to define executable and abstract business processes, it plays
an important role in business process management. BPEL is supported by a majority
of software vendors including Oracle, IBM, Microsoft, SAP, and others.

This book explains the role of BPEL when building SOA composite applications
with Oracle SOA Suite 114. It explains the BPEL 2.0 standard, the role of BPEL

in SOA, and provides a step-by-step guide to designing and developing BPEL
processes. The book also covers several related technologies and products, such as
Oracle Business Activity Monitoring (Oracle BAM), Oracle Service Bus (OSB),
Oracle Service Registry (OSR), Oracle Business Process Analysis Suite (Oracle
BPA Suite), and Oracle Business Process Management Suite (Oracle BPM Suite).

What this book covers

Chapter 1, Introduction to BPEL and SOA, provides a detailed introduction to BPEL
and Service-Oriented Architecture (SOA). It discusses business processes and their
automation, explains the role of BPEL, Web Services, and Enterprise Service Bus
(ESB) in SOA, provides insight into business process composition with BPEL, and
explains the most important features.

Chapter 2, Service Composition with BPEL, discusses the composition of Web Services
with BPEL. The chapter introduces the core concepts of BPEL and explains how to
define synchronous and asynchronous business processes with BPEL. The reader
gets familiar with the BPEL process structure, partner links, sequential and parallel
service invocation, variables, conditions, and so on.

Preface

Chapter 3, Advanced BPEL, goes deeper into BPEL specifications and covers advanced
features for implementing complex business processes. Advanced activities, scopes,
fault handling, compensations, event handling, correlation sets, concurrent activities
and links, process lifecycle, dynamic partner links, and other BPEL 2.0 features are
covered in detail.

Chapter 4, Using BPEL with Oracle SOA Suite 11g, explains how to develop, deploy,
test and manage BPEL processes as part of SOA composite applications in Oracle
SOA Suite 11g using Oracle SOA Composite Editor, Oracle BPEL Component
Designer, and Oracle Enterprise Manager Console.

Chapter 5, BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification
Service, Java Embedding, and Fault Management Framework and Chapter 6, Entity
Variables, Master and Detail Processes, Security, and Business Events in BPEL, take

a detailed look at several advanced topics of using BPEL with Oracle SOA Suite
11g, such as dynamic parallel flows, dynamic partner links, Java embedding, fault
management framework, entity variables, master and detail processes, security
policies, business events, and more.

Chapter 7, Human Interactions in BPEL, explains how to enable human interaction

in BPEL processes using the Human Task service component. The chapter discusses
Oracle Human Workflow architecture and features. The reader gets familiar with
how to design a human task, how to create ADF-based human task web forms,

and how to access and act on tasks using the Oracle BPM Worklist Application.

Chapter 8, Monitoring BPEL Processes with BAM, discusses how to capture and
monitor real-time information about the execution of business activities to improve
business process effectiveness. It explains the Oracle BAM architecture and
features. The chapter also discusses how to use data objects, sensors, sensor actions,
monitoring objects, and how to build BAM dashboard.

Chapter 9, BPEL with Oracle Service Bus and Service Registry, explains how to ensure
loose coupling between different components of the SOA architecture by using
the Oracle Service Bus (OSB) and Oracle Service Registry (OSR). The chapter
explains the OSB and OSR architecture and features. The reader gets familiar with
how to publish business entities and services to OSR using the Registry Control
console, how to import and export resources between OSB and OSR using the
Oracle Service Bus Console, how to create OSB projects, business and proxy
services. The chapter also covers some advanced features of OSB, such as
service-result caching and monitoring.

[2]

Preface

Chapter 10, BPMN to BPEL Round-tripping with BPA Suite and SOA Suite, explains how
to eliminate the semantic gap between IT and process models through automated
translation between BPMN and BPEL using Oracle Business Process Analysis Suite
(Oracle BPA Suite) and Oracle SOA Suite. The chapter discusses Oracle BPA Suite
architecture and features and how various constructs map between BPMN and BPEL.
The reader gets familiar with how to model a BPMN business process, how to convert
a BPMN model into a BPEL Blueprint, how to import the generated BPEL code in
JDeveloper, and how to propagate changes from BPEL code back to the BPMN model.

Chapter 11, Integrating BPEL with BPMN using BPM Suite, presents an interesting new
feature provided by Oracle Business Process Management Suite 11g (Oracle BPM
Suite 11g) - the BPMN 2.0 service engine. It allows direct execution of BPMN 2.0
processes, without the need to transform them to BPEL. The chapter discusses Oracle
BPM Suite architecture and features, and demonstrates how both, BPMN and BPEL
processes can be used inside a single SOA composite application.

Appendix A, WS-BPEL 2.0 Syntax Reference, provides a syntax reference for the
WS-BPEL Web Services Business Process Execution Language Version 2.0, OASIS
Standard as defined in the specification dated April 11, 2007.

Appendix B, BPEL 1.1 Syntax Reference, provides a syntax reference for the BPEL
(BPEL4WS) version 1.1 as defined in the specification dated May 5th, 2003.

B Appendix A, WS-BPEL 2.0 Syntax Reference and Appendix B, ™
BPEL 1.1 Syntax Reference are not present in the book but are
available as a free download from the following links:

% e http://www.packtpub.com/sites/default/
g files/downloads/7948 AppendixA.pdf
e http://www.packtpub.com/sites/default/
- files/downloads/7948 AppendixB.pdf -

What you need for this book

To develop and test the examples in this book, you need to have Oracle SOA Suite
11g Patch Set 2 (11.1.1.3) installed on your system. For Chapter 9, you also need
Oracle Service Bus 11g (11.1.1.3) and Oracle Service Registry 11¢ (11.1.1.2), and for
Chapter 10, you need Oracle BPA Suite 11g (11.1.1.2).

[31]

Preface

Who this book is for

This book is aimed at SOA architects and developers involved in the design,
implementation, and integration of composite applications and end-to-end

business processes. The book provides comprehensive coverage of WS-BPEL 2.0

for implementing business processes and developing SCA composite applications,
dealing with the issues of composition, orchestration, transactions, coordination, and
security. This book uses Oracle SOA Suite 11g and related Oracle products. To follow
this book, you need to have basic a knowledge of XML, Web Services, and Java EE.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For example, if we select the Business
Process simulator filter, we only see information related to performing business
process simulations."

A block of code is set as follows:

<assigns>
<copy>
<from variable="InsuranceBResponse" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process -->
<receive ... />
<!-- Invoke a set of related services, one by one -->
<invoke ... />
<invoke ... />
<invoke ... />
</sequence>

</process>

[4]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The Create
database dialog opens".

Warnings or important notes
" appear in a box like this.

~\l
Q Tips and tricks appear like this.]

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book

purchased from your account at http: //www. PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

é‘Q You can download the example code files for all Packt books you have

[51]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

Introduction to BPEL
and SOA

BPEL (Business Process Execution Language for Web Services, also WS-BPEL,
BPEL4WS) is a language used for the composition, orchestration, and coordination

of Web Services. It provides a rich vocabulary for expressing the behavior of business
processes. In this chapter, we will introduce BPEL, define its role with regard to
Service-Oriented Architecture (SOA), and explain the process-oriented approach

to SOA and the role of BPEL. We shall also provide short descriptions of the most
important BPEL servers — the run-time environments for the execution of business
processes specified in BPEL. We will also compare BPEL to other business process
languages. In this chapter, we will:

e Discuss the role of business processes and their automation
e Discuss business and IT alignment

e Examine SOA, its concepts, and BPEL

¢ Look at the SOA building blocks, such as services, Enterprise Service Bus,
Registry and Repository, Human Task Support, Process Monitoring, Rule
Engine, and Adapters

¢ Mention SOA governance

e Look at BPEL features

e Distinguish between Orchestration and Choreography
¢ Examine the relation of BPEL to other languages

e Overview BPEL Servers and SOA platforms

e Discuss the future of BPEL

Introduction to BPEL and SOA

Why business processes matter

Enterprise applications and information systems have become fundamental assets
to companies. Companies rely on them to be able to perform business operations.
Enterprise information systems can improve the efficiency of businesses through the
automation of business processes. The objective of almost every company is that the
applications it uses should provide comprehensive support for business processes.
This means that applications should align with business processes closely.

A business process is a collection of coordinated service invocations
and related activities that produce a business result, either within a
’ single organization or across several.

Although this requirement does not sound very difficult to fulfill, real-world
situations show us a different picture. Business processes are usually dynamic

in nature. Companies have to improve and modify, act in an agile manner,

optimize and adapt business processes to their customers, and thus improve the
responsiveness of the whole company. Every change and improvement in a business
process has to be reflected in the applications that provide support for them.

It is most likely that companies have to live with very complex information system
architectures consisting of a heterogeneous mix of different applications that have
been developed over time using different technologies and architectures. These
existing applications (often called legacy applications) are a vital asset in each
company and core business usually depends on them. Replacing them with newly
developed applications would be very costly and time consuming and usually would
not justify the investment.

On the other hand, existing applications have several limitations. Probably the most
important fact is that the majority of older applications have been developed from
the functional perspective and have addressed the requirements of a single domain.
Therefore, such applications typically do not provide support for the whole business
process. Rather they support one, or a few activities, in a process. Such applications
provide support for certain functions or tasks only. For an information system

to provide complete support for business processes, it has to be able to use the
functionalities of several existing applications in a coordinated and integrated way.

The consequence is that users need to switch between different applications to fulfill
tasks and also perform some tasks manually. The flow of the tasks is in the heads of
users, not in the information system, and this has several disadvantages, such as:

e Limited insight into the way business activities are performed

¢ Difficulties in tracing current status and progress

[8]

Chapter 1

¢ Difficulties in monitoring key performance indicators

Existing applications have often been developed using older technologies, languages,
and architectures, which are by definition less flexible to change. Tightly coupled
applications, constructed of interrelated modules, which cannot be differentiated,
upgraded, or refactored with a reasonable amount of effort, place important
limitations on the flexibility of such applications. This is why such applications are
sometimes called stovepipe applications.

Let us summarize —on one side we have the business system, which consists of
business processes. Business processes define the order of activities and tasks that
produce a specific business result. Business processes have to be flexible in order to
adapt to customer requirements, to market demand, and to optimize operations.

On the other side, we have the information system with multiple existing
applications. Existing applications have important business logic implemented,
which a company relies upon to perform business operations. Existing applications
are also difficult to modify and adapt because they have not been developed in a
flexible way that would allow modifying application parts quickly and efficiently.
This is shown in the following figure:

Business Processes

- 2
_o—f=-e— \ . g
= el B LR U o
et Ejr“—“‘:a::ﬂ realn P 9
- £
R R e T PP st S 2
@ 8 R 3

A :E.. .
3
=]
: : : . 3
Stovepipe Stovepipe Stovepipe Stovepipe 8
Application Application Application Application g'
1 2 3 N »
<
Qo
o
3
Applications 3

[o]

Introduction to BPEL and SOA

Business and IT alignment

The business system usually evolves with a different pace to that of the information
system. Over time, this has resulted in an important loss of alignment between the
business system and the information system. This has resulted in applications that
do not fully support business tasks, and which have again hindered the evolution
of business processes. The consequence has been less flexible and adaptable
organizations with less competitive power in the market. Only companies where
applications can be quickly and efficiently adapted to changing business needs can
stay competitive in the global market.

The loss of alignment between the business and IT has a name —IT gap. An IT gap
is a common occurrence in almost every company. It is mainly a consequence of the
inability of application developers to modify and adapt the applications to business
requirements quickly and efficiently.

The main reason probably hides in the fact that in the past neither programming
languages and technologies nor architectural design could have anticipated changes.
Existing applications had been designed to last. They had been developed in a tightly
coupled fashion, which makes changes to specific parts of applications very difficult.
Because of dependencies such changes usually have several, often unpredictable,
consequences. In addition to the complexity and size of the modification, an
important factor is also the state of the application being modified. If an application
has a well-defined architecture and has been constructed keeping in mind future
modifications, then it will be easier to modify. However, each modification to

the application makes its architecture less robust with respect to future changes.
Applications that have been maintained for several years and have gone through
many modifications usually do not provide robust architecture anymore (unless they
have been refactored constantly). Modifying them is difficult, time consuming, and
often results in unexpected errors.

Modifying existing applications therefore requires time. This means that an
information system cannot react instantly to changes in business processes —rather
it requires time to implement, test, and deploy the modifications. This time is
sometimes referred to as the IT gap time. It is obvious that the gap time should be as
short as possible. However, in the real world this is (once again) not always the case.

We have seen that there are at least three important forces that have to be considered:

e Alignment between the business and IT, which is today seen as one of the
most important priorities.

e Complexity of existing applications and the overall IT architecture. Modifying
them is a complex, difficult, error-prone, and time-consuming task.

[10]

Chapter 1

e Indispensability of existing applications. Companies rely upon existing
applications and very often their core business operations would be
jeopardized if existing applications fail.

This makes the primary objective of information systems — to provide timely,
complete, and easy to modify support for business processes —even more difficult
to achieve.

Service-Oriented Architecture

We have seen that the lack of alignment between business and IT is a common
occurrence in almost every company. Achieving the alignment by modifying
existing applications is in most cases not successful for two reasons:

e Complexity of the IT architecture, which makes modifying existing
applications difficult and time consuming

e Existing applications must not fail because companies rely on them for
everyday business.

The alignment of business and IT is very difficult to achieve using traditional
approaches. However, if a mediation layer between the business and the information
system is introduced, the alignment between business and IT becomes more

realistic — meet the Service-Oriented Architecture.

To manage problems related to changing requirements, developments in
technology, and integration of different methods have been proposed and used
over time. A Service-Oriented Architecture is the latest architectural approach
related to the integration, development, and maintenance of complex enterprise
information systems.

SOA is not a radically new architecture, but rather the evolution of well-known
distributed architectures and integration methods. Integration between applications
has evolved from early days into well-defined integration methods and principles,
often referred to as Enterprise Application Integration (EAI). EAl initially focused
on the integration of applications within enterprises (intra-EAI). With the increasing
need for integration between companies (business-to-business), the focus of EAI has
been extended to inter-EAIL

SOA improves and extends the flexibility of earlier integration methods (EAI) and
distributed architectures, and focuses on the reusability of existing applications and
systems, efficient interoperabilities and application integrations, and the composition
of business processes out of services (functionalities) provided by applications. An
important objective of SOA is also the ability to apply changes in the future in a
relatively easy and straightforward way.

[11]

[vww allitebooks.cond

http://www.allitebooks.org

Introduction to BPEL and SOA

SOA defines the concepts, architecture, and process framework, to enable the
cost-efficient development, integration, and maintenance of information systems

by reducing complexity, and stimulation of integration and reuse. Let us look at the
definition of SOA, as provided by Bernhard Borges, Kerrie Holley, and Ali Arsanjani:

SOA is the architectural style that supports loosely coupled services to enable
business flexibility in an interoperable, technology-agnostic manner. SOA
consists of a composite set of business-aligned services that support a flexible
and dynamically re-configurable end-to-end business processes realization using
interface-based service descriptions.

The following figure shows SOA as a mediator that aligns business and IT more
closely. The end-to-end automation of business processes with BPEL fills the gap
towards the business system. The services fill the gap towards the information system.

Business Processes

w

s} c
o6 % G,

it a1 af i 4

£

o == _,"'::,_';,_' &= %
- e g T T Y g

= e
® * = i
4 N
| BPEL Process | | BPEL Process | | BPEL Process |
. . . . [72]
Service Service Service Service g
A\ J

New 3

Developed §

Stovepipe Stovepipe Stovepipe Service 8
Application Application Application)
=

1 2 N »

<

a

o

3

Applications 3

[12]

Chapter 1

A Service-Oriented Architecture has several goals, but the two most important goals
are to:

e Provide end-to-end automation of business processes. To achieve end-to-end
automation of business processes, SOA introduces a special language — BPEL
(Business Process Execution Language).

e Provide a flexible, adaptable IT architecture, where applications are
modularized, consolidated, decoupled, and where business logic is
contained in autonomous, encapsulated, loosely coupled, and reusable
components called services.

Let's look at these two goals more closely.

BPEL

From the perspective of business systems, it is important that IT provides applications
that support business processes from the beginning to the end (or end-to-end). Such
support however has to be flexible, so that business processes can be modified quickly.

In SOA this is achieved by introducing a specialized language for business process
execution — BPEL. BPEL is the most popular, commonly accepted specialized
language for business process automation, and the main topic of this book. BPEL is a
special language, designed to execute business processes using a special server — the
process server. BPEL promises to achieve the holy grail of enterprise information
systems — to provide an environment where business processes can be developed in
an easy and efficient manner, directly executed, monitored, and quickly adapted to
the changing needs of enterprises without too much effort.

Services

Achieving adaptable and flexible IT architecture is another important objective
of SOA. SOA enables us to develop a modular, loosely coupled architecture which
can overcome the difficulties of existing architectures.

The end-to-end automation of business processes can only be successful if sound,
robust, and reliable applications are available underneath. This goal can only

be achieved by developing a flexible architecture, where applications consist of
modules. In SOA, modules are called services.

[13]

Introduction to BPEL and SOA

Services should be autonomous and be able to work in different contexts. They
should be reusable and loosely coupled. They should be encapsulated and expose
the operations through interfaces. Finally, the application architecture should be
consolidated, which means that for a specific functionality only one service should
exist.

In SOA, services become the main building blocks of the overall IT architecture.
Services guide us into good development practices and away from monolithic,
tightly coupled applications. They enable better and more efficient integration.
Services enable us to modify and adapt the applications faster, with less effort, and
with less negative consequences.

Services are also the main building blocks of BPEL processes. They are the executable
artifacts. Those services that expose high-level, coarse-grained operations are called
business services. The operations in business services usually represent distinct
business activities. They are used in business processes; more exactly, BPEL uses
business services to execute process activities. In other words, BPEL processes are
compositions of business services. Business services provide the functionality, while
BPEL processes contain the process flow.

Business services should be designed in a reusable manner, which means that a
single business service can be used by more than one BPEL process. It also means
that only one business service with the same functionality should exist in the system,
which leads to consolidation.

_ Although services in SOA are one of the most important building blocks,
& we should not forget about the architecture. Services will fulfill the
& promises only if they adhere to the architecture. Architectural design
should therefore be the key priority.

How to develop services

There are several possibilities in which we can develop services. They are:

e Developing services from scratch. This is appropriate for functionalities
that are new and not yet covered by existing applications.

¢ Exposing the functionality of existing applications through services. It
is particularly important to reuse the logic in existing applications and
to integrate new solutions with existing applications. Today, several
possibilities exist for exposing existing applications through services,
such as facades, adapters, mediators, and so on.

e Using services provided by a third party.

[14]

Chapter 1

The ability to expose existing applications is particularly important because it enables
those who will adopt SOA, to reuse their existing IT assets. Existing applications
have an enormous amount of business logic, which should be exposed and reused.
SOA provides a standardized way to expose and access the functionalities (business
logic) of existing applications through services.

From the technical perspective, services can be developed using a variety

of distributed architectures. The requirement to expose the functionalities

of applications and access them remotely has resulted in several distributed
architectures and middleware products over time. The latest distributed architecture
is Web Services. Web Services are the most suitable distributed architecture for
exposing the functionality of applications as services.

SOA concepts

SOA is more than just a set of technologies. SOA is not directly related to any
technology, although it is most often implemented with Web Services. Web Services
are the most appropriate technology for SOA realization. However, using Web
Services is not adequate to build SOA. We have to use Web Services according

to the concepts that SOA defines.

The most important SOA concepts are:

e Services and service abstraction

o Self-describing, standardized interfaces with coarse granulation
e Exchange of messages

e Support for synchronous and asynchronous communication

e Loose coupling

e Reusability

e Service registries and repositories

¢ Quality of Service

e Composition of services into business processes

[15]

Introduction to BPEL and SOA

Services

Services provide business functionalities, such as an application for business travel, an
application for a loan, and so on. This differs considerably from technology-oriented
functionalities, such as retrieving or updating a table in a database. Services in SOA
must provide business value, hide implementation details, and be autonomous. They
should be abstract and autonomous. Service consumers are software entities, which
call the service and use its functionality.

Interfaces

Service consumers access the service through its interface. The interface of a service
defines a set of public operation signatures. The interface is a contract between

the service provider and a service consumer. The interface is separated from the
implementation, is self-describing, and platform independent. Interface description
provides a basis for the implementation of the service by the service provider and a
basis for the implementation of the service consumers. Each interface defines a set
of operations. In order to define business services, we need to focus on the correct
granulation of operations, and we should standardize interfaces. SOA services are
best modeled with coarse granulation.

Messages

Operations are defined as a set of messages. Messages specify the data to be
exchanged and describe it in a platform- and language-independent way using
schemas. Services exchange only data, which differs considerably from object-
oriented and component approaches, where behavior (implementation code) can
also be exchanged. Operations should be idempotent (an operation is idempotent
if repeated invocations have the same effect as one invocation). WSDL is a service
description language that meets SOA criteria.

Synchronicity Service consumers access services through the service bus. This can
be either a transport protocol, such as SOAP, or an ESB. Service consumers can
use synchronous or asynchronous communication modes to invoke the operations
of services. In synchronous mode, a service operation returns a response to the
service consumer after the processing is complete. The service consumer has to
wait for the completion. Usually we use the synchronous mode with operations in
order to complete processing in a short time. In an asynchronous mode, a service
operation does not return a response to the consumer, although it may return an
acknowledgement so that the consumer knows that the operation has been invoked
successfully. If a response is needed, usually a callback from the service to the
consumer is used. In such a scenario, a correlation between messages is needed.

[16]

Chapter 1

Loose Coupling

Through the self-describing interfaces, coarse granulation, exchange of data
structures, and support for synchronous and asynchronous communication modes,
a loose coupling of services is achieved. Loosely coupled services are services

that expose only the necessary dependencies and reduce all kinds of artificial
dependencies. This is particularly important when services are subject to frequent
changes. Minimal dependencies assure us that there will be minimal number of
changes required to other services when one service is modified. Such an approach
improves robustness, makes systems more resilient to change, and promotes the
reuse of services.

Reusability

SOA is about the consolidation of functionalities. Therefore, the common goal is to
have a single service for each business functionality. In other words, we should not
allow having more than one service with equal or similar functionalities. To achieve
this it is essential to reuse services in different contexts. Reuse is not easy to achieve.
First, we have to develop services that are general enough to be useful in different
scenarios. Second, developers should first look at existing services, before developing
a new one. If an existing service fulfills the need, they should reuse it. Reuse is
fostered by registries and repositories.

Registries and repositories

To simplify and automate searching for the appropriate service, services are
maintained in service registries, which act as directory listings. Service providers
publish services in registries; service consumers look up the services in the registries.
Lookup can be done by name, service functionality, or business process properties.
UDDI is an example of a service registry. Service registries can improve reuse. In
addition to registries, repositories are becoming important for storing artifacts, such
as WSDL interfaces, XML schemas, and so on. Registries and repositories play an
important role in SOA governance.

Quality of Service

Services usually have associated Quality of Service attributes. Such attributes include
security, reliable messaging, transaction, correlation, management, policy, and other
requirements. The infrastructure must provide support for these attributes. Quality
of Service attributes are often important in large information systems. In Web
Services, Quality of Service attributes are covered by WS-* specifications, such as
WS-Security, WS-Addressing, WS-Coordination, and so on. Quality of Service is also
provided by the ESB.

[17]

Introduction to BPEL and SOA

Composition of services into business processes

The final, and probably the most important, SOA concept is the composition of
services into business processes. Services are composed in a particular order and
follow a set of rules to provide support for business processes. The composition
of services allows us to provide support for business processes in a flexible and
relatively easy way. It also enables us to modify business processes quickly and
therefore provide support to changed requirements faster and with less effort. For
composition, we will use a dedicated language, BPEL, and an engine on which
business process definitions will be executed. Only when we reach the level of
service composition can we realize all the benefits of SOA.

SOA building blocks

Let us now have a closer look at the SOA building blocks that enable us to realize
the above-mentioned concepts:

e BPEL: This is for business process automation with service composition.

e Services: This is for achieving modular and flexible architecture. For service
development, Web Services technology is usually used.

e Enterprise Service Bus (ESB): This provides a means for services and
processes to communicate, and enables management and control over the
communication. ESB is the backbone of SOA.

e Registries and repositories: These are central directories of services and
useful for locating and reusing services, as well as SOA governance.

e Human task support: Business processes often involve human interaction.
SOA supports human interactions in different ways, such as WS-
HumanTask and BPEL4People. Human task support is related to Identity
Management.

e Process monitoring or Business Activity Monitoring (BAM): This allows
the monitoring of the execution of processes, such as total execution time,
average execution time, execution time of certain activities, and so on. It
also allows us to monitor the Key Performance Indicators (KPIs), which is
particularly interesting for management, as it allows them to understand
better how the business operations perform.

¢ Business Rules Management Systems (BRMS) or Rule Engine: This is a
central place for managing business rules. With BRMS we can put business
rules into a central location instead of hard coding them.

e Adapters: These provide easy access not only to external systems, such
as ERP, CRM, SCM, but also DBMS systems.

[18]

Chapter 1

A very important aspect of SOA is SOA governance. SOA is a complex architecture,
which has to be governed in order to be consistent. SOA governance is a set of
activities related to control over services and processes in SOA. Typical activities are
related to managing service portfolios and lifecycles, ensuring service consistency,
and monitoring service performance.

The full architecture of SOA is shown in the following figure:

Business Processes

wd)sAg ssauisng

~

SOA Governance
VvOS

New g_n

Developed §

Stovepipe Stovepipe Stovepipe Service 9

Application Application =« | Application §
1 2 N

——] -t

DBMS o

3

Applications 3

[19]

Introduction to BPEL and SOA

The next figure shows the technology view of SOA and positions the
above-mentioned concepts:

SOA Governance

Service Registry and Repository

Business Process
(Composition of Services)

Service Implementation

Service Description

Service Protocol

Service Bus

Human Tasks
(with Ident.
Management

BAM

BRMS

Quality of Service

Reliable Messaging

Security
‘ Coordination and Transactions ‘

Message Correlation
Introspection

Policy Exchange

Event Model

Management

Let us now add the technologies into the previous figure to understand the connection
between SOA concepts and the technologies that provide a means for their realization.

Notice that the mere use of a specific technology does not guarantee that we are
building an SOA-compliant architecture. For example, with Web Services we can

develop business services (for example, a loan application), but we can also develop

technology-focused services (updating the database, for example). So, it is essential
that technologies are used according to the guidelines provided by SOA concepts.

SOA Governance

uDbDI

BPEL

Various programming languages
(Java, C#, C++, etc.)

WSDL

SOAP

ESB

Quality of Service
oz @
E3 || w s
So|| & =)
gl 5
288l 2|ls w || £
gzl &llzllg5]lzllg|z
22|22 |lg]ls|l5| &
O ||Sm o) s} @ a s &
clEells |2l Ellall% | @
2llesllsllel|2]|=||2] 8
°g||g 3
n < 0
3 -
=

[20]

Chapter 1

For this figure, we can have two views. The bottom-up view of SOA sees different
applications exposing their functionalities through business services. This enables
access to functionalities (services) of different existing and newly developed
applications in a standard way. Access to services is important because a typical
enterprise has a large number of applications that have to be integrated.

Developing business services, either through reuse of existing applications or by
new development, is not sufficient. We also need to compose services into business
processes — this is the second, the top-down, or process-oriented approach to SOA.
We would obviously prefer a relatively simple and straightforward way to compose
and modify business processes. This is where BPEL becomes important.

BPEL for process automation

Services in SOA are composed into aggregate services. We compose services until
the aggregate services provide support for the whole business processes. Business
processes are thus defined as a collection of activities through which services are
invoked. For the outside world (that is, for the clients) a business process looks

like any other service. In real-world scenarios we will usually create two kinds of
business processes — those that will contain services from within the enterprise only,
and those that will consume services provided by several companies. With service
composition, we can use services provided by business partners in our processes,
and business partners can use our services in their processes.

For example, a business process for booking business travel will invoke several
services. In an oversimplified scenario, the business process will require us to specify
the employee name, destination, dates, and other travel details. Then the process will
invoke a service to check the employee's status. Based on the employee status, it will
select the appropriate travel class. Then it will invoke the services of several airline
companies (such as American Airlines, Delta Airlines, and so on) to check the airfare
price and buy the one with the lowest price. The structure of services composed in
the business process is shown in the following figure. In Chapter 2, we will discuss
this example in detail and show how to define this process using BPEL.

[21]

Introduction to BPEL and SOA

Employee
Travel request Employee name
Client > > Travel
Airfare best offer selection J Employee status Status
< < Service
Business
Process Airfare request .| American
(BPEL) for . - 7] Airlines
Travel _ Airfare availability and price Service
Booking
Airfare request R Delta
] o] Airlines
_ Airfare availability and price Service

From the perspective of our business process, we do not care whether the service
for checking the employee status accesses a legacy system, a database directly, or
retrieves the status in any other way. We also do not care whether the services of
airline companies are composed of other, lower-level services. From the perspective
of the client (for our business process), the client sees the process as any other
service and does not care whether the process is implemented through composition
of other services, or some other way. This stimulates reuse and further composition.
Real-world business processes will usually be much more complicated than our
example. Usually they will contain several services and invoke their operations
either in sequence or in parallel. They will also contain flow logic, handle faults,
take care of transactions and message correlation, and so on.

The composition of services into business processes requires the definition of
collaboration activities and data-exchange messages between involved Web Services.
WSDL provides the basic technical description and specifications for messages that
are exchanged. However, the description provided by WSDL does not go beyond
simple interactions between the client (sender) and the web service (receiver). These
interactions may be stateless, synchronous, or asynchronous. These relations are
inadequate to express, model, and describe the complex compositions of multiple
Web Services in business activities, which usually consist of several messages
exchanged in a well-defined order. In such complex compositions, synchronous and
asynchronous messages can be combined, and interactions are usually long running,
often involving state information that has to be preserved. An important aspect is
also the ability to describe how to handle faults and other exceptional situations.
Given the limitations of WSDL, we need a mechanism to describe the composition
of Web Services into more complex processes.

[22]

Chapter 1

The composition of services into business processes could be realized using one of
the well-known programming languages (Java, C#, and so on), but it turns out that
the composition of services somehow differs from traditional programming. With
composition, we merge functionalities (services) into larger services and processes.
In other words, we do programming in the large, which differs from traditional
programming in the small. Programming in the large refers to the representation
of the high-level state transition logic of a system. Using programming languages,
such as Java, C#, and so on, for composition often results in inflexible solutions,
particularly because there is no clear separation between the process flow and the
business logic, which should not be tightly coupled.

In addition to these facts, the composition of business processes has other specific
requirements, such as support for many process instances, long-running processes,
compensation, and so on. All this makes the use of dedicated solutions reasonable.
This is why over the years several proprietary BPM (Business Process Management)
products have been developed, such as Dralasoft Workflow and TIBCO Business
Process Management. The disadvantage of using proprietary BPMs is that these

are traditionally niche products, sold from a top-down perspective to large business
users. Such products are usually expensive and bound to a certain provider. This is
why we need BPEL.

[BPEL is equally important for SOA as SQL is for]
S

databases.

Web Services

Web Services are the latest distributed technology and, as we will see, the

most suitable technology for the realization of SOA. They have become the
commonly used technology for interoperability and the integration of applications
and information systems. Web Services provide the technological foundation for
achieving interoperability between applications using different software platforms,
operating systems, and programming languages. They are built on XML. While XML
is the de facto standard for data-level integration, Web Services are becoming the de
facto standard for service-level integrations between and within enterprises.

[23]

Introduction to BPEL and SOA

From the technological perspective, Web Services are a distributed architecture.
The distributed computing paradigm started with DCE (Distributed Computing
Environment), RPC (Remote Procedure Call), and messaging systems, also called
message-oriented middleware (products such as MQSeries, MSMQ, and so on).
Then distributed objects and ORBs (Object Request Brokers) such as CORBA
(Common Object Request Broker Architecture), DCOM (Distributed Component
Object Model), and RMI (Remote Method Invocation) emerged. Based on these,
component models, such as EJB (Enterprise Java Beans), COM+ (Component
Object Model), .NET Enterprise Services, and CCM (CORBA Component
Model) have been developed. RPC, ORBs, and component models share a similar
communication model, which is based on a synchronous operation invocation.
Messaging systems are based on an asynchronous communication model.

How Web Services differ from their predecessors

Web Services are similar to their predecessors, but also differ from them in several
aspects. Web Services are the first distributed technology to be supported by all
major software vendors. Therefore, they are the first technology that fulfills the
promise of universal interoperability between applications running on disparate
platforms. The fundamental specifications that Web Services are based on are SOAP
(Simple Object Access Protocol), WSDL (Web Services Description Language),
and UDDI (Universal Description, Discovery, and Integration). SOAP, WSDL,

and UDDI are XML based, making Web Services protocol messages and
descriptions human readable.

From the architectural perspective, Web Services introduced several important
changes compared to earlier distributed architectures:

e Web Services support loose coupling through operations that exchange
data only. This differs from component and distributed object models,
where behavior can also be exchanged.

e Operations in Web Services are based on the exchange of XML-formatted
payloads. They are a collection of input, output, and fault messages. The
combination of messages defines the type of operation (one-way, request/
response, solicit response, or notification). This differs from previous
distributed technologies. For more information, please refer to the WSDL
and XML Schema specifications (XML spec: http: //www.w3.org/TR/
REC-xml/ and WSDL spec: http://www.w3.org/TR/wsdl).

e Web Services provide support for asynchronous as well as
synchronous interactions.

e Web Services introduce the notion of endpoints and intermediaries.
This allows new approaches to message processing.

e Web Services are stateless. They do not follow the object paradigm.

[24]

Chapter 1

e Web Services utilize standard Internet protocols such as HTTP (Hyper
Text Transfer Protocol), SMTP (Simple Mail Transfer Protocol), FTP (File
Transfer Protocol), and MIME (Multipurpose Internet Mail Extensions). So,
connectivity through standard Internet connections, even those secured with
firewalls, is less problematic.

Web Services technology stack

In addition to several advantages, Web Services also have a couple of disadvantages.
One of them is performance, which is not as good as that of distributed architectures
that use binary protocols for communication. The other is that plain Web Services

do not offer infrastructure and Quality of Service (QoS) features, such as security,
transactions, and others, which have been provided by component models for several
years. Web Services fill this important gap by introducing additional specifications:

e WS-Security: Addresses authentication and message-level security, and
enables secure communication with Web Services.

¢ WS-Coordination: Defines a coordination framework for Web Services
and is the foundation for WS-AtomicTransaction and WS-BusinessActivity.

e Transactions specifications (WS-AtomicTransaction and
WS-BusinessActivity): Specify support for distributed transactions
with Web Services. AtomicTransaction specifies short duration, ACID
transactions, and BusinessActivity specifies longer-running business
transactions, also called compensating transactions.

o WS-ReliableMessaging: Provides support for reliable communication and
message delivery between Web Services over various transport protocols.

o WS-Addressing: Specifies message coordination and routing.

e WS-Inspection: Provides support for the dynamic introspection of web
service descriptions.

e WS-Policy: Specifies how policies are declared and exchanged between
collaborating Web Services.

e WS-Eventing: Defines an event model for asynchronous notification of
interested parties for Web Services.

Because of their flexibility, interoperability, and other features, Web Services are
regarded as the most appropriate technology for exposing the functionalities of
applications as services and are therefore the most appropriate technology for
realization of SOA. Because of their wide support by all major software vendors,
Web Services provide the possibility to use the same technology to expose services
implemented in a variety of different applications ranging from mainframe-based
legacy applications to the modern multitier applications.

[25]

Introduction to BPEL and SOA

Enterprise Service Bus

While Web Services are an appropriate technology for SOA, some other aspects
need to be considered, such as:

In most enterprises, Web Services are not the only middleware solution used.
Usually enterprises already have one or more middleware products, such

as messaging systems and ORBs. Enterprises cannot afford to replace them
overnight with Web Services. Therefore, there is a need to integrate different
middleware products, and provide interoperability with Web Services.

In order to provide connectivity between services, the use of SOAP in
complex environments is not adequate. In such environments, we need ways
to connect, mediate, manage, and control the services and particularly the
communication between them.

SOAP over HTTP might not be robust enough for heavy enterprise use.
Enterprise information systems require dependable, robust, and secure
service infrastructure.

The ESB is the software infrastructure, acting as an intermediary layer of middleware
that addresses the above-mentioned requirements. An ESB adds flexibility to the
communication between services, and simplifies the integration and reuse of services.
An ESB makes it possible to connect services implemented in different technologies
(such as E]JBs, messaging systems, CORBA components, and legacy applications)

in an easy way. An ESB can act as a mediator between different, often incompatible
protocols and middleware products.

The ESB provides a robust, dependable, secure, and scalable communication
infrastructure between services. It also provides control over the communication
and control over the use of services, including;:

Message interception capabilities: This allows us to intercept requests to
services and responses from services, and apply additional processing to
them. In this manner, the ESB acts as an intermediary.

Routing capabilities: This allows us to route the messages to different
services based on their content, origin, or other attributes.

Transformation capabilities: These allow us to transform messages
before they are delivered to services. For XML-formatted messages, such
transformations are usually done using XSLT (Extensible Stylesheet
Language Transformations) or XQuery engines.

Control over the deployment, usage, and maintenance of services: This
allows logging, profiling, load balancing, performance tuning, charging for
use of services, distributed deployment, on-the-fly reconfiguration, and so on.

[26]

Chapter 1

e Other important management features: These include the definition of
correlation between messages, definition of reliable communication paths,
definition of security constraints related to messages and services, and so on.

ESB features

The ESB enables the communication and management of services, along

with providing answers related to the usage of services in complex enterprise
information systems. In such environments, support for the centralized, declarative,
and well-coordinated management of services and their communication is required.
Because of existing middleware, the integration of different middleware products
and interoperability with other services is required.

The ESB is important because it represents the communication backbone for services.
Using ESB for communication, we can get rid of point-to-point connections between
services and processes. ESB also simplifies the transition between development, test,
and production environments.

The most important features of ESB are service routing, transformation and
enhancement, protocol transformation, service mapping, security, and Quality
of Service.

e Message routing enables us to route messages to a specific service provider
in a declarative manner based on the message content, user type, channel,
or other rules.

e Message transformation enables us to transform the input and output
messages. Usually this is related to XML transformation using XSLT.

¢ Message enhancement enables us to add data to the message or remove
data, so that they conform to the requirements of the service provider and
service consumer.

e Protocol transformation is the ability to automatically transform the protocol
based on the service provider and service consumer preferences. For
example, a service consumer might use SOAP, while the service uses JMS.
Protocol transformation can also optimize performance and switch to an
optimized protocol for collocated services.

e Service mapping enables us to map a service to a specific service
implementation. This is usually an extension of WSDL bindings.

[27]

Introduction to BPEL and SOA

e Security enables us to secure services and the transportation layer used
for the exchange of messages. For securing services, authentication and
authorization are important; for securing the exchange of messages,
encryption is usually applied.

e Quality of Service allows us to define specific parameters of service
communication, such as reliability, bandwidth, availability, and so on.
Quality of Service assurance is the baseline for the definition of Service
Level Agreements (SLAs).

Currently, there are several products in the market that claim to provide ESB
functionality. A good ESB should provide at least Quality of Service support at
enterprise level, including reliability, fault-tolerance, and security. If provided by

an ESB, services can depend on these features and do not need to implement them
themselves. The ESB should also allow the configuration of any combination of these
Quality of Service features and provide flexibility.

An ESB should provide support for a variety of technologies on which services are
implemented. In addition to Web Services, an ESB should provide connectors for

a broad range of technologies, such as Java EE and .NET components, messaging
middleware, legacy applications, and TP monitors. The ESB needs to provide
flexibility to bind any combination of services without technological constraints.

It should also support a combination of different interaction models, such as
queuing, routing, and so on, without changing the services or requiring code writing.

An ESB should make services broadly available. This means that it should be easy
to find, connect, and use a service irrespective of the technology it is implemented
in. With a broad availability of services, an ESB can increase reuse and can make
the composition of services easier. Finally, an ESB should provide management
capabilities, such as message routing, interaction, and transformation, which we
have already described.

An ESB that provides these features becomes an essential part of the SOA. It provides
several benefits, including increased flexibility, reduced deployment, development,
and maintenance costs, along with increased reliability and manageability.

[28]

Chapter 1

The following figure shows the relation between BPEL, ESB, and services:

SOA (Service Oriented Architecture)

BPEL (Business Process

Business process composition .
P P Execution Language)

Communication of services

and management ESB (Enterprise Service Bus)

Business logic

. Services
Exposed as services

Java Enterprise Edition
Microsoft.NET

CORBA

Other legacy architectures

Enterprise information system

Registry and repository

We have already seen that SOA consists of services and processes. The more
applications that we implement following SOA concepts, the more services we will
have. Managing services becomes a challenging task. This includes aspects such as:

How many services do we have?

Does a service with a specific functionality already exist?
Where is the service deployed?

Which versions of the service exist?

Who are the consumers (clients) of a specific service?

What is the interface definition (WSDL) of a service?

Registries and repositories help to answer these and similar questions. They have
become an essential part of each SOA architecture. Registries and repositories are
used to register services in a central location. Once registered, we can search and
locate appropriate services. The more metadata about a service we include, the better
search capabilities a registry and repository can provide.

[29]

Introduction to BPEL and SOA

A rule of thumb is that once we have more than 50 services we will desperately
start needing the registry and repository. However, sometimes it might be wise
to introduce it from the beginning because once developers get used to a certain
development process, it will be very difficult to change their behavior.

In addition to the above-mentioned questions, registries and repositories play an
important role in service reuse. Somewhat simplifying things, reuse on a service level
means that we compose executable processes (in BPEL) and reuse as many services
as possible instead of developing them from scratch.

Registries and repositories also play an important role in the deployment process.

In professional development it is usual to have three environments — development,
test, and production. When an application is ready for production use, this requires
that it is deployed into the production environment. The controlled deployment of
processes requires that a process starts to use a production version of services instead
of development or test versions. If links to services are hard coded into the BPEL
processes, such migrations can be very painful, as it might (in a worst-case scenario)
require the manual change of URL addresses. When deploying a service we might
want to know which processes use this service because we might want to retest

those processes.

The understanding of the role of registries and repositories in SOA has changed
considerably over the years. A few years ago, we believed that a relatively simple
registry, UDDI, would cover all the needs. Today, we have identified that a registry
alone is not powerful enough for SOA because in many cases it makes sense to store
service metadata as well (WSDL interfaces, XSD schemas, and so on).Therefore,
today we talk about registries and repositories.

A powerful registry and repository should have the following features:

e C(lassification capabilities to categorize and classify services and processes
based on one or more classification schemas. This simplifies queries and
enables easier locations for the most appropriate services for reuse.

e Governance functions that should enable the definition of proprietary
service/ process lifecycles, together with the conditions to go from one stage
of the lifecycle to another. Stage transitions can trigger automatic actions,
such as validators.

e Access control that defines who can do which operations on the registry and
repository, and on the registered services/processes. Such access control
could be based on XACML (eXtensible Access Control Markup Language).

e User, programming, and administration interfaces.

Registries and repositories also play an important role in SOA governance.

[30]

Chapter 1

Human task support and identity management

Business processes often involve human interaction. SOA, therefore, has to provide
support for human tasks. Human tasks are sometimes called user interactions.
Human tasks in business processes can be simple, such as approving certain tasks
or decisions, or complex, such as delegation, renewal, escalation, nomination, or
chained execution. Task approval is the simplest, and probably the most common,
human task. If the situation is more complex, a business process might require
several users to make approvals, either in sequence or in parallel. In sequential
scenarios, the next user often wants to see the decision made by the previous user.
Sometimes, (particularly in parallel human tasks) users are not allowed to see the
decisions taken by other users. This improves the decision potential. Sometimes one
user doesn't even know which other users are involved, or whether any other users
are involved at all.

A common scenario for involving more than one user is escalation. Escalation is
typically used in situations where an activity doesn't fulfill a time constraint. In such a
case, a notification is sent to one or more users. Escalations can be chained, going first
to the first-line employees and advancing to senior staff if the activity is not fulfilled.

Sometimes it's difficult or impossible to define in advance which user should
perform an interaction. In this case, a supervisor might manually nominate the task
to other employees; the nomination can also be made by a group of users or by a
decision-support system.

In other scenarios, a business process may require a single user to perform several
steps that can be defined in advance or during the execution of the process instance.
Even more-complex processes might require that one workflow is continued with
another workflow.

Human tasks can include data entries or process management issues, such as process
initiation, suspension, and exception management. This is particularly true for
long-running business processes, where, for example, user exception handling can
prevent costly process termination and related compensation for those activities that
have already been successfully completed.

As a best practice for human tasks, it's usually not wise to associate human tasks
directly to specific users. It's better to connect tasks to roles and then associate those
roles with individual users. This gives business processes greater flexibility, allowing
any user with a certain role to interact with the process and enabling changes to
users and roles to be made dynamically. To be able to do this, we need to have an
identity management system, where users, roles, and groups are managed. This can
be a simple LDAP or a more sophisticated system.

[31]

[vww allitebooks.cond

http://www.allitebooks.org

Introduction to BPEL and SOA

To interleave human tasks with BPEL processes we can use a workflow service,
which interacts with BPEL processes using standard WSDL interfaces, as any other
service. This way, the BPEL process can assign user tasks and wait for responses
by invoking the workflow service using the same syntax as for any other service.
The BPEL process can also perform more complex operations such as updating,
completing, renewing, routing, and escalating tasks.

To standardize the explicit inclusion of human tasks in BPEL processes the
BPEL4People (WS-BPEL Extension for People) specification has been proposed.
BPEL4People introduces people activities and people links into BPEL. People activity
is a new BPEL activity used to define user interactions, in other words, tasks that

a user has to perform. For each people activity, the BPEL server must create work
items and distribute them to users who are eligible to execute them. To specify
human tasks the WS-Human Task specification has been proposed.

Process Monitoring or Business Activity
Monitoring

One of the key elements for process control is Process Monitoring or Business Activity
Monitoring (BAM). The key objective of BAM is to provide a complete insight into
business process execution. BAM allows for the monitoring of KPIs, such as total
execution time, average execution time, the execution time of certain activities, and

so on. This allows us to better understand how the business processes perform.

Business Activity Monitoring is the real-time observation of key
—" performance indicators.

The most important component of BAM is time. Time is crucial because BAM shows
the actual near real-time information on process execution. This way, a company can
react quickly and efficiently to changes reflected through process execution.

BAM solutions can provide other useful information. They can show us how
many process instances are active at a specific time, how long on average it takes
to complete a process, which users (employees) have started how many process
instances, and so on.

Note that BAM is not related to automatic activities (those implemented by services)
only. It can be used with human activities as well. In such a case, we can use BAM to
observe the productivity of employees.

[32]

Chapter 1

BAM is not only a system that displays interesting information about processes,

but also consolidates data gathered from different, often independent sources.
Connecting these data with past data enables BAM to identify critical situations in
process execution or even automatically or semi-automatically solve some frequent
critical problems. The ultimate goal of each BAM user is to optimize the process
execution, to improve the process efficiency, and to sense important events and react.

The BAM user interface (dashboard) should be simple and present information
and data in an easy and understandable way. It should hide all the complexity
behind the scenes. Usually a typical BAM user interface uses graphical elements,
graphs, and colors to present the data. The next screenshot shows an example of a
BAM user interface:

seiectReport | Prnt Freen personatze | Reorompt |

Procurement process

Tolal valee of approved mtemal onders.

W Excoeded [Jortems

Nunaber of Taled wntanoes due o exceplions (D]

[Faiect [Sucoemtuly compinted A

In the previous screenshot, we can see the BAM dashboard showing different
important information for decision makers. In addition to the dashboard, another
important part of the BAM is the decision-support module. A module such as this
can use decision methods, business intelligence, or simulations for support and can
help decision makers take the right decision at the right time, which can improve
business efficiency.

[33]

Introduction to BPEL and SOA

Business Rules Management Systems
(BRMS) or Rule Engine

Business rules are part of almost every business application. Experiences have shown
that business rules change, sometimes very often. Today, business rules are usually
coded into different applications and are tightly coupled with the implementation of
an application system. Changing business rules is therefore often very difficult and
requires modifications to applications. Each modification requires that the developer
change the code. After that, testing and deployment has to be done.

The same business rules are often implemented in several applications. Therefore,
if a rule changes, the major challenge becomes to identify which applications this
business rule is coded into and to modify each application where such a rule has
been used.

Business rules are also very common in business processes. Business Rules
Management Systems (BRMS) or Rule Engines are meant to provide a central
location for storing, executing, and managing business rules. Instead of hard-coding
business rules into the executable code (whether BPEL, Java, C#, and so on), we
place business rules into the BRMS, where:

e Business rules can be reused from different processes, services, and
applications

e User-friendly interfaces exist, which enable us to change and modify
business rules

Adapters

Adapters in SOA are meant to simplify the integration with external systems, such
as ERP, CRM, SCM, and others. Without adapters we would need to manually
expose functionality out of such systems, for example by developing corresponding
Web Services. As such systems usually have rich functionalities, it would require

a considerable amount of time and effort to develop the integration interfaces and
services. Additionally, when such a system is upgraded, we would need to modify
the integration services.

[34]

Chapter 1

Adapters automate this procedure and provide tools to integrate with such systems
in an easy way. Examples of adapters are adapters for SAP, Oracle, PeopleSoft,
Salesforce, or some other popular system. Adapters are also useful for accessing
database data directly. Such adapters automate the development of data services.
Examples include adapters for Oracle, DB2, SQL Server, and so on.

Adapters differ in the level of sophistication. The simplest adapters are just API
wrappers that expose the interfaces of the external systems as a service (usually

as a web service). More sophisticated adapters can have smart fault handling
mechanisms, can capture events on both sides, allow synchronous and asynchronous
interactions, take care of load balancing, performance, scalability, security, and so on.

When deploying an SOA platform, it makes sense to check whether it provides
adapters for the systems that we have deployed in our information system. With
adapters, accessing the functionality of such systems will most likely be much
simpler than without.

Service Component Architecture

So far we have seen that SOA applications are composite applications that consist

of several components, such as services, BPEL processes, ESB mediation, rules,
adapters, and so on. All these components have to work together and support one or
more composite applications.

Service Component Architecture (SCA) defines a programming model for
composite SOA applications. SCA is based on the idea of service composition
(orchestration). SCA provides a model for the composition of services and for the
creation of service components, including the reuse of existing applications within
SCA composites.

The basic building blocks of SCA are components. Every SCA application is built
from one or more components. Components can be implemented in a programming
language, such as Java, C++, C, or they can be implemented as BPEL processes. SCA
provides a generalized definition of a component.

[35]

Introduction to BPEL and SOA

Components offer their business functions for use by other components as services.
Implementations may depend on services provided by other components. Such
dependencies are called references. Implementations can have properties through
which the business function can be influenced. The component configures the
implementation by providing values for the properties and by wiring the references to
services provided by other components. An SCA component is represented as follows:

services
————— properties

Component

| references
Implementation

- Java

- BPEL

- Composite

Service components are assembled into applications, called composites. Composites
can contain components, services, references, properties, and wiring. Composites
themselves can also be used as components and can provide services. They can
depend on references and expose properties.

Composites can be used within other composites. This allows a hierarchical
construction of composite business applications, where high-level services are
implemented by sets of lower-level services. The following example shows an
SCA composite:

[36]

Chapter 1

Service Reference
- Java interface - Java interface
- WSDL PortType ¢ Properties - WSDL PortType
e N\
Composite A L
.-~ "Property

- setting S

v I v

E Serice)------ mFX)nent -------- % Reference »
A A

Promote Wire Promote
N J
Binding Binding

Web Service Web Service
SCA SCA
JCA JCA
JMS JMS
SLSB SLSB

Composites are deployed within an SCA Domain. An SCA Domain represents
an area of business functionality with the related services. The SCA Domain
diagram is shown in the next figure:

SCA Domain
Composite X Composite Y Composite Z
- A ,
Promote Wire Promote
Implementation Implementation
A A 4
Composite A Composite B

[37]

Introduction to BPEL and SOA

We will use the SCA and composites in Chapter 4, when we start to develop
composite applications.

SOA governance

SOA governance is a set of related activities for exercising control over services and
processes in SOA. SOA is a distributed architecture where applications consist of
services and processes. The objective of SOA governance is assurance that all services
and processes within an information system will adhere to the overall architecture.
SOA governance has to address many different aspects, among them:

Services and processes must follow specific guidelines, best practices, and
patterns

Services should not be duplicated
Services are reused and reusable

The portfolio of services is managed, including the development of new
services and modifications of existing services

Versioning of services and processes is defined
Service lifecycle is defined

Deployment practices are defined

Consistency of services is monitored

Quality of Services is ensured

SOA governance is an essential element of a successful SOA implementation.
Without governance, SOA will most likely fail to deliver its value to the stakeholders.
To learn more about SOA governance, have a look at SOA Governance by Todd Biske,
Packt Publishing.

Understanding BPEL

The general adoption of business process automation solutions requires a standard
foundation and a specialized language for composing services into business
processes that provide the ability to express business processes in a standardized
way, using a commonly accepted language. BPEL is such a language and is quickly
becoming the dominant standard. The main goal of BPEL is to standardize the
process of automation between Web Services.

[38]

Chapter 1

With BPEL we can define business processes that make use

of services and business processes that externalize their

functionality as services.

Within enterprises, BPEL is used to standardize enterprise application integration
and extend the integration to previously isolated systems. Between enterprises, BPEL
enables easier and more effective integration with business partners. BPEL stimulates
enterprises to further define their business processes, which in turn leads to business
process optimization, re-engineering, and the selection of the most appropriate
processes, thus further optimizing the organization. Definitions of business processes
described in BPEL do not influence existing systems. BPEL is the key technology in
environments where functionalities already are, or will be, exposed via Web Services.
With increases in the use of web service technology, the importance of BPEL will rise
further.

IBM, BEA, and Microsoft developed the first version of BPEL in August 2002. Since
then SAP and Siebel have joined in, which has resulted in several modifications

and improvements and the adoption of version 1.1 in March 2003. In April 2003,
BPEL was submitted to OASIS (Organization for the Advancement of Structured
Information Standards) for standardization purposes, where the WSBPEL TC (Web
Services Business Process Execution Language Technical Committee) has been
formed. Many vendors have joined the WSBPEL TC (http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsbpel) since. This has led to even broader
acceptance in industry. In April 2007, BPEL version 2.0 was approved by OASIS after
quite a long preparation period.

BPEL represents a convergence of two early workflow languages — WSFL (Web
Services Flow Language) and XLANG. WSFL was designed by IBM and is based
on the concept of directed graphs. XLANG was designed by Microsoft and is a
block-structured language. BPEL combines both approaches and provides a rich
vocabulary for the description of business processes.

[In this book, we will use BPEL version 2.0.]

BPEL uses an XML-based vocabulary to specify and describe business processes.
BPEL version 2.0 utilizes the WSDL 1.1, XML Schema 1.0, XPath 1.0, and XSLT 1.0
specifications. Familiarity with them is helpful for learning BPEL.

[39]

Introduction to BPEL and SOA

BPEL features

With BPEL we can define simple and complex business processes. To a certain
extent, BPEL is similar to traditional programming languages. It offers constructs,
such as loops, branches, variables, assignments, and so on that allow us to define
business processes in an algorithmic way. BPEL is a specialized language focused
on the definition of business processes. It is an execution language for business
processes, not a modeling language. Therefore, on one hand it offers constructs,
which make the definition of processes relatively simple and on the other hand, it is
less complex than traditional programming languages, which simplifies learning.

The most important BPEL constructs are related to the invocation of services.
BPEL makes it easy to invoke operations of services either synchronously or
asynchronously. We can invoke operations either in sequence or in parallel. We can
also wait for callbacks. BPEL provides a rich vocabulary for fault handling, which
is very important, as robust business processes need to react to failures in a smart
way. BPEL also provides support for long-running process and compensation, which
allows undoing partial work done by a process that has not finished successfully.
Listed below are the most important features that BPEL provides. With BPEL we can:
e Describe the logic of business processes through composition of services
e Compose larger business processes out of smaller processes and services

e Handle synchronous and asynchronous (often long-running) operation
invocations on services, and manage callbacks that occur at later times

e Invoke service operations in sequence or parallel
e Selectively compensate completed activities in case of failures

e Maintain multiple long-running transactional activities, which are
also interruptible

e Resume interrupted or failed activities to minimize work to be redone
¢ Route incoming messages to the appropriate processes and activities
o Correlate requests within and across business processes

e Schedule activities based on the execution time and define their order
of execution

e Execute activities in parallel and define how parallel flows merge
based on synchronization conditions

e Structure business processes into several scopes

e Handle message-related and time-related events

[40]

Chapter 1

Orchestration and choreography

Depending on the requirements, the composition of services can address private or
public processes, for which the following two terms are used:

e Orchestration

e Choreography

In orchestration, a central process takes control over the involved services and
coordinates the execution of different operations on the services involved in the
operation. This is done as per the requirements of the orchestration. The involved
services do not know (and do not need to know) that they are involved in a
composition and that they are a part of a higher business process. Only the central
coordinator of the orchestration knows this, so the orchestration is centralized
with explicit definitions of operations and the order of invocation of services.
Orchestration is usually used in private business processes and is schematically
shown as follows:

Web service Web service

1) 2
1: Receive 2: Invoke

5: Reply Orchestration
(co-ordinator) 4: .. n: Invoke

[

Web service Web service
3 n

[41]

Introduction to BPEL and SOA

Choreography, on the other hand, does not rely on a central coordinator. Rather,
each service involved in the choreography knows exactly when to execute its
operations and whom to interact with. Choreography is a collaborative effort
focused on the exchange of messages in public business processes. All participants
of the choreography need to be aware of the business process, operations to execute,
messages to exchange, and the timing of message exchanges. Choreography in
services composition is as shown in the following figure:

Web service

5: Invoke 1 1: Invoke

o Ju

Web service Web service
4 2

3: Reply
N -

4: Invoke ; 2: Invoke
Web service

3

From the perspective of composing services to execute business processes,
orchestration has an advantage over choreography. Orchestration is a more flexible
paradigm, although the line between orchestration and choreography is vanishing.
Orchestration has the following advantages:

e We know exactly who is responsible for the execution of the whole business
process

e We can incorporate services, even those that are not aware that they are a
part of a business process

e We can also provide alternative scenarios when faults occur

BPEL provides support for orchestration and choreography through executable and
abstract business processes.

[42]

Chapter 1

Executable and abstract processes

With BPEL, we can describe business processes in two distinct ways:

e We can specify the exact details of business processes. Such processes are
called executable business processes and follow the orchestration paradigm.
They can be executed by an orchestration engine.

e We can specify the public message exchange between parties only. Such
processes are called abstract business processes. They do not include the
internal details of process flows and are not executable. They follow the
choreography paradigm.

Executable business processes are processes that comprise a set of existing services
and specify the exact algorithm of activities and input and output messages. Such
processes are executable by BPEL engines. Executable processes are important
because they are the direct answer to the problem of business process automation
through IT that we have discussed earlier in this chapter. With BPEL executable
processes, we are able to specify the exact algorithm of service composition in a
relatively simple and straightforward way, and execute it on a BPEL-compliant
engine. Executable processes fill the gap between the business process specifications
and the code responsible for their execution.

When we define an executable business process in BPEL, we actually define a new
web service that is a composition of existing services. The interface of the new BPEL
composite web service uses a set of port types, through which it provides operations
like any other web service. To invoke an executable business process, we have to
invoke the resulting composite web service. You can see that executable business
processes are the most important way of using BPEL. In the majority of cases, BPEL
is used to specify executable processes.

Abstract business processes, on the other hand, are not executable. They specify
public message exchange between parties only — the externally observable aspects of
process behavior. The description of the externally observable behavior of a business
process may be related to a single service, or a set of services. It might also describe
the behavior of a participant in a business process. Abstract processes will usually be
defined for two scenarios:

e To describe the behavior of a service without knowing exactly in which
business process it will take part

e To define collaboration protocols among multiple parties and precisely
describe the external behavior of each party

[43]

Introduction to BPEL and SOA

Abstract processes are rarely used. The most common scenario is to use them as a
template to define executable processes. Abstract processes can be used to replace
sets of rules usually expressed in natural language, which are often ambiguous.
In this book, we will first focus on executable processes and come back to abstract
processes in Chapter 3.

Relation of BPEL to other languages

BPEL is not the only language for business process execution. Before we start
discussing the technical aspects of BPEL, let us overview the relation of BPEL to
other languages. Recently, several orchestration and choreography languages
have been proposed. The most important orchestration languages include:

XLANG and the new version XLANG/s from Microsoft
WSFL (Web Services Flow Language) from IBM

BPML (Business Process Modeling Language) from BPMI.org, the Business
Process Management Initiative

BPSS (Business Process Specification Schema), part of the ebXML
framework

YAWL (Yet Another Workflow Language), an open source workflow
language

The most important choreography languages include:

WSCL (Web Services Conversation Language) from HP, submitted to W3C

WSCI (Web Services Choreography Interface), co-developed by Sun, SAP,
BEA, and Intalio and submitted to W3C

WS-CDL (Web Services Choreography Description Language), at the time
of writing a W3C Candidate Recommendation

In addition to orchestration and choreography languages, which have primarily
been designed to provide machine executable representations of business processes,
we also have to mention the business process modeling notations. These are used

to define business process models and are essential for BPM (Business Process
Management). The most popular and well-known is the BPMN (Business Process
Modeling Notation). BPMN is becoming an important part of SOA.

[44]

Chapter 1

The following figure shows a timeline of the mentioned languages, as they have
been developed:

BPML BPSS WSCI YAWL BPEL4WS 1.1 WS-BPEL 2.0
(BPMI) (ebXML) (Sun, ...) (OASIS) (OASIS)

[/

2000 2001 2002 2003 2004 2005 2006 2007 2008

/] |

XLANG WSFL WSCL BPEL4WS 1.0 WS-CDL
(Microsoft) (IBM) (HP) (IBM, Microsoft, BEA) (W3C)

~— T

We have already mentioned that BPEL represents a convergence of XLANG and
WSEFL and it shares and further develops the concepts of those languages. In the
following sections we will briefly describe these languages.

XLANG

XLANG has been one of the early orchestration languages. It has been developed
with the objective of achieving clear separation between processes and
implementations. It is a Microsoft proprietary language and not fully documented.
It has been used in Microsoft BizTalk. XLANG and its successor XLANG/s can be
viewed as messaging languages with some of the expression capabilities of C#.
However, code is not portable between XLANG/s and C#.

XLANG/ s specifies high-level constructs that are used to define and execute
business processes. The semantics embodied in XLANG/s are a reflection of those
defined in BPEL. Although XLANG is thought of as a predecessor of BPEL, Microsoft
continues to use XLANG/s in their BizTalk Server. Instead of moving to BPEL in
BizTalk, Microsoft provides a conversion between XLANG/s and BPEL.

[45]

Introduction to BPEL and SOA

WSFL

WSEFL is also one of the early XML-based orchestration languages. It has been
developed by IBM to be a part of the Web Services technology stack. WSFL supports
two types of service compositions. First is the flow model, which specifies the exact
interactions between services (a process). Such a flow model is executable. The
second type is the global model, which specifies the overall interaction of services
and is abstract. This is very similar to BPEL-executable and abstract processes.

As we have already mentioned, WSFL has, together with XLANG, provided a basis
for BPEL. Unlike Microsoft, IBM has moved to BPEL as their main language for
service composition and provides full support for BPEL in their various products,
such as in IBM WebSphere Process Server.

BPML

BPML has been developed by BPMI.org (Business Process Management Initiative).
Intalio has played an important role, and has been the initiator of BPML. BPML is a
meta-language for modeling business processes and provides an abstract execution
model for describing collaborations and transactions. It defines a formal model for
expressing abstract and executable processes, and supports:

¢ Data management
e Conformity
e Exception handling

e Operation semantics

BPML can describe a process in a specific language, defined on top of the extensible
BPML scheme. Business processes are defined as groups of flows (control flows,
data flows, and event flows). Formatting features, security rules, and transactional
contexts can also be defined. BPML offers support for synchronous and
asynchronous distributed transactions and can be used for the process components
of existing applications.

Comparing BPML to BPEL shows that both share similar roots in Web Services
and leverage other Web Services specifications, particularly WS-Security,
WS-Coordination, and WS-Transactions. BPML, however, supports modeling
more complex business processes through its support for advanced semantics
such as nested processes and complex compensated transactions. BPML can
therefore be regarded as a superset of BPEL. The extensions of BPEL with
business rules, task management, human interactions, and so on are defined

in BPXL (Business Process eXtension Layers).

[46]

Chapter 1

The fact that both BPEL and BPML share the same idioms and have similar syntax
has resulted in BPML being discontinued in favor of BPEL. BPEL has over the years
gained much broader support by software vendors than BPML.

ebXML BPSS

Electronic Business using eXtensible Markup Language (ebXML) is a framework
that provides a set of technologies, BPSS being one of them. ebXML has been
developed under the initiative of OASIS and UN/CEFACT and consists of the
following technologies:

e Messaging: Uses SOAP with attachments for communication between
partners.

e Registry and repository: Similar to UDDI registry, but offers additional
functionality through the repository.

e Core components: Used for construction of business documents.
e CPP (Collaboration Protocol Profile): Used to express a partner profile.

e CPA (Collaboration Protocol Agreement): Used to express an agreement
between partners.

e BPSS: Used for the specification of business processes.

BPSS covers the same domain as BPEL. The BPSS approach to process specification
follows the choreography pattern and is therefore comparable to abstract BPEL
processes. In addition to specifying the process logic, BPSS also specifies the
communication protocol details.

BPSS is designed around the concept of business transactions, which is, however, not
fully conformant with the Web Services Transactions specifications. A BPSS business
transaction is used to describe the message exchange between two abstract roles — the
sender and the responder. Each message consists of an XML document and optional
attachments, which can be XML or binary. For each responding message, we specify
whether it is a positive or negative message. Each message is associated with a
business transaction protocol. Collaboration in BPSS can be bilateral or multi-party
and is described by the business transaction protocol.

We can see that BPSS is not a direct alternative to BPEL and is used in environments
where ebXML is applied. For more information on ebXML, refer to the following books:

e ebXML: Concepts and Application by Brian Gibb and Suresh Damodaran,
John Wiley & Sons

e ebXML: The New Global Standard for Doing Business over the Internet by Alan
Kotok and David RR Webber, SAMS

[47]

Introduction to BPEL and SOA

e ebXML Simplified: A Guide to the New Standard for Global E-Commerce by Eric
Chiu, John Wiley & Sons

YAWL

YAWL has been developed by Eindhoven University of Technology and Queensland
University of Technology. Subsequently, several companies have contributed to

the language. The objective of YAWL has been to develop a language that would
support workflow patterns with a formal specification. YAWL is based on Petri nets.
The formal semantics of YAWL enables the static analysis of the language, which is
supported by a tool. The language itself is supported by software that is developed
as open source under an LGPL. It includes the execution engine, graphical editor,
and an application for human tasks.

Similar to BPEL, YAWL is an executable language for processes (workflows).
The main advantage of YAWL is its support for workflow patterns. The major
difference is how both languages have been developed. BPEL has been driven
by a standardization committee under OASIS and has gained large industry
support. Today, most major vendors provide support for BPEL. YAWL on
the other hand, has only one implementation. More on YAWL can be found
on http://www.yawl-system.com/.

WSCL

WSCL has been developed by HP. In contrast to previously mentioned languages,
WSCL has focused on the choreography aspect rather than on the orchestration.

It has been designed to describe business-level conversations or public processes,
supported by corresponding services. WSCL specifies the XML documents being
exchanged, and the allowed sequencing of these document exchanges. WSCL is not
a direct alternative to BPEL, as it does not support executable process orchestrations,
as BPEL does. It is somehow similar to BPEL abstract processes.

HP has submitted WSCL to W3C, where it has become a W3C Note in 2002.
Since then it has not gained much support from software vendors, therefore
WSCL does not play an important role in SOA. The WSCL specification is
accessible at http://www.w3.org/TR/wscl10/.

[48]

Chapter 1

WSCI

WSCI version 1.0 has been developed by Sun, BEA, SAP, and Intalio. WSCl is a
choreography language for describing the flow of messages exchanged by Web
Services in the context of a process. It allows us to describe the observable behavior
of a web service in a message exchange. WSCI also describes the collective message
exchange among interacting Web Services, providing a global and message-oriented
view of a process involving multiple Web Services.

In WSCI, message exchange is described from the viewpoint of each web service.
Each exchange can be qualified by message correlations, transaction descriptions,
and location capabilities. WSCI therefore describes the observable behavior of Web
Services. However, WSCI does not address the definition of the processes driving the
message exchange. It also does not address the definition of the internal behavior of
each web service.

Since WSCI follows the choreography pattern and does not address defining
executable business processes, it compares directly only to BPEL abstract processes.
WSCI has a cleaner interface, which makes it a little easier to learn than BPEL. The
WSCI specification has also been submitted to W3C, which has published it as a W3C
Note. Further, W3C has formed a WS-Choreography working group, which will
address the choreography of Web Services, but has only released the requirements
specification so far.

WSCT has not gained industry support comparable to BPEL. The industry consensus
seems to support BPEL. The WSCI specification is accessible at http: //www.w3.org/
TR/wsci/.

WS-CDL

WS-CDL is a language for specifying the choreography of collaborating services.

It targets the composition of interoperable collaborations between services. With
WS-CDL we can specify the peer-to-peer collaboration of Web Services through the
definition of their observable behavior. We can define sets of rules that define how,
and in what order, different services should act together. Such specification provides
a flexible systemic view of the process.

WS-CDL is positioned as a complementary language to BPEL (and other business
process languages). While BPEL focuses on the behavior specification of a specific
business partner, WS-CDL focuses on the description of message interchanges
between business partners. WS-CDL provides the global model needed by BPEL
processes to ensure that the behavior of endpoints is consistent across all
cooperating services.

[49]

Introduction to BPEL and SOA

A business partner can use the WS-CDL choreography specification to verify if their
internal processes have their outside behavior defined in a way that will allow them
to participate in choreography. WS-CDL choreography specifications can be used

to generate public interfaces, for example, specified using BPEL abstract processes.
WS-CDL specifications are also useful at runtime to verify the execution of message
exchange between business partners.

As WS-CDL is a complementary language to BPEL we cannot make a direct
comparison. However, WS-CDL differs considerably from BPEL. With WS-CDL we
define the message flows exchanged by all partners, while with BPEL we focus on
message flow and the behavior of a specific partner — that is, on the internal behavior
of a business process. The WS-CDL description of message flows is done from a
general perspective, while BPEL specifies message exchange from the point of view
of a specific partner. A BPEL process specifies activities that are executed. WS-CDL
specifies reactive rules, which are used by all participants of a collaboration.

At the time of writing, WS-CDL has been a W3C Candidate Recommendation, dated

9 November 2005. Since then WS-CDL has not gained much industry support, as no
major vendor supports it. At the time of writing, only two small vendors provided
tools. The WS-CDL specification is accessible at http: //www.w3 .org/TR/ws-cdl-10/.

BPMN

BPMN is a graphical notation for specifying business processes. It is the most
comprehensive notation for process modeling so far. BPMN has initially been
developed by BPMI. In 2005, BPMI merged with OMG (Object Management
Group). The current version of BPMN is 1.2. BPMN version 2.0 is currently a work
in progress.

We use BPMN to draw business process diagrams. Such diagrams present the
activities and tasks of a process and their relations. The diagram uses flowchart
concepts to represent the logic of business processes.

BPMN is a graphical-visual language and uses a set of graphical elements. Activities
are represented as rectangles and decisions are diamonds. BPMN successfully joins
the simplicity of the diagrams with the expressive power, which allows BPMN to

be used for complex processes and specification of details.

[50]

Chapter 1

To model the diagrams, BPMN defines four categories of elements:

Flow objects, which are activities, events, and gateways. Activities can

be tasks or subprocesses. Events can be triggers or results. Three types of
events are supported —start, intermediate, and end. Gateways control the
divergence of sequential flows into concurrent flows and their convergence
back to sequential flow.

Connecting objects are used to connect together flow objects. Connectors are
sequence flows, message flows, and associations.

Swim lanes are used to organize activities into visual categories in order to
illustrate different responsibilities or functional capabilities. Pools and lanes
can be used for swim lanes.

Artifacts are used to add specific context to the business processes that are
modeled. Data objects are used to show how data is produced or required
by the process. Groups are used to group together similar activities or other
elements. Annotations are used to add text information to the diagram. We
can also define custom artifacts.

BPMN can be used to model parts of processes or whole processes. Processes can be
modeled at different levels of fidelity. BPMN is equally suitable for internal (private)
business processes and for public (collaborative) business-to-business processes.

The most important goals when designing BPMN have been:

To develop a notation that will be useful and understandable at all levels

of BPM. In business process modeling, different people are involved, from
business users, business analysts, process owners, to the technical architects
and developers. The goal of BPMN has been to provide a graphical that,
which is simple to understand, but powerful enough to model business
processes into the required details.

The semantic gap between the business process models and the information
technology (application software) has been quite large with existing
technologies. There has been no clear definition of how one relates to the
other. The goal of BPMN has been to enable automatic transformation into
the executable code —into BPEL and vice-versa. Therefore, BPMN has been
designed specifically to provide such transformation.

[51]

Introduction to BPEL and SOA

Particularly because of the ability to automatically transform BPMN process models in
executable BPEL processes, BPMN today plays an important role in SOA development.
Modeling of a business process using BPMN is usually the first step. After the model is
complete, such a process is transformed into BPEL to be executed on a process server.
Today several tools for major vendors such as Oracle and IBM provide such automatic
transformation, usually in both directions, which enables round-tripping between
model (BPMN) and executable process representation (BPEL).

For more information on BPMN, refer to the following:

e Business Process Driven SOA using BPMN and BPEL by Matjaz B. Juric
and Kapil Pant, Packt Publishing

e BPMN Specification, http: //www.bpmn.org/

BPEL servers overview

BPEL servers provide a runtime environment for executing BPEL business processes.
Today BPEL servers are usually part of the SOA platform, which in addition to the
BPEL server includes other elements of a complete SOA environment — application
server, ESB, registry and repository, human tasks support, process monitoring, BRMS
(Rule Engine), and adapters. Often a development environment is included and
sometimes a process modeling tool is also available. Most advanced SOA platforms
support the automatic translation of business models into executable BPEL processes.

Most SOA platforms have been developed on top of modern software platforms,
particularly Java Enterprise Edition and Microsoft .NET. BPEL servers leverage Java
Enterprise Edition or .NET application server environments, where they can make
use of the services provided by application servers, such as security, transactions,
scalability, integration with databases, components such as EJBs (Enterprise Java
Beans) and COM+ (Component Object Model), messaging systems such as JMS
(Java Message Service) or MSMQ (Microsoft Message Queue), and so on.

The most important commercial SOA platforms with BPEL servers are listed below:
e Oracle SOA Suite (BPEL Process Manager) (http://www.oracle.com/
technologies/soa/soa-suite. html)

e Oracle Sun Java Composite Application Platform Suite
(http://developers.sun.com/javacaps/)

e IBM WebSphere (WebSphere Process Server) (http://www.ibm.com/

software/solut ions/soa/)

[52]

Chapter 1

e TIBCO ActiveMatrix (ActiveMatrix BusinessWorks) (http://www.tibco.
com/products/soa/default.j sp)

o InterSystems Ensemble (http://www.intersystems.com/ensemble/index.
html)

o Fujitsu Interstage (Business Process Manager) (http://www.fujitsu.com/
global/services/software/ interstage/)

e Hitachi uCosminexus Service Platform (http://www.hitachi.co.jp/Prod/
comp/softl/global/prod/cosminexus/sol/sp/sp view. html)

e Software AG webMethods (http://www.softwareag.com/Corporate/
products/wm/default. asp)

e Intalio BPM (http://www.intalio.com/products/bpm/)

e Fiorano SOA Platform (http://www.fiorano.com/products/fsoa/
products_fioranosoa. php)

e Active Endpoints ActiveVOS (http://www.activevos.com/)
e OpenLink Virtuoso Universal Server (http://virtuoso.openlinksw.com/)

e Parasoft BPEL Maestro (http://www.parasoft.com/jsp/products/home.
jsp?product=BPEL)

e DPolarLake Integration Suite (http://www.polarlake.com/)

Microsoft also provides an SOA platform, although Microsoft does not use the
acronym SOA as often as the other suppliers. Microsoft's SOA is built around
Windows Workflow Foundation, Windows Communication Foundation, and
Microsoft BizTalk (process server). In contrast to most of the other vendors,
Microsoft does not support BPEL natively (yet). Microsoft BizTalk, at the time

of writing, still uses XLANG/s, the Microsoft proprietary orchestration language.
However, it allows for the import and export of BPEL.

An important supporter of SOA is SAP. SAP Enterprise Service-Oriented
Architecture (Enterprise SOA) has been defined by SAP as "an open architecture
for adaptive business solutions". Enterprise SOA is enabled by the SAP NetWeaver
platform. SAP has positioned Enterprise SOA to deliver the benefits offered by
service-oriented architecture, including enabling both flexibility and business
efficiency. Most of SAP products, such as mySAP ERP, mySAP CRM, and mySAP
SRM, are built upon Enterprise SOA.

There are also a few open source implementations:

e JBoss Enterprise SOA Platform (Red Hat) (http://www.jboss.com/
products/plat forms/soa/)

e OpenESB (https://open-esb.dev.java.net/)

[53]

Introduction to BPEL and SOA

e ActiveBPEL Engine (http://www.activebpel.org/)
e bexee BPEL Execution Engine (http://sourceforge.net/projects/bexee)

e Apache Agila (http://wiki.apache.org/agila/), formerly known as
Twister

In the following chapters we will use Oracle SOA Suite platform, including
JDeveloper and Oracle BPEL Process Manager. Please keep in mind however that
BPEL is an open specification therefore it does not differ between the products. BPEL
code is portable between different BPEL servers. This holds true as long as you are
not using some vendor-specific extensions. Therefore, in the next chapters we will
first look at standard BPEL. Then, we will look how to use BPEL using Oracle SOA
Suite.

The future of BPEL

OASIS has been responsible for the further development of BPEL since April

2003. An OASIS technical committee, called WSBPEL TC, has been formed for the
development of a new BPEL version, called WS-BPEL 2.0. The technical committee,
which supervises and influences further development of BPEL, has many new
members. This ensures that BPEL will be extended with new features and also
ensures continuity of development. The number of participants involved in BPEL
shows that industry support is large and still increasing. More information on
WSBPEL TC can be found at http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wsbpel.

Summary

In this chapter, we have become familiar with BPEL, its role in the SOA, and basic
concepts related to service composition and the definition of business processes.
BPEL provides a rich vocabulary for defining processes and has several features
not found in programming languages. This makes BPEL the preferred choice for
composition of services. Major software vendors support BPEL and open source
implementations exist. Based on comparison to other technologies and languages,
we have seen that BPEL plays an important role in service composition.

BPEL fits very well into the SOA, and with BPEL, we can define executable business
processes and abstract business processes. Executable processes are the most
important and allow us to define the exact order in which services are composed.

In the next chapter, we will look at BPEL and learn how to define a BPEL process.

[54]

Service Composition
with BPEL

In this chapter, we will get familiar with BPEL concepts, and discuss composing
services with BPEL. We will look at how to develop executable business processes.
In a nutshell, we will:

e Discuss service composition with BPEL
e Explain how business processes are defined in BPEL
¢ Get familiar with core concepts including;:

[e]

The structure of BPEL process definitions

o

Invoking services
° Synchronous and asynchronous processes
Partner links

¢ The role of WSDL

Important activities and other constructs

Define an example BPEL process

Service Composition with BPEL

Developing business processes with
BPEL

BPEL uses an XML-based vocabulary that allows us to specify and describe business
processes. BPEL is a programming language. Most development environments that
support BPEL, such as Oracle JDeveloper, IBM WebSphere Integration Developer,
or Eclipse usually provide a visual editor, where we can compose BPEL processes by
dragging and dropping the BPEL activities in a visual way. However, the majority
of tools also allow a switch to the source view, where you can enter the BPEL code
directly. A BPEL visual representation is generated out of BPEL code. In this chapter
we will look at the BPEL code.

With BPEL, you can describe business processes in two distinct ways:

o Executable business processes: They specify the exact details of business
processes and can be executed by a BPEL process server. In the majority of
cases, we will use BPEL to specify executable processes.

e Abstract business processes: They process templates or public message
exchange between parties, without including the specific details of process
flows. They are not executable and are rarely used.

This chapter focuses on executable business processes. Abstract business processes
are covered in the next chapter.

Executable business processes are processes that comprise a set of services. When
we describe a business process in BPEL, we actually define a new service that is a
composition of existing services. The interface (WSDL) of the new BPEL composite
service uses a set of port types, through which it provides operations like any
other service. To invoke a business process described in BPEL, we must invoke the
resulting composite service.

In a typical scenario, the BPEL business process receives a request. To fulfill it, the
process then invokes the involved services and finally responds to the original caller.
Because the BPEL process communicates with other services, it relies heavily on the
WSDL description of the services invoked by the composite BPEL service.

Anyone developing BPEL processes requires a good understanding of WSDL and
other related technologies. BPEL introduces WSDL extensions, which enable us to
accurately specify relations between several services in the business process. These
relations are called partner links. The following figure shows a BPEL process and its
relation to services (partner links):

[56]

Chapter 2

<receive>

q Web
Service 1

Client | _Partner Link g Partner Link

kportT):t)e portType
< invw

<invoke>

Web

Partner Link Service 2

<invoke>

BPEL process as Web Service

portType)

Any BPEL process specifies the exact order in which participating services should
be invoked. This can be done sequentially or in parallel. With BPEL, we can express
conditional behavior; for example, a service invocation can depend on the value of
a previous invocation. We can also construct loops, declare variables, copy, assign
values, define fault handlers, and so on. By combining all these constructs, we can
define complex business processes in an algorithmic manner. We can describe
deterministic as well as non-deterministic flows. Because business processes are
essentially graphs of activities, it is sometimes useful to express them using a
modeling notation, such as BPMN (Business Process Modeling Notation) or UML
(Unified Modeling Language) activity diagrams. BPEL is not a modeling language
for processes, but an execution language for processes and orchestration of services.
To understand how business processes are defined in BPEL, we look at the core
concepts in the next section.

Core concepts

A BPEL process consists of steps. Each step is called an activity. BPEL supports basic
and structured activities. Basic activities represent basic constructs and are used for
common tasks, such as those listed below:

e Invoking other Web Services, using <invoke>

e Waiting for the client to invoke the business process by sending a message,
using <receives (receiving a request)

¢ Generating a response for synchronous operations, using <reply>

e Manipulating data variables, using <assign>

[57]

Service Composition with BPEL

e Indicating faults and exceptions, using <throw>
e Waiting for some time, using <wait>

e Terminating the entire process, using <exit>

We can then combine these and other basic activities and define complex flows that
specify exactly the steps of a business process. To combine basic activities, BPEL
supports several structured activities. The most important are:

e Sequence (<sequences), for defining a set of activities that will be invoked
in an ordered sequence

e Flow (<flows), for defining a set of activities that will be invoked in parallel
e Conditional construct (<if>), for implementing branches

e While, repeat, and for each (<while>, <repeatUntils, <forEachs), for
defining loops

e The ability to select one of a number of alternative paths, using <pick>

Each BPEL process will also define partner links, using <partnerLinks>, and declare
variables, using <variabless.

To provide an idea of how a BPEL process looks, we show a very simple BPEL
process, which selects the best insurance offer from several.

We first declare the partner links to the BPEL process client (called client) and two
insurance services (called insurancea and insuranceB):

<?xml version="1.0" encoding="utf-8"?>
<process name="InsuranceSelectionProcess"
targetNamespace="http://packtpub.com/bpel/example/"

xmlns=
"http://docs.ocasis-open.org/wsbpel/2.0/process/executable"

xmlns:ins="http://packtpub.com/bpel/insurance/"
xmlns:com="http://packtpub.com/bpel/company/" >

<partnerLinks>

<partnerLink name="client"
partnerLinkType="com:selectionLT"

myRole="insuranceSelectionService"/>

<partnerLink name="insuranceA"
partnerLinkType="ins:insuranceLT"

myRole="insuranceRequester"
partnerRole="insuranceService"/>

<partnerLink name="insuranceB"
partnerLinkType="ins:insuranceLT"

[58]

Chapter 2

myRole="insuranceRequester"
partnerRole="insuranceService"/>

</partnerLinks>

Next, we declare variables for the insurance request (InsuranceRequest), insurance
A and B responses (InsuranceAResponse, InsuranceBResponse), and for the final
selection (InsuranceSelectionResponse):

<variables>
<!-- input for BPEL process -->
<variable name="InsuranceRequest"
messageType="ins:InsuranceRequestMessage"/>
<!-- output from insurance A -->
<variable name="InsuranceAResponse"
messageType="ins:InsuranceResponseMessage"/>
<!-- output from insurance B -->
<variable name="InsuranceBResponse"
messageType="ins:InsuranceResponseMessage"/>
<!-- output from BPEL process -->
<variable name="InsuranceSelectionResponse"
messageType="ins:InsuranceResponseMessage"/>
</variables>

Finally, we specify the process steps. First we wait for the initial request message
from the client (<receives). Then we invoke both insurance services (<invoke>)

in parallel using the <f1lows> activity. The insurance services return the insurance
premium. Then we select the lower amount (<if>) and return the result to the client
(the caller of the BPEL process) using the <replys activity:

<sequence>

<!-- Receive the initial request from client -->
<receive partnerLink="client"
portType="com: InsuranceSelectionPT"
operation="SelectInsurance"
variable="InsuranceRequest"
createInstance="yes" />

<!-- Make concurrent invocations to Insurance A and B -->
<flow>

<!-- Invoke Insurance A service -->

<invoke partnerLink="insuranceA"
portType="ins:ComputeInsurancePremiumPT"
operation="ComputeInsurancePremium"
inputVariable="InsuranceRequest"
outputVariable="InsuranceAResponse" />

[59]

Service Composition with BPEL

<!-- Invoke Insurance B service -->

<invoke partnerLink="insuranceB"
portType="ins:ComputeInsurancePremiumPT"

operation="ComputeInsurancePremium"
inputVariable="InsuranceRequest"
outputVariable="InsuranceBResponse" />

</flow>

<!-- Select the best offer and construct the response -->
<if>
<conditions
$InsuranceAResponse.confirmationData/ins:Amount <=
$InsuranceBResponse.confirmationData/ins:Amount
</conditions>
<!-- Select Insurance A -->
<assigns>
<copy>
<from variable="InsuranceAResponse" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>

<else>
<!-- Select Insurance B -->
<assigns>
<copy>
<from variable="InsuranceBResponse" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>
</else>
</if>

<!-- Send a response to the client -->

<reply partnerLink="client"
portType="com: InsuranceSelectionPT"
operation="SelectInsurance"
variable="InsuranceSelectionResponse"/>

</sequence>
</process>

In the coming sections, we will explain the different parts of the BPEL process
and the syntax of various BPEL activities.

[60]

Chapter 2

As BPEL processes are exposed as services, we need a WSDL for the
e BPEL process.

Because each BPEL process is a service, each BPEL process needs a WSDL document
too. This is more or less obvious. As mentioned, a client will usually invoke an
operation on the BPEL process to start it. With the BPEL process WSDL, we specify
the interface for this operation. We also specify all message types, operations, and
port types a BPEL process offers to other partners. We will show WSDL for the BPEL
process later in this chapter.

Invoking services

A BPEL process definition is written as an XML document using the <process>
root element. Within the <process> element, a BPEL process will usually have the
top-level <sequence> element. Within the sequence, the process will first wait for
the incoming message to start the process. This wait is modeled with the <receive>
construct. Then the process will invoke the related services, using the <invoke>
construct. Such invocations can be done sequentially or in parallel. If we want to
make them sequential, we simply write an <invokes for each invocation and the
services will be invoked in that order. This is shown in the following code excerpt:

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process -->
<receive ... />
<!-- Invoke a set of related services, one by one -->
<invoke ... />
<invoke ... />
<invoke ... />
</sequence>

</process>

Here we have not shown the full syntax of <receives>, <invokes, and other
activities, which require that we specify certain attributes. This is explained later
in this chapter, after we have become familiar with the basic structure of BPEL
documents.

To invoke services concurrently, we can use the <flow> construct. In the example
below, the three <invoke> operations would perform concurrently:

[61]

Service Composition with BPEL

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process -->
<receive ... />

<!-- Invoke a set of related services, concurrently -->
<flow>
<invoke ... />
<invoke ... />
<invoke ... />
</flow>
</sequence>
</process>

We can also combine and nest the <sequence> and <flows> constructs, which allows
us to define several sequences executing concurrently. In the following example we
have defined two sequences, one consisting of three invocations, and one with two
invocations. Both sequences would execute concurrently:

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process -->
<receive ... />
<!-- Invoke two sequences concurrently -->
<flow>
<!-- The three invokes below execute sequentially -->
<sequence>
<invoke ... />
<invoke ... />
<invoke ... />
</sequence>
<!-- The two invokes below execute sequentially -->
<sequence>
<invoke ... />
<invoke ... />
</sequence>
</flow>
</sequence>
</process>

[62]

Chapter 2

Invoking asynchronous services

We just explained how to invoke synchronous service operations. There are actually
two major types of service operations:

e Synchronous request/reply service operations: Here we send a request
and wait for the reply. Such operations usually do not require much time to
process; therefore, it is reasonable for the sender (client) to wait for the reply.
They are shown in the following figure:

1: request
Sender —> Receiver
(client) <« (Web service)
2: response

e Asynchronous service operations: Usually, such operations perform
processing that requires a longer time to finish. Therefore, they do not block
the sender for the duration of the operation. If such operations require that
results are sent back to the client, they usually perform callbacks. This is
shown in the following figure:

1: Async one-way -
Sender E— Receiver
(client) (Web service)
Sender Receiver
(client) «— (Web service)
1: Callback

Callbacks usually need to be related to original requests. We call this message
correlation. Message correlation can be achieved automatically with WS-Addressing,
or with BPEL correlation sets, which we will cover in Chapter 3.

Using the <invokes construct, we can invoke both types of operations —synchronous
and asynchronous. If we invoke a synchronous operation, the business process waits
for the reply. We do not need to use an explicit construct to retrieve the reply.

With asynchronous operations, <invoke> only takes care of the first part—for the
operation invocation. To receive a result (if one is returned to the client), we need

to use a separate construct, <receives. With <receives, the business process waits
for the incoming message. Between the <invoke> and <receive> we could do some
other processing instead of waiting for the reply, as is the case with synchronous
operations. The code excerpt below shows how to invoke asynchronous operations:

[63]

Service Composition with BPEL

<process ...>
<sequence>
<!-- Wait for the incoming request to start the process -->
<receive ... />
<!-- Invoke an asynchronous operation -->
<invoke ... />
<!-- Do something else... -->
<!-- Wait for the callback -->
<receive ... />
</sequence>
</process>

Just like synchronous operations, we can use asynchronous <invoke>/<receives>
pairs within <flows> to perform several concurrent invocations.

Synchronous/Asynchronous business
processes

We have already mentioned that the BPEL-modeled business process is exposed as a
service. The BPEL process itself can be synchronous or asynchronous. A synchronous
BPEL process returns a response to the client immediately after processing and the
client is blocked for the whole duration of the BPEL process execution.

An asynchronous BPEL process, on the other hand, does not block the client.

To return a result to the client, an asynchronous process uses a callback, similar
to any other service. However, it is not required that such a BPEL process returns
a response.

This brings us to the conclusion that the type of BPEL process we choose is very
important. Most real-world processes are long running, so we model them as
asynchronous. However, there may also be processes that execute in a relatively
short time, or processes where we want the client to wait for completion. We model
such processes as synchronous.

How do synchronous and asynchronous processes differ in the BPEL specification?
We know that both first wait for the initial message, using a <receives>. Both

also invoke other services, either synchronously or asynchronously. However,

a synchronous BPEL process will return a result after the process has completed.
Therefore, we use a <reply> construct at the end of the process, as shown in the
following excerpt:

[64]

Chapter 2

<process ...>

<sequence>

<!-- Wait for the incoming request to start the process -->
<receive ... />

<!-- Invoke a set of related services -->

<!-- Return a synchronous reply to the caller (client) -->
<reply ... />
</sequence>
</process>

An asynchronous BPEL process does not use the <replys clause. If such a process
has to send a reply to the client, it uses the <invoke> clause to invoke the callback
operation on the client's port type. Remember that an asynchronous BPEL process
does not need to return anything.

<process ...>
<sequence>

<!-- Wait for the incoming request to start the process -->
<receive ... />

<!-- Invoke a set of related services -->

<!-- Invoke a callback on the client (if needed) -->
<invoke ... />

</sequence>
</process>

We will come back to the <invokes, <receives, and <reply> activities a little later
to describe the whole syntax, including the necessary attributes. First, however, we
have to introduce the concept of partner links and partner link types.

Understanding links to partners

From what have we said until now, we can see that BPEL processes interact with
external services in two ways:

e The BPEL process invokes operations on other services.

e The BPEL process receives invocations from clients. One of the clients is the
user of the BPEL process, who makes the initial invocation. Other clients are
services, for example, those that have been invoked by the BPEL process but
make callbacks to return replies.

[65]

Service Composition with BPEL

Links to all parties BPEL interacts with are called partner links. Partner links can be
links to services that are invoked by the BPEL process. These are sometimes called
invoked partner links. Partner links can also be links to clients, and can invoke the
BPEL process. Such partner links are sometimes called client partner links. Note that
each BPEL process has at least one client partner link, because there has to be a client
that first invokes the BPEL process.

Usually a BPEL process will also have at least one invoked partner link because

it will most likely invoke at least one service. The process invokes other services
using the <invokes activity, where it has to specify the operation name and the port
type used for invocation, as we will see later. Invoked partner links may, however,
become client partner links. This is usually the case with asynchronous services,
where the process invokes an operation. Later the service (partner) invokes the
callback operation on the process to return the requested data.

BPEL treats clients as partner links for two reasons. The most obvious reason is
support for asynchronous interactions. In asynchronous interactions, the process
needs to invoke operations on its clients. This is used for modeling asynchronous
BPEL processes. Such processes also invoke the callback on the initial caller, as
mentioned in the previous section.

The second reason is based on the fact that the BPEL process can offer services.

These services, offered through port types, can be used by more than one client.

The process may wish to distinguish between different clients and only offer them
the functionality they are authorized to use. For example, an insurance process might
offer a different set of operations to car-insurance clients than to real-estate-insurance
clients. To sum up, partner links describe links to partners, where partners might be:

e Services invoked by the process
e Services that invoke the process

e Services that have both roles — they are invoked by the process and they
invoke the process

We have already described the first two scenarios. Let us now have a closer look at
the third scenario —a typical asynchronous callback. Here a service offers a portType
2, through which the BPEL process invokes the operations on that service. The

BPEL process also has to provide a portType through which the service invokes the
callback operation —let us call that portType B. This is shown in the following figure:

[66]

Chapter 2

1: Invoke o
> A

BPEL process | portlype) web Service

P 2: Callback
B <
portType]

From the viewpoint of the BPEL process, the process requires portType A on

the service and provides portType B to the service. From the perspective of the
service, the service offers portType A to the BPEL process and requires portType B
from the process.

Partner link types

Describing situations where the service is invoked by the process, and vice versa,
requires selecting a certain perspective. We can select the process perspective

and describe the process as requiring the portType A on the service and providing
the portType B to the service. Alternatively, we select the service perspective

and describe the service as offering portType A to the BPEL process and requiring
portType B from the process.

To overcome this limitation, BPEL introduces partner link types. They allow us

to model such relationships as a third party. We are not required to take a certain
perspective; rather, we just define roles. A partner link type must have at least one
role and can have at most two roles. The latter is the usual case. For each role we
must specify a portType that is used for interaction.

A partner link type declares how two
s parties interact and what each party offers.

In the following example, we define a partnerLinkType called insuranceLT.

It defines two roles, the insuranceService and the insuranceRequester.

The insuranceService offers the ComputeInsurancePremiumPT port type

from the namespace ins, qualified by the corresponding URI (the namespace
declarations are not shown here). The insuranceRequester offers the
ComputeInsurancePremiumCallbackPT port type from the com namespace. As the
name implies, the latter port type is used for the callback operation. The following
declaration specifies the service and the callback roles:

<partnerLinkType name="insuranceLT"
xmlns="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

[67]

Service Composition with BPEL

<role name="insuranceService"
portType="1ins:ComputeInsurancePremiumPT" />

<role name="insuranceRequester"
portType="com: ComputeInsurancePremiumCallbackPT"/>
</partnerLinkType>
Sometimes we may not need to specify two roles. A typical example is when
we use synchronous request/response operations. If the operations in the
ComputeInsurancePremiumPT port type returned results immediately, there would
be no need for a callback. We would only need a single role, which is done as follows:

<partnerLinkType name="insuranceLT"
xmlns="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

<role name="insuranceService"
<portType="ins:ComputeInsurancePremiumPT" />

</partnerLinkType>

If we specify only one role, we express willingness to interact with the service, but do
not place any additional requirements on the service. In the first example, however,
where we have specified two roles, we require that the insurance service supports
theComputeInsurancePremiumCallbackFTpoﬁfype

It is important to understand that the partner link types are not part of the BPEL
process specification document. This is reasonable because partner link types belong
to the service specification and not the process specification. They can therefore be
placed in the WSDL document that describes the partner service or the BPEL process.
Partner link types use the WSDL extensibility mechanism, so they can be a part of a
WSDL document.

Shown below is a skeleton of the WSDL document with the partnerLinkType
section. It specifies types, messages, port types, and partner link types. It does not,
however, show the bindings and the service sections because the BPEL execution
environment usually automatically generates these:

<?xml version="1.0" encoding="UTF-8" ?>

<definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ins="http://packtpub.com/bpel/insurance/"
xmlns:com="http://packtpub.com/bpel/company/"
targetNamespace="http://packtpub.com/bpel/company/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype" >

<import ... />

[68]

Chapter 2

<types>
<Xs:schema

</xs:schemas>

</types>

<message
<part

</message>

>

/>

<portType name="ComputeInsurancePremiumPT">

<operation name="...">
<input message="..." />
</operation>
</portType>
<portType name="ComputeInsurancePremiumCallbackPT">
<operation name="...">
<input message="..." />
</operation>
</portType>

<plnk:partnerLinkType name="insuranceLT">

<plnk:role
portType
<plnk:role
portType

name="insuranceService"
="ins:ComputeInsurancePremiumPT"/>
name="insuranceRequester"
="ins:ComputeInsurancePremiumCallbackPT"/>

</plnk:partnerLinkType>

</definitionss>

% Sometimes existing services will not define a partner link type. Then we
= can wrap the WSDL of the service and define partner link types ourselves.

Now that we have become familiar with the partner link types and know where
to place their declarations, it is time to go back to the BPEL process definition,
more specifically to the partner links.

[69]

Service Composition with BPEL

Defining partner links

We have already described the role of partner links in BPEL process specifications.
However, we have not yet explained how to define partner links because we first
had to get familiar with partner link types.

Partner links are concrete references to services that a BPEL business process
interacts with. They are specified near the beginning of the BPEL process definition
document, just after the <processs> tag. Several <partnerLink> definitions are
nested within the <partnerLinks> element:
<process ...>
<partnerLinks>

<partnerLink ... />
<partnerLink ... />

</partnerLinks>

<sequence>

</sequence>
</process>

For each partner link, we have to specify:

e name: Serves as a reference for interactions via that partner link
e partnerLinkType: Defines the type of the partner link

e myRole: Indicates the role of the BPEL process itself

e partnerRole: Indicates the role of the partner

e initializePartnerRole: Indicates whether the BPEL engine should
initialize the partner link's partner role value. This is an optional attribute
and should only be used with partner links that specify partner role.

We define both roles (myRole and partnerRole) only if the partnerLinkType
specifies two roles. If the partnerLinkType specifies only one role, the partnerLink
also has to specify only one role—we omit the one that is not needed.

Let us go back to our previous example, where we have defined the insuranceLT
partner link type. To define a partnerLink called insurance, characterized by
the insuranceLT partnerLinkType, we need to specify both roles because it is
an asynchronous relation. The role of the BPEL process (myRole) is described as
insurance requester and the partner role is described as insurance service. The
definition is shown in the following code excerpt:

[70]

Chapter 2

<partnerLinks>
<partnerLink name="insurance"
partnerLinkType="tns:insuranceLT"
myRole="insuranceRequester"
partnerRole="insuranceService"/>

</partnerLinks>

BPEL process tag

Now that we are more familiar with BPEL, let's focus on the <process> tag. This
delimits the root element of the BPEL document. The <process> tag requires that
we specify certain attributes. We have to specify the following at least:

e name: Specifies the name of the BPEL business process

® targetNamespace: Specifies the target namespace for the business process
definition

e xmlns: The namespace used by BPEL is http://docs.oasis-open.org/
wsbpel/2.0/process/executable

Usually, we also specify one or more additional namespaces to reference other
involved namespaces, for example, those used by services. Here is a typical process
declaration tag:

<process name="InsuranceSelectionProcess"
targetNamespace="http://packtpub.com/bpel/example/"
xmlns="http://docs.ocasis-open.org/wsbpel/2.0/process/executable"
xmlns:ins="http://packtpub.com/bpel/insurance/"
xmlns:com="http://packtpub.com/bpel/company/" >

We can also specify additional attributes for the <process> tag, including;:

e queryLanguage: Specifies which query language is used for node selection in
assignments, properties, and other uses. The default is XPath 1.0 (urn:oasi
s:names:tc:wsbpel:2.0:sublang:xpathl.0). However, another language
can be specified, such as XPath 2.0 or XQuery. The available options are
determined by what is supported by a given BPEL engine.

e expressionLanguage: Specifies which expression language is used in the
process. The default is XPath 1.0 (urn:oasis:names:tc:wsbpel:2.0:subla
ng:xpathl.0).

® suppressJoinFailure: Determines whether to suppress join failures
(ves or no). The default is no. Join failures are explained in Chapter 3.

[71]

Service Composition with BPEL

e exitOnStandardFault: Defines how the process should behave when a
standard fault occurs. We can specify yes if we want the process to exit on
a standard fault (other than bpel:joinFailure), or no if we want to handle
the fault using a fault handler. The default is no.

Variables

The BPEL business model processes the exchange of messages between involved
services. Messages are exchanged as operations are invoked. When the business
process invokes an operation and receives the result, we often want to store that
result for subsequent invocations, use the result as is, or extract certain data. BPEL
provides variables to store and maintain the state.

Variables are used to store messages that are exchanged
% between business process partners or to hold data that
’ relates to the state of the process.

Variables can also hold data that relates to the state of the process, but will never
be exchanged with partners. Specifically, variables can store WSDL messages, XML
schema elements, or XML schema simple types. Each variable has to be declared
before it can be used. When we declare a variable, we must specify the variable
name and type. To specify type we have to specify one of the following attributes:

e messageType: A variable that can hold a WSDL message
e clement: A variable that can hold an XML schema element

e type: A variable that can hold an XML schema simple type

The declaration of variables is gathered within the <variables> element.

The following example shows three variable declarations. The first one declares

a variable with the name InsuranceRequest, which holds WSDL messages

of type ins: InsuranceRequestMessage. The second declaration defines a

variable PartialInsuranceDescription that can hold XML elements of type
ins:InsuranceDescription. The last variable declaration is for variable LastName,
which can hold XML schema string type data. The first two declarations assume
that the corresponding messageType and element have been declared in the WSDL
(these declarations are not shown here):

<variables>
<variable name="InsuranceRequest"
messageType="1ins: InsuranceRequestMessage"/>
<variable name="PartialInsuranceDescription"
element="ins:InsuranceDescription"/>
<variable name="LastName" type="xXs:string"/>
</variables>

[72]

Chapter 2

You can declare variables globally at the beginning of a BPEL process declaration
document or within scopes. Here we focus on globally-declared variables and
discuss scopes in the next chapter. The following example shows the structure

of a BPEL process that uses variables:

<process ...>

<partnerLinks>

</partnerLinks>

<variables>
<variable ... />
<variable ... />

</variables>

<sequence>

</sequence>
</process>

Providing the interface to BPEL processes:
<invoke>, <receive>, and <reply>

At the beginning of this section, we became familiar with the <invokes,

<receives, and <reply> activities. With <invoke>, the BPEL process invokes
operations on other services, while with <receives, it waits for incoming messages
(that is, operation invocations). With <receives, the business process usually waits
for the initial message to start the process. Another typical use of <receives is to
wait for callbacks. With <reply>, a BPEL process can send a response, if the process
is modeled as synchronous.

All three activities use the same three basic attributes:

e partnerLink: Specifies which partner link will be used
e portType: Specifies the used port type

e operation: Specifies the name of the operation to invoke (<invokes), to
wait to be invoked (<receives), or the name of the operation which has
been invoked but is synchronous and requires a reply (<reply>)

[73]

Service Composition with BPEL

. For each BPEL activity we can specify a name attribute. We use
% the name attribute to provide names for activities. In most BPEL
K= activities the name attribute is optional, but we can add it to
improve the readability of the code.

<invoke>

The <invokes> operation supports two other important attributes. When the business
process invokes an operation on the service, it sends a set of parameters. These
parameters are modeled as input messages with services. To specify the input
message for the invocation, we use the inputvariable attribute and specify a
variable of the corresponding type.

If we invoke a synchronous request/response operation, it returns a result. This
result is again a message, modeled as an output message. To store it in a variable,
<invoke> provides another attribute, called the outputvariable.

The following code excerpt shows an example of the <invoke> clause. We

specify that the BPEL process should invoke the synchronous operation
ComputeInsurancePremium on port type ins:ComputeInsurancePremiumPT using
the insurancea partner link, providing the input from variable InsuranceRequest,
and storing output in the InsuranceAResponse variable:

<invoke partnerLink="insuranceA"
portType="ins:ComputeInsurancePremiumPT"
operation="ComputeInsurancePremium"
inputVariable="InsuranceRequest"
outputVariable="InsuranceAResponse" >

</invoke>

<receive>

Let us now take a closer look at the <receives activity. We have said that <receive>
waits for the incoming message (operation invocation), either for the initial to start
the BPEL process, or for a callback. Usually, the business process needs to store

the incoming message, and it can use the variable attribute to specify a suitable
variable.

Another attribute for <receives activity is the createInstance attribute, which is
related to the business process lifecycle and instructs the BPEL engine to create a new
instance of the process. Usually, we specify the createInstance="yes" attribute
with the initial <receives activity of the process to create a new process instance for
each client. We discuss this attribute in more detail in the next chapter.

[74]

Chapter 2

Another optional attribute for <receives activity is messageExchange, which is
used to disambiguate the relationship between inbound message activities and
<reply> activities. We will discuss message exchange in Chapter 3.

The following example shows a <receives that waits for the SelectInsurance
operation on port type com: InsuranceSelectionPT using the client partner link.
Because this is the initial <receives activity, the createInstance attribute is used.
The client request is stored in the InsuranceRequest variable as follows:

<receive partnerLink="client"
portType="com: InsuranceSelectionPT"
operation="SelectInsurance"
variable="InsuranceRequest"
createInstance="yes" >

</receives>

<reply>

Finally, let's look at the <reply> clause. As we already know, <replys> is used to
return the response for synchronous BPEL processes. <replys is always related to
the initial <receives through which the BPEL process started. Using <reply>, we
can return the answer, which is the normal usage, or we can return a fault message.
Returning a fault message using <reply> is discussed in Chapter 3. We can also
specify a message exchange.

When we use <replys> to return a response for a synchronous process, we have to
define only one additional attribute — the name of the variable where the response is
stored. The following example shows a reply on an initial receive operation. It uses
the client partner link and provides a response for the Select Insurance operation
on ins:InsuranceSelectionPT port type. The return result is stored in the
InsuranceSelectionResponse variable. Please notice that the same partnerLink,
portType, and operation name have been used in the initial <receives clause:

<reply partnerLink="client"
portType="com: InsuranceSelectionPT"
operation="SelectInsurance"
variable="InsuranceSelectionResponse" >

</reply>

The three activities, <invokes, <receives>, and <reply> support additional
functionality. They all support correlations, and <invoke> also supports fault
handlers and compensation handlers. We will discuss these in Chapter 3.

[75]

Service Composition with BPEL

Assignments

The variables in the business process hold and maintain the data. We used variables
in <invokes, <receives, and <replys> to specify the input and output messages for
invoking operations on partner services. In this section, we get familiar with how to
copy data between variables.

To copy data between variables, expressions, and partner link endpoint references,
BPEL provides the <assigns> activity. Within it, we can perform one or more
<copy> commands. For each <copy>, we have to specify the source (<from>)

and the destination (<to>). The syntax of an assignment is presented below:

<assigns>
<copy>
<from ... />
<to ... />
</copy>
<copy>
<from ... />
<to ... />
</copy>

</assign>

There are several choices for the <from> and <to> clauses. To copy values from

one variable to the other, we have to specify the variable attribute in the <from>
and <to> elements. This is shown in the following example, where we have copied a
value from the InsuranceAResponse variable to the InsuranceSelectionResponse
variable:

<assigns>
<copy>
<from variable="InsuranceAResponse" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>

This copy can be performed only if both variables are of same type, as in our
example ins: InsuranceResponseMessage, or if the source type is a subtype
of the destination type.

Variables can be of three types:

e WSDL message types
e XML schema elements

e XML schema primitive types

[76]

Chapter 2

If a variable holds a WSDL message, which is common, we can further refine the
copy by specifying the part of the message we would like to copy. WSDL messages
consist of parts (more on WSDL can be found at http://www.w3.org/TR/wsdl).
Presented below is a simple message (defined in the WSDL document) that consists
of two parts —the insuredPersonbData part and the insuranceDetails part. Both
parts are specified with the corresponding XML schema complex types (not shown
here):

<message name="InsuranceRequestMessage">

<part name="insuredPersonData"
element="ins:InsuredPersonData" />

<part name="insuranceDetails" element="ins:InsuranceDetails" />
</message>

Now suppose that we get a variable of type ins: InsuredPersonDataType from
invoking another service, which has the following message declaration in its WSDL
and uses the same namespace:

<message name="InsuredPersonDataRequestMessage">

<part name="insuredPersonData"
element="ins:InsuredPersonData" />

</message>

Our BPEL process would declare two variables, InsuranceRequest
and InsuredPersonRequest, with the declaration shown below:

<variables>
<variable name="InsuranceRequest"
messageType="1ins: InsuranceRequestMessage"/>
<variable name="InsuredPersonRequest"
messageType="1ins: InsuredPersonDataRequestMessage" />

</variables>

Now we could perform a copy from the InsuredPersonRequest variable to
the insuredPersonData part of the InsuranceRequest variable, using the
following assignment:

<assigns>
<copy>
<from variable="InsuredPersonRequest" part="insuredPersonData" />
<to variable="InsuranceRequest" part="insuredPersonData" />
</copy>
</assign>

[77]

Service Composition with BPEL

We could also perform a copy in the opposite direction. In addition to specifying
the part, we can also specify the exact path to the element we require. To specify the
path, we have to write a query, using the selected query language specified within
the <process> tag.

%‘\ The default query language is XPath 1.0.

Y

In our previous example, suppose the ins: InsuredPersonData is defined
as follows:

<xs:element name="InsuredPersonData">
<xs:complexType>
<XS:sequences
<xs:element name="FirstName" type="xs:string" />
<xs:element name="LastName" type="xs:string" />
<xs:element name="Address" type="xs:string" />
<xs:element name="Age" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

We could perform a copy from the LastName variable to the InsuranceRequest
variable, to the message part insuredpersonData, and to the last name:

<assigns>
<copy>
<from variable="LastName" />

<to variable="InsuranceRequest"
part="insuredPersonData">

<query>ins:LastName</query>
</to>
</copy>
</assign>

The location path must select exactly one node.

We can also use the <assign> activity to copy expressions to variables. Expressions
are written in the selected expression language; the default is XPath 1.0. We specify
the expression within the <from> element. The following example shows how to
copy a constant string to the LastName variable:

<assigns>
<copy>

[78]

Chapter 2

<from>string('Juric')</from>
<to variable="LastName"/>
</copy>
</assign>

We are not restricted to such simple expressions. We can use any valid XPath 1.0
expressions (or the expressions of the selected expression language). For more
information, refer to the XPath 1.0 specification: http: //www.w3.org/TR/xpath.

Another possibility is to copy a literal XML complex element to the
InsuredPersonRequest variable. In this case, we can specify the source XML
directly:

<assigns>
<copy>
<from>
<literals>
<insuredPersonData
xmlns="http://packtpub.com/bpel/insurance/">

<FirstName>Matjaz B.</FirstName>
<LastName>Juric</LastName>
<Address>Ptuj</Address>

<Age>30</Age>
</insuredPersonData>
</literal>
</from>
<to variable="InsuredPersonRequest" part="insuredPersonData" />
</copy>
</assign>

We can specify two optional attributes for the <copy> activity:
e keepSrcElementName: Specifies whether the element name of destination
will be replaced by the element name of the source. The default is no.

e ignoreMissingFromData: Specifies whether the BPEL engine should ignore
missing data in the <from> part of the copy assignment (and not raise a
fault). The default is no.

We can also specify an optional attribute for the <assign> activity.

e validate:If set to yes, the assign activity will validate all variables being
modified by the <assigns>. The default is no.

[79]

Service Composition with BPEL

Validating variables

Sometimes, particularly after assignments (if we did not use validation in
assignments), it makes sense to validate the variables against their associated XML
schemas and WSDL definitions. We can validate the variables explicitly using the
<validate> activity.

It is very simple to validate variables. We just have to list all variable names that we
would like to validate. We separate the variable names with space. The syntax is as
follows:

<validate variables="BPELVariableNames" />

For example, if we would like to validate variables InsuredPersonRequest,
InsuranceRequest, and PartialInsuranceDescription, we would write the
following;:

<validate variables="InsuredPersonRequest InsuranceRequest
PartialInsuranceDescription " />

Accessing variables in expressions

We can access BPEL variables from XPath expressions. This is particularly useful in
<copy> assignments, where we would like to access specific nested elements. We
access BPEL variables in XPath using the $ operator. We will look at the three types
of variables (variables can be of a messageType, element, or type).

Let us first look at messageType variables. Let us assume that we have the following
definition of a variable:

<variables>

<variable name="InsuredPersonRequest"
messageType="ins:InsuredPersonDataRequestMessage"/>

</variabless>

Where the WSDL message and the corresponding XML schema look as follows:

<message name="InsuredPersonDataRequestMessage">

<part name="insuredPersonData"
element="ins:InsuredPersonData" />

</message>
<xs:element name="InsuredPersonData">
<xs:complexType>
<XS:sequences
<xs:element name="FirstName" type="xs:string" />
<xs:element name="LastName" type="xs:string" />
<xs:element name="Address" type="xs:string" />

[80]

Chapter 2

<xs:element name="Age" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

We can access such variables from XPath in the following way:
$variableName.messagePart/ns:node/ns:node..

For example, if we would like to access the LastName from the
InsuredPersonRequest variable, we would need to write:

$InsuredPersonRequest . insuredPersonData/ins:LastName

Let us now look at an example, where the variable contains an XML element.

Let us assume that we have the following definition of a variable:

<variables>

<variable name="PartialInsuranceDescription"
element="ins:InsuranceDescription"/>
</variabless>

Where the XML schema looks as follows:

<xs:element name="InsuranceDescription"s
<xs:complexType>
<XS:sequencex
<xs:element name="Code" type="xs:string" />
<xs:element name="Description" type="xs:string"
<xs:element name="ValidFrom" type="xs:date" />
</xs:sequence>

</xs:complexType>
</xs:element>

We can access such variables from XPath in the following way:
S$variableName/ns:node/ns:node..

For example, if we would like to access the Description from the
PartialInsuranceDescription variable, we would need to write:

$PartialInsuranceDescription/ins:Description

/>

Finally, let us look at an example, where the variable contains an XML type.

Let us assume that we have the following definition of a variable:

<variables>
<variable name="Address" type="ins:AddressType"/>
</variables>

[81]

vww allitebooks.conl

http://www.allitebooks.org

Service Composition with BPEL

Where the XML schema looks as follows:

<xs:complexType name="AddressType">
<XS:sequence>
<xs:element name="Street" type="xs:string" />
<xs:element name="Number" type="xs:int" />
<xs:element name="City" type="xXs:string" />
</xs:sequence>
</xs:complexType>

We can access such variables from XPath in the following way:

$variableName/ns:node/ns:node..

For example, if we would like to access the Street from the Address variable,
we would write:

S$Address/ins:Street

XSLT transformations

Using the assignments to copy data from one variable to another is useful. However,
if we deal with complex XML schemas and have to perform transformations between
different schemas, using the <copy> construct alone would be very time consuming.
A much better approach would be to use XSLT transformations.

The <assign> activity provides support for XSLT transformations. We can invoke
an XSLT transformation from an assignment using the bpel : doXs1Transform()
function. The bpel : doXs1Transform() is a XPath extension function. The syntax
is as follows:

bpel:doXslTransform('style-sheet-URI', node-set,
('xslt-parameter', value) *)

The first parameter is the URI that points to the XSLT stylesheet. We have to provide
a string literal and cannot use a variable here because the BPEL server has to
statically analyze the XSLT stylesheet.

The second parameter is the node set on which the XSLT transformation should be
performed. Here we provide an XPath expression. In most cases, we will provide a
variable (as described in the previous section).

Optionally, we can specify XSLT parameters (if our XSLT stylesheet requires
parameters). We always specify parameters in pairs: first the name of the parameter,
then the value. The value can be an XPath expression (for example, a BPEL variable).
We can specify several pairs of parameters.

[82]

Chapter 2

For example, we can use an XSLT transformation to transform the data stored
in the PersonData variable and copy the result of the transformation to the
InsuredPersonRequest variable:

<assigns>
<copy>
<from>

bpel:doXslTransform(
"http://packtpub.com/xslt/person.xsl", S$PersonData)

</from>
<to variable="InsuredPersonRequest" />
</copy>
</assign>

Conditions

We have to get familiar with one more construct before we are ready to start
developing our BPEL processes. In a business process specification, we usually have
to make choices based on conditions. In BPEL, conditional branches are defined with
the <if> activity. The <if> activity can have several <elseif> branches and one
<else> branch. The following example shows the structure of the <if> activity:

<ifs>
<condition> boolean-expression </conditions
<!-- some activity -->

<elseifs
<condition> boolean-expression </conditions
<!-- some activity -->

</elseifs>

<elseifs>
<condition> boolean-expression </conditions>
<!-- some activity -->

</elseifs>

<else>
<!-- some activity -->

</else>
</if>
The Boolean expressions for <condition> elements are expressed in the selected

query language. Since the default query language is XPath 1.0, we can use any valid
XPath expression that returns a Boolean value.

[83]

Service Composition with BPEL

Variables are usually used in conditions. We access variables in conditions in the
same way as in assignments. We have described it in the previous section.

Let us define a conditional branch, based on the age of the insured person. Suppose
we want to make three different activities, based on the ages from 0-25, 26-50, and 51
and above. The BPEL would look as follows:

<ifs>
<condition>
$InsuranceRequest.insuredPersonData/ins:Age > 50
</conditions>
<!-- perform activities for age 51 and over -->

<elseifs>
<condition>
$InsuranceRequest.insuredPersonData/ins:Age > 25
</conditions>
<!-- perform activities for age 26-50 -->
</elseif>

<else>
<!-- perform activities for age 25 and under -->
</else>
</if>

Activity names

ForeadleTﬂ;aCﬁVﬁy,Sudlas<if>,<invoke>,<reply>,<sequence>,and

so on, we can specify a name by using the name attribute. This attribute is

optional and can be used with all basic and structured activities. For instance,

the Employee Travel Status web service invocation activity could be named
EmployeeTravelStatusSyncInv; this is shown in the code excerpt below. We will
see that naming activities is useful on several occasions, for example, when invoking
inline compensation handlers or when synchronizing activities.

<invoke name="EmployeeTravelStatusSyncInv"
partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" />

Activity names also improve the readability of BPEL processes.

[84]

Chapter 2

Documentation

To include documentation into the BPEL code, we can use the <documentations
construct. We can add this construct to any BPEL activity. For example, we could
add documentation to the above-mentioned <invokes> activity:

<invoke name="EmployeeTravelStatusSyncInv"
partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse">
<documentation>
Invoking the Employee Travel Status service to get the
travel class for an employee.
</documentations>
</invokes>

Now we know enough to start writing BPEL business process definitions. In the next
section, we will write a sample BPEL business process to get familiar with using the
core concepts.

BPEL business process example

To demonstrate how business processes are described with BPEL, we will define

a simple business process for business travels. Let us consider the business travel
process. We describe an oversimplified scenario, where the client invokes the business
process, specifying the name of the employee, the destination, the departure date, and
the return date. The BPEL business process first checks the employee travel status.

We will assume that a service exists through which such a check can be made. Then
the BPEL process will check the price for the flight ticket with two airlines — American
Airlines and Delta Airlines. Again we will suppose that both airline companies provide
a service through which such checks can be made. Finally, the BPEL process will select
the lower price and return the travel plan to the client.

For the purpose of this example, we first build a synchronous BPEL process, to
maintain simplicity. This means that the client will wait for the response. Later in this
chapter, we modify the example and make the BPEL process asynchronous. We will
assume that the service for checking the employee travel status is synchronous. This is
reasonable because such data can be obtained immediately and returned to the caller.

[85]

Service Composition with BPEL

To acquire the plane ticket prices we use asynchronous invocations. Again, this is
reasonable because it might take a little longer to confirm the plane travel schedule.
We assume that both airlines offer a service and that both Web Services are identical
(provide equal port types and operations). This assumption simplifies our example.
In real-world scenarios, you will usually not have the choice about the services but
will have to use whatever services are provided by your partners. If you have the
luxury of designing the Web Services along with the BPEL process, consider which is
the best interface. Usually we use asynchronous services for long-lasting operations
and synchronous services for operations that return a result in a relatively short time.
If we use asynchronous services, the BPEL process is usually asynchronous as well.

In our example, we first develop a synchronous BPEL process that invokes two
asynchronous airline Web Services. This is legal, but not recommended in real-world
scenarios since the client may have to wait for an arbitrarily long time. In the real
world, the solution would be to develop an asynchronous BPEL process, which we
will cover later in this chapter.

1: Request » ? 2: Request > Employ
" . Travel
Client < <invoke(sync)>>
< Retrieve the employee Status_Web
6: Reply travel status 3: Reply Service
portType
< <invoke(async)>> < <invoke(async)> >
Get plane ticket offer Get plane ticket offer
from American Airlines from Delta Airlines
4.1: Invoke American

q Airlines

[A . . Del .] [A . . Del .] Web

merican.price < =Delta.price merican.price>Delta.price i
¥ M 4.2: Callback | Service
< <assign>> < <assign>>
Select the American Select the Delta
Airlines ticket Airlines ticket
<<reply>>
Return the best portType /¢

Giirzy 5.2: Callback Delta
Airlines

Web
5.1: Invoke Service

Example BPEL Process For Business Travels

We invoke Web Services of both airlines concurrently and asynchronously. This
means that our BPEL process will have to implement the callback operation (and
a port type), through which the airlines will return the flight ticket confirmation.

[86]

Chapter 2

Finally, the BPEL process returns the best airline ticket to the client. In this example,
to maintain simplicity, we will not implement any fault handling, which is crucial in
real-world scenarios. This topic is discussed in the next chapter.

Let's start by presenting the BPEL process activities using a UML activity diagram.
In each activity, we have used the stereotype to indicate the BPEL operation used.

?

< <invoke(sync)>>
Retrieve the employee
travel status

%

< <invoke(async)>>
Get plane ticket offer
from American Airlines

< <invoke(async)>>
Get plane ticket offer
from Delta Airlines

N7
o)

d

[American.price<=Delta.price] [American.price>Delta.price]

K u

<<assign>>
Select the American
Airlines ticket

<<assign>>
Select the Delta
Airlines ticket

N
)

.
"\

<<reply>>
Return the best
offer

Although the presented process might seem very simple, it will offer a good start for
learning BPEL. To develop the BPEL process, we will go through the following steps:

e Get familiar with the involved services
e Define the WSDL for the BPEL process
¢ Define partner link types

[87]

Service Composition with BPEL

e Define partner links
e Declare variables

e Write the process logic definition

Involved services

Before we can start writing the BPEL process definition, we have to get familiar with
all services invoked from our business process. These services are sometimes called

partner services. In our example, three services are involved:

e The Employee Travel Status service
e The American Airlines service

e The Delta Airlines service

[% The two airline services share equal WSDL descriptions.]

The services used in this example are not real, so we will have to write WSDLs
and even implement them to run the example. In real-world scenarios we would
obviously use real Web Services exposed by partners involved in the business
process.

The services and the BPEL process example can be downloaded
% from http://www.packtpub.com. The example runs on the
"~ Oracle SOA Suite.

Web Service descriptions are available through WSDL. WSDL specifies the
operations and port types Web Services offer, the messages they accept, and
the types they define. We will now look at both Web Services.

Employee Travel Status service

Understanding the services that a business process interacts with is crucial to writing
the BPEL process definition. Let's look into the details of our Employee Travel Status

service. It provides the EmployeeTravelStatusPT port type through which the

employee travel status can be checked using the EmployeeTravelStatus operation.
The operation will return the travel class an employee can use —economy, business,

or first. This is shown in the following figure:

[88]

Chapter 2

EmployeeTravelStatusRequestMessage ‘/ Employee Travel Employee
i’ StatusPT: Travel
. EmployeeTravelStatus Status
~ EmployeeTravelStatusResponseMessage q operation Web Service

The operation is a synchronous request/response operation as we can see from
the WSDL.:

<?xml version="1.0" encoding="utf-8" ?>

<definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc=

"http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://packtpub.com/service/employee/"
targetNamespace="http://packtpub.com/service/employee/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

<portType name="EmployeeTravelStatusPT">
<operation name="EmployeeTravelStatus"s>
<input message="tns:EmployeeTravelStatusRequestMessage" />
<output message="tns:EmployeeTravelStatusResponseMessage" />
</operations>
</portType>

The EmployeeTravelStatus operation consists of an input and an output message.
To maintain simplicity, the fault is not declared. The definitions of input and output
messages are also a part of the WSDL:

<message name="EmployeeTravelStatusRequestMessage">
<part name="employee" element="tns:Employee" />
</message>

<message name="EmployeeTravelStatusResponseMessage">
<part name="travelClass" element="tns:TravelClass" />
</message>

[89]

Service Composition with BPEL

The EmployeeTravelStatusRequestMessage message has a single
part—employee of element Employee with type EmployeeType, while the
EmployeeTravelStatusResponseMessage has a part called travelClass, of
element TravelClass and type TravelClassType. The EmployeeType and the
TravelClassType types are defined within the WSDL under the <types> element:

<types>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://packtpub.com/service/employee/">

<xs:complexType name="EmployeeType">
<XS:sequence>
<xs:element name="FirstName" type="xs:string" />
<xs:element name="LastName" type="xs:string" />
<xs:element name="Department" type="xs:string" />
</xs:sequence>
</xs:complexType>
<xs:element name="Employee" type="EmployeeType"/>

EmployeeType is a complex type and has three elements: first name, last name, and
department name. TravelClassType is a simple type that uses the enumeration to
list the possible classes:

<xs:simpleType name="TravelClassType">
<xs:restriction base="xs:string">
<xs:enumeration value="Economy"/>
<xs:enumeration value="Business"/>
<Xs:enumeration value="First"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="TravelClass" type="TravelClassType"/>
</xs:schema>
</types>

Now let us look at the airline service.

[90]

Chapter 2

Airline service

The Airline Service is an asynchronous web service. Therefore, it specifies two port
types. The first, FlightAvailabilityPT, is used to check the flight availability
using the FlightAvailability operation. To return the result, the service
specifies the second port type, F1ightCallbackPT. This port type specifies the
FlightTicketCallback operation.

Although the Airline Service defines two port types, it only implements the
FlightAvailabilityPT. FlightCallbackPT is implemented by the BPEL process,
which is the client of the web service. The architecture of the service is schematically
shown as follows:

[
FlightTicketRequestMessage ‘(Fl,':%g?t\)&?)ﬁggﬁ{gn
operation Airline
Web Service
FlightCallbackPT:
FllghtT!cketCaIIback J< TravelResponseMessage
operation

Flight Availability port type

FlightAvailability is an asynchronous operation, containing only the input
message.

<?xml version="1.0" encoding="utf-8" ?>

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:tns="http://packtpub.com/service/airline/"
targetNamespace="http://packtpub.com/service/airline/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

<portType name="FlightAvailabilityPT">
<operation name="FlightAvailability">
<input message="tns:FlightTicketRequestMessage" />
</operations>
</portType>

[91]

Service Composition with BPEL

The definition of the input message is shown as follows. It consists of two parts —the
flightData part and the travelClass part:

<message name="FlightTicketRequestMessage">
<part name="flightData" element="tns:FlightRequest" />
<part name="travelClass" element="emp:TravelClass" />
</message>

The travelClass part is the same as that used in the Employee Travel Status service.
The f1lightData part is of element Fl1ightRequest, which is defined as follows:

<types>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://packtpub.com/service/airline/">

<xs:complexType name="FlightRequestType">
<XS:sequencex
<xs:element name="OriginFrom" type="xs:string" />
<xs:element name="DestinationTo" type="xs:string" />
<xs:element name="DesiredDepartureDate" type="xs:date" />
<xs:element name="DesiredReturnDate" type="xs:date" />
</xs:sequence>
</xs:complexType>
<xs:element name="FlightRequest" type="FlightRequestType"/>

FlightRequestType is a complex type and has four elements through which we
specify the flight origin and destination, the desired departure data, and the desired
return date.

Flight Callback port type

The Airline Service needs to specify another port type for the callback operation
through which the BPEL process receives the flight ticket response messages.

% The service will only specify this port type,
/s~ which is implemented by the BPEL process.

We define the FlightcallbackPT port type with the FlightTicketCallback
operation, which has the TravelResponseMessage input message:

<portType name="FlightCallbackPT">
<operation name="FlightTicketCallback">

[92]

Chapter 2

<input message="tns:TravelResponseMessage" />
</operation>
</portType>

TravelResponseMessage consists of a single part called confirmationData:

<message name="TravelResponseMessage">
<part name="confirmationData" element="tns:FlightConfirmation" />
</message>

FlightConfirmation is of type FlightConfirmationType, which is a complex
type used for returning the result. It includes the flight number, travel class, price,
departure and arrival date and time, and the approved flag. It is declared as follows:

<xs:complexType name="FlightConfirmationType">
<XS:sequencex
<xs:element name="FlightNo" type="xs:string" />
<xs:element name="TravelClass" type="tns:TravelClassType" />
<xs:element name="Price" type="xs:float" />
<xs:element name="DepartureDateTime" type="xs:dateTime" />
<xs:element name="ReturnDateTime" type="xs:dateTime" />
<xs:element name="Approved" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
<xs:element name="FlightConfirmation"
type="FlightConfirmationType"/>
</xs:schemas>
</types>

Now that we are familiar with both services, we can define the BPEL process.
Remember that our BPEL process is an actual web service. Therefore, we first have to
write the WSDL for the BPEL process.

[93]

Service Composition with BPEL

WSDL for the BPEL process

The business travel BPEL process is exposed as a service. We need to define the
WSDL for it. The process will have to receive messages from its clients and return
results. So it has to expose a port type that will be used by the client to start the
process and get the reply. We define the TravelApprovalPT port type with the
TravelApproval operation, as shown in the following figure:

Ve Example
TravelRequestMessage
d g > TravelApprovalPT: BPEL
TravelApproval process for
< operation i
TravelResponseMessage perat Business
AN Travels

We have already said that the BPEL process is synchronous. The Travelapproval
operation will be of synchronous request/response type.

<?xml version="1.0" encoding="utf-8" ?>

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/"
xmlns:tns="http://packtpub.com/bpel/travel/"
targetNamespace="http://packtpub.com/bpel/travel/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

<portType name="TravelApprovalPT">
<operation name="TravelApproval"s>
<input message="tns:TravelRequestMessage" />
<output message="aln:TravelResponseMessage" />
</operation>
</portType>

We also have to define messages. The TravelRequestMessage consists of two parts:

e employee: The employee data, which we reuse from the Employee Travel
Status service definition

e flightData: The flight data, which we reuse from the airline service
definition

[94]

Chapter 2

<import namespace="http://packtpub.com/service/employee/"
location="./Employee.wsdl"/>

<import namespace="http://packtpub.com/service/airline/"
location="./Airline.wsdl"/>

<message name="TravelRequestMessage">

<part name="employee" element="emp:Employee" />

<part name="flightData" element="aln:FlightRequest" />
</message>

For the output message, we use the same message used to return the flight
information from the airline service: the TravelResponseMessage defined in

the aln namespace. This is reasonable because the BPEL process will get the
TravelResponseMessage from both airlines, select the most appropriate (the
cheapest), and return the same message to the client. As we have already imported
the Airline WSDL, we are done.

When writing the WSDL for the BPEL process, we usually do not define the binding
(<binding>) and the service (<services) sections. These are usually generated by
the BPEL execution environment (BPEL server).

Before we can start writing the BPEL process, we still need to define partner link types.

Partner link types

Partner link types represent the interaction between a BPEL process and the involved
parties, which includes the services the BPEL process invokes and the client that
invokes the BPEL process.

In our example, there are three different partners— the client, the employee travel
status service, and the airline service. Ideally, each service should define the
corresponding partner link types (in the WSDL). In real-world scenarios, this may
not be the case. Then we can wrap the partner web service with a WSDL that imports
the WSDL of the service and defines the partner link types. We define three partner
link types, each in the corresponding WSDL of the service:

e travelLT: This is used to describe the interaction between the BPEL process
client and the BPEL process itself. This interaction is synchronous. This
partner link type is defined in the WSDL of the BPEL process.

e employeeLT: This is used to describe the interaction between the BPEL
process and the Employee Travel Status service. This interaction is
synchronous too. This partner link type is defined in the WSDL of the
Employee service.

[95]

Service Composition with BPEL

e flightLT: This describes the interaction between the BPEL process and the
Airline Service. This interaction is asynchronous and the Airline Service
invokes a callback on the BPEL process. This partner link type is defined
in the WSDL of the Airline Service.

We already know that each partner link type can have one or two roles and for
each role we must specify the portType it uses. For synchronous operations, there
is a single role for each partner link type because the operation is only invoked in a
single direction.

For example, the client invokes the TravelaApproval operation on the BPEL process.
Because it is a synchronous operation, the client waits for completion and gets a
response only after the operation is completed.

Note that if Travelapproval were an asynchronous callback operation, we
would have to specify two roles. The first role would describe the invocation of
the TravelApproval operation by the client. The second role would describe the
invocation of a callback operation. This callback operation would be invoked by
the BPEL process and would call the client to return the result. We will make our
example process asynchronous later in this chapter. Remember that there is an
asynchronous relationship between the BPEL process and the Airline Service.

As we have already figured out, we need three partner link types. In the first two
we have to specify a single role because they deal with synchronous operations.
In the third we need to specify both the roles because it is asynchronous.

Partner link types are defined within a special namespace (http://docs.
oasis-open.org/wsbpel/2.0/plnktype). The reference to this namespace
has to be included first as follows:

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/"
xmlns:tns="http://packtpub.com/bpel/travel/"
targetNamespace="http://packtpub.com/bpel/travel/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype">

[96]

Chapter 2

Now we can add the definitions for the partner link types. First, we define the
travelLT link type in the BPEL process WSDL. This is used by clients to invoke
the BPEL process. The only role required is the role of the travel service (our BPEL
process). The client uses the TravelApprovalPT port type to communicate with the
BPEL service:

<plnk:partnerLinkType name="travellLT">
<plnk:role name="travelService"
portType="tns:TravelApprovalPT" />
</plnk:partnerLinkType>

The second link type is employeeLT. It is used to describe the communication
between the BPEL process and the Employee Travel Status service and is defined
in the WSDL of the Employee service. The interaction is synchronous, so we need
a single role, called employeeTravelStatusService. The BPEL process uses the
EmployeeTravelStatusPT on the Employee service:

<plnk:partnerLinkType name="employeeLT">
<plnk:role name="employeeTravelStatusService"
portType="tns:EmployeeTravelStatusPT" />
</plnk:partnerLinkType>

The last partner link type is £1ightLT, used to describe the communication between
the BPEL process and the Airline Service. This communication is asynchronous. The
BPEL process invokes an asynchronous operation on the Airline Service. The web
service, after it has completed the request, invokes a callback on the BPEL process.
Therefore, we need two roles:

o The first role describes the role of the Airline Service to the BPEL process,
which is the airline service (airlineService). The BPEL process uses the
FlightAvailabilityPT port type to make the asynchronous invocation.

e The second role describes the role of the BPEL process to the Airline Services.
For the Airline Service, the BPEL process is an airline customer, thus the role
name is airlineCcustomer. The Airline Service uses the F1ightCallbackPT
port type to make the callback.

This partner link type is defined in the WSDL of the Airline service:

<plnk:partnerLinkType name="flightLT">
<plnk:role name="airlineService"
portType="tns:FlightAvailabilityPT" />

[97]

Service Composition with BPEL

<plnk:role name="airlineCustomer"
portType="tns:FlightCallbackPT" />
</plnk:partnerLinkType>

Understanding partner link types is crucial for developing a BPEL process
specification. Sometimes it helps to make a diagram of all the interactions. Once the
partner link types are defined, we have finished the preparation phase and are ready
to start writing the business process definition.

Business process definition

The BPEL business process definition specifies the order of activities that have to
be performed within a business process. Typically, a BPEL process waits for an
incoming message, which starts the execution of the business process. This incoming
message is usually the client request. Then a series of activities occur, either
sequentially or in parallel. These activities include:

¢ Invoking operations on other services

e Receiving results from other services

e Conditional branching, which influences the flow of the business process

e Looping

e Fault handling

e Waiting for certain events to occur
In our example process, we do not cover all these aspects. We will leave loops,
faults, and waits for the next chapter. Before we start defining our business process,

let's have a quick look at the sequence diagram. It shows the messages exchanged
between the involved parties.

The following parties are involved:

e The client that will invoke the BPEL process
e The BPEL process itself
e The Employee Travel Status service

e Two airline web services, American and Delta

[98]

Chapter 2

The client initiates the BPEL process by sending an input message, TravelRequest.
This is a synchronous call. Then the BPEL process invokes the Employee Travel
Status service, sending the EmployeeTravelStatusRequest message. Because this

is a synchronous invocation, it waits for the EmployeeTravelStatusResponse
message. Then the BPEL process makes concurrent asynchronous invocations of
both airline Web Services by sending them the F1ightTicketRequest message. Both
airline Web Services make a callback, sending the TravelResponse message. The
BPEL process then selects the more appropriate airline and returns the reply message
TravelResponse to the initial client. See the following sequence diagram:

’ - Client ‘ ’ Travel: BPEL ‘ ’ : Employee Travel ’ American Airlines: ’ Delta Airlines:

Business Process Status Web Service Airline Web Service Airline Web Service

i 1. Travel Request, ! |
T]2. EmployeeTravelStatusRequest, _ |

|¢3: EmployeeTravelStatusResponse

4.1. FlightTicketRequest

|

4.2. FlightTicketRequest

I

I—

5.1. TravelResponse

5.2. TravelResponse

S) A

R
!

In real-world scenarios, we do not define synchronous BPEL processes that use
asynchronous Web Services, since the client may have to wait an arbitrarily long
time. We would rather select an asynchronous BPEL process. In this example, we
use the synchronous example to maintain simplicity. The next section shows how to
define an asynchronous BPEL process.

Understanding and knowing the exact details of a business process is
e— crucial. Otherwise, we will not be able to specify it using BPEL.

Now we are ready to start writing the BPEL process definition. Each BPEL definition
contains at least four main parts:

e The initial <process> root element with the declaration of namespaces

e The definition of partner links, using the <partnerLinks> element

e The declaration of variables, using the <variables> element

e The main body where the actual business process is defined; this is usually
a <sequence> that specifies the flow of the process

[99]

Service Composition with BPEL

BPEL process outline

We start with an empty BPEL process outline that presents the basic structure
of each BPEL process definition document:

<process name="Travel" ... >
<partnerLinks>
<!-- The declaration of partner links -->

</partnerLinks>

<variables>
<!-- The declaration of variables -->
</variables>
<sequence>
<!-- The definition of the BPEL business process main body -->

</sequence>
</process>

Let us first add the required namespaces. Here we have to define the target
namespace and the namespaces to access the Employee and Airline WSDLs and the
BPEL process WSDL. We also have to declare the namespace for all the BPEL activity
tags (here the default namespace, so we do not have to qualify each BPEL tag name).
The BPEL activity namespace must be http://docs.oasis-open.org/wsbpel/2.0/
process/executable

<process name="Travel"
targetNamespace="http://packtpub.com/bpel/travel/"
xmlns="http://docs.ocasis-open.org/wsbpel/2.0/process/executable"
xmlns:trv="http://packtpub.com/bpel/travel/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/" >

Partner links

Next we have to define the partner links. Partner links define different parties
that interact with the BPEL process. Each partner link is related to a specific
partnerLinkType that characterizes it. Each partner link also specifies up to two
attributes:

e myRole: Indicates the role of the business process itself

e partnerRole: Indicates the role of the partner

[100]

Chapter 2

The partner link can specify a single role, which is usually the case with synchronous
request/response operations. In our example, we define four roles. The first partner
link is called client and is characterized by the travelLT partner link type. The
client invokes the business process. We need to specify the myRole attribute to
describe the role of the BPEL process. In our case, this is the travelService.

<partnerLinks>

<partnerLink name="client"
partnerLinkType="trv:travelLT" myRole="travelService"/>

The second partner link is called employeeTravelstatus and is characterized by
the employeeLT partner link type. It is a synchronous request/response relationship
between the BPEL process and the service; we again specify only one role. This time
it is the partnerRole because we describe the role of the service, which is a partner
to the BPEL process.

<partnerLink name="employeeTravelStatus"
partnerLinkType="emp:employeeLT"
partnerRole="employeeTravelStatusService"/>

The last two partner links correspond to the airline services. Because they use the
same type of service, we specify two partner links based on a single partner link
type, £1ightLT. Here we have asynchronous callback communication; therefore, we
need two roles. The role of the BPEL process (myRole) to the airline web service is
airlineCustomer, while the role of the airline (partnerRole)is airlineService.

<partnerLink name="AmericanAirlines"
partnerLinkType="aln:flightLT"
myRole="airlineCustomer"
partnerRole="airlineService"/>

<partnerLink name="DeltaAirlines"
partnerLinkType="aln:flightLT"
myRole="airlineCustomer"
partnerRole="airlineService"/>

</partnerLinks>

[101]

Service Composition with BPEL

Variables for the Travel Process

Variables are used to store messages and to reformat and transform them. We
usually need a variable for every message sent to the partners and received from
the partners. Looking at the sequence diagram, this would mean eight variables
for our example. However, notice that the messages sent to both Airline Services
are identical. So, we only need seven variables. Let's call them TravelRequest,
EmployeeTravelStatusRequest, EmployeeTravelStatusResponse,
FlightDetails, FlightResponseAA, FlightResponseDA, and TravelResponse.

For each variable we have to specify the type. We can use a WSDL message type, an
XML schema simple type, or an XML schema element. In our example, we use WSDL

message types for all variables:

<variables>
<!-- input for this process -->
<variable name="TravelRequest"
messageType="trv:TravelRequestMessage"/>
<!-- input for the Employee Travel Status service -->

<variable name="EmployeeTravelStatusRequest"
messageType="emp:EmployeeTravelStatusRequestMessage"/>

<!-- output from the Employee Travel Status service -->

<variable name="EmployeeTravelStatusResponse"
messageType="emp:EmployeeTravelStatusResponseMessage" />

<!-- input for American and Delta services -->

<variable name="FlightDetails"
messageType="aln:FlightTicketRequestMessage"/>

<!-- output from American Airlines -->

<variable name="FlightResponseAA"
messageType="aln:TravelResponseMessage"/>

<!-- output from Delta Airlines -->

<variable name="FlightResponseDA"
messageType="aln:TravelResponseMessage"/>

<!-- output from BPEL process -->

<variable name="TravelResponse"
messageType="aln:TravelResponseMessage" />

</variables>

[102]

Chapter 2

BPEL process main body

The process main body may contain only one top-level activity. Usually, this is
a <sequence> that allows us to define several activities that will be performed
sequentially. Other possibilities for this activity include <flows, through which
several activities can be performed concurrently. We can also specify <while> to
indicate loops, or <scope> to define nested activities. However, we usually use
<sequence> and nest other activities within the sequence.

Within the sequence, we first specify the input message that starts the business
process. We do this with the <receive> construct, which waits for the matching
message. In our case, this is the TravelRequest message. Within the <receive>
construct, we do not specify the message directly. Rather we specify the partner link,
the port type, the operation name, and optionally the variable that holds the received
message for consequent operations.

We link the message reception with the client partner, and wait for the
TravelApproval operation to be invoked on port type TravelapprovalpT. We
store the received message in the TravelRequest variable as follows:

<sequence>

<!-- Receive the initial request for business travel from client -->
<receive name="ReceiveInitialRequest" partnerLink="client"
portType="trv:TravelApprovalPT" operation="TravelApproval"
variable="TravelRequest" createInstance="yes" />

As already mentioned, <receives> waits for the client to invoke the TravelApproval
operation and stores the incoming message and parameters about the business trip
into the TravelRequest variable. Here, the variable name is the same as the message
name, but this is not necessary.

Next, we need to invoke the Employee Travel Status service. Before this, we have

to prepare the input for this service. Looking at the WSDL of the Employee service,
we can see that we have to send a message consisting of the employee part. We can
construct such a message by copying the employee part of the message that the client
sent. We write the corresponding assignment:

<!-- Prepare the input for the Employee Travel Status Service -->
<assign name="PrepareInputForEmployeeWS">
<copy>
<from variable="TravelRequest" part="employee"/>
<to variable="EmployeeTravelStatusRequest" part="employee"/>

[103]

Service Composition with BPEL

</copy>
</assign>

Now we can invoke the Employee Travel Status service. We make a
synchronous invocation, for which we use the <invokes activity. We use the
employeeTravelStatus partner link and invoke the EmployeeTravelStatus
operation on the EmployeeTravelStatusPT port type. We have prepared

the input message in the EmployeeTravelStatusRequest variable. Because
it is a synchronous invocation, the call waits for the reply and stores it in the
EmployeeTravelStatusResponse variable:

<!-- Synchronously invoke the Employee Travel Status Service -->

<invoke name="InvokeEmployeeWS"
partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" />

The next step is to invoke both Airline Web Services. Again, we first prepare
the required input message (which is equal for both Web Services). The
FlightTicketRequest message consists of two parts:

e flightData: This is retrieved from the client message (TravelRequest)

e travelClass: This is retrieved from the EmployeeTravelStatusResponse
variable

Therefore, we write an assighment with two copy elements:

<!-- Prepare the input for AA and DA -->
<assign name="PrepareInputForAAandDA" >
<copy>
<from variable="TravelRequest" part="flightData"/>
<to variable="FlightDetails" part="flightData"/>
</copy>
<copy>
<from variable="EmployeeTravelStatusResponse"
part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>
</copy>
</assign>

[104]

Chapter 2

The input data includes the data that needs to be passed to the Airline Web Services.
Since it is in the same format, we can pass it directly (using a simple copy). In the real
world, we usually need to perform a transformation. We could do that using XPath
expressions with <assigns>, use a transformation service (such as an XSLT engine),
or use the transformation capabilities provided by specific BPEL servers.

Now we are ready to invoke both Airline Web Services. We will make concurrent
asynchronous invocations. To express concurrency, BPEL provides the <f1low>
activity. The invocation to each web service will consist of two steps:

1. The <invokes> activity is used for the asynchronous invocation.

2. The <receives activity is used to wait for the callback.

We use <sequences to group both activities. The two invocations differ only in
the partner link name. We use AmericanAirlines for one and DeltaAirlines
for the other. Both invoke the FlightAvailability operation on the
FlightAvailabilityPT port type, sending the message from the FlightDetails
variable.

The callback is received using the <receives activity. Again, we use both partner
link names. The <receives activity waits for the FlightTicketCallback operation
to be invoked on the F1ightCallbackPT port type. We store the resulting message
in the FlightResponseAA and the FlightResponseDA variables respectively:

<!-- Make a concurrent invocation to AA in DA -->
<flow name="InvokeAAandDA">
<sequence>
<!--Async invoke of the AA web service and wait for the callback-->

<invoke name="InvokeAA"
partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive name="ReceiveCallbackFromAA"
partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponselAA" />

</sequence>

<sequence>
<!--Async invoke of the DA web service and wait for the callback-->

[105]

Service Composition with BPEL

<invoke name="InvokeDA"
partnerLink="DeltaAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive name="ReceiveCallbackFromDA"
partnerLink="DeltaAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseDA" />

</sequence>

</flow>

At this stage of the process, we have two ticket offers. In the next step, we have
to select one. For this, we use the <if> activity:

<!-- Select the best offer and construct the TravelResponse -->
<if name="SelectBestOffer"s

<condition>

$FlightResponselA.confirmationData/aln:Price <=
$FlightResponseDA.confirmationData/aln:Price

</conditions>

<!-- Select American Airlines -->
<assigns>
<copy>
<from variable="FlightResponseAA" />
<to variable="TravelResponse" />
</copy>
</assign>

<else>
<!-- Select Delta Airlines -->
<assigns>
<copy>
<from variable="FlightResponseDA" />
<to variable="TravelResponse" />
</copy>
</assign>
</else>
</if>

[106]

Chapter 2

In the <if> element, we check whether the offer from American Airlines
(FlightResponsenn) is equal or better than the offer from Delta
(FlightResponseDa). For this, we access the BPEL variable from XPath using the
$ operator. The price is located inside the confirmationData message part, which
is the only message part, but we still have to specify it. We also have to specify the
node to locate the price element. Here, this is a simple XPath 1.0 expression.

If the American Airlines offer is better than Delta (or equal), we copy the
FlightResponseARA variable to the TravelResponse variable (which we finally
return to the client). Otherwise, we copy the FlightResponseDA variable.

We have come to the final step of the BPEL business process —to return a reply

to the client using the <reply> activity. Here we specify the same partner link as in
the initial receive client. We also specify the same port type and operation name.
The variable that holds the reply message is TravelResponse.

<!-- Send a response to the client -->

<reply name="SendResponse"
partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelResponse"/>

</sequence>
</process>

With this, we have concluded our first business process specification in BPEL. You
can see that BPEL is not very complicated and allows a relatively easy and natural
specification of business processes. The consumption of other services is also
relatively easy if you are familiar with WSDL. In the next section, we modify our
BPEL process to make it asynchronous.

Asynchronous BPEL example

Our first BPEL business process example was synchronous because this was the
easiest case. However, in the real world, we will mostly use asynchronous processes.
Most business processes are long running. It makes no sense for a client to wait

(and be blocked) for the entire duration of the process. A much better alternative is
to model the BPEL process as asynchronous. This means that the client invokes the
process, and when the process completes, it performs a callback to the client. This
has a few consequences:

e For the BPEL process to be able to perform a callback to the client, the client
must be a service and implement a certain port type (usually defined by the
BPEL process WSDL)

[107]

Service Composition with BPEL

e The partner link type for the client will have to specify two roles
e The BPEL process will not <replys to the client. Rather it will <invoke>
the callback

Let us now focus on our business process and modify it for asynchronous invocation,
presented in the next sequence diagram. We have to perform the following steps:

1. Modify the BPEL process WSDL, where the operation invoked by the client
will now have only the input message.

2. Define the client port type and the operation, which the BPEL process will
invoke for the callback. We will do this in the WSDL of the BPEL process.

3. Modify the partner link type, where we will add the second role.
Modify the BPEL process specification. We have to modify the partner link
and replace the <reply> activity with an <invokes.

The modified sequence diagram is shown as follows. It is very similar to the previous
example, except that the initial travel request is asynchronous and the final answer is
delivered as a callback.

Delta Airlines:
Airline Web Service

American Airlines:

: Employee Travel
Airline Web Service

Status Web Service

’ : Client

Travel: BPEL
Business Process

1. Travel Request . ! |
2. EmployeeTravelStatusRequest_ _ |

3: EmployeeTravelStatusResponse | }

4.1. FlightTicketRequest

4.2. FlightTicketRequest

5.1. TravelResponse

| 6. Travel Response

5.2. TravelResponse

Modify the BPEL Process WSDL

The modified WSDL for the BPEL process will have to specify the
TravelApprovalPT port type, which will now specify an input message only. It

will also have to declare the clientCallbackPT port type, used to return the result
to the client (asynchronously, using a callback). This is shown in the following figure:

[108]

Chapter 2

(TravelApprovalPT:

TravelRequestMessage TravelApproval Example
operation BPEL
Process for
ClientCallbackPT: W B;?:;ZS

ClientCallback
operation

J‘ TravelResponseMessage

Let us first modify the TravelApprovalPT port type used for client interaction,
which will now define only the input message:

<portType name="TravelApprovalPT">
<operation name="TravelApproval'"s>
<input message="tns:TravelRequestMessage" />
</operation>
</portType>

Next we define the client callback port type (ClientCallbackPT) with the
ClientCallback operation. The response message is TravelResponseMessage.
Notice that the WSDL only specifies this port type, which is implemented by the
client.

<portType name="ClientCallbackPT">
<operation name="ClientCallback">
<input message="aln:TravelResponseMessage" />
</operation>
</portType>

Modify partner link types

We need to modify the partner link type for the interaction with the BPEL
process, called the travelLT link type. We have to add the second role,
travelServiceCustomer, which characterizes the client to which the BPEL
process will perform a callback on the clientcallbackPT port type. This is
done in the WSDL of the BPEL process:

<plnk:partnerLinkType name="travelLT">
<plnk:role name="travelService"
portType="tns:TravelApprovalPT" />

[109]

Service Composition with BPEL

<plnk:role name="travelServiceCustomer"
portType="tns:ClientCallbackPT" />
</plnk:partnerLinkType>

Modify the BPEL process definition

Finally, we modify the BPEL process definition. Here we first have to modify the
client partner link, where we have to specify the second role —the partnerrole.
Here, this is travelServiceCustomer, which characterizes the BPEL process client.

<partnerLinks>

<partnerLink name="client"
partnerLinkType="trv:travelLT"
myRole="travelService"
partnerRole="travelServiceCustomer"/>

Next, we change the last activity of the BPEL process. We replace the <reply>
activity with the <invoke> callback. For the callback, we use the client partner link
and invoke the ClientCallback operation on the ClientCallbackPT port type.
The message signature has not changed, so we use the same variable as before,
TravelResponse

<!-- Make a callback to the client -->

<invoke name="SendResponse"
partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallback"
inputVariable="TravelResponse" />

</sequence>
</process>

Our BPEL process is now asynchronous!

To execute a BPEL process, we need a runtime environment. In Chapter 1 we
provided an overview of BPEL servers. Later chapters give a detailed description
of the Oracle SOA Suite.

You can download both the synchronous and asynchronous
BPEL process examples with the corresponding services from
http://www.packtpub.com. They can be deployed to the
"~ Oracle SOA Suite using JDeveloper. For more information on
Oracle SOA Suite and JDeveloper, refer to Chapter 4.

[110]

Chapter 2

Summary

In this chapter, you have become familiar with the basic concepts of service
composition with BPEL. BPEL is an XML-based language for business process
definition. Each process has a set of activities and interacts with partner services.
The BPEL process is also a service.

With BPEL, we can define executable and abstract business processes. In this chapter,
we have focused on executable processes. They define exactly the activities of the
processes and can be executed on a BPEL-compliant server. We have overviewed

the basic concepts of BPEL, described how to invoke services synchronously

and asynchronously, and discussed the role of WSDL. BPEL processes can be
synchronous or asynchronous and we have overviewed both options. Web Services
with which a BPEL process interacts are called partner services. Therefore, we have
explained the concepts of partner link types and partner links.

We have overviewed the most important activities for invoking operations, receiving
messages, and returning replies to clients. We have also become familiar with
variables and assignments. With this theoretical knowledge, we defined two example
BPEL processes for business travel. We developed a synchronous and then an
asynchronous process.

[111]

Advanced BPEL

In the previous chapter, we covered the basics of BPEL and provided an introduction
to the structure of business processes. We are now familiar with defining business
processes, invoking web service operations sequentially and in parallel, defining
partner links, defining variables, and assigning values. However, using BPEL for
complex real-world business processes requires additional functionality. Sometimes,
the activities of a business process need to be performed in loops. Often activities
might have links that would affect the execution order. This is usually the case with
concurrent flows. Sometimes, we will have to wait either for a message event or an
alarm event to occur.

One very important aspect of business process modeling is fault handling.
Particularly in business processes that span multiple enterprises and use web
services over the Internet, we can assume that faults will occur quite often due

to various reasons, including broken connections, unreachable web services,
unavailability of services, and so on. If business processes do not finish successfully,
we might need a way to undo the partial work. This is called compensation and is
one of the features of BPEL.

In this chapter, we will look at these and other advanced BPEL features including;:
e BPEL activities not covered in the previous chapter, such as loops, delays,
and process termination
e Fault handling
e Scopes and isolation
¢ Compensation
e Events and event handlers
e Concurrent activities and links
e The business process lifecycle

e Correlations and message properties

Advanced BPEL

e Dynamic partner links
e Abstract business processes
e Generating BPEL from BPMN diagrams

Advanced activities

In the previous chapter, we familiarized ourselves with important BPEL activities,
including invoking web service operations (<invokes), receiving messages from
partners (<receives), returning results to process clients (<replys), declaring
variables (<variables), updating variable contents (<assigns), sequential and
concurrent structured activities (<sequence> and <flows>), and conditional behavior
(<if>).

However, these activities are not sufficient for complex real-world business
processes. Therefore, in the first part of this chapter we will become familiar with the
other important activities offered by BPEL, particularly activity names, loops, delays,
empty activities, and process termination. We will not discuss concrete use cases
where these activities can be used, because they are well known to developers. We
will, however, use these activities later in the chapter, where we will present some
examples. Let us first look at loops.

Loops
When defining business processes, we will sometimes want to perform a certain

activity or a set of activities in a loop, for example, perform a calculation or invoke
a partner web service operation several times, and so on.

BPEL supports the following three types of loops:

e <whiles>loops
e <repeatUntils loops

e <forEach> loops

The <while> and <repeatUntils> loops are very similar to other programming
languages. The <forEach> loop, on the other hand, provides the ability to start the
loop instances in parallel.

Loops are helpful when dealing with arrays. In BPEL, arrays can be simulated using
XML complex types where one or more elements can occur more than once (using
the maxOccurs attribute in the XML Schema definition). To iterate through multiple
occurrences of the same element, we can use XPath expressions.

[114]

Chapter 3

Let us now look at the <while> loop.

While

The <while> loop repeats the enclosed activities until the Boolean condition no
longer holds true. The Boolean condition is expressed through the condition
element, using the selected expression language (the default is XPath 1.0). The syntax
of the <while> activity is shown in the following code excerpt:

<while>
<condition> boolean-expression </conditions>
<!-- Perform an activity or a set of activities enclosed by
<sequences,

<flow>, or other structured activity -->

</while>

Let us consider a scenario where we need to check flight availability for more than
one person. Let us also assume that we need to invoke a web service operation

for each person, similar to the example in Chapter 2. In addition to the variables
already present in the example, we would need two more NoofPassengers to hold
the number of passengers, and Counter to use in the loop. The code excerpt with
variable declarations is shown as follows:

<variables>

<variable name="NoOfPassengers"
type="xs:int"/>

<variable name="Counter"
type="xs:int"/>

</variables>

We also need to assign values to the variables. The NoOfPassengers can be obtained
from the Employee Travel web service. In the following code, we initialize both
variables with static values:

<assign>

<copy>

<from>number (5) </from>

<to variable="NoOfPassengers"/>
</copy>
<copy>

<from>number (0) </from>

<to variable="Counter"/>
</copy>

</assign>

[115]

Advanced BPEL

The loop to perform the web service invocation is shown in the following code
excerpt. Please remember that this excerpt is not complete:

<while>
<condition>$Counter < $NoOfPassengers</conditions>

<sequence>
<!-- Construct the FlightDetails variable with passenger data
-->
<!-- Invoke the web service -->

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<recelve partnerLink="AmericanAirlines"
portType="trv:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" />

<!-- Process the results ... -->

<!-- Increment the counter --»>
<assign>
<copy>
<from>$Counter + 1</from>
<to variable="Counter"/>
</copy>
</assign>
</sequence>
</while>

Repeat Until

The <repeatUntils> loop repeats the enclosed activities until the Boolean condition
becomes true. The Boolean condition is expressed through the condition element,
the same way as in <while> loop. The syntax of the <repeatUntils> activity is
shown in the following code excerpt:

<repeatUntils>
<!-- Perform an activity or a set of activities enclosed by
<sequences,

<flow>, or other structured activity -->

[116]

Chapter 3

<condition> boolean-expression </conditions>

</repeatUntils>

A similar example of a loop as in the previous section, but using <repeatUntils
is shown as follows:

<repeatUntils>
<sequence>
<!-- Construct the FlightDetails variable with passenger data
-=>
<!-- Invoke the web service -->

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive partnerLink="AmericanAirlines"
portType="trv:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponselA" />

<!-- Process the results ... -->

<!-- Increment the counter --»>
<assigns>
<copy>
<from>$Counter + 1l</froms>
<to variable="Counter"/>
</copy>
</assign>
</sequence>
<condition>$Counter >= SNoOfPassengers</conditions>

</repeatUntil>

For Each

The <forEach> loop is a for type loop, with an important distinction. In BPEL,

the <forEach> loop can execute the loop branches in parallel or serial. The serial
<forEachs> is very similar to the for loops from various programming languages,
such as Java. The parallel <forEach> executes the loop branches in parallel (similar
to <flow>), which opens new possibilities in relatively simple parallel execution
(for example, invocation of services).

[117]

Advanced BPEL

The <forEach> loop requires us to specify the BPEL variable for the counter
(counterName), the startCounterValue, and the finalCountervalue. The
<forEach> loop will execute (finalCounterValue - startCounterValue + 1) times.

The <forEach> loop requires that we put all activities, which should be executed
within the branch, into a <scope>. A <scope> allows us to group related activities.
We will discuss them in detail later in this chapter.

The syntax of <forEach> is shown as follows:

<forEach counterName="BPELVariableName" parallel="yes|no">

<startCounterValue>unsigned-integer-expression</startCountervValue>
<finalCounterValue>unsigned-integer-expression</finalCountervValues>

<scope>
<!-- The activities that are performed within forEach have to be
nested
within a scope. -->
</scope>
</forEach>

Such <forEach> loops will complete when all branches (<scope>s) have completed.

A similar example of a loop as in the previous section is shown next:

<forEach counterName="Counter" parallel="no">

<startCounterValues>number (1) </startCountervValue>
<finalCounterValue>SNoOfPassengers</finalCounterValue>

<scopes>
<sequences
<!-- Construct the FlightDetails variable with passenger
data -->
<!-- Invoke the web service -->

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive partnerLink="AmericanAirlines"
portType="trv:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" />

[118]

Chapter 3

<!-- Process the results ... -->

</sequence>
</scope>

</forEach>

Sometimes it would be useful if the <forEach> loop would not have to wait for all
branches to complete. Rather, it would wait so that at least some branches complete.
In <forEach>, we can specify that the loop will complete after at least N branches
have completed. We do this using the <completionConditions>. We specify the
number N of <branches>. The <forEach> will complete after at least N branches
have completed. We can specify if we would like to count only successful branches
or all branches. We do this using the successfulBranchesOnly attribute. If set to
yes, only successful branches will count. If set to no (default), successful and failed
branches will count. The syntax is shown below:

<forEach counterName="BPELVariableName" parallel="yes|no">

<startCounterValue>unsigned-integer-expression</startCountervValues>
<finalCounterValue>unsigned-integer-expression</finalCountervValue>

<completionCondition> <!-- Optional -->
<branches successfulBranchesOnly="yes |no">
unsigned-integer-expression
</branches>
</completionCondition>

<scope>
<!-- The activities that are performed within forEach have to be
nested
within a scope. -->
</scope>
</forEach>

Delays

Sometimes a business process may need to specify a certain delay. In BPEL, we
can specify delays either for a specified period of time or until a certain deadline is
reached, by using the <wait> activity. Typically, we could specify delays to invoke
an operation at a specific time; or wait for some time and then invoke an operation;
for example, we could choose to wait before we pool the results of a previously
initiated operation or wait between iterations of a loop.

[119]

Advanced BPEL

The <wait> activity can be as follows:

e for: We can specify duration; we specify a period of time.

<wait>
<for> duration-expression </for>
</wait>

e until: We can specify a deadline; we specify a certain date and time.

<wait>
<until> deadline-expression </until>
</wait>

Deadline and duration expressions

To specify deadline and duration expressions, BPEL uses lexical representations

of corresponding XML Schema data types. For deadlines, these data types are

either dateTime or date. For duration, we use the duration data type. The lexical
representation of expressions should conform to the XPath 1.0 (or the selected query
language) expressions. The evaluation of such expressions should result in values
that are of corresponding XML Schema types: dateTime and date for deadline

and duration for duration expressions.

All three data types use lexical representation inspired by the ISO 8601 standard,
which can be obtained from the ISO web page http://www.iso.ch. ISO 8601
lexical format uses characters within the date and time information. Characters
are appended to the numbers and have the following meanings:

e Crepresents centuries

e Yrepresents years

e Mrepresents months

e Drepresents days

e hrepresents hours

e mrepresents minutes

e s represents seconds. Seconds can be represented in the format ss.sss
to increase precision

e zisused to designate Coordinated Universal Time (UTC). It should
immediately follow the time of day element

[120]

Chapter 3

For the dateTime expressions, there is another designator:

e Tis used as time designator to indicate the start of the representation
of the time.

Examples of deadline expressions are shown in the following code excerpts:

<wait>
<until>'2004-03-18T21:00:00+01:00'</until>
</wait>
<wait>
<until>'18:05:30Z'</until>
</wait>

For duration expressions, the following characters can also be used:
e pisused as the time duration designator. Duration expressions always start
with p.
e Y follows the number of years.
e M follows the number of months or minutes.
e D follows the number of days.
e Hfollows the number of hours.

e s follows the number of seconds.

To specity a duration of 4 hours and 10 minutes, we use the following expression:

<wait>
<for>'PT4H10M'</for>
</wait>

To specify the duration of 1 month, 3 days, 4 hours, and 10 minutes, we need to use
the following expression:

<wait>
<for>'P1M3DT4H10M'</for>
</wait>

The following expression specifies the duration of 1 year, 11 months, 14 days,
4 hours, 10 minutes, and 30 seconds:

<wait>
<for>'P1Y11M14DT4H10M30S'</for>
</wait>

[121]

Advanced BPEL

Empty activities

When developing BPEL processes, you may come across instances where you need
to specify an activity as per rules, but you do not really want to perform the activity.
For example, in <if> activities, we need to specify an activity for each branch.
However, if we do not want to perform any activity for a particular case, we can
specify an <empty> activity. Not specifying any activity in this case would result

in an error, because the BPEL process would not correspond to the BPEL schema.
Empty activities are also useful in fault handling, when we need to suppress a fault.

The syntax for the empty> element is rather straightforward:

<empty/>

Ending a process

BPEL provides the <exit> activity to immediately end a business process before it
has finished. We can use it to immediately terminate processes that are in execution.
Often we use <exit> in conditional branches, where we need to exit a process when
certain conditions are not met.

The <exit> activity ends the current business process instance and no fault and
compensation handling is performed. Process instances, faults, and compensations
are discussed later in this chapter.

The syntax is very simple and is shown as follows:
<exit/>

Now that we have become familiar with loops, delays, empty activities, and process
termination (which we will use in examples in the rest of this chapter), we will go on
to fault handling.

Fault handling and signaling

Business processes specified using BPEL will interact with their partners through
operation invocations of web services. Web services are based on loosely coupled
Service-Oriented Architecture (SOA). The communication between web services is
done over Internet connections that may or may not be highly reliable. Web services
could also raise faults due to logical errors and execution errors arising from defects
in the infrastructure. Therefore, BPEL business processes will need to handle faults
appropriately. BPEL processes may also need to signal faults themselves. Fault
handling and signaling is an important aspect of business processes designed

using BPEL.

[122]

Chapter 3

Faults in BPEL can arise in various situations such as the following:

e When a BPEL process invokes a synchronous web service operation, the
operation might return a WSDL fault message, which results in a BPEL fault.

e A BPEL process can explicitly signal (throw) a fault.

e A fault can be thrown automatically, for example, when a join failure has
occurred. We will discuss join failures later in this chapter.

e The BPEL server might encounter error conditions in the runtime
environment, network communications, or any other such reason. BPEL
defines several standard faults; these are listed in Appendix A.

WSDL faults

WSDL faults occur due to synchronous operation invocations on partner web
services. In WSDL, such faults are denoted with the <fault> element within the
<operation> declaration. In BPEL, WSDL faults are identified by the qualified name
of the fault and the target namespace of the corresponding port type used in the
operation declaration.

In the Synchronous Business Travel Process example in the previous chapter, we
have used the TravelApproval operation on the TravelApprovalPT port type with
input and output messages. This is shown in the WSDL excerpt as follows:

<portType name="TravelApprovalPT">
<operation name="TravelApproval'"s>
<input message="tns:TravelRequestMessage" />
<output message="aln:TravelResponseMessage" />
</operation>
</portType>

To add fault information to the operation, we first need to define a corresponding
message. For simplicity, this message will be of the xs: string type:

<message name="TravelFaultMessage">
<part name="error" type="xs:string" />
</message>

[123]

Advanced BPEL

Now we will add the fault declaration to the operation signature shown previously:

<portType name="TravelApprovalPT">
<operation name="TravelApproval'"s>
<input message="tns:TravelRequestMessage" />
<output message="aln:TravelResponseMessage" />
<fault name="fault" message="tns:TravelFaultMessage" />
</operation>
</portType>

WSDL does not require that we use unique fault names within the namespace used
to define the operation. This implies that faults that have the same name and are
defined within the same namespace will be considered as the same fault in BPEL.
Keep this in mind when designing services that can potentially become partners

of BPEL business processes, because this can lead to conflicts in fault handling
during execution.

Signaling faults

A business process may sometimes need to explicitly signal a fault. For such a
situation, BPEL provides the <throws> activity. It has the following syntax:

<throw faultName="name" />

BPEL does not require that we define fault names in advance, prior to their use in the
<throws activity. This flexible approach can also be error-prone because there is no
compile-time checking of fault names. Therefore, a typo could result in a situation
where a misspelled fault might not be handled by the designated fault handler.

Faults can also have an associated variable that usually contains data related to
the fault. If such a variable is associated with the fault, we need to specify it when
throwing the fault. This is done by using the optional faultvariable attribute as
shown here:

<throw faultName="name" faultVariable="variable-name" />

The following example shows the most straightforward use of the <throws activity,
where a WrongEmployeeName fault is thrown —no variable is needed. Remember that
fault names are not declared in advance:

<throw faultName="WrongEmployeeName" />

[124]

Chapter 3

The faults raised with the <throws activity have to be handled in the BPEL process.
Fault handling is covered later in this chapter. Faults that are not handled will not
be automatically propagated to the client as is the case in modern programming
languages (Java, for example). Rather, the BPEL process will terminate abnormally.
Sometimes, however, we may want to signal faults to clients.

Signaling faults to clients in synchronous replies

A BPEL process offers operations to its clients through the <receives activity. If

the process wants to provide a synchronous request/response operation, it sends

a <reply> activity in response to the initial <receive>. Remember that the type of
the operation is defined in the WSDL document of the BPEL process. A synchronous
request/response operation is defined as an operation that has an input and an
output message and an optional fault message.

If such an operation has the fault part specified, we can use the <reply> activity to
return a fault instead of the output message. The syntax of the <replys> activity in
this case is as follows:

<reply partnerLink="partner-link-name"
portType="port-type-name"
operation="operation-name"
variable="variable-name" <!-- optional -->
faultName="fault-name" >

</reply>

When we specify a fault name to be returned through the <reply> activity, the
variable name is optional. If we specify a variable name, then the variable has to be
of the fault message type as defined in WSDL.

Example

Let's modify the BPEL process definition in the synchronous travel example and
signal the fault (TravelFaultMessage) to the client by using the <reply> activity.

First, we need to declare an additional variable that will hold the fault description
to return to the client. The variable is of the TravelFaultMessage type:

<variables>

<!-- fault to the BPEL client -->
<variable name="TravelFault"
messageType="trv:TravelFaultMessage"/>

</variables>

[125]

Advanced BPEL

Then we return the fault to the BPEL process client. We will need to check if
something went wrong in the travel process. For the purpose of this example, we
will check whether the selected flight ticket has been approved. This information
is stored in the confirmationData part of the TravelResponse variable in the
Approved element (see the previous chapter for the complete schema definition).
Note that this is an oversimplification but it demonstrates how to return faults.
We can use an <if> activity to determine whether the ticket is approved; then we
construct the fault variable and use the <replys> activity to return it to the client.
This is shown in the following code:

<!-- Check if the ticket is approved -->
<if>

<condition>
S$TravelResponse.confirmationData/aln:Approved="'true'
</conditions>

<!-- Send a response to the client -->

<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelResponse"/>

<else>
<sequences
<!-- Create the TravelFault variable with fault
description -->
<assign>
<copy>
<from>string('Ticket not approved')</froms>
<to variable="TravelFault" part="error" />
</copy>
</assign>
<!-- Send a fault to the client -->

<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelFault"
faultName="fault" />

</sequence>
</else>
</if>

[126]

Chapter 3

If the ticket is not approved, the following fault is signaled to the client:

<TravelFaults>
<part name="error">
<error xmlns="http://packtpub.com/bpel/travel/">
Ticket not approved
</errors>
</part>
</TravelFaults>

We have seen that signaling faults in synchronous replies is easy. Let us now discuss
signaling faults in asynchronous scenarios.

Signaling faults to clients in asynchronous
scenarios

If an asynchronous BPEL process needs to notify the client about a fault, it cannot
use the <replys activity. Remember that in asynchronous scenarios the client does
not wait for the reply —rather the process uses a callback. To return a fault in callback
scenarios, we usually define additional callback operations on the same port type.
Through these callback operations, we can signal that an exceptional situation has
prevented normal completion of the process.

To demonstrate how faults can be propagated to the client using a callback
operation, we will use the asynchronous travel process example. First, we need
to modify the travel BPEL process WSDL and introduce another operation called
ClientCallbackFault. This operation consists of an input message called
tns:TravelFaultMessage. The message is of the string type (similar to the
synchronous example). The declaration of the operation and the message

is shown in the following code excerpt:

<message name="TravelFaultMessage">
<part name="error" type="xs:string" />
</message>

<portType name="ClientCallbackPT">
<operation name="ClientCallback">
<input message="aln:TravelResponseMessage" />

</operations>

<operation name="ClientCallbackFault">
<input message="tns:TravelFaultMessage" />
</operation>

</portType>

[127]

Advanced BPEL

We can use the <if> activity to determine whether the ticket has been approved, as
in the synchronous example. If the ticket is not approved, however, we <invoke> the
ClientCallbackFault operation instead of using the <replys> activity to signal the
fault to the client. This is shown in the following code excerpt:

<!-- Check if the ticket is approved -->
<ifs>

<condition>

$TravelResponse.confirmationData/aln:Approved="'true'
</conditions>

<!-- Make a callback to the client -->

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallback"
inputVariable="TravelResponse" />

<else>
<sequencex>
<!-- Create the TravelFault variable with fault
description -->
<assign>
<copy>
<from>string('Ticket not approved')</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>
<!-- Send a fault to the client -->

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />

</sequence>
</else>

</if>

In the next section, we will look at how to handle faults thrown in BPEL processes.

[128]

Chapter 3

Handling faults

Now that we are familiar with how faults are signaled, let us consider how the
business process handles faults. When a fault occurs within a business process (this
can be a WSDL fault, a fault thrown by the BPEL process, or any other type of fault),
it means that the process may not complete successfully. The process can complete
successfully only if the fault is handled within a scope. Scopes are discussed in the
next section.

[Business processes handle faults through fault handlers.]

A business process can handle a fault through one or more fault handlers. Within a
fault handler, the business process defines custom activities that are used to recover
from the fault and recover the partial (unsuccessful) work of the activity in which
the fault has occurred.

The fault handlers are specified before the first activity of the BPEL process, after
the partner links and variables. The overall structure is shown in the following
code excerpt:

<process ...>

<partnerLinks>

</partnerLinks>

<variables>

</variables>

<faultHandlers>

<catch ... >

<!-- Perform an activity -->
</catch>
<catch ... >

<!-- Perform an activity -->
</catch>
<catchAll>

<!-- catchAll is optional -->

<!-- Perform an activity -->
</catchAll>

</faultHandlers>

[129]

Advanced BPEL

<sequence>

</sequence>

</process>

We can see that within the fault handlers we specify several <catch> activities where
we indicate the fault that we would like to catch and handle. Within a fault handler,
we have to specify at least one <catchs> or a <catchalls activity. Of course, the
<catchAlls> activity can be specified only once within a fault handler.

Usually, we will specify several <catch> activities to handle specific faults and use
the <catchalls to handle all other faults. The <catchs> activity has two attributes,
of which we have to specify at least one:

faultName: Specifies the name of the fault to be handled.

faultVariable: Specifies the variable type used for fault data. Additionally,
we can specify one of the following attributes (both are optional, but we may
specify one, not both).

faultMessageType: Specifies the WSDL message type of the fault to be
handled.

faultElement: Specifies the XML element type of the fault to be handled.

The flexibility of <catchs> activities is high and several variations are permissible.
The most common are listed as follows:

<faultHandlers>

<catch faultName="trv:TicketNotApproved"

<!-- First fault handler -->
<!-- Perform an activity -->
</catch>

<catch faultName="trv:TicketNotApproved"
faultVariable="TravelFault" >

<!-- Second fault handler -->
<!-- Perform an activity -->
</catch>
<catch faultVariable="TravelFault" >
<!-- Third fault handler -->
<!-- Perform an activity -->
</catch>
<catchalls>
<!-- Perform an activity -->
</catchAll>
</faultHandlerss>

>

[130]

Chapter 3

We can see that fault handlers in BPEL are very similar to try/catch clauses found in
modern programming languages.

Selection of a fault handler

Let us consider the fault handlers listed previously and discuss the scenarios for
which the <catchs activities will be selected:

e The first <catchs> will be selected if the trv:TicketNotApproved fault has
been thrown and the fault carries no fault data.

e The second <catch> will be selected if the trv:TicketNotApproved fault
has been thrown and carries data of type matching that of the TravelFault
variable.

e The third <catch> will be selected if a fault has been thrown whose fault
variable type matches the TravelFault variable type and whose name is
not trv:TicketNotApproved.

e In all other cases, the <catchalls will be selected.

We can see that the selection of the <catch> activity within fault handlers is quite
complicated. It may even happen that a fault matches several <catch> activities.
Therefore, BPEL specifies exact rules to select the fault handler that will process

a fault:

e For faults without associated fault data, the fault name will be matched.
The <catch> activity with a matching faultName will be selected, if present;
otherwise, the default <catchalls> handler will be used, if present.

e For faults with associated fault data, a <catch> activity specifying a
matching faultName value and faultvariable value will be selected, if
present. Otherwise, a <catchs> activity with no specified faultName and a
matching faultvariable will be selected, if present. Otherwise, the default
<catchall> handler will be used, if present.

The <catchAlls> activity will execute only if no other <catchs activity
s has been selected.

If no <catch> is selected and <catchalls is not present, the fault will be re-thrown
to the immediately enclosing scope, if present. Otherwise, the process will terminate
abnormally. This situation is similar to explicitly terminating the process using the
<exit> activity.

[131]

Advanced BPEL

Synchronous example

Let's go back to the synchronous BPEL travel process example to add a fault handlers
section. We need to define a fault handler that will simply signal the fault to the
client. In real-world scenarios, a fault handler can perform additional work to try

to recover the work done by an activity or retry the activity itself.

To signal the fault to the client, we use the same TravelFaultMessage message
that we defined in the previous section. Here is an excerpt from the WSDL.:

<message name="TravelFaultMessage">
<part name="error" type="xs:string" />
</message>

<portType name="TravelApprovalPT">
<operation name="TravelApproval'"s>
<input message="tns:TravelRequestMessage" />
<output message="aln:TravelResponseMessage" />
<fault name="fault" message="tns:TravelFaultMessage" />
</operation>
</portType>

We define a fault handler and add a <faultHandlers> section immediately after

the <variables> definition and before the <sequence> activity, as shown next. The
fault handler for the trv:TicketNotApproved fault is defined with the associated
TravelFault variable. This handler will use the <reply> activity to signal the fault to
the BPEL client. We will also provide a default <catchalls handler, which will first
create a variable and then use the <reply> activity to signal the fault to the client:

<faultHandlers>

<catch faultName="trv:TicketNotApproved"
faultVariable="TravelFault">

<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelFault"
faultName="fault" />

</catch>
<catchalls>

<sequence>

[132]

Chapter 3

<!-- Create the TravelFault variable -->
<assigns>
<copy>
<from>string ('Other fault')</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>
<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelFault"
faultName="fault" />
</sequence>

</catchall>

</faultHandlerss>

We also have to modify the process itself. Instead of replying to the client (<reply>)
in the <if> activity if the ticket has not been approved, we will simply throw a fault,
which will be caught by the corresponding fault handler. The fault handler will also
catch other possible faults:

<!-- Check if the ticket is approved -->
<if>

<condition>

STravelResponse.confirmationData/aln:Approved="'true'
</condition>

<!-- Send a response to the client -->

<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelResponse"/>

<else>
<sequences>
<!-- Create the TravelFault variable with fault
description -->
<assigns>

<copy>
<from>string('Ticket not approved')</from>
<to variable="TravelFault" part="error" />

[133]

Advanced BPEL

</copy>
</assign>
<!-- Throw fault -->

<throw faultName="trv:TicketNotApproved"
faultvVariable="TravelFault" />
</sequence>

</else>
</if>

Faults that are not handled by the BPEL process result in abnormal termination of
the process and are not propagated to the client. In other words, unhandled faults
do not cross service boundaries unless explicitly specified using a <reply> activity
as we did in our example. This differentiates BPEL from Java and other languages
where unhandled exceptions are propagated to the client.

Asynchronous example

In asynchronous BPEL processes, faults are handled in the same way as in
synchronous processes by using <faultHandlers>. We need to define a fault
handler that, in our example, will simply forward the fault to the client. We cannot,
however, use the <reply> activity to signal the fault to the client. Instead, we need
to define an additional callback operation and use the <invokes activity, as we did
in our previous example. In this example, we will use the same fault callback
operation as in the previous asynchronous example:

<message name="TravelFaultMessage">
<part name="error" type="xs:string" />
</message>

<portType name="ClientCallbackPT">
<operation name="ClientCallback">
<input message="aln:TravelResponseMessage" />
</operation>

<operation name="ClientCallbackFault">
<input message="tns:TravelFaultMessage" />
</operation>

</portType>

[134]

Chapter 3

Now, we will define the <faultHandlers> section. The difference to the
synchronous example will be that we will use the <invokes> activity to invoke

the newly defined operation instead of the <reply> activity to propagate the fault
to the client:

<faultHandlers>

<catch faultName="trv:TicketNotApproved"
faultVariable="TravelFault">

<!-- Make a callback to the client -->
<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
</catchs>

<catchalls>

<sequence>
<!-- Create the TravelFault variable -->
<assign>
<copy>
<from>string ('Other fault')</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
</sequence>

</catchAlls>

</faultHandlerss>

Another important question related to fault handling is how the BPEL process can
be notified of faults that occurred in asynchronously invoked partner web service
operations. A typical example is the invocation of the American and Delta Airlines
web services in our example. To invoke the operation, we used the <invoke> activity
and then a <receive> activity to wait for the callback.

[135]

Advanced BPEL

BPEL provides a way to wait for more than just one message (operation call) using
the <picks activity, which is described later in this chapter in the Managing events
section. By using <pick> instead of <receives, our BPEL process can wait for
several incoming messages. One of these can be a message for regular callback;
others can be messages that signal fault conditions. With <pick>, we can even
specify a timeout for receiving a callback. For further information on these issues,
please see the Managing events section.

Propagating faults

In fault handlers, we might want to propagate a fault that we have caught to a
higher-level fault handler. For example, a fault handler of a nested scope catches a
fault. However, it is a type of fault that it will not handle. Rather, it will propagate it
to the fault handler of a higher-level scope.

To achieve this, we can use the <rethrows activity. This is used to rethrow the fault
caught by the fault handler. <rethrows> can be used only within a fault handler
(<catch> and <catchAlls).

The syntax is simple:

<rethrow />

Default fault handler

If a <catchalls fault handler for any fault is not defined for any given <scope>,
the BPEL engine implicitly creates a default fault handler. The default fault handler
will compensate all inner scopes (compensation is covered later in this chapter) and
rethrow the fault to the upper scope.

The default implicit fault handler looks like this:

<catchAlls
<sequences>
<compensate />
<rethrow />
</sequence>
</catchAlls>

Inline fault handling

The loosely coupled model of web services and the use of Internet connections for
accessing them make the invocation of operations on web services particularly error
prone. Numerous situations can prevent a BPEL process from successfully invoking
a partner web service operation, such as broken connections, unavailability of web
services, changes in the WSDL, and so on.

[136]

Chapter 3

Such faults can be handled in the general <faultHandlers> sections. However, a
more efficient way is to handle faults related to the <invoke> activity directly and
not rely on the general fault handlers. The <invoke> activity provides a shortcut to
achieve this —inline fault handlers.

Inline fault handlers can catch WSDL faults for

synchronous operations, and also other faults related to the
’ runtime environment, communications, and so on.

The syntax for inline fault handlers in the <invoke> activity is similar to the syntax
of the <faultHandlers> section. As shown in the following code excerpt, we can
specify zero or more <catch> activities and we can also specify a <catchalls>
handler. The only difference is that in inline <catch> activities, we have to specify
a fault name. Optionally, we may specify the fault variable:

<invoke ... >

<catch faultName="fault-name" >
<!-- Perform an activity -->
</catch>

<catch faultName="fault-name"
faultVariable="fault-variable"
<!-- Perform an activity -->
</catch>

<catch faultName="fault-name"
faultVariable="fault-variable"

faultMessageType="WSDL-message" <!-- Optional one or the
other -->

faultElement="XML-element" >
<!-- Perform an activity -->
</catch>

<catchAlls>
<!-- Perform an activity -->
</catchAlls>

</invoke>

[137]

Advanced BPEL

The following code excerpt shows an inline fault handler for invoking the Employee
Travel Status web service from our BPEL travel process example. Please notice that
this also requires modifying the Employee Travel Status WSDL and declaring an
additional fault message for the operation. As this code is similar to what we did

in previous examples, it is not repeated here again. The following code excerpt
demonstrates inline fault handling. The rules for which the catch activity will be
selected are the same as for stand-alone fault handlers and have been discussed in
the previous section:

<invoke partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
input Variable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" >

<catch faultName="emp:WrongEmployeeName" >
<!-- Perform an activity --»>
</catchs>
<catch faultName="emp:TravelNotAllowed"
faultvVariable="FaultDesc" >
<!-- Perform an activity --»>
</catchs>

<catchAll>
<!-- Perform an activity --»>
</catchAlls>

</invoke>

This brings us to the thought that it would be useful if we could specify more than
one <faultHandlers> section in a BPEL process. It would be great if we could
specify different fault handlers sections for different parts of the process, particularly
for complex processes. This is possible if we use scopes, described in the next section.
We will see that inline fault handling of the <invokes activity is equal to enclosing
the <invokes activity in a local scope.

[138]

Chapter 3

Scopes

Scopes provide a way to divide a complex business process into hierarchically
organized parts —scopes. Scopes provide behavioral contexts for activities. In other
words, scopes address the problem that we identified in the previous section and
allow us to define different fault handlers for different activities (or sets of activities
gathered under a common structured activity, such as <sequences or <flows). In
addition to fault handlers, scopes also provide a way to declare variables and partner
links that are visible only within the scope. Scopes also allow us to define local
correlation sets, compensation handlers, event handlers, termination handler, and
message exchanges. We will discuss these topics later in this chapter.

The following code excerpt shows how scopes are defined in BPEL. We can specify
<partnerLinks>, <messageExchangess>, <variables>, <correlationSetss>,
<faultHandlers>, <compensationHandlers, <terminationHandlers, and
<eventHandlers> locally for the scope. All are optional:

<scope>
<partnerLinks>
<!-- Partner link definitions local to scope. -->
</partnerLinks>

<messageExchanges>
<!-- Message exchanges local to scope.
Discussed later in this chapter. -->
</messageExchanges>

<variables>
<!-- Variable definitions local to scope. -->
</variables>

<correlationSets>

<!-- Correlation sets local to scope.
Discussed later in this chapter. -->
</correlationSets>

<faultHandlers>
<!-- Fault handlers local to scope. -->
</faultHandlers>

<compensationHandler>
<!-- Compensation handlers local to scope.
Discussed later in this chapter. -->

</compensationHandler>

<terminationHandler>
<!-- Termination handler local to scope.
Discussed later in this chapter. -->
</terminationHandler>

[139]

Advanced BPEL

<eventHandlers>
<!-- Event handlers local to scope.
Discussed later in this chapter. -->
</eventHandlers>
activity
</scope>

Each scope has a primary activity. This is similar to the overall process structure,
where we have said that a BPEL process also has a primary activity. The primary
activity, often a <sequences or <f1low>, defines the behavior of a scope for normal
execution. Fault handlers and other handlers define the behavior for abnormal
execution scenarios.

The primary activity of a scope can be a basic activity such as <invokes, or it can be
a structured activity such as <sequences> or <flows>. Enclosing the <invoke> activity
with a scope and defining the fault handlers is equivalent to using inline fault
handlers. The inline fault handler shown in the previous section is equal

to the following scope:

<scope>
<faultHandlers>

<catch faultName="emp:WrongEmployeeName" >
<!-- Perform an activity --»>
</catch>

<catch faultName="emp:TravelNotAllowed"
faultVariable="Description" >
<!-- Perform an activity --»>
</catch>

<catchAll>
<!-- Perform an activity --»>
</catchalls>

</faultHandlers>

<invoke partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" >

</invoke>

</scope>

[140]

Chapter 3

If the primary activity of a scope is a structured activity, it can have many nested
activities where the nesting depth is arbitrary. The scope is shared by all nested
activities. A scope can also have nested scopes with arbitrary depth.

The variables defined within a scope are only visible within that scope. Fault
handlers attached to a scope handle faults of all nested activities of a scope. By
default behavior, faults not caught in a scope are re-thrown to the enclosing scope.
Scopes in which faults have occurred are considered to have ended abnormally even
if a fault handler has caught the fault and not re-thrown it.

Similarly as for the <process>, we can define the exitonStandardFault for a scope
as well. If set to no, which is the default, the scope can handle the faults using the
corresponding fault handlers. If set to yes, then the scope must exit immediately if

a fault occurs (similarly as if it would reach an <exit> activity). If we do not set this
attribute, it inherits the value from its enclosing <scope> or <process>.

Example

To demonstrate how scopes can be used in BPEL processes, we will rewrite our
asynchronous travel process example and introduce three scopes:

e In the first scope, we will retrieve the employee travel status
(RetrieveEmployeeTravelStatus).

e In the second scope, we will check the flight availability with both airlines
(CheckFlightAvailability).

e In the third scope, we will call back to the client (CallbackClient).

We will also declare those variables that are limited to a scope locally within the
scope. This will reduce the number of global variables and make the business process
easier to understand. The major benefit of scopes is the capability to define custom
fault handlers, which we will also implement. The high-level structure of our travel
process will be as follows:

<process ...>
<partnerLinks/>...</partnerLinks>
<variables>...</variables>
<faultHandlers>
<catchAlls>...</catchAlls>
</faultHandlers>
<sequence>
<!-- Receive the initial request for business travel from

client -->

[141]

Advanced BPEL

<receive

o/

<scope name="RetrieveEmployeeTravelStatus">

<variables>...</variables>

<faultHandlers>
<catchAlls...</catchAlls>
</faultHandlers>

<sequence>

<l--

<l--

<l--

Prepare the input for Employee Travel Status Web
Service -->

Synchronously invoke the Employee Travel Status Web
Service -->

Prepare the input for AA and DA -->

</sequence>

</scope>

<scope name="CheckFlightAvailability">

<variables>...</variables>
<faultHandlers>
<catchAlls...</catchAlls>
</faultHandlers>
<sequence>
<!-- Make a concurrent invocation to AA and DA -->
<flow>
<!-- Async invoke the AA web service and wait for the
callback -->
<!-- Async invoke the DA web service and wait for the
callback -->
</flow>
<!-- Select the best offer and construct the TravelResponse
-->
</sequence>
</scope>

<scope name="CallbackClient">

<faultHandlers>...</faultHandlers>
<!-- Check if the ticket is approved -->
</scope>
</sequence>
</process>

[142]

Chapter 3

To signal faults to the BPEL process client, we will use the clientCallbackFault
operation on the client partner link, which we defined in the previous section. This
operation has a string message, which we will use to describe the fault. In real-world
scenarios, the fault message is more complex and includes a fault code and other
relevant information.

Let us start with the example. The process declaration and the partner links have
not changed:

<process name="Travel"
targetNamespace="http://packtpub.com/bpel/travel/"

xmlns="http://docs.ocasis-
open.org/wsbpel/2.0/process/executable"

xmlns:trv="http://packtpub.com/bpel/travel/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/" >

<partnerLinks>

<partnerLink name="client"
partnerLinkType="trv:travelLT"
myRole="travelService"
partnerRole="travelServiceCustomer"/>

<partnerLink name="employeeTravelStatus"
partnerLinkType="emp:employeeLT"
partnerRole="employeeTravelStatusService"/>

<partnerLink name="AmericanAirlines"
partnerLinkType="aln:flightLT"
myRole="airlineCustomer"
partnerRole="airlineService"/>

<partnerLink name="DeltaAirlines"
partnerLinkType="aln:f1lightLT"
myRole="airlineCustomer"
partnerRole="airlineService"/>

</partnerLinks>

[143]

Advanced BPEL

The variables section will now define only global variables. These are
TravelRequest, FlightDetails, TravelResponse, and TravelFault. We have
reduced the number of global variables, but we will have to declare other variables
within scopes:

<variabless>
<!-- input for this process -->
<variable name="TravelRequest"
messageType="trv:TravelRequestMessage"/>
<!-- input for the Employee Travel Status web service -->
<variable name="FlightDetails"
messageType="aln:FlightTicketRequestMessage"/>
<!-- output from BPEL process -->
<variable name="TravelResponse"
messageType="aln:TravelResponseMessage" />
<!-- fault to the BPEL client -->
<variable name="TravelFault"
messageType="trv:TravelFaultMessage"/>
</variabless>

Next, we define the global fault handlers section. Here, we use the <catchalls
activity, through which we handle all faults not handled within scopes. We will
signal the fault to the BPEL client:

<faultHandlers>
<catchalls>

<sequences
<!-- Create the TravelFault variable -->
<assigns>
<copy>
<from>string ('Other fault')</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>
<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
</sequence>

</catchAll>
</faultHandlers>

[144]

Chapter 3

The main activity of the BPEL process will still be <sequence>, and we will also
specify the <receive> activity to wait for the incoming message from the client:

<sequence>
<!-- Receive the initial request for business travel from client
-=>
<receive partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelRequest"
createInstance="yes" />

First scope

Now let's define the first scope for retrieving the employee travel status. Here, we
will first declare two variables needed for the input and output messages for web
service operation invocation:

<scope name="RetrieveEmployeeTravelStatus">

<variables>
<!-- input for the Employee Travel Status web service -->

<variable name="EmployeeTravelStatusRequest"
messageType="emp:EmployeeTravelStatusRequestMessage" />

<!-- output from the Employee Travel Status web service-->

<variable name="EmployeeTravelStatusResponse"
messageType="emp:EmployeeTravelStatusResponseMessage" />

</variables>

Next, we will define the fault handlers section for this scope. We will use the
<catchAlls> activity to handle all faults, including Employee web service WSDL
faults, communication faults, and other run-time faults. We will signal all faults

to the client, although in real-world scenarios, we could invoke another web service
or perform other recovery operations:

<faultHandlers>
<catchAlls

<sequence>
<!-- Create the TravelFault variable -->

[145]

Advanced BPEL

<assigns>
<copy>
<from>

string('Unable to retrieve employee travel

status')
</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
<exit/>
</sequence>

</catchAll>
</faultHandlers>

Next, we will start a sequence (which is the main activity of the scope) and prepare
the input variable, invoke the Employee web service, and prepare the input for both
airlines' web services:

<sequences>
<!-- Prepare the input for the
Employee Travel Status Web Service -->
<assign>
<copy>

<from variable="TravelRequest" part="employee"/>
<to variable="EmployeeTravelStatusRequest"
part="employee"/>
</copy>
</assign>

<!-- Synchronously invoke the
Employee Travel Status Web Service -->
<invoke partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" />

<!-- Prepare the input for AA and DA -->
<assign>

[146]

Chapter 3

<copy>
<from variable="TravelRequest" part="flightData"/>
<to variable="FlightDetails" part="flightData"/>
</copy>
<copy>
<from variable="EmployeeTravelStatusResponse"
part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>
</copy>
</assign>

</sequence>
</scope>

Second scope

In the second scope, we check the flight availability with both airlines' web services.
First, we declare two variables for storing output from both web service operations:

<scope name="CheckFlightAvailability">

<variables>
<!-- output from American Airlines -->
<variable name="FlightResponseAA"
messageType="aln:TravelResponseMessage" />
<!-- output from Delta Airlines -->
<variable name="FlightResponseDA"
messageType="aln:TravelResponseMessage" />
</variables>

Next, we define the fault handlers section, where we use the <catchalls activity
similar to that in the first scope:

<faultHandlers>
<catchAalls>

<sequence>

<!-- Create the TravelFault variable -->
<assigns>
<copy>

[147]

Advanced BPEL

<from>
string('Unable to invoke airline web service')

</from>
<to variable="TravelFault" part="error" />
</copy>
</assign>
<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
<exit/>

</sequence>
</catchall>
</faultHandlers>

The main activity of the second scope will be a <sequences, in which we will first
concurrently invoke both airlines' web services using a <flow> activity and then
select the best offer using a <if> activity:

<sequence>

<!-- Make a concurrent invocation to AA and DA -->
<flow>

<sequence>
<!-- Async invoke of the AA web service
and wait for the callback -->

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" />

</sequence>

<sequence>
<!-- Async invoke of the DA web service
and wait for the callback -->

<invoke partnerLink="DeltaAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"

[148]

Chapter 3

inputVariable="FlightDetails" />

<receive partnerLink="DeltaAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseDA" />

</sequence>
</flows>
<!-- Select the best offer and construct the
TravelResponse -->
<if>
<condition>

$FlightResponseAA.confirmationData/aln:Price
$FlightResponseDA.confirmationData/aln:Price

</conditions>

<!-- Select American Airlines -->
<assigns>
<copy>

<from variable="FlightResponseAA" />
<to variable="TravelResponse" />
</copy>
</assign>

<else>
<!-- Select Delta Airlines -->
<assigns>
<copy>
<from variable="FlightResponseDA" />
<to variable="TravelResponse" />
</copy>
</assign>
</else>
</if>

</sequence>
</scope>

< =

[149]

Advanced BPEL

Third scope

In the third scope, we call back to the BPEL client. For this scope we do not

need additional variables. However, we define a fault handler to handle the
TicketNotApproved fault. Therefore, we explicitly specify the fault name and the
fault variable. Note that we do not use the <catchAlls> activity in this fault handlers
section, so all unhandled faults will be re-thrown to the main process fault handler:

<gcope name="CallbackClient">

<faultHandlers>

<catch faultName="trv:TicketNotApproved"
faultvVariable="TravelFault">

<!-- Make a callback to the client -->
<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallbackFault"
inputVariable="TravelFault" />
</catch>
</faultHandlers>

The main activity of this scope is the <if> activity, where we check if the flight ticket
has been approved:

<!-- Check if the ticket is approved -->

<if>

<condition>
S$TravelResponse.confirmationData/aln:Approved="'true'
</ condition>

<!-- Make a callback to the client -->

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallback"
inputVariable="TravelResponse" />

<else>
<sequence>

<!-- Create the TravelFault variable
with fault description -->

[150]

Chapter 3

<assigns>
<copy>
<from>string ('Ticket not approved')</from>
<to variable="TravelFault" part="error" />

</copy>
</assigns>
<!-- Throw fault -->

<throw faultName="trv:TicketNotApproved"
faultvVariable="TravelFault" />
</sequence>

</else>
</if>

</scope>
</sequence>

</process>

Isolated scopes

For each scope we can specify whether we require concurrency control over shared
variables, partner links, and dependency links. We will need such control if, in

our scenario, more than one instance uses shared variables concurrently. This can
occur, for example, if we use a parallel <forEach> loop, which starts several parallel
branches of the same <scope>.

Scopes that require concurrency control are called isolated scopes. In isolated scopes,
it is ensured that the results of the scope will be equal if all conflicting activities

on all shared variables and partner links are done in any possible sequence. This
guarantees that there will be no conflicting situations if several concurrent scopes
access the same set of shared variables. Conflicting operations are in this case all
read/write and write-only activities, such as assignments, incoming messages stored
in variables, and so on. The semantics of isolated scopes are similar to the serializable
transaction isolation level.

We denote a scope as isolated using the optional attribute isolated and setting it
to yes. The default value of this attribute is no. Isolated scopes must not contain
other isolated scopes (but may contain scopes that are not marked as isolated).
The fault handlers (and other handlers) associated with the scope also share the
isolation. The following code excerpt shows how to declare a scope as isolated:

[151]

Advanced BPEL

<scope isolated="yes" >

</scope>

Compensation

Compensation, or undoing steps in the business process that have already completed
successfully, is one of the most important concepts in business processes. Let us
discuss the compensation on our travel process and suppose that in addition to
checking the flight availability, our business process would also have to confirm the
flight tickets, make the payments, reserve a hotel room, and make the payment for the
hotel room. If the business travel is canceled (for various reasons) the reservation and
payment activities would have to be undone — compensated. In business processes,
the compensation behavior must be explicitly defined. Therefore, when defining the
BPEL process, we would have to explicitly define how to compensate the flight ticket
confirmation, how to compensate the flight ticket payment, and so on.

The goal of compensation is to reverse the effects of previous

activities that have been carried out as part of a business

process that is being abandoned.

Compensation is related to the nature of most business processes, which are long
running and use asynchronous communication with loosely coupled partner web
services. Business processes are often sensitive in terms of successful completion
because the data they manipulate is sensitive. As they usually span multiple partners
(often multiple enterprises), special care has to be taken that business processes
either fully complete their work or that the partial (not fully completed) results

are undone — compensated.

In enterprise information systems, processes that have not been able to finish all their
activities and need to undo the partial work are usually handled with transactions,
more exactly with the ACID distributed transaction model, such as X/Open DTP
(Distributed Transaction Processing). ACID stands for Atomicity, Consistency,
Isolation, and Durability and defines a transaction model that uses data locking and
isolation. Such a model works perfectly well in trusted domains within enterprises
under the prerequisite that the duration of transactions can be relatively short.

The problem with business processes is that they usually last a long time, sometimes
several hours, sometimes even a few days. This is much too long for the ACID
model, because we cannot afford to lock certain data for such a long time and to
isolate the access to these data.

[152]

Chapter 3

In business processes, compensation is used instead of ACID to reverse the effects
of an unfinished process. Compensation requires that an activity specifies a reverse
activity, which can be invoked if it is necessary to undo the effect of that activity.
BPEL supports the concept of compensation with the ability to define compensation
handlers, which are specific to scopes, and calls this feature Long-Running
Transactions (LRT).

The concept of compensation and LRTs as defined by BPEL is independent of any
transaction protocol and can be used with various business transaction protocols. As
BPEL is bound to web services, it is, however, reasonable to expect that in most cases
the LRTs will be used with the WS-BusinessActivity (WS-Transaction) specification.
The BPEL specification even defines a detailed model of BPEL LRTs based on WS-
BusinessActivity concepts.

It is very important to understand that compensation differs from fault handling.
In fault handling, a business process tries to recover from an activity that could
not finish normally because an exceptional situation has occurred. The objective of
compensation, on the other hand, is to reverse the effects of a previous activity or a
set of activities that have been carried out successfully as part of a business process
that is being abandoned. Note that the order in which compensation activities are
run is often important. BPEL addresses this aspect with scopes.

Compensation handlers

To define the compensation activities, BPEL provides compensation handlers.
Compensation handlers gather all activities that have to be carried out to
compensate another activity. Compensation handlers can be defined as follows:

e For the scope

e Inline for the <invoke> activity

BPEL 2.0 does not support compensation handlers on the process level anymore.
The reason is that such compensation handlers had to be invoked from outside
the process, which was difficult and not very practical.

The compensation handler for the scope is defined immediately after the fault
handlers section, as shown in the next code excerpt:

<scope>
<partnerLinks>

<!-- Partner link definitions local to scope. -->
</partnerLinks>

<messageExchanges>
<!-- Message exchanges local to scope.

[153]

Advanced BPEL

Discussed later in this chapter. -->
</messageExchanges>

<variables>
<!-- Variable definitions local to scope. -->
</variables>

<correlationSets>
<!-- Correlation sets local to scope.
Discussed later in this chapter. -->

</correlationSets>

<faultHandlers>
<!-- Fault handlers local to scope. -->
</faultHandlers>

<compensationHandler>

<!-- Compensation activity
(or several activities within a <sequence>, <flow>,
or other structured activity) -->

</compensationHandler>

<terminationHandler>

<!-- Termination handler local to scope.
Discussed later in this chapter. -->

</terminationHandler>

<eventHandlers>
<!-- Event handlers local to scope.
Discussed later in this chapter. -->
</eventHandlers>
activity
</scope>

Sometimes, it is reasonable to define a compensation handler for each <invoke>
activity. We could define a scope for each <invoke>. However, BPEL provides a
shortcut where we can inline the compensation handler rather than explicitly using
an immediately enclosing scope. This is similar to the inline capability of fault
handlers. The syntax is shown as follows:

<invoke ... >

<compensationHandler>

<!-- Compensation activity
(or several activities within a <sequence>, <flow>,
or other structured activity) -->

</compensationHandler>
</invokes>

[154]

Chapter 3

The syntax of the compensation handler is the same for all three cases; we specify the
activity that has to be performed for compensation. This can be a basic activity such
as <invokes or a structured activity such as <sequence> or <flows.

Example

Let us suppose that within a business process we will invoke a web service operation
through which we will confirm the flight ticket. The compensation activity would

be to cancel the flight ticket. The most obvious way to do this is to define the inline
compensation handler for the <invokes activity, as shown in the following example:

<invoke name="TicketConfirmation"
partnerLink="AmericanAirlines"
portType="aln:TicketConfirmationPT"
operation="ConfirmTicket"
inputVariable="FlightDetails"
outputVariable="Confirmation" >

<compensationHandlers>

<invoke partnerLink="AmericanAirlines"
portType="aln:TicketConfirmationPT"
operation="CancelTicket"
inputVariable="FlightDetails"
outputVariable="Cancellation" />

</compensationHandlers>

</invokes>

Let us now suppose that the business process performs two operations in a sequence.
First it confirms the ticket and then makes the payment. To compensate these two
activities, we could define an inline compensation handler for both <invoke>
activities. Alternatively, we could also define a scope with a dedicated compensation
handler, as shown in the example that follows:

<scope name="TicketConfirmationPayment" >
<compensationHandlers>

<sequence>
<invoke partnerLink="AmericanAirlines"
portType="aln:TicketConfirmationPT"
operation="CancelTicket"
inputVariable="FlightDetails"
outputVariable="Cancellation" />

<invoke partnerLink="AmericanAirlines"
portType="aln:TicketPaymentPT"
operation="CancelPayment"

[155]

Advanced BPEL

inputVariable="PaymentDetails"
outputVariable="PaymentCancellation" />
</sequence>

</compensationHandler>

<sequence>
<invoke partnerLink="AmericanAirlines"
portType="aln:TicketConfirmationPT"
operation="ConfirmTicket"
inputVariable="FlightDetails"
outputVariable="Confirmation" />

<invoke partnerLink="AmericanAirlines"
portType="aln:TicketPaymentPT"
operation="PayTicket"
inputVariable="PaymentDetails"
outputVariable="PaymentConfirmation" />
</sequence>

</scope>

Which approach is better depends on the nature of the business process. In most
cases, we will define inline compensation handlers or compensation handlers within
scopes. In the global BPEL process compensation handler, we will usually invoke
compensation handlers for specific scopes and thus define the order in which the
compensation should perform. Let's have a look at how to invoke a compensation
handler.

Default compensation handler

If a <compensationHandlers is not defined for any given <scope>, the BPEL
engine implicitly creates a default compensation handler, which compensates
all inner scopes:

<compensationHandlers>
<compensate />
</compensationHandlers>

Invoking compensation handlers

Compensation handlers can be invoked only after the activity that is to be
compensated has completed normally. If we try to compensate an activity that has
completed abnormally, nothing will happen because an <empty> activity will be
invoked. This is useful because it is not necessary to track the state of activities to
know which can be compensated and which cannot.

[156]

Chapter 3

BPEL provides two activities to invoke a compensation handler:

e <compensates activity to start compensation on all inner scopes
® <compensateScope> activity to start compensation on a specified inner scope

Usually, we invoke <compensateScope> and <compensates activities from a fault

handler.

<compensateScope> and <compensate> activities can only be
% used within <catch>, <catchAll>, <compensationHandlers>,
’ and <terminationHandlers.

The syntax is simple and is shown next. The <compensateScope> activity has a
target attribute through which we specify which scope should be compensated.
We have to specify the name of the scope:

<compensateScope target="name" />

To invoke the compensation handler for the TicketConfirmationPayment scope
(shown in the previous section), we could simply write:

<compensateScope target="TicketConfirmationPayment" />

To start compensation on all inner scopes, we use the <compensates activity. It
starts compensation on all inner scopes that have already completed successfully,
in default order. The syntax is very simple:

<compensate/>

We also invoke the inline compensation handler of the <invokes activity in the
same way.

If we invoke a compensation handler for a scope that has no compensation handler
defined, the default handler invokes the compensation handlers for the immediately
enclosed scopes in the reverse order of completion (remember that the order in
which compensations are performed is often important).

Compensation handlers can be explicitly invoked only from the following;:

o The fault handler of the scope that immediately encloses the scope for which
compensation should be performed

e The compensation handler of the scope that immediately encloses the scope
for which compensation should be performed

[157]

Advanced BPEL

When a compensation handler is invoked, it sees a frozen snapshot

of all variables as they were when the scope being compensated
"~ was completed.

In the compensation we can use the same variables as in regular activities and these
variables will have the same values as when the activity being compensated is
finished. This means that the compensation handler cannot update live data in the
variables the BPEL process is using. The compensation handler cannot affect the
global state of the business process.

Termination handler

When a BPEL process instance is executing, there are several scenarios which require
that the currently executed activity of a process is terminated, for example:

e When a fault handler is invoked, it disables the scope's event handlers
and implicitly terminates all enclosed activities.

e A faultin the fault handler causes the termination of all running
contained activities.

e When the <completionConditions is fulfilled for a parallel <forEach>
activity, all still running directly enclosed <scope> activities are terminated.

This is called forced termination. Termination handler provides the ability for scopes
to control the forced termination. The syntax of a termination handler is listed as
follows:

<terminationHandler>
activity
</terminationHandler>

In a termination handler we can use the same range of activities as in a fault handler.
We can use the <compensateScopes> Or <compensates activities. However, in a
termination handler we cannot throw any fault. If an uncaught fault occurs within
the termination handler, it is not rethrown to the next enclosing scope.

Default termination handler

If a custom <terminationHandlers for the scope is not present, the BPEL engine
will generate a default termination handler. The default termination handler will
trigger the compensation. This is convenient, as it does not require to always define
a termination handler. The default termination handler has the following syntax:

[158]

Chapter 3

<terminationHandler>
<compensate />
</terminationHandler>

Managing events

A business process may have to react on certain events. We already know that

a business process specified in BPEL usually waits for an incoming message

using the <receives activity. This incoming message is the event that activates

the whole process. A business process also often invokes web service operations
asynchronously. For such operations, results are returned using callbacks. The BPEL
process often waits for callback messages, which are also events.

Using the <receives activity, we can wait for an exactly specified message

on a certain port type. Often, however, it is more useful to wait for more than

one message, of which only one will occur. Let us go back to our example,

where we invoked the FlightAvailability operation and waited for the
FlightTicketCallback callback. In a real-world scenario, it would be very useful
to wait for several messages, F1ightTicketCallback being one of them. The other
messages could include FlightNotAvaliable, TicketNotAvaliable, and so on.

Even more useful would be to specify that we will wait for the callback for a certain
period of time (for example, five minutes). If no callback is received, we continue

the process flow. This is particularly useful in loosely coupled service-oriented
architectures, where we cannot rely on web services being available all the time. This
way, we could proceed with the process flow even if American Airlines' web service
does not return an offer —we would then invoke another airline web service operation.

In most business processes, we will need to react on two types of events:

e Message events: These are triggered by incoming messages through
operation invocation on port types.

e Alarm events: These are time related and are triggered either after a certain
duration or at a specific time.

[159]

Advanced BPEL

Pick activity

BPEL provides the <picks> activity through which we can specify that the business
process awaits the occurrence of one of a set of events. Events can be message
events handled using the <onMessage> activity and alarm events handled using the
<onAlarms activity. For each event, we then specify an activity or a set of activities
that should be performed.

The syntax of the <pick> activity is shown as follows:

<pick>
<onMessage ...>
<!-- Perform an activity -->
</onMessage>
<onMessage ...>
<!-- Perform an activity -->
</onMessage>
<onAlarm ...>
<!-- Perform an activity -->
</onAlarm>
</pick>

Within <picks>, we can specify several <onMessage> elements and several
<onAlarms> elements. The <onAlarm> elements are optional (we can specify zero
or more), but we have to specify at least one <onMessage> element.

Message events

Both elements take additional attributes. The <onMessage> element is identical to
the <receives activity, and has the same set of attributes. We have to specify the
following attributes:

e partnerLink: Specifies which partner link will be used for the invoke,
receive, or reply, respectively

e portType: Specifies the used port type

e operation: Specifies the name of the operation to wait for being invoked

e variable: Specifies the name of the variable used to store the incoming
message

[160]

Chapter 3

We can also specify message exchanges, correlation, and from-parts, but we will
discuss this later in this chapter.

The basic syntax of <onMessage> is shown in the following code excerpt:

<pick>
<onMessage partnerLink="name"
portType="name"
operation="name"
variable="name">

<!-- Perform an activity or a set of activities enclosed by
<sequence>, <flow>, etc. or throw a fault -->
</onMessage>
</pick>

Alarm events

The <onAlarms> element is similar to the <wait> element. We can specify the
following:

e A duration expression using a <for> duration expression

e A deadline expression using an <until> deadline expression

For both expressions, we use the same literal format as for the <wait> activity
described earlier in this chapter.

Often, we will use the <onAlarm> event to specify duration. A typical example is for
a business process to wait for the callback for a certain amount of time, for example,
15 minutes. If no callback is received, the business process invokes another operation
or throws a fault. The deadline approach is useful, for example, if the business
process should wait for a callback until an exactly specified time and then throw

a fault or perform a backup activity.

The following code excerpt shows examples of both with hard-coded times/dates:

<pick>
<onMessage ...>
<!-- Perform an activity --»>
</onMessage>
<onAlarm>

<for>'PT15M'</for>

[161]

Advanced BPEL

<!-- Perform an activity or a set of activities enclosed by
<sequence>, <flow>, etc. or throw a fault -->
</onAlarm>
</picks>
<pick>
<onMessage ...>
<!-- Perform an activity -->
</onMessage>
<onAlarm>

<until>"'2004-03-18T21:00:00+01:00'</until>

<!-- Perform an activity or a set of activities enclosed by
<sequence>, <flow>, etc. or throw a fault -->
</onAlarm>
</pick>

Instead of hard-coding the exact date and time or the duration, we can use a variable.

Example

Going back to our travel example, we could replace the <receives activity, where
the business process waited for the Fl1ightTicketCallback, with the <pick>
activity, where the business process will also wait for the Fl1ightNotAvaliable

and TicketNotAvaliable operations and throw corresponding faults. The business
process will wait no more than 30 minutes, when it will throw a callbackTimeout
fault. The code excerpt is shown as follows:

<pick>
<onMessage partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA">
<empty/>
<!-- Continue with the rest of the process -->
</onMessage>

<onMessage partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightNotAvaliable"
variable="FlightFaultAA">
<throw faultName="trv:FlightNotAvaliable"
faultVariable="FlightFaultAA"/>
</onMessage>

[162]

Chapter 3

<onMessage partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="TicketNotAvaliable"
variable="FlightFaultAA">
<throw faultName="trv:TicketNotAvaliable"
faultvariable="FlightFaultAA"/>
</onMessage>

<onAlarm>
<for>'PT30M'</for>
<throw faultName="trv:CallbackTimeout" />
</onAlarm>
</pick>

For this example to work, we also need to declare the F1ightFaultAa variable
and to modify the Airline web service WSDL to add the FlightNotAvaliable and
TicketNotAvaliable callback operations. This is not shown here but can be seen
from the example, which can be downloaded from the Packt Publishing website.

Event handlers

The <picks> activity is very useful when we have to specify that the business process
should wait for events. Sometimes, however, we would like to react on events that
occur while the business process executes. In other words, we do not want the
business process to wait for the event (and do nothing else but wait). Instead,

the process should execute, and still listen to events and handle them whenever
they occur.

For this purpose BPEL provides event handlers. If the corresponding events occur,
event handlers are invoked concurrently with the business process. Typical usage

of event handlers is to handle a cancellation message from the client. For example,
in our travel process we could define an event handler that would allow the BPEL
process client to cancel the travel at any time.

We can specify event handlers for the whole BPEL process as well as for each
scope. Event handlers for the whole process are specified immediately after the
compensation handlers and before the main process activity, as shown next:

<process ...>

<partnerLinks>

</partnerLinks>

<variables>

</variabless>

[163]

Advanced BPEL

<faultHandlers>

</faultHandlerss>

<compensationHandlers>

</compensationHandlers>

<eventHandlers>
<onEvent ...>
<!-- Perform activities -->
</onEvent>
<onAlarm ...>
<!-- Perform activities -->
</onAlarm>
</eventHandlers>
activity
</process>

Event handlers for the scope are also specified after compensation handlers.

The syntax of the event handler section is similar to the syntax of the <pick>
activity. Instead of <onMessage>, the message event in <eventHandlers> is called
<onEvent >. The most notable difference is that in <eventHandlers> we can specify
zero or more <onEvent> handlers and/or zero or more <onAlarm> handlers. An
event handler must contain at least one <onEvent > or <onAlarm> element.

<onEvent>

The <onEvent > element indicates that the event handler will wait for a message to
arrive. The interpretation of the <onEvent > is very similar to a <receives activity.

The syntax of an <onEvent> handler is shown as follows:

<eventHandlers>

<onEvent partnerLink="name"

portType="name" <!-- Optional -->
operation="name"

messageType="name" <!-- Optional -->
element="name" <!-- Optional -->
variable="name" <!-- Optional -->
messageExchange="name"> <!-- Optional -->

<correlationss> <!-- Optional -->

[164]

Chapter 3

<correlation set="name" initiate="yes|join|no"? />
</correlationss>
<fromParts> <!-- Optional -->

<fromPart part="name" toVariable="name" />
</fromParts>

<scope>

<!-- Perform activities -->
</scope>
</onEvent>

</eventHandlers>

We have to specify the following:

partnerLink of the partner link service that can send the message

operation that is invoked by the partner in order to cause the event

The operation specified in the <onEvent > event handler can be a one-way or a
request/response operation. If it is a request/response operation, the event handler
should use a <reply> activity to send the response.

We can specify other attributes, which are optional. Often, we will also specify:

portType over which the operation that causes the event will be invoked.

variable, which identifies a variable local to the event handler that will
contain the message received from the partner. For a variable, we can specify
the messageType or the element (depending on the type of variable). The
type of the variable must be the same as the type of the input message
causing the event.

We can also specify message exchange, correlations, and from parts, which we will
discuss later in this chapter.

We put all activities that should occur within the event handler into a <scopes.

Message events (<onEvent >) in event handlers can occur multiple times,

% even concurrently, while the corresponding scope is active. We have to
s

take care of concurrency and use isolated scopes if necessary.

[165]

Advanced BPEL

Example

Let us go back to the example and define the event handler that will allow the BPEL
process client to cancel the travel at any time. The difficult part here is to define the
appropriate activities to be performed when the client does the cancellation. The
simplest solution is to terminate the process, as shown in the following example:

<process name="Travel" ... >

<eventHandlers>

<onEvent partnerLink="client"

portType="trv:TravelApprovalPT"
operation="CancelTravelApproval"
messageType="trv:TravelRequestMessage"
variable="TravelRequest" >

<scope>

<exit/>
</scope>

</onEvent>

</eventHandlerss>

</process>

In the real world, we would want to undo some work when a cancellation actually
occurs. We could use compensation handlers; however, we would need to structure
the activities into scopes and compensate the scopes.

<onAlarm>

The <onAlarm> element indicates a time-driven event. There are three possibilities:

e We can specify a time duration after which the event will be signaled.
We use a <for> expression for this.

e We can specify a specific point in time (deadline) when the alarm will be
fired. We use an <until> expression for this. Please note that only one of
these two expressions may occur in any <onAlarm> event.

e We can also specify a repeating duration event. In this case, an alarm
will be fired repeatedly each time the duration period expires. We use a
<repeatEvery> expression for this.

[166]

Chapter 3

The syntax of an <onAlarm> handler is shown as follows:

<eventHandlers>

<onAlarm>

<for>duration-expression</for>

<until>deadline-expression</until>

<repeatEvery>
duration-expression
</repeatEverys>

<scope>
<!-- Perform activities -->

</scope>

</onAlarms>

</eventHandlers>

<!-- Optional -->
<!-- Optional -->
<!-- Optional -->

We can specify the <repeatEvery> expression on its own or with either the <for>
or the <until> expression. If we specify the <repeatEverys expression alone, the
clock for the first duration starts at the point in time when the parent scope starts.

If we specify the <repeatEvery> expression with either the <for> or the <until>
expression, the first alarm is not fired until the time specified in the <for> or
<until> expression expires. After that, it is fired repeatedly at the interval specified
by the <repeatEvery> expression. The duration for the <repeatEverys is calculated

when the parent scope starts.

Example

The following example shows an alarm using a duration expression of 12 hours.
We could use variable data to specify the duration instead of hard-coding it.

<process name="Travel" ... >

<eventHandlers>

<onAlarms>
<for>'PT12H'</for>
<scope>
<exit/>
</scope>
</onAlarms>

</eventHandlers>

</process>

[167]

Advanced BPEL

Other usage scenarios depend on the actual business process. Note that the examples
shown for the process could also be defined within scopes. As the code differences
are minimal, these examples are not shown.

The event handlers associated with the scopes are enabled when the associated scope
starts. The event handlers associated with the global BPEL process are enabled as
soon as the process instance is created. This brings us to the process lifecycle, which
we will discuss in the next section.

Business process lifecycle

A business process specified in BPEL has a well-defined structure. It usually waits
for the client to invoke the process. This is done using the <receives activity, as

we have seen in the previous chapter. A business process can also use the <picks>
activity to wait for the initial incoming message. Then the business process typically
invokes several operations on partner web services and waits for partners to

invoke callback operations. The business process also performs some logic, such as
comparison and calculation of certain values. The business process terminates after
all activities have been performed.

We can see that each BPEL process has a well-defined lifecycle. To communicate
with partners, BPEL uses web services. Web services provide a stateless model for
operation invocation. This means that a web service does not provide a common
approach to store client-dependent information between operation invocations. For
example, consider a shopping cart where a client uses an add operation to add items
to the cart. Of course, there could be several simultaneous clients using the shopping
cart through the web service. We would like each client to have its own cart. To
achieve this using web services, each client would have to pass its identity for each
invocation of the add operation. This is because the web services model is a stateless
model —a web service does not distinguish between different clients.

For business processes, a stateless model is inappropriate. Let us consider
the business travel scenario where a client sends a travel order, through
which it initiates the business process. The process then communicates
. with several web services and first sends a ticket approval to the client.
% Later, it sends a hotel approval and an invoice. There are usually several
L concurrent clients using the business travel process. Also, a single client
can start more than one interaction with the business process. The
business process has to remember each interaction in order to know to
whom to return the results. In contrast to stateless web services, BPEL
business processes are stateful and typically long-running interactions.

[168]

Chapter 3

BPEL business processes are stateful and support long-running interactions with
a well-defined lifecycle. For each interaction with the process, a process instance
is created. Therefore, we can think of the BPEL process definition as a template for
creating process instances. This is similar to the class-object relation where classes
represent templates for creating objects at runtime.

In BPEL, we do not create instances explicitly as we would in programming
languages (there is no new command, for example). Rather, the creation is implicit
and occurs when the process receives the initial message that starts the process. This
can happen within the <receive> or <picks activities, so both activities provide

an attribute called createInstance. Setting this attribute to yes indicates that

the occurrence of that activity causes a new instance of the business process to be
created.

We usually annotate the initial <receives> or <picks> of each business process with
the createInstance attribute. Going back to our business travel example, this is
shown in the following excerpt:

<sequence>
<!-- Receive the initial request for business travel from client
-=>
<receive partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelRequest"
createInstance="yes" />

If, however, we would like to specify more than one operation, we can use a special
form of the <picks> activity. Using <picks>, we can specify several operations and
receiving any one of these messages will result in business process instance creation.
We specify the createInstance attribute for the <picks> activity. However, we can
only specify <onMessage> events; <onAlarm> events are not permitted in this specific
form.

The following example shows the initial business process activity, which waits for
the TravelApproval or TravelCancellation operations. Receiving one of these
messages results in business process instance creation:

<pick createInstance="yes">

<onMessage partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"

[169]

Advanced BPEL

variable="TravelRequest" >
<!-- Perform activities -->
</onMessage>

<onMessage partnerLink="client"
portType="trv:TravelCancellationPT"
operation="TravelCancellation"
variable="TravelCancel" >

<!-- Perform activities -->
</onMessage>
</picks>

A business process can be terminated normally or abnormally. Normal termination
occurs when all business process activities complete. Abnormal termination

occurs either when a fault occurs within the process scope, or a process instance is
terminated explicitly using the <exit> activity.

In more complex business processes, more than one start activity could be enabled
concurrently. Such start activities are required to use correlation sets.

Correlation and message properties

Business processes use a stateful model. When a client starts a business process, a
new instance is created. This instance lives for the duration of the business process.
Messages sent to the business process (using operations on port types and ports)
need to be delivered to the correct instance of the business process. We would expect
this to be provided by the runtime environment, such as a BPEL server. This is the
case if an appropriate transport mechanism can be used, such as WS-Addressing.
However, in some cases where several partners are involved (for example if the
BPEL process calls service A, which calls service B, and service B makes a direct
callback to the BPEL process), or a lightweight transport mechanism is used that
does not provide enough information to explicitly identify instances (such as JMS),
manual correlation is required. In such cases, we will have to use specific business
data, such as flight numbers, social security numbers, chassis number, and so on.

BPEL provides a mechanism to use such specific business data to maintain references
to specific business process instances and calls this feature correlation. Business

data used for correlation is contained in the messages exchanged between partners.
The exact location usually differs from message to message —for example, the flight
number in the message from the passenger to the airline might be in a different
location than in the confirmation message from the airline to the passenger. To
specify which data is used for correlation, message properties are used.

[170]

Chapter 3

Message properties

Messages exchanged between partner web services in a business process usually
contain application-specific data and protocol-specific data. Application-specific data
is the data related to the business process. In our example, such data includes the
employee name, employee travel status, travel destination, and dates. To actually
transfer this data (as SOAP messages, for example) additional protocol-specific data
has to be added, such as security context, transaction context, and so on. In SOAP,
protocol-specific data is usually gathered in the Header section and application-
specific data in the Body section of a SOAP message. However, not all protocols
differentiate application- and protocol-specific data.

In business processes, we will always need to manipulate application-specific data,
and sometimes even protocol-specific data. BPEL provides a notion of message
properties, which allow us to associate relevant data with names that have greater
significance than just the data types used for such data.

For example, a chassis number can be used to identify a motor vehicle in a business
process. The chassis number will probably appear in several messages and it will
always identify the vehicle. Let us suppose that the chassis number is of type string,
because a chassis number consists of numbers and characters. Naming it with a
global property name chassisNo gives this string a greater significance than just the
data type string.

Examples of such globally significant data are numerous and include social security
numbers, tax payer numbers, flight numbers, license plate numbers, and so on.
These data can be denoted as properties whose significance goes beyond a single
business process and can therefore be used for correlation. Other properties will

be data significant for a single business process only, such as uniform identifiers,
employee numbers, and so on.

Message properties have global significance in business processes and

are mapped to multiple messages. So, it makes sense to name them with
’ global property names.

Message properties are defined in WSDL through the WSDL extensibility mechanism,
similarly to partner link types. The namespace used for property declaration within
WSDL is: http://docs.oasis-open.org/wsbpel/2.0/varprop. The syntax is simple
and shown next. We have to define a property name and its type:

<wsdl:definitions
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"

>

[171]

Advanced BPEL

<vprop:property name="name" type="type-name" />

</wsdl:definitions>

Let's go back to our travel process example. The flight number is such a significant data
element that it makes sense to define it as a property in the Airline web service WSDL:

<definitions xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:tns="http://packtpub.com/service/airline/"
targetNamespace="http://packtpub.com/service/airline/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" >

<vprop:property name="FlightNo" type="xs:string" />

</definitionss>

Mapping properties to messages

Properties are parts of messages, usually embedded in the application-specific

part of messages. To map a property to a specific element (or even attribute) of the
message, BPEL provides property aliases. With property aliases, we map a property
to a specific element or attribute of the selected message part. We can then use the
property name as an alias for the message part and the location. This is particularly
useful in abstract business processes where we focus on message exchange
description.

Property aliases are defined in WSDL. The syntax is shown next:

<wsdl:definitions
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"

>

<vprop:propertyAlias propertyName="property-name"

messageType="message-type-name"
part="message-part-name"
type="type-name"
element="element-name">

<Vprop:query>

query
</vprop:query>

[172]

Chapter 3

</vprop:propertyAlias>

</wsdl:definitions>

We have to specify the property name, the message type, and the message part, or
type, or element. More specifically, to define a property alias, we must use one of the
following combinations: messageType and part, type, or element. We also have to
specify the query expression to point to the specific element or attribute. The query
expression is written in the selected query language; the default is XPath 1.0.

We now define the property alias for the flight number property defined
in the previous section. In our travel process example, we have defined the
TravelResponseMessage in the airline WSDL.:

<message name="TravelResponseMessage">
<part name="confirmationData" element="tns:FlightConfirmation" />
</message>

The FlightConfirmationType has been defined as a complex type with the
FlightNo element of type xs: string being one of the elements. For the complete
WSDL with the type definition please look in Chapter 2, Service Composition with
BPEL. To define the alias, we write the following code:

<definitions xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:tns="http://packtpub.com/service/airline/"
targetNamespace="http://packtpub.com/service/airline/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://docs.ocasis-open.org/wsbpel/2.0/plnktype"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" >

<vprop:property name="FlightNo" type="xs:string" />

<vprop:propertyAlias propertyName="tns:FlightNo"
messageType="tns:TravelResponseMessage"
part="confirmationData">

<vVprop:query>
/confirmationData/FlightNo
</vprop:query>
</vprop:propertyAlias>

</definitionss>

[173]

Advanced BPEL

With this, we have defined a global property Fl1ightNo as an alias for the
confirmationData part of the FlightConfirmationType message type on the
location specified by the query.

Extracting properties

To extract property values from variables, BPEL defines an extension function
called getvariableProperty, which is defined in the standard BPEL namespace.
The function takes two parameters, the variable name and the property name, and
returns the node that represents the property. The syntax is shown as follows:

bpws:getVariableProperty ('variableName',6 'propertyName')

To extract the F1ightNo property from the TravelResponse variable, we write the
following:

bpws:getVariableProperty ('TravelResponse', 'FlightNo')

The use of properties increases flexibility in extracting relevant data from the message
compared to accessing variables. Using properties, we do not have to specify the exact
location of the data (such as flight number), but rather use the property name. If the
location changes, we only have to modify the property definition.

Properties and assignments

Properties can also be used in assignments, which is particularly useful in abstract
processes. We can copy a property from one variable to another using the <assign>
activity, as shown in the following code excerpt:

<assign>
<copy>
<from variable="variable-name" property="property-name"/>
<to variable="variable-name" property="property-name"/>
</copy>
</assign>

To copy the F1ightNo property from the FlightResponseAA variable to the
TravelResponse variable, we write the following;:

<assign>
<copy>
<from variable="FlightResponseAA" property="FlightNo"/>
<to variable="TravelResponse" property="FlightNo"/>
</copy>
</assign>

[174]

Chapter 3

Correlation sets

Now that we are familiar with properties, let's go back to the problem of correlation
of messages. Correlation in BPEL uses the notion of properties to assign global
names to relevant data used for correlation messages (such as flight number) and to
define aliases through which we specify the location of such data in messages.

A set of properties shared by messages and used for correlation is called a
&~ correlation set.

When correlated messages are exchanged between business partners, two roles can
be defined. The partner that sends the first message in an operation invocation is the
initiator and defines the values of the properties in the correlation set. Other partners
are followers and get the property values for their correlation sets from incoming
messages. Both initiator and followers must mark the first activity that binds the
correlation sets.

A correlation set is used to associate messages with business process instances. Each
correlation set has a name. A message can be related to one or more correlation sets.
The initial message is used to initialize the values of a correlation set. The subsequent
messages related to this correlation set must have property values identical to the
initial correlation set. Correlation sets in BPEL can be declared globally for the whole
process or within scopes. The syntax is shown next:

<correlationSets>
<correlationSet name="correlation-set-name"
properties="list-of-properties"/>
<correlationSet name="correlation-set-name"

properties="list-of-properties"/>

</correlationSets>

An example of a correlation set definition named vehicleOrder that includes two
properties chassisNo and engineNo is shown next:

<correlationSetss>
<correlationSet name="VehicleOrder"
properties="tns:chassisNo tns:engineNo"/>
</correlationSets>

[175]

Advanced BPEL

Going back to our example, let's define a correlation set named Ticketorder with a
single property, FlightNo:

<process ... >
<partnerLinks>...</partnerLinks>
<variables>...</variables>

<correlationSets>
<correlationSet name="TicketOrder"
properties="aln:FlightNo"/>
</correlationSets>

Using correlation sets

We can use correlation sets in <invokes>, <receives, <reply>, <onMessage> parts
of <picks activities, and <onEvent> parts of event handlers. To specify which
correlation sets should be used, we use the <correlations activity nested within
any of the above-mentioned activities. The syntax is shown as follows:

<correlations>
<correlation set="name"
initiate="yes|join|no" <!-- Optional -->
pattern:"request|response|request—response" />
</correlations>

We must specify the name of the correlation set used and indicate whether the

correlation set should be initiated. If we want that the activity (such as <receives)
initiates the correlation set, we have to set the initiate to yes. If we want that the
activity initiates the correlation set if the correlation set is not yet initiated, then we
have to set the initiate to join. The default value of the initiate attribute is no.

When we use the correlation with the <invokes activity and when the operation
invoked is a request/response operation, we must specify the pattern attribute
to indicate the direction in which the correlation applies. The request value
specifies that the correlation applies to outbound messages, response to inbound,
and request-response to both messages. Please notice that we can use the
pattern attribute for request/response operation only. We should not use it for
one-way operations.

[176]

Chapter 3

The following example shows how to use correlation sets in a scenario where the
BPEL process first checks the flight availability using an asynchronous <invoke>
and then waits for the callback. The callback message contains the flight number
(F1ightNo), and is used to initiate the correlation set. Next, the ticket is confirmed
using a synchronous <invokes. Here the correlation set is used with the out -

in pattern. Finally, the result is sent to the BPEL process client using a callback
<invoke> activity. Here the correlation set is used with the out pattern:

<sequence>

<!-- Check the flight avaliablity -->

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<!-- Wait for the callback -->

<receive partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="TravelResponse" >

<!-- The callback includes flight no
therefore initiate correlation set -->
<correlations>

<correlation set="TicketOrder"

initiate="yes" />

</correlations>
</receives>
<!-- Synchronously confirm the ticket -->

<invoke partnerLink="AmericanAirlines"
portType="aln:TicketConfirmationPT"
operation="ConfirmTicket"
inputVariable="FlightRespnseAA"
outputVariable="Confirmation" >

<!-- Use the correlation set to confirm the ticket -->
<correlations>

<correlation set="TicketOrder"

pattern="request-response" />

</correlations>
</invoke>
<!-- Make a callback to the client -->

[177]

Advanced BPEL

<invoke partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallback"
inputVariable="TravelResponse" >

<!-- Use the correlation set to callback the client -->
<correlations>
<correlation set="TicketOrder"
pattern="request" />
</correlations>

</invoke>
</sequence>

</process>

Concurrent activities and links

In business processes, activities often occur concurrently. In BPEL, such concurrent
activities are modeled using the <f1lows> activity. Activities within <flow> start
concurrently as soon as the <flows is started. The <f1ow> completes when all nested
activities complete. Gathering nested activities within <f1lows> is straightforward and
very useful for expressing concurrency scenarios that are not too complicated. We
have used it in the examples in this and the previous chapter.

To express more complex concurrency scenarios, <f£1lows provides the ability to
express synchronization dependencies between activities. In other words, we can
specify which activities can start and when (depending on other activities) and
define dependencies that are more complex than those expressed with a combination
of <flow> and <sequence> activities. For example, we will often specify that a
certain activity or several activities cannot start before another activity or several
activities have finished. We express synchronization dependencies using the <1ink>
construct. For each link we specify a name. Links have to be defined within the
<flows> activity. Link definitions are gathered within a <1inks> element. This is
shown in the following code excerpt:

<flow>

<linkss>

<link name="TravelStatusToTicketRequest" />

<link name="TicketRequestToTicketConfirmation" />
</links>

</flow>

[178]

Chapter 3

These links can now be used to link activities together. For actual linking, we use
standard elements that can be used with any BPEL activity.

Sources and targets

For each BPEL activity, whether basic or structured, we can specify two standard
elements for linking activities and expressing synchronization dependencies. These
two standard elements are nested within the activity:

e <sources> is used to annotate an activity as being a source of one
or more links

e <target> is used to annotate an activity as being a target of one
or more links

Every link declared within <f1low> must have exactly one activity within the flow as
its <sources. It must also have exactly one activity within the flow as its <target>.

A link's target activity can be performed only after the source activity has
s been finished.

The syntax of the <source> element is shown below. We have to specify the link
name, which has to be defined within the <flow> activity. Optionally, we can specify
the transition condition. We will say more on transition conditions later in this
section. If the transition condition is not specified, the default value is true. We can
specify one or more <source> elements within the <sources> element:

<sources>
<source linkName="name">
<transitionConditions> <!-- Optional -->
boolean-expression
</transitionConditions>
</source>
</sources>

The syntax of the <target > element is also quite simple. We only have to specify the
link name. Optionally, we can specify a join condition. We will discuss join conditions
later. If no join condition is specified, the default join condition is the disjunction
(logical or) of all incoming link statuses for this activity. For the beginning, we will use
targets with the default join condition. We can specify one or more <target> elements
within the <target> element. The syntax is as shown next:

<targets>
<joinConditions <!-- Optional -->
boolean-expression

[179]

Advanced BPEL

</joinConditions>
<target linkName="name" />
</targets>

Example

Let's now consider the business travel example. There the process had to invoke
the Employee Travel Status web service first (synchronous invocation) to get the
employee travel class information. Then, it asynchronously invoked the American
and Delta Airlines' web services to get flight ticket information. Finally, the process
selected the best offer and sent the callback to the BPEL client.

In Chapter 2, we used a combination of <sequence> and <flows> activities
to control the execution order. These two activities allowed us to perform
basic synchronization, but they are not appropriate for expressing complex
synchronization scenarios. In such scenarios, we should use links.

To demonstrate how to use links, let's use the business travel example, but keep

in mind that the scenario of our example is simple enough to be expressed using a
combination of <flow> and <sequence> activities without the need for links. We will
use the example for simplicity reasons. In the real world, we use links only where the
scenario is so complex that it cannot be expressed using a combination of <flow> and
<sequence> activities.

We have modified the asynchronous travel example and gathered all activities
except the initial <receive> and the final <invoke> within a single <f1ow> activity.
We have also added the name attribute to each activity. Although this attribute is
optional, we have added it because it simplifies understanding which activities have
to be linked:

<process name="Travel"

>

<partnerLinks>

</partnerLinks>

<variables>

</variabless>
<sequences>
<!-- Receive the initial request for business travel from client
-->
<receive name="InitialRequestReceive"
partnerLink="client"
portType="trv:TravelApprovalPT"

[180]

Chapter 3

operation="TravelApproval"
variable="TravelRequest"
createInstance="yes" />

<flow>

<!-- Prepare the input for the Employee Travel Status Web
Service -->

<assign name="EmployeeInput"s>
<copy>
<from variable="TravelRequest" part="employee"/>
<to variable="EmployeeTravelStatusRequest"
part="employee"/>
</copy>
</assign>

<!-- Synchronously invoke the Employee Travel Status Web
Service -->

<invoke name="EmployeeTravelStatusSyncInv"
partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" />

<!-- Prepare the input for AA and DA -->
<assign name="AirlinesInput"s>
<copy>
<from variable="TravelRequest" part="flightData"/>
<to variable="FlightDetails" part="flightData"/>
</copy>
<copy>
<from variable="EmployeeTravelStatusResponse"
part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>
</copy>
</assign>

<!-- Async invoke of the AA web service and wait for the
callback -->

<invoke name="AmericanAirlinesAsyncInv"
partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"

[181]

Advanced BPEL

inputVariable="FlightDetails" />

<receive name="AmericanAirlinesCallback"
partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" />

<!-- Async invoke of the DA web service and wait for the
callback -->

<invoke name="DeltaAirlinesAsyncInv"
partnerLink="DeltaAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive name="DeltaAirlinesCallback"
partnerLink="DeltaAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseDA" />

<!-- Select the best offer and construct the TravelResponse-->
<if>
<condition>
SFlightResponseAA.confirmationData/aln:Price <=
$FlightResponseDA.confirmationData/aln:Price
</conditions>
<!-- Select American Airlines -->
<assigns>
<copy>
<from variable="FlightResponseAA" />
<to variable="TravelResponse" />
</copy>
</assign>

<else>
<!-- Select Delta Airlines -->
<assigns>
<copy>
<from variable="FlightResponseDA" />
<to variable="TravelResponse" />

[182]

Chapter 3

</copy>

</assign>

</otherwises>
</if>

</flow>

<!-- Make a callback to the client -->

<invoke name="ClientCallback"
partnerLink="client"
portType="trv:ClientCallbackPT"
operation="ClientCallback"
inputVariable="TravelResponse" />

</sequence>

</process>

Note that all activities gathered within <f1low> will start concurrently, which is not
what we want. We therefore use links to express dependencies. First, we identify the
dependencies:

The input for the Employee web service (EmployeeInput) has
to be prepared before the Employee web service can be invoked
(EmployeeTravelStatusSyncInv).

The invocation (EmployeeTravelStatusSyncInv) of the Employee web
service has to be finished before the input for both airlines' web services can
be prepared (AirlinesInput).

The input for both airlines' web services has to be prepared (AirlinesInput)
before the process can invoke the web services of both airlines
(AmericanAirlinesAsyncInv and DeltaAirlinesAsyncInv).

The invocation of the American Airlines web service
(AmericanAirlinesAsyncInv) has to be finished before the callback can be
received (AmericanAirlinesCallback).

The invocation of the Delta Airlines web service (DeltaAirlinesAsyncInv)
has to be finished before the callback can be received
(DeltaRirlinesCallback).

Both callbacks (from American and Delta Airlines:
AmericanAirlinesCallback and DeltaAirlinesCallback) have to be
received before the best offer can be selected (Bestofferselect).

[183]

Advanced BPEL

Let us now name the links. We will need the following eight links:

The link from the EmployeeInput to EmployeeTravelStatusSyncInv

The link from the EmployeeTravelStatusSyncInv to the AirlinesInput
preparation

Two links form the AirlinesInput preparation to
AmericanAirlinesAsyncInv and
DeltaAirlinesAsyncInv

The link from AmericanAirlinesAsyncInv to the receive callback
AmericanAirlinesCallback

The link from DeltaAirlinesAsyncInv to the receive callback
DeltaAirlinesCallback

The link from AmericanfAirlinesCallback to BestOfferSelect

The link from DeltaAirlinesCallback to BestOfferSelect

We have to define the links within the <flow> activity, as shown in the following
code excerpt:

<flow>

<links>

<link name="EmployeeInputToEmployeeTravelStatusSyncInv" />
<link name="EmployeeTravelStatusSyncInvToAirlinesInput" />
<link name="AirlinesInputToAmericanAirlinesAsyncInv" />
<link name="AirlinesInputToDeltaAirlinesAsyncInv" />

<link name="AmericanAirlinesAsyncInvToAmericanAirlinesCall
back" />

<link name="DeltaAirlinesAsyncInvToDeltaAirlinesCallback"/>
<link name="AmericanAirlinesCallbackToBestOfferSelect" />
<link name="DeltaAirlinesCallbackToBestOfferSelect" />

</links>

[184]

Chapter 3

The dependency of links and activities is shown in the following activity diagram:

CPrepare the input for the Employee web service>

EmployeelnputToEmplc‘)j),/eeTraveIStatusSynclnv

(Retrieve the employee travel status >

EmployeeTravelStatusSyncinvToAirlinesinput

(Prepare the input for both Airline web services >

+ AirlinesInputToDeltaAirlinesAsyncinv

(Acquire plane ticket offer from American Airlines> <Acquire plane ticket offer from Delta Airlines>

AmericanAirlinesAsynclinvioAmericanAirlinesCallback DeltaAirlinesAsyncinvioDeltaAirlinesCallback

(Wait for the Callback> (Wait for the Callback>
[|

AmericanAirlinesCalledbackToBestOfferSelect DeltaAirlinesCalledbackToBestOfferSelect

< Select the best offer >

Let us now add the <source> and <target> elements to the BPEL process activities:

<!-- Prepare the input for the Employee Travel Status Web
Service -->

<assign name="EmployeeInput">

<sources>

<source
linkName="EmployeeInputToEmployeeTravelStatusSyncInv" />
</sources>

<copy>
<from variable="TravelRequest" part="employee"/>
<to variable="EmployeeTravelStatusRequest"
part="employee"/>
</copy>
</assign>

[185]

Advanced BPEL

<!-- Synchronously invoke the Employee Travel Status Web
Service -->

<invoke name="EmployeeTravelStatusSyncInv"
partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponse" >

<targets>
<target
linkName="EmployeeInputToEmployeeTravelStatusSyncInv"
</targets>
<sources>
<source
linkName="EmployeeTravelStatusSyncInvToAirlinesInput"
</sources>

</invoke>

<!-- Prepare the input for AA and DA -->
<assign name="AirlinesInput"s>

<targets>
<target
linkName="EmployeeTravelStatusSyncInvToAirlinesInput"
</targets>
<sources>
<source
linkName="AirlinesInputToAmericanAirlinesAsyncInv"
<source linkName="AirlinesInputToDeltaAirlinesAsyncInv"
</sources>

<copy>
<from variable="TravelRequest" part="flightData"/>
<to variable="FlightDetails" part="flightData"/>
</copy>
<copy>
<from variable="EmployeeTravelStatusResponse"
part="travelClass"/>

<to variable="FlightDetails" part="travelClass"/>
</copy>
</assign>

/>

/>

/>

/>
/>

[186]

Chapter 3

<!-- Async invoke of the AA web service and wait for the
callback -->

<invoke name="AmericanAirlinesAsyncInv"
partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" >

<targets>
<target
linkName="AirlinesInputToAmericanAirlinesAsyncInv"
</targets>
<sources>
<source
linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback"
</sources>

</invoke>

<receive name="AmericanAirlinesCallback"
partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" >

<targets>

<target
linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback"
</targets>
<sources>
<source
linkName="AmericanAirlinesCallbackToBestOfferSelect" />
</sources>

</receive>

<!-- Async invoke of the DA web service and wait for the
callback -->

<invoke name="DeltaAirlinesAsyncInv"
partnerLink="DeltaAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" >

/>

/>

/>

[187]

Advanced BPEL

<targets>

<target linkName="AirlinesInputToDeltaAirlinesAsyncInv" />
</targets>
<sources>

<source
linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />
</sources>

</invoke>

<receive name="DeltaAirlinesCallback"
partnerLink="DeltaAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseDA" >

<targets>

<target
linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />

</targets>

<sources>
<source linkName="DeltaAirlinesCallbackToBestOfferSelect"
/>

</sources>
</receive>

<!-- Select the best offer and construct the TravelResponse-->
<if>

<targets>

<target
linkName="AmericanAirlinesCallbackToBestOfferSelect" />
<target linkName="DeltaAirlinesCallbackToBestOfferSelect"
/>

</targets>

<condition>
SFlightResponseAA.confirmationData/aln:Price <=
$FlightResponseDA.confirmationData/aln:Price
</conditions> <l-- Select American Airlines -->
<assigns>
<copy>
<from variable="FlightResponseAA" />
<to variable="TravelResponse" />

[188]

Chapter 3

</copy>
</assign>

<else>
<!-- Select Delta Airlines --»>
<assigns>
<copy>
<from variable="FlightResponseDA" />
<to variable="TravelResponse" />
</copy>
</assign>
</otherwises>
</if>

</flow>

With this we have defined synchronization dependencies between activities. Note
that according to the BPEL specification, every link within the <f1ows> activity must
have exactly one activity within the flow as its source and exactly one activity within
the flow as its target. This prevents us from using the same link as the source or
target of two activities.

Transition conditions

A <source> element specifies that a certain activity defines an outgoing link.
When BPEL processes are executed, outgoing links are evaluated after the
activity has finished. Each outgoing link can have a positive or negative status.
This status is important when the decision is made to start the linked activity
(denoted with <targets).

In our example, the AmericanAirlinesCallback <receives activity defines an
outgoing link AmericanAirlinesCallbackToBestOfferSelect. This link is the
incoming link of the BestOfferselect <if> activity. The BestOfferSelect <if>
activity has another incoming link, DeltaAirlinesCallbackToBestOf ferSelect,
which is the outgoing link of the DeltaAirlinesCallback <receives activity.

After the AmericanAirlinesCallback <receives activity has finished, the outgoing
AmericanAirlinesCallbackToBestOfferSelect link is evaluated. More precisely,
the <transitionCondition> expression of the outgoing link is evaluated. If the
<transitionConditions is evaluated to true, the link status is positive. Otherwise,
it is negative.

[189]

Advanced BPEL

We have already mentioned that the <source> element has an optional nested
element called <transitionConditions. We have also mentioned that if the element
is omitted, a default value of true is used. In our previous example, therefore, the
outgoing link status was always true.

Let's now modify the example and explicitly add the transition condition. The
outgoing link will be positive only if the flight ticket is approved. This is signaled
using the Approved element of the FlightConfirmationType complex type, which
is the confirmationData part of the TravelResponseMessage message, used for the
FlightResponseAA and FlightResponseDA variables (see the previous chapter for
corresponding WSDL definitions).

We will extract the Approved element from the confirmationData part of the
message stored in the F1ightResponseAA variable. The code is shown as follows:

<!-- Receive the callback -->

<receive name="AmericanAirlinesCallback"
partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponseAA" >

<targets>
<target
linkName="AmericanAirlinesAsyncInvToAmericanAirlinesCallback" />
</targets>
<sources>
<source
linkName="AmericanAirlinesCallbackToBestOfferSelect">
<transitionCondition>
$FlightResponseAA.confirmationData/aln:Approved="true’
</transitionCondition>
</source>
</sources>

</receives>

We will do the same for the DeltarirlinesCallback <receives activity:

<!-- Receive the callback -->

<receive name="DeltaAirlinesCallback"
partnerLink="DeltaAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"

[190]

Chapter 3

variable="FlightResponseDA" >

<targets>
<target
linkName="DeltaAirlinesAsyncInvToDeltaAirlinesCallback" />
</targets>
<sources>
<source
linkName="DeltaAirlinesCallbackToBestOfferSelect">
<transitionCondition>
$FlightResponseDA.confirmationData/aln:Approved="'true’
</transitionCondition>
</source>
</sources>
</receive>

Both outgoing links are now evaluated using the transition conditions and statuses
can be determined.

Join conditions and link status

The AmericanAirlinesCallbackToBestOfferSelect and the
DeltaAirlinesCallbackToBestOfferSelect are the incoming links for the
BestOfferSelect <if> activity. In order to start the BestOfferSelect activity:

e The status of both incoming links has to be determined. As we already know,
the status is determined using the <transitionConditions expression.

¢ Thejoin condition for the Bestof ferselect activity has to be evaluated.

The join condition is specified using the standard element called <joinConditions.
This element may be specified for each activity that is the target of a link (has at least
one incoming link). If no <joinCondition> is specified, the default (for the default
expression language XPath 1.0) is the logical disjunction (logical or) of the link status
of all incoming links of this activity. In other words, if the <joinConditions is not
explicitly defined, all incoming link statuses are evaluated and the status of at least
one incoming link has to be positive. The consequence of evaluating all incoming
link statuses is the synchronization of all incoming activities.

In our example, the default (implicit) join condition for the

BestOfferSelect is, therefore, a disjunction of both incoming link

statuses, the AmericanAirlinesCallbackToBestOfferSelect and the
DeltaAirlinesCallbackToBestOfferSelect. The join condition will be evaluated
to true if at least one of the airlines has approved the flight tickets. Please notice that
the incoming link statuses of both links will be evaluated prior to the decision.

[191]

Advanced BPEL

Sometimes, the default disjunction will not fit our needs and we will want to define
our own join condition. To do this we will use the <joinCondition> element.

We have to specify this element for the target link activity as the first element
under <targets>. In our example, we would define the <joinConditions for the
BestOfferSelect <if> activity.

For the <joinCondition>, we can specify any valid Boolean expression using the
selected expression language (the default is XPath 1.0). Often, we will also want to
check the status of the incoming links. We can access the link statuses in a similar
way as variables ($1ink). The link status returns true if the status of the link is
positive and false if the status of the link is negative. In <joinCondition>, we can
only access the status of links that target the join condition's enclosing activity. We
cannot access any other variable.

Suppose that instead of the disjunction of link statuses, we would rather use a
conjunction. Then, we would define the following joinCondition:

<!-- Select the best offer and construct the TravelResponse
-->
<ifs>

<targets>
<joinCondition>
$AmericanAirlinesCallbackToBestOfferSelect and
$DeltaAirlinesCallbackToBestOfferSelect
</joinCondition>
<target
linkName="AmericanAirlinesCallbackToBestOfferSelect" />
<target linkName="DeltaAirlinesCallbackToBestOfferSelect"/>
</targets>

<condition>
$SFlightResponseAA.confirmationData/aln:Price <=
$SFlightResponseDA.confirmationData/aln:Price
</conditions> <!-- Select American Airlines -->

Join failures

Join conditions are evaluated before the activity is started. In our
example, the join condition would be evaluated to true only if both

link statuses (AmericanAirlinesCallbackToBestOfferSelect and
DeltaAirlinesCallbackToBestOfferSelect) are positive. Positive join
condition is required for starting the activity.

[192]

Chapter 3

If a join condition evaluates to false, a standard bpel:joinFailure faultis
thrown. A bpel:joinFailure can be thrown even if a join condition is not explicitly
specified. In our previous example (before explicitly specifying the join condition),
the default join condition would be used and would be evaluated to false if both
link statuses were negative. This would be the case if neither American nor Delta
Airlines would approve the flight ticket.

Suppressing join failures

Sometimes, it would be more useful if instead of throwing a bpel:joinFailure
fault the activity would simply not be performed without any fault thrown. BPEL
provides an attribute through which we can express this behavior. The attribute is
called suppressJoinFailure and is a standard attribute that can be associated with
each activity (basic or structured). The value of the attribute can be either yes or no.
The default is no.

In our example, we could suppress join failure for selecting the best offer <if>
activity as shown below:

<!-- Select the best offer and construct the TravelResponse
-->

<if suppressJoinFailure="yes" >

<targets>
<joinCondition>
$AmericanAirlinesCallbackToBestOfferSelect and
$DeltaAirlinesCallbackToBestOfferSelect
</joinCondition>
<target
linkName="AmericanAirlinesCallbackToBestOfferSelect" />
<target
linkName="DeltaAirlinesCallbackToBestOfferSelect" />

</targets>

<condition>
$SFlightResponseAA.confirmationData/aln:Price <=
$SFlightResponseDA.confirmationData/aln:Price
</conditions> <!-- Select American Airlines -->

Please notice that in the above example the suppressJoinFailure="yes" is an
attribute of the <if> activity, not the actual condition. The condition is defined
within the <condition> expression.

[193]

Advanced BPEL

This means that if even one link status is negative, the activity will not be performed
and no fault will be thrown —in other words, the activity would be silently skipped.
Skipping the activity is equivalent to catching the fault locally with an <empty>

fault handler.

The consequence of skipping an activity is that outgoing links become negative. This
way, the next activity figures out that the previous activity has been skipped. In our
example, the activity to select the best offer does not have outgoing links.

The default value of the suppressJoinFailure attribute is no. This is because in
simple scenarios without complex graphs, such behavior is preferred. In simple
scenarios, links without transition conditions are often used. Here the developers
often do not think about join conditions. Suppressing join failures would lead to
unexpected behavior where activities would be skipped.

In complex scenarios with networks of links, the suppression of join failures can

be desirable. If such behavior is desirable for the whole BPEL process, we can set

the suppressJdoinFailure attribute to yes in the first process element (often a
<sequences>). Skipping activities with join conditions evaluated to false and setting
the outgoing link statuses to negative is called dead-path-elimination. The reason

is that in complex networks of links with transition conditions, such behavior results
in propagating the negative link status along entire paths until a join condition is
reached that evaluates to true.

With this, we have concluded our discussion on concurrent activities, links, and
transition conditions. In the next section, we discuss dynamic partner links.

Dynamic partner links

So far we have discussed BPEL processes where all partner links have been defined
at the design time and related to actual web services. We have used a single partner
link for each web service we have communicated with.

In an advanced BPEL process, we might want to define the partner link endpoint
references at runtime. This means that the BPEL process will dynamically

determine which actual web service it will use for a certain invocation, based on

the variable content. This is particularly useful in scenarios where the BPEL process
communicates with several web services that have the same WSDL interface. This
has been the case for our travel process example where American and Delta Airlines'
web services shared the same interface.

[194]

Chapter 3

To understand how we can define partner link endpoint references dynamically

at run time, let us look at how endpoint references are represented in BPEL. BPEL
uses endpoint references as defined by the WS-Addressing. For each BPEL process
instance and for each partner role in a partner link, a unique endpoint reference is
assigned. We already know that this assignment can take place at deployment or

at runtime. To make such an assignment at runtime, we use the <assign> activity.
There are several ways in which we can use this. We can copy from one partner link
to another using the following syntax:

<assign>
<copy>

<from partnerLink="name"
endpointReference="myRole |partnerRole"/>
<to partnerLink="name"/>

</copy>
</assign>

In the <from> activity, we have to specify the endpoint role myRole or partnerRole,
while in the <to> activity, we always copy to the partnerRole. We can also copy a
partner link to a variable:

<assigns>
<copy>

<from partnerLink="name"
endpointReference="myRole |partnerRole"/>
<to variable="varName"/>

</copy>
</assign>

The most interesting, however, is to copy a variable, expression, or XML literal

to a partner link. This way, we can store the partner link endpoint reference in a
variable and copy it to the partner link at runtime, thus selecting the service, which
will be invoked dynamically. The syntax for copying a variable to partner link is
shown next:

<assign>
<copy>

<from variable="varName"/>
<to partnerLink="name"/>

</copy>
</assign>

[195]

Advanced BPEL

The partner link endpoint reference in BPEL is represented as service reference
container <sref : service-ref>. This container is used as an envelope to wrap the
actual endpoint reference value.

For the actual endpoint reference, the WS-Addressing wsa : EndpointReference
XML element is used. The wsa namespace URL is http://schemas.xmlsoap.
org/ws/2004/08/addressing.Thewsa:EndpointReferenceekﬂnentﬂ(ﬁtype
wsa:EndpointReferenceType and has the following structure:

<EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2004/08/
addressing" >

<Address>ServiceURL</Address>

<ReferencePropertiess>..</ReferenceProperties> <!-- optional -->
<ReferenceParameterss>..</ReferenceParameterss> <!-- optional -->
<PortType>PortTypeName</PortType> <!-- optional -->
<ServiceName PortName="..">ServiceName</ServiceName> <!-- optional -->

</EndpointReference>

We can see that the endpoint reference <Addresss is the only required element. The
<Address> should include a valid URL of the partner link service.

To dynamically assign an endpoint reference to a partner link, we have to declare

a variable of element type <sref :service-ref> and copy it to the partner link.
Alternatively, we can hardcode the address into the BPEL process and copy the XML
literal to the partner link. This is shown in the following example. It is assumed that
a service is available on the specified URL:

<assign>
<copy>

<from>
<literals>
<sref:service-ref
xmlns:sref="http://docs.ocasis-
open.org/wsbpel/2.0/serviceref">
<EndpointReference
xmlns="http://schemas.xmlsoap.org/ws/2004/08/addressing" >
<Address>
http://www.soa.si/default/AmericanAirline
</Address>
</EndpointReferences>
</sref:service-ref>
</literals>

[196]

Chapter 3

</from>
<to partnerLink="Airline"/>

</copy>
</assign>

With this, we have concluded the discussion on dynamic partner links. Please refer
to Chapter 4 for a working demo.

Message exchanges

In scenarios where operations are invoked using the request/response pattern, we
always have a situation where an inbound message activity has to be related with
a reply activity. The inbound message activity can be a <receives, <onMessage>,
or <onEvent>. The reply activity is always a <reply>. In most cases, the BPEL
engine will figure out itself which reply activity relates to which inbound message
activity. However, if there can be more than one pair of inbound message activities
(<receives, <onMessage>, Or <onEvent>) and <reply>, we have to explicitly mark
the pairing relationship. We do this using message exchanges.

To use message exchanges, we first have to declare them. We declare message
exchanges immediately after partner links. We can declare message exchanges for
the process or for each individual scope:

<messageExchanges>
<messageExchange name="name" />
<messageExchange name="name" />

</messageExchanges>

To explicitly specify the pairing, we use the messageExchange attribute on the
following activities:

e <receives, <onMessages, Or <onEvent >for inbound messages

e <reply> for outbound messages

For example, let's suppose we would like to explicitly denote a message exchange
called TravelExchange. First, we have to declare it:

<messageExchanges>
<messageExchange name="TravelExchange" />
</messageExchanges>

[197]

Advanced BPEL

Next, we have to add the messageExchange attribute to the corresponding inbound
and outbound activities. In our case, we use <receives and <replys:

<receive partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelRequest"
messageExchange="TravelExchange" />

<reply partnerLink="client"
portType="trv:TravelApprovalPT"
operation="TravelApproval"
variable="TravelResponse"
messageExchange="TravelExchange" />

From-parts and to-parts

In BPEL, activities such as <invokes, <receives, <reply>, and so on, deal with
messages. An <invoke> activity will send a message to the service that is being
invoked and will also receive a message from that service as a response (if we use
request/response operation). A <receives> operation will wait for an incoming
message. A <replys> activity will send a response message. Usually these messages
are stored in BPEL variables. For example, for an <invoke> activity, we can specify
the inputvariable and outputvVariable attributes.

BPEL, however, provides an alternative. Instead of using variables, we can deal
with WSDL messages directly and specify how to store and extract them from BPEL
variables. This alternative approach is particularly useful if the messages have
multiple parts (please refer to Chapter 2 or the WSDL specification for discussion on
message parts). If we use the inputvariable and outputVariable attributes, then
the whole message is stored into a single variable. With the alternative approach,
we can store and extract each message part separately. This gives us additional
flexibility, as we can store different parts to different variables or only store some
parts of the message.

To specify how message parts should be stored and extracted, we use
the <fromParts> and <toParts> activities.

[198]

Chapter 3

<fromParts>

The <fromParts> activity is used to specify how to store the different message parts
to BPEL variables. We can specify <frompPartss> in the following BPEL activities that
receive messages:

® <receive>
e <onMessage> (within <picks>)
e <onEvent> (within <eventHandlers>)

e <invokes> (for receiving the response in request/response operations)

The syntax is equal for all mentioned activities. The <frompParts> is always nested
within one of the mentioned BPEL activities. We have to specify the message part
name (part) and the BPEL variable name to which the message part will be stored.
We can specify as many parts as we like, as shown next:

<fromParts>
<fromPart part="name" toVariable="BPELVariableName" />
<fromPart part="name" toVariable="BPELVariableName" />

</fromParts>

If we specify parts, we must not specify the variable attributes (such as
inputvariable and outputVariable).

For example, if we would like to use the <fromparts> within a <receives activity,
we could use it like this:

<receive partnerLink="AmericanAirlines"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback" >
<correlationss>
<correlation set="TicketOrder"
initiate="yes" />
</correlations>

<fromParts
<fromPart part="confirmationData"
toVariable="TravelResponse" />
</fromParts>

</receive>

[199]

Advanced BPEL

<toParts>

The <toParts> serves a very similar purpose as <fromParts>, except that it specifies
which BPEL variables will map to which message part. The <topartss> activity is
used to specify the mapping of outbound messages. We can specify <toParts> in the
following BPEL activities:

e <reply>

® <invoke>

The syntax is shown as follows:

<toParts>
<toPart part="name" fromVariable="BPELVariableName" />
<toPart part="name" fromVariable="BPELVariableName" />

</toParts>

If we specify parts, we must not specify the variable attributes (such as
inputvVariable and outputVariable).

For example, if we would like to use the <toParts> within an <invoke> activity, we
could use it as shown below:

<invoke partnerLink="AmericanAirlines"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" >

<toParts>
<toPart part="flightData"
fromVariable="FlightDataDetails" />
<toPart part="travelClass"
fromVariable="FlightTravelClass" />
</toParts>

</invokes>

In the next section, we discuss abstract business processes.

[200]

Chapter 3

Abstract business processes

Although the BPEL name suggests that this is a language for specifying executable
business processes, BPEL supports both executable business processes and abstract
business processes. Abstract business processes are partially specified processes
that are not intended to be executed. As abstract processes are not executable, the
question is: What are they useful for? There are several use cases where abstract
business processes can be useful. The BPEL specification defines two such cases:

e Abstract processes can be used as templates, which hide execution details
and have extension points for adding behavior

e Abstract processes can be used to describe the externally observable
service behavior

There can be other use cases for abstract processes.

The most common scenario is to use abstract processes as a template to define
executable processes. Abstract processes can be used to replace sets of rules

usually expressed in natural language, which is often ambiguous. This reduces
misunderstandings and errors. An abstract process can define the process flow, but
will not include all the execution details such as service endpoint details, variable
manipulation, and so on. Such details can be added later when the abstract process is
used as a template for developing an executable process.

The second possibility for using abstract processes is for describing the externally
observable service behavior. This is useful for describing public process behavior
without the exact details of how the process executes. Such abstract business
processes specify public message exchange between parties only. An abstract
business process should provide a complete description of external behavior
relevant to a partner or several partners it interacts with.

The description of the externally observable behavior of a business process may be
related to a single service or a set of services. It might also describe the behavior of

a participant in a business process. In the latter case, the abstract processes of all
partners must be coupled together, usually using a separate global protocol structure
description. We can describe the externally observable behavior of a service even
though we do not know exactly in which business process it will take part. In this
scenario, we will use partner links with myRole attributes only. With such an
abstract process, we can provide a service behavioral description that does not

place any requirements on the partners except that they respect the behavior of

the web service.

[201]

Advanced BPEL

Second, we can use an abstract process to define collaboration protocols among
multiple parties and precisely describe the external behavior of each party. Such
abstract processes will usually be defined by large enterprises to define protocols for
their partners, or by vertical standards organizations such as RosettaNet, to define
business protocols for their domains.

Abstract processes are defined in the http://docs.oasis-open.org/wsbpel/2.0/
process/abstract namespace. They must specify the abstractProcessProfile
attribute of the <process> tag. This attribute denotes which profile is used. We have
mentioned two profiles:

e Abstract process profile for templates, identified as http://docs.oasis-
open.org/wsbpel/2.0/process/abstract/simple-template/2006/08

e Abstract process profile for observable behavior, identified as http://docs.
oasis-open.org/wsbpel/2.0/process/abstract/apll/2006/08

Although abstract processes are not executable, they can use all the constructs from
the executable processes, which we have described in this and the previous chapter.
For the activities, we use opaque expressions and omit some syntactic details. For
example, when defining a partner link, we do not have to specify all the attributes:

<partnerLinks>
<partnerLink name="EmployeeTravelStatus"
partnerLinkType="##opaque"
myRole="##opaque"
partnerRole="##opaque" >
</partnerLink>
</partnerLinks>

We can also use opaque attributes with variable declarations, for example:

<variabless>
<variable name="TravelStatus" element="##opaque" />

</variabless>

The same holds true for other activities, such as <invokes, <receives, <replys>, and
so on. An example of <invoke> is listed as follows:

<invoke partnerLink="EmployeeTravelStatus"
operation="##opaque"
inputVariable="##opaque"/>

Abstract processes may omit the createInstance attribute of the initial <receives>
or <picks> activity, which is mandatory for executable processes.

[202]

Chapter 3

Although abstract processes look useful, at the time of writing this book they
have not been widely used and tools did not provide any substantial support
for abstract processes. It seems that in the majority of cases, BPEL is to be used
for executable processes.

Generating BPEL from BPMN diagrams

Throughout the chapter we have seen that BPEL is a high-level language for specifying
business processes. BPEL is an executable language but not a modeling language. If
you try to model processes in BPEL, this will likely not be successful, as BPEL requires
many details, such as variable assignments, endpoints, and so on. All these details are
usually not necessary when we model business processes.

In the past, several notations have been used to model processes. Flow diagrams

and block diagrams have been representatives of the first generation notations. Then,
more sophisticated notations have been defined, such as EPC (Event Process Chain)
and eEPC (Extended Event Process Chain). UML activity diagrams have also been
used. A few years ago a new notation, called Business Process Modeling Notation
(BPMN) has been developed. Business Process Modeling Notation is the most
comprehensive notation for process modeling so far. It has been developed

under the hood of OMG (Object Management Group).

BPMN has been developed with BPEL and SOA in mind. The most important
information in our context is the ability to generate BPEL from BPMN models
automatically. This is extremely important, as it enables full-lifecycle support for
business processes. Automatic generation of BPEL out of BPMN and round-tripping
between BPMN and BPEL enables that business process models and their executable
representation stay in sync. This approach also reduces the workload, as it does not
require to develop BPELs from scratch.

Today, several SOA platforms provide support for automatic generation of BPEL
from BPMN. Later in this book, we will show how BPEL can be generated out of
BPMN using Oracle BPA Suite. Be aware, however, that we have to follow certain
rules when designing BPMN models in order to be able to automatically translate
them to BPEL. For more information, please refer to the book "Business Process Driven
SOA using BPMN and BPEL", August 2008, ISBN 1847191460, Packt Publishing.

[203]

Advanced BPEL

Summary

We have seen that BPEL is an efficient language for describing business

processes. It provides support for the complexities of real-world business process
implementations but is still relatively easy to learn and use. In this chapter, we

have become familiar with the advanced concepts of BPEL, such as loops, process
termination, delays, and deadline and duration expressions. We have addressed fault
handling, which is a very important aspect of each business process. Particularly

in BPEL processes, which use loosely coupled web services for partner operations,
faults can occur quite often. We have discussed scopes, which enable us to break the
process into several parts. Each part or scope can have its own variables, correlation
sets, fault handlers, compensation handlers, and event handlers. In addition, scopes
can provide concurrency control through isolation.

Another very important aspect of business processes is compensation. In business
processes, consistency has to be preserved even if a process is abandoned. As
business processes are often long running and span several partners, the usage

of ACID transactions is not reasonable. BPEL therefore supports the concept

of compensation. The goal of compensation is to reverse the effects of previous
activities that have been carried out as part of a business process that is being
abandoned. We have become familiar with compensation handlers and how to
invoke them. Next, we have discussed events and have seen that a business process
has to react on message events, which happen when an operation is invoked on
the process, and on alarm events, which can occur at a specific time or after
certain duration.

We have also addressed complex business processes with many concurrent activities
and have seen that BPEL provides links, which enable concurrency control and
synchronization using source and target links. Then we have discussed transition
and join conditions, and link statuses. We have seen why and when join failures are
thrown and how to eliminate dead paths using join failure suppression.

We have discussed the business process lifecycle and process instances and have
focused on correlation of messages, another important aspect of BPEL processes.
Correlation uses correlation sets to associate messages with business process
instances, and is related to message properties. Message properties have global
significance in business processes and are mapped to multiple messages. We have
become familiar with dynamic partner links. Finally, we have discussed abstract
business processes and mentioned the BPMN to BPEL round-tripping. With this
we have covered all the advanced aspects of BPEL.

[204]

Using BPEL with Oracle
SOA Suite 11g

In this chapter, we will get familiar with developing and executing BPEL processes
in the Oracle SOA Suite 11g, which is currently one of the most powerful BPEL
environments with good support for deployment, execution, and management

of business processes defined in BPEL. We will get familiar with all stages of the
BPEL process lifecycle. We will look at the BPEL Component Designer, which is a
JDeveloper plug-in that represents a rich graphical development environment for
implementing and testing BPEL processes and deploying the SOA composites, and
thus eases the development and maintenance of BPEL processes considerably. We
will also show how to deploy composite applications using the command-line utility
and how to manage and test deployed composites using Oracle Enterprise Manager
Console. We use version 11g PatchSet 2 (11.1.1.3.0) of the SOA Suite products in this
book.

Oracle SOA Suite 11g PS2 supports BPEL 2.0. However, BPEL 2.0 is only
. supported at runtime and not in JDeveloper. BPEL 2.0 support in Oracle
% SOA Suite 11g PS2 is not yet production ready, so by default, BPEL
L version 1.1 is used. However, we can write BPEL 2.0 code in text mode
(graphical mode is currently not supported). Therefore, for the examples
in this chapter, we will use BPEL 1.1 and BPEL 2.0.

In this chapter, we will discuss the following;:

e Overview and architecture of the BPEL design-time and runtime environment
e Building composite applications with SOA Composite Editor
e Development of processes with BPEL Component Designer

e Process deployment within SOA composites

Using BPEL with Oracle SOA Suite 11

¢ Management and debugging of processes with the use of Enterprise
Manager Console
¢ Development and deployment of BPEL 2.0 processes

Overview

The Oracle SOA Suite 11g PS 2 (11.1.1.3.0) fully supports BPEL versions 1.1 and 2.0;
however, version 2.0 is only supported at runtime and is not yet production ready.
At the time of writing this book, we cannot use graphical editor for the development
of BPEL 2.0 processes. In addition to standard BPEL support, Oracle also provides
extensions to BPEL in the form of new activities (such as FlowN) and XPath
functions. Oracle extensions are described in detail in Chapters 5 and 6. As Oracle
SOA Suite 11g follows the SCA-compliant approach for building SOA composite
applications, BPEL processes can be implemented and deployed only as part of a
composite application. Every BPEL process is therefore a service component inside
an SOA composite application.

We will look at the four major parts:

e BPEL Component Designer
e BPEL Service Engine
e Database

¢ Enterprise Manager Console

BPEL Component Designer

BPEL Component Designer enables the development of BPEL processes in
a graphical environment without having to write BPEL code by hand. BPEL
Component Designer supports three different views:

1. BPEL view: We can implement a BPEL process (graphical or text mode)
using this view.

2. Monitor view: This enables us to define monitoring objects, sensors, and
sensor actions, which are used to collect KPI (Key Performance Indicators)
about business activity execution, so that we can show this data on the BAM
(Business Activity Monitoring) dashboard.

3. BPA view: This is used to open BPEL blueprints that were automatically
generated from BPMN models, using Oracle BPA (Business Process
Analysis) Suite.

[206]

Chapter 4

Instead of writing code, we drag and drop activities into the process. We can add
partner links and locate services. We can also use function and copy wizards, XPath
expression builder, and XSLT mapper. By using JDeveloper, we can easily deploy the
developed processes as composites. This eases the development and maintenance of
BPEL processes considerably. BPEL Component Designer internally uses BPEL as its
native format. BPEL Component Designer is available as part of the SOA Composite
Editor plug-in for JDeveloper. We will discuss SOA Composite Editor and BPEL
Component Designer later in this chapter.

BPEL Service Engine

The BPEL Service Engine is the runtime environment where the BPEL processes are
deployed and executed. In Oracle SOA Suite 11g, the BPEL Service Engine is part of
the Service Infrastructure, such as the new BPMN 2.0 Service Engine. In fact, both
engines share a common process core, which provides common engine functionality.
Some of the key functionalities performed by the process core include the following;:

e Manage security

e Generate audit trails
e Invoke services

e Manage persistence

In addition to full BPEL 1.1 and BPEL 2.0 support, Oracle SOA Suite 11g also
provides support for version control. This enables development of several
versions of composites that can be deployed side by side. This feature is
important in real-world scenarios because business processes evolve over time.
Having an effective versioning support simplifies the management.

Another very important feature is dehydration. In previous chapters, we have
explained that business processes can be long-running because the involved partners
might not be able to react instantly to the requests. This happens particularly in
asynchronous scenarios where a business process invokes a partner web service
(using the <invokes activity) and then waits for the response (using the <receives
or <pick> activities or <onMessage> within event handlers). While waiting for the
response, the Oracle engine can store the process (and its state) in the database, thus
freeing up server resources. This is called dehydration. When the engine receives
the response, it first restores the process with its state from the database (hydration)
and then continues with the execution of the process. In real-world scenarios, where
many business processes might be running side by side, the dehydration capability
is important, as it reduces the demands on hardware performance.

[207]

Using BPEL with Oracle SOA Suite 11

Oracle SOA Suite 11g also provides support for clustering. Clustering increases
server reliability because fail-over can be configured on the engine. Clustering
also improves scalability with load balancing. These features are very important
in real-world usage of the product and are provided by the fabric, except the
message recovery, which is BPEL process core specific.

Database

The database is used for storing messages and the state of process instances
(dehydration). Oracle SOA Suite 11¢ provides support for different databases.
Usually, Oracle Database or other production-quality DBMS systems such as IBM
DB2 or Microsoft SQL Server are used.

Enterprise Manager Console (EM)

Unlike in Oracle SOA Suite 10g, where BPEL Process Manager had its own console
(Oracle BPEL Console), Oracle SOA Suite 11¢g provides a unified web-based
management console for managing and monitoring SOA infrastructure and all
deployed services and composite applications — the Oracle Enterprise Manager
Fusion Middleware Control Console (shorter form is Enterprise Manager Console,
or EM Console).

The most important features of the EM console are as follows:

¢ Managing the SOA infrastructure and the service engines
¢ Deploying and un-deploying composite applications

o Testing of deployed services and composites

¢ [End-to-end instance tracking

e Visual process flows

e Audit trails

e Debugging views of composites

e Performance tuning

e Error hospital

e Unit tests

e Attaching and detaching of policies (security, logging, and so on)

[208]

Chapter 4

As a composite application can contain several BPEL processes (and/or other service
components), it is very convenient to be able to deploy, test, debug, and manage the
composite application as one unit, without the need to open multiple web-based
consoles. We will show the practical use of EM Console later in this chapter.

Building composite applications with
SOA Composite Editor

SOA Composite Editor is a JDeveloper plug-in that follows the SCA standard as

a way to assemble services, service components, and references into a single SOA
composite application (composite). The details of a composite are stored in the
composite.xml file. However, we do not need to edit that file by hand; instead, we
can use the visual SOA Composite Editor, which allows us to simply drag-and-drop
service components and binding components from the Component Palette to the
composite diagram. Following is the screenshot of an SOA composite application,
opened in the SOA Composite Editor. The composite shown is implemented by a
single BPEL process service component, which uses three external Web Services
(references). The composite defines one service (Web Service binding component),
through which other applications can invoke the composite.

@ Oracle Developer 11g Release 1 - TravelApproval.jws : Travelfpproval.jpr

eveloperymywork' TravelApproval'\ TravelApproval'.composite.xm|

=-off TravelApproval
[BPEL Pracesses
Services

FReferences

File Edit Yiew Application Refactor Search Navigate Build Run ioning Tools Window Help
Bo@g@ 9 xER Q00 & AR da- > -5 B8R (d0-
(Eappiication . 1© |1& () of3composite.xmi (=) @ componert Pakette | (). 0
S Traveligprovel Bl sy imRE | BHoF D Composte ED -]
Projects TS P Py
mericanirings Exposed Services Components External References S .
elradiings ervice Camoanents
s BPEL Process
mployeeTravelStatus
&-{T] Travelapproval @ Business Ruie
=-{7 508 Cantent & Human Task
[dlasses % Mediatar
& = %, Spring Context
E’ =% ~ Service Adapters ————————————
mployeeTray.. ADF-BC Service
Operations: o
(@] airine wsdl EmployesTravel, i AQ Adspter
off§ composite, xml 1 628
-[@] EmployeeTravelstatusL.wsdl 45 BaM Adapter
) = {7 Database Adapter
g1 A’ } A’r"‘ > % Direct Binding
§ ’ mericanAirfin. ..
{&n Travelapproval.component Type: gr'i\a) . @ Tm. m... £3 £ service
i Travelapproval.wsdl TravelApproval. 1App! Operations: s
[@] Travelapprovalkef.wsd pproval.. FiightAvailabity 2 File Adapter
Opecafions MakeReservator {53 FTP adapter
TravelApproval FiightTicketCallb -
MakeReservatio [[@ HTTP Binding
4fE M5 adapter
Application Resaurces = g Dl
: iaper
Data Controls @7 o ‘ B ‘
Recently Opened Files @ & & Oracle Applications
DeltaAirlines i socket Adapter
= . @
= composite, x| - Structure =] Operations: \é Third Party Adapter
FiightAvailability 5 Web Service
o, F MakeReservaton
FiightTicketCallb,
MakeReservatio

(@ property Inspector

HAF /(a0 21

8

[Test Suites

Design | Source | History

[EMessages-log [FDocumentation

Source | Design

Dacumentation not available

[209]

Using BPEL with Oracle SOA Suite 11

We can see that a composite application consists of three vertical swimlanes:
Exposed Services, Components, and External References. The Components

lane represents the implementation of the composite and can contain only service
components. Service components are the main building blocks of composite
applications and can be implemented using heterogeneous technologies. We can add
service components by simply dragging them from the Component Palette. The left
lane (Exposed Services) represents the entry point to the composite for the outside
world. Each composite can define one or more services, which specify how the
composite can be invoked. Each composite application can also use external services
(references). These appear in the External References lane. Both service binding
components and reference binding components can be dragged-and-dropped from
the Component Palette (from the Service Adapters list) to the composite diagram.

There are two approaches when building an SOA composite application. They are
listed as follows:

e Top-Down: We first create a contract (WSDL interface), which is used to
define how the SOA composite will be exposed to the outside world, and
then add service components and implement the composite. This approach
is usually called the contract-driven approach. We will demonstrate this
approach later in this chapter.

e Bottom-Up: Sometimes, we first want to implement service components and
then create appropriate services on an as-needed basis. If we do not define a
custom interface when adding a new service component, the service binding
component with an auto-generated interface is added automatically by Oracle
JDeveloper. This approach works well when IT must react to a change.

Service components
Oracle SOA Suite 11g PS 2 supports the following types of service components:

e BPEL Process enables us to orchestrate web services into business processes.

e BPMN Process provides full support for modeling and implementation of
BPMN 2.0 business processes.

e Business Rules enable us to externalize business decisions from the
application code.

¢ Human Task enables human interaction inside business processes.

e Mediator is used for routing of events and messages between service
components. It can also be used for transformation between different types
of messages.

e Spring Context enables us to use Java code inside a composite.

[210]

Chapter 4

Service infrastructure provides a corresponding service engine for each type of
service component; therefore, all service engines can interact in a single composite.

Binding components

Binding components specify how communication between SOA composite
applications and the external world should be done. There are two types of binding
components:

e Services: They describe how the composite will be available to the service
consumers (clients). Services define the interface of the composite (provided
functionality) and technical information about protocols (SOAP/HTTP, JCA
adapter, and so on). A composite can have one or more services.

e References: These are external services that provide functionality which
is used to implement SOA composite application.

Binding components provided by Oracle SOA Suite 11g PS 2 are detailed in the
following table:

Binding component Description

Web Service Exposes the SOA composite as a Web Service available
through SOAP. When used as a reference, it enables us to
invoke external SOAP Web Services.

HTTP Binding Enables us to expose the SOA composite or invoke an
external service through HTTP POST and GET operations.
JCA Adapters Through the use of JCA Adapters, we are able to connect

services and references with different technologies and
applications. JCA Adapters include Database Adapter, File
Adapter, FTP Adapter, JMS Adapter, AQ Adapter, MQ
Adapter, and Socket Adapter.

B2B Service Enables secure and reliable exchange of messages between
SOA composite applications and organization trading
partners by connecting to Oracle B2B.

ADF-BC Service Enables us to connect to Oracle Application Development
Framework (ADF) Business Components services by using
Service Data Objects (SDO) for message exchange.

Oracle Applications Oracle Application Adapter enables us to communicate
with Oracle Applications.

[211]

Using BPEL with Oracle SOA Suite 11

Binding component Description

BAM Adapter Enables composite application to directly send data about
business events to the BAM server.

EJB Service Enables us to integrate E]Bs (Enterprise JavaBeans) with
SOA composite applications. Integration can be achieved
through the use of Service Data Objects (SDO) parameters
or java interfaces. Integration of Enterprise JavaBeans with
Oracle SOA Suite through java interfaces eliminates the
need for WSDL file definitions.

Direct Binding Enables an SOA composite application to be invoked and

Service exchange messages over Remote Method Invocation
(RMI). When used as a reference, we have to select a
reference target. Possible values are Oracle SOA Composite
(direct binding with another SOA composite) and Oracle
Service Bus (direct binding with Oracle Service Bus).

Wires

Wires are part of the SCA standard and are used to define message communication
between service components and binding components. When wiring components,
we have to be familiar with the following rules and restrictions:

e We can wire two components by dragging a wire from the reference
handle arrow icon of the first component (it appears on the right side) to
the service handle icon of the second component (it appears on the left
side), or vice versa. However, this can be done only if the reference and
the service of both components match. The match implies the same interface
and callback interface.

e We can connect service binding components to service components, services
components to other service components, and service components to
reference binding components.

e A specific service component can be wired with one or more binding
components; however, there are some exceptions. For example, a mediator
can only have one inbound service. We also cannot connect a business rule
to an external service, as business rules do not support references.

e We cannot wire components with different interfaces. If two components
have different interfaces, we have to use a mediator service component to
perform a transformation between the interfaces.

e When a reference is added to the BPEL service component, the corresponding
partner link is automatically created.

[212]

Chapter 4

If we delete a service component or binding component, all associated wires
are also deleted, and related service components update their metadata. For
example, if we delete a reference connected to a BPEL service component,
the BPEL partner link is also deleted.

If we delete a wire, the component's outbound reference is also deleted and
the component updates its metadata (deletes the partner link, deletes routing
rules, and so on).

Development of BPEL processes in
JDeveloper

To develop a composite application with a BPEL process, we have to follow these

steps:
1.

2.
3.
4

5.

Define the XML schemas that will be used by the BPEL process.
Define the WSDL interface for the BPEL process.
Create a new SOA application and an SOA project inside it.

Open the SOA Composite editor, where we drag the BPEL process service
component to the Components lane of the SCA diagram. We expose the
BPEL processes as a service, using the WSDL interface.

Implement the BPEL process using BPEL Component Designer.

We will demonstrate the development of BPEL process on the TravelApproval BPEL
process example that we have developed in Chapter 2, Service Composition with BPEL.
The process that we will use in this chapter is slightly different from the one that we
have already implemented. However, the only important difference is that at the
end we also make a reservation of the selected flight ticket. Let us have a look at the
process activity diagram.

[213]

Using BPEL with Oracle SOA Suite 11

Receive travel request

v

Prepare input for the Employee

web service

v

Retrieve employee travel status

v

Prepare input for both Airline

web services

!

-
!

Acquire ticket offer from
American Airlines

Acquire ticket offer from
Delta Airlines

v

v

‘ Wait for Callback

’ ‘ Wait for Callback

i% |

Compare both offers ’

[American Airlines is cheaper]

[Delta Airlines is cheaper]

!

l

Make reservation American
Airlines

’ ‘ Make reservation Delta Airlines

v

v

‘ Wait for Callback

’ ‘ Wait for Callback

v v

Return reservation data ’

®

[214]

Chapter 4

We will follow the Top-Down approach for building our composite application.
Therefore, we will first define the XML schemas and WSDL interface of the
composite. We will not show the source code of BPEL and WSDL files, as they
have already been shown in previous chapters. They can also be downloaded from
http://www.packtpub.com.

Defining XML schemas

JDeveloper provides support for XML schemas by providing XML Schema Editor.
This editor is not specific to SOA; therefore, XML schemas are usually created as
part of a separate project. By using XML Schema Editor we can create new, and edit
existing, XML schemas. XML Schema Editor also provides a validator of the XML
schemas. We can define schemas in graphical mode (XML Schema Visual Editor)
using simple drag-and-drop operations.

& Oracle JDeveloper 11g Release 1 - TravelApproval.jws : TravelApproval.jpr :

File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help

Ge@@ 90 XEE Q-0 & ARda- > -& H& N)
{Elapplicstion EIERMPr.. | (-] | & TravelRequestType.xsd ompone. .. = =
Traveldpproval ~[&E - ‘ p— j |Schema Companents -|
~ Projects rET
— Gl Y- = ‘IavgetNameapacElhnp Mpacktpub nnmfhpemrave\t‘ [@
=-[5] Travelapproval A
I
o @A e <import> [annotation
-] classes
®] testsuites [schemalocation ‘ FlightiRequestType.xsd any
@ FileList. =l namespace ‘hnp Mpacktpub com/servicesairline! anyhittribute
T <import> b [attribute
------- &, BPELProcess1 xsd &8 attributedroup
Ll H SchamaLunatmn‘Emp\uvee‘rype xsd 8] ch
choice
E Business Rules namespace ‘hnp ifpacktpub com/seniceiemployes! (&) complexTyps
~g'a BPELProcess1.bpel
BPELProcess1.component Type TravelRequestType 4 element

BPELProcess1.wsdl [] group

------ o[composite.xml 1) import
TravelApproval @ include
JUHIE 3= list
notation
b Application Resources B recefi
redafine
I Data Controls w7
employee
b Recertly Opened Fllss =
b o B 05 bonsn Emalo & Property nspector 8]
TravelRequestType (-} @ - =l |
= % (
= TravelRequestType.xsd - Structure =] : % &®
e
[77) wharnings (1)
53 sthema
(%) impert - FlightRequestType. xsd Design | Source | Hiskory 7]
oy import - EmployeeType.xsd -
3 element - Travelapproval [EIBPEL-Log &jsimulations | [=fDocumentation (8]

[2] complexType - TravelReguestType Simulation: B 00 » |Speed:
I ﬂﬁ Chart fLug
Design | Source [

allf ey w | | frtivitiag: L o2 Recnirres: T W | Tndicatore: i

Schema Editing

[215]

Using BPEL with Oracle SOA Suite 11

However, we can also switch to the source code and edit the XML schema by hand.

File Edit ¥iew Application Refactor Search Navigate Buld Run Source VYersioning Tools Window Help
GeoEag 90 1ER O0-0 & - Hida- b -%- FH (da-
{Elapplication SEFMFr.., @ TravelRequestType.ssd =) | @ compore...
}
= = = —
Trawelfppraval ~ &~ | - a3) = |5chema companents -
Prajects @8 T-E- <2xml wersion="1.0" encoding="UTF-8"3%) 9
-] Travelapproval S <xsd:schema xnlns:xsd="hetp: /. w3, ore/2001 ML chena” xulns: bonsl="htrp: / /1
7] S0 Content <xsd:import namespace="http://packrpub. con/service/airline/” schemalocation: Sl
[dasses <xsd:import namespace="http://packtpub.con/service/enployee/” schemalocatior [annetation
=] testsuites any
63 FieList sl <xsd:element name="Travelhpproval” type="tns:TravelRequestType” /> & anyattribute
2 s © <xsd:complexType nane="TravelRequestType"> .
.2 BPELProcesst xsd B <xsd:sequencex 8 atwrburea
Bl <ysd:element name="employee” type="bons0:EwployeeType” minOccurs="0" > attributetroup
(21 Business Rules <xsd:element name="flightData” type="honsl:FlightRequestType” mindccurs: [§] chorce
S BPELProcesst bpel < /s Sequence: [Z] complexType
+4ifh BPELProcess1.componentTyps </xsd: complexType> € element
BPELProcess1.wsdl </xsd: schema> [] aroup
- ofg composite. xml by import
@ include
£ st
notation
Application Resources
% redefine
Data Contrals W7
Recently Opened Fil
SEL RN e {&Property Inspectar (]
—) (@
= TravelRequestType.xsd - Structurs = i / L
@[] Warnings (1)
4% sthema old 'Cerl o view]
- %1 import - FlightRequest Type.xsd Design | Saurce | Histary
() impott - EmplayeeType. zsd
D slement - Travelapproval [SIBPEL -Log | Jsimulations [Documentation E]]
[] complexType - TravelRequest Type
Documentation nat available
Design | Source

| Tnsert

For our TravelApproval BPEL process example, we have to create several XML
schemas with complex types and elements that will be used to define messages in
the WSDL interface of the composite application.

Defining a WSDL interface

Next, we have to define a WSDL interface for our composite application. JDeveloper
provides support for creating and editing WSDL documents by providing the rich
WSDL Editor. WSDL Editor supports visual manipulation of the WSDL documents.
It also supports validation and simple drag-and-drop functionality. For example,
we can drag the port type to the Bindings section, which automatically creates new
binding and opens the Create Binding dialog. However, when building WSDL
interfaces for composite applications, we do not create bindings and services, as
these are automatically generated during deployment of the composite.

[216]

Chapter 4

For our Travel Approval BPEL process example, we create a new TravelApproval.
wsdl document. For the definition of WSDL message parts, we use previously
developed XML schemas. We will define one port type (TravelApprovalPT) only, as
we want to build a synchronous BPEL process. The port type specifies one operation
(travelApproval). We will also add the Partner Link Type (travelLT) with one role
(travelservice). However, it is not necessary to add the Partner Link Type, as if it
does not exist, it is automatically generated when we create the BPEL process.

- Oracle JDeveloper 11g Release 1 - Travelapproval.jws : Travelapproval.jpr : C:\JDeveloper\mywork\Travelapproval Travelapproval\ Travelapproval.wsdl

File Edit ¥iew Application Refactor Search Navigate Build Run Yersioning Tools Window Help

GoEg 90 tEE Q-0 & &HBJda- > - FR (a8~)
(@epplication | @ee.. |63 (=) [[@]Travelapproval.wsdl & B, & =
Travelapproval ~ [l -] | (68 SearchDocument GH) T % % D [wsoL M
Bl 7 ™~)
-{53] Travelapproval o Inparts W o Antfacs W 2P binding
=-{ 504 Contert (& bound operation
[classes = Messages gk % SPort Types b % Seindngs/ Partner Lk Types o + 3 HServices definiions
o ti:”‘fi ' =[] TravelRequestiessage =3l TravelapprovaleT = (&) travell T © Faue
et e part - trs [ZEE-) @ travelservice 1% import
Ewmwpes xsd Q@ input - tnsiTravelappravalPT Drag from 1 input
o EmployeeType, xsd & output Component Pale message
S FlichtConfirationType. or use Create ¢ || [aperation
12, FlightRequestType xsd or Drop a binding output
=2, FlightReservationType xs CIeate a new ser (o
o2 TravelClassType. xsd b part
& TravelRequestType.xsd sortType
sl
{1 Business Rules @ service
Airline. wsdl
- off composite. xml

Application Resources
Data Cantrols w7
Recently Opened Flles

1= TravelApproval.wsd - Structure (=)
5
=[] defintions

B Property In... 8]

Design | schema | source | History) =5 1 o B/ (8]
[EJBPEL-log = /Smulations | [Documentation (=)
S serces BPEL Travelapproval.bpel Warnings 53]
~[=) Erors: 1 Warnings: | Last Validated On: 13 Jun 2010 03:00:17 GMT

Validlion | Search

Design | Source Messages

Extensions

[Fesoa

BPEL | @ uwieb Services

(o]

If we want to edit a WSDL document in text mode, we can open the Source tab in
WSDL Editor.

Creating an SOA composite application

For this example, we will create a new SOA application. The wizard automatically

creates a new SOA project inside the application. We set the name of the project to
TravelApproval.

» Inorder to create and deploy SOA composite applications and
projects, we first have to install the Oracle SOA Composite
Editor extension for JDeveloper.

[217]

Using BPEL with Oracle SOA Suite 11

Then we have to set the composite name and choose a composite template. By
choosing the Composite With BPEL Process template, we could create a composite
which would already contain a BPEL process service component. However, we select

the Empty Composite template. We will add the BPEL process by dragging it from
the Component Palette.

é- Create SOA Application - Step 3 of 3

Configure SOA settings

Composite Mame:

.. Application Marme |Trave|ApprDvaI| |

Project Name Camposite Template:

Project SOA Settings [Sy=sts) sl

Cornposite With BPEL Process
Composite With Business Rule
Composite Wwith Mediator

Composite With Human Task
Composite With Spring Context
Composite From Oracle BPA Blueprint

¥

[Customizable

| Help | < Back | Finish || Cancel |

When the project is created, SOA Composite Editor is automatically opened. Our

composite application currently contains no service components, because we selected
the Empty Composite template.

[218]

Chapter 4

Source | Design

Messages Extensions M=

File Edit Yiew Application Refactor Search Mavigate Build Run Versioning Tools Window Help
Bo@ag 96 XE0h Q-0 - 1& Adldu- >-%- BE
B @ 16 (2] [efTravelspproval Overview | ofScomposite.sml = = (=]
Eraehomo ~[E || £ L 0L RD | B ED T T oval -]
= Projects &) @) T & [5)
=-[3] Traveltpproval Exposed Services Components External References A
- S04 Content
B casses & BPEL Process
E-{1] testsuites < Business Rule
-[e3] Fileist i & Human Task
[wsd 5 Mediatar
Dl '8, Spring Context
] Business Rules — Service Adaoters
composite .l _ N . I
o4 comp To begin creating a SOA composite application, @ ADF-BC Service
drag-and-drop a Service Component or an Adapter g AQ Adapter
B2EB
from the Component Palette o
P i) BAM Adapter
8 Database Adapter
m
I Application Resources % Bl
FIR Servi
| Data Controls @7 - Arice
I Recently Opened Files @CUmDUSItE Travel [;]‘
=
omposite.xml - Stru... E]| o+ s (&
I 4 Hame: [Travelappn
ER Revision: 1.0
[Test Suites Design | Source | Histary Label: 2010-05-1]
[ElMessages -log [Documentation] Home:
Creating adi-config.xml for workspace Traveldpproval.jus Mode: [active
hdding /soa/shared metadata namespace and store defimitien in file:/C:/JDeveloper/mywork ctat I:
ated on

Adding the BPEL Process service component

To create the Travelapproval BPEL process, we have to add the BPEL Process service
component to the Components lane of the composite application diagram. To do this,

we drag-and-drop the BPEL Process from the Component Palette to the diagram.

ofScomposite.xml
v FN

BXD | &N

Exposed Semndces

Components

[=
Composte: OrderBookingComposite

External Reference

t Palette | [oReso...

=

Service Components

». BPEL Prox
(p Busiress R
ih Human Task
<% Madiator

|,

55

Q

[219]

Using BPEL with Oracle SOA Suite 11

The Create BPEL Process dialog opens.

é-[reate BPEL Process B3
BPEL Process

J
BPEL process is a service orchestration, used to describef/execute a business process {or large grained Iiva
serwice), which is implemented as a stateful service.,

Manne: |Travel.ﬂpproval |

Namespace: |htt|3 i Ipackipub. com bpeltravel |

Template: |@ Base on a WsDL '| =

Service Mame: |Travel.ﬂpprnval53rvice |

Expose as a SOAP service

WSDL URL: |Travel.ﬂpproval.wsdl | E i
Port Type: |Trave|ApprovaIPT - |
Callback Port Type: | ————— Mo Callback, ----- v|

| Help | | Ok || Zancel |

We set the name of the process to TravelApproval and the namespace to
http://packtpub.com/bpel/travel/. We select the Base on a WSDL template.
Then we click the Find existing WSDLs icon next to the WSDL URL field. The
SOA Resource Browser dialog opens. We select File System as a source and
browse to the TravelApproval.wsdl document. As our process is synchronous,
we only also have to select the Port Type (TravelApprovalPpT). The Port Type
defines the interface of our process (available operations and input and output
messages), which we will expose to the outside world. Port Type is used by clients
to invoke the composite application. On the other side, asynchronous processes
define two Port Types: one is used by clients to invoke the composite, and the other
(Callback Port Type) is used by the composite to perform the callback to the client.
As we want our BPEL process to be automatically exposed as a SOAP service, we
can leave the Expose as a SOAP service value checked. This automatically creates
the Web Service binding component and connects it with the BPEL process.
Otherwise, we would have to add the service manually.

[220]

Chapter 4

Service components can have more service bindings. For example,

%j%“ we could expose our BPEL process with the Web Service and Direct
g Service bindings.

Our composite application diagram now looks like this:

ol composite.xml | =
@ ?; % % 32 @ | B # o Camposite: Travel&pprowval
Exposed Services Components External References

% = ® @) Trawljl%'ppm_
travelapproval...

Operations:
TravelApproval
-

We can see that the Travel Approval BPEL process is the only service component
that implements the composite application and that the process is exposed as a web

service; therefore, the only way to invoke the composite application is through the
use of the SOAP protocol.

[221]

Using BPEL with Oracle SOA Suite 11

Adding references

Next, we have to add partner services to our composite application. The

Travel Approval BPEL process uses three external services: AmericanAirlines
ticket service, DeltaAirlines ticket service, and EmployeeTravelStatus service.
As all three services are simple web services, we will drag three Web Service
binding components to the External References lane of the composite diagram.
The Create Web Service dialog opens. We leave the Type property unchanged.
We have to set the Port Type and in the case of an asynchronous web service,
also the Callback Port Type. In the following screenshot, we can see that for the
AmericanAirlines service, we select FlightAvailabilityPT for the Port Type
and FlightCallbackPT for the Callback Port Type.

& Create Weh Service
Web Service % i

Create a web service For services external to the SO& compasite,

Mame: |American.¢\irlines |

Tvpe: |Reference 'l

WSDL URL: | 1gP52:SDD1,l'soa—inFra,l'services,l’deFault,l'.ﬁ.mericanAirIines,l'TickBtService?WSDL| ‘E

Port Type: |FIightFwaiIabiIityPT b |

Callback Port Type: |FIightCaIIbackPT b |

[] copy wsdl and its dependent artifacts inta the praject.

Mote; Keeping a copy of a WDl may result in synchronization issues if the remote W3SOL is updated. Ik is
recommended not make local copies - this should be reserved For situations such as offline designing.

Transackion Participation: |WWSDLDviven >

| Help | | k. || Cancel

If we do not know the exact location of the WSDL, we can use SOA Resource
Lookup by clicking on the Find existing WSDLs icon (next to the WSDL URL
field). The SOA Resource Browser dialog window opens:

[222]

Chapter 4

504 Resource Browser 3

| Resource Palette

4

[=h-[&) IDE Connections
Elrgﬂ Application Server
[+ IntegratediweblogicServer
-3 YM_S0A110PS2_AppSery
=[] 504
EIE% s0a_serverl
- default
- D{E Americanirlines [1.0]
. cl
i ol Americanirines [Default 1.0]
o oS BPELZ0_test [1.0]
- off BPEL20_test [Default 1.0]
- o[Delkasirlines [1.0]
-0l Delairines [Default 1.0]
o o[Projectt [1.0]
i off§ Projectl [Default 1.0]
I Dﬂg Travelapproval [1.0]
- Dﬂg Travelapproval [2.0]

I Dﬂg Travelapproval [3.0]
.ol T, 1T il

O B e B O O B e O B OO e W

Help

Ok | | Cancel

Here we can select the source for choosing the WSDL resource: File System,
Resource Palette, or Application. Using the Resource Palette we can browse for
resources from application servers, MDS repositories, UDDI registries, and Oracle
Enterprise Repository (first we need to create connections to those sources on the

Resource Palette tab).

After adding all three references, we have to wire them to the BPEL process. This
can be done by simply dragging a wire from the BPEL process service component

to each reference.

ol compasite.xml | =
FLYHERO B #D Composite: TravelApproval
o
'IS' DeltaAirlines
Flight&vailability
MakeReservation
FlightTicketCallb...
MakeReservatio. ..
7
EmployeeTrav...
Operations:)
EmployeeTravel. ..
—
% = ® 2/ Travelappro... 2
travelartuprcwal...\ >
Operations: b @ =
TravelApproval AmericanAirlin...
e]

[223]

Using BPEL with Oracle SOA Suite 11

When wiring a BPEL process with references, a partner link for each
. reference is automatically added to the BPEL process definition, as we
& will see later in this chapter. In fact, instead of adding references to
L the composite diagram, we could also create partner links in the BPEL
Component Designer, which would automatically create references and
wire them with the BPEL process.

The following screenshot shows the completed SOA composite diagram.
The next step is to implement the Travel Approval BPEL process using the BPEL
Component Designer.

@ FN

offf composite.xml |

=

BRO | &g dd

Composite: TravelApproval

Exposed Services Components

3= O
travelapproval...
Operations:
TravelApproval

External References

= Fre)
@ o)
EmployeeTrav...
Operations:
EmployeeTravel. ..

¥ B
AmericanAirlin...
Operations:
FlightAwvailability
MakeRese rvation
FlightTicketCallb. ..
MakeReservatio.

[k}
@ &
DeltaAirlines

Operations:

Flight&w ail abil ity
MakeRese rvation
FlightTicketCallb...
MakeReservatio. ..

Design | Source | History

BPEL process implementation

To start the BPEL process implementation, we simply double-click the BPEL service
component on the SOA composite diagram. The BPEL Component Designer opens
with almost empty BPEL implementation. It depends on the template that we have
chosen. If we have selected the template for synchronous processes, then the initial
<receives and the final <reply> activities are included. If we were to define an
asynchronous interface, the process would end with an <invokes activity.

[224]

Chapter 4

File Edit Yiew

lappiic. . i @ & =]
Traveldpprovalz - -
Projects E®7-E-

Project1
=] Traveldpproval
&[] 504 Content

7] classes

-7 testsutes

7] wsd

] sl

-{_7] Business Rules

------ Airling wsdl

----- off composite.xmml
EmployeeTravelStatusl wsdl
[«2] Travelapproval_cfgplan.xml
& Travelapproval.bpel
4 Travelapproval.componentType
Travelapproval.wsdl
TravelapprovalRef.wsdl

Application Resources

Data Contrals 7
Recently Opened Files
= Trawelfpprov... o Thumbnsi =]
o+ E
L *+ 7R

a Traveldpproval.bpel
[Partrer Links
[variables

~[Z) Correlation Sets
-2 [Activities|

[] show Detalled Nade Information

Source | BPEL

GeEag 90 XEE Q- & Hdde- - BE

é-l:lracle JDeveloper 11g Release 1 - TravelApprovalz.jws : TravelApproval.jpr : C:\, JDeveloperymywork', TravelApproval2' TravelApproval', TravelApproval.bpel

application Refactor Search Navigate Build Run Versioning Iools Window Help

(&)

m‘ [~ Efcompa... ()]
CrR-@-S-0m 8 (-) el [[@renior | 2| @) [eree =
Partner Links Partner Links @ 5]

) @)

@
receivelnput
{g‘ [
%

client.

&

replyOutput

(©)

&

EmployeeTravelst...

)

Americanfirlines

)

Delkadirlines

replyQutput - [process/sequencefreply

Zoam; IDD|§| e q

EFA Blue Prints

BPEL Activities and Com...
A Assign

45| Bind Entity
12 Check Paint
\(E\ Compensate
Ul create Entity
[Email
Empty

4> Flow

1|»,:| Flowhd
Em
@ Invoke

2| 3ava Embedding
5 phase

O Pick

@ reee
Receive Signal

ik Remove Entity

Design | Source | History

@ Reply

[ElePEL- Log | [Dacumentation
(3] Travelapproval bpel warnings:

Validation | Search

[Hs0n

Messages | Extersions Deployment BPEL

&

En]

Mapper Messages

[scope

2] sequence

BPEL Services

The BPEL Component Designer is a visual editor for implementing BPEL processes.
BPEL Component Designer provides three views. In this chapter, we will only use
BPEL view, which is used to implement the BPEL process. If we were to generate our
BPEL from BPMN using Oracle BPA Suite, we would also use BPA view. Monitor
view is used to add sensors and monitoring objects to process activities in order

to implement business process monitoring. We will discuss monitoring of BPEL

processes in Chapter 8.

Using the BPEL view, we can simply add activities by dragging them from the
Component Palette. In the previous screenshot, we can see that the editor consists of
three vertical swim-lanes. The left lane contains the client partner link that represents
the interface through which clients can invoke the process. The middle lane contains
the sequence of activities that implement the BPEL process. In the right lane, we add
partner links to external services.

BPEL Component Designer also provides the source-code view where we can edit
the BPEL code directly. Changes made in the source view are reflected immediately
in the BPEL Component Designer visual representation, and vice versa.

[225]

Using BPEL with Oracle SOA Suite 11

Please note that it is not the intention of this section to provide in-depth instructions
on using JDeveloper BPEL Component Designer. Rather, we will highlight the

most important features, including, adding partner links, creating variables, adding
activities, copying variables, entering XPath functions, using XSLT Mapper, and
Validation Browser. For detailed instructions on using JDeveloper, please refer

to the Oracle documentation, which is accessible at http://www.oracle.com/
technetwork/developer-tools/jdev/ documentation/index.html.

Adding partner links

When developing BPEL processes, the first step is usually to create partner links. Note
that in our example all three partner links have already been generated, as we wired
our BPEL process to the references on the composite diagram. However, if we want

to add a new partner link, we have to expand the BPEL Services in the Component
Palette (upper-right side of the screen). From there we select the Partner Link/
Adapter/Web Service and drag-and-drop it to the Partner Links section of the main
design window. Alternatively, we can right-click in a main design window and use the
context menu. A dialog window opens where we have to enter the partner link name
and the details, including the WSDL location, partner link type, and both roles:

& Create Partner Link E

rGeneraI rlmage rProperty |

Mame: |American.ﬁ.irlines |
prcess | |
WSDL Setkings

QAaR @
W3DL URL: |:ervicesll'deFaultJ'Ameri-:an.ﬂ.irlinesll'TicketService?WSDL |
Partrer Link Type: |E&” FlightLT 'l
Partner Role: |i53 airlineService '|
My Role: |ia airlineCustomer 'l

| Help | | Apply | | (a4 | | Cancel |

If we do not know the exact location of the WSDL, we can use SOA Resource
Browser by clicking on the magnifying glass icon. Notice, that when we create
a BPEL partner link, a corresponding reference is automatically added to the
composite diagram and wired to the BPEL process.

[226]

Chapter 4

Adding variables

To add variables to the BPEL process we have two choices. We can add them
manually, as we will show in this section, or we can use automatic variable creation,
as we will see in the next section. Let us first have a look at how we can add variables
manually or edit existing variables. In the BPEL Structure navigator window (lower
left side of the screen), we navigate to the variables. We can see that two variables
(named inputVariable and outputvariable) were automatically created. Then we
either click an existing variable or right-click to create a new one. A dialog window
opens where we have to specify the variable name and type:

- Edit Yariable - input¥ariable

General

Mame: |TravelRequest

Tvpe

() Simple Type

(%) Message Type |{http:,I',l'packtpub.com,l'bpeI,I'tra\rel,l'}TravelRequ "k

() Element

’7|:| Entity Variable

[500 Capable

Help

Apply || QK || Cancel

In addition to standard BPEL variables, Oracle SOA Suite 11g also
supports Entity variables. Entity variables are not like regular XML DOM
variables. They use an SDO-based in-memory data structure and are able
to detect changes to underlying data in the data source. We will discuss
entity variables in Chapter 6.

[227]

Using BPEL with Oracle SOA Suite 11

We select Message Type and click on the magnifying glass icon to open the Type
Chooser. Here, we can navigate through message types in partner links or project

WSDL files and select the appropriate type:

]
9]

é- Type Chooser

Q% Tvpe Explorer

E}B Message Types

-] Partner Links

=23 Project WSOL Files

] - Birlire wsdl

t - EmnployeeTravelSkatus,wsdl

EI Travelapproval wsdl
EIE' Message Types

-] Imported WDl

Tvpe: |{http:,|'ll'packtpub.cDm,I'b|:|el||'I:raveI,I'}-TraveIRequestMessage |

["] Show Detailed Mode Information

CE || Cancel |

[teb | |

If we have selected a simple type, we can choose from the predefined XML types:

[228]

Chapter 4

‘-Type Chooser

& Type Explorer
(=23 %ML Schema Simple Types

normalizedString
token

byte

unsignedByte
baseb4Binary
hexBinary

integer
positiveInteger
negativeInteger
nonMegativelnteger
nonPositivelnteger
int

unsignedInt

long

unsignedLong
short
unsignedShort
decimal

float

G T G

Type: |{htt|::,|’,|'www.w3.0rg,|’2DDl,l’XMLSchema}string

[show Detailed Mode Infarmation

| tep |

In our Travel Approval process, we will rename inputVariable to TravelRequest
and outputVariable to TravelResponse.

Adding process activities

Adding process activities is straightforward. We select an activity from the BPEL
Activities and Components list of the Component Palette and drag-and-drop it to
the process. After double-clicking the activity, a dialog window opens, where we
enter the activity parameters. The Component Palette provides access to standard
BPEL activities, such as <assign>, <compensate>, <empty>, and so on. In addition
to the BPEL activities that we have covered in the previous chapters, we can also
choose the following:

<flowN> activity: Provides support for parallel execution

Java Embedding: Enables inclusion of Java code into BPEL

User Notification: A wizard for using the Notification service

Transform: Enables access to the XSLT engine and XSLT Mapper

through an XPath function

User Task: A wizard for using the Workflow service

Business Rule: Enables inclusion of business rules into BPEL

[229]

Using BPEL with Oracle SOA Suite 11

We will explain these and other Oracle specific activities in Chapter 5.

Now, let’s implement our TravelApproval process. First, we select the <scope>
activity from the Component Palette and drag-and-drop it to the process. We name
the scope RetrieveEmployeeTravelStatus. Inside the scope, we add the <invoke>
activity, which will be used for invoking the EmployeeTravelStatus service. Now
we have to open the Invoke activity editor, shown in the following screenshot.

This can be done either by double-clicking the activity, or by visually connecting

it to the selected partner link. We set the name of the activity and connect it to the
EmployeeTravelStatus partner link. We also have to select the operation and create
(or select if they already exist) input and output variables.

Invoke b4

| Headers r.ﬂ.nnotations r.ﬂssertiuns rSkjp Condition |
| General r Correlations r Properties |

Tarne: |Em|:ulnyeeTravelStatus |

S Partner Link ™

— Inkeraction Type:
Partrer Raole Web Service Interface
Partner Links |Emp|n:uyeeTraveIStatus | %
Operation: | Ty EmployeeTravelStatus "|
Yariables
Input: |EmpIDyeeTraveIStatusRequest | l* Qb
Output: |EmpInyeeTraveIStatusResponse | EF \%
Options
Conversation I10: | |

| Help | | Apply || QK || Cancel |

Variables can be automatically created by clicking the plus sign. The Create Variable
dialog opens. We name the input variable EmployeeTravelStatusRequest and the
output variable EmployeeTravelStatusResponse.

[230]

Chapter 4

é- Create Yariable E

Mame: |EmpIuyeeTravelStatusRequest |

Tvpe: |{http:,l'll'packl:pub.com,I'service||'empInyeeI}EmployeeTravelfl

() Glabal Yariable () Local Yariable

| Help | | 2k || Cancel |

Now, we have to add an <assign> activity that will be used to assign the value to
the EmployeeTravelStatusRequest variable. A dialog window opens, where we

have to specify the copy rules, as shown in the following screenshot:

-

Assign b4
1 Errors: 1 s
| General rCnp';-' Operation r.'!'.nnu:utaticuns rSkip Condition |
7 K @ D
Fram Ta ® copy Operation. ..
@ Append Cperation, .,
'E') Insert-After Operation, ..
'@ Insert-Before Operation, ..
@ CopyList Operation, .,
@3 Remave Operation...
O Rename Operation. ..
Help Apply || K Jl Cancel

[231]

Using BPEL with Oracle SOA Suite 11

For adding new copy rules in the <assign> activities or editing existing rules, we
can use the Copy Rule editor, which simplifies the procedure. Using the editor, we
can create the <from> and <to> expressions by navigating through the variables
trees. The Copy Rule editor supports all forms of assigns with variable, expression,
XML fragment, or partner link being the source and/or the destination of the
assignment. When copying variables, we can navigate through the variables

tree, as shown in the following screenshot. We can also enter expressions using
XPath Expression Builder, enter XML, or edit/create a new partner link. In our
example, we have to assign an employee from the TravelRequest variable to the
EmployeeTravelStatusRequest variable.

EID Wariables
i 2-(x) TravelRequest
=-[F] travelRequest
B4 client: Travelapproval
#-<» [employeel]
-4 flightData
x) TravelResponse
(x) EmployeeTravelStatusResponse
=(E] Scope - Scope_t
=[5 Yariables
(%) EmployeeTravelStatusRequest

=[5 variables
CE-(x) TravelRequest
-(x) TravelResponse
¢ E-(x) EmployeeTravelStatusResponse
=-(E] Scope - Scope_L
=[5 Variables
EI----,‘._:’} EmploveeTravelStatusRequest
=-[E] employee

é-treate Copy Operation
Frarn Ta
Type: |\fariable v| Type: |'\-'ariable '|
D Wariables D Yariables
=+ & Process = g Process

[5how Detailed Node Information

[] 5how Detailed Mode Information

#Path: | /olient:Travelhpprowval femployee

#Path: |,-’n32: enployes

| Help |

Ok

|| Cancel |

In our simple example, the BPEL process and the EmployeeTravelStatus service
use the same XML schemas. Therefore, we can simply assign the whole employee
from one variable to another. However, in reality this might not be the case. In BPEL
processes, we often need to transform XML (stored in variables). For example, we
have to modify the vocabulary to adapt the output of one service to the input of the
other. We might also want to transform XML to other markup languages. Instead

of using XPath, Oracle SOA Suite 11¢ provides a built-in XSLT engine. To compose
XSLT stylesheets JDeveloper BPEL Component Designer provides a build in XSLT
Mapper, which simplifies the mapping definition considerably.

[232]

Chapter 4

To activate the XSLT engine from a BPEL process we need to add the transformation
activity to the process. We do this by dragging-and-dropping the Transform activity
from the Component Palette to the process. This activity simply calls the built-in
XSLT engine.

After double-clicking the activity, a Transform window appears. Here we have to
select the source and the target variable name, and the corresponding parts. Then
we have to enter the XSLT filename:

at\
%

' Transform

Y Errors: 1

| General rTransFDrmatiDn r.ﬂnnotations rSkjp Condition |

+* 7 R & D

Source:

‘ariable Part

TravelRequest

travelRequest

Target Wariable:

Target Part:

EmployveeTravelStatusRequest

Mapper File: |xs|p'TransF0rmEmplnyee|

|Q & Z

Help |

Apply || ol's || Zancel |

[233]

Using BPEL with Oracle SOA Suite 11

After clicking the plus icon to create a mapping, the XSLT Mapper window opens.
We can drag-and-drop the elements from the left side to the right side. We can also
use XPath functions, which we can select from the Component Palette in the
upper-right side of the window (Oracle provides support for XPath 1.0, some
XPath 2.0, and Oracle-specific functions). As a result, an XSLT stylesheet is
generated, which takes care of the transformation:

[3] TransformEmployee.xsl | =]
Source: Traveldpproval wsdl %5LT File: EmployeeTravelStatusPTPort?:sd
= :? <S0UFCESs = <karget= :E’EI
= 42 tns: Traveldpproval tns:employves <ox-=
é\\---<°> employes Firsthlame: ko3

Koy FirstMame LastMarne £eX -
.Jeed | astMame Deparkment kel
~&ok Department

[#h-K=¥ FlightData

Design | Source | History

With XSLT Mapper, we use several functions which influence the mapping and
transform the source data. We can also use the Auto Map feature, which tries to map
attributes automatically. This way we can develop XSLT transformations relatively
easily without being familiar with the XSLT language. For more information on
XSLT, please refer to http://www.w3.org/TR/xslt. For more information on XSLT
Mapper, please refer to Oracle Fusion Middleware Developer’s Guide for Oracle
SOA Suite 11g, which is accessible at http: //download.oracle.com/docs/cd/
E12839 0l/integration.1111/e10224/title.htm.

Next, we have to create a variable which will be used as an input when invoking
both airlines services. We can use the same variable, as both services have identical
interfaces. We name the variable F1ightDetails. Now, we create a new <assigns>
activity to assign flight request data to the newly created variable. We name it
AssignFlightDetails. Our example now looks like this:

[234]

Chapter 4

Partner Links

client

uew

L 4

©
l
@

ReceiveTravelRequest

=)

=] EmplovesTravelStatus

1
&)

AssignFlightDetails

_!\.

ReplyTravelResponse

Partner Links

£

Americansirlines

$6h

Celtadirlines

£

ErnployeeTravelst...

[235]

Using BPEL with Oracle SOA Suite 11

Next, we will add the <f1ows> activity, as we want to invoke both airline

services in parallel to retrieve ticket offers. For invoking airline services, we

need <invokes> (operation FlightAvailability) and <receives (operation
FlightTicketCallback) activities, as services are asynchronous. Input for both
service calls will be the F1ightDetails variable. We also have to create two output
variables (FlightResponseDA and FlightResponseAa) that contain ticket offers.
After adding two <invoke> and two <receives activities, our example looks like
this (scope RetrieveEmployeeTravelStatus is collapsed to improve readability):

o[compasite. xml #a TravelApprovalbpel |

v -Q-o- -0 & (- [daere | @)

Partner Links

Partner Links - O
s

»
EmployeaTravelst, ..

@

receiveTravelRequest

»
@
2 |an ¢ Americanairlines
RetrieveEmployeeTravelStatus ¥
ploy: " .{{g
» "
| Deltasirlines

C

Deltasirlines Ameticanairlines
®)
client
& AN
b | = =
&
Deltasirlines Ameticanairlines

[236]

Chapter 4

Next, we have to compare both prices and make a reservation of a cheaper flight
ticket. We drag-and-drop the <switch> activity. A case and otherwise elements
are generated automatically. Now, we will specify the condition for the case. To do
that, we need to click on the condition to launch the Expression Builder editor. This
editor is accessible from all dialogs where an XPath expression needs to be entered
by pressing on the Expression Builder icon. In the left side, we can navigate through
BPEL variables. In the right side, we can select various functions. XPath Expression
Builder supports XPath 1.0, but also XPath 2.0 and Oracle-specific XPath extensions
functions, which are covered in Chapter 5. Pressing Ctrl+Space in the Expression
Body window, we get context-sensitive help. The following screenshot shows how
we can create a condition for selecting the cheapest ticket:

é- Expression Builder

Expression: '9 Ij
muher (bpws: getVariahleData('FlightResponsedd ', 'confirmationData', ' /msl:confirmationbatasPrice'))

o=

number (hpwa: getVariahleDbata(' FlightResponseDi', 'confirmationData', ' /nsl:confirmwationData/Price'))

| M Insert Into Expression |

BPEL Yariables Functions
(- () EmployesTravelStatusResponse |Conversion Functions v|
(- () FlightDetails —
= (x) FlightResponsead |w| boolean
E}--- confirmationData E‘ 1| format-number
[=-€=» ns1:confirmationCata —
|5(}| string
> i) =
=y DepartureDateTime
£ ReturnDateTime
o4y Approved
Conkent Preview: Descripkion:
numberg) Converts inpuk a number,

A string that consists of optional whitespace Followed by an optional
minus sign followed by a Mumber Followed by whitespace is converted
to the IEEE 754 number that is nearest {according to the IEEE 754
round-to-nearest rule) to the mathematical value represented by the
skring; any other string is converted ko Mal,

Help | (o] 4 | | Cancel

[237]

Using BPEL with Oracle SOA Suite 11

Based on the selected flight ticket, we make a reservation by invoking the
appropriate airline service (we use the MakeReservation operation). As an input we
use either the F1ightResponseDA or the FlightResponseAA variable (depending on
which airline was selected). For the output, we use the TravelResponse variable,
which is also the output variable of the process. This brings us to the following
completed process (the first two scopes are collapsed to improve readability):

Partner Links Partner Links
i

ErmployeeTravelSt,,,

receiveTravelRequest

RetrieveEmployeeTravelStatus 5o
AmneticanAirines
: &
CheckFlighta ailability Deeltadidines
X

Ay iz cheaper
client

e =

F—

Arneticandit ation Creltadidi ation

FT—-

Arneticandit ation Creltadidi ation

reply TravelRespoonse

%ﬁi\ The example can be downloaded from the Packt Publishing website.

[238]

Chapter 4

Validating BPEL processes

To simplify finding and correcting errors and warnings, JDeveloper provides BPEL
validation. A triangle icon is used to indicate that we have to correct the settings of
the activity.

AssignEmployd Warning
There is an errorfwarning with the settings of this object.

Click ko visw validation report,

EmployveeTravelStatus

By clicking the triangle icon, the BPEL Validation Browser opens. We can also access
it by clicking the check icon in the main design window:

ﬁ?a TravelaApproval.bpel |
- [A-2- S-0W 4 (§- | e eeel |[[EE monitor ||)

W validate Process

. BPEL Yalidation Bro y O

@

receiveTravelRequest

[239]

Using BPEL with Oracle SOA Suite 11

The BPEL Validation Browser window opens. In the following screenshot, we can
see that there is an error in the BPEL process related to the assign activity, as no
copy rules are specified. The browser also suggests the solution:

é-BPEL Yalidation Browser B3
BPEL Struckure: &0 2] EE alidation Errors/Warnings:
E}ﬁgg Process - Travelapproval Tvpe Descripkion
=3 sequence-main o Folrcelonot speciied

- Receive - receiveTravelRequest O Errer Target variable is not specified.

é} Scope - Scope_1

E}§ Sequence -
Assign - AssignEmployvee

{;‘?P Invoke - EmployeeTravelStatus

E-}" Scope - Scope_2 ProblemSolution:
(-0 Flow -

E} § Sequence - Sequence_1 m PROBLEM
4B Tnvoke - Delkadirines .
: 2k Receive - Deltadirines :
E} § Sequence - Sequence_1
48 Invoke - Americandirlines
E&} Receive - Americanairlines
E—J--- Scope - Scope_3 # 1. Double click the Assign task to invoke the editor.
E}@ Switch - Switch_L 2 Onthe Copy Rules page, selectthe copy rule and hitthe

E}@ Case - Edit button to edit the copy rule.

B § Sequence -

{;‘?P Invoke - Ameticandirline

Source is not specified.

%

+J SOLUTION

o e ‘3,} Receive - Americanirlin
(2] Default -

B § Sequence -
4B Tnvoke - DeltatitinesRe

G.&} Receive - Delkadirlinesk After you make your changes, you can test if your changes have fixed the validation errors by
clicking the editor's Apply button and viewing the updated walidation status at the top of the
----- = Reply - replyTravelRespoonse e
editor dialog.
Errors: & ‘Warnings: O Walidate
Yalidation Done.
Help Close

Testing SOA composite applications

Oracle SOA Suite 11g enables us to simulate the interaction between an SOA
composite application and external web services it uses, by providing an automated
test suite framework for creating, deploying, and running repeatable tests on

SOA composite applications. This way we are able to test composite applications
before deploying them to a production environment. With the use of the test suite
framework, we can simulate interactions with partner web services, validate process
steps, and create test reports.

[240]

Chapter 4

A test suite is used to group one or more test cases, where each test case defines a set
of actions that have to be executed during the test run. By using emulations, we are
able to simulate the behavior of services and service binding components. Assertions
enable us to specify the expected value of data or process flow to be able to verify the
result. When performing the test run, if actual values are the same as the expected
values, we say the test run was successful. To create a new test suite in JDeveloper,
we have to right-click the testsuites folder in the Application Navigator and select
Create Test Suite:

{ZlApplic... | 1 1@ & o
Traveldpproval - =
Projects Bl & V- =

El--- Travelapprowval
=[] 508 Contant

[7] dasses
-0 p
&0 Mew, ., N
B-F3 Exchude Project Content;
&3 x Delete
...... =% Create Test Suite. ..
""" o Make Ctrl+ShitkFQ
""" Reehuild AltShift-Fa
------ aa Refackar b
----- 4 | 5 reformat CHrl+ AL
------ Organize Irmports Ctril+alt-0
------ el
. Zompare With]
Restore From Local Histary,

We enter test suite name and click OK. The Create Composite Test dialog appears.
We type a test name and optional description and click OK.

é- Create Composite Test
Mame: lagicTest |
Description:

Help | | o4 | | Zancel

[241]

Using BPEL with Oracle SOA Suite 11

This creates a test file named logicTest.xml and SOA Composite editor opens in
test mode. We can always switch back to design mode by clicking the Return to SOA
Composite Diagram icon.

ﬂglogicTest.xml =
& ; N —':'j % 4 @ i]g *g | & ?585) @ 3 Composite: TravelApproval

|Return ko S04 composite diagram h

= &
EmployeeTrav...
Opemations:

EmployeeTravel. ..

=
AmericanAirlin...

Flightayvailability
MakeReseration

TravelApproval FlightTicketCallb...
MakeReseratio. ..

=
Deltafirlines
p

Flightayvailability
MakeReseration

FlightTicketCallb...
MakeReseratio. ..

[242]

Chapter 4

Here we can create test initiations, assertions, and emulations. First, we will create
the initiate message used to invoke the SOA composite application test. To do that,
we have to double-click the service binding component. The Initiate Messages
dialog appears:

é- Initiate Messages E

Operations Initiate Message For Operation <Traveldpproval=

Message Parks

Partl travelRequest -

Yalue: —]
(%) Enter Manually () Load From File

Enter Yalue: Generate Sample | | Save hs

<Travelfipproval xmlns="http://packtpub.con/bpel /travel />
<employee xulns=""l
FirstHame:Marcels /FirstHame:
<LastHamerKrizevnik< LastHame:>
<Department-3I1L< Department-
</employee’
<flightData xmlns="">
<RegquestHo:Requestio2 4 /RequestHo:
<OriginFrom-Ljubljana< /0riginFrom:
“DestinationTo>Pari sk /DestinationTos-
<DesiredDepartureDate>2010-06-14< DesirvedbepartureDate’-
DegiredReturnDate>2010-06-14< /DesiredReturnbDate:
</flightDatas
< /Travelipproval -

Delaw: “E‘ s E Mons E Days E Hrs E Mins E Secs |:~|

Help QK | | Cancel

[243]

Using BPEL with Oracle SOA Suite 11

Here we generate a message to initiate the SOA composite application. We close

the dialog by clicking OK. Now, we will emulate messages, returned from three
partner services. We have to double-click each wire connecting a partner service and
the BPEL process and open the Emulates tab. Here we click the plus sign to create a
new emulation. The Create Emulate dialog appears. We generate a sample output
message and confirm by clicking OK:

é- Create Emulate [x|

(%) Ermulate Output

Cutput Message: |-{http:,I',l'packtpub.com,l'service,l'employee,l'}EmployeeTravelStatusResponseMessage |

Message Parts

Part: |tra\-'e|C|ass

Yalue: - =)
() Enter Manually () Load From File

Enter Yalue: Generate Sample | | Save As

<travelClass xmlns="http: /s /packtpub.con/zervice/enployee /" >Econony< /travelClassx

Duration: “EI Yrs IE‘ Mans EI Days EI Hrs EI Mins EI Secs |:~|

| Help | | oK | | Cancel |

Now we have to emulate both airline services. We will emulate both Callback
operations (FlightTicketCallback and MakeReservationCallback). The
following screenshot shows the emulation of the F1ightTicketCallback
operation for the American Airlines partner service.

[244]

Chapter 4

() Emulate Callback!

Callback Operation: |FIightTickatCaIIback

|
Callback Message: |-{http:Npa(ktpuh.(nrru’serviEE,l’a\rlina,l’}-Trava\REspnnsEMEssagE |
Message Parts
Parts | confirmationData 'l
Walue: - .
(#) Enter Manwallky () Load From File
Enter Value:

Generate Sample | | Save As

<confirmationData xmlns="http:/ packtpub.con/servicesairline/ "
<FlightHo xmlns="">N3124< /F1lightHo>
<TravelClass xmlns="""+Economy< /TravelClass>
<Price xmlns="">300.73</Price>
<DepartureDateTime xmlns="">2Z010-06-14T19:12: 54. 363< /DepartureDateTime>
<ReturnDatelTime xmlns="">2010-06-14T189:12:54.363</ReturnDateTimez
<Approved xmlns="">true< Approved:

</confirmationData>

Duration: “E‘ rs E Mons E Days E Hrs El Mins El Secs |:—|

Help | oK | |

Cancel

The emulation of the MakeReservationCallback operation:

Emulate Callback,

Edit Emulate

Callback Operation: |MakeReservatiUnCa|lback

|
Callback Message: |{http:J‘,l’packtpub‘com,l’service,l’airIineI}ReservationResponseMessage |
Message Parts
Part: | reservationData -
Walue:
1 Enker Manually
Enter Value:

Generate Sample | | Save As

<reservationData xmlns="http:/ /packtpub.cons/service/airline /">
<FlightHo xnlns="">N3124</FlightHo>
<Confirmed xmlns="">true</Confirmed:-

</reservationData-

Duration: “El frs [l Mons El Days [l Hrs [l Mins [l Secs |:—|

Help |

OK | |

Cancel

[245]

Using BPEL with Oracle SOA Suite 11

We repeat the upper step for the Delta Airlines partner service; however, we will set
the price to 330.72. Therefore, we expect that the BPEL process will choose the ticket
from American Airlines.

Now we have to create an assertion to verify the BPEL process response. We create
an assertion by double-clicking the wire that connects the BPEL process and the
service binding component. On the Asserts tab, we create a new Assert Output,
which specifies the expected process result (we expect that the ticket number N3124
was selected and confirmed):

& Edit Assert

() Assert Input (3) Assert Output

Assert Target: |ReservationResponseMessage || Erowse |

Compare Biy: |xml-similar i |

Assert Yalue: Message Parks

Patt: |reservati0nData - |

Walue:

() Enter Manually () Load From File
Enter Yalue: Generate Sample | | Save As
<reservationData xmlns="http:/ packtpub.con/servicesairline/">
<FlightHo xmlns="">N3124</FlightHo>
<Confirmed xmlns=""">true< /Confirmed:-
</reservationData-
Drescription:
| Help | | (o] 4 | | Cancel |

We click OK twice to close the dialogs. Our SOA composite application opened in
test mode now looks like this:

[246]

Chapter 4

Exposed Services Components External References

s

EmployeeTrav...
Operations:
EmployeeTravel. ..
—— @ - %
St @ @— — AmericanAirlin...
1'!_&:: 1A) Operations:
rave Approva.... Flighthvailability
Operations:

MakeResa rvation
FlightTicketCallb...
MakeReservatio...

TravelApproval

:
&

DeltaAirlines
Operations:
Flightvailability
MakeRasae rvation
FlightTicketCallb...
MakeReservatio. ..

After creating the test suite and test cases, we can deploy them as part of the SOA
composite application. Then we can run test cases using the Oracle EM Console.
We will demonstrate this in the Managing SOA composite applications section.

Deploying SOA composite applications

Let us now show how we deploy a BPEL process to the Oracle SOA Server. We will
assume that Oracle SOA Suite 11¢ has been successfully installed according to the
installation instructions and that it uses the default port 8001. As every BPEL process
is part of a SOA composite application, we deploy it as every other composite.

The first step of deployment is to package the SOA composite application into an
SOA archive (SAR) JAR file. A SAR file is a special JAR file that requires a prefix

of sca_ (for example, sca_HelloWorld revl.0.jar).

The SAR file is analogous to the BPEL suitcase archive of the

previous releases, but at the higher composite level and it can contain
s additional service components of other types (Mediator, Business
Rule, Spring, and Human Task).

[247]

Using BPEL with Oracle SOA Suite 11

The packaged SAR can include the following:

e Services, references, and service components.

e Oracle Web Service Manager (OWSM) policies and human workflow tasks
flows.

e Metadata, such as WSDL, XSD, and XSLT files. These metadata are deployed
to an SOA Infrastructure partition on the server. We can access these artifacts
from JDeveloper using an SOA-MDS connection.

We can create SAR files and deploy them to the server using one of the
following tools:

e Oracle JDeveloper

e Ant scripts
e WebLogic Scripting Tool (WLST) commands

Generated SAR files can also be deployed using EM Console.

Deploying from JDeveloper

First, we have to create a connection to the Oracle WebLogic Server to which we
want to deploy an SOA composite application. From the File main menu we select
New. In the General list we select Connections. Then we select Application Server
Connection and click OK. We enter the connection name. For the connection type,
we select WebLogic 10.3. Then, we click Next.

é-treate Application Server Connection - Step 1 of 5

Name and Type

2 Name and Type Specify & unique name and type For the connection, The name must be a valid Java identifier.
Y duthentication Create connechion in: Resource Palette
Connection MName:

[vm_s0a119P52_sppsere

Connection Type:

| weblogic 10.3 hd

Help Mext = || Einish || Cancel

[248]

Chapter 4

We enter username and password and click Next again. Now, we enter a WebLogic

server hostname, port, and domain:

é Create Application Server Connection - Step 3 of 5

Configuration

Domain of the target will be verified

—
p.

Authentication

‘Weblogic Server connections use a host name and port to establish a connection, The

T . weblogic Hostname (Administration Server):

T Configuration [vmorasoatigrsz |
i e Port; 551 Port:

s [7oot | [roo2 |

[] Always use S5L

‘Weblogic Domain:

|dnmaln1

Help < Back, " Mext > Jl Einish || Cancel

Then we click Finish. The connection to the application server is now created.

In order to deploy an SOA composite application, we have to right-click the SOA

project and select Deploy | Project_name.

Fle Edit View Application Refactor Search Navigate
c@Eg 9
il . [=] \‘S"f’a (2] Travelapproval bpel

TravelAppmva\ V - -2 5-00 (@-

s

Versioning Tools

[o eeer | [EB Moritor | []

é-l:lra(le Jpeveloper 11g Release 1 - TravelApproval.jws : TravelApproval.jpr

Build Run

KER QO-O - G-kl

Window Help

- B

~ Proj... @ @ 7 -

=& ™

Partner Links

=-3

[Applicatio
[Data Conl
[+ Recently

3= structure

L L
Mew...

Edit Project Source Paths..,

. x Delete Project

¥ersion Project,..

cti-N

: |} Subrmit this project ko Oracle Enterprise Repository

-| @8 Find Project Files

Show Crverview

‘ﬁ Make Travelapproval.jpr
Ty Rebuid TravelApproval,jpr

Deploy

Cctil-F9
AltFD

=
| ¢ pebug

I3 Reformat
Qrganize Imports

Ci+ARL
Ctri+AR-O

9

Compare With
Replace with

htavailabilicy

Restore from Local History...

9

2]

Project Properties. ..

tAirline

Partner L,

e

EmplayesTrav

e

Arnericansir

e

Dieltairlin

[249]

Using BPEL with Oracle SOA Suite 11

The deploy project wizard appears.

é- Deploy TravelApproval E

Deployment Action

fel Deployment Action | Select a deployment action From the list below,

).rk Deploy Confiquration

Deploy ko Application Server
Deploy to SAR

Deploy this archive ta S04 configured Application serveris)

Help Mext = Cancel

We have to select one of the following deployment options:

Deploy to Application Server: Creates a SAR file for the selected project and
deploys it to the Oracle WebLogic server.

Deploy to SAR: Creates a SAR file, but does not deploy it to the application
server. This option is useful if the server is currently not running, we do not

have deployment privileges, or we want to deploy multiple SAR files using
a batch script.

[250]

Chapter 4

If we select the first option, the Deploy Configuration display appears:

é- Deploy TravelApproval

Deploy Configuration

Deplovment Sckion
=3 Deploy Configuratior

A Select Server

| bep |

offd Traveldpproval

Composite Revisian ID S08 Configuration Plan

Project: (3) Da nat attach

Current Revision ID:

Mew Revision ID:

Mark composite revision as defadlk,
|:| COwerwrite any existing composites with the same revision 10,

[] Use the Following S0 canfiguration plan For all composites:

| < Back || Mext = | Cancel

Here, we can change the revision (Revision ID), mark the composite revision as
default, and select whether we want to overwrite existing composites with the same
Revision ID. Revision numbers are used to deploy different versions of the same
composite and run them simultaneously.

Optionally, we can also attach a configuration plan. Then we click Next.

Configuration plans are simple XML configuration files, used
* to search-and-replace environment-specific values (JDBC
% connection string, hostnames, ports) when moving or deploying
projects to different environments (typically development, test,
and production).

[251]

Using BPEL with Oracle SOA Suite 11

Now, we have to select the application server connection:

é- Deploy TravelApproval

Select Server

Application Servers:

Deploy Configuration

IntegratedWeblogicServer {domain unconfigured)

Il Select Server

)T\ S04 Servers

Cwerwrite modules of the same name

| bep |

< Back " Mext = J| Finish || Cancel

We click Next. The SOA Servers display appears:

é- Deploy TravelApproval
SOA Servers
Chaoose the target SOA server(s) and corresponding partitions to which you want ko deploy this
/l\ archive,
/l\ SO8 Server: Partition: Status: Server URL:
Select Server E% soa_serverl |deFauIt * RUMNMING http:f ¥MOrasoall..,
).l.K S0A Servers
o Summary
Help < Back || Mext = | | Finish | | Cancel

[252]

Chapter 4

Here we have to select the SOA server and partition to which we want to deploy
our SOA composite application.

Oracle SOA Server is logically divided into partitions. The default
partition (named default) is created automatically during the
% installation. In fact, partition is a new name for BPEL domains from
=~ Oracle SOA Suite 10g. The name has changed, as it could be easily
confused with WebLogic Server domains.

By clicking Next, the Summary display appears:

6- Deploy TravelApproval

Summary
Deployment Summary:
I_;}---SOP. Deployment Summary
i Global Configuration Plan: none
,-T\ SO Servers Mark Composite Revision as Default: Yes

#-Owerwrite Existing Composites: Mo

[-508 Archive: sca_Traveldpproval_revl.0.jar
508 Server Target(s)

---SOP. Server: soa_serverl

W/ Summary

| Help | | < Back | | Finish || Cancel |

After clicking Finish, we can view the messages that display in the Deployment
log window at the bottom of JDeveloper. If the deployment was successful, the
SAR file is created under the deploy folder with a naming convention of sca_
compositename_revrevision number.jar. Now, we can test and manage our
deployed application using EM Console.

[253]

Using BPEL with Oracle SOA Suite 11

Creating configuration plans in JDeveloper

As already explained, a configuration plan is an XML file that can be attached to the
SAR file during the deployment of an SOA composite application. It allows us to
define search-and-replace operations that have to be performed when deploying to a
specific environment. We usually create one deployment plan for each environment.
In JDeveloper, we can create a configuration plan by right-clicking the composite.
xml file and selecting Generate Config Plan:

iZlapplication 6. [=] | & Travelapproval.bpel
[Travelapproval - e [& O R ol
Projects Bl &Y=

Partner Links

=] Traveldpproval
=77 504 Content

-] classes

{7 testsuites

-7 xsd

=23 xsl

L[TramsformEmployves xsl

-2 Business Rules

------ Airline . wsdl

----- o3 composit !

------ Emploves Open

,,,,,, e Travelipg Exclude Project Content

..... {é‘a Traveldpg x Delete

------ TravelAPE [= peformat Chi+AlEL
""" TravelfDE yidate wmL

|} Submit this file to Oracle Enterprise Repository

Make Ctri+ Shift-FO
Rebuild Alt+Shift-FQ
Caompate With]
Replace with »

Generate Config Plan

‘talidate Config Plan

I

[254]

Chapter 4

The Composite Configuration Plan Generator dialog appears as follows:

é- Composite Configuration Plan Generator E

This will generate a S04 composite configuration plan undar the Folder
i\ IDeveloperimyworki Travelapproval\ Traveldpproval,
Specify the File name {.xml) for the configuration plan,

[] Crvervarite existing File

| Help | | [a]'4 || Cancel |

We can change the name of the configuration plan and specify whether we want
to overwrite existing file with the same name. We click OK. This creates and opens
a configuration plan file for editing. Here, we can modify environment-specific
properties, like hostnames, port numbers, JDBC connection string, and so on. In
the following example, we change the server hostname from vMorasoa11gps2 to
OraSOAllg_Test, and the port number from 8001 to 8011.

E TravelApproval_cfgplan.sml | E]
| @~ 20 ~
<rxml wersion="1.0" encoding="UTF-5"2-

= <S0RConfigPlan xmlhs:jca="http://platforn. integration.oracle/hlocks/adapter,/fw/netadata™ xml
= <composite nawe="Trawveldpprowval™s

= <l==idd search and replace rules for the import section of a composite
Exanple:
<searchFeplaces
<gearchrhttp: //my-dev-server< /searchs-
<replace=http: //uy-test-server</replaces
<searchFeplace:
<searchFeplaces
<gearchx8855< /searchs>
<replace=8859< /replaces
<gearchFeplace--->
= <import:
= <searchReplace:
<search-VI0rai0allgP 32 /search>
“replace>0raflilly Test< /replace>
< /searchReplace:
= <searchReplace:
<gearch:5001< /‘search:
<replace-5011< /replace-

</searchReplace:
< /import-
= <service name="client ep”>
= <hinding type="w3">
Source | History

[255]

Using BPEL with Oracle SOA Suite 11

We can validate the configuration plan by right-clicking the file and selecting
Validate Config Plan. Now we can attach the created configuration plan during
the deployment:

é- Deploy TravelApproval

Deploy Configuration

T Deployrent Action HfS Traveldpproval

=) Deploy Configuratior Composite Revision I0 S04 Configuration Plan

Select Server Project: te]
M 1 () Do not attach
(@) Select a configuration plan From the lisk.

(CriER ASHEE 1ok Traveldpproval_cfgplan.=ml

Mew Revision I0:

Mark composite revision as default.
|:| Owerarite any existing composites with the same revision ID.

[Use the Following S04 configuration plan For all compasites:

Help < Back || Mext = Cancel

. Creating and attaching the configuration plan does not modify
% the source composite.xml and related WSDL and XSD files.
= Replacement occurs only when the SOA composite application
is deployed.

Deploying using Ant Scripts

We can also manage SOA composite applications from a command line using Ant
scripts or the WLST scripting utility. These options are well suited for automation
and can be easily integrated into existing release processes. In this section, we will
take a quick look at how to compile and deploy SOA projects using the Ant utility.
For instructions on how to manage SOA composites using the WLST utility, please
refer to Oracle Documentation. Ant scripts reside in the Middleware Home\SOA_
Suite_ Home\bin directory. For additional information about Ant, visit
http://ant.apache.org.

[256]

Chapter 4

ANT HOME and JAVA HOME environment variables have to be set
s to be able to deploy composite applications using the Ant utility.

This is an example of compiling an SOA composite application:

ant -f ant-sca-compile.xml

-Dscac.input=c:\mywork\TravelApproval\TravelApproval\composite.xml

This is an example of packaging an SOA composite application into a SAR file:

ant -f ant-sca-package.xml

-DcompositeDir=C: \mywork\TravelApproval\TravelApproval
-DcompositeName=TravelApproval

-Drevision=2.0

This is an example of deploying an SOA composite application:

ant -f ant-sca-deploy.xml

-DserverURL=http://VMOraSOA11gPS2:8001
-DsarLocation=C:\compiled packages\sca TravelApproval rev2.0.jar
-Doverwrite=true

-Duser=weblogic

-DforceDefault=true

-Dconfigplan=C:\compiled packages\config plans\TravelApproval cfgplan.
xml

Managing SOA composite applications

We can manage deployed SOA composite application a using a combination of
Oracle JDeveloper and Oracle Enterprise Manager Console (EM Console).

[257]

Using BPEL with Oracle SOA Suite 11

Managing SOA composites using JDeveloper

Using JDeveloper, we are able to deploy, undeploy, activate, and retire SOA
composite application revisions. First, we have to create a connection to an Oracle
WebLogic Administration Server on which the SOA Infrastructure is deployed.
Then we open the Application Server Navigator. We expand the connection name.
By expanding the SOA folder, all deployed SOA composite applications and
services appear:

|G =)

[Fah]

©l Application I_-IJAppIicatiun SEer... | =)
B

Ell_ﬂ Application Servers
JJ IntegraktedWeblogicServer (domain unconfigured)
- ¥M_SOA11gPS2_AppSery
-] Clusters
{:l Deploymments
I:l Servers

El{fﬁ:l defaul
ﬂ-"ﬂ Americandirlines [1.0]
ﬂ-"ﬂ Arnericanbirlines [Defaulk 1.0]
w-off Dekadirlines [1.0]
ﬂ-":g Deltadirlines [Default 1.0]
ﬂ-"ﬂ Traveldpproval [1.0]
ﬂ-":g Traveltdpproval [Defaulk 1.0]

----- 7 weh Services

If we right-click a deployed SOA composite application, we can perform one of the
following actions (the actions that display are based upon the current state of the

application):

Option Description

Retire Allows us to retire the selected composite revision.
This means that we are no longer able to creates new
instance of the retired revision. However, existing
instances are able to complete normally. Every
retired composite revision can be activated again.

Activate This action activates a retired composite revision.

[258]

Chapter 4

Option Description

Undeploy We use this action if we want to undeploy a
composite application revision. The consequence of
this action is that we are no longer able to initiate
a new instance of this revision and the state of all
running instances is changed to stale.

Set Default Revision We use this action if we want to set the selected
composite revision to be the default.

If we right-click the SOA folder and select Deploy SOA Archive, we are able to
deploy a pre-built SOA composite application archive.

Managing SOA composites using Enterprise

Manager Console

With the use of Oracle EM Console we can deploy, undeploy, initiate, debug,

test and manage SOA composite applications. To log into the Oracle EM console,
we have to open a web browser and access the following URL: http://host_
name :port/em, where host name is the name of the host on which Oracle EM
Console is installed and port is a number that is set during the installation process
(default is 7001). We enter a username (weblogic is the default EM Console
administrator username) and password and click Login. The EM Console opens,
displaying the status of servers and deployed applications.

ORACLE Enterprise Manager Fusion Middleware Control 11g Setupw Helpw Log

FfFarm » | & Topology

Farm_domainl @ Logged in 43 webl
Page Refreshed 15-Jun-2010 10:19:37 CES

+ [son = Deployments = Fusion Middleware &
[WebLagic Domain

[BAM

4) Metadata Repositories

7 [User Massaging Service |E |t

Hame Status Target Mame ctots | Host CPU Usage

2] [applicstion Deplayments (98]
1 [Internal Applications = [[)weblogic Damain =

i 4 [JResource Adapters =l (3] domaint .
@) Dopust Dopustiservics corterton (p smaservert 3 adminSarver T wersostip= 259
@ BPMCompazer B | soeserven 5 bam_servert G wmorsoangps2 15
@) campaser F soaservert 5l oer_serverl @ YMOraS0A11gPS2
@ DefaukToDoTaskFlow G soaserverl 5] sos_servert Ay UMOrIS0A11gPS2 208
@ Internablarocila-InternaMaracilsServi O snaserveri = l_leM R
@yoer O owservrt [OracleBamServer (bar {F uMOrasoA1LgPS2
@jorade-bam(11.4.1) G bamservert @ OrzckBamiie (bam_ F UMOraSOALLPS2
@ CrackBPMCampaserRolesApp G soaservert = [[)Metadsts Repositories
) OrackBPMProcsRalesapp G seservert mds-oumsm UMOraS0A1 1gPS2
@) raclkEPMarkspace G soaservert mdli-soa YMOFSSOA11GPS2
@, PoslovnaPotouanjs-Potowalnif szreds & sna_serveri S [User Messaging Service
@, TFormDopalniteulnternegatarocila G soaservert usermessagingdriver- {F UMOraSOALIGPS2
@, TFormkonotrolalnternegatarocila T zoa serverl usermessagingdriver- < WMOraSoA11gRE2

[259]

Using BPEL with Oracle SOA Suite 11

Now, we will navigate to Oracle SOA Suite administration tasks through the
SOA Infrastructure home page. There we can access and manage all deployed
SOA composite applications, service engines, service components, and so on.

To navigate to the SOA Infrastructure home page, we have to expand the SOA |
soa-infra in the navigator. This displays all SOA composite applications running
in the SOA Infrastructure. If we click soa-infra, the Dashboard page of the SOA
Infrastructure opens:

¢ soa-infra@
ﬁ SOA Infrastructure -

Logged in as weblogic| Host YMOrasoa11gy
Page Refreshed 15-Jun-2010 10:04:06 CEST

Dashboard = Deployed Composites | Instances | Faulks and Rejected Messages
@
Recent Composite Instances Deployed Composites
Shaowe 2nly Running Instances [Running 0 Total 363 Compasite Status Mode Instances Faulted Instances
Instance ID Composite Start Time @ Traveldpproval [1.0] o Active a7 1
240227 Trawelapproval [1.0] 18-Jun-2010 10:03:53 9 Americanairlines [1.0] J Active B3 0
240226 Americandirlines [1.0] 14-Jun-2010 19:45:58 @ Deltasirlines [1.0] ,J' Active a5 0
1 240225 Trawelappraval [1.0] 14-Jum-2010 19:45:52
240224 Americanairlines [1.0] 14-Jun-2010 19:41:02
o 240223 Trawelapproval [1.0] 14-Jun-2010 19:41:01
240222 Amnericansirlines [1.0] 14-Jun-2010 18:13:02
1240221 Trawelapproval [1.0] 14-Jun-2010 18:12:01
240220 Americanairlines [1.0] 14-Jum-2010 1%:10:04
B 240219 Travelapprowval [1.0] 14-Jun=2010 18:09:49
% Show all % Show all (3]

Recent Faults and Rejectad Messages

Shaw only systern faults [+

Error Maszage Recovary Fault Location

Fault Time Composite ICDomposlte [ietapce

Logs
@ FaultHarne: {{htkp: /fschernas.on
@ =bpelFault= =Fault Type=0=Fa.

15-1ur-2010 10:03:58 Travelappraval [1.0 “-L!ﬁclient_ep
15-1un-2010 10:03:58 Traveldpproval [1.0 a‘eaTrauelAppro\ral 240227

240227 i

The page displays details about recent composite application instances, deployed
composites, recent faults, and rejected messages. We can also click a specific SOA
composite application name or Instance ID to access additional information.

Deploying and undeploying SOA composite
applications

We can deploy SOA composite applications by opening the SOA Infrastructure
menu and selecting SOA Deployment | Deploy.

[260]

Chapter 4

<t soa-infra @
g—g SOA Infrastructure -
Home
ites Instamces | Faults and Rejected Message:
Monitoring »
Cantral]
Lags sl Running 0 Total 363
Start Tirne
208 Depl ; y =1 15-Jun-2010 100358
Eploymen EEE 14-Jur-2010 19:45:55
Manage Partitions Undeplay ... 14-Jur-2010 19:45:58
Redeploy .. 14-Jur-2010 19:41:02
Service Engines 3 14-Jum-2010 19:41:01
Cin Ll 14-Jur-2010 15:13:02
neings 0] 14-Jun-2010 181301
Serwvices and References 1.0] 14-Jun-2010 18:10:04
0] 14-Jum-2010 18:09:49
Eusiness Ewents
sages
S8 Administration
Security »
Adrinistration H Recovery
racle.con 15-Jun-201
General InForrnation bl Type:= 15-Jun-201
The following display appears:
1 50a-iNfra (oracke sos nfva) @ * Deploy SOA Composite Q
[B—— 0
Select Archive Select Target Confirmation
Select Archive (3) Cancel | Step 10of3 | Mext

This wizard lets wou create a runtime ervironment for SOA compasite applications, Once this operation is performed, these applications can
be administered using Cracle Enterprize Manager, & single composite revision or 2 bundle containing revisions of multiple S04 compaosites
can be deployed.

Specify the archive and configuration plan to deplay a single revision of a S8 composite, Or specify a ZIP Ale and configuration plan to
deploy multiple camposite revisions at once,

Archive or Exploded Directory

‘fou can deploy a Service archive (SAR) or a ZIP file containing one or more Service archives (SARs), Ensure that the revision infarmation
Far each SOA composite is provided in its application package.

(% Archive iz on the machine where this web browser is running.

Frebrskaj ...

™ Archive an the server where Enterprize Manager is running.

Configuration Plan

The configuration plan is a file that contains the deployrment settings for a SO& composite rFevision,

% 1o external configuration plan is required,
. Configuration plan is on the machine where this web browser is running.

Frebrzk.

" Caonfiguration plan is an the server where Enterprize Manager is running.

[261]

Using BPEL with Oracle SOA Suite 11

Here we can browse for an SOA Archive (SAR) file or a ZIP file containing multiple
SAR files. We can also attach a configuration plan. Then we click Next. We have to
select the SOA Partition where to deploy the composite application.

¢ 50a-iNfra (orack sos ks @ ¢ Deploy S0OA Composite Q
1. - _I

= |

Select Archive Select Target Confirmation

Select Target Cancel || Back | Step2of3 | Mext

WebLogic Server or Cluster

Eased on the context fram which you launched this wizard, the selected compasite will be deployed ta the Weblogic server ar cluster shown below,

If wou wish to deploy to a different target, click Cancel bo exit this wizard, navigate to a different WebLogic server af cluster or to the WeblLogic
Dramain, and select Deploy again,

Deployment Target J JFarmn_domainlfdamainlfsoa_serwerl
Type Oracle Weblagic Serwar
SO8 Composites Deploved & 3

S0A Partition

Parlitions are logical groupings of composites that help vou manage large deplowments, The selected composite will be deplowed ta the partition
shown below, IF wou wish to deploy to a different partition, select it from the list below,

=l

We click Next. On the Confirmation screen, we can select whether we want to
deploy as a default revision or not.

1 $0a-infra (orade soa niva) @ ¢ Deploy SOA Composite 0

= = =]
Select Archive Selact Target Confirmation

Confirmation Cancel || Back |Step3ofz | Deploy

‘fou are deploying the following 204 composite revision, Click "Deploy” to continue or click "Cancel” to cancel this operation,
Composite Marme Traweldpprowal
Composite Revision 2.0
Archive Location sca_TravelApprowal _rewz.0.jar
Configuration Plan Mo external plan specified

Deployrment Target fFarm_domainlfdomainlfsoa_serwverl
SO Partition default

Default Revision

The abowe revision will be deployed as the new default revision of the composite. IF wou wish to keep the current default wersion, please choose
the "Do not change" option below, You can set a different default rewision later at any time in the Deployed Composites page that can be accessed
from the SOA Infrastructure barget renu,

¢ Do not change the default revisian

[262]

Chapter 4

Finally, we deploy the composite application by clicking Deploy.

If we want to undeploy the composite application, we open the SOA Infrastructure

menu and select SOA Deployment | Undeploy. In the next step, we have to
choose the application:

¢ 50a-infra (orads sos k) @ & Undeploy SOA Composite 0
B——8&

Salect Composite Corfirmation

Select Composite (2) Cancel | Step 1of2 | Mext

The Undeploy wizard lets yvou delete a runtime environment of a S0& composite application, Once this operation is performed, you can no longer
adrninister this composite using Cracle Enterprize Manager, Also, instances of this cormposite revision will no longer be pracessed,

Select the revizion of 3 SO cormposite that wou want to undeplay.
£0A Composite Deployments

Shaow anly retired compasites [

Composite Rewvision Status Mode Dreployment Target
" @ TravelApprowal [1.0] 1.0 [default) J Active JfFarm_domainl/domainifsoa_seru
@ Delativines [1.0] 1.0 (default) J Active fFarm_domainl/dormaind fsoa_sers
@ Americandirlines [1.0]

1.0 (default) J' Active fFarm_dorainl/domaindfsoa_sers

1]

We click Next and finish with undeployment by clicking Undeploy on the
Confirmation screen.

[263]

Using BPEL with Oracle SOA Suite 11

Initiating an SOA composite application test instance

Under soa-infra, we select a specific SOA composite application. A page showing
detailed information about a composite application appears:

J"- TI'ElUdAppI'OUEIl [1 .0] @ Logged in as weblogic| Host WMOraSCa 11
offf S0A Composite ~ Page Refreshed 15-Jun-2010 11:11:50 CES]
Running Instances 0 | Total 27 | Active | Relire .. Shut Down.., Test Settings,., * (-3;, E

Dashboard Inztances Faults and Rejected Meszages Unit Testz | Palicies

@
Recent Instances
Show ©nly Running Instances [Running 0 Total 27
Instance I Mame Converzation ID State Start Time
240227 @ Faulted 18-Jum-2010 10:02:58
@ 240225 i o--- 14-Jum-2010 19:45:58
o 240223 Stale 14-Jum-2010 19:41:01
= 240221 Shale 14-Jum-2010 13:12:01
= 240219 Shale 14-Jum-2010 18:09:49
% Show all

Recent Faults and Rejected Messages

Shows anly zystarn Faulks 7]

Error Message Recovery Fault Time Fault Location CempEelie UnEmEs

o Log
2D Faultdsme: {{http: fscherr 15-Jum-2010 10:03:58 #elient_ep 240227 T
@ =bpelFault = =faultType =0 15-1un-2010 10:03:58 d'?‘Tra\rel.ﬂ\pprmral 240227 E

To initiate a new composite instance, we click the Test button on the toolbar.

The Test button is enabled only if the composite application is exposed as
s a Web Service.

The Test Web Service web page for initiating an instance appears:

[264]

Chapter 4

_j' TravelApprovaI [1 .0] @ Logged in as weblogic| Host YMOraSoa1l
o 508 Compasits - Page Refreshed 15-Jun-2010 11:13:1F CES
Test Web Service (@) Tast Uieh Service

Use this page to test any WSDL, including wiSOLs that are not in the Farm, To test 3 Wreb service, enter the wrsSDL and click Parze
wrsoL, uhen the page refreshes with the WrSDL details, first selact the Servicethen zelect the Part, and then select the Operation that
you want ba test, Specify any input parameters, and click Test Web Service,

WEDL | hitp: fWMOr 2508 11gPS2 8001 fsoarinfra/services Mdefault/ Travel Approval fclient_sp?SOL 'lg Parse WrSOL
HTTF Basic Auth Option Far WrSOL Access

Service clent_ep
Part TravelApprowalPT_pt
Operation Travel.ﬂ.pproval;l

Endpeint URL | hittp: /fvmorasoallgps2: 8001 /m0aminfrafservices /default/ Travelspprovaljclie| Edit Endpoint URL [

We have to select the operation we want to invoke and enter the input values in the
input fields on the bottom of the Request tab:

Input Arguments

Tree Wieve ;I
Mamsa Type Yalue
= * travelkequest TravelRequestType
— employes EmploveeType
FirstHame shrimg Marcel
LastMarme string Krizewnik.
Department string SIL
— HightCrata FlightRequestType
Requestho string 43243
OriginFrom string Ljubljana
DrestinationTo string Paris
DresiredDeparturabiate date 2010-12-15
DresiredReturnDate date 2010-12-17

Request Response

Test ureh Service

Notice that this tab also enables you to specify security, quality of service,
HTTP transport, stress testing options, and so on. However, we will only enter
the input arguments.

We can also switch to the XML View to see and set the SOAP
s request in XML form.

[265]

Using BPEL with Oracle SOA Suite 11

By clicking Test Web Service, we initiate a new SOA composite instance. The
following page opens, displaying the response of the composite application:

Fequest Response

Test Status Passed
Response Time (ms) 1609

Tree Wiew d

Launch Message Flow Trace

Marne Type Yalue

=] resarvationData FlightR ezervationTy

Flightta string R & EE]

Confirmed boolean true

Viewing the SOA composite instances flow trace

After initiating a new composite instance, we can see the instance flow trace by
clicking the Launch Message Flow Trace link. The Flow Trace page appears:

Flow Trace ®

Faults (D)
Faults

Etror Meszage
Mo Faults Found

+ Sensors (0]
Trace

Show Instance I0s [

Select a Fault to locate it in the trace view,

This page shows the Aow of the message through watious compesite and compenent instances, | 2

Click a cornponent instance to see its detailed audit teail,

Instance Type Uzage State Tirne Composite Instance

= @ dient_ep leh Senvice & service « Completed 15-Jun-2010 13:48:23 TravelApproval of 240234
= &% Travelapprowal BPEL Cornponent " Completed 15-Jun-2010 13:48:23 Traveldpprowal of 240234
@ EmployeeTravelStatus Ieb Service o peference " Completed 15-Jun-2010 13:48:23 Traveldpprowal of 240234
= @ Amnericandidines tilab Servicellocal Inwocal ¥ Reference " Completed 15-Jun-2010 13:48:23 Traveldpprowal of 240234
"'-l- TicketService Web Servicellocal Inwacal "’3 Setvice & Comnpleted 15-Jun-2010 13:48:23 Arnericandidines of 240235
&% Brnericandinines BPEL Cornponent " Comnpleted 15-Jun-2010 13:48:23 Americandidines of 240235
= @ Deltadidines \Web Service(local Inwacal # Referance « Completed 15-Jun-2010 13:48:23 TravelApproval of 240234

@ TicketService e ServicelLocal Irvocal % Sarvice " Complated 15-Jun-2010 13:48:23 Deltadidines of 240236

&% Deltadidines BPEL Cornponent " Comnpleted 15-Jun-2010 13:48:23 Deltadidines of 240236
= @ Deltadiines lilab Servicellocal Inwocal ¥ peference & Completed 15-Jun-2010 13:48:23 TravelApproval of 240234

@ TicketService Web Service(Local Inwocal & Service " Complated 15-Jun-2010 13:48:23 Deltadidines of 240237

& Deladidines BPEL Cornponent " Comnpleted 15-Jun-2010 13:48:23 Deltadidines of 240237

ECID DD0DI~v$51d1f_Yyxolb4G1BxFPUDDO]
Started 15-Jun-2010 13:48:23

Fault Tirne Fault Location Compasite Instance

We can also access the instance flow trace using the Instances tab of the
SOA Infrastructure home page, which also offers rich search functionality.

[266]

Chapter 4

In the previous screenshot, we can see that the instance has completed successfully
(state Completed). We can also see the state of all service components and

binding components and the time when a particular service component or

binding component has been completed. If we click on the Travelapproval BPEL
Component link, a page displaying the BPEL process instance details appears. On
the Audit Trail tab, we can see the trace of the BPEL process and all received and
sent messages.

salnstance of Travelapproval @
Thiz page shaws BPEL process instance details, (2 Instance 10 bpel:320422
Started 15-Jun-2010 13:48:23

Audit Trail Flow | Senzor Values Faults

Expand a payload node to view the details, Current Audit Lewel: production @ Yiew Raw XML

= -

- «dreceiveTravelRequest

= Received "TravelRequest" call Fromn partner "client”
+ zpayloads

=[5 AssignEmployee
Updated watizble "ErmployeaTrawelStatuzRequast”
Cornpleted assign
= % EmployeeTravelStatus
= Invoked 2-way operation "EmployeaTrawelStatus" an partner "Emnployee TravelStatus”,
+ zpayloads
= [AssignFlightDetails

Updated wariable "FlightDretails"
Updated watiable "FlightDretails"

Completed assign

= <42 mmericanairlines
= Inwoked 1-way operation "Flight&vailability” on partner "Amercandidines".
+ zpayloads=
= +4% Americandirlines

Waiting For "FlightTicketCallback" fram "americandidines”, Asynchronous callback, Jﬂ
b

[267]

Using BPEL with Oracle SOA Suite 11

If we want to see the complete XML message, we have to click the plus sign in front
of the <payload>:

Audit Trail Flow | Senzor Yalues Faults

Expand a payload node to wiew the details, Current Audit Level: praduction @

- c&¥receiveTravelRequest

= Raceived "TravelRequest" call Forn partner "client”
= i=payload=;

travelRequest

Marcel
Krizevnik
SIL

43243
Ljubljana
Paris
2010-12-15+01:00
2010-12-17 +01:00

If we want to see the visual flow of the BPEL process instance, we have to switch
to the Flow tab:

[268]

Chapter 4

Flowe Trace = Instance of Travel&pproval D Pt v] 15-Jum-200000 15:50:07 CEST L
salnstance of TravelApproval ®
This page shows BPEL process instance details, (2 Instance ID bpel320422

Started 15-Jun-2010 13:48:23

Audit Trail Sensar Yalues Faultz

Click an activity to wiew the details, Current Audit Lewel: praduction @ Wiew Raw KR

-

receiveTravel..

= Scope_1

AzsignEmployes

>

EmployeeTrave..

AssignFlightD.,

= Scope_2

Sequence_1 Sequence_1

&y &y -

[269]

Using BPEL with Oracle SOA Suite 11

By clicking on the specific activity, we can see the corresponding XML input and
output. This enables us to debug and verify the processing of each activity. If we
click on the <receives activity, we can see the received message, as shown in the
following screenshot:

Activity Audit Trail - Mozilla Firefox

I L] | http: fflocalhost: 7001 fem/aifsca)sharefaudit/nfdg)digElementDet ails. jsp +*

£ receiveTravelRequest

Received "TravelReguest" call fram partner "client”

- name="travelRequest" umins:usi="hitp:/ wrveverandorg /2001 XMLS chema-
instance"

- uminsins 1="http://packipub.com/bpel / travel /"

Haraoel
Erizmeundik
EIL

43243
Lijubljana
Paris
2010-12-154+01:00
2010 -12-17+01 00

Copy details to clipboard

k1 _>I_I
/

| Koncano

Automatic testing of SOA composite instances

Using EM Console, we can run test cases that were created in JDeveloper and
deployed as part of the composite application. This enables us to test SOA composite
application before deploying it to the production environment. To test SOA
composite application, we first have to select the SOA composite application under
soa-infra in the navigator. Then we click on the Unit Test tab. The test cases that
were deployed as part of the SOA composite application appear as follows:

[270]

Chapter 4

Logged in as weblogic| Host WMOraSOA11g

<f TravelApproval [1.0] @

w[f s08 Composite ~ Page Refreshed 15-Jun-2010 1411850 CEST|
Running Instances 0 | Total 31 | Active | Retire .. Shut Down,. Test Settings.. « C_'}_. E

Drashboard Instamces Faults amd Rejected Messages | Unit Tests | Policies

Test Cases Test Runs

Select orne or more test cases bo run and click Execute, Test cases enable wou to simulate the interactions between a ,\'3)-
composite and its web service partmers in a tast environment,
Ewacute
Marne Dezcription Select
=1 [TestSuitel -
|;| logicTest, l7

We can select the entire test suite or individual test cases and click Execute. We are
prompted to create a test. We have to specify a test run name. We can also define the
timeout and number of concurrent test instances:

Details of test run [

Test Run Marme poni
Tirneout g

Mumber of Concurrent Test Instances 1

[o]'4 Cancel

[271]

Using BPEL with Oracle SOA Suite 11

After clicking OK, we are automatically redirected to the Test Runs tab, showing the
running and completed tests. Here, we can track running tests and view test results.
In order to view the details of the test run, we can click to the specific row in the Test
Run Name column.

} TraueIApprouaI [1.0] @ Logged in as weblogic| Host YMOrasSoAl1gPsz
u-":g SO8 Composite = Page Refreshed 15-Jun-2010 14:18:50 CEST [$]
Runrming Instamces 0 | Total 21 | Active | Retire .. Shut Down,.. Test Settings... * QL E 59 Related Links -

Dazhboard Instancez Faults and Rejected Meszagez Unit Tests | Policies

Test Cazes Test Runs

dS5earch =
Click a best run to wiew its details,

Test Run Mame Test Run ID Start Time End Time Status Success Rate

Runl 317473=11b 15-Jun-2010 14:28:23 15-Jun-2010 14:28:24 + Passed 100% (of 1 tests, 0 Failed, all 1 tests cor

2 217473=11b 14-Jun-2010 19:45:52 14-Jun-2010 19:45:58 @ Failed 0% (of 1 tests, 1 Failed, all 1 tests comp

1 317473=11b 14-1un-2010 19:41:01 14-Jun-2010 19:41:02 + Passed 1009 [of 1 tests, 0 Failed, all 1 tests car
best? 2317473=11b 14-Jun-2010 18:13:01 14-Jun-2010 18:13:01 @ Failed 0% (of 1 tests, 1 Failed, all 1 tests comp
testl 317473e11b 14-Jun-2010 15:09:50 14-Jun-2010 15:10:06 +° Passed 100% (of 1 tests, 0 Failed, all 1 tests cor
. | 2

Results of Test Run : Runl (Test Run ID : 317473e11b4e8752:14f80924:128b4f416f2:-7c2b) @)

Total 1 Running 0 Paszed 1 Failed 0 Unknown 0 Success Rate 100% Refresh Test Status

Expand a test suite bo view the stabus of each best case, Click a best suite or best case to view aszertion details,

Test suites and test cazes Status
=[] TestSuitel
|:| lagic Test,xml “ Paszed

Assertion details are displayed at the bottom of the page. In the following screenshot,
we can see that the actual result of the BPEL process equals the expected value;
therefore, the test case was successful. (We can see the expected value and actual
value by clicking the [XML] link.)

Assertion details For logicTestzeml

™ Show Failures only

CapeEsl Lowcation Type Shatus Expectad Walue Actual Walue
Imstance
240244 client_ep Wiire v True [#mL] [®ML]

[272]

Chapter 4

Developing and deploying BPEL 2.0
processes

As we already mentioned, Oracle SOA Suite 11g PS 2 supports BPEL 2.0; however,
this version is not yet production ready, so by default BPEL version 1.1 is used. If we
want to develop and deploy BPEL 2.0 processes, we have to use the Source view of
the BPEL Component Designer. In this section, we will convert our TravelApproval
BPEL process to BPEL 2.0 and deploy it to the SOA Server.

First, we have to change the BPEL namespace which specifies the BPEL version to
http://docs.oasis-open.org/wsbpel/2.0/process/executable

process name="TravelApproval"
targetNamespace="http://packtpub.com/bpel/travel/”
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable”
xmlns:client="http://packtpub.com/bpel/travel/”
xmlns:ora="http://schemas.oracle.com/xpath/extension”
xmlns:bpelx="http://schemas.oracle.com/bpel/extension”

</process>
Next, we will modify all <from> and <to> elements inside <assign> activities,
as BPEL 2.0 introduces an improved data access mechanism, where we can
access variable data using simple XPath expressions (without requiring usage of

bpws :getVariableData). For example, the AssignEmployee <assign> activity has
to be modified as shown:

BPEL 1.1 code:

<assign name="AssignEmployee” >
<copy>
<from variable="TravelRequest” part="travelRequest”
query="/client:TravelApproval/employee” />
<to variable="EmployeeTravelStatusRequest” part="employee”
query="/ns2:employee” />
</copy>
</assign>

BPEL 2.0 code:

<assign name="AssignEmployee” >
<copy>
<from>$TravelRequest .travelRequest/employee</from>
<to>$EmployeeTravelStatusRequest.employee</to>
</copy>
</assign>

[273]

Using BPEL with Oracle SOA Suite 11

Next, we have to replace the BPEL 1.1 <switch> activity with <if> activity, which
was introduced in BPEL 2.0.

BPEL 1.1 code:

<switchs>
<case condition="number (bpws:getVariableData (‘FlightResponseAA’,
‘confirmationData’,’/nsl:confirmationData/Price’))

&1t ;= number (bpws:getVariableData (‘'FlightResponseDA’,
‘confirmationData’,’/nsl:confirmationData/Price’))"”>

</case
<otherwise>

</otherwise>
</switch>

BPEL 2.0 code:

<if>
<conditionsnumber ($SFlightResponseAA.confirmationData/Price) <=
number ($FlightResponseDA.confirmationData/Price)

</conditions>
<else>

</else>
</if>

When finished, we can deploy the BPEL 2.0 process in the same way as any BPEL 1.1
process (as part of the SOA composite application). We can initiate a process instance
using the EM Console. If we look at the visual flow of the BPEL process instance, we

can see that the instance has been executed successfully:

[274]

Chapter 4

Flowe Trace = Instance of Travelfppraoval Drata Refreshed 18-Jun-2010 15:80:25 CEST L)

.,-galnstance of Travelapproval @
Thiz page shows EPEL process instance details, '3} Instance I bpel:320428

Started 15-Jun-2010 15:50:18

audit Trail F Sensar Yalues Faults

Click am activity to wiew the details, Wiew Rawe HML

Current Audit Level: production &

/ =
2

If

|

if (165]
if (165)

Elza

iiﬂpﬁ

Deltadirlines..,

|

Deltadirlines..,

|
|

replyTravelRe. .,

™ El

[275]

Using BPEL with Oracle SOA Suite 11

Summary

In this chapter, we have become familiar with how to develop, deploy, and manage
SOA composites with BPEL processes in Oracle SOA Suite 11¢. We have completed
an overview of the BPEL design-time and runtime environment and reviewed the
major features. We have also become familiar with Oracle Enterprise Manager
Console, which enables us to deploy, test, manage, and debug BPEL processes within
SOA composite applications.

For BPEL development, Oracle provides an integrated graphical development
environment in JDeveloper. JDeveloper simplifies the development considerably
and offers several tools that simplify the development, such as Copy Rule editor,
XPath Expression builder, XSLT Mapper, and the BPEL Validation browser. We
have become familiar with the SOA Composite Editor. We have demonstrated how
to develop an SOA composite with a BPEL process in JDeveloper, how to test it, and
deploy it. We have also shown how to manage SOA composite applications.

In the next chapter, we will look at the advanced BPEL features of Oracle SOA
Suite 11g.

[276]

BPEL Extensions, Dynamic
Parallel Flow, Dynamic
Partner Links, Notification
Service, Java Embedding,
and Fault Management
Framework

In this chapter, we will discuss the advanced BPEL features provided by Oracle SOA
Suite 11g. We will overview the extension functions and activities. We will take a
detailed look at the dynamic parallel flows and dynamic partner links. Then we will
overview the Notification Service for sending and receiving asynchronous notifications
using e-mail and other channels. We will also look at Java embedding. Next, we

will explain how to implement advanced fault management through the use of fault
policies. We will demonstrate the use of presented features on the asynchronous
TravelApproval BPEL process that we have already developed in Chapter 2.

Human Workflow extension and support for BAM (Business Activity
s Monitoring) are be covered in Chapters 7 and 8.

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

In this chapter, we will discuss the following:

e Extension functions and activities, provided by Oracle SOA Suite 11g
e Dynamic parallel flow and dynamic partner links

e Notification Service

e Java embedding

e Fault management framework

Extension functions and activities

In chapters 2 and 3, we saw that BPEL is very flexible with respect to the expression
and query language used. By default, XPath 1.0 is used; however, any other language
supported by the BPEL server can also be used. The idea behind this flexibility is to
open up BPEL for future versions of XPath and XQuery. XPath 1.0 does not provide
all functions necessary to develop BPEL processes. Therefore, the BPEL specification
defines additional functions such as getvariableData (), getVariableProperty,
and getLinkStatus ().

Remember that when BPEL 2.0 is used, we do not need the
o getVariableData () extension function in order to access variable data.

Oracle SOA Suite 11¢ provides several additional BPEL extension functions and
activities to simplify development of business processes. However, using functions
and activities described in this section limits the portability of BPEL processes
because these will not be available on other BPEL servers.

Oracle SOA Suite 11g provides the following BPEL extension functions and activities:

¢ Oracle-specific BPEL activities: These include activities for data/array
manipulation, Java embedding, parallel dynamic flows, sending notifications,
and so on. They are defined in the http://schemas.oracle.com/bpel/
extension namespace, for which the bpelx prefix is used. Examples not
only include <bpelx:appends>, <bpelx:removes>, <bpelx:insertBefores,
<bpelx:copyList>, but also <bpelx:execs> and <bpelx:flowN>. These
activities will be explained later in this chapter.

[278]

Chapter 5

XPath 2.0 functions: These functions are not Oracle specific, and taken
strictly are not part of XPath 1.0, which is the default query language. They
are used for data manipulation and are defined in the http://www.oracle.
com/XSL/Transform/java/oracle.tip.pc.services. functions.
Xpath20 namespace, for which the prefix xp20 is used. Examples include
xp20:compare (), xp20:current-date (), xp20: lower-case (), and so on.
For more information on XPath 2.0 please visit http: //www.w3.org/TR/
xpath20/.

Oracle-specific XPath extension functions: These are used primarily for data
manipulation and are defined in the http://schemas.oracle.com/xpath/
extension namespace. Usually the ora prefix is used. These functions are
described later in this section.

XPath extension function for LDAP access and user authentication:
These functions are defined in the http://schemas.oracle.com/
xpath/extension/ldap namespace with 1dap prefix. Examples include
ldap:1listUsers () and 1dap:search().

Oracle-specific XSLT transformation extension functions: These are helpful
in stylesheet transformations. The namespace is http://www.oracle.
com/XSL/Transform/java/oracle.tip.pc.services. functions.
ExtFunc, for which the oraext prefix is usually used. Example functions are
oraext:square-root () and oraext:right-trim().

All Oracle-specific functions and activities can be
s accessed from BPEL Component Designer.

We will look at the most important extension functions and activities based on
their functionality:

Transformation and query support
Data and array manipulation

XML manipulation

Date and time expressions

Process identifications

LDAP access and user management

Later in this chapter, we will also take a detailed look at the important extension
activities, such as <flowN> and <execs.

[279]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Transformation and query support

In real-world business processes we often have to match the schema of our XML
document to the schema required by the partner web service. Consider our

Travel Approval process example. Here we designed both the process and the
partner web services, so we only had to perform minimal transformations for
calling the Employee or Airlines Web Services. In real-world scenarios this will
often not be the case and we will have to make more complex transformations. To
perform the transformations, we can use the BPEL <assign> activity. As this can

be time consuming, Oracle provides an XSLT engine and an extension function
through which we can activate the XSLT engine. This enables us to use XSLT to
perform complex data transformations. Using XSLT is more appropriate than using
<assigns> because XSLT is the standard transformation language for XML. Also,
sometimes we already have the stylesheets for the transformations. This way we
can easily integrate them into BPEL processes. To activate the XSLT engine we use
the ora:processxsLT () function. The function requires two parameters — the XSLT
stylesheet and the XML input on which the transformation should be made. The
result of the function is the transformed XML. The syntax is ora:processXsSLT ('s
tlyesheet', 'XML input').Note that the same function is defined in the http: //
schemas.oracle.com/bpel/extension/xpath/function/xdk namespace as well.
We can use either. Usually we use this function within the <assign> activity, in the
<froms> clause. For example, to modify our Travel Approval process and make a more
complex transformation to prepare the input for the Employee web service, we could
use the XSLT engine, as shown in the following code excerpt:

<assigns>
<copy>
<from expression="ora:processXSLT ('employee.xslt',
bpws:getVariableData ('TravelRequest', 'employee'))"/>

<to variable="EmployeeTravelStatusRequest" part="employee"/>
</copy>
</assign>

For this code to work, we must create the employee.xslt stylesheet and deploy
it with the process. For more information on XSLT, please refer to http://www.
w3.o0rg/TR/xslt.

The ora:processXSLT () function can be accessed from BPEL
%“ Component Designer, which provides a graphical tool for
g creating stylesheets.

[280]

Chapter 5

In addition to the XSLT engine, Oracle SOA Suite 11g also provides an xXSQL engine,
which can be used in a similar way to the XSLT engine. It can be activated using the
ora:processXSQL () function. We have to provide the xXSQL template and the input
XML on which the query should be performed as ora:processXsQL (' query
_template', 'XML_input').

Data and array manipulation

Data manipulation in BPEL is done with the <assigns> activity, where we can use
XPath and BPEL functions in the <from> and <to> clauses. In addition, Oracle
provides several custom functions that ease data manipulation considerably. A
very important aspect in data manipulation is arrays. In Chapter 3, we mentioned
that arrays in BPEL are realized with XML elements that can occur more than once.
In XML schema they are identified with the maxoccurs attribute, which can be set
to a specific value or can be unbounded (maxOccurs="unbounded"). The items are
addressed with the XPath, as shown in the following example:

<assign>
<copy>
<from variable="TicketOffer"
part="ticket"
query="/item[1]"/>
<to variable="FirstOffer" part="ticket"/>
</copy>
</assign>

Often we need to dynamically address the items. Instead of hardcoding the index,
we can use a variable, such as:

<variable name="position" type="xs:int"/>

We could then create the XPath query expression, store it in a variable, and then use
this variable to address the desired item, as shown in the following example:

<assign>
<copy>
<from expression="concat('/item[',
bpws:getVariableData ('position'), '1')"/>
<to variable="itemAddress"/>
</copy>
<copy>
<from expression="bpws:getVariableData ('TicketOffer', 'ticket',
bpws:getVariableData ('itemAddress'))"/>
<to variable="SelectedOffer" part="ticket"/>
</copy>
</assign>

[281]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Alternatively, we can use an Oracle-specific function called ora:getElement().
The function takes four parameters — variable name, part name, query path, and
element index:

ora:getElement ('variable name', 'part name',6 'query',6 index)

Using this function, the previous example would look as follows:

<assign>
<copy>
<from expression="ora:getElement ('TicketOffer', 'ticket',
'/item', bpws:getVariableData ('position'))"/>
<to variable="SelectedOffer" part="ticket"/>
</copy>
</assign>

We usually dynamically address items in loops using the <while> activity. To
determine the number of items (array size), we can use the Oracle-specific function
ora:countNodes (). The function returns the number of items as an integer and
takes three parameters — variable name, part name, and query path (the last two
parameters are optional):

ora:countNodes ('variable name', 'part name', 'query')

To count the number of ticket offers in our example, we could use the following code:

<assign>
<copy>
<from expression="ora:countNodes ('TicketOffer’',
'ticket', '/item')"/>
<to variable="NoOfOffers"/>
</copy>
</assign>

To append a variable to the existing variable (array), we can use the Oracle-specific
activity <bpelx:appends. This activity can be used within the <assigns> activity.
To add a new ticket offer to the existing offers, we can use the following code:

<assigns>
<bpelx:appends>

<bpelx:from variable="NewOffer" part="ticket" />
<bpelx:to variable="TicketOffer" part="ticket" />
</bpelx:append>
</assign>

[282]

Chapter 5

In a similar way, we can use other extension activities, including
<bpelx:insertBefore> and <bpelx:copyLists.

In addition to standard DOM-based variables, Oracle also supports
. the use of SDO-based variables in the same process. The Oracle BPEL
& Service Engine automatically converts back and forth between DOM and
L SDO forms. However, when using SDO-based variables, there are some
limitations, as SDO specifications do not support some advanced XPath
features (for example, there is no support for and, or, and not).

We have seen that Oracle-specific functions and activities simplify data and array
management considerably. Next, we look at functions related to XML manipulation.

XML manipulation

In some cases, our BPEL processes will invoke Web Services that return strings.
The content of these strings is XML. This approach is used by some developers,
particularly on the .NET platform. Using such Web Services with BPEL is
problematic because no function exists to parse string content to XML. In
programming languages such as Java and C# we use XML parser functions or XML
serialization (JAXB in Java).

Oracle therefore provides a custom function called ora:parseEscapedxML (). The
following function takes a string as a parameter and returns structured XML data:

ora:parseEscapedXML (string)

Let us suppose that the Employee web service returns a string instead of XML.
We can parse it using the ora:parseEscapedxXML () function:

<!-- Synchronously invoke the Employee Travel Status Web Service -->
<invoke partnerLink="employeeTravelStatus"
portType="emp:EmployeeTravelStatusPT"
operation="EmployeeTravelStatus"
inputVariable="EmployeeTravelStatusRequest"
outputVariable="EmployeeTravelStatusResponseString" />
<assign>
<copy>
<from expression="ora:parseEscapedXML (
bpws:getVariableData ('EmployeeTravelStatusResponseString'))"/>
<to variable="EmployeeTravelStatusRespose" part="employee"/>
</copy>
</assign>

[283]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

To perform an inverse operation, convert structured XML to a string; we can use the
ora:getContentAsString () function. It takes structured XML data as a parameter
and returns a string;

ora:getContentAsString (XMLElement)

To get the node value as an integer instead of a string we can use the
ora:integer () function:

ora:integer (node)
To add single quotes to a string we can use the ora:addQuotes () function:
ora:addQuotes (string)

Oracle even provides a function to read the content of a file. The function is called
ora:readFile () and is often used together with the ora:parseEscapedXML ()
function, which converts the file content to structured XML (if the file content is
XML). The syntax of the ora:readFile () function is:

ora:readFile('file name')

Next, we look at the expressions related to date and time.

Date and time expressions

Sometimes in our BPEL processes we need the current date and/or time, for
example, to time-stamp certain data. For this, we can use the Oracle-specific
functions. The most important are:

e ora:getCurrentDate (): Get current date

e ora:getCurrentTime (): Get current time

e ora:getCurrentDateTime (): Get current date and time
Note that all three functions return strings (and not the date or date/time types). All
three functions also take an optional parameter that specifies the date/time format.
The format is specified according to java.text.SimpleDateFormat. For details,

refer to Java APl documentation at http://java.sun.com/j2se/1.4.2/docs/api/
java/text/SimpleDateFormat.html.

To format an XML Schema date or dateTime to a string representation, which is
more suitable for output, Oracle provides the ora: formatDate () function. The
syntax of the function that returns a string is as follows:

ora:formatDate ('dateTime', 'format')

[284]

Chapter 5

Once again, the format is specified according to java.text.SimpleDateFormat
format.

A similar function is provided in the xp20 namespace as:

xp20:format-dateTime ('dateTime', 'format')

Next, let us look at functions related to process identification.

Process identification

Oracle provides several functions related to process identification. With these
functions we can get process IDs, instance creator, and more. These functions are:
e ora:getProcessId(): Returns the ID of the current BPEL process
e ora:getInstanceId():Returns the process instance ID

e ora:getConversationId(): Returns the conversation ID used in
asynchronous conversations
e ora:getCreator ():Returns the process instance creator

e ora:generateGUID (): Generates a unique GUID (Globally Unique ID)

LDAP access and user management

XPath extension functions for LDAP access and user authentication are defined in
the http://schemas.oracle.com/xpath/extension/ldap namespace with 1dap
prefix. These functions are:

e ldap:listUsers('properties', 'filter')
e ldap:search('properties','filter', 'scope'?)
e ldap:authenticate ('properties', 'userId', 'password')

With this, we have concluded the overview of BPEL extension functions provided by
Oracle SOA Suite 11g. In the next section, we will take a look at the dynamic parallel
flow activity.

Dynamic parallel flow

In Chapter 2 we became familiar with the <f£1lows> activity, which enables us

to start several parallel activities. In our Travel Approval process example, we have
used <flow> activity to start two parallel sequences that acquired plane ticket offers
from American and Delta Airline web services. As the operation invocation for the
ticket offer has been asynchronous, we had to use a <receives activity to wait for
the callbacks.

[285]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

The problem with the <f1ows> activity is that we need to know in advance how many
parallel activities are required. The number of parallel activities is specified by the
BPEL code. In several real-world use cases this is limiting because the number of
required parallel branches can depend on the information stored in a variable or
received from the partner web service. In such cases, <f1ow> activity is inadequate.

Oracle SOA Suite 11g therefore provides <f1owN> activity, which can create multiple
parallel activities at runtime. The number of parallel activities is specified by a
variable. The parallel branches created by <f1owN> perform the same operations but
use different data (variables). Each branch gets a unique index number, which can be
used to acquire the data (for example using XPath expressions and XML sequences
that mimic arrays).

<flowN> functionality is very similar to the BPEL 2.0 parallel <forEach> activity.

The <f1owN> activity is defined in the http://schemas.oracle.com/bpel/
extension namespace, for which bpelx prefix is used. The syntax is shown as
follows:

<bpelx:flowN N="number-of-parallel-flows"
indexVariable="variable-name-for-index">

activity

</bpelx:flowN>

We have to specify the number of parallel flows that need to be created; for this, the
attribute N is used. Usually, we will use an expression to get the number of parallel
flows from a variable (using bpws:getVariableData () function) or to count the
number of parameters of array items (using ora: countNodes () for example). We
also have to specify the variable name used for the index — this is the number of

the parallel flow that has been created. Such variable should be of type xs: int or
similar. We will use the variable to extract the appropriate data, for example from an
array. The parallel branches created by <f1lowN> execute the same activities, but they
usually use different data, for which the index variable is used.

To some the <f1lowN> activity might look similar to the <while> activity. Notice,
however, that there is a huge difference between them. The <whiles> activity creates
a loop that is executed several times in sequence. The <f1owN> activity creates
several branches that are executed in parallel.

The <f1owN> activity is accessible from
s BPEL Component Designer.

[286]

Chapter 5

The code within the <f1owN> activity is executed in parallel; therefore, we have to
take care about parallel access to variables and other resources (for example, partner
links). If variables are updated within <f1owN>, we should make sure that we do not
use the same variable instance in multiple branches. We should also not use the same
partner link in parallel branches. Usually, it is appropriate to include the activities
within <£1owN> in a scope. For more information on scopes and serializable access

to variables, please refer to Chapter 3.

Within <flowN>, we might want to use different data for each parallel branch, or
store several responses from partner links. The most appropriate way to achieve
this is to use arrays or XML sequences where the maximal occurrence of an element
is unbounded. Therefore, we should be familiar with XPath and also with Oracle-
specific functions for management of data and arrays. We have covered these earlier
in this chapter.

Finally, we will often want that different parallel branches invoke operations of
different partner Web Services. To achieve this, we will have to use dynamic partner
links. We have explained dynamic partner links in Chapter 3.

Dynamic flow example

To demonstrate how we can use the <£1owN> activity, let us modify our

Travel Approval process example. So far, our example has invoked two airline Web
Services in parallel using the <£1ow> activity (American and Delta Airlines). We will
extend the example so that it will invoke several Web Services. The list of Web Services
(actually their addresses) will be provided as the input parameter. In real-world use
cases, this information could be retrieved from a service, database, or somewhere else.

The output from the airline Web Services will be stored in an array. We will also
modify how the best offer is selected. So far, we have used a simple <switch>
activity that had to select between two offers. Now we will write a <while> loop
which will select the lowest offer from all offers stored in the array.

This example will demonstrate beside the <f£1owN> activity how to use dynamic
partner links, array, and loops. Our TravelApproval process will require several
modifications:

e First, we will have to supplement the input message from the client, which
will have to include the list of partner links (Airline Web Services) our
process should invoke to get an airline ticket offer. We will have to modify
the process WSDL to achieve this.

e Then, we will need to modify the part of the process that makes parallel
invocations to Airline Web Services. Here we will use the <f1lowN> activity
and use an array to store the results.

[287]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

e Next, we will use dynamic partner links to invoke airline web services
in parallel.

¢ Finally, we will modify the code, which selects the best offer. We will use a
<while> loop to make the selection and access the results from Airline Web
Services to compare the prices.

Please notice that the example assumes that all Airline Web Services provide the
same WSDL interface. Let us start with modifying the WSDL.

Providing a list of partner links

To provide a list of Airline Web Services that our process should invoke to get airline
ticket offers, we will modify the WSDL of the process. In Chapter 3 we explained that
the partner link endpoint references in BPEL are stored as wsa :EndpointReferences
as defined by WS-Addressing. We will use this XML element in the client message to
specify the addresses of Airline Web Services.

To achieve this we will add a part to TravelRequestMessage. The part airlineData
will be of type AirlineDataType

<message name="TravelRequestMessage">

<part name="employee" type="emp:EmployeeType" />
<part name="flightData" type="aln:FlightRequestType" />
<part name="airlineData" type="tns:AirlineDataType" />

</message>

We will define the AirlineDataType as a sequence of wsa: EndpointReferences.

To use the wsa :EndpointReference element in our schema, we will have to import
the WS-Addressing schema. It can be found in the SOA Metadata Store (MDS) using
the oramds: ///soa/shared/common/ws-addressing.xsd path. (In order to access
SOA-MDS from JDeveloper, we have to create a SOA-MDS connection). We will
write the following schema:

<xs:schema elementFormDefault="qualified"
targetNamespace="http://packtpub.com/bpel/travel/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">

<xs:import
namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"
schemaLocation="oramds:///soa/shared/common/ws-addressing.xsd"/>

<xs:complexType name="AirlineDataType">

<Xs:sequence>

<xs:element name="AirlineLink" maxOccurs="unbounded">

[288]

Chapter 5

<xs:complexType>

<XS:sequencex
<xs:element ref="wsa:EndpointReference" />
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>
</xs:schemas>

Dynamic parallel invocation of airline services

Next, we will modify the part of the Travel Approval process that makes parallel
invocations to Airline Web Services. We will use the <f1owN> activity to make as
many parallel invocations as there are addresses provided in the input message from
the client. We will also store the results of each airline web service in an array.

We will modify the CheckFlightAvailability scope. First, we will declare the
variables. We will need the index variable that we will call index and will be of type
xs:int. We will also declare a CombinedF1lightResponse variable, where we will
store the output of each Airline Web Service:

<variables>

<!-- output from all Airlines -->
<variable name="CombinedFlightResponse"
messageType="aln:TravelResponseMessage"/>
<!-- counter for flowN -->
<variable name="index" type="xsd:int"/>
</variabless>

Next, we will replace the <flows> activity with <f1lowN>. We will use the index as the
indexVariable. The <flowN> should start as many parallel branches, as there are
addresses in the input message from the client. We will use the ora: countNodes ()
function to count the number of Airline Web Service addresses:

<bpelx:flowN N="ora:countNodes ('TravelRequest',
'airlineData',
'/airlineData/trv:AirlineLink')"
indexVariable="index" >

[289]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Dynamic partner links

We have already mentioned that we will invoke Airline Web Services in parallel
branches, created by <f1lowN>. As the addresses of Web Services are provided

in the message from the client, we will need to create a dynamic partner link in

each branch. The parallel branches will execute the same activities (including the
<invoke> for operation invocation and <receives for callback). This means that the
same variable will be used to store the result from the callback. To shield the parallel
branches, we will use a local scope for each branch.

In the scope we will declare a partner link, called Airline. We will also declare a
variable used to store the result from the callback (F1ightResponse):

<scope name="LocalScopeFlowN">
<partnerLinks>
<partnerLink name="Airline"
partnerLinkType="aln:f1lightLT"

myRole="airlineCustomer"
partnerRole="airlineService"/>

</partnerLinks>
<variables>

<!-- output from Airline -->
<variable name="FlightResponse"
messageType="aln:TravelResponseMessage"/>

</variabless>

Next we will define a sequence (remember that it will be started in parallel
branches). Within the sequence, we will first copy the Airline Web Service endpoint
reference (address) to the partner link. Then we will invoke the web service and wait
for the callback:

<sequences>
<!-- Create the partner link -->
<assigns>
<copy>
<from expression="bpws:getVariableData ('TravelRequest',

'airlineData',

concat ('/airlineData/trv:AirlineLink[',
bpws:getVariableData ('index"'),

'] /wsa:EndpointReference'))"/>

<to partnerLink="Airline"/>
</copy>
</assign>

<!-- Invoke the airline web service -->

[290]

Chapter 5

<invoke partnerLink="Airline"
portType="aln:FlightAvailabilityPT"
operation="FlightAvailability"
inputVariable="FlightDetails" />

<receive partnerLink="Airline"
portType="aln:FlightCallbackPT"
operation="FlightTicketCallback"
variable="FlightResponse" />

Finally, we will store the result in the array called combinedFlightResponse.
We will use the Oracle-specific <bpelx:appends activity to achieve this, as follows:

<!-- Store the result --»>
<assigns>
<bpelx:append>
<bpelx:from variable="FlightResponse"
part="confirmationData" />
<bpelx:to variable="CombinedFlightResponse"
part="confirmationData" />
</bpelx:append>
</assign>
</sequence>
</scope>

</bpelx:flowN>

Offer selection loop

The final step is to modify the code, which selects the best offer. We will replace the
simple <switch> activity with a <while> loop, where we will iterate through all offers
and compare them by price. We will store the final result in the TravelResponse
variable. We will also need a variable where we will store the temporary result from
the airline that we compare to the best offer. We will name this variable TempResponse:

<variables>
<variable name="TempResponse"
messageType="aln:TravelResponseMessage" />

</variabless>

[291]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

The <while> loop will make as many iterations as there are Airline Web Services that
have been invoked. We will get this number by counting the Airline Web Service
addresses using ora: countNodes () function. To access the array data, we will use
the ora:getElement () function. The code is shown below:

<assign>
<copy>
<from expression="0"/>
<to variable="index"/>
</copy>
<copy>
<from expression="ora:getElement ('CombinedFlightResponse',
'confirmationData',

' /confirmationData/confirmationData','1')" />
<to variable="TravelResponse" part="confirmationData" />
</copy>
</assign>

<while condition="bpws:getVariableData ('index') <
ora:countNodes ('TravelRequest',
'airlineData', '/airlineData/trv:AirlineLink') ">

<sequence>
<assign>
<copy>
<from expression="bpws:getVariableData ('index') + 1"/>
<to variable="index"/>
</copy>
<copy>
<from
expression="ora:getElement ('CombinedFlightResponse',
'confirmationData',
' /confirmationData/confirmationData’,
bpws:getVariableData ('index'))" />
<to variable="TempResponse" part="confirmationData" />
</copy>
</assign>

<switchs>
<case condition="bpws:getVariableData ('TempResponse',
'confirmationData’',
' /confirmationData/aln:Price')
< bpws:getVariableData ('TravelResponse',
'confirmationData’',
'/confirmationData/aln:Price') ">
<assign>

<copy>

[292]

Chapter 5

<from variable="TempResponse" />
<to variable="TravelResponse" />
</copy>
</assign>
</case>

</switch>
</sequence>

</while>

Testing the example

We are now ready to deploy the example to the BPEL server and test it. We deploy
the process following the steps described in Chapter 4. Then we initiate a process
instance using EM Console.

In the visual flow representation, we can observe how many parallel branches have
been started and how many times the loop has executed:

salnstance of TravelApproval @
This page shows BPEL process instance details, '\D Instance IC bpel:320492
Started 17-Jun-2010 14:41:10
Audit Trail ~ Flow Senzor Values Faults
Click, an activity to wiew the details, Current Audit Lewel: production @ Wiew Raw XML
=]
AszsignFlightD..,
Scope_2
index =1 index = 2
scope @ line 149 scope @ line 149
AszsignEndpoin.., AszsignEndpoin...
@ @
Airline Airline
@, @D, ~|

[293]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

With this, we have concluded our example in which we have demonstrated dynamic
parallel flows, dynamic partner links, arrays, and loops. In the next section, we will
show how to send user notifications using Oracle extension activities.

Notification Service

Business processes sometimes require that notifications are sent to the users or
participants. For example, our TravelApproval process might want to notify the
employee by e-mail about which flight ticket has been selected. Another use case is
when an exception occurs in a business process. Then we can use notifications by
e-mail or by other channels to notify the responsible person and require intervention.

BPEL specification does not provide a mechanism for sending e-mails or other
notifications. Therefore, we would need to create a web service (partner link) which

is capable of sending and/ or receiving notifications. This web service would provide
port types with operations for sending and receiving notifications and we would use
<invokes> and <receives activities to invoke them — the same as for any other service.

Fortunately, Oracle SOA Suite 11g already provides such a service —it is called
Notification Service. Notification Service uses the underlying infrastructure, provided
by Oracle User Messaging Service (UMS), which is a new feature for release 11g.

It provides support for the following channels:

e E-mail

e Voice messages
e IM

e SMS

The fax and pager notification channels are not supported in
=" 11g Release 1 (11.1.1).

Notification Service exposes its operations like any other web service through WSDL,
and also through Java interfaces. The overall architecture of the User Messaging
Service is shown in the following figure:

[294]

Chapter 5

WSDL User
CoTTTTTTmm T e e 1 -
BPEL i send*Notification i Messa_gmg
Bl i sendNotificationToUser 1 Service
i sendNotificationToGroup i = | » Email Server
"""""""""""" ’ > SMS Server
» Voice Gateway
+—P> < » IM Server
Java S
Call —_—
Java —
T T T TSI T T T TS H
i send*Notification i
Java i sendNotificationToUser
i sendNotificationToGroup !
L JI

To use Notification Service in our process we have to create a partner link and invoke
the provided operations. Through WSDL interface Notification Service exposes the
NotificationService port type. It provides the following operations:

e send*Notification, where * can be Email, SMS, Voice, or IM
(Instant Messaging)
e sendNotificationToUser, used to send notification to a specific user
e sendNotificationToGroup, used to send notifications to a group of users
The operations take various input messages. The sendEmailNotification
operation, for example, takes the EmailNotificationRequest input message,
which is of EmailPayloadType. The latter is defined in the corresponding

NotificationService XML Schema and basically consists of elements, such
as from address, to address, subject, body, and so on.

In addition, Notification Service also provides a Java interface (API). It is implemented
as the Java class oracle.tip.pc.services.notification.NotificationService,
which provides methods with the same name as the WSDL interface. Notification
Service uses a WSIF binding to expose the operations through WSDL.

In JDeveloper BPEL Component Designer, we can implement sending of
notifications to users or groups by simply dragging one of the following
extension activities from the Component Palette:
e E-mail: Enables sending text notifications over the E-mail channel
¢ Voice: Enables sending voice notifications over the Voice channel
e SMS: Enables sending short messages over the SMS channel

e IM: Enables sending instant messages over the IM channel

[295]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

e User Notification: This generic activity enables sending notifications over all
supported channels. When designing the BPEL process, we do not have to
select the channel we want to use. In fact, the actual notification channel is
resolved at runtime and it depends on end user preferences, defined in UMS
(User Messaging Service).

Setting the Email Driver

If we want to send and receive e-mail notifications, we have to set the Email Driver
first. To do this, we have to go to the EM Console and then open the User Messaging
Service node. From the User Messaging Email Driver drop-down menu, we select
Email Driver Properties.

ORACLE Enterprise Manager Fusion Middleware Control 11g

L{EFarm - & Topolagy

= - ¢} usermessagingdriver-email @
E JE Farrm_damainl E‘I Uzer Meszaging Ernail Driver -
+ | Application Creployments Home
=[] 50
2 ’
=| soa-infra (soa_serverl
a% (zea) Contral ¥
= @ default
. . Logs ¥
-«tﬁ Arnericandirlines [1.0]
#f Deltagirlines [1.0]
Mtg Traveltpprowal [1.0] Performance Summary
=] [viebLogic Domain Email Driver Proparties
= [domainl
J AdriinServer Syztermn MBean Browser
b 1 | B
j s 1803 18.08
,J oer_serverd General Imfarmation
1 4
504_terver T B
[Bam
Table Wiew

+l |} Metadata Repositories

=1 |_J) User Meszaging Service
EI usermessagingdriver-enail (bam_serverl)
E-I usermessagingdriver-email (soa_serverl)
EI userrnessagingserver [bam_serverl)

| usermessagingserwer [soa_serverl)

Here we have to set the set various properties on the Email Driver, including the
details about the e-mail server like OutgoingMailServer, OutgoingMailServerPort,
OutgoingMailServerSecurity (optional), OutgoingUsername and
OutgoingPassword.

[296]

Chapter 5

¢ usermessagingdriver-email @ TR €8 (2L DI [ST gp e
User Messaging Ernail Criver « Page Refreshed 17-Jun-2010 13:10:39 CEST 0
lj) Information
Al changes made in this page require a server restart to take effect,
Email Driver Properties &P Related Links v Apply | Revert
For detailed description of the driver properties, refer to the Administrator's Guide For Crracle S0A Suite,
e, §oomm e SUpported Carrers -
Cost ;I . . R .
Supported Content Types bextfplain, texthtrml, mulkipart fmixed, multipart falternal
Speed ;I rultipartfrelated
Sender Addresses | admin@soas Supported Status Types DELIVERY _TO_GATEWAY_SUCCESS,
DELIVERY _TO_GATEWAY_FAILURE,
Default Sender Address | admin@soasi USER_REPLY_ACKNOWLEDGEMENT_SUCCESS,
Sending Gueues Info OraSDPMFQueneConnectionFactary OraSDPMGQuey
JOraSDPMDriverDefSndd 1
Driver-Specific Configuration
- Encoded
Mame Description Mandatory Credential Walue
CutgoingMailServer Mandatory only if e-mail sending is smtp Feriuni-mb.si ;I
required,
. . The port number of SMTP server,
CutgoingMailSer verPark Typically 25. 25
The security used by SMTP serwver,
CutgoingMailServerSecur Possible values are Mone, TLS and S5L. Mone ;I
Deefault walue is Mone,
CubgoingDefaultFromade The.deFal._llt FROM adf:lress (iF one is not marcel krizevnik@uni-mb si
prowided in the outgoing meszage).
The usernarme used for SMTR
OutgoingUsername authentication, Required anly if SMTP marcalk
going authentication is supparted by the
SMTR server,
The passward used for SMTP
. authentication, Required only if SMTP Type of Password | Use Cleartext Password -
CubgoingPassword A v
authentication is supparted by the Paszword | ssssss
SMTR server,
2l |

Then we click Apply. Next, we have to adjust the settings for the Workflow
Notification. From the SOA Infrastructure drop-down menu, we select the SOA
Administration | Workflow Notification Properties. Here we have to set the
Notification Mode to either All or Email.

} soa-infra @ Loggedin as weblogic[Host WMOraSOATIgPS2
g S04 Infrastructure - Page Refeshed 17-Jun-2010 12:22:21 CEST 0

S04, Infrastructure Home = WorkAow Matification Properties

k_D Information
All changes made in this page require a serwer restart to take affect,

Workflow Notification Properties (3) @ Related Links ~ | Apply | Revert

Eefore configuring the WorkAow Motification, configura the Messaging Service

Driver. 3o ba the Messaging Drriver page

* Matific ation Made Ernail ;I

Notification Service

* Emall : From Address rmarcel krizevnik@oni-mb.si

Ermail : Actionable &ddress marcel krizevnik @gmail com

* i
Email : Reply To Address rmarcel krizevnik@cloud .com

Finally, we confirm the changes by clicking Apply and restart the SOA Server.

[297]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Sending e-mail notifications

To demonstrate how to use Notification Service we will add an e-mail notification
to our TravelApproval process example. Originally, our process selected the best
ticket offer by comparing offers from American and Delta Airlines' web services and
invoked a callback to the client. We will add the e-mail notification just before the
client callback.

Before we start modifying the BPEL code, we need to make modifications to the
TravelRequest message in the Travel Approval process WSDL. We must add the
e-mail address to which our process will send the confirmation. Therefore, we first
define an EmailType (in the TravelApproval.wsdl file) as follows:

<types>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://packtpub.com/bpel/travel/">

<xs:complexType name="EmailType">
<XS:sequences
<xs:element name="Address" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:schema>
</types>

Next, we add a new email part to the TravelRequestMessage:

<message name="TravelRequestMessage">
<part name="employee" type="emp:EmployeeType" />
<part name="flightData" type="aln:FlightRequestType" />
<part name="email" type="tns:EmailType" />

</message>

Now we are ready to modify the BPEL source code (TravelApproval.bpel) file.
We will add a scope and within it, we will create the e-mail variable, assign the
values, and invoke Notification Service to send the e-mail.

The easiest way to add Notification Service to the BPEL process is to use the

JDeveloper BPEL Component Designer, which provides a convenient wizard. We
will drag-and-drop the Email activity from the Component Palette to the process
after the CheckFlightAvailability scope, as shown in the following screenshot:

[298]

Chapter 5

client:

CheckFlightfwailahility

s TravelApproval bpel =
-3 5-0@ 8 (-) el |([@monter |5 @
[Deltadirlines
RetrieveEmployeeTravelStatus

)

=)

SelectAirling

a

clientCallBack

: |%| Phase
Zoom: | 100|% * A

oo 1003 © & |6m
Design | Source | History -
e

Email
Email
Send an email message

Bic.. | () =
|BrEL -
é ©
[» BPA Blue Prints

~ BPEL Activities a...

1 Assign

5| Bind Entity

l% Check Paint
|§| Compensate
-@, Create Entity

Empty

jﬂ Flow
|§| ™
Invoke

2| Java Embedding

The Email editor opens. Now we have to specify the e-mail details, including the
e-mail account used for sending the mail (From Account), To address, Cc and Bcc,
Reply to address, Subject, and message Body. We could use static values for all
these fields (and just type them in), but this would make little sense. Rather, we will
use the values from BPEL variables, which we will access with functions, such as
getVariableData (). We can also use other available XPath and extension functions.

Email b4
| EMail | Skip Condition
From Account: |Default |
To: |
Cee |
Bee: |
Reply To: |
Subject: |
Body:
Message body can be plain kext ar HTML
[] Multipart message
Help | | Apply | | QK J | Cancel

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,

and Fault Management Framework

Let us now discuss the fields that we have to specify. The From Account specifies the
account that the BPEL process will use to send e-mails. Next, we have to specify the

addresses the mail will be sent to. For the To address we will use the input provided
by the client. Therefore, we will start the XPath Expression Builder using the icon on

the right and create the XPath expression.

& Expression Builder

Expression:

@

0

bpws:get¥ariablelata('TravelRequest', 'travelRequest', ' fclient:Traveldpproval /mail/fclient:dddress’ Jl

| M Insert Inko Expression

BPEL Yariables

Functions

| E-fx) TravelRequest
B travelRequest

[=-¢s» dlient: Travelapproval
» employes
&= FlightData
[=-<=» mall

RN e

IR pennnee

P eyl T

| variables |Advanced Functions
= s Process .
53 Variables appendTolist

‘El authenticate

‘El copyList
‘El countNodes

[firl crat,

‘El batchProcessActive
‘El batchProcessCompleted

! I ited-strinn
Conkent Preview: Description:
bpws:getVariableDatal TravelRequest’, travelRequest’, fclient: Travelay | VYariable ¥Path expression
Help QK ‘ | Cancel

Alternatively, we could use the e-mail address from a BPEL user account. In the
same way, we will set values for Subject and Body, and finish the wizard, as shown

in the next screenshot:

Email %
| EMail | Skip Condition
Fram Account: |DeFau|t |
To: |:st',',l’client:Tra\-'eI.ﬁ.pproval,l’mail,l’client:Address')%>| \% &
(2 | | %
Bre: | | \% iy
Reply To: | | \% ity
Subject: |1uest',',fclient:TraveIApproval,l’FIightData,l’RequestNo')%> AL
Body:] - \ =
Yaour requested Flight to <%:bpws:getvariableDatal Trav Ej‘r
Message body can be plain text or HTML
[Multipart message
Help | | Apply | | [o]4 | | Cancel

[300]

Chapter 5

By clicking OK we return back to the BPEL Component Designer. We can see that

the Notification Service partner link was added automatically. Our SOA Composite
application now looks as follows:

Exposed Services Components External References

I B
EmployeeTrav...
Operations:
EmployeeTravel. ..

E
AmericanAirin...
Operations:
Flighttwailability
MakeReservation
dgﬁ FlightTicketCallb...

'% = ® Travalhppm... MakeReservatio. ..
TravelApproval...
Operations:
TravelApproval ® - o
DeltaAirlines =
Operations:
Flighttwailability
MakeReservation

FlightTicketCallb...
MakeReservatio. ..

CER

NotificationSer...
Operations:

send|MNotification
sendFaxMotifica...
sendVoiceMotifi...
sendSMSNotific...
sendPageotifi...
sendEmailhotific...
sendNotification...
sendNotification...

Review of code

The wizard has generated a new scope. Within the scope, three variables have been
generated — the input variable varNotificationReq containing the e-mail payload,
the varNotificationResponse containing the response from Notification Service,
and the fault variable NotificationServiceFaultVariable:

<gcope name="NotificationService">
<variables>
<variable name="varNotificationReq"

[301]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

messageType="ns5:EmailNotificationRequest"/>

<variable name="varNotificationResponse"
messageType="ns5:ArrayOfResponse" />

<variable name="NotificationServiceFaultVariable"
messageType="ns5:NotificationServiceErrorMessage"/>

</variables>

Then, the <assign> activity is generated, which is used to assign the values to the
e-mail message payload. We have created the <copy> statements using the XPath
Expression Builder. Alternatively, we can edit the source code directly. In the
following code excerpt, we show the part used to assign the subject:

<sequence>
<assign name="Assign">

<copy>
<from expression="concat ('Travel confirmation for
' ,bpws:getVariableData (' TravelRequest',

'employee', ' /employee/emp:FirstName') , '
' ,bpws:getVariableData ('TravelRequest',
'employee', ' /employee/emp:LastName'))"/>

<to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns5:Subject"/>

</copy>

Finally, the wizard has generated the <invoke> activity for the
sendEmailNotification operation:

<invoke name="InvokeNotificationService"
partnerLink="NotificationService"
portType="ns5:NotificationService"
operation="sendEmailNotification"

inputVariable="varNotificationReqg"
outputVariable="varNotificationResponse"/>

</sequence>
</scope>

Testing the example

We can deploy this example directly from JDeveloper. After starting the process
using EM Console, we can verify that the e-mail has arrived.

[302]

Chapter 5

The source code of this and all examples can be downloaded from
Lo http://www.packtpub.com/.

Java code embedding

Java code embedding is a method for integrating Java code and resources into BPEL
processes. It allows us to embed Java code snippets directly into BPEL process code.
This provides the opportunity to use Java for certain aspects where BPEL does not
provide an appropriate activity. It also provides a possibility to use Java code to call
other Java resources (EJBs, JCA, JMS, and so on).

To embed Java code snippets into BPEL, Oracle provides a custom BPEL activity
called <execs, defined in the http://schemas.oracle.com/bpel/extension
namespace. This namespace is usually declared with the bpelx prefix, so we write
the activity as <bpelx:execs.

The BPEL server will execute the Java code, embedded in the <exec> activity, within
its JTA (Java Transaction API) transaction context. If the embedded Java code

calls E]Bs (session or entity beans), the transactional context will be automatically
propagated. If an exception occurs during the execution of the embedded Java code,
the exception will automatically be converted to a BPEL fault and thrown to the
BPEL process.

The <exec> activity supports three attributes (in addition to the BPEL
standard attributes):
e import: Used to import Java packages.

e language: Denotes the used language. Currently the only supported
language is Java, but support for other languages such as C# may be added.

e version: Denotes the version of the language. The supported versions of
Java are 1.3,1.4, and 1.5.

[303]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,

and Fault Management Framework

The <exec> activity also provides built-in methods we can use in the embedded Java

code. They allow us to access and update BPEL variables, get JNDI access, update
the audit trail, and set priorities, and other parameters. These built-in methods are

explained in the following table.

Method

Description

Object getVariableData (String name)

Object getVariableData (String name, String
partOrQuery)

Object getVariableData (String name, String
part,
String query)

void setVariableData (String name, Object
value)

void setVariableData (String name, String part,
Object value)

void setVariableData (String name, Stringpart,
String query, Object
value)

void addAuditTrailEntry (String message,
Object detail)

void addAuditTrailEntry (Throwable t)
Object lookup (String name)

Locator getLocator ()

long getInstanceId()

void setTitle(Stringtitle)

StringgetTitle ()

void setStatus (String status)

StringgetStatus ()

void setPriority (int priority)

int getPriority ()

void setCreator (String creator)

String getCreator ()

Access BPEL variables

Update BPEL variables

Add an entry or an
exception to the audit
trail

JNDI lookup

Access to BPEL Process
Manager Locator service

Returns the process
instance unique ID

Set/ get the title of the
process instance

Set/ get the status of the
process instance

Set/ get the priority of the

process instance

Set/ get the creator of the
process instance

[304]

Chapter 5

Method Description

void setCustomKey (String customKey) Get/set the custom key
for the process instance

String getCustomKey ()

void setMetadata (String metadata) Get/set the metadata of

. the process instance
String getMetadata ()
void setIndex (int i, Stringvalue) Get/set the search index,

‘ o i can range from 1 to 6
String getIndex (int i)

File getContentFile (String rPath) Access to the files stored
in the BPEL suitcase
(JAR)

String getPreference (Stringkey) Access to the preferences

defined in the bpel . xml
deployment descriptor

Invoking a Java class from embedded code

Now we will modify our Travelapproval BPEL process code. Instead of invoking
the EmployeeTravelStatus service, we will use the <exec> activity, which will
return the employee travel status and set the EmployeeTravelStatusResponse
variable. First we will drag-and-drop the Java Embedding activity from the
Component Palette to the process. If we double-click it, the Java Embedding editor
opens. Here we can enter the name and choose the Java version. In the Code Snippet
text area, we can write the Java code as shown in the following screenshot:

& Edit Java Embedding

r General r Annotations r Skip Condition |

Mame: |Java_Embedding_1 |
Java Yersion: |1.5 v|
Code Snippet:

A*rite your Jjava code below e.q.
Systen. out.println(“Hello, World™):
"

Help | Apply || QK || Cancel

[305]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

In case we want to use custom Java classes, we have to create JAR files and add them
to the application name/project/SCA-INF/1ib directory. In our example, we will
use the same Java classes, which are used to implement the EmployeeTravelStatus
service —EmployeeTravelStatusImpl, EmployeeType, and TravelClassType. In
order to use those classes, we have to import the DOM Element and our classes using
the Source code view.

<process...>

<sequences
<receive.../>

<bpelx:exec import="com.packtpub.service.employee.*"/>

<bpelx:exec import="org.w3c.dom.Element"/>

<bpelx:exec name="Java_Embedding 1" version="1.5"
language="java"><! [CDATA[...]]></bpelx:exec>

<invoke.../>
</sequence>
</process>

Now we will write the Java code. First we have to retrieve the employee data from
the TravelRequest BPEL variable using the getvariableData () function. Then we
invoke the employeeTravelStatus () method to get employee travel status. We then
add an entry to the trail. Finally, we set the EmployeeTravelStatusResponse BPEL
variable using the setVariableData () function. Our Java code now looks as follows:

& Edit Java Embedding

|/ General r Annotations r/Sle Condition |

fame: |InvukeJavaExs: |
Java Yersion: |1.5 vl
Code Snippet: try{
String FirstName = ((Element)getVariahleData|"TravelRerquest”, "travelRecquest”,
"lelient: Traveldpproval fenployee/FiratNane”)) . gerTextContent() 2
String LastName = {(Element)get¥ariableData("TravelRequest”, " travelRequest’”,
"/client:Travelipproval femplovee/LastNane™)). getTextContent() ;
String Department = ((Element)getWariableData(“TravelRequest™, "travelRequest”,
"folient:Traveldpproval jeuploves /Department’)). getTextContent();

EmployeeType eup = new EmployeeType():
enp. setFirstNane (Firstiame) ;

enp. setLastiane (LastName) ;

enp. setDepartment (Departuent) ;

EnployeeTravelStatusInpl & = new EuployeeTravelStatusIupli);
TrawelClassType c© = e.enployeeTravel3tatus emp)

addiuditTrailEntry ("Travel Class type is: "+c.valuei)):
set¥ariableData("EnployeeTravelitatusResponse™, "travelClass”,"/nsa: travelClass",c.value())

catch(Exception e){
addiuditTrailEntry(e)

Help Apply H [s]4 || Cancel

[306]

Chapter 5

The next figure shows the changed RetrieveEmployeeTravelStatus scope:

Partner Links =

client

e M

©
l
@

receiveTravelRequest

InvokelavaExec

|’.*~::. '

AszignFlightDetails

Partner Links

$ab

americanairlines

$ab

Delkasirlines

46b

EmploveaTravelst. ..

[307]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,

and Fault Management Framework

Now we are ready to deploy the process using JDeveloper. We will use EM Console
to start the process and observe the visual flow, where we can see that the Java
embedded code has been executed, as shown in the next screenshot. To ensure

that the Java class has been invoked, we can observe the output at the server

console window.

Flowe Trace = Instance of TravelBpprowal

-
galnstance of Travelapproval @
This page shows EPEL process instance details, '3)

Audit Trail Flow Sensor Walues Faults

Click an actiwity bo wiew the details,

Data Refreshed 18-Jun-2010 12:19:24 CEST LY

Instance ID bpel:340064
Started 18-Jun-2010 12:15:43

Current Audit Lewel: production @ Wiew Raw XML

T e

receiveTravel...

Scope_1
Initialize
InwvokelavaExec

AzzignFlightD...

-

Activity Audit Trail - Mozilla Firefox

I L |htt|:-:,I',I'Icu:alhc-st:?EIDl,fem,l'ai,l's-:a,l's L =

J__); InvokeJavaExec

Travel Class type is:
Economy

bpel::exec executed

4 o

| Koncano

In the next section, we will look at the fault management framework.

[308]

Chapter 5

Fault management framework

In addition to standard BPEL fault handling mechanism, Oracle SOA Suite 11g
provides a generic fault management framework for handling faults in BPEL
processes. This framework presents an alternative to designing BPEL processes

with <catchs activities and allows us to externalize fault handling in a separate file,
which makes the BPEL code more readable. Using the fault management framework,
we are able to catch both business and runtime faults for an <invoke> activity.

We use the fault policy file (fault-policies.xml) to define fault conditions and
corresponding recovery actions. Each fault condition specifies a particular fault or
groups of faults, which it attempts to handle, and the corresponding action for it.

We can choose between the following supported recovery actions:

¢ Retry: When we want to retry the failed <invoke> activity. We can set the
number of retries and the interval between retries (static, exponential).

¢ Human intervention: The activity stops processing. We can manually
perform recovery actions using the EM Console.

e Terminate process: Terminates the process.

e Java code: We can execute an external Java class. The Java class must
implement a method that returns a string (REPLAY, RETHROW, ABORT, RETRY,
MANUAL).

¢ Rethrow fault: The fault management framework rethrows the fault to the
BPEL fault handlers.

¢ Replay Scope: Replays a scope in which the fault has occurred.

As fault policy is not specific to a composite, we also need a fault policy binding
file (fault-bindings.xml) file, which is used to associate the policies from

the policy file with specific SOA composite applications, service components,

or reference-binding components. A fault policy file and fault policy bindings files
are usually placed in the same directory as the composite.xml file. However, they
can also be stored in different locations, allowing us to reuse policy definitions
across multiple components, composites, and projects.

. Fault policies defined with the fault management framework
override any fault handling defined in the BPEL process. However,
s using the fault management framework, we can rethrow faults back
to the <catch> activities.

In this chapter, we will demonstrate the use of fault policies by shutting-down the
EmployeeTravelStatus service, which will result in a remote fault. We will define
the fault-handling policy to handle this exception using the human intervention
recovery action.

[309]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Creating a fault policy

First we will create a fault-policies.xml file and save it to the same directory
as composite.xml. We can use the following template:

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1" id=""
xmlns:env="http://schemas.xmlsoap.org/ soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/ XMLSchema-instance">
<Conditionss>
<!-- Add your fault handlers here -->
</Conditions>
<Actions>
<Action id="my-java-handler"s>
<javaAction className=
"soatraining.faulthandling. MyFaultHandler"
defaultAction="ora-terminate" propertySet="myProps">
<returnValue value="OK" ref="ora-rethrow-fault"/>
</javaAction>
</Action>
<!-- Retry -->
<Action id="ora-retry"s>
<retry>
<retryCount>4</retryCount>
<retryInterval>2</retryIntervals>
<exponentialBackoff/>

</retry>
</Action>
<!-- Rethrow action -->

<Action id="ora-rethrow-fault"s
<rethrowFault/>
</Action>
<!-- Human Intervention -->
<Action id="ora-human-intervention"s
<humanIntervention/>
</Action>
<!-- Terminate -->
<Action id="ora-terminate">
<abort/>
</Action>
</Actions>
<Propertiess

[310]

Chapter 5

<propertySet name="myProps">
<property name="logFileName">myfaulthandler.log</property>
<property name="logFileDir">c:\temp</property>
</propertySet >
</Properties>

</faultpPolicy>

</faultPolicies>

Now we have to edit the created file. First we specify the ID of the policy file (for
example TravelApprovalFaults). Then we add a new entry to the <Conditions>

and specify the type of the fault we want to handle (in our case bpelx:remoteFault)

and the recovery action (in our case ora-human-intervention). Under <Actions>,
we can see all supported types of recovery actions:

<?xml vergion="1.0" encoding="UTF-8" ?>

<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">

<faultPolicy version="2.0.1" id="TravelApprovalFaults"

xmlns:env="http://schemas.xmlsoap.org/ soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/ XMLSchema-instance">
<Conditionss>
<faultName
xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<action ref="ora-human-intervention"/>
</condition>
</faultName>
</Conditionss>
<Actions>
<Action id="my-java-handler"s
<javaAction
className="soatraining.faulthandling. MyFaultHandler"
defaultAction="ora-terminate" propertySet="myProps">
<returnValue value="OK" ref="ora-rethrow-fault"/>
</javaAction>
</Actions>
<!-- Retry -->
<Action id="ora-retry">
<retry>
<retryCount>4</retryCount>
<retryInterval>2</retryIntervals>
<exponentialBackoff/>
</retry>
</Actions>

[311]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

<!-- Rethrow action -->
<Action id="ora-rethrow-fault"s>
<rethrowFault/>
</Action>
<!-- Human Intervention -->
<Action id="ora-human-intervention"s
<humanIntervention/>
</Action>
<!-- Terminate -->
<Action id="ora-terminate"s>
<abort/>
</Action>
</Actions>
<Propertiess
<propertySet name="myProps">
<property name="logFileName">myfaulthandler.log</property>
<property name="logFileDir">c:\temp</property>
</propertySet >
</Properties>
</faultpPolicy>
</faultPolicies>

We save the file. Now we will create the fault-bindings.xml file and save it in
the same directory. We will use this file to associate the fault-policies.xml file to
our SOA composite application. We have to specify the ID of the previously created
fault-policies.xml file. The content of the file is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchemainstance">
<composite faultPolicy="TravelApprovalFaults"/>
</faultPolicyBindings>

Next we will deploy our SOA composite application. In order to test the defined fault
policy, we will shutdown the EmployeeTravelstatus service. We can do this in the
EM Console by clicking the service and opening the Application Deployment menu
and then selecting Control | Shut Down, as shown in the following screenshot:

[312]

Chapter 5

¢} TravelApproval-EmployeeTravelStatus-context-root gtoaged in as weblogic|Host vMcrat

C:] Application Deployment Fage Refreshed 18-Jun-2010 15:28:25 CEST ¥
Harne —
D ot~ = Modules 1=
cantral N fModule Mame
Start Up wifeblogic o TravelApprawal-l
Logs b Shut Dowrn...

Performance Surnrnary Ll—

Beanz in Use 0
Bean Accesses [per rninute] 0,00
Bean Access Successes (%5) 0.00

Application Deploymeant 3

Wieh Serwices

Security ¥ Tranzaction Commits (per minute’) 0,00
MDS Configuration ramsaction Rollbacks (per minote) 0,00
Toplink Sessions ransaction Timeouts (per minute] 0,00

Biean Tramszaction Camrits (98] 0,00 = Response and La

Systern MBean Browser

- 3

T wieblogic Server Administration Console 2
1

General Information u]

01, TravelApprowal-EmployeeTravelStat

Waeb Services I
1514 1518 ¢

Service Mame Port Te_st\ 18 Jun 10 il
4| | X

Now we will initiate a new process instance. If we view the audit trail of the created
instance, we can see that the invocation of the EmployeeTravelStatus service has
faulted, but it is waiting for manual recovery.

Flove Trace = Instance of Travel&pprowal Drata Refreshed 18-Jun-2010 153634 CEST ()
.

galnstance of TravelApproval @

This page shaws BPEL process instance details, '\?,) Instance 10 bpel:340083

Started 18-Jun-2010 15:36:30

Audit Trail = Flow = Senszor Walues 0"!‘ Faults

Expand a payload node ba view the details, Currant Audit Lewel: production @ View Raw ML

= EreceiveTravelRequesl

= Received "TravelRequest" call from partrer "client"
Wik HML Docurnent

=1 [AssignEmployee
Updated wariable "EmplayveeTravelStatusR equest”
Cornpleted aszign

= “4ZEmployeeTravelStatus (pending)

@ Faulted while invaking aperation "ErployesTravelStatus" an pravider "EmplayesTravelStatus”,
+ =zpayload=

[FALULT RECOVERY] Marked Invake activity as "pending manual recovery”,

[313]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Before attempting to recover, we will startup the EmployeeTravelStatus service.
If we want to go back to the instance audit trail, we can switch to the Faults tab.
Here we can select the fault and try to recover the instance. We can choose between
recover actions such as Retry, Abort, Replay, Rethrow, and Continue. We can also
change the values of process variables. We will select Retry and click Recover.

Floww Trace = Instance af Travel&pprowval Drata Refreshed 18- Jun-2010 15:36:34 CEST L)

salnstance of TravelApproval @

This page shows BPEL process instance details. @ Instarmcz 10 bpel:340083

Started 18-Jun-2010 15:36:30
Audit Trail ~ Flow Sensaor Walues o*ll\ Faults

Thiz page lizsts all Faults that have accurred in thiz component instance, IF a Fault is marked as Recowerable, you can select it and choose a recowvery ()
action fram the list, This action reruns the instance and atternpts to recower the Fault, by
Error Message Recowery Fault Time Activity

@:bpelFault::FaultTypebU:fFaultType @Recoverable 18-Jun-2010 15:36:30 EmployeaTravelStatus

1| i

F3

Recover Fault: default/ TravelApproval'l.0%s0a_91ee705f-a192-4da5-ad69-24d51 ac6980c, TravelApproval/ 340083-BpInvD-Bps ...

“hoose one of the available recowery options, modify the wariable information as appropirate, and click "Recawer",

Marne ;I

Recover

Fecavery Action After Successful Retry

Watiable EmployeeTravalStatuskegquest ;I

walue =employes xmins="http: ffpacktpub .comfservice femployee, =
=FirstMHame xmln =Marcel = FirstMame =
=LastMarne xriln izewnik = /LastMamne =

=Department xmins=""=SIL =/Departmant =
=fernployea=

[314]

Chapter 5

If we switch back to the Audit Trail tab, we can see that the instance was successfully
recovered and has completed successfully.

Flow Trace = Instance of Travel&pproval

Audit Traill Flow Sensor Walues

Expand a payload node ta wiew the details,

salInstance of TravelApproval @
This page shows BPEL process instance details, '\?_)

Faults

[Cata Refreshed 18-Jun-2010 15:46:18 CEST L)

Instance ID bpel:340083
Started 18-Jun-2010 15:36:30

Currant Audit Level: production (0 Wien Fawe KML

Wiew XML Documeant

= [Y.)AssignEmployee

= “4&FEmployeeTravelStatus

H =payload=

+ =payload=
= [.]AssignFlightDetails

Received "TrawvelRequest” call from partrer "client”

Updated variable "EmploweeTravelStatusRequest”

Cormpleted assign

[FAULT RECOWERY] Marked Inwake activity as "pending manual recovery,
[FAULT RECOWERY] Ratry attempted by manual Fault recawvery

Irvoked 2-way operation "EmployvesTravelStatus” on partner "Employee TravelStatus",

Updated wariable "FlightDetails"
Updated variable "FlightCretails"

Completed assign

Faulted whilz invoking operation "EmployesTravelStatus" on provider "EmployesTravelStatus”,

=l

[315]

BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding,
and Fault Management Framework

Summary

In this chapter, we have become familiar with several advanced BPEL features of
Oracle SOA Suite 11g. First, we have looked at the BPEL extension functions and
activities. We have discussed transformations and query support in BPEL. We have
explained data and array manipulation in XML, which is very common in complex
BPEL processes. We have also looked at process identification functions and

LDAP access.

We have looked at dynamic parallel flows, which enable us to develop BPEL
processes that have a flexible number of parallel flows. Related to parallel flows are
dynamic partner links, which allow us to define partner links at runtime. This allows
us to build flexible BPEL processes.

We have also looked at Notification Service. Notification Service allows us to send
e-mails, text messages, voice mail and thus integrate BPEL processes with messaging.
We have also looked at Java embedding in BPEL. Although embedding Java into
BPEL is not a sound practice, it is good to know that it is possible.

Finally, we have looked at the fault management framework. The fault management
framework allows us to control and manage faults in BPEL processes in a more
sophisticated way than with BPEL fault handlers. This way we can achieve higher
reliability of BPEL process instances.

In the next chapter, we will look at additional advanced BPEL features of Oracle
SOA Suite 11g.

[316]

Entity Variables, Master and
Detail Processes, Security,
and Business Events in BPEL

In this chapter, we will continue the discussion of the advanced BPEL features
provided by the Oracle SOA Suite 11g PS2. We will discuss the Oracle's extension to
standard BPEL variables — Entity variables. As it is a very important feature, we will
also show how to secure SOA Composite applications by attaching security policies.
Finally, we will overview two new BPEL extensions that Oracle introduced in SOA
Suite 11¢ —the support for Maser-Detail processes and the ability to publish and
subscribe to business events from a BPEL process. We will demonstrate the use of
presented features on the asynchronous Travelapproval BPEL process that we
have already developed in Chapter 2.

In this chapter, we will discuss the following;:

o Entity variables

e Master and Detail processes

e Securing SOA Composite applications
¢ Using Business Events in BPEL

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Entity variables

Support for entity variables is an Oracle extension that has been introduced

in Oracle SOA Suite 11g. Entity variables are not like regular DOM variables

which are disconnected message payload. In fact, entity variables use SDO-based
in-memory data structure and are able to detect changes to underlying data in the
data source. When using entity variables, only a reference (key) to the data is stored
to the BPEL dehydration store (as part of process instance state) when the instance is
dehydrated, while the actual data is stored in a remote data source (database table).
During every instance rehydration, the infrastructure automatically loads fresh data,
as other applications may change the data while the process instance is dehydrated.
Therefore, we do not have to be concerned about refreshing our local copy of data.
Entity variables can be especially useful in long-running BPEL processes, when we
want to avoid using stale data.

In order to use entity variables, we first have to create the Oracle Application
Development Framework Business Component (ADF-BC) backend data access
service. The ADF-BC service is responsible for updating remote data every time
the BPEL process is dehydrated to the database (when entering the <wait> activity
or during the asynchronous call) and for loading fresh data during instance
rehydration. Then we add the ADF-BC service as a reference to the SOA composite
diagram and wire it to the BPEL process. Finally, we can create the entity variable
and connect it with the ADF-BC partner link.

In order to enable the use of entity variables in BPEL processes, Oracle

introduced the following BPEL extension activities (activities are defined in

the http://schemas.oracle.com/bpel/extension namespace, usually declared
with the bpelx prefix):

e <bpelx:bindEntitys: Used to set the key of the entity variable. This action
connects the entity variable to a row in a database.

e <bpelx:createEntity>: Used to create a new entity variable. This action
inserts a new row in the table.

e <bpelx:removeEntitys: Used to remove the entity variable. This action
removes a row from the table.

[318]

Chapter 6

. In BPEL processes, entity variables can be used in the same way as
& standard DOM-based variables. However, when using SDO-based
= variables, there are some limitations when using advanced XPath

features (for example, there is no support for and, or, and not).

To demonstrate the use of entity variables, we will modify our Travelapproval
process. Instead of calling the EmployeeTravelStatus service, we will use the
entity variable to get the employee travel class information directly from the
database. During the execution of the BPEL process instance (we will insert a
<wait> activity, so that the process instance will dehydrate), we will change

the travel status of an employee and see that the value is automatically updated
when the instance rehydrates.

If we want to demonstrate the use of the entity variable, we first need a database
table to store the employee travel class information. We will use the HR sample
schema (schema is automatically created during the Oracle database installation),
which already contains an EMPLOYEES table. The table already contains columns,
such as EMPLOYEE ID, FIRST NAME, LAST NAME, and so on. However, we will alter
the table by adding two new columns (DEPARTMENT NAME and TRAVEL_CLASS). Now
all employee-related data will be accessible through the entity variable; therefore,
we will also change the input to the BPEL process. Instead of passing employee data,
we will just pass the unique identifier (employee1d). After modifying the EMPLOYEES
table, we will create new ADF-BC service, which will provide access to remote data.
Then we will remove the EmployeeTravelStatus reference from our composite
application and add a new reference (newly created ADF-BC service). Finally,

we will create a new entity variable (EmployeeEV) and bind it to the employeeId
identifier from the TravelRequest input message.

[319]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Altering the EMPLOYEES table

First, we have to connect to the HR sample schema as a user Hr (if the account is
locked we have to unlock it first). Then, we alter the EMPLOYEES table by adding
two new columns —DEPARTMENT NAME and TRAVEL CLASS. The EMPLOYEES table
now looks as follows:

EMPLOYEES

Tahle Data Indexes Model Constraints Grants Statistics Ul Defaults
Add Column | | Modify Column | Rename Column | | Drop Column | | Rename | | Cop

Column Hame Data Type Hullable Default Primary Key
EMPLOYEE_ID MUMBERCE 07 0] - 1
FIRST_MAME WARCHARZ(20) Yes - -
LAST_MAME WaRCHAR2(25) Mo - -
EMAIL WARCHARZ(25) 0] - -
PHOME_MUMBER: WARCHARZ(20) Yes - -
HIRE_DATE DATE Mo = -
JOB_ID WARCHARZ(10)] - -
SALARY MUMBER(E 23 Yes - -
COMMISSION_PCT MUMBER(2 2) Yes - -
MANSGER_ID MUMBER(E 0] Yes - -
DEPARTMENT _ID MUMBER4 07 Yes - -
DEPARTMEMT_MAME WARCHARZ(100) Yes - -
TRAVEL CLASS W ARCHARII0) YES - -

1-13

We can also enter some test data, which will be used later for testing.

Creating the data source

Next, we have to create a data source on the WebLogic admin server, through which
the ADF-BC service will connect to the database. We open the WebLogic Server
Administration Console, using the URL http://host_name:port/console, where
host name is the name of the host on which the Administration Console is installed
and port is a number that is set during the installation process (default is 7001).
Under the Domain Structure, we select Services | JDBC | Data Sources. We click
New to create a new data source. The following page opens:

[320]

Chapter 6

Create a New JDBC Data Source
Eack Mext ‘ Finizh | Cancel

JDBC Data Source Properties

The following properties will be used to identify your nesw JDBC data source,
* Indicates required fields

What would you like to name your new JDBC data source?
= .
&g *Name: HRDSource

What JNDI name would you like to assign to your new JDEC Data Source?

(F] INDI Name:
jdbe/HRDataSource

What databasze type would you ke to select?

Database Type: Oracle j

Back Mext ‘ Finish | Cancel

We enter the JNDI Name (jdbc/HRDataSource) and Name of the data source.
We click Next three times. Then we have to enter the connection details as shown
in the following screenshot:

Create a New JDBC Data Source
Back MNext | Finizh ‘ Cancel

Connection Properties

Define Connection Properties,
What is the name of the database you would like to connect ta?

Database Name: YE

what is the name or IP address of the database server?
Host Name: localhost
What is the port on the database server used to connect to the database?

Port: 1521

What database account user name do you want to use to create database connections?

Database User Name: HR

What is the database account password to use to create database connections?

Password: sessnnen

Confirm Password: O ——

Back Mext | Finish ‘ Cancel

[321]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We click Next again. Here we can test the connection. By clicking Next, the final
screen opens, where we select the target server.

Create a Wew JDBC Data Source
Back [et ‘ Finizh | Cancel

Select Targets

You can select one or more targets to deploy your new JDBC data source, If you don't select a
target, the data source will be created but not deployed. You will need to deploy the data
source at a later tirme.

Servers

[AdminServer

[bam_serverl

[oer_server1

Back I et ‘ Finish | Cancel

We click Finish to confirm all previous steps.

Creating the ADF-BC service

In this section, we first create a new generic application and project for the
ADE-BC service.

As ADF is out of the scope of this book, we will not discuss the details
= and will just provide the basic steps for creating an ADF-BC service.

We set the name of the project to EmployeesDO and select ADF Business
Components from Available Project Technologies. Then we click Finish to close the
empty project. Next, we right-click the created project and select New. In the New
Gallery window, we select ADF Business Components. On the Items list on the
right side, we select Business Components from Tables.

[322]

Chapter 6

ew Gallery

(ml Technologies r Current Project Technologies |

This list is Filkered according to the current project's selected technologies,

(@)
Categories; Items: [] shaw &l Descriptions
=h-General] [} Business Components from Tables
--fpplications Launches the Create Business Components from Tables wizard, which allows
Connections wou to create multiple entity objects and ather Business Components from

-Deplayment Descriptors database tables. Use entity objects to represent tables or UML entities and
- Deployment Profiles to implement business rules.
~Diagrams Ta enable this option, you must select a project in the Application Mavigataor.
--Java Before ywou can finish creating the components, you wil be prompted ta
~Projects select (or create) a database connection,

- BPM Ti

K e [&pplication Module
—-Business Tier
A Ey, association

--Data Controls
~Security

50 Tier ’f?s_; Business Components Diagram

-l Items

|n Default Data Model Components
E@ Damain
Help QF, | | Cancel

In the next step, we have to create a connection to the HR database. After entering the
connection parameters, we click OK. The Entity Objects screen opens. We click the
Query button to retrieve tables. We select the EMPLOYEES table and move it to the
Selected list on the right.

é- Create Business Components from Tables - Step 1 of 6

Entity Objects

Specify the package to contain your new entity objects and associations.
Package: |ampluyeesdu | | Browese. .. |

Entity Objects

Filter the types of schema objects to display as available, then select the schema object{s) and click. '>' ta create entity objects.

\%,.
\i_; Updatable View Objecks
I
I
I

Schema: |HR V| Type Filter: OFF | Filter Types |
Name Filker: |°.-"o | DAQto-Query | Query |
Available:

[COUNTRIES

i DEPARTMENTS

B2 EMP_DETAILS_VIEW
i 1085

>3
[108 _HISTORY —
[LOCATIONS |2|
[REGIONS (€]
(&)
Entity Mame: Employees |
Help Mext > ‘ | Finish | | Cancel |

[323]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We click Next. The Updatable View Object window opens. We move the Employees
to the Selected list and click Next twice. In the Application Module window we
enter the name of the application module as EmployeeSDOAppModule.

é- Create Business Components from Tables - Step 4 of &
Application Module
Select the checkbox to add instances of the default data model components the specified application module, IF the specified
application module does not exist it will be created.,
i Application Madule
T Read-Only View Objects
\l-«' Application Module | package: [employessdo | Browse... |
¥ Diagram Mame: |[EmployeesDoappModule | Browse, ., |
| Help | | < Back ” Mext = | | Finish | | Cancel

We click Finish and save the project by clicking Save all.

Next, we will create a service interface for our view object. We have to
double-click the EmployeesDoAppModule. The application module configuration
panel opens. We click on Service Interface. Then we click on the plus sign. The
Create Service Interface wizard opens. We change the name of the web service
to EmployeeSDOService.

[324]

Chapter 6

&

ate Ser

e Interface - Step 1 of 4

Service Interface

Service Interface

T.
T Service Custom Method:
|

Target Namespace: |,|’emp|0yeesdo,l’common,l’ |

[] Generate Asynchronous Web Service Methads

Conkrol Hinks Support

Generate a method that returns the static control hints defined on a service view instance,

|:| zenerate Control Hints Operation

| Help | | Mext = Jl Finish || Cancel

We click Next twice. On the Service View Instances screen, we move the
EmployeesViewl to the Selected list. On the bottom of the screen, we check
all available operations.

é- Create Service Interface - Step 3 of 4
Service View Instances
i 3
Far each view instance ywou select, decide which basic and view criteria operations to enable. Optionally change the associated
method name,
Zervice Custom Methods available: Selected:
() Service ¥iew Instang
o SUmmary
(€]
Easic Operations r View Criteria Find Operations |
Enable Operation Method Mame
Update updateEmployvessyiewl
Delete deleteEmployeestiew1
Merge mergeEmployveesyiewl
GetBykey getEmployessyiewl
Find FindEmployvesstiswl
Help < Back || Mext = J | Finish | | Cancel

[325]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We click Finish. Then we open the Configurations on the EmployeeSDOAppModule
and edit the EmployeeSDOService configuration. We enter the name of the
previously created JDBC data source (jdbc/HRDataSource) and click OK. Then we
select the EmployeeSDOService as the default configuration.

Next, we will create a new deployment profile. First, we have to right-click the
EmployeeSDO project and select Project Properties. Under the Java EE Application
we change the Java EE Web Application Name to EmployeeSDO-webapp and the
Java EE Web Context Root to employee-app.

é-Proiect Properties - C:' JDevelopermywork' EmployeeSDOApp" EmployeesDO' EmployeeSDO.jpr

(& !'| Jawa EE Application

[#- Project Source Paths (_ ! Use Custom Settings
B ADF Model () Use Project Settings

o D Yiew

The following properties are used when running this project as a Jawa EE module or application in
. the integrated WLS server,

[+ Business Components
[+ Compiler

Java EE Web Application Mame:
|EmployeeSDO—webapp |

- Dependencies

Deployvment
-+ EJB Module Java EE Weh Context Roat:
- Extension |emp|0yee-app |
[Javadoc

¥ 1ava EE Application Integrated WS Command Line:
- 15P Tag Libraries St ${java.optionst]

- J5P Visual Editar

- Libraries and Classpath
- Resource Bundle

- Run/DebugiPrafile

- Technology Scope

Restore Default

[Tl Crable Access Log

| Help | | QK | | Cancel

We click OK to close the window. Then we open the Project Properties again.

We select Deployment and then click the New button to create a new deployment
profile. As Archive Type we select Business Components Service Interface.
We also change the Name of the profile to employeeSDOProfile.

[326]

Chapter 6

é- Create Deployment Profile E3

Click, Ok, to create vour new deployment profile and immediately open it to see its configuration,

Archive Type:

|Business Components Service Interface "l

Marne:

|emp|o\;eeSDOProﬁle |

Description:

Creakes a profile for deploving Business Components as a Service Interface to a target application
SErver,

Tao enable this apkion, wou must select a Business Components project in the Application Mavigatar,

| Help | | ik | | Cancel |

We click OK to close the window. Then we expand the employeesDoProfile and
edit the MiddleTier. As Enterprise Application Name we enter EmployeeSDO.
We also change the name of the EAR file to employee-app.ear.

é- Edit EJB JAR Deployment Profile Properties B
(g8 || General
EJB JAR File:
J'?'R Options |||oyeeSDOApp'l,EmponeeSDO'l,deploy'l,employeeSDOProFiIe_MiddIeTier.jar| | Browse... |
=+ File Groups
{2 Project Output EAR. File:
Clontrlbutors |per'l,mywork‘l,EmpIoveeSDOApp'I,EmponeeSDO'l,deplov'l,emplovee—app.ear| | Browse... |
Filters
Library Dependencies Deployrment Plan:
: Profile Dependencies | | | Erawse. .. |
(= Platfarm
- ihebSphere 7. Enterprise Application Marme: |Empl0yeeSDO |
7 Deployment Client Maximum Heap Size (in Megabytes): |nut0 '|
| Help | | 0 | | Cancel

We close the window by clicking OK and save the project.

[327]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Next, we click on the Application menu in the toolbar and select Application
Properties. Under Deployment we select and edit the deployment profile. We
change the application name to Employeeapp and click OK on both open windows.

As the SDO ADF-BC service has to join the composite's global transaction,
it has to be invoked using RMI protocol. Therefore, we have to add the
WebLogic application listener to the weblogic-application.xml
file. Once this listener is added, JDeveloper automatically registers the
service application name (<appname> JBOServiceRegistry) into
% the fabric service registry in the composite.xml file. The WebLogic
L= application listener registers the service with the SOA Infrastructure when
the application starts up. When using this service in an SOA composite
application, we have to provide this registry key at design time, as we
will demonstrate later. At runtime, the SOA Infrastructure looks up the
service using the registry key and invokes the ADF-BC service using
RMI protocol.

We open the weblogic-application.xml file, which can be found under
Application Resources | Descriptors | META-INF. We switch to the source
code view and paste the following code:

<listeners>
<listener-classs>
oracle.jbo.client.svc.ADFApplicationLifecycleListener
</listener-class>
</listeners>

The weblogic-application.xml file will now look as:

%wehIogic—application.xml |
(@t~ L35)
<rxml wersion = 'l.0' encoding = 'windows-1250' -
= <weblogic-application xmlns:xsi="http://w, w3, o0rg/20013ML3chena-instance™

xsi:achemalocation="http: //wmnr.bea. con/nsweblogic/weblogic-application http: //wmnr.bea
xmlns="http: /fimmr. bea. con/ns/weblogic/weblogic-application™s

= «<listenexr>
<listener-class-oracle.adf.share.weblogic. listeners. ADFApplicationlifecyclelistener< /listener-classs
</listener>-
= «<listenexr>
<listener-class-oracle.nds. lcn.weblogic, WLLifecyclelistener< /listener-class:
< /listener>

= listener:
<listemer-class-oracle. jbo.client.svc.ADFApplicationlifecyclelistener< /listener-class:-

listener:-
= <library-ref>
<library-name:-adf.oracle. donain< /library-names-
</library-ref:-
</wehlogic-application:

Owverview | Source | History U

[328]

Chapter 6

Finally, we can deploy our ADF-BC service by opening the Application
menu and selecting Deploy | CustomerSDO_customerSDOProfile |
MyAppServerConnection.

Modifying the SOA composite application

First, we have to modify the input of the TravelaApproval process. Instead of
passing the whole employee data (complex type EmployeeType), we will just pass
the unique identifier (employee1d), which is of type int. Then, we will delete the
EmployeeTravelStatus reference binding component and the BPEL activities for
its invocation (in scope RetrieveEmployeeTravelStatus). Next, we will drag

the ADF-BC Service component from the Component Palette to the External
References swim-lane of our composite application. The Create ADF-BC Service
window opens. We have to enter the Name (EmployeeSDOService), the WSDL
URL, the Registry (EmployeeApp JBOServiceRegistry), and select the Port Type
(EmployeeSDOService).

é-[reate ADF-BC Service
ADF-BC Service 5
!
Create an ADF-BC service. ‘?

Marne: |
WSDL LRL: |htt|:l:.l'.l"\-'MOraSOF\1 1gP52:5001 employes-app/Employee SDOService?wsdl | ® o
Port Type: |Empl0yeeSDOService v|
Registry: |Em|:u|oyeenpp_JBOServiceRegistry |

[copy wsdl and its dependent artifacts into the project.

Mote: Keeping a copy of & WSDL may result in synchronization issues if the remote WSDL is updated. It is
recommended not make local copies - this should be reserved For situations such as offline designing.

Help (o] 4 | | Cancel

[329]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We close the window by clicking OK. Then we wire the EmployeesDOService

reference with the BPEL process. Our composite application now looks as shown
in the following figure:

Exposed Senvices Components External References

g: B
AmericanAirin...
Operations:
Flightswailability
MakeReservation
FlightTicketCallb...
MakeReservatio. ..

2 D et &
oy DeltaAirlines
o3 = ® Trava lAppm... Operations:
TravelApproval... Flightavailability
Operations: MakeReservation
TravelApproval FlightTicketCallb...

MakeReservatio. ..

@ = &

EmployeeSDO...
Operations:

getEmployees\i. ..
create Employee. ..
updateEmploye...
deleteEmployee...
mergeEmployee...
findEmployeesy. ..
processEmploy...
processCSEmpl...

Next, we double-click the BPEL service component to get to the BPEL
Component Designer. Now we will create a new entity variable (in scope
RetrieveEmployeeTravelStatus) that represents the employee data (including
travel class). On the Create Variable window we set the Name of the new entity
variable to EmployeeEV. We select Element and click on the browse icon to select
an element. In the Type Chooser we expand Project WSDL Files and browse

to the EmployeeviewSDO element as shown in the next screenshot:

[330]

Chapter 6

é- Type Chooser []

= #E

»& Type Explorer
- [Project Schema Files
(23 Project WSDL Files
+ Airline wsdl
- EmployessDOService, wedl
[Imported Schemas
[1nline schemas
=23 Imported WsDL

B EmploveeSDhoService

[Imparted Schemas

-[23 Inline Schemas
! B% schema
>
createEmployeesYiewl
createEmploy iewl
deleteEmployees¥iew1
delet loyees¥iew1R
findEmployeesYiew1
findE ¥ iewl

getEmployees¥iewl

netF I Wiew1

Type: |{,|’emponeesdop’common,l’}-employees\-‘wewSDO |

[] show Detailed Mode Information

| tem

0K

|| Cancel |

We click OK to close the Type Chooser. Back in the Create Variable window, we
select the Entity Variable and choose the EmployeesDoService for the partner link.

Next, we will drag the <bindEntity> activity from the Component Palette and drop
it to the RetrieveEmployeeTravelStatus scope. After double-clicking the activity,
the Bind Entity window opens. We set the Name of the activity to BindEmployeeId
and select the Entity Variable (in our case EmployeeEV).

{lemployeasdofcorm. .. bpws:getvariableDatal'TravelRequest’, travelRe. ..

Bind Entity b4
| General r Skip Condition |
Mame: |BindEmponeeId |
Entity Wariable: |Emp|0yeeE'v' | OQ
Lnique Kevys: EF / %
key QMame ‘alue Expression

Help

| apply

QK

| | Cancel

[331]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

By clicking the plus sign, we have to add a unique key which will be used to bind the
Entity variable to a row in a database. The Specify Key window opens.

é- Specify Key

Key QMame

Key Local Part: |Emp|0yeeld| | (x)

Key Mamespace URIL: |,|'emp|0yeesdo,l'common,l’ |

Key Walue: |bpws:getVariabIeData('TraveIRequest','traveIRequest',',l'client:TravelApprovaI,l'emponeeId') | Ef"!

Help |

Ok || Caneel |

For a Key Local Part we select EmployeeId from the EmployeeEV variable. For Key
Value we use the Expression builder to select the employeeId element from the
input TravelRequest variable. After the <bindEntity> activity we add a <wait>
activity and set the wait time to one minute.

Wait

| General rnnnotations rSkjp Condition

Marme: |Wait |

Far
.:E- Time: |E| s EIMons EIDays EIHrs IIIMins EISecs|}|

| &

Linkil

i

Help | | Apply || K || Cancel |

We will use <wait> activity just for testing purpose. When the process instance will
enter the <wait> activity, it will dehydrate for a specified period (in our example,
one minute) and in the meantime we will be able to change the employee travel class
directly in the database. After one minute the process will rehydrate and we will see
that the instance will use the new travel class value when calling the airline services.

[332]

Chapter 6

We also have to add a new <assigns> activity to set the value of the F1lightDetails
variable. We can ignore the Variable is not initialized warning on this <assign>
activity, as we do not need to initialize entity variables.

Our BPEL process now looks as shown in the next screenshot (only the first part
of the process that has been changed is shown to improve readability):

Partner Links - Partner Links

O

@

receiveTravelRequest

i

= EmployeesSDioSer...

BindEmployeeld
‘i aik

AssignFlightDetails

Finally, we can deploy and test our process.

[333]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Testing the entity variable

We will first go to the database and set the travel class of an employee that we will
use in our test (for example, EMPLOYEE_ID=100) to value Economy.

EDIT EMPLOYEE_ID FIRST_HAME LAST_HAME EMAIL PHONE_HUMBER DEPARTMENT_HAME TRAVEL CLASS
E\ 100 Stewven King SHING 515.123 4567 = Economy I

E—‘\% 101 Meena Kachhar MKOCHHAR 515123 4568

E—’\\ 102 Lex De Haan LDEHALN 5151234563

_—% 103 Slexander Hunold AHUNOLD 590,423 4567

_—\ 104 Bruce Ernst BERMST 590423 4563

_—% 105 Davicl auistin DALUST 590 423 4569

E—“\ 106 wall Pataballa VPATABAL 590423 4560

We go to the EM Console and initiate a new instance of the process.

Input Arguments
Tree Yiew ;I
Mame Tvpe Value
= * travelRequest TravelRequestType
employesld ink 100|
= flightData FlightRequestType
Requestho string 321
QriginFrarn string London
DestinationTa string London
DesiredDepartureDate date 20l0-12-12
DesiredReturnbates date 2010-12-17

We click Test Web Service. Next, we open the visual Flow of the instance. We
can see that the execution of the process instance was temporarily stopped and
it is waiting for the expiry time. We can also see that during the dehydration, the
EmployeeEV variable has been saved through the backend ADF-BC service.

[334]

Chapter 6

O
|

receiveTravel..,
Activity Audit Trail - Mozilla Firefox B

B!ndEm_D_\[_\D geld] |http:,l’,ilncalhnst:TDD1,fem,|’ai;’sca,l’share,l’audit,l’ang,l’dIgEIEmentDetai\s.jsp *
BindEmployeeld

l El

Waiting for the expiry time "2010/06/20 0B:54:07",

W ait

Changes in entity variable "EmployeeEv" have been saved
back through the back-end service

i

| Koncana

sl_hl

While the instance is dehydrated, we will change the travel class of the employee
in the database to First.

EDIT EMPLOYEE_ID FIRST_HAME LAST_HAME EMAIL PHOHE_HUMBER DEPARTMENT_HAME TRAVEL_CLASS
E\\ 100 Steven King SHING 515125 4567 = First I

—%\\ 101 Neena Kachhar MKOCHHAR 515123 4568 -

E\\\ 102 Lex De Haan LDEHAAN 5151234569 -

E\\\ 103 Alexander Hunald SHUNOLD 590423 4567 -

E\\\ 104 Bruce Ernst BERNST 590425 4568 -

E\\\ 105 David Austin DAUSTIN 590.4234569 -

E\\\ 106 wall Pataballa VPATABAL 5904234560 I -

[335]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

If we go back to see the visual Flow of the instance again, we can see that the
instance was rehydrated (if one minute has already passed) and has completed.

receiveTravel...
—| Scope_4

BindEmployesld
BindEmployeeld

AssignFlightD...

—| Scope_2
¥ u
Sequence_1 Sequence_1
‘ ‘
Arnericaniirlines Deltasirlines

Now we will check if the instance used the new value of the employee travel class
(First) when invoking the airline services. If we click on the AmericanAirlines
<invoke> activity, we can see that the value has been refreshed.

[336]

Chapter 6

Activity Audit Trail - Mozilla Firefox

I] |http:,l’,l'localhost:?DDI,l'em,l'ai,l'sca,l’share,l’audit,l’ang,l’dIgEIementDetaiIs.jsp

|»

=4 Americandirlines

Invoked 1-way operation "Flightay ailability" on partner "americanairlines".

- name="flightTicketRequest" zmins:xsi="http: f fwww.w3.0rg
F2001fXMLSchema-instance"
- xmins="http:f fpacktpub.comfservicefairline /"

xmlns=""=321
xmins="">Ljubljana
#mlns="">London
xmins="">2010-12-12+01: 00
xmins="">2010-12-17+01: 00

First

Copy details to clipboard

4 of

| Koncano

In the next section, we will look at the Master and Detail processes.

Master and Detail processes

By defining Master and Detail processes, we are able to coordinate a one-to-many
relationship between a single Master process and multiple Detail processes. This
pattern is useful in asynchronous communication, when a Master process invokes
one or many Detail processes and then continues with processing. However, at a
certain stage it needs to stop and wait to receive a signal from Detail processes to
know whether all Detail processes have reached a certain stage. After receiving a
signal from all Detail processes, the Master process can continue with processing.
This means that the Master process does not need to wait for all Detail processes
to finish (Detail process can send a signal to Master process before it actually
finishes with its execution). This coordination is especially useful when the Master
process invokes one-way operation of the detail and the Detail process does not
return any message. A common use case is when a Master process delegates

the processing to one or more Detail processes. However, before sending a final
notification that processing is complete (or reached a certain stage), it needs

to receive a signal from client processes.

[337]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

In order to enable the coordination between Master and Detail processes, Oracle
introduced the following BPEL extension activities (activities are defined in the
http://schemas.oracle.com/bpel/extension namespace, usually declared
with the bpelx prefix):

e <bpelx:signals>: Used to send a signal to the other processes (Master
or Detail) to continue processing
e <bpelx:receiveSignals: Used to temporarily stop processing and wait

until it receives a signal from the other process (Master or Detail)

Both activities are coordinated using the 1abel attributes. The following figure
shows the overview of the Master-Detail coordination:

Master Process Detail Process

Signal Activity

label="startDetailProcess"
to="details"

Invoke Activity Receive Signal Activity

» label="startDetailProcess"
from="master"

partnerlink="DetailProcess"

bpelx:invokeAsDetail ="true"

.

Receive Signal Activity

.

Signal Activity

label="completeDetailProcess"
from="details"

label="completeDetailProcess"
to="master"

To demonstrate the use of Master-Detail coordination, we will modify our
TravelApproval process. We will move the BPEL code for ticket reservation from
TravelApproval (Master) BPEL process to a new BPEL process (we will name it
TicketReservationDetail), which will represent a Detail process. The Master
process will get the ticket offers and compare both prices. Then it will invoke the
Detail process (using one-way operation), which will make the reservation of the
selected flight ticket. The Master process will end with sending an e-mail notification
to the requestor; therefore, it will need to know when (and if) the Detail process
has successfully completed the reservation. To coordinate the control flow between
the Master and Detail process, we will use <signal> and <receiveSignal> BPEL
extension activities.

[338]

Chapter 6

Creating the Detail process

First, we have to create a new XML schema, which will be used to define the input
of the detail BPEL process. We do not need to define the output, as we will create a
one way BPEL process. We use http://packtpub.com/bpel/travel/reservation
as the target namespace. We create a new element (f1ightReservation)and a
corresponding complex type (FlightReservationRequestType), which includes
information about the selected airline (element airline) and the selected flight
(element confirmationData).

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://packtpub.com/bpel/travel/reservation"
xmlns:tns="http://packtpub.com/bpel/travel/reservation"
xmlns:aln="http://packtpub.com/service/airline/"
elementFormDefault="qualified">

<Xs:import namespace="http://packtpub.com/service/airline/"
schemalocation="FlightConfirmationType.xsd"/>

<xs:element name="flightReservation"
type="tns:FlightReservationRequestType"/>

<xs:complexType name="FlightReservationRequestType">
<xs:sequence>
<xs:element name="confirmationData"
type="aln:FlightConfirmationType"/>
<xs:element name="airline" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

[339]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Next, we drag-and-drop a new BPEL Process Service Component to our SOA
Composite diagram. The Create BPEL Process window opens. We enter the Name
of the BPEL process (TicketReservationDetail), the Namespace (http://
packtpub.com/bpel/travel/reservation), and select One Way BPEL Process as a
Template. We uncheck the Expose as a SOAP service checkbox. Then, we define
the Input of the BPEL process. We import the XML schema using the Type Chooser
(we click on the magnifying glass icon) and select the f1ightReservation element.
We click OK to close the window.

é‘l:reate BPEL Process <]
BPEL Process

[
A BPEL process is a service orchestration, used to describe/execute a business process (or large grained ﬁva
service), which is implemented as a stateful service,

Mame: |TicketReservat\onDetai| |

MNamespace: |http:Hpacktpuh.cnmJ‘hpal,l’travel,l’reservatinn |

Template: |=D One \Way BPEL Process '| =)

Seryice Mame: |ticketreservationdetail_client |

[Expose as a SOAP service

Input: |{http:,|’,|’packtpub.com,l’bpel,l’travaI,l’reservation}FIightReservation | %

Help [0]4 | | Cancel

Now we wire the TicketReservationDetail BPEL process and both airline
services. We also have to wire both BPEL processes. Our SOA composite
diagram now looks as follows:

[340]

Chapter 6

Exposed Services Components External References

¥e)
EmployeeTrav...
EmployeeTravel

¥ B

AmericanAirlin...

Flightiyailability
MakeResenvation

FlightTicketCallb..
MakeReservatio. ..

TravelApproval

=
DeltaAirlines

Flight&wailability

MakeReservation
FlightTicketCallb..
MakeReservatio. ..

¥ @

NotificationSer...

send|MNotification
sendFaxNotifica,
sendvoiceNotifi...
sendSMS Notific...

sendMotification...

Now we will move the BPEL code for ticket reservation from Travelapproval to
TicketReservationDetail BPEL process. In the TicketReservationDetail BPEL
process, we also have to create input and output variables for invoking the airline
services. The detail process now looks like shown on the following screenshot:

[341]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Partner Links Partner Links
o -
8 @
ticketreservationd. ..
receiveReservationData
AssignReservationData
X
Anerican Airlings
] ,E';
] ¢85 e
= Americanairines
AmericanaitlinesReservation DeltadirlinesReservation
i
Deltasirines
oy /"
(& I
L) \F
AmericanfirlinesReservation Deltahitlinesfeservation

Modifying the Master process

As we already mentioned, we have to delete the BPEL code for ticket reservation
and replace it with an <invoke> activity, which will be used to invoke the detail
BPEL process. We rename the activity to InvokeDetailProcess. In front of the new
<invoke> activity we also have to add a <switch> activity to compare both offers,
and corresponding <assign> activities to set the input for the detail BPEL process.
After the <invokes activity we add a notification which will be used for sending an
e-mail to the requestor to confirm the reservation. Our TravelaApproval (Master)
BPEL process now looks as shown in the next figure (only the last part of the process
that has been changed is shown):

[342]

Chapter 6

Ameticanditlines

AssignReservationData

client

AssignTravelResponse

InvokeDetailProcess

NaotificationService

AssignReservationData

AssignTravelResponse

s

TicketReservation, .,

=

dientCallBack

Adding <signal> and <receiveSignal>

activities

As we want to coordinate the control flow of processes, we have to add
<signals> and <receiveSignals activities. First, we modify Master
(TravelaApproval) BPEL process. We drag-and-drop the <signals activity

in front of the InvokeDetailProcess <invokes activity. We set the Name to
StartDetailProcess. We also have to set the Label (makeReservationDetail)
and specify that the signal will be sent to the detail process.

[343]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We will use the same label in the <receiveSignalsx activity in
= the Detail process.

Signal %
| General || Skip Condition

Mame: |StartDetai|PrUcess ‘

Label: |makeReservationDetaiI ‘

To: |detai|s - ‘

Help Apply H [o]:4 H Cancel

Now, we will add the <receiveSignals activity in front of the
NotificationService activity. We set the name to ReceiveSignalFromDetail
and the label to reservationCompleted.

We will use the same label in the <signals> activity in the
e details process.

Receive Signal ®

| General || Skip Condition

Mame: |ReceiveSignaIFromDetaiI |

Label: |raservatinnCnmpIEted |

Erom: |details i |

Help | apply || oK H Cancel

Chapter 6

We also have to modify the InvokeDetailProcess <invokes activity in the source
code view by adding the invokeAsDetail argument:

<invoke name="InvokeDetailProcess"

Our Travelapproval BPEL process now looks as follows (only the last part

inputVariable="ReservationDataInput"
partnerLink="ticketReservationDetailLT"
portType="ns4:TicketReservationDetail"
operation="process"
bpelx:invokeAsDetail="true"/>

of the process that has been changed is shown):

&

clignt

FSSIT IS T I [ALL8 1= e e

AssignTravelResponse AssignTravelResponse

“r

StartDetailProcess

InvokeDetailProcess

-

ReeceivesSignalFromDetail

NotificationService

clientCallBack

&

TicketResarvation, .,

[345]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Next, we will modify the detail process. First, we will add a <receiveSignals>
activity. We set the Name to ReceiveSignalFromMaster. For the Label

we use the same value as in the <signals activity of the Master process
(makeReservationDetail). We also specify that the signal will be sent

from the master process.

Receive Signal b 4

| General rSkip Condition |

Mane! |ReceiveSignaIFr0mMaster |

Label: |makeReser\-'ati0nDetai| |

Erarn: |master - |

| Help | | Apply || QK || Cancel

Next, we will add the <signals activity at the end of the process to notify the Master
that the reservation is complete. We enter the data as shown in the next screenshot:

.

Signal b4
| General | Skip Condition

Mame: |SignaITOMaster |

Label: |reservati0nCompIeted |

To: |master ns |

Help | apply || ok || cancel

[346]

Chapter 6

To be able to test if the master process really waits for the signal from the
detail before sending the notification, we will add a <wait> activity in
front of the <signals activity and set the wait time to one minute. The
TicketReservationDetail BPEL process now looks as follows

(the MakeReservation scope is collapsed to improve readability):

Partner Links

i
3
ticketreservationd. .,

receiveReservationData
-

ReceivesignalFromiaster

AssignReservationData
H |&s
MakeReservation
Wait

-

SignalTaMaster

Partner Links
it
Bes
Americandirlines
i
et

Deltadirines

Now we can deploy and test our process.

[347]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Testing the Master-Detail coordination

To test the composite application we initiate a new process instance. Now we will
look at the visual flow of the instance. As we can see on the following figure, the
instance of the master process is waiting for the signal from the detail process.

P2

switchHode (224)

]

AssignReserva...

AL

AssignTravelR...

=

StartDetailPr...

-t

InvokeDetailP...

i3

Receivesignal..,

If we click on the ReceiveSignalFromDetail activity icon, we can see
the following message:

Activity Audit Trail - Mozilla Firefox

I s |http:,l',l’localhost:?DD1,l'em,l'ai,l’sca,l'share,l'audit,l’ang,l’dIgEIementDetaiIs.jsp

~4 ReceiveSignalFromDetail

W aiting for 1 signal(s) from detail instances for label
"reservationCompleted".

4 o

| Kongano

[348]

Chapter 6

After one minute, the Detail process sends a signal and the Master process instance
completes by sending notification to the requestor.

AssignTravelR...

StartDetailPr...

InvokeDetailP...

ReceiveSignal...
Y|
MNotificationService

Eﬁl?t

clientCallBack

In the next section, we will look at how to secure SOA composite applications
by attaching policies.

Securing SOA composite applications

Oracle SOA Suite 114 uses a policy-based model to centrally manage and secure
Web Services across an organization. This functionality is provided by the Oracle
Web Services Manager (OWSM), which is integrated into the SOA Infrastructure
and implements an interceptor-based framework for enforcing security policies.
It also enables end-to-end identity propagation inside composite applications.
Policies can be declaratively managed (attached or detached) by developers in

a design-time environment (using JDeveloper) and system administrators in a
runtime environment (using EM Console). Policies can be attached to binding
components (services and references) and service components.

[349]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Each policy consists of one or more assertions. The assertions are executed in the
same order in which they appear in the policy. We can use one of many predefined
policies, modify these policies, or create our own policies.

The following policy categories are supported:

e Security policies: WS-Security 1.0 and 1.1 standards are supported.
Security policies enforce authentication and authorization of users, identity
propagation, and message protection (integrity and confidentiality).

e MTOM Attachments policies: Provide optimal handling of large
binary data.

e Reliable Messaging policies: Provide support for the WS-Reliable
Messaging protocol for reliable end-to-end message delivery.

e WS-Addressing policies: Provide support for the WS-Addressing
specification for addressing of SOAP messages.

e Management policies: Logging of requests, responses, and fault messages.
Custom management policies can also be created.

Each category provides one or more policies we can attach. For example, the security
category provides 27 pre-defined policies. Some of them are:

e oracle/wssl0 _saml token service policy

e oracle/wssl0 message protection service policy

e oracle/wssll kerberos token service policy

e oracle/wssll kerberos token with message protection service
policy

e oracle/wssll message protection service policy
e oracle/wss_http token service policy
e oracle/wss _http token over ssl service policy

e oracle/wssll username token with message protection service
policy

e oracle/wss_username_ token service policy

[350]

Chapter 6

Attaching and detaching policies in

JDeveloper

We usually use JDeveloper to attach policies for testing security in a design-time
environment. We can attach policies to a binding component in SOA Composite
Editor by right-clicking it and selecting Configure WS-Policies. The Configure
SOA WS Policies window opens. We can add policies by clicking the plus sign
under each category. When attaching policies to a binding component with an
asynchronous interface, the policies must be configured separately for request

and response messages.

& Configure SOA WS Policies E2
SO0A Client WS Policies
Configure \Web Services dlient policies to request bindings
Enable or disable each policy status by checking the box on the left side
Select Request Binding
|WS : {http: ffpackkpub. comjservice femployes} EmplovesTravelStatusService EmployeeTravelStatusPT...'|
MTOM = ¥
Reliability 3 ¥
addressing 3= %
Security Ei' S@ /
oraclefwss11_saml_token_with_message_protection_client_policy
Management 3+ X 7/
| Disable All | Remove Al |
Help | | OF | | Cancel |

When we attach a policy to a service, we use service policy. If we
< want to attach policy to a reference, we have to use client policy.

[351]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

We can also attach policies to service components. However, in that case we can only
add Security and Management policies.

é- Configure SOA WS Policies

504 Component WS Policies

Configure Web Services component policies
Enable or disable each policy status by checking the box on the left side

@+ X

Security

%+ X

Management

Help Cancel

Managing policies in the Enterprise Manager
console

To attach policies to secure our TravelaApproval SOA composite application, we have
to click on the composite link and then on the Policies tab. On this page we can see
attached policies, attach and detach policies, and enable or disable them:

Logged in as weblogic | Host YMOrasoal1gPs2

3 TravelApproval [1.0]®
Page Refreshed 21-Jun-2010 19:05:30 CEST [$]

o} 504 Composite v

Running Instances 0 | Total 141 | Ackive | Retire ... shut Down... Tesk Settings... v | | @, &% Related Links »
Dashboard | Instances | Faults and Rejected Messages | Unik Tests j
‘fou can view and manage the list of policies attached to the web service bindings and components of this 504 composite application, Click 'attach é)
TojDetach From' to update the list of attached policies. .
Wi w attach To/Detach From w
. Policy Reference Total Security Yiolations
Palicy M. Attached T Zak B lnn
el (=0 ached fo Status SHEOY viglations authertication Authorization Confidentialty Integrit
oraclefwss_username_token_ser %Travelnpprov Disable Security u] o u] 1]

[352]

Chapter 6

We select TravelApprovalService from the Attach To/Detach From drop-down.
The Attach/Detach Policies page opens. We select the oracle/wss_username_token
_service_policy policy from the Security category and attach it to the service. In
this way, we secured our SOA composite application. Now if a client wants to invoke
our application, it has to authenticate itself by providing a username and password
(UsernameToken in the SOAP header).

#2) s0a Application - Oracle Enterprise Manager - Mozilla Firefox
- c 2t I L1 | http: Mocalhost: 7001 /emiFaces/_ADFvDlg__?_adf.ctrl-state=xgohbi .7 - '.l o | Google »
J || SOA Application - Oracle Enterprise ... | = ‘ F
Attach/Detach Policies(TravelApproval /1.0 /Service /client_ep /WSBinding /T ... | 9K validate Cancel =
Attached Policies
Mame Category Enabled Description ‘Wigw Detail
oraclefwss_username_token_service_palicy Security ~/ This policy uses the crede... (=]
E < Detach
Available Policies
Search | Category ;' Security ;'

Mame Category Enabled Description View Det
oracle/binding_authorization_denyall_policy Security s This policy is a special c... b -
oraclefbinding_authorization_permitall_policy Security s This palicy is a special c... &g
oraclefbinding_permission_authorization_policy Security o This policy is a special c... &g
oraclefwss10_message_protection_service_palicy Security o This palicy enforces messa,.. &g
oraclefwss10_saml_hok_token_with_message_protection_service_policy — Security o This policy enforces messa... bd
araclefwss10_saml_token_service_policy Security o This palicy authenticates ... &d o
oraclefwss10_saml_token_with_message_integrity_service_policy Security o This palicy enforces messa... g
araclefwss10_saml_token_with_message_protection_service_policy Security " This palicy enforces messa... &d
oraclefwss10_saml_token_with_message_protection_ski_basic256_service Security o This palicy enforces messa,., =2
nrarlriwss 10 nsprname il nronanatinn with msn nebertinn service ne Seeority o This nnlirv erforces messa... 2%} LI

‘ http: /flocalhost: 7001 fem/Faces/as/policyAttachment simpleviptsglD=1729b208_adf.ctrl-state=xgohbBm3y_158&_adf.dialog=truef_afrLoop=27680159...

If we want to implement end-to-end security, we also have to secure all services
(web services or SOA composite applications) that we invoke in our composite
application, by attaching a service policy. In order to invoke secured services, we
also need to attach corresponding client policies to our reference binding
components in our composite application.

+ Client identity is securely propagated throughout the composite.
Therefore, we do not need to repeat the authentication process for every
g secured service we invoke. We just add a client security policy.

[353]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Testing security

We will first try to invoke our TravelApproval composite without the username
and password. The Webservice invocation failed message appears, due to
authentication failure.

@ Webservice invocation failed

The selected operation Traveldpproval could not be invoked, i‘
An exception occured while invoking the webservice operation. Please see logs
for more details. ﬂ

Yiew Log Messages Save Close

Now we repeat the test, but this time we will set the WSS Username Token
on the top of the Test Web Service page.

Request Response

Security
(¥ w35 Username Token © HTTP Basic suth € Cuskom Policy € None

* Username | weblogic Password | sesseses

We can see that the invocation was successful.

Using business events in BPEL

Oracle SOA Suite 11g introduces support for Event-Driven Architecture (EDA)
through the Event Delivery Network (EDN). EDN runs within every SOA instance
and provides support for a publish/subscribe interaction pattern that allows us

to implement loosely coupled interaction between different components in the
architecture. Business events are typically a one-way (fire-and-forget) asynchronous
way to send a notification. The main difference between direct service invocation and
events-driven communication is that the author of the event does not have to know
how many (if any) other components are interested in this event. It also does not care
if subscribed components successfully received the business event. Therefore, in case
the author of the message depends on the receiver, it is better to use the direct service
invocation rather than business events.

[354]

Chapter 6

For this release, there are two service components that can be used to publish or
subscribe to business events — Mediator and BPEL process. However, EDN also
provides the ability to publish and subscribe to events using other programming
environments, such as Java, PL/SQL, and an ADF-BC application.

Business events can be defined using the Event Definition Language (EDL). EDL is an
XML schema used to build business event definitions. EDL consists of the following;:

¢ Global name: Typically a Java package name

e Payload definition: The payload is defined using an XML schema

Business definitions (EDL file and related artifacts) are deployed (or published) to
the EDN. After an EDL is published, other applications can use it to subscribe to the
defined business event. Raised events are delivered by EDN to the subscribed service
components.

To demonstrate the use of business events in a BPEL service component, we will
modify our TravelApproval process. First, we will create a new business event
and name it NewTravelRequest. Then we will modify our Travelapproval BPEL
code so that we will be able to initiate a process instance by publishing an event. At
the end of the process, we will add an e-mail notification activity and modify the
final clientCallback activity. Instead of a callback to the client, we will raise a new
business event, called ReservationSuccessful. We have to remove the callback

to the client, as if a BPEL process is initiated by a business event it does not have
information about the client and the callback fails.

Defining the business event

We open the SOA Composite Editor and click on the Event Definition Creation icon.

o composite.xmil
FHYIEIRREO &I ED

[Evert Definition Creation, .. |

[355]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

The Create Event Definition File window opens. We enter the EDL File Name
(TravelEvents) and the Namespace (http://packtpub.com/events/travel/).
Then, we add a new event by clicking the plus icon. We set the name of the event
to NewTravelRequest and select the input element that contains information
about the travel request. Then we create another event that will be used to publish
the result of the BPEL process. We name it ReservationSuccessful. We click on
OK to close the window.

é- Create Event Definition File

Create Event Definition File E
This dialog allows wou to create an EDL file containing zero or more event definitions.

EDL Filz Mame: |TraveIEvents |

Directory: |Fi|e:,I'C:,l'JDeveloper,l'myworijravelApprovalBusinessEvents,l’TraveIApprovaI,l’ |

Mamespace |http: Ipackkpub.comjevents travel |

Events: ‘i‘ / ®

Marne Tvpe
MewTravelRequest {http://packtpub. comfbpelftravel/t Travelapproval
FeservationSucce... {http:/fpacktpub.comfservice/airlinetreservationData

Help | a4 | | Cancel

Modifying the BPEL process

As we already mentioned, BPEL process service components can be used to publish
or subscribe to business events. If we want a BPEL process to be subscribed to

an event, we can specify this when creating a new BPEL process by choosing the
Subscribe To Events template.

é-treate BPEL Process

BPEL Process

A BPEL process is a service orchestration, used to describefexecute a business process (or large ﬁva
grained service), which is implemanted as a stateful service.

Mame: |BPELF‘r0cessl |

Namespace: |http:,l',l'xm|ns. oracle.com|TravelApprovalBusinessEvents_jws/Travelfpproval (BPELProcess1 |

Template: |¢; Subscribe ko Events - &
T X
Event Consistency Run as publisher Filker
MNewTravelReq... one and only one ves
Help Ok, | | Cancel

[356]

Chapter 6

However, we can do the same using the BPEL Component Designer. If we double-
click the initial receiveTravelRequest <receives activity, we can change the
Interaction Type from Partner Link to Event and choose the event we want to
subscribe to (we also have to create a new input variable).

5

Receive

| Annotations rnssertions rTimeout rSkip Condition |

r General r Carrelations r

Properties

r Headers |

Mame: |receiveTraveIRequest

— Interaction Type: | { Ewvent v|

Event: |NewTraveIRequest

| Q

Wariable: |TraveIRequest_Event

| Q

[create Instance

| b |

Ok

|| Cancel |

As we want our BPEL process to still be accessible through the Web Service interface,
we will replace the receiveTravelRequest <receives activity with a <picks activity
that defines two <onMessage> elements — one for receiving a SOAP message from a
client, and one for receiving a business event (refer to the following screenshots).

. OnMessage Branch

| Properties rAnnotations rnssertions rHeaders |

®

General r

Correlations

— Interaction Type: |~,,5;_! Partner Link‘|

Partner Link: |CIient

| Q

Operation: | Ty Traveldpproval

‘ariable: |TraveIRequest

|+ X

Help |

| | Cancel

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

When configuring the <onMessage> element for receiving the business event, we set
the Interaction Type to Event, as shown in the next screenshot:

OnMessage Branch b3

| Properties rAnnotations rAssertions rHeaders
General r Correlations |

— Inkeraction Type: | " Ewent v|

Event: |NewTraveIRequest | Q

Yariable: |TraveIRequest_Event | &

| Help | | Apply || OF || Cancel |

The next figure shows the modified BPEL process. Note that we had to create a
new input variable for storing the received event (TravelRequest_Event). We
use the AssignTravelRequestEvent <assigns> activity to assign data from the
TravelRequest Event variable to the TravelRequest variable, which is used

throughout the process.

Partner Links = Partner Links
& - , B
= EmployvesTravelst. ..
client
O\
AssignTravelRequestEvent
-
i B
4 Americandirines
— ¥
* |f¢ | 4 B
— q Delcaairines
RetrieveEmployeeTravelStatus
)
CheckFlight&swvailability

[358]

Chapter 6

Next, we will add an e-mail notification at the end of the process to inform the
requestor about the result. We will also modify the final clientCallback activity.
Instead of invoking the client (when the instance is initiated by a business event,
the BPEL process does not have information about the client), we will raise

a new business event (ReservationSuccessful). We rename the activity to
publishReservationSuccessfulEvent. We also need to create a new variable
(TravelResponse Event).

Invoke %
| Headers r Annotations r Assertions r Skip Condition |
r General r Correlations r Properties ‘
Mare: ‘pub\ishReservat\onSuccessfuIEvent |
Interaction Type: | Event =
Event: |ReservationsuccessFuI | Lg
Wariable: |TravaIRespnnsa_Event | g Q
Help Apply | | QK | ‘ Cancel

We also need an <assigns> activity (AssignTravelResponseEvent) to copy the
data from the TravelResponse variable (which is used throughout the process) to
TravelResponse Event. Our BPEL process (the final part) now looks as follows:

&- -

AmericanairinesReservation DeltafirinesReservation

MotificationService

AssignTravelResponseEvent

9l [C

publishReservationSuccessfulEvent

[359]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

The next figure shows our modified SOA composite application. Pay attention to the
lightning icons on the BPEL service component, indicating that the BPEL publishes
(yellow lightning icon) and is subscribed to (blue lightning icon) a business event.

Exposed Senices Components External References
¥ B
EmployeeTrav...
Operations:
EmployeeTravel
& P
5 AmericanAirlin...
'5% = ® Travalﬁppm... Operations:
TravelApproval... (3) Fightavailabilty
Operations 0 MakeRese rvation
T 14y | FlightTicketCallb...
ki et o MakeReservatio.
()
Subscribed: |2 ® o
NewTravel Requ D_ItaA‘ " s
el irhines
Operations:

FlightAvailability
MakeRese rvation
FlightTicketCallb...
MakeRese rvatio.

|rﬂj\
e &
NotificationSer...

Operations:

sendIMNotification
sendFaxNotifica...
sendVoiceNotifi
sendSMS Notific...
sendPagerNotifi...
sendEmailNotific...
sendMotification...
sendNotification

Testing the SOA composite application

To test the modified composite application, we will publish a NewTravelRequest
event using the EM console. In a real-world scenario, events are published by other
SOA composite applications or from other programming environments, such as Java,
PL/SQL, and an ADF-BC application.

To be able to publish an event in the EM console, we have to right-click soa-infra
(soa_serverl) and select Business Events.

[360]

Chapter 6

[E -
= 5 Farm_domainl
[&pplication Deployments

=l [504
= E% sna-jrfea fena carsarld
E @ e Home
ol Monitating
o3 Control
[weblLogi Logs
F 7] BAM
0
3 Metadat 508 Deployment
[User Mes

Maniage Partitions
Setvice Engines

Bindings

Setvices and References
Business Events

SOA Administration
Security

Administration

General Information

A Business Events page showing all published events opens. On the Events tab we
can see all events and publish a new event by selecting it and clicking Test. On the
Subscriptions tab we can see which components are subscribed to which events.

The faults tab shows all faults.

¢ soa-infra®
%E SO08 Infrastructure +

S0 Infrastructure Home = Business Events
Business Events

Events = Subscriptions | Faulks

which to subscribe, to test, or to see the event definition.

Search '@

Wigh Subscribe. .. Test... Show Ewent Definition

Logged in as weblogic | Host YMOraSoa11gPS2
Page Refreshed 22-Jun-2010 12:22:09 CEST [$]

(ﬁ Related Links +

Events consisk of message data sent as the result of an occurrence ina business environment. Select an event in the table to é;l

Mamespaces and Events

=1 httpeffpacktpub. comjevents travelf
MewTravelRequest

- Failed
Subscriptions Delivaries
1 1]
1 1]

[361]

Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL

Now we click on the Test button. The test window opens. We enter the payload
and publish the event by clicking Publish.

Test Event: NewTravelRequest @

Mame MewTravelRequest Mamespace htbp:ffpackkpub.comfevents/travel/

*ML Payload

<ns1:Travelapproval xmins:ns1="http: //packipub. com/bpelftravel" =
<employes=
<FirstMarne =Marcel </Firsthame =
<LastMame =Krizevnik<fLastMName =
<Department =511 < /Department =
<jemployes =
<flightData=
<Requestho=1252 < Requestho>
<0riginFrom =Ljubliana < OriginFrom=
<DestinationTo =Barcelona </DestinationTo =
<DesiredDepartureDate >201012 15+01:00<DesiredDeparturebate =
<DesiredReturnDate =20101212+01:00 </DesiredReturnDate =
<iflightData=
<mail=
<ns1:address =marcel. krizevnik@gmail. com<fns1:Address >
<fmail =
<fns1: Travelapproval =

Publish || Cancel

We open the Flow Trace of the initiated instance. We can see that the instance was
successfully completed (pay attention to the first row, indicating that the instance
was initiated by the NewTravelRequest business event):

Trace
Click & component instance to see its detailed audit trail.
Shaw Instance IDs [
Instance Type Usage Stake
= MewTravelRequest Event " Completed Z22-Jun-20
= ﬁgé Travelapproval BPEL Component % Completed 22-Jun-20
@;, EmnployeeTravelstatus Web Service “Jﬁ Reference " Completed Z22-Jun-20
= @4 americanairlines wieb Service(Local Invocatio ™5 Refersnce " Completed 22-1un-20
(‘.}J TicketService Web Service(Local Invocatio “?ﬁ Service % Completed Z22-Jun-20
:523 Ameticanairlines BPEL Component % Completed 22-Jun-20
= @ Deltasirines Wieb Service(Local Invocatio ®5 Reference % Completed 22-1un-20
@P TicketService Web Service(Local Invocatio "!’;‘} Service " Completed 22-Jun-20
ﬁga Deltadirlines BPEL Component % Completed 22-Jun-z0
= @ pelasirlines Web Servica(Lacal Invocatio ®3 efersnce " Completed 22-1un-20
(‘.}J TicketService Web Service(Local Invocatio “?ﬁ Service % Completed Z22-Jun-20
:523 Deltasirlines BPEL Component % Completed 22-Jun-20

As our BPEL process is still exposed as a SOAP Web Service, we can still invoke it
using its web service interface.

[362]

Chapter 6

Summary

In this chapter, we became familiar with advanced BPEL features of Oracle SOA
Suite 11g. We overviewed entity variables and presented an example for using
them. Entity variables can be very useful in long-running BPEL processes. We also
looked at the Master and Detail processes and explained how to use signals to
coordinate them.

We have explained how to secure BPEL processes and SOA composites using
WS-Security. This is important, as we will in most cases need to use security.
Finally, we have shown how to use events in BPEL processes.

In the next chapter, we will look at human interactions in BPEL.

[363]

Human Interactions in BPEL

Real-world business processes often require human interactions. For example,

we might want to extend the Travel Approval business process so that a person
approves (or rejects) the final ticket selection before making the reservation. Other
examples include confirming stock prices, choosing loan offers, and so on. The BPEL
specification does not provide a standard way to include human interaction in BPEL
processes. However, Oracle SOA Suite 11¢ provides the Oracle Human Workflow
component, which enables users to participate in SOA composite applications.
Workflow is a set of services that enable human interaction in BPEL processes in a
relatively easy way. Similar to the Notification service, the Workflow service
exposes the interfaces through WSDL, and BPEL processes invoke it just like any
other service.

In this chapter, we will first get familiar with the basic human workflow concepts,
features, and architecture. Then we'll discuss the Human Task service component
and how it can be used to enable human interaction in BPEL processes. Next, we will
look at how to design a human task. Then we will show how to create ADF-based
human task web forms. As a very important part of the Oracle Human Workflow,
we will present the Oracle BPM Worklist Application, which can be used by users

to access and act on the tasks assigned to them. We will demonstrate the use of
presented components and features on our Travel Approval BPEL process that we
have already used in previous chapters. We will add a human task, which will be
used to approve or reject selected airline tickets, before making the ticket reservation.

In this chapter, we will discuss the following topics:

e Oracle Human Workflow concepts, features, and architecture
e Creating Human Tasks definitions

e Using Human Tasks in BPEL processes

e Creating Human Task forms

¢ Using the Oracle BPM Worklist Application

Human Interactions in BPEL

Human interactions in business
processes

The main objective of BPEL has been to standardize the process automation.

BPEL business processes make use of services and externalize their functionality
as services. BPEL processes are defined as a collection of activities through which
services are invoked. BPEL does not make a distinction between services provided
by applications and other interactions, such as human interactions, which are
particularly important. Real-world business processes namely often integrate not
only systems and services, but also humans.

Human interactions in business processes can be very simple, such as approval
of certain tasks or decisions, or complex, such as delegation, renewal, escalation,
nomination, chained execution, and so on. Human interactions are not limited
to approvals and can include data entries, process monitoring and management,
process initiation, exception handling, and so on.

Task approval is the simplest and probably the most common human interaction. In
a business process for opening a new account, a human interaction might be required
to decide whether the user is allowed to open the account. In a travel approval
process, a human might approve the decision from which airline to buy the ticket

(as shown in the following figure).

Check Ticket Price
with American Airlines

Receive Travel Check Employee ~ Retrieve
Request Status Offers

—»& —»

Select Approve Buy Flight End
Best Offer Selection Ticket

Merge

Check Ticket Price
with Delta Airlines

If the situation is more complex, a business process might require several users

to make approvals, either in sequence or in parallel. In sequential scenarios, the

next user often wants to see the decision made by the previous user. Sometimes,
particularly in parallel human interactions, users are not allowed to see the decisions
taken by other users. This improves the decision potential. Sometimes one user does
not even know which other users are involved, or whether any other users

are involved at all.

[366]

Chapter 7

A common scenario for involving more than one user is workflow with escalation.
Escalation is typically used in situations where an activity does not fulfill a time
constraint. In such a case, a notification is sent to one or more users. Escalations can
be chained, going first to the first-line employees and advancing to senior staff if the
activity is not fulfilled.

Sometimes it is difficult or impossible to define in advance which user should
perform an interaction. In this case, a supervisor might manually nominate the task
to other employees; the nomination can also be made by a group of users or by a
decision-support system.

In other scenarios, a business process may require a single user to perform several
steps that can be defined in advance or during the execution of the process instance.
Even more complex processes might require that one workflow is continued with
another workflow.

Human interactions are not limited to only approvals; they may also include data
entries or process management issues, such as process initiation, suspension, and
exception management. This is particularly true for long-running business processes,
where, for example, user exception handling can prevent costly process termination
and related compensation for those activities that have already been successfully
completed.

As a best practice for human workflows, it is usually not wise to associate human
interactions directly to specific users; it is better to connect tasks to roles and then
associate those roles with individual users. This gives business processes greater
flexibility, allowing any user with a certain role to interact with the process and
enabling changes to users and roles to be made dynamically. To achieve this, the
process has to gain access to users and roles, stored in the enterprise directory, such
as LDAP (Lightweight Directory Access Protocol).

Workflow theory has defined several workflow patterns, which specify the above-
described scenarios in detail. Examples of workflow patterns include sequential
workflow, parallel workflow, workflow with escalation, workflow with nomination,
ad-hoc workflow, workflow continuation, and so on.

[367]

Human Interactions in BPEL

Human Tasks in BPEL

So far we have seen that human interaction in business processes can get quite
complex. Although BPEL specification does not specifically cover human
interactions, BPEL is appropriate for human workflows. BPEL business processes
are defined as collections of activities that invoke services. BPEL does not make a
distinction between services provided by applications and other interactions, such
as human interactions.

There are mainly two approaches to support human interactions in BPEL. The first
approach is to use a human workflow service. Several vendors today have created
workflow services that leverage the rich BPEL support for asynchronous services.
In this fashion, people and manual tasks become just another asynchronous service
from the perspective of the orchestrating process and the BPEL processes stay 100%
standard.

The other approach has been to standardize the human interactions and go beyond
the service invocations. This approach resulted in the workflow specifications
emerging around BPEL with the objective to standardize the explicit inclusion

of human tasks in BPEL processes. The BPEL4People specification has emerged,
which was originally put forth by IBM and SAP in July 2005. Other companies,
such as Oracle, Active Endpoints, and Adobe joined later. Finally, this specification
is now being advanced within the OASIS BPEL4People Technical Committee. The
BPEL4People specification contains two parts:

e BPEL4People version 1.0, which introduces BPEL extensions to address
human interactions in BPEL as a first-class citizen. It defines a new type of
basic activity, which uses human tasks as an implementation, and allows
specifying tasks local to a process or use tasks defined outside of the process
definition. BPEL4People is based on the WS-HumanTask specification that it
uses for the actual specification of human tasks.

e Web Services Human Task (WS-HumanTask) version 1.0 introduces the
definition of human tasks, including their properties, behavior, and a set of
operations used to manipulate human tasks. It also introduces a coordination
protocol in order to control autonomy and lifecycle of service-enabled human
tasks in an interoperable manner.

The most important extensions introduced in BPEL4People are people activities and
people links. People activity is a new BPEL activity used to define user interactions;
in other words, tasks that a user has to perform. For each people activity, the BPEL
server must create work items and distribute them to users eligible to execute them.
People activities can have input and output variables and can specify deadlines.

[368]

Chapter 7

To specify the implementation of people activities, BPEL4People introduced

tasks. Tasks specify actions that users must perform. Tasks can have descriptions,
priorities, deadlines, and other properties. To represent tasks to users, we need a
client application that provides a user interface and interacts with tasks. It can query
available tasks, claim and revoke them, and complete or fail them.

To associate people activities and the related tasks with users or groups of users,
BPEL4People introduced people links. People links are somewhat similar to partner
links; they associate users with one or more people activities. People links are usually
associated with generic human roles, such as process initiator, process stakeholders,
owners, and administrators.

The actual users that are associated with people activities can be determined at
design time, deployment time, or runtime. BPEL4People anticipates the use of
directories such as LDAP to select users. However, it doesn't define the query
language used to select users. Rather, it foresees the use of LDAP filters, SQL,
XQuery, or other methods.

BPEL4People proposes complex extensions to the BPEL specification. However,

so far it is still quite high level and doesn't yet specify the exact syntax of the new
activities mentioned above. Until the specification becomes more concrete, we don't
expect vendors to implement the proposed extensions. But while BPEL4People is
early in the standardization process, it shows a great deal of promise.

The BPEL4People proposal raises an important question: Is it
necessary to introduce such complex extensions to BPEL to cover
user interactions? Some vendor solutions model user interactions as
_ just another web service, with well-defined interfaces for both BPEL
& processes and client applications. This approach does not require
L any changes to BPEL. To become portable, it would only need an
industry-wide agreement on the two interfaces. And, of course, both
interfaces can be specified with WSDL, which gives developers great
flexibility and lets them use practically any environment, language,
or platform that supports Web Services.

Clearly, a single standard approach has not yet been adopted for extending BPEL
to include Human Tasks and workflow services. However, this does not mean that
developers cannot use BPEL to develop business processes with user interactions.

[369]

Human Interactions in BPEL

Human Task integration with BPEL

To interleave user interactions with service invocations in BPEL processes we can use
a workflow service, which interacts with BPEL using standard WSDL interfaces. This
way, the BPEL process can assign user tasks and wait for responses by invoking the
workflow service using the same syntax as for any other service. The BPEL process
can also perform more complex operations such as updating, completing, renewing,
routing, and escalating tasks.

After the BPEL process has assigned tasks to users, users can act on the tasks by
using the appropriate applications. The applications communicate with the workflow
service by using WSDL interfaces or another API (such as Java) to acquire the list

of tasks for selected users, render appropriate user interfaces, and return results to
the workflow service, which forwards them to the BPEL process. User applications
can also perform other tasks such as reassign, escalate, route, suspend, resume, and
withdraw. Finally, the workflow service may allow other communication channels,
such as e-mail and SMS, as shown in the following figure:

Task complete

BPEL Process __WSDL . User @
< 1| application ' ﬂ‘_
WSDL A
G)1
<invoke> 1 >

i i JAVA
i i Workflow AP User ,9\
i | . < ; U le— =~
i i Service i 1| application “\X%

<receive>)«

’ Email, SMS, \07/

Oracle Human Workflow concepts

Oracle SOA Suite 11g provides the Human Workflow component, which enables
including human interaction in BPEL processes in a relatively easy way. The Human
Workflow component consists of different services that handle various aspects of
human interaction with business process and expose their interfaces through WSDL;
therefore, BPEL processes invoke them just like any other service. The following
figure shows the overall architecture of the Oracle Workflow services:

[370]

Chapter 7

/) Workflow Services E
/7 1
/ Task Identity :
Metadata Service ' [Portal
Service |
Evidence ,
User Store !
; N Users
BPEL Metadata Service . | Oracle BPM
Process » Workflow » | Senice : Worklist
Serice |« Services [« Task]
Component Query i —
Task Service H —
Assignment | —
Seni |
evee Task ! | E-mail Client
Service !
Runtime |
lMetadata Y Configuration| | Notification | | 1 L
MDS | Service Service |
.task _Metadata N X
< H S 1
.bpel
wsdl Identity 3 | Notification
Management Database | | Channels
. 0ID . E-mail
. LDAP . Voice
. JAZN . SMS
. other user . 1M
directories

As we can see in the previous figure, the Workflow consists of the following services:

Task Service exposes operations for task state management, such as
operations to update a task, complete a task, escalate a task, reassign a
task, and so on. When we add a human task to the BPEL process, the
corresponding partner link for the Task Service is automatically created.

Task Assignment Service provides functionality to route, escalate, reassign
tasks, and more.

Task Query Service enables retrieving the task list for a user based on a
search criterion.

Task Metadata Service enables retrieving the task metadata.

Identity Service provides authentication and authorization of users and
lookup of user properties and privileges.

Notification Service enables sending of notifications to users using various
channels (e-mail, voice message, IM, SMS, and so on).

User Metadata Service manages metadata, related to workflow users, such
as user work queues, preferences, and so on.

[371]

Human Interactions in BPEL

¢ Runtime Configuration Service provides functionality for managing
metadata used in the task service runtime environment.

e Evidence Store Service supports management of digitally-signed
workflow tasks.

BPEL processes use the Task Service to assign tasks to users. More specifically, tasks
can be assigned to:

e Users: Users are defined in an identity store configured with the SOA
infrastructure.

e Groups: Groups contain individual users, which can claim a task and act
upon it.

e Application roles: Used to logically group users and other roles. These roles
are application specific and are not stored in the identity store.

Assigning tasks to groups or roles is more flexible, as every user in a certain group
(role) can review the task to complete it. Oracle SOA Suite 11g provides three
methods for assigning users, groups, and application roles to tasks:

e Static assignment: Static users, groups, or application roles can be assigned
at design time.

e Dynamic assignment: We can define an XPath expression to determine the
task participant at runtime.

e Rule-based assignment: We can create a list of participants with complex
expressions.

Once the user has completed the task, the BPEL process receives a callback from
the Task Service with the result of the user action. The BPEL process continues
to execute.

The Oracle Workflow component provides several possibilities regarding how users
can review the tasks that have been assigned to them, and take the corresponding
actions. The most straightforward approach is to use the Oracle BPM Worklist
application. This application comes with Oracle SOA Suite 11¢g and allows users

to review the tasks, to see the task details, and to select the decision to complete

the task.

If the Oracle BPM Worklist application is not appropriate, we can develop our

own user interface in Java (using JSP, JSF, Swing, and so on) or almost any other
environment that supports Web Services (such as .NET for example). In this respect,
the Workflow service is very flexible and we can use a portal, such as Oracle Portal,
a web application, or almost any other application to review the tasks.

[372]

Chapter 7

The third possibility is to use e-mail for task reviews. We use e-mails over the
Notification service, which we have described earlier in this chapter.

Workflow patterns

To simplify the development of workflows, Oracle SOA Suite 11¢ provides a
library of workflow patterns (participant types). Workflow patterns define typical
scenarios of human interactions with BPEL processes. The following participant
types are supported:

Single approver: Used when a participant maps to a user, group, or role.

Parallel: Used if multiple users have to act in parallel (for example, if
multiple users have to provide their opinion or vote). The percentage of
required user responses can be specified.

Serial: Used if multiple users have to act in a sequence. A management
chain or a list of users can be specified.

FYI (For Your Information): Used if a user only needs to be notified about
a task, but a user response is not required.

With these, we can realize various workflow patterns, such as:

Simple workflow: Used if a single user action is required, such as
confirmation, decision, and so on. A timeout can also be specified. Simple
workflow has two extension patterns:

° Escalation: Provides the ability to escalate the task to another
user or role if the original user does not complete the task in
the specified amount of time.

° Renewal: Provides the ability to extend the timeout if the
user does not complete the task in the specified time.

Sequential workflow: Used if multiple users have to act in a sequence. A
management chain or a list of users can be specified. Sequential workflow
has one extension pattern:

° Escalation: Same functionality as above.
Parallel workflow: Used if multiple users have to act in parallel (for
example, if multiple users have to provide their opinion or vote). The
percentage of required user responses can be specified. This pattern has
an extension pattern:

o

Final reviewer: Is used when the final review has to act after
parallel users have provided feedback.

[373]

Human Interactions in BPEL

e Ad-hoc (dynamic) workflow: Used to assign the task to one user, who can
then route the task to other user. The task is completed when the user does
not route it forward.

e FYI workflow: Used if a user only needs to be notified about a task, but a
user response is not required.

e Task continuation: Used to build complex workflow patterns as a chain of
simple patterns (those described above).

Creating Human Task definitions

In order to create new human task definition, we drag-and-drop the Human Task
service component from the Component Palette to the composite application.

The Create Human Task window opens. We set the name of the human task to
FlightTicketApproval and leave the default namespace. We do not select the
Create Composite Service with SOAP Bindings, as the human task does not have
to be exposed through the web service interface, as we will use it from the BPEL
process. If we would use the human task from an external client, we would expose
it through the web service interface.

g Create Human Task
Human Task Component =
Create a Human Task Component to set up and customize workflow,
Marne; |FIightTiu:ket.0.|:u|:urm-'aI |

Mamespace: |http:Il',l'xmlns.Dracle.cUm,l'TraveI.ﬁ.pprDvaIHTII'Travel.ﬁ.pprovaI,l'FIightTickBtAppruvaI |

[]iCreate Compasite Service with SOAP Bindings

Help a4 | | Cancel

[374]

Chapter 7

Then we wire the created human task and the BPEL process.

= &
EmployeeTrav...
Operations:

EmployeeTravel ..

e

TravelApproval...

TravelApproval

Flighttwvail ability

MakeReservation
FlightTicketCallb...
MakeReservatio. .

=
DeltaAirlines

Flighttwvail ability
MakeReservation

FlightTicketCallb...
MakeResarvatio. ..

By wiring the human task and the BPEL process, a partner
link for the TaskService is automatically created in the

BPEL process.

[375]

Human Interactions in BPEL

Configuring a Human Task title and outcomes

We then double-click the F1ightTicketApproval Human Task to open the Task
Definition Editor. We enter Flight ticket approval as the Task Title (the Task
Title displays on the BPM Worklist).

&FIightTicketApproval.task | E]
ﬂJg Create Form ~ _ﬁjl

ﬁ% General

@ Data Task Title Text and XPathV| |F|ight ticket approval | A

"? g Description: Approval Manager can APPROVE or REJECT every selected Flight ticket before

@ Presentation making the reservation,

¥ Deadines Outcomes: [aPPROVE,REIECT | @

.y Matification Priatity: |W|

iﬂéﬁ IS Categary: |By Expression '| | | |2]

events Quiner [user | [weblagic | [static »| @

Application Conbext: | |

Designer | Source | History

We can also optionally add a Description to the Human Task. We leave the default
Outcomes (APPROVE and REJECT). When we want to define custom outcomes, we
have to click on the magnifying glass icon to open the Outcomes Dialog, as shown
in the following screenshot:

é‘ Outcomes Dialog [x]

Select one or more oubcomes: e

[CEFER.
[1vEs
ok
APPROVE
[] ACCEPT
REJECT

[mo

Outcomes Requiring Comment

Help | oK ‘ | Cancel

[376]

Chapter 7

Here we can add new outcomes by clicking the green plus icon. We will not do this;
therefore, we close the dialog by clicking OK. Back in the Task Definition Editor we
could also set task Priority and Category. This can be useful for users of the BPM
Worklist application, as they can easily group or filter their tasks based on

the priority or category. However, we will not change these values.

We also select the task Owner (a person that has administrative privileges on the
task). To select a person we click on the magnifying glass icon. The Identity Lookup
dialog opens. Here we can browse users and select them. In our example, we select
the weblogic user and click OK to close the dialog.

In order to be able to browse for users, we first have to create a connection
s to the SOA-managed server.

& Identity Lookup E3
application Server: |\;'M_SOP.1 1gP3Z_ManagedappSERY (Resource Palette Connection) v| Ei
Realm: |jazn.c0m v|
Search Pattern: |* | |User Mame v| EJ]

Search User
oraclesystemuser

Select || Hierarchy || Reportees || Detail

Selected User

wehlogic

| Remowve || Dekail |

Help | QK | | Cancel |

[377]

Human Interactions in BPEL

Configuring Human Task payload

Back in the Task Definition Editor, we click on the Data tab to set the task payload,
as the approval manager will need data about an employee and the selected flight

to decide whether to approve the flight ticket or not. Under the Data section we click
on the plus icon and select Add other payload.

&FIightTicketApprovaI.task | E]
ol Create Form ~ |

& General -

- - i Data - 7 R

9 Data

$ PR Mame Element or Type Editable

ol employes <oy {http: /fpackkpub. comjservice/employes/temployes

P kati 5 .

@ Presentation confirmationData <oy {http: fpackkpub. comyservice/airline)}confirmationData

AT* Deadines

& Matification = &3, Mapped Attributes %+ 7 %

. Access

ﬁh Label Walue Description

72 Events

Designer | Source | Hiskary

The Add Task Parameter dialog opens. We select Element and browse for the
employee element, which is defined in the EmployeeType . xsd schema.

B add Task Parameter E
(%) Variable (") Entity
Define this parameter's bype:
O Omee: | | &
<o (3) Element: |{http:.l’.l'packtpub.com,l’service,l’employee,l’}employee | %
[Editable via warklist
Help | [o]'4 || Cancel

[378]

Chapter 7

We leave the Editable via worklist unchecked, as the approval manager will
not need to change the payload. We click OK to close the dialog. Then we add
another element, which will contain information about the selected flight ticket
(confirmationData).

Now we set the Human Task payload type. In the BPEL process, we will have
to assign the actual data from BPEL variables to the payload.

Configuring Human Task assignments

Next, we open the Assignment tab, where we can assign the Human Task to a user,
group, or an application role. We click on the <Edit Participant> and then on Edit to
set the participant. The Add Participant Type dialog opens. We use the default Type
(Single) and enter the Label of the participant (Approval Manager). Then we click on
the plus icon to add a participant and select Add User. Again, we assign the task to
user weblogic. However, the user could also be set dynamically by using the value
from the task payload. In that case, we would have to change the Data Type to By
Expression and use the Expression Editor to compose the XPath expression.

Type: |-:)]Sing|e V| Label: |F\ppr0val IManager

Participant List

Build a list of participants using: |Mames and expressions ¥

Specify attributes using: (3) Yalue-based () Rule-based
Participant Mames G- 3
Identification Tvpe Data Tvpe Value
Help QK | | Cancel

[379]

Human Interactions in BPEL

We click OK to close the dialog. Back in the Task Definition Editor we click on the edit
icon in the upper-right corner. The Configure Assignment dialog opens. We switch

to the Assignment tab and select the weblogic user to be an error assignee. The error
assignee is responsible for performing corrective actions in case an error occurs.

é-l:unfigure Assignment E
Routing Assignment |
Reviewers |:| Gﬁ-
Etraor Assianees o
[Show approval contrals in task details anly
Task Aggregation: |N0ne v|
Help [e]'4 | | Cancel

Configuring Human Task deadlines

Next, we switch to the Deadlines tab to set the task expiration. From the Task
Duration Settings drop-down, we select Expire after and set the expiration time
to 5 minutes (for testing purposes).

&FIightTicketnpproval.task | E]

DJg Create Form =

& Genatal Task Duration 5...
t{g Data
; Assignment |Fixed Duration'| Day |EI |:—| Hour |IJ |:—| Minukes |5 |:—|

tig Presentation

|Expire after - |

“3* Deadlines
M notification
]'éh Access Custom Escalati,.. |

5 Ewents
4 [Action Requested Before :

Designer | Source | History

[380]

Chapter 7

Configuring Human Task notifications

We then click on the Notification tab. We configure notifications, so that in case of
task expiration or an error, a notification will be automatically send to task owner.

&FIightTicketApprovaI.task E]
o (@] Create Form = |
& General
@ Data General | Advanced
3 Assignment a4 ¥
Eg Presentation Task Status Recipient Motification Header
G Deadines Expire Cwaner Va
&- Notification Error Qwiner /
iéh Access
7? Events
Designer | Source | Hiskory

By clicking on the edit icon in the Notification Header column, we set the text
of a notification message.

Motificakion Message:

Task <% task:task/task:kitle = has expired, d

Applies to Woice, SMS, Email, and IM. Email message wil also include the worklisk
kask detai

| Help | | [u]'4 | | Cancel

We click OK twice to close both dialogs and save the project.

[381]

Human Interactions in BPEL

Using Human Tasks in BPEL processes

We double-click the BPEL service component to open the BPEL Component
Designer. We will add a human task after the checkFlightAvailability scope.
Now every ticket will have to be approved first before making the reservation.
However, before adding the Human Task, we also have to create a new variable,
which will contain the best offer. Data about the best offer and employee data will
then be assigned to the Human Task payload. The decision of the Approval Manager
will be based on this data.

Creating variable and adding <switch> activity

We name the new variable FlightResponseBest. The variable is of type
TravelResponseMessage (same as FlightResponseAA and F1 ightResponseDA).
We also add new <switch> activity to be able to compare both offers. Depending
on the result, we copy the data from one of the variables containing the offer
(FlightResponseAA oOr FlightResponseDA) to the FlightResponseBest. After
creating the new variable and adding <switch> and corresponding <assign>
activities, our BPEL process looks as follows:

@
receiveTravelRequest @
l Deltadirlines

Flight TicketAppra. ..

upEw

RetrieveEmployesTravelSkatus

CheckFlightAvailability

®

@ Adis cheaper
client l l

AssignFlightResponsedd AssignFlightReponseDd

SelectAitling

@

clientCalBack

[382]

Chapter 7

The next screenshot shows the condition expression, used for comparing the offers:

é Expression Builder

E

Expression: @ " D
manher (bpws: getVarighleData(' FlightResponsedd', 'confirmationData', ' /nsl: confirmationbata/Price'))

o=

nunher (bpws: getVariahlebata('FlightResponseDd ', 'confirmationData', ' /nsl:confirmationbata/Frice'))
‘ @ Insert Into Expression |

BPEL ¥ariables Functions
|5 variables |Advanced Functions -
=] ﬁga Process »
=23 wariables appendTolist

~(x) TravelRequest
(x) TravelResponse

|E‘ authenticate

(- () EmployeeTravelStatusResponse |£‘ batchProcesshctive

- () FlightDetails |fu| batchprocessCompleted
[#-(x) FlightResponsesd —

%) FlinhtR esnonseMd |f('_l‘ copyList

Content Preview: Descripkion:

‘ora:appendToList() ‘ |This function appends to a node list, The node list to be appended with |

| tep |

ok || Cancel |

Adding a Human Task

Now, we can drag the Human Task service component from the Component Palette
and drop it just after the new <switch> activity. The Create Human Task dialog opens.

é- Create Human Task

General |* Advanced

Task Definition: |(none) '| 4

Select a task definition to be used by this
activity.

Or create a task definition, which will close
thiz dialog and launch the Human Task
Editor. You will then be able to supply such
details as task approvers and task
parameters.

Help | QI | | Cancel

[383]

Human Interactions in BPEL

We can create a new Human Task definition by clicking on the plus icon. However,
we can also select an existing task definition.

Human Task definitions can be created either by using the SOA
Composite Editor or directly in the BPEL Component Designer.
% If we create Human Task definition using the BPEL Component
"~ Designer, the BPEL process is automatically wired to the created
human task on the SOA composite diagram.

We select F1ightTicketApproval from the Task Definition drop-down. We

can override task title and set the values of both task parameters (employee and
confirmationData). We click on the three dots icon to open the Task Parameters
dialog. To set the employee, we use the TravelRequest variable as shown in

the following screenshot:

& Task Parameters E

Fram

Type: |variable ~|

|25 variables

E}ﬁga Process

-3 Variables

= (%) TravelRequest
B travelRequest

EI---(_-} client: TravelApprowal

[+ (x) TravelResponse

#- () EmployeeTravelStatusResponse
[#- (%) FlightDetails

[+ () FlightResponsess

[#-{x) FlightResponseDa

[+ (x) FlightReponseBest

f#-(E] Scope - UserTask_1

[] shaw Detailed Made Informatian

#Path: |;’client:Travelkpprc-val,-’emplc-yee |

| Help | | (o4 || Cancel |

Similarly, we use the FlightResponseBest variable to set the value of the
confirmationData element.

[384]

Chapter 7

é Task Parameters [x|

From

Tvpe: | Warisble

I3 Wariables
E}ﬁgg Process
(2 wariables
© @) TravelRequest

) EmployeeTravelStatusResponse
- () FlightDetais
x) FlightResponsead
[+ () FlightResponsed
- (x) FlightReponsefest
=h[E] confirmationData
< [nsL:confirmationDatal
Scope - UserTask_1

[Show Detailed Node InFarmation

#Path: ‘/nsl: confirmationData |

‘ Help | [o]4 || Cancel |

Our Create Human Task dialog now looks as follows:

& Create Human Task
General | Advanced

Task Definition: |FIightTicketnpprovaI '| EF

Task Title: |

E.q., Yacation Request For <%bpws:gettariablebatal,)%=

Initiatar: | |

Pricrity: | 3 b |

Task Parameters BPEL Wariable
employes Jclient: Traveldpprovalfemployes

confirmationData Flatd Ml el)

Help OF | | Cancel

[385]

Human Interactions in BPEL

We click OK to close the dialog. We can see that a <switch> activity has been
automatically added after the Human Task. The auto-generated <switch> is used
to handle the result of the Human Task. As we specified in the task definition, the
Approval Manager can either approve the flight ticket or reject it. For each possible
task outcome there is a corresponding <case> element (condition expressions are
automatically generated). Therefore, all activities that have to be executed if the flight
ticket is approved have to be added to the Task outcome is APPROVE case branch.
On the other hand, if the ticket is rejected, activities defined in the Task outcome is
REJECT case branch will execute. Notice, that there is also the <otherwise> branch,
which will execute in the case that the Human Task fails or expire. All case branches
also have a copyPayloadFromTask <assign> activity, which is used for copying
the (potentially modified) task payload back to the BPEL variables so that they are
refreshed.

I
®

P
Al is cheaper ‘ othermise |

L L

AssignFlightResponseaa AssignFlightReponseDA

lienk
= [

FlightTicketapprowal
1

|
®

I T —1
Task outcome is REJECT Task outcome is APPROVE ‘ othernise |

T T A

ZopyPayloadFromTask ZopyPayloadFromTask CopyPayloadFromTask

=]
vl

[386]

Chapter 7

Configuring Human Task case branches

In our case, we do not need CopyPayloadFromTask activities, as the Approval
Manager will not change the Human Task payload. However, we need to update the
TravelResponse variable by setting Confirmed to true (in the case that the ticket

is approved) or false (when the ticket is rejected or the task has failed or expired).
Therefore, we rename those three <assign> activities to UpdateTravelResponse,
delete all existing copy operations, and add a new copy operation to update the
TravelResponse variable, as shown in the next screenshot:

Fram

& Create Copy Dperation

Ta

Type: |Expression

~| Tupe: |variable

Expression

B |2 verisbies

false()

(= g Process
B[variables
(- () TravelRequest
(2+(%) TravelRespanse
. =-[F] reservationbata
; =43 nslireservationData
£y FlightMo
<[Carfirmed]
) EmployesTravelStatusResponse
) FlightDetails
) FlightResponsead
) FlightResponseDa
) FlightReponseBest
(%) FlightTicketApproval_1_globalvariable

[] 5how Detailed Made Information

HPath: ‘/nsl:reserva\:mnDa:a/Confirmed

Help

ok || cancel |

If we expand the FlightTicketApproval 1 Human Task, we can see that it is
actually a scope that contains <assigns>, <invokes>, and <receive> activities for
invoking the TaskService.

F-a i

ddizia Lyt

T

|

Flight Ticketapproval_1_AssignTaskattributes

|

intiateTask_FlightTicketappraval_1

}
Q-

receiveCompletedTask_FlightTicketapproval _1

[387]

Human Interactions in BPEL

If we want to modify the human task definition, we can do this in three ways:

¢ In BPEL Component Designer by double-clicking the Human Task and

clicking on the Edit Task Definition icon

e In BPEL Component Designer by double-clicking the . task file in

Application Navigator

e In the SOA Composite Editor by double-clicking the Human Task service

component

Now we will drag-and-drop the entire selectAirline scope into the Task
outcome is APPROVE case branch, as the ticket can be reserved only if the task

outcome equals APPROVE.

Our modified BPEL process now looks as shown in the next figure (only the

modified part of the process is shown):

clignt
- = |

FlightTicketappraval
1

|
®

Adis cheaper | okherwise |

L

AssignFlightResponsedd AssignFlightReponseDa

[I
Task outcome is REJECT Task outcome is APPROVE

= L0

UpdateTravelResponse UpdateTravelResponse

|
@

SelectAirling

| otherwise ‘

|

UpdateTravelResponse

|

{0y
'

clientCallBack

[388]

Chapter 7

Creating Human Tasks forms

The task form is used to display the content of the task on the users worklist in the
Oracle BPM Worklist application. In Oracle SOA Suite 11¢g we can create a task form
using the Oracle Application Development Framework (Oracle ADF). When creating
the task form, we have two options:

e We can use a wizard to auto-generate the task form

e We can create custom ADF task form in a separate project

As ADF is out of the scope of this book, we will just show how to
=" auto-generate the task form by using a wizard.

Auto-generating a task form

We open the BPEL Component Designer. We right-click on the
FlightTicketApproval 1 Human Task and select Auto-Generate Task Form.

s | ® Expand
FlightTicket] (%) variables...
— U &5 Partrer Links...

ﬁ #dd Catch Branch

ﬁ Add Catchall Branch

b F add OnMessage Branch
'Q.? Add Dnalarm Branch

Task autcome is REJECT Task nutcome, ﬂﬁ" add Compensation Handler
[&] pocumentation...

@ Auto-Generate Task Form..,
Launch Task Form Wizard, ..
o hr) Open Component Edikar, .,

CopyPayloadFromTask CopyPayloal 3§ Delete Task
‘-J Renarne
47 Edit
* Insert Before 3
Selects Insert After »

[389]

Human Interactions in BPEL

The Create Project dialog opens. We name the project TFormFlightTicketApproval
and click OK.

&

Enter the name and directory of the new project, Use
projects ko organize vour files.,

Create Project E

Froject Mame:
|TFOrmFIightTickBt.ﬁ.ppruvaI |

Direckory:

|wwDrk'tTravelF\p|:|rDvaIHT'|,TFormFIightTicketF\pprnval|| Browse, ., |

| Help | | [8]4 | | Cancel |

After clicking OK, we have to wait for a while as a new project is being generated in
the background, until the taskDetailsl.jspx page opens.

taskDetaiIsl.ispx

- Shuw'|FuH Screen Siza"|§||Nune 'lDeFau\t 'lNone '|% H#B I U= E=

TPrTASK_ACTIONS???

#{..title.input¥alue} | TRTCLAMTT? | FRTACKNOWLEDGE??? TPIRESUME???

2 8 72?DETAILS??? ®

TPIASSIGNEES?T?? #f...displayMame} 777 #{. expirationDate TPITASH_MUMBER??? #{.. taskNumber inputValue}
EXPIRATICN_DATE??? imputvalue } ORIV [ahia]
TPICREATOR?T? #...Creator nputValue} PP7ACOUIRED_EY777 #{.. acquiredBry inputValue)
FFICREATE DATE??T #]...oreatedDate inputvalus b 27I0UE_DATE??? #{.. dueDate nputvalue) FITSTATER?? #{..}

FFIUPDATE_DATE??? #{ . updatedDate input/alue } 2220LTCOME77 Fl. ActionDisplayhiame.
inpauty

aluet

~|222CONTENTS2??

Firzt Mame | #{.. Firsthlame.inputs/alue}
Last Mame | #{.. Lasthlame.input'value}
Department | #{. Department input'/alue}
Confirmation Data
Flight ko | A#{. FlightMo input'yalue }

Travel Class | #

TravelClass.inputslue}

Price: | #

. Priceinputvalue }
Departure Date Time | #

..DepartureDateTime inputalue

Return Date Time | #{. ReturnDateTime input'slue

Approved #

Approved inputyalue b

[390]

Chapter 7

Modifying the task form

We can see that the task form has been successfully created and is ready to be
deployed. However, we can also modify the form. We will do some minor changes.
First, we remove the Departure Date Time, Return Date Time, and Approved
components by selecting them and clicking on Delete. Then, we change the order of
the rest of the fields and rename the confirmation Data to Flight Data, as shown
in the following screenshot:

[EJtaskDetailst.jspx |
() + Show | Full Screen Size > | (@] |Hone ~ | Default e ~B B LB I UEEREE

N B TIITASH_ACTIONZ??? ~
#[...title.inputyYalue} = | ‘ TITCLAIMTTY | TITACKNOWLEDGE??? T7PRESUMET??

- 3 222DETAILS 2?2?72 @

F77BISIGNEEST?? #._displayNams} 777 #{ .expirationDate. 7PPTASI_NUMEERT?? #{. taskNumher inputvalue}

EXFIRATION_DATE?7? inputvalue} FrPRIORIY777 [alue]

THICREATORT?? #{...crestor inputvalue} . T ————

277 #{__crestedDate ACAURED B2 e} PTTSTATET?? #(..}
CREATE_DATE??? inputvalue} FPIDLE_DATER?? #..cueDete inputvalie)

777 #1. updatedDate #{...actionDisplayhame:
UPDATE_DATE??? inputvalus} rrouTcomerry B S nspe

|22 2CONTENTS 227
Flight Data
First Mame | #{..Firsthiame inpulvValue}
Last Hame | #{ Lastiame inputyalue}
Departmert | #[...Department inputvalue}
Flight Mo | #{.. Fligkthio InputValus§
Travel Class | #{.. TravelClass inputvalue}

Price | #{ Price input'alus}

Finally, we modify all input textbox components to be read-only. We can do this
by selecting the component and changing the ReadOnly property in the Property
Inspector to true.

@Input Text - #{bindings.FirstName.hints.label} - Property IL.. E]

B AR LD (6)@

=/ Comman

o Id; i3 |~
Rendered: | <default> (true) -~

BLabel: |#{h\ndings.FirstName.h\nts‘Iahe\} | ~

Bvalue: |#{h\ndings.FirstName.input\u‘aIUe} | ~

¥ Appearance

+ Style

= Behavior

B Required: [#bindings.Firsthame. hinks mandatory} |~

© ReadOnly: ‘trua '| 7
Disahled: | <dlefaul > (False) i
AutoSubmit: | «defaul» (False) 3~
AutoTab: [<default > (false) -]~
PartialTriggers: | |~
RefreshCondition: | |~
Walidation

B8 MaximumLength: ‘#{b\ndlngs.F\rstName.h\nts‘preclslon} | ~

[391]

Human Interactions in BPEL

For the price, we also change the Value property by adding the € sign.

@Input Text - #4{bindings.Price.hints.label} - Property Inspector =]
H+r2E B (@ L)@
=l Common
o lId: fiee |~
Rendered: | <default:> (true) 3~
ELabel: |#{bindings.Price.hints.label}- | B
B value: |#{bindings. Price.inputyalue} € | B
Appearance
Style
=1 Behavior
3 Required: |#{bindings.Price.hints.mandatory} | 4
o Readonly: |true 'l -
Disabled: |<default> (false) '| i
Autosubrait; |<default> (false) '| 7
AutoTab: |<default> (false) '| b
PartialTriggers: | | w
RefreshCondition: | |v
“alidation
B MaximumLength: #{bindings.Price.hints. precision} B

Our task form now looks as follows:

taskDetaiIsl.ispH

EE} * Show = |Fu|| Screen Size '| @ |N0ne

| Defaul:

#{..title.inputvalue}

~ 3 227DETAILS??? (1)

TETASEIGHNEESTYY

TYPCREATORTYY #{...crestorinputalue}
Y #. createdDate.
CREATE_DATE??? inputvalue}
T R updatedDate.
UPDATE_DATE??? inputvalue}

#{.. displayMame ¥

> 2F2CONTENTS 222

Flight Data
First Mame #{..Firsthame inout'alue}
Last Mame #{.. Lasthame inout'alue
Department #{. Department input’alue}

Flight Mo #{.. Flighthlo inputtalue ;
Travel Class #{.. TravelClazs inputalue}
Price #{..Price.input'alue} €

277 TASK_ACTIONS?77 + | |

“fhwone ~[B H LB I U= E=E

PP7CLAN7?7 |

I%1
y

FEPACKNOWLEDGE??? | FPYRESUMET??

Y #. expirstionDate.
EXPIRATION_DATE??? inputyalue}

7P7ACQUIRED By 777 FL-acquiredBy.
- inputyalue

#{...dueDate.
P oyl
PP70LE_DATE??? F Ao et

#...
FEPOUTCOME?Y?? actionDisplayName.

inputtalue b

T R taskMumber.
TasK_NUMBER??7 inputvalue}

TIPPRIORITY 777 | 3lue}
TYYETATE?YY #{..}

[392]

Chapter 7

We save the project by clicking on the Save All icon in the toolbar and close
the task form.

Deploying the SOA composite
and task form

Now we will show how to deploy both projects. The easiest way is to deploy both
projects at once. As the composite contains a Human Task which is connected to
the task form ADF project, the Task flow deployment screen appears as part of the
SOA composite deployment wizard, as shown in next screenshot. If we select the
TFormFlightTicketApproval project, this project will be automatically deployed
just after the SOA composite project.

é-Depon Travelapproval

Task flow deployment

Ear Profile Mame: |TFOrmFIightTicketApprovaI |V|
i Deploy Configuration |:| Append composite revision to name
=] Task flow deploymer [] &dd generated profiles ta application
M Select Server [] Overwrite EAR

Optional: Select WaAR profiles, Uncheck projects to exclude from deployment
Deployable Taskflow Projects
Projects WAR Profiles App Context Root

Composite: Travelapproval
TFormFlight TicketApproval... | TFarmFlight TicketApproval ¥ | fwaorkFlov TFarmFlight Tick. ..

| Help | | < Back " Mext = | | Cancel |

However, the task form ADF project can also be deployed separately. In that case,
we have to be sure that the SOA composite project has already been deployed. To
deploy the task form ADF project, we have to open the Application menu and select
Deploy | TFormFlightTicketApproval.

Remember that task forms cannot be deployed by right-clicking
S the project and selecting Deploy.

[393]

Human Interactions in BPEL

Using the Oracle BPM Worklist
application

To test the Human Task, we first need to initiate a new process instance. If we look
at the trace of the instance, we can see that the instance is still running and is waiting
for the F1ightTicketApproval human task to complete.

Trace
Click a component instance to see its detailed audit trail,
Show Instance 1I0s [
Instance Type Usage State
= %5 TraveldpprovalService web Service “”;-ﬂ Service % Completed 24-Jun-2010(
= ﬁga TravelApproval BPEL Component Running 24-Jun-20101(
g‘p EmployeeTravelStatus web Service 915 Reference % Completed 24-Jun-2010(
B @',J Americandirlines Web Service(Local Invocatio 915 Reference % Completed 24-Jun-2010(
CE—,_, TicketService Web Service(Local Invocatio “?-_3 Service " Completed 24-Jun-2010
593 Armericanbirlines BPEL Component % Completed 24-Jun-20101
= g‘..' Deltanitlines Web Service(Local Invocatio “Jg Reference " Completed 24-Jun-2010
Q,Ep TicketService WWeb Service(Local Invocatio “?3 Service & Completed 24-Jun-2010(
633 Delkadirlines BPEL Component " Completed 24-Jun-2010
&3 Flight Ticketapprowal Hurnan Warkflow Cormponenl Running 24-Jun-2010(

Logging into the BPM Worklist application
To complete the human task, we have to log into the Oracle BPM Worklist
application using the following URL: http://host_name:port/integration/
worklistapp/, where host name is the name of the host on which the Worklist
application is installed and port is the port number of the SOA-managed server
(the default is 8001). Oracle BPM Worklist is a very powerful application, allowing
users not only to act on tasks, but also provides the following capabilities and more:
e Customizing the visual appearance and behavior
e Reassign tasks to other users
e Escalate, renew, withdraw, and suspend tasks
e Setting the vacation period to automatically reassign tasks during absence
e Creating reports on task productivity, time distribution, and so on
e Sending of notifications and alerts
However, we will not discuss advanced features in this section. Now, we log in to

the BPM Worklist application as the user weblogic, as the task is assigned to this
user. The BPM Worklist application opens as shown in next screenshot.

[394]

Chapter 7

By default, the Inbox worklist view is selected and the user can see all tasks assigned
to him in the My Tasks list. In our case, there is only one active task: F1ight ticket
approval. Remember that this is the name of the Human Task that we set during the

creation of the Human Task definition.

ORACLE BPM Worklist

Home Administration Reports Preferences Help Logout (]

Logged i

Past wieek
Past Manth
Past Quarter
Mewr Tasks

My Wigws 4

v Worklist views 47 ¢ My Tasks Initiated Tasks Administration Tasks
i Inbo Actions » G‘lﬂ Assignee | Me & Group v| Status Assigned | »
7 &3 My work Queues
¥ Standard Views Title |urnber— [Priority | Assigrees |state |created
Due Soon D Flight ticket approval 200253 k] weblogic (U} Aszigned Jun 24,
High Pricrity
Past Day

¥ @B Provy Work Queues
Shared views

4
> Task Status J

Please select a task to see the detalls

If we want to see the task details, we have to select the task. The ADF task form
displaying task details opens at the bottom of the screen.

Flight ticket approval
> 3 Details

~|Contents
Flight Data
First Mame Marcel
Last Mame Krizevrik
Department SIL
Flight Mo M4533
Travel Class First

Actions - Approve Reject | -

Price 312,08
~|History
| g] ¥ Future Participants ™ Full task actions |
|Participant |action |Updated By Action Date |
1 7 [[=] Stagel
1.1 & weblogic Assigned workflowsystem Jun 24, Z010

[395]

Human Interactions in BPEL

In the upper-left corner there is a task title. We can also see two buttons (Approve
and Reject), that present possible task outcomes. In order to complete the task, we
have to click on one of those two buttons. In the Contents section we can see the
payload of the task, displaying information about the selected flight ticket. At the
bottom of the task form we can also see the task history and add comments and
attachments.

Completing the task

Now we will complete the task by clicking the Approve button (we will approve the
flight ticket). The task is completed and is removed from the My Tasks list.

) sdministration Reports Preferemces Help Logout ©

ORACLE’" BPM Worklist

Logged in as weblogic

~ worklist Views ‘4‘/ - My Tasks Initiated Tasks Administration Tasks

Inbox
B My Work Queues
Y Standard Wiews Title MNurnbet Pricrity Assignees St
[Z] Due Soon
[=2] High Pricrity
[E] Past Day
|E] Past Week
[Z] Past Month
|E] Past Quarter
[E] Mew Tasks
My Wiges
V@3 Proxy Work Queues
Shared Wiews

Actions = Eﬂ Assignes ME&GrDuDLI Status | Assigned LI »

Please select a task to see the details

4
» Task Status J)

If we look at the flow trace of the instance, we can see that the instance has
successfully completed and that the reservation of the flight ticket has been made.

Testing Human Task expiration

Next, we initiate another instance, but this time we do not complete the task. We
instead let it expire (remember that we set the expiration time to 5 minutes). Again
the Flight ticket approval task appears in the My Tasks list. However, after 5
minutes, the task expires and disappears from the list. If we look at the instance
audit trail, we can see that the instance has completed by executing the otherwise
case branch and that no ticket reservation has been made.

[396]

Chapter 7

Audit Trall | Fow Sensor WValues Faults

Expand a payload node to view the detais, Current Audit Level: development @ Wiew Raw XML

= =4 clientCallBack

i Zpayioad= A
=1~ receiveCompletedTask_FlightTicketApproval_1

wgiting for "onTaskComnpleted” from “Flight TicketApproval, TaskService ", Asynchronol

= Received "onTaskCompleted” calback fraom partner "Flight TicketApproval, TaskService!
Wiew XML Document
% switchNode (252)

Switch otherwise is selected,

Switch otherwise is selected,

=1 [} updateTravelResponse

= Updated variable "TravelResponse”
4 <payload>

Completed assign

Invoked L-way operation "ClientCalback” on partner "clent”.
=l izpayloads

reservationData

false

BPEL process instance "340773" completed il

We do not need to use the Oracle BPM Worklist application. Instead, we
can use the Workflow Service API and build our own worklist application
by using ADF, Java, .NET, or other technology.

BPEL4People

BPEL4People has been developed to provide extensive support for human
interactions in BPEL processes and to standardize the human interactions. Originally,
the BPEL4People specification was defined by IBM and SAP. Other companies, such
as Oracle, Active Endpoints, and Adobe have also joined. Today, this specification
has being advanced within the OASIS BPEL4People Technical Committee. The
BPEL4People specification contains two parts:

e BPEL4People version 1.0, which introduces BPEL extensions to address
human interactions in BPEL

e Web Services Human Task (WS-HumanTask) version 1.0 introduces the
definition of human tasks

[397]

Human Interactions in BPEL

BPEL4People is defined in a way that it is layered on top of the BPEL language.
We will now have a brief look at the WS-HumanTask and then at the BPEL4People.

Brief look at WS-HumanTask

The WS-HumanTask specification introduces Human Tasks to BPEL. Human

Tasks are services, implemented by humans. A Human Task has two interfaces.

One interface exposes the service offered by the task, like a translation service or an
approval service. The second interface allows people to deal with tasks, for example
to query for human tasks waiting for them, and to work on these tasks. This is very
similar to human tasks in WebSphere, with two main differences — WS-HumanTask
standardizes tasks among different vendors, and WS-HumanTask introduces new
activities for specifying the properties of human tasks. In WebSphere, we had to use
the Integration Developer GUI instead.

WS-HumanTask makes a distinction between Human Tasks and notifications.
Notifications are a special type of Human Task that allows the sending of
information about noteworthy business events to users. Notifications are always
delivered one-way. There is no response from notifications expected.

Overall structure

The overall structure of the human interactions definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<htd:humanInteractions
xmlns:htd="http://www.example.org/WS-HT"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="anyURI"
targetNamespace="anyURI"
expressionLanguage="anyURI"?
queryLanguage="anyURI"?>
<htd:extensions>?
<htd:extension namespace="anyURI" mustUnderstand="yes|no"/>+
</htd:extensions>
<htd:import namespace="anyURI"?
location="anyURI"?
importType="anyURI" />*
<htd:logicalPeopleGroupss>?
<htd:logicalPeopleGroup name="NCName" reference="QName"?>+
<htd:parameter name="NCName" type="QName" />*
</htd:logicalPeopleGroup>
</htd:logicalPeopleGroups>

<htd:tasks>?

[398]

Chapter 7

<htd:task name="NCName">+

</htd:task>
</htd:tasks>

<htd:notificationsg>?
<htd:notification name="NCName" >+

</htd:notification>
</htd:notifications>
</htd:humanInteractionss>

Human Tasks

The most important is the definition of the Human Task. The definition includes
the following:

Interface

e DPriority

e People assignments

e Delegation

e Presentation elements
e Outcome

e Search priorities

e Renderings

e Deadlines (start and competition deadlines)

The WS-HumanTask specification foresees the following syntax to define
a human task:

<htd:task name="NCName">

<htd:interface portType="QName"
operation="NCName"
responsePortType="QName"?
responseOperation="NCName"?/>

<htd:priority expressionlLanguage="anyURI"?>?
integer-expression

</htd:priority>

<htd:peopleAssignments>

</htd:peopleAssignments>
<htd:delegation potentialDelegatees=
"anybody | nobody |potentialOwners |other"/>?

[399]

Human Interactions in BPEL

<htd:from>?

</htd: from>
</htd:delegation>
<htd:presentationElements>

</htd:presentationElements>

<htd:outcome part="NCName" queryLanguage="anyURI">?
queryContent

</htd:outcomes>

<htd:searchBy expressionLanguage="anyURI"?>?
expression

</htd:searchBy>

<htd:renderingss>?
<htd:rendering type="QName">+

</htd:rendering>
</htd:renderings>
<htd:deadlines>?

<htd:startDeadlines>*

</htd:startDeadline>
<htd:completionDeadlines*

</htd:completionDeadline>
</htd:deadlines>
</htd:task>

Escalations

Within the deadlines, escalations can be defined. An example of defining an
escalation is shown as follows:

<htd:escalation name="highPrio">
<htd:condition>

<! [CDATA[
(htd:getInput ("OrderRequest") /amount < 1000
&& htd:getInput ("OrderRequest") /prio <= 10) 11>

</htd:condition>
<htd:notification name="ClaimApprovalOverdue">

<htd:interface portType="tns:ClaimsHandlingPT"
operation="escalate" />

<htd:peopleAssignments>
<htd:recipientss>

[400]

Chapter 7

<htd:from logicalPeopleGroup="Manager">
<htd:argument name="region"s
htd:getInput ("OrderRequest") /region
</htd:argument>
</htd: from>
</htd:recipients>
</htd:peopleAssignments>

<htd:presentationElements>
<htd:name>
Order approval overdue.
</htd:name>
</htd:presentationElements>
</htd:notification>
</htd:escalation>

In a similar way, a reassignment could be done.

Notifications

Notifications are defined with the following:

e Interface

e DPriority

e People assignments

e Presentation elements

e Renderings

An example is shown as follows:

<htd:notification name="NCName">
<htd:interface portType="QName" operation="NCName"/>
<htd:priority expressionLanguage="anyURI"?>?
integer-expression
</htd:priority>
<htd:peopleAssignments>
<htd:recipientss>

</htd:recipients>
<htd:businessAdministrators>?

</htd:businessAdministratorss>
</htd:peopleAssignments>
<htd:presentationElements>

[401]

Human Interactions in BPEL

</htd:presentationElements>
<htd:renderingss>?

</htd:renderings>
</htd:notification>

Programming interface

The WS-HumanTask specification also defines the API for applications that are
involved with the life cycle of a human task or a notification. It provides several
types of operations, including:

e Participant operations, such as operation for claiming tasks, starting,
stopping, suspending tasks, completing tasks, setting priority, delegating,
and so on

e Simple query operations, such as getMyTasks and getMyTaskAbstracts

e Advanced query operation, which provides several possibilities for retrieving
the tasks

¢ Administrative operations for nominating and activating tasks, and setting
generic human roles

The specification also defined XPath extension functions to retrieve Human
Task properties.

Now that we are familiar with WS-HumanTask, let us have a brief look at the
BPEL4People specification.

Brief look at BPEL4People

BPEL4People is a BPEL extension, which adds several activities to the BPEL
language. The most important extensions introduced in BPEL4People are people
activities and people links. People activities are used to define human interactions.
For each people activity, the BPEL server must create work items and distribute
them to users eligible to execute them. People activities can have input and output
variables and can specify deadlines. This is very similar to what we have seen in the
WebSphere support for human tasks.

To specify the implementation of people activities, BPEL4People introduces

tasks. Tasks specify actions that users must perform. Tasks can have descriptions,
priorities, deadlines, and other properties. Tasks can be represented in-line, or using
WS-HumanTask.

[402]

Chapter 7

To associate people activities and the related tasks with users or groups of users,
BPEL4People introduces people links. They associate users with one or more people
activities. People links are usually associated with generic human roles, such as
process initiator, process stakeholders, owners, and administrators.

Overall structure

The overall structure of BPEL4People extensions is as follows:

<bpel:process
xmlns:b4p="http://www.example.org/BPEL4People"
xmlns:htd="http://www.example.org/WS-HT">

<bpel:extensions>

<bpel:extension namespace="http://www.example.org/BPEL4People"
mustUnderstand="yes"/>

<bpel:extension namespace="http://www.example.org/WS-HT"
mustUnderstand="yes"/>

</bpel:extensions>
<bpel:import importType="http://www.example.org/WS-HT" ../>

<b4p:humanInteractions>?
<htd:logicalPeopleGroupss>?
<htd:logicalPeopleGroup name="NCName" >+

</htd:logicalPeopleGroup>
</htd:logicalPeopleGroups>
<htd:tasks>"?

<htd:task name="NCName">+

</htd:task>

</htd:tasks>

<htd:notificationsg>?
<htd:notification name="NCName">+

</htd:notification>

</htd:notificationss>
</b4p:humanInteractions>

<b4p:peopleAssignments>
</b4p:peopleAssignments>

<bpel:extensionActivity>
<b4p:peopleActivity name="NCName" ...>

[403]

Human Interactions in BPEL

</b4p:peopleActivity>

</bpel:extensionActivity>

</bpel:process>

Let us have a look at the new elements:

The element <b4p:humanInteractionss> contains declarations of elements
from the WS-HumanTask namespace, such as <htd:logicalPeopleGroups>,
<htd:tasks>, and <htd:notificationss>. The element
<htd:logicalPeopleGroup> specifies a logical people group used in an
inline human task or a people activity. The <htd:task> element is used to
provide the definition of an inline human task. The <htd:notification>
element is used to provide the definition of an inline notification.

The element <b4p :peopleAssignmentss is used to assign people to
process-related generic human roles.

The new activity <b4p:peopleActivitys is used to model human
interactions within BPEL processes.

People assignments

BPEL4People defines generic human roles. These roles define what a person or a
group of people can do with the process instance. The specification defines three
process-related generic human roles:

Process initiator: Person that triggered the process instance

Process stakeholders: People who can influence the progress of a process
instance, for example, by adding ad-hoc attachments, forwarding a task,
or simply observing the progress of the process instance

Business administrators: People allowed to perform administrative actions
on the business process instances

The syntax of people assignments looks like this:

<b4p:peopleAssignments>

<b4p:processInitiators>?

<htd:from ...>

</htd: from>

</b4p:processInitiator>
<b4p:processStakeholders>?

<htd:from ...>

[404]

Chapter 7

</htd: from>
</b4p:processStakeholders>
<b4p:businessAdministratorss>?
<htd:from ...>

</htd: from>
</b4p:businessAdministrators>

</b4p:peopleAssignments>

People activities

People activities are used to integrate human interactions within BPEL processes.

A people activity can be integrated with an inline Human Task or with a standalone
Human Task. An inline task can be defined as part of a people activity. A standalone
Human Task is defined separately and can be used several times. To specify Human
Tasks, we use the WS-HumanTask specification.

The overall syntax is as follows:

inputVariable="NCName"?
outputVariable="NCName"?
isSkipable="xsd:boolean"?
standard-attributess
standard-elements

(<htd:tasks>...</htd:tasks>

<b4p:peopleActivity name="NCName"

| <b4p:localTasks>...</bdp:localTask>

| <b4p:remoteTasks...</bdp:remoteTask>

| <htd:notifications>...</htd:notifications>
|

|

<b4p:localNotifications..

<b4p:remoteNotifications..

<b4p:scheduledActions>?

</b4p:scheduledActions>

<bpel:toParts>?

<bpel:toPart part="NCName"
</bpel:toParts>
<bpel:fromPart part="NCName"
<bpel:fromPart>?

</bpel:fromParts>

.</bdp:localNotification>
.</b4p:remoteNotification>

fromVariable="BPELVariableName"/>+

toVariable="BPELVariableName"/>+

<b4p:attachmentPropagation fromProcess="all|none"
toProcess="all |newOnly|none"/>?

</b4p:peopleActivity>

[405]

Human Interactions in BPEL

Summary

In this chapter, we have looked at the human interactions in BPEL processes.
Although BPEL has been initially designed for system-to-system interactions, it has
quickly become obvious that business processes include human interactions.

The BPEL specification does not explicitly mention human interactions; therefore,
two solutions have emerged over time. The first solution uses a dedicated Human
Task service to handle human interactions. This way, a BPEL process can initiate

a Human Task using the invoke activity in the same way as invoking any other
service. The Human Task service exposes an API to the user interface application,
which is responsible for showing the task list and the task details. This approach is
common in all major SOA platforms, including Oracle.

The second approach has emerged with the BPEL4People and WS-HumanTask
specifications. These specifications have standardized the approach to BPEL human
interactions and made it portable through different SOA process servers. We have
overviewed both specifications and have seen that there are no major conceptual
differences between the current Oracle support and the approach taken

in specifications. At the time of writing, it has not been clear how much

support these specifications will get from SOA platform vendors.

In the next chapter, we will look at monitoring BPEL processes with BAM and will
see how to add sensors to BPEL processes and how to develop BAM dashboards in
order to monitor the KPI (Key Performance Indicators) and other process metrics.

[406]

Monitoring BPEL Processes
with BAM

If we want to ensure high efficiency of our business processes, we need real-time
information about the execution of business activities. We want to detect bottlenecks
and other critical situations as soon as possible to be able to improve business
operations and facilitates better business decisions. All this can be achieved using
Business Activity Monitoring (BAM) systems. BAM enables us to monitor Key
Performance Indicators (KPI) and other metrics and display the information in a
BAM dashboard. We can also define alerts and notifications to be automatically
notified when a critical situation occurs.

In this chapter, we will get familiar with Oracle BAM Server, which is an integral
part of Oracle SOA Suite 114. First, we will look at the Oracle BAM architecture

and features. Then we will present possible ways to send business data from BPEL
processes to Oracle BAM. We will also discuss data objects, sensors, sensor actions,
monitoring objects, and BAM dashboards. Finally, we will demonstrate how to
enable monitoring on our Travel Approval BPEL process that we have already used
in previous chapters. The result will be a BAM dashboard, which will show real-time
data about the execution of business processes by displaying a list of last process
instances, the percentage of confirmed flight tickets, the effectiveness of the Approval
Manager, and the number of reserved tickets by airline.

In this chapter, we will discuss the following:

e Oracle BAM architecture and features

e Sending data to Oracle BAM from BPEL process
e Creating data objects

e The use of monitoring objects

e The use of sensors and sensor actions

e Creating the BAM dashboard

Monitoring BPEL Processes with BAM

Business Activity Monitoring

Business Activity Monitoring (BAM) provides a real-time operational view on the
business processes and activities within an organization. This way business users
and managers can get a real-time insight into business operations. This can help
identify business problems, correct exceptions, and optimize processes. The objective
of BAM is to ensure that business goals, such as time-to-market, customer response,
profit, cost per order, order to cash, and so on are fulfilled.

BAM extends the scope of business intelligence beyond strategic and tactical
business decision making to the management of day-to-day business operations. In
contrast to traditional business intelligence that acts upon historical data, BAM uses
real-time or near real-time data to provide operational insights into current business
activities.

BAM helps us to identify how our business processes perform and where to optimize
them. BAM gathers information about the Key Performance Indicators (KPIs) and
other metrics derived from business processes, business activity data, and business
events. It presents the KPIs and other metrics on dashboards, where business

users and managers can monitor them and act upon them immediately. BAM also
provides business users with alerts to potential business situations.

Business Activity Monitoring focuses on how your business is
= performing.

With BAM, we can gather data about process execution, such as how long does it
take my process to execute on average, which activities are the most time consuming,
how long does it take for human tasks to be claimed and completed, and so on.

BAM can show us how many process instances are active at a specific time, and how
long, on average, it takes to complete a process. They can also show us which users
(employees) have started how many process instances, and so on.

We can also monitor more specific KPIs related to the process. For our
Travel Approval business process example, we could monitor the following:

e The average price for the flight ticket for each travel class (economy,
business, first)

e The percentage of flight tickets bought by each vendor

e The number of flight tickets that have/have not been approved

e The average duration of a business trip

[408]

Chapter 8

e The time required for the user to get the ticket approval (through the
human task)

e The average number of business travel requests per week/month

You can see that there can be several interesting indicators that we can monitor on
a process. The more complex a process is, the more interesting indicators we can
follow.

The added value of BAM in BPEL/SOA is that the BPEL process server provides
means to monitor BPEL processes in a relatively simple way. This way, we can
develop process monitor dashboards quickly and efficiently.

BAM is often overlooked by the development of SOA composite
applications. Executives, however, often see the major added value,
% particularly in the ability to monitor business processes and observe the
"~ key indicators. Therefore, we should plan to develop BAM dashboards
for each BPEL process composite application.

Oracle BAM architecture and features

The following figure shows the high-level architecture of Oracle BAM. The most
important component is the Oracle BAM Server, which we will discuss in the next
section. Oracle BAM Server is responsible for receiving, storing, and monitoring
the data, and preparing it to be displayed in the reports. All data is stored in a BAM
database in the form of data objects. However, Oracle BAM also enables us to use
data from external data sources. Oracle BAM provides four mechanisms to update
Oracle BAM Server with real-time data streaming: Oracle BAM Adapter, JMS
Connector, Oracle Data Integrator, and Web Services API. Oracle BAM Adapter is
the preferred and the fastest option; therefore, all SOA Suite components use it for
sending data to BAM Server. BAM Adapter is a JCA-compliant adapter that can
communicate with BAM Server through RMI, direct Java object invocations, or
Web Services.

[409]

Monitoring BPEL Processes with BAM

Another very important part of Oracle BAM is BAM Web Applications, which
present the user interface for building the data model, alerts, creating and viewing
reports, and managing users. We will look at the BAM Web Applications later in
this chapter.

Application Server

Web Applications
BAM Server Event Engine

Active Viewer
BAM Adapter
JMS Connector Active Studio

Active Data Cache Report Cache —
Web Services > Administrator
oDI Report Server

I

\ 4

A 4

A

A 4

BAM External Data
database Objects

Oracle BAM Server

Oracle BAM Server is a J2EE application that runs as part of Oracle SOA Suite 11g
and consists of three key components:

Active Data Cache (ADC): It is a data storage system optimized for handling
large amounts of data from various data sources in real time. All the data is
stored in a BAM database in the form of data objects (data objects are actually
database tables). However, to provide quick access to data, it also maintains
in-memory, real-time views of business data in the form of view sets and
active view sets. When ADC receives the request for changing the data in

the data object (insert, update, upsert, delete), active data sets are notified

of the changes and produce active data. ADC can receive data from various
sources, such as SOA Composites, JMS, Web Service clients, Oracle Service
Bus (OSB), Oracle Data Integrator (ODI), and so on.

Event Engine: This continuously monitors the information in ADC for
user-defined conditions and rules and executes actions (usually sending
an e-mail notification).

[410]

Chapter 8

Report Cache: It maintains the view set snapshot memory from the ADC.
When a user requests a report, it creates a snapshot of the active data and
sends the data to the Report Server. The snapshot is used to create an initial
display. If the data changes while the report is opened in the browser, Report
Cache forwards these changes to the Report Server to refresh the report with
the latest data. Report Cache allows the Report Server to be stateless.

Oracle BAM web applications

Oracle BAM web applications provide a user-friendly web-based interface for
working with Oracle BAM. There are five BAM web applications:

Architect: It enables us to create the data model (data objects), rules, and
alerts and to connect to external data sources.

Active Studio: It is used to create new and manage existing report
definitions. We can also share reports with other users. When building the
report we can use KPIs, charts, tables, spreadsheets, and more.

Active Viewer: It is used by end-users to view the reports. When fresh
information is available, users usually receive an e-mail containing the link
to the report. By clicking on the link, the report is opened in Active Viewer.

Report Server: It is a stateless engine for generating the reports by applying
report definitions to the data sets retrieved from ADC. When the report is
created, it is stored back in the ADC so that the process of report creation is
not repeated every time the user wants to view the report.

Administrator: It is used by the system administrator to create users and
roles and to manage privileges.

Gathering BAM data from a BPEL process

To be able to monitor the process KPIs, we first need to make sure that the
corresponding data is gathered during the BPEL process execution. Upon this data,
we can develop a BAM dashboard, which business users and executives can use to
monitor the process execution. In this section, we will focus on gathering the BAM
data and will overview the possibilities that we have in Oracle BAM.

To gather the data for BAM, Oracle BAM uses the BAM data objects. Data objects are
database tables that store data. Each data object has a specific layout, which can be a
combination of data fields, lookup fields, and calculated fields. We have to make sure
that the relevant data will be gathered during BPEL process execution, and stored to
the data objects.

[411]

Monitoring BPEL Processes with BAM

For gathering BPEL process execution data for the Oracle BAM data objects, we will
use the Oracle BAM Adapter. It provides three mechanisms:

We can define monitoring objects to transfer data to automatically generated
Oracle BAM data objects.

We can define sensors and corresponding sensor actions to publish data to
manually created Oracle BAM data objects.

Oracle BAM Adapter can be used as a partner link in a BPEL process.
This allows us to transfer the data to BAM with an explicit activity of
the BPEL process.

In our Travel Approval business process, we will demonstrate the use of all
three approaches.

To be able to send data to Oracle BAM from SOA composite applications,
we need to configure the Oracle BAM Adapter using the WebLogic
Administration Console. For instructions on how to configure Oracle
BAM Adapter, please refer to Oracle Fusion Middleware Administrator's
Guide for Oracle SOA Suite.

Monitoring objects

We can use monitoring objects to capture BPEL process execution data. This data
is then sent to the BAM server and is available for analysis and display in BAM
dashboards. We can define monitoring objects in JDeveloper, using the Monitor view.

The use of monitoring objects is the simplest way to enable BPEL process
monitoring. If we use monitoring objects, the corresponding BAM data objects will
be generated automatically. We can use the following three types of monitoring
objects to gather information about the BPEL process:

Business Indicators can be used to capture a snapshot of BPEL variables.
A Business Indicator can contain several business metrics. Data gathered
with Business Indicators is written to the Business Indicator data object.
For every defined business metric, there is a corresponding column in the
Business Indicator data object.

Intervals are usually used to monitor effectiveness and to identify
bottlenecks, as they allow us to monitor the time that is needed for a business
process to go from one activity to the other. Data gathered with Interval
monitoring objects is written to the INTERVAL data object.

[412]

Chapter 8

e Counters are usually used to report how many times a particular BPEL
activity is executed over a period of time. Data gathered with Counter
monitoring objects is written to the COUNTER data object.

We have already mentioned that monitoring objects generate the corresponding data
objects. In the previous paragraph, we have already mentioned three data objects,
COUNTER, INTERVAL, and Business Indicator. Actually, not three but four data
objects are created automatically. These are as follows:

e The COMPONENT data object is the main data object. It gathers much useful
information about the specific SOA composite instance, such as how long a
BPEL process instance takes to run, when did the instance start or end, were
there any faults, and so on.

e The COUNTER data object contains data captured by the Counter monitoring
object and is usually used to monitor how many times a particular business
activity has been executed over a specified period of time.

e The INTERVAL data object contains information about the specific interval
start time, end time, duration, and so on. This data object stores information
captured by the Interval monitoring objects and when Activity monitoring
is enabled.

e The Business Indicator data object contains data gathered by all Business
Indicator metrics. Columns corresponding to defined business metrics
are automatically added to this data object. The name of the data object is
set depending on the partition name, composite name, and BPEL process
name and follows the pattern: BI_Partition Name_Composite_Name
BPELPROCESS_Name. A separate data object is created for every BPEL process
in the composite.

We will need these data objects later when we create the BAM dashboard. At that
time, we will need to know what data is stored in which data object in order to
present it in the dashboard's graphs, charts, and other reports.

Sensors and sensor actions

The second possibility to monitor the execution of BPEL processes are sensors.
However, when using sensors and sensor actions, we first have to create the

data objects. We need to do this manually using the Oracle BAM Architect web
application. We will show how we can define the data objects later in this chapter.

A sensor can be attached to an activity, variable, or fault. When the sensor is triggered,
a corresponding sensor action is executed. A sensor action is connected to a specific
data object and is responsible for writing the captured data to this data object.

[413]

Monitoring BPEL Processes with BAM

BPEL Process Manager supports three types of sensors:

e Activity sensors: These are the most commonly used type of sensors. They
can, for example, monitor the execution time of an activity or how long
it takes to execute a scope. When creating an activity sensor, we can also
specify a BPEL variable we want to monitor.

e Variable sensors: These enable us to monitor BPEL variables. They trigger
every time the variable is changed.

e Fault sensors: These are used to monitor BPEL faults.

After defining sensors, we have to configure sensor actions, which are used to
publish the sensor data to BAM data objects. For every sensor action, we have to
specify the sensor, target data object, and operation (insert, upsert, delete, update)
and create an XSL transformation which is used to map captured data to the data
object. We will show how to do this on the Travel Approval business process example
in the next section.

We can see that sensors provide a more sophisticated approach to gathering the BAM
data than monitoring objects. With sensors, we can control the format of data objects.
Sensors also provide more flexibility for gathering the BAM data. However, sensors
also require more work than monitoring objects, as we have to define the data objects
manually and configure sensor actions. For simpler BAM dashboards, monitoring
objects might be adequate. In more complex scenarios, we will, however, in most cases
need to use sensors. In this chapter, we will demonstrate both approaches. First, let us
introduce the example that we will use for the demonstration.

Introduction to demonstration scenario

We will demonstrate how to enable the monitoring of a BPEL process on our
Travel Approval business process example. We will use the version with a human
task, which we have implemented in the previous chapter.

Before starting, we have to know what exactly we want to monitor with our
BAM dashboard. Let's say that we want to create a dashboard that will show
the following information:

e A list of last process instances: To be able to monitor this data, we have to
capture a snapshot of BPEL variables during the instance execution. We will
achieve this by defining the Business Indicator monitoring object. This data
will then be written to an automatically created BAM data object. We will
then use this data object when building the dashboard.

[414]

Chapter 8

The percentage of confirmed flight tickets: To calculate the percentage of
confirmed flight tickets, we only need data about the number of instances
and whether a specific instance was confirmed or not. We will use the
same data object as for the list of last process instances. When building the
dashboard, we will display this data using the pie chart diagram.

The number of reserved tickets by airline: For every reserved ticket, we
have to save the data about the airline to the corresponding BAM data object.
The easiest way to do this would be to define the counter monitoring object.
However, we will use this example to demonstrate how to create custom

data objects and how to use sensors and a BAM Adapter partner link. When
building the dashboard, we will display this data using the bar chart diagram.

The effectiveness of the Approval Manager person: In our simple example,
the Approval Manager has three hours to complete the human task. To be
able to monitor his/her effectiveness, we have to save the data, about the
duration of every task instance to a BAM data object. To capture this data we
will simply enable activity monitoring and select that we want to monitor
human tasks only. On the dashboard, we will display this KPI using the pie
chart diagram.

To enable monitoring, we have to modify our BPEL process so that the data about
the execution of business activities will be written to BAM data objects. In the next
sections, we will demonstrate four scenarios:

How to enable activity monitoring for all activities —which we will use to
monitor the human tasks in the Travel Approval process, specifically the
effectiveness of the Approval Manager person.

How to use monitoring objects —which we will use to monitor the process
instances and the percentage of confirmed flight tickets.

How to use sensors and sensor actions —which we will use to monitor the
number of reserved tickets by airline.

How to use the BAM Adapter to explicitly transfer the monitor data to the
BAM Server. We will show this scenario on the same example to monitor the
number of reserved tickets by airline.

Finally, we will create a BAM dashboard using the Active Studio web application.

[415]

Monitoring BPEL Processes with BAM

Enabling activity monitoring

To enable BAM in JDeveloper we switch to the Monitor view on the top-right corner

of the BPEL Component Designer.

% Travelapproval.bpel |

[v] Enable Manitoring "R s Y I R T - I...“v

I & erec || moritor |

Partner Links

O

We have to make sure that the Enable Monitoring checkbox in the upper-left corner
is selected. Using this checkbox, we can enable or disable all monitoring objects and

sensors in a BPEL process.

593 TravelApproval.bpel |

[w] Enable Monitaring - H

Partner Links ‘

W~ - @l

Now, if we look at the Structure pane, we can see that it contains three root folders:
Monitoring Objects, Sensors, and Sensor Actions. This is a sign that we are in the

monitoring view.

:'E Traveldpproval bpel - Skruct,
| 4
)

< Thurnbrnai =]

+*7 R

@ Travelapprowval Monikor
2[5 Monitoring Cbjects
I_:l Business Indicators
>I:| Inkervals

I:l Counters

=25 sensors

we 7] Activity

>|_:| ‘Wariable

I_:l Fault

-[_7] Sensor Actions

[416]

Chapter 8

The easiest way to enable activity monitoring is to use a shortcut, which
automatically captures execution information for all activities of the selected type.
This shortcut is equal to manually adding Interval monitoring objects to all activities
that we want to monitor. We will show how to manually add an Interval monitoring
object in the next section.

We will enable activity monitoring for human tasks, specifically to monitor the
effectiveness of the Approval Manager person. To achieve this, we need to gather
data about the human task. To enable activity monitoring, we have to click the
Activity Monitoring Configuration icon on the toolbar:

I593Tra'.rvlzl.ﬂl.p|Jr|:|n|ral.h el |
[v] Enable I"-’Iu:unitn:urinu;* 7 N I R

Partner Links

The Activity Monitoring Configuration dialog opens. For our example, we select
the Human Tasks Only mode and select the Enable Activity Monitoring checkbox.

é-nctivity Monitoring Configuration

Enable Ackiviky Monitoring

Mode: |Human Tasks Cnly 'l

| Help | | i || Cancel |

Now for every execution of the F1ightTicketApproval human task, information
about the activity duration, start time, and end time will be written to the INTERVAL
data object. We need this information, as we want to monitor the effectiveness of the
Approval Manager.

We click OK to close the dialog.

[417]

Monitoring BPEL Processes with BAM

Using monitoring objects

Next, we will show how to use monitoring objects. Using the Monitor view in
JDeveloper, we can create monitoring objects in three ways. First, we can right-click
the activity, select Create, and then select the monitoring object type:

-
: @ Counker...
I‘I:..BEB_W_E_T[a_ Add (M [EBusiness Indicatar, ..
H Interval...
- 8" Sensor,..
ea

RetrieveEmployeaTravelStatus

We can also create monitoring objects using the Monitoring Objects menu on
the toolbar:

&= TravelApproval.bpel |

[v] Enable Maritoting Q- = @[] o el

BH Business Indicatars. ..
@ Counters...
[1rtereals...

Partner Links

g Sensors. ..
fh, Sensor Actions. .,

Monitoring objects can also be created in the Structure pane by right-clicking
the monitoring object type and selecting Create:

*=Travelapproval.bpel - st... [i+ Thumbnail =)
| 4
5] * 7 K

Travelfpproval Monitor
=-[23 Monitoring Objects

----- [T1{Business Indicato .
o[Inkervals 1

[Counters & Edt...
=2 sensors ®

L[] Ackivity

----- [7] wariable

L [Faul:

----- I:I Sensar Actions

[418]

Chapter 8

Creating a Business Indicator monitoring
object

Now, we will create a monitoring object of type Business Indicator. We need

this monitoring object to display the details of the last process instances and the
percentage of confirmed flight tickets on our BAM dashboard. Remember that when
using monitoring objects, only the Business Indicator can be used to capture variable
data.

Instead of using the Business Indicator, we could also use sensors and
% sensor actions. However, in that case, we would have to create the BAM
data object first. We will show how to use sensors later in this chapter.

To create the Business Indicator, we right-click the clientCallBack activity and
select Create | Business Indicator. The Business Indicator dialog opens. We set the
name to TravelResponse BI.

é-Business Indicator

Marne: |TraveIResponse_BI |
Enabled
Metrics: 4 / %

Hame Data Tvwpe %Path

Snapshats: 4 / ®

Activity Name Ewaluation Events
s clientCallBack [activate]

| Help | [o]4 || Cancel |

Notice that the clientcallBack snapshot is already on the Snapshots list. This
means that during the activation of the clientCallBack activity, a snapshot of
BPEL variables will be created. We want the snapshot to be created at the end of the
process, as we need information on whether the flight ticket was approved or not.
We will now add business metrics to specify the data that we want written to the
Business Indicator data object.

[419]

Monitoring BPEL Processes with BAM

To add a new business metric, we click the green plus icon. Then we have to set the
name, the data type, and the XPath expression. We name the first metric FirstName
and set the data type to string. Then we click on the three dots icon in the XPath
column to open the Expression Builder.

é- Expression Builder B

Expression: '@ |j

bpws:get¥ariableData('TravelRequest', 'travelRequest','/client:Traveldpproval /enployee/Firstlame')

| A\ Insert Into Expression |

BPEL ¥ariables Functions
|3 Variables |Advanced Functions
Bﬁga Process "
[variables A

E}"({\'} TravelRequest
- =-[E] travelRequest
[=h-<ep client: Travelapproval

|E| authenticate

|m| batchProcessactive

|E| batchProcessCompleted
|E| copylList
|E| countNodes

[Elo s FlinhbCiak

[fr ceeal deset-fr {elimited-strinn

Content Preview: Description:

bpws:getvariableDatal TravelRequest’, travelRequest’, fclient: Trave ‘ariable ¥Path expression

| Help [o]:4 || Cancel |

In a similar way, we add other business metrics as shown in the following table:

Metric name Data type Source variable
FirstName string TravelRequest
LastName string TravelRequest
OriginFrom string TravelRequest
DestinationTo string TravelRequest
DepartureDate dateTime TravelRequest
ReturnDate dateTime TravelRequest
Price double FlightResponseBest
Confirmed string TravelResponse

[420]

Chapter 8

The Business Indicator dialog now

looks like this:

é- Business Indicator

Hame: |TraveIResp0nse_BI

Enabled
Metrics:
Data Type

P -
P LastMame string

P OriginFrom string

P DestinationTa string

P Departurebate dateTime

P ReturnDate dateTime

#Path

bpws:getvariableDatai TravelRequest’, travelRequest’,'(dient: ...
bpuws:getiariableDatal TravelRequest’, travelRequest’, ' (client: ...

f
f
)
f

client:...

bpws; getyariableDatal TravelRequest’, travelRequest’,
bpws:getyariableDatal TravelRequest’, travelRequest’,'dient:. ..

bpuws: getWariableDatal TravelRequest’, travelRequest’, fclient: .

Snapshots;

* 7R

Activity Marme
clientCallBack

-

Evaluation Events

| Help |

oK | | Cancel

We click OK to close the dialog.

We can see that a Business Indicator icon is displayed in the top-right corner of

the activity.

.@'

clientCallBack,

With the steps that we have done so far, we could already build three of four views

on our BAM dashboard:

e Alist of last process instances (Business Indicator data object)

e The percentage of confirmed flight tickets (Business Indicator data object)

e The effectiveness of the Approval Manager (INTERVAL data object)

[421]

Monitoring BPEL Processes with BAM

We still do not have the information about the number of reserved flight tickets

by airline. This can be done by adding Counter monitoring objects to the
AmericanAirlinesReservation and DeltaAirlinesReservation activities.
However, we will not use monitoring objects. Rather, we will show how to use
sensors and how to send data to the BAM server using a BAM Adapter partner link.
In the next section, we will show how to use BAM data objects.

Using sensors

In this section, we will show how to use sensors to count the number of reserved
tickets by each airline. To achieve this, we will need to count the number of reserved
tickets for American Airlines and the number of reserved tickets for Delta Airlines.
To count the tickets we will use sensors. Sensors, however, require data objects.
Therefore, we will first need to create a corresponding data object. Then we will
establish a connection to the BAM server. Next, we will define the sensors and

the corresponding sensor actions. Finally, we will also show how to use the BAM
adapter as an alternative approach to the sensors. Let us start with creating a BAM
data object.

Creating BAM data objects

We can create BAM data objects using the Oracle BAM Architect web application.
To log into Oracle BAM Architect, we have to open a web browser and access the
following URL: http://host_name:port/OracleBAM/, where host_name is the
name of the host on which Oracle BAM is installed and port is a number that is set
during the installation process (default is 9001).

Currently, the only supported browser is Internet Explorer
~— 7.0 or higher.

[422]

Chapter 8

We sign in as user weblogic. The Oracle BAM Start Page opens. From here, we can

open other BAM web applications.

/> Oracle BAM Start Page - Windows Internet Explorer

a@ L 4 IB http:/flocalhost: 2001/ OracleBAME533 def ault htm j @ IE Eing
% Favorites | ﬁ e Suggested Sites * a ‘web Slice Gallery -

9 Oracle BAM Start Page

ORACLE BAM

M- -] fmy ~ Page ~ Safety Tools ~ (@)~

Help | About | Logout

Welcome

Oracle Business Activity
Monitoring (Oracle BAM) is
a complete solution For
building real-time
operational dashboards,
monitoring and alerting
applications over the web,
Oracle BAM provides
customers with the ability
ko instrument: their existing
business applications and
processes to be able to
monitor and correlate in
real-time the emanating
business events and to
understand their impact on
the Key Performance
Indicators that affect the
business thereby improving
operational visibility,

Select an application by
clicking on a link to the left,

Done ’_ ’_ ’_ ’_ ’_ ’_ @ W! Local intranet | Protected Mode: On

av | mioow -

[423]

Monitoring BPEL Processes with BAM

We open the Architect web application. We click on the Data Objects link and
then on the Create subfolder link to create new subfolder. We name the folder
TravelApproval and click Create Folder.

{2 Oracle BAM Architect - Windows Internet Explorer [_[O]]
DF\’ACLE- BAM Architect = z2 | Help | About
| Data Chjects =
v View |Create subfolder |Permissions |Create Data Object
Folders
| |
Refresh list Enter the name far the new subfolder to be created at the root:
Bl 3 Data Ohiects [Travelappraval |
[77 pemos
&
& [Samoles Create folder Cancel
[Systemn
Data Objects
| |
Folder contains no Data
Objects,
Done [T T 1| ¥ Local intranet | Protected Mode: On ‘v | mUsE - o

After the folder is created, we click on the new folder and select Create Data Object
on the right pane. We name this data object SELECTED_TICKETS. Then, we click
Add afield link to define a new field. We add four fields, as shown in the following
screenshot:

Mame for new Data Object; |[SELECTED_TICKETS |

Location for new Data Object: |fTraveIADprova\ | Browise
Tip text: []
Description:

I External Data Object

Fields in Data Object:

Flightmo |string ;I May size: | 100 INuHabIe ;I ¥ public | Tip Text: l:l Remave
&irline |String =1 | Max size: [100 |NuHabIe =1 | ¥ puic | Tio Text: l:l femove
Traveldlass [string = | M size: {100 [waole =] | & puple [ToText: []| Remoue
Frice [Flaat =] [nueble =] | @ pupic [T Tet: []| FRemawe

Add a field | Add one or more lookup fields

Create Data Ohject Cancel

[424]

Chapter 8

For our example, we only need the data about the selected airline. However, we
will add more fields, as we want to show how to make XSL transformations when
creating the sensor action.

We click Create Data Object. Now if we select the Travelapproval folder and look
at the bottom of the left pane, we can see that it contains one data object.

Data Objects
SELECTED TICKETS

Creating a BAM server connection

Before we can create sensors and sensor actions, we have to create a connection to
the BAM server. To do this, we have to go back to the JDeveloper again and open the
BPEL process using the Monitor view. We right-click the Connections folder

in Application Resources and select New Connection | BAM.

Application Resources

Mew Connection] Datahase. ..
SOA-MDS, ..
RL...
WebDAaY...
WSIL. ..

Data Controls &

Recently Opened Files

[425]

Monitoring BPEL Processes with BAM

The BAM Configuration Wizard dialog opens. In step one, we enter the name of the
connection and click Next.

é-BnM Connection Wizard - Step 1 of 3 E3
Name
U Name Create Connection In: (%) Application Resources () Resources Palette
¢ Connection Specify a unique name for the BAM Server connection,

Conneckion MNarme:

BAMSeryConn

In step two, we enter the hostname for BAM WebHost and BAM Server Host. We
also have to enter a username and password and provide the HTTP Port (default
is 9001).

Specify authentication details For the BAM Server,
Enter vwour BAM Web Applications Host details, User Mame and Password,
' Connection Optionally specify a different BAM Server Host,

Mame

w Test Connection

BAM Web Host: [localhost | HTTP Part: [] Use HTTPS
BaM Server Host: |I|:u:alhost | JMDT Port:

User Mame: |web||:|gi|: |

Password: |uu..u |

In the final step, we can test the connection and close the wizard by clicking Finish.

Creating sensors and sensor actions

To demonstrate the use of sensors, we will add a sensor to the
AmericanAirlinesReservation activity. For every execution of the activity, the
sensor will trigger the sensor action, which will send the data about the selected
flight ticket (and selected airline) to the BAM server. This data will be written to the
SELECTED_TICKETS data object.

[426]

Chapter 8

We right-click the AmericanAirlinesReservation activity and select Create |
Sensor. The Create Activity Sensor dialog opens. We set the name of the sensor to
AAReservationSensor. From the Evaluation Time drop-down we select Activation,
as we want the sensor to trigger only once, during the activation of the activity. Then
we click the plus icon in the Activity Variable Sensors box to add a variable. The
Create Activity Variable Sensor dialog opens. We click on the pencil icon to open
the Variable XPath Builder. We select the confirmationData element from the
FlightResponseAA variable, as shown in the following screenshot:

TR T T —

& ¥ariable XPath Builder

E Yariables
=g Process
=73 variables

#- (%) TravelRequest

- (x) TravelResponse

[) EmployesTravelStatusResponse
[() FlightDet ails

=+ () FlightResponsasd

\ B-[F] confirmationData

: A% s 1 confirmationData
[() FlightRespanseDa

(- () FlightReponseBest

[+ () FlightTicketapprowal_1_globalvariable

E}-- Scope - Scope_1
E}-- Scope - Scope_&2
E}--- Scope - Flight TicketApproval _1
E}-- Scope - Scope_3

[] Show Detailed Mode Information

#Path: | /nzl:confirmationData

| Help

| k||

Cancel

[427]

Monitoring BPEL Processes with BAM

Then we click OK twice to close both dialogs and get back to the Create Activity
Sensor dialog.

é- Edit Activity Sensor - AAReservationsensor

Marne: |.0..C\Reservation53nsor |
fctiviey Name: |American.ﬁ.irIinesReservation | Qé
Configuration
Evaluation Time: |.ﬂ.ctivation '|
Activity Yariable Sensars
* 7 R
Yariable ¥Path Qukput Mamespace
x) FlightResponsend JFlightResponseadjc... htkp:fipacktpub.com/...
Sensor Actions
* 7 R
Help OF || Cancel

Remember that BAM sensor actions can only be created using the
s Structure pane.

We click OK to close the dialog. We can see that a Sensor icon is displayed in the
top-right corner of the activity.

2"

Americandirlineskeservation

[428]

Chapter 8

Next, we have to create BAM sensor action for the activity sensor we just created.
We right-click Sensor Actions folder in the Structure pane and select Create |

BAM Sensor Action. The Create Sensor Action dialog opens. We set the name of
the action to ARReservationSensorAction and select the AAReservationSensor.
Then we click on the magnifying glass icon to select the data object. The BAM Data
Object Chooser dialog opens. We expand the BAM server connection and choose the
SELECTED_TICKETS data object.

é- BAM Data Object Chooser E3

\-& BAM Data Object Explorer
E\‘ BiMServConn

. System

Samples

Demos
Traveldpproval

1) SELECTED _TICKETS

&Data Object: |[Traveldpproval/SELECTED_TICKETS |

[] show Detailed Mode Infarmation

| Help | [s]'e || Cancel |

[429]

Monitoring BPEL Processes with BAM

We click OK to close the dialog. Back on the Create Sensor Action dialog, we select
Insert as the BAM operation. We keep the Enable Batching checkbox selected. Then
we change the BAM Connection Factory JNDI setting if needed. However, in most
cases we use the default value (eis/bam/rmi). This value is set when configuring

the Oracle BAM Adapter. Now we have to create a mapping file to map the data
from the variable to the selected data object. We can optionally change the name of
the XSL file and click on the plus icon to create a mapping. We map the fields from
the left side under tns:actionData | tns:payload | tns:variableData | tns:data |
sensor:confirmationData to the corresponding fields on the right side.

[Hlsensoraction_11.xsl | =
Source: SensorActionAdReservationSensorAction. xsd ¥5LT File: SELECTED_TICKETS.wsdl
(= :t,’ <sOUrCes > <target > ?f
(- €03 tns! actionData tns: _SELECTED_TICKETSCollection <o.;"'9
<oy tns:header tns:_SELECTED_TICKETS E88-=1
S 4o tns: payload tns:_Flightha ke
[#}-Ke¥ tns:activityData kns: _Birline o
[#--Ke¥ tnsifaultData tns:_TravelClass ke

1§82 tns:variableData tns:_Price K=
- 03 kN5 ibarget

- %oy knsigueryMame

- 4y knsiupdaterMame

- 403 Ens:updaterType

[} ¢o tnsidata

E}---<°> sensariconfirrmationData

o¥ TravelClass

°% Price

=¥ DepartureDateTime
24 ReturnDateTime

oy Approved

- g0 bnsidataType

[-E8 tns:serviceData

Design | Source | History

To set the tns:_Airline target field, we right-click on it and select Set Text | Enter
Text. In the Set Text dialog, we set the name to American.

() Emply Tesxt

(3] Text: |.0.meri|:an |

[] Disable Escape

| Help | ul's | | Cancel |

[430]

Chapter 8

We will use this data to count the number of reserved tickets when building the
BAM dashboard. We click OK to close the dialog. We also close the mapping file.
Our sensor action is now configured as shown in the following screenshot:

Ackion Mame: |.ﬁ..ﬂReservatiu:unSensor.D.ction | Enable

A BAM sensor action must be associated with a variable sensor or with an ackivity sensor
containing one sensor variable, The variable could either be an ¥ML element or musk have exactly
one message part, The schema definition of the variable must come Fram an $50 file (Inline \WSDL
schema definitions are not supported) . Please select the sensor below:

Sensor: AAReservationSensar b

The BAM sensor action needs to transform the BPEL variable into a data object in the BAM
server, Specify the BAM server data object.

Q

BEAM Operation and Keys

Operation: |Insert '|

Mo keys reguired For insert operation,

Available Kevs: Selected Keys:
_FlightMo B
_Aitling
_TravelZlass G
_Price
KR
LR |
Map File: |bam,|'SensorActi0n_11.xsl | Q 9

Clicking 'Create Mapping” or 'Edit Mapping' will save the sensor action, close this dialog and open
the mapper in IDE main window,

Filter: | |

BAM Connection Factory JMDL: |eis,|'|:uam,l'rmi |

Enahle Batching

Help [5]4 | | Cancel

[431]

Monitoring BPEL Processes with BAM

Using the BAM Adapter partner link

Similar to American Airlines, we also have to monitor the number of tickets reserved
by Delta Airlines. To do this, we could create another sensor and attach it to the to
the DeltarirlinesReservation activity as we did for American Airlines. However,
we will not do this, as we also want to demonstrate the third approach for sending
data to the BAM server by using the BAM Adapter partner link.

By using the BAM Adapter partner link, we can send data to the BAM server as a
step in the process. We will show how to send the collected Delta Airlines ticket data
to the BAM server. Please notice again that this is an alternative approach to sensors
and sensor actions.

To add the BAM Adapter partner link, we open the BPEL Component Designer in
BPEL mode and expand the BPEL Services panel in the Component Palette. Then,
we drag-and-drop the BAM Adapter to the Partner Link swim-lane on the right. The
Adapter Configuration Wizard opens. In step two, we enter the name of the service.

6-Adapter Configuration Wizard - Step 2 of 5

Service Name

Enter a Service Mame,

Service Type: BAM Adapter

Service Mame: [FlightTicketBamadapter

We click Next. In step three, we select the SELECTED TICKETS data object, select
Insert from the Operation drop-down, and select the Enable Batching checkbox.

é- Adapter Configuration Wizard - Step 3 of 5

Data Object Operation and Keys

Select & data object and keys, Click the Browse bukton bo select the data object, Specify the operation ko perform on
the selected data object,

Data Chiect: |{Travelapproval/SELECTED_TICKETS || Browse... |

Operation: |Insert 4 |

Operation Name: |yritetoBaM |

Enable Batching

[432]

Chapter 8

We click Next. In step four, we enter the JNDI Name for the BAM connection,
set when configuring the Oracle BAM Adapter on the WebLogic Administration
Console. Usually, the default value (eis/bam/rmi) is used.

é- Adapter Configuration Wizard - Step 4 of 5

INDI Name

Specify the JNDI name for the BAM connection. Moke: the deployment descriptor of the BAM adapter must associate
this JNGI name with the configuration properties reguired by the adapter to access the BAM server.

JMDI Mame: |eis,|'bam,|'rrni

We click Next and then Finish to close the wizard.

Now, we add a new scope just in front of the DeltaAirlinesReservation
<invoke> activity. We name the scope sendTicketDataToBAM. Then, we
drag-and-drop an <invoke> activity into the new scope. We double-click the
new activity to open the Invoke editor. We set the name of the activity to
sendDataToBAM. For the partner link, we select F1ightTicketBAMAdapter.
We click on the plus icon next to the Input variable field to create a variable.
We name the variable sendDataToBAM InputVariable.

Invoke

®

| Headers rnnnotations r.ﬁ.ssertions rSkip Condition |
r General r Cotrelations r Properties |

Mame: |sendDataTDBF\M |

— Interaction Type: |-‘,‘3_! Partner Link *

Partner Role Web Service Interface

Partner Link: [FlightTicketBAMAdapter | &

Ciperation: | Gy writetoBAM '|

Yariables

Input: |sendDataToBF\M_Input\-'ariabIe | l# '%

Cptions

Conversation ID: |

Help | Apply || Ok || Cancel |

Monitoring BPEL Processes with BAM

We click OK to close the dialog. Now we have to map the source data to the new
variable. We drag-and-drop a Transform activity and name it TransformTicketData.
We double-click the activity to open the Transform editor. We select the source
variable (F1ightResponseDA). For the target variable, we select sendbataToBAM
_InputVariable. Then we click on the plus icon to create a mapping. We map the
fields similar to what we did when creating the sensor action. However, this time

we set the text of the tns: Airline target field to Delta.

[Transformation_2.xsl | E]
Source; Airline, wsdl | %5LT File: BAMServCann_Travelpproy
= :E <SOUMCES = <target
[} <% tns:confirmationCata tns:_SELECTED_TICKETSCallection <oy
Loked Flightha tns:_SELECTED_TICKETS B2

<o TravelClass tns:_FlightMa k=3
sy Price tns:_Airline = Delta [T]ked-
Ko DepartureDateTime tns:_TravelClass Kof i
%o ReturnDateTime tris:_Price Red..
L ge¥ Approved

Design | Source | History

We close the mapping file. Now we switch to the Monitor view in the BPEL
Component Designer and look at the part of the process for making ticket
reservations, shown in the following screenshot:

[434]

Chapter 8

*
Ah is cheaper
@ l'fﬁll = _
AmeticanAirinesResery ation 5
TransformTicketData
®
AmericandirinesReservationCallBack @
sendDataToBAM

&

DeltadirlinesReseryation

®

DeltaditinesReservationCallBack

We can see the difference between the two approaches for monitoring the execution
of an activity. The main advantage of using sensors is that we do not need to add
new process activities and, therefore, the process is more readable. However, the
result in both cases is the same: the ticket data is written to the SELECTED TICKETS
data object.

[435]

Monitoring BPEL Processes with BAM

Deploying an SOA composite application

As we use monitoring objects in our BPEL process, we have to configure the
monitor.config file before the deployment. The file can be found in the Projects
panel in the Application Navigator. First, we set the folder where we want to
save the data objects that will be generated during the deployment. We use the
TravelApproval folder that we already created for the SELECTED TICKETS data
object. We also set the JNDI Name for the BAM connection and save the file.

Travelfpproval bpel monitor.config E]
e |
(g8~ s L

<rxml wersion="1.0" encoding="UTF-8"7>
= <MonitorConfig:
B «<Connectiom-
= <BAM datalbjectsFolder="/Trawveldpprowval/ /="
adapterCommectionFactoryINDI="eis /ban/rni"” batch=""trus"
deploymentProtocol="http">
< /BAM-
</Connection-
“Deployment ignoreErrors="true"/ -
< /MonitorConfig>

Source | History

Now we can deploy the SOA composite application.

Checking created data objects

After deploying, we check if four data objects (COMPONENT, COUNTER, INTERVAL and
Business Indicator) have been created during the deployment. We open the BAM
Architect web application and click on the TravelApproval folder. We can see that
the folder now contains five data objects, as we expected.

[436]

Chapter 8

racle BAM Architect - Windows Internet Explorer

L&’ BAM Architect

|Data Chijects

[Folders
Refresh list

B [Data Obiects
[Demos
[sarnples
[system
D Travelapprowal

COhiject

Folder:

FTravelapproval

Created:

25.6.2010 17:40:37

Last modified:

26.6.2010 10:09:54

Last modified by:

wihlogic

[Data Objects

Bl DEFALLT TRAVELAPPROWAL TRAVELAPPROWAL

COMPOMNENT
COUNTER
IMTERWAL
SELECTED TICKETS

’_ ’_ ’_ ’_ ’_ ’_ ’_ |§‘u Local inkranet | Protected Mode: On

‘a v ms% g

Testing data objects

Now we will initiate and complete a new instance of our composite application to
test if the data is being written to the data objects. Then, we open the Oracle BAM
Architect web application and click on the TravelApproval folder. To see the
content of a specific data object, we click on it and select Contents on the right panel.

First, we look at the content of the Business Indicator data object (named BI_
DEFAULT TRAVELAPPROVAL TRAVELAPPROVAL).

The name of the Business Indicator data object can vary, depending
s on the partition name, composite name, and BPEL process name.

[437]

Monitoring BPEL Processes with BAM

If we scroll to the right, we can see eight columns, which correspond to the defined
business metrics. Columns are populated with the data from the BPEL process
instance we just initiated.

Gereral|Layout |Contents |Security Filters |Perrmissions |Dirmensions |RenameMove | Indexes | Delete |Clear | Create

Edit Contents

Data Obiject "fTraveltpproval/BI_DEFAULT _TRAVELAPPROVAL TRAVELAPPROVAL",
1 total rows | Show row numbers

First |Previous |Mext |Last |Refresh

t LastName |METRII3 DriginFrom |METRII3 DestinationTo |METRIE DepartureDate |METRII3 ReturnDate |METRII3 Price |METRII3 Confirmed

| Liubljana | London | 15.12.2010 0:00:00 | 17.12.2010 0:00:00 | 125 ‘true

K| [»

In a similar way can also check other data objects. The COUNTER data object is empty,
as we did not create any Counter monitoring object. The INTERVAL data object
contains one row with information about the duration of the human task. We will
need this information (column INTERVAL RUNNING TIME_ IN_MIN) when building the
BAM dashboard to display the effectiveness of the a Approval Manager.

The data object SELECTED_TICKETS contains data about the selected flight ticket. We
will need the data about the selected airline (column Airline) to display the number
of reserved flight tickets by airline.

General |Layout |Contents |Security Filters | Permissions | Dirnensions |Renarme Move | Indexes | Delete

Edit Contents

Data Object "fTraveldpproval/SELECTED _TICKETS".
1 total rows | Show oy nurnbers

First |Previous |Mext |Last |Refresh

Row ID |FlightNo |Airline ‘Travel[ﬁlass |Price‘

1 M4325 American |First ‘135 |

Now, we initiate some new composite instances to fill the data objects so that we will
have some test data when building the BAM dashboard.

[438]

Chapter 8

Building the BAM dashboard

To define the BAM dashboard, we have to open the Oracle BAM Active Studio web
application (it can be accessed from the Oracle BAM Start Page).

Creating a report and choosing a report
template

As we want to create a report that everyone can view, we click on to the Shared
Reports tab.

ff' Oracle BAM Active Studio - Windows Internet Explorer M= E3

DRACI_E- BAM Active Studio Personalize | Help | about
[Home (IR Shared Reports Alerts Welcome weblogic
ﬁ |Shared Reparts =
e
Create & New Report » LI} Report Name: Last Modified Owner
Demos 15.4.2009 17:57 OracleSystemUser
[[= Drganize

Create a new folder

[= Guide I

Click Create & MNew Report to define a new
calumnar or tied report. This page lists all of the
reports that other users share with you. Click a
report to select it, and apply an action to view,
edit, rename, delete, or copy shortouts, To
orgarize the reports, dick Create a new folder,
and move or copy reports into folders,

Done ’_’_’_,_’_’_,_h‘u Local intranet | Protected Mode: On sg | 5% - o

[439]

Monitoring BPEL Processes with BAM

To keep reports organized, we click on the Create a new folder link to create a
folder. We name the folder TravelApproval. Then we select the created folder and
click Create A New Report. A page with predefined layout templates opens. We can
choose between Tiled Report and Columnar Report. We select the template with
four equal tiles and a thin separator.

[f:'tlracle BAM Active Studio - Windows Internet Explorer

DR)ACI_E‘ BAM Active Studio Personalize | Help | Abaout
Horme My Reports Shared Reports Alerts Yelcome weblogic
&
- qa
Create A New Report Tiled Report Columnar Report
| = Guice l e e e e
To create a report, choose a report layout, and
select a wiew, a data object, fields, and formatting
options. After clicking the Finish button, you can
view your report and save it. Continue editing
your report by double-clicking the repart display,
e e e e
e e e e
t_-.-__!
- Four equal tiles with thin separator
e e e e \i/_\
E -
|Done ’_’_ ’_’_’_ ’_’_F!‘j Local intranet | Protected Maode: On ¥a - | H11E% - 4

Now we can see various chart types we can use when building the report. On top of
the page, we set the report title to Travel Approval Report.

[440]

Chapter 8

y Alerts

Shared Reports

B G B|w

Welcome weblogic

[_[O[x]

e | Help | About

Continue editing your report by double-clicking the
report display,

haacd
&

Updating Ordered
List

EE
e

&l
Streaming List Updating List

Sl B

Action List

E

Collapsed List Bar Chart

@
Create A New Report » a

_ . Travel Approval Repori |

=l Actions - -
| |

Close 3 3 3 i i

Stre:aming List Updating List Updating Ordered Strearning List Updating List Updating Ordered

= Guide List List
| |

To create a report, choose a repart layout, and

select a view, a data object, fields, and =7 == = ==

Farmatting options. After clicking the Finish Eu e El—l e

buttan, you can view your report and save it Collapsed List Action List Bar Chart Collapsed List Action List Bar Chart

e

Strearning List

=l

Collapsed List

[}y

Updating List

i

E)

==

Action List

@ E
bl

Updating Ordered
List

Bar Chart

bl bl b o

ol b b

Done

[0 [[[[| |FuLocalintranet | Protected Mode: on

oo mow -

Displaying a list of process instances

First, we will define a view that will display the list of the last BPEL process
instances. We select the Streaming List chart type in the upper-left view. Next, we

have to specify the data object for this view. At the bottom of the screen, we double-
click the Travelapproval folder and then select the BI DEFAULT TRAVELAPPROVAL
TRAVELAPPROVAL data object, which contains the data about the flight ticket.

[Data Objects

1. Choose Data Object Location |Travalnpproval =l [E¥) Next
2, Choose Data Fields 1_DEFALLT_TRAYELAPPROVAL_TRAYELAPPROVAL (" SELECTED_TICKETS Back
)) COMPONENT
3, More Options, or Finish Cancel
7 COUNTER
 INTERWAL

[441]

Monitoring BPEL Processes with BAM

We click Next. Then, we have to select the data fields that we want to be displayed
in the list. We select the following fields: METRIC_FirstName, METRIC_LastName,
METRIC Price, and METRIC_Confirmed. We can also change the order of the fields.
We click Next again. Now we click on Change View Properties. Here, we set the
View Title to List of last process instances.

General ' Shading \i Text & Align \i Walue Format \i Font \i Active Data \i Driving
FEw [view Title ILlst of last process instances Selected Fields
k] ¥ METRIC_Firsthy oK
i [~ Display additional information buthon I = —Frsthiame _
¥ METRIC_Lasthl
bata [allow View 1o be detached from report (Click here to edit window —-aehiame Cancel
features I METRIC _Price
[Show When List Empty IND “alues ¥ METRIC_Confirmed Apnly
Properties [Hide Headings
Click here to edit the window features wused when clicking on a link in the
List.

We click OK. Our first report view is now configured.

Displaying the percentage of confirmed flight
tickets

Now, we will define a view that will contain a pie chart displaying the percentage of
confirmed flight tickets. We select the 3D Pie Chart in the upper-right view. Again,
we select the BI_DEFAULT TRAVELAPPROVAL TRAVELAPPROVAL data object and

click Next. On the Choose Data Fields screen we click Next, as we have to create a
calculated field first. Then we click on the Create a calculated field link. We select an
if expression and press the Insert Express button. We enter the calculation as shown
in the following screenshot:

= a0 Pie Chart

’ i e - ——
| Dataobjects | Fields | Filter Calculation " Drilling | Surface Frompts
m FMETRIC_Confirrmed == "trus")
e then{"Canfirmed" { y | |Bkspc| | C© CE
Data else("Rejected")|
7 2 =] ! %
Properties 4 5 & ¥
[BI_MaME =l nsertFields 1 2 3 - EMTER
I Ceiling ;I Tnsert Expr
0 s +
I Group By...

[442]

Chapter 8

Then, we press the ENTER button and rename the calculated field to Status.

g Rename ﬁ Delete

Cancel

(0]4

Apply

Then we click on the Fields tab. In the Group by list, we select the status calculated
field. Under Chart Values, we select COMPONENT INSTANCE ID. We select Count
Distinct as the summary function.

Properties

———
| Data Objects

Group By

=

a0

SNAPSHOT _TIME
SUBCOMPOMNEMT _IC
SUBCOMPOMNENT _MNAME
SUBCOMPONENT _TYFE

Status

Fields " Filer 1 Calculation ‘| Crilling 1 Surface Prompts .

Include Yalue Fields || 2% Chart values (select all)<s @

[BINAME

[T COMPONENT_FAULT_FLAG
[T COMPOMENT MAME
[~ COMPONENT_TYPE ;'

Summary Function(s)

T TTIRTTLITTT AI

I tasimum

™ count

|7 (Count Distict
I calculation

[T Percent of Tatal =

K
Cancel

Apply

[443]

Monitoring BPEL Processes with BAM

We click Apply. Then we click on the Properties icon on the left. We set the View

Title to Percentage of confirmed £1light tickets and select the Display Legend
checkbox. We click OK.

[General ' Data Labels \1 Shading \i Text & align \‘ “Walue Format \‘ Thermes \‘ Font \‘ Active Data \1 Patterns \‘ B
P ¥ Wigw Title [Percantage of confirmed flight tickets
t%liﬁ:og Il Display additional infor mation button I b OO
bata [~ allow View to be detached fram report _(Click here to edit window features) Canicel
[Chart Title | hd —
[Display Legend hattom _» i lo AERY |
Properties ¥ Include Aggregate Function In Series

[Suppress Emply Groups
[Explode All Slices

[¥ Shaw Wwhen Chart Empty [No values

Then we click on the Data Labels tab. Here we deselect Value and select Percent.
We click OK.

Displaying the number of reserved tickets by
airline
We select the 3D Bar Chart in the bottom-right view. We select the SELECTED_

TICKETS data object and click Next. In the Group by and in the Chart Values list,
we select Airline. We select Count as the summary function.

B 30 ea Chart

Include value

Group By @ Chart Yalues (select als 39 Summary Function(s)
1. Zhoose Data Object rields [= Nt
E airline fwerage ;I L
[¥ airline I winirru
2. Choose Data Fields _ [~ Flighttn Barck
3. e O Sinish I i [~ pree I wadrnm
. viore KI0ns, or =il
AL [T TravelClass ¥ caunt Cancel
[T TravelClass -
Junt Disting
I™ countDistnct
™ sicuilation j

Then we click Next. We click on the Change View Properties. We change the View
Title to Number of reserved flight tickets by airline. We also select the Display
Legend checkbox.

[444]

Chapter 8

= 3D Bar Chart

4 General | Axis ‘l Data Labels \i Shading \{ Text & Align \{ Yalue Format \i Themes \i Faont ‘l Active Data \i Patterre &
—— |7 Wiew Title |Number of reserved flight tickets by airline
*—%‘Eﬁﬁ [Display additional information button I o
Data [Allow View to be detached from report _(Click here 1o edit window features) Cancel
[chart Title [[s
[vertical axis Label r & | On Sicte LI Sanh,
Properties [Horlzontal Axis Label r | | On Bottorm ;I
v Display Legend mm LI
¥ Include Aggregate Function In Series
¥ mllow Diagonal Group Labels
¥ show Group Labels
[¥' Shaw When Chart Empty Mo Values
Then we click OK.

Displaying the effectiveness of the Approval

Manager

In the last view, we want to display the effectiveness of the Approval Manager, who
is responsible for reviewing the selected flight tickets. In our simplified example, the
Approval Manager has three hours to complete the task by either confirming the

flight ticket or rejecting it.

We select the 3D Pie Chart in the bottom-left view. We select the INTERVAL data
object and click Next. On the Choose Data Fields screen we click Next, as we have to
create a calculated field first. Then we click on the Create a calculated field link. We
select an if expression and press the Insert Express button. We enter the calculation
as shown in the following screenshot:

Froperties

|' Data Chjects \l Fialds \l Filter

IfINTERY AL_RUNNING_TIME_IN_MIM <= 180)

then("on time")

else("Delay™ S) E) S Y S
7 g g / %
4 5] *
I INTERVAL_RUMNING_ = l Insert Fields 1 2 3 - EMTER.
If ;I Insert Expr
o B +

——

Group By...

Calculation ' Drilling \l Surface Prompts

[445]

Monitoring BPEL Processes with BAM

Then we press the ENTER button and rename the calculated field to Ef fectiveness.

&3 Renarne ﬁ Delete

Ok

Cancel

Apply

We click OK. Then, we click on the Fields tab. In the Group by list, we select
the Effectiveness calculated field. Under Chart Values we select COMPONENT _
INSTANCE_ID. We also select Count Distinct as the summary function.

£ o p .
‘ Data Objects Fields ' Filter \| Calculation \| Crilling \I Surface Prompts
m— Group By Include Value Fields [3.5 Chart Values (select all)£%s @ Summary Function(s)
12/ —_— oK
+_igicn - (R N
dlele COMPOMENT _FAULT_FLAG —_—
S [~ END_SUBCOMPONENT _TYPE Bils - I Masimum [| e
ance
¥ Effectiveness [count
l_ FAULT_MAME _l l_ COMPORENT _NAME |7 Count Distinct Apply
COMPONENT _TYPE
5 [INTERVAL_END_TIME r - I calcuiatian
roperties l_ I_ —
™ INTFRWAL MAKME LI COMPOSITE_INSTANCE_ID j Percent OF Total [

We click Apply. Then we click on the Properties icon on the left. We set the View
Title to Effectiveness of the Approval Manager and select the Display Legend
checkbox.

[446]

Chapter 8

3

General ' Datalabelks ‘I Shading ‘I Text & Align ‘i Yalue Format ‘I Themes ‘i Font ‘i bid

¥ view Tile |Ef’fect|veness of the Approval Manager

r Suppress Empty Groups
r Explode Al Slices

L%'ﬁﬁ r Display addiional information button I R
i I Allow View to be detached from report _{Click here to edit window features) Cancel
™ Chart Title | il
[’ Display Legend lbOttOW hd I Apply
Properties IV Include Aggregate Function In Series

I¥ show when Chart Empty |N0 Wallies

Then we click on the Data Labels tab. Here we deselect Value and select Percent.

We click OK.

Our dashboard opened in Oracle BAM Active Studio now looks as shown in

the following screenshot:

{Z Travel approval Report - Windows Internet Explorer

ORACLE" BAM Active Studio

Welcome weblogic

[_[Ofx]

Create A New Report

Travel Approval Report

[H Actions [List of last process instances

Vigw
Save Report
Save REQD?’{ Y
Close

METRIC_Fi...
Marija

METRIC_L...
Movak
Sprah

Duzic

Lucija
Marko
Change Report Properties Ales Frece
Copy Edit Shartut

Global Change Data Object

Andrej Kochek

E View Tasks/Options
Edit vies

Ianage Data Objects
Change view type

METRIC_P...

I {per:antage of confirmed flight tickets

METRIC_C...
true

60,00%

false
true
false:
rue

0,00%

Carifirrmed B Rejerted

E Guide

l

To create a report, choose a report layout, and
select a view, a data object, fields, and formatting
options. After clicking the Finish button, you can
view your repart and save it. Continue editing your,
report by double-clicking the report display.

80,00%

B pelay

[Eﬂectiveness of the Approval Manager

l 20,00%

On time

Number of reserved flight tickets by airline

Delta

|
Anerican
COUNT (Airline)

I

Done [[E

[(¥ Local intranet | Protected Mode: On - [Rzms -

Monitoring BPEL Processes with BAM

We save the report by clicking on the Save Report As link on the left. We select the
TravelApproval folder and accept the default report name.

Testing the dashboard

Now, we will open the Oracle BAM Active Viewer web application (it can be
accessed from the Oracle BAM Start Page), which is used for viewing the reports.
To open the report, we click on the Select Report button on top of the page. Then
we select the report and click OK. The report opens.

{2 Travel Approval Report - Windows Internet Explorer [_ 1ol x]

ORACLE" BAM Active Viewer

Select Report Print Preview Personalize Reprampt Save Offline Ernail

Travel Approval Report

List of last process instances 1 [Percantage of confirmed flight tickets @ I
METRIC_Firstdame | METRIC LastName WMETRIC_Price | METRIC_Confirmed 60,00%

Marija Mowak 312 | true

Lucija Sprah 312 | fake

tarko Duzic 312 | true

Ales Frece 312 | false

Andrej Kochek 312 | true

40,00%
Confirmed I Rejected

Effectiveness of the Approval Manager @ I I Number of reserved flight tickets by airline
2,5

2
1,5

1

05
30,00%

0 T
American Delta
B pelay o time COUNT (airling)

Done: [| [|| [¥ % Local intranet | Frotected Mode: On [va - [R1z0% - 4

Now, we will initiate a new composite instance to check if the BAM dashboard really
refreshes when new data is written to the data objects. We use the following input
arguments:

[448]

Chapter 8

Input Arguments
Tree Yiew ;I
Mame
[=] * travelRequest
=] employes
FirstMarme
LastMame
Deparkment
[= flightData
RequestMo
OriginFrom
DestinationTo
DesiredDepartureDate
DesiredReturnDate
Request Response

Type Yalue
TravelRequestType
EmployeeType
string T¥iki
skring Musker
skring SIL
FlightRequestType
skring 422
string London
skring Paris
date 2010-12-12
date 2010-12-12

Test Web Service

We approve the flight ticket using the Oracle BPM Worklist application. Then we
open the BAM Active Viewer again. We can make sure that the BAM dashboard

displays the latest data after just a few seconds.

Select Report

Print Preview

Personalize

Reprompt

Save Offline

Ernail

METRIC_Firsthame
Marija

Lucija

Marko

Ales

Andrej

ki

83,33%

List of last process instances

METRIC_Lasthame
Movak

Sprah

Duzic

Frece

Kochek

Muster

Effectiveness of the Approval Manager

B oty

METRIC_Price
312

On time

Travel Approval Report

‘ [percamage of confirmed flight tickets

WETRIC_Canfirmed
frue

false

frue

false

rue

rue

66,67%

33,33%

Confirmed | Rejected

@ I [Number of reserved flight tickets by airline

16,67%

COUNT (irline)

T
American

Delta

oI

Wiaiting For bitp: fflac alhost:9001 /OradeBAMJAcHveDataservist .

[—

[T ¥ Local intranet | Protected Made: On

[%a - [®Riz0% - 4

[449]

Monitoring BPEL Processes with BAM

Summary

In this chapter, we have explained how to monitor BPEL processes with BAM. We
have described the Oracle BAM architecture and features, including BAM Server and
BAM Web Applications. We have explained how to use monitoring objects and how
to use sensors and sensor actions.

With the use of an example, we have demonstrated how we can monitor a BPEL
process. We have shown how to configure the monitoring objects and discussed
various ways to create monitoring objects. We have shown how to create BAM data
objects and establish BAM server connections.

We have shown how to create sensors and sensor actions, and how to use BAM
Adapter partner links. Then we have explained how to build a BAM dashboard. We
have explained how to create a report and how to choose the report template. We
have also built a few reports. Finally, we have shown how to test a BAM dashboard.

In the next chapter, we will look at the Orace Service Bus and Oracle Service Registry
and will show how to use BPEL processes with ESB and UDDI.

[450]

BPEL with Oracle Service
Bus and Service Registry

If we want our SOA architecture to be highly flexible and agile, we have to ensure loose
coupling between different components. As service interfaces and endpoint addresses
change over time, we have to remove all point-to-point connections between service
providers and service consumers by introducing an intermediate layer — Enterprise
Service Bus (ESB). ESB is a key component of every mature SOA architecture and
provides several important functionalities, such as message routing, transformation
between message types and protocols, the use of adapters, and so on. Another
important requirement for providing flexibility is service reuse. This can be achieved
through the use of a UDDI (Universal Description, Discovery and Integration)
compliant service registry, which enables us to publish and discover services. Using

a service registry we can also implement dynamic endpoint lookup, so that service
consumers retrieve actual service endpoint addresses from the registry at runtime.

In this chapter, we will get familiar with Oracle Service Bus (OSB), the Oracle
strategic ESB. First, we will look at the OSB architecture and features. Then we

will demonstrate the use of OSB on our Travel business process. We will show

the combined use of OSB and Oracle Service Registry (OSR) to provide very high
flexibility. Therefore, we will first publish the EmployeeTravelStatus service to
the OSR. Then, we will open the Oracle Service Bus Console, create a new project,
and import the service and all related artifacts from OSR. Next, we will create a
proxy service for the EmployeeTravelStatus service. We will show how to define
the proxy service message flow. We will also demonstrate some advanced features
of OSB, such as service result caching. Then, we will deploy the new version of the
EmployeeTravelStatus service with a slightly different interface and show how
OSB can absorb these changes by simply adding an XSL transformation. Finally, we
will publish the new proxy service to OSR and modify the corresponding reference
binding component in our SOA composite, so that it will retrieve the proxy endpoint
address from OSR at runtime.

BPEL with Oracle Service Bus and Service Registry

In this chapter, we will discuss the following:

e Oracle Service Bus architecture and features

e Publishing services to OSR

e The use of Oracle Service Bus Console

e Importing resources from OSR to OSB

e Service Result Caching

e Creating a proxy service

e Adding XSL Transformations to the request pipeline
e Publishing a proxy service to OSR

e Dynamic endpoint lookup

Oracle Service Bus architecture and
features

In Chapter 1, we discussed the importance of the ESB in SOA. We have identified
that the ESB eliminates point-to-point connections between services and BPEL
processes. ESB also provides a means to manage connections, control the
communication between services, supervise the services and their SLAs (Service
Level Agreements), and much more. The importance of the ESB often becomes
visible after the first development iteration of an SOA composite application has
taken place. For example, when a service requires a change in its interface or
payload, the ESB can provide the transformation capabilities to mask the differences
to existing service consumers. ESB can also mask the location of services, making it
easy to migrate services to different servers. There are plenty other scenarios where
ESB is important.

In this chapter, we will look at the Oracle Service Bus (OSB). OSB presents a
communication backbone for transport and routing of messages across an enterprise.
It is designed for high-throughput and reliable message delivery to a variety of
service providers and consumers. It supports XML as a native data type; however,
other data types are also supported. As an intermediary, it processes incoming
service request messages, executes the routing logic, and transforms these messages
if needed. It can also transform between different transport protocols (HTTP,

JMS, File, FTP, and so on). Service response messages follow the inverse path. The
message processing is specified in the message flow definition of a proxy service.

[452]

Chapter 9

OSB provides some functionalities that are similar to the functionalities of the
Mediator component within the SOA Composite, such as routing, validation,
filtering, and transformation. The major difference is that the Mediator is a mediation
component that is meant to work within the SOA Composite and is deployed within
an SOA composite application. The OSB, on the other hand, is a standalone service
bus. In addition to providing the communication backbone for all SOA (and non-
SOA) applications, OSB's mission is to shield application developers from changes

in the service endpoints and to prevent those systems from being overloaded with
requests from upstream applications.

In addition to the Oracle Service Bus, we can also use the Mediator

service component, which also provides mediation capabilities, but
=" only within SOA composite applications. On the other hand, OSB is

used for inter-application communication.

The following figure shows the functional architecture of Oracle Service Bus (OSB).
We can see that OSB can be categorized into four functional layers:

e Messaging layer: Provides support to reliably connect any service by
leveraging standards, such as HTTP/SOAP, WS-I, WS-Security, WS-Policy,
WS-Addressing, SOAP v1.1, SOAP v1.2, E]B, RMI, and so on. It even
supports the creation of custom transports using the Custom Transport
Software Development Kit (SDK).

e Security layer: Provides security at all levels — Transport Security (SSL),
Message Security (WS-Policy, WS-Security, and so on), Console Security (SSO
and role-based access) and Policy (leverages WS-Security and WS-Policy).

e Composition layer: Provides a configuration-driven composition
environment. We can use either the Eclipse plug-in environment or web-
based Oracle Service Bus Console. We can model message flows that contain
content-based routing, message validation, and exception handling. We can
also use message transformations (XSLT, XQuery), service callouts (POJO,
Web Services), and a test browser. Automatic synchronization with UDDI
registries is also supported.

[453]

BPEL with Oracle Service Bus and Service Registry

e Management layer: Provides a unified dashboard for service monitoring and
management. We can define and monitor Service Level Agreements (SLAs),
alerts on operation metrics, and message pipelines, and view reports.

Service | | Service | | Service | | Service
Management
Dashboard || Monitoring || SLAs | | Reporting | |0pen Interfaces
Composition
Message Di / Seni Test
Flow |sgov<_ery Transformation enice es
Oracle Modeling Validation Call-out Browser
Service
Bus
Security
| Transport Security || WS-Security ||Conso|e Security|| Policy |
Messaging
Service | | Service | | Service | | Service

Proxy services and business services

OSB uses a specific terminology of proxy and business services. The objective of
OSB is to route messages between business services and service consumers through
proxy services.

Proxy services are generic intermediary web services that implement the mediation
logic and are hosted locally on OSB. Proxy services route messages to business
services and are exposed to service consumers. A proxy service is configured by
specifying its interface, type of transport, and its associated message processing
logic. Message flow definitions are used to define the proxy service
message-handling capabilities.

Business services describe the enterprise services that exchange messages with
business processes and which we want to virtualize using the OSB. The definition of
a business service is similar to that of a proxy service; however, the business service
does not have a message flow definition.

[454]

Chapter 9

Oracle Service Bus

Proxy service
(@)
O > 1 |::> Business service =©
Service consumer ﬁ ﬁ Service provider
1]

Message flow modeling

Message flows are used to define the message processing logic of proxy services.
Message flow modeling includes defining a sequence of activities, where activities
are individual actions, such as transformations, reporting, publishing, and exception
management. Message flow modeling can be performed using a visual development
environment (Eclipse or Oracle Service Bus Console).

Message flow definitions are defined using components, such as pipelines, branch
nodes, and route nodes, as shown in the following figure:

Request pipeline Response pipeline

\ Pipeline Pair Nodes
m < / Branch Nodes

v v

o o

[455]

BPEL with Oracle Service Bus and Service Registry

A pipeline is a sequence of stages, representing a one-way processing path. It is used
to specify message flow for service requests and responses. If a service defines more
operations, a pipeline might optionally branch into operational pipelines. There are
three types of pipelines:

e Request pipelines are used to specify the request path of the message flow
e Response pipelines are used to specify the response path of a message flow

o Error pipelines are used as error handlers
Request and response pipelines are paired together as pipeline pairs.

Branch nodes are used as exclusive switches, where the processing can follow one
of the branches. A variable in the message context is used as a lookup variable to
determine which branch to follow.

Route nodes are used to communicate with another service (in most cases a business
service). They cannot have any descendants in the message flow. When the route
node sends the request message, the request processing is finished. On the other side,
when it receives a response message, the response processing begins.

Each pipeline is a sequence of stages that contain user-defined message processing
actions. We can choose between a variety of supported actions, such as Publish,
Service Callout, For Each, If... Then..., Raise Error, Reply, Resume, Skip, Delete,
Insert, Replace, Validate, Alert, Log, Report, and more. Later in this chapter, we will
show you how to use a pipeline on the Travel Approval process. However, let us first
look at the Oracle Service Registry, which we will use together with the OSB.

Oracle Service Registry

Oracle Service Registry (OSR) is a fully V3-compliant implementation of UDDI
(Universal Description, Discovery and Integration), and one of the key components
of Oracle SOA Suite 114. It allows us to publish and discover services and service
providers, and manage metadata about services (security, transport, or quality
service) using taxonomies. Therefore, it plays an important role when trying to
improve visibility and promote service reuse. It is also important in the scope of SOA
governance.

A service registry is very important for various reasons. It provides a central place
where all service definitions are stored. This becomes important when the number

of services (including BPEL processes) grows. It helps to maintain an overview of
services. A service registry also provides a central place where developers can search
for existing services. This improves service reuse, which is one of the most important
aspects of SOA. Of course, a service registry also provides means to publish a services
for other developers to discover and reuse.

[456]

Chapter 9

In addition to reuse, a service registry can also be helpful when we need to migrate
services from one server to the other. This can happen because of various reasons,
but one of the most common reasons is the migration between the development, test,
and production environments. A service registry is also helpful when we need to
version services and manage changes. With a service registry, we can also develop
more loosely coupled composite applications, because we do not need to hard-code
the service URLs. Rather, the application will resolve URLs at run time. In all cases,
the service registry is often used together with the ESB.

We will not discuss all OSR details in this chapter. We will demonstrate how to
publish a service, how to export/import resources between OSB and OSR, how to
browse the OSR using JDeveloper, and how to enable dynamic endpoint lookup in
an SOA composite application.

Logging into Oracle Service Registry

To log into Oracle Registry Control, we have to open a web browser and access the
following URL: http://host_name:port/application_name/uddi/web, where
host_name is the name of the host on which OSR is installed, application name is
name of the application (default name is registry), and port is a number that is set
during the installation process.

OSR provides two web consoles: Registry Control and Business service Control.
Registry Control provides an interface that is based on the UDDI specification and is
useful for developers familiar with business entities and tModels. Business service
Control, on the other hand, provides a simpler interface for less-technical users
unfamiliar with tModels and other UDDI stuff. We can publish and discover services
using both. In this chapter, we will show how to use Registry Control Console.

[457]

BPEL with Oracle Service Bus and Service Registry

To log into the console, we click on the Login link in the upper-right corner and enter
username and password. The Registry Control home page opens, as shown in the
following screenshot:

ORACLE Enterprise Manager g
Oracle Service Registry|

Skip to content Logout [&
e

Home Welcame admin

Browse Search Publish Profile Manage
Business = Serices = Bindings = tModels = Direct get = WSDL = XML =

|5
[x}
=
2
i
I~

Oracle Service Registry

Oracle Service Registry 11.1.1

Fedistry Step By Step Guide
About Cracle Registry

Oracle Service Registry is the most complete and proven business services registry providing a foundation for the governance and lifecycle
management of your business services. The Registry provides you with what you need to obtain enterprise-wide insight, control and economic
leverage of your organization's business services assets. Much more than just a UDDI registry, the Registry captures and makes discoverable
business service descriptions into a centrally managed, reliable and searchable location, becoming the system of record for your business

services
Oracle Service Registry provides two user interfaces.
Registry Control Business Service Control
Using the Registry Control users can browse and publish registry content, create Using the Business Service Control developers,
subscriptions and perform ownership changes. The Registry Control is the primary architects and business users can browse the various
console for administrators to perform registry management., perspectives of the Registry including business-
Getting Started with the Registry Control relevant classifications such as service and interface
. ! . . lifecycle, compliance or operational/readiness status,
Browise - Browse registry content using enterprise taxonomies and brawsing information through business-relevant
Search - Search registry content including services, service providers, service abstractions of S04 infarmation such as schemas,
endpaoints and interfaces, and business service artifacts interface local names or namespaces. The Business
Business Services Bindings Service Control also pravides easy to use and
thiodels Direct get WSO customizahle publication wizards.

Publishing a business entity

Before publishing the EmployeeTravelStatus service, we have to publish a business
entity (service provider). This is because the UDDI data model requires a business
entity for each service, which is represented by a tModel. We click on the Publish
link and then press the Add business button. We name the business entity Packt
Publishing. We can also add a description and enter a custom business key.

Add business

This dialog allows you to create new businesses.

= MName: |Paokt Puhblishing ‘ Language: IEninsh 'l ‘
Description: | ‘ Language: IEninsh 'l

Business key: I

We click on the Add business button and then Save changes.

[458]

Chapter 9

Publishing a business service

Back on the Publish page, we expand the Businesses folder, right-click the Packt
Publishing business entity, and select Publish WSDL.

] admin’s workspace
=] |§| Businesses »
G Adria Ainways »

%l Americandirlines »
H

7 Deltafirlines »

i Bl »

T
- {7y Oracle Service Registry »
T
e

= Business

- {5 mﬁ Edit business
|E| thodels » ¥ Delete business
Contacts

4 Add contact

Services

e Add service
(i Publish wsDL

The Publish WSDL document page opens. We enter the WSDL location (URI) of
the EmployeeTravelStatus service and click Publish.

Publish WSDL document |

You can either use existing business entity by selecting its key ar create a new business entity which will he used for publishing.

|udd\ 0077eaal-8352-11cf-B075-a7122bc1806d
Find business key | _Create new business |

= Business key

= WSDL location {URI}) |hﬁp Hlocalhost: 300 VEmployeeTravelStatus-app-v1/EmployeeTravelStatusPTRPor Mwsdl

advanced mode —

Fublish)| _Cancel) 4

The Publish summary page opens. We can review the entities that have been
published to the OSR. We click OK.

[459]

BPEL with Oracle Service Bus and Service Registry

Using Oracle Service Bus Console

To log into Oracle Service Bus Console, we have to open a web browser and access
the following URL: http://host_name:port/sbconsole, where host_name is the
name of the host on which OSB is installed and port is a number that is set during
the installation process. We log in as user weblogic. The Oracle Service Bus Console
opens, as shown in the following screenshot:

ORACLE' Service Bus 11gR1
Change Center E Welcome, weblogic Connected to : domain3 | YrHome | Oracle WLS Console ; Logout | Help | Oracle Support | About Service Bus |

= Yiew Changes

o Yiew All Sessions SLA Alerts Pipeline Alerts Service Health Server Health

s
Operations

Monitoring
Dashboard

@ SLA alerts (20 mins) @Y Services With Most Alerts

Mo Alerts in the current Alert History duration Mo Services to display.

Configuration
Smart Search
Glohal Settings <i» Alert History (30 mins) Extended Alert Histary

User Preferences | Tters 0-0 of O

Reporting Timestamp = Alert Name Alert Severity Service Service Type Action

Message Reports
g2 [FiEE No Alerts to display.

Items 0-0 of O

QTop

> Dperations

Resource Browser

Project Explorer

Security Configuration

System Administration

The Dashboard page is opened by default, displaying information about alerts. We
will show how to define and monitor alerts later in this chapter. In the upper-left
corner, we can see the Change Center.

Change Center

8 Yiew Changes

B Yiew All Sessions

| Create || Discard || Exit |

[460]

Chapter 9

Change Center is key to making configuration changes in OSB. Before making any
changes, we have to create a new session by clicking the Create button. Then, we are
able to make different changes without disrupting existing services. When finished,
we activate all changes by clicking Activate. If we want to roll back the changes, we
can click the Discard button. We can also view all changes before activating them
and write a comment.

Creating a project and importing resources
from OSR

First, we have to create a new session, by clicking the Create button in the Change
Center. Next, we will create a new project. OSB uses projects to allow logical
grouping of resources and to better organize related parts of large development
projects. We click on the Project Explorer link in the main menu. In the Projects
page, we enter the name of the project (TravelApproval) and click Add Project.
The new project is now shown in the projects list on the left side in the Project
Explorer. We click on the project.

ORACLE Service Bus 11gR1
Change Center E Welcome, weblogic Connected to : domain3 ‘ & Home Qracle WLS Console Logout Help Cracle Support | About Service Bus
weblogic session ‘ weblogic session | Created 206,10 10:34 | Mo Conflicts | 2 Change(s) ‘ 1 Active Seesion(s) |
8 Mo Confiicts
8 Vigw Changes TravelApproval @
a Yiew Al Sessions Description
Referances v - no description -
’
: Faferencad By ’
Project Explorer
Projects Folders 4} Up to Projects
= Travelspproval
[» Enter New Folder Name: Add Folder
|| Items 0-Qof 0
Name & Options
Mo Folders o display.
Ttems 0-0 of O

[461]

BPEL with Oracle Service Bus and Service Registry

Next, we add folders to the project, as we want to group resources by type. To create
a folder, we enter the folder name in the Enter New Folder Name field and click Add
folder. We add six folders: BusinessServices, ProxyServices, WSDL, XSD, XSLT,
and AlertDestinations.

Project Explorer

Projects
= Travelapproval

- AlertDestinations
- BusinessSeryvices
- ProxyServices
- WSDL
- X5D
- MSLT

o

i T T T

Next, we have to create resources. We will show how to import service and all
related resources from the UDDI registry. Before creating a connection to the UDDI
registry, we activate the current session. First, we review all changes. We click

the View Changes link in the Change Center. We can see the list of all changes in
the current session. We can also undo changes by clicking the undo link in the last
column.

[:E| View Configuration Changes Purge Tasks
|| |Items 1-7 of 7 1
Task Execution Time = User Task Status Undone By Options
Create Folder Travelapproval/XSLT 29.6.10 11:04 wehlogic Completed MNone D
Create Folder Travelapproval/xSD 29.6.10 11:04 wehblogic Completed MNone b |
Create Folder Travelapproval WSDL 29.6.10 11:04 wehlogic Completed MNone 9
Create Folder Travelapproval/ProxyServic... 29.6.10 11:04 weblogic Completed MNohe 9
Create Folder Travelspproval/BusinessSer.., 29.6,10 11:04 wehlogic Completed Mone 9
Create Project Travelapproval 29.6.10 10:56 wehlogic Completed Mone)
Delete Project Travelspproval 29.6,10 10:34 wehlogic Completed Mone 9
Items 1-7 of 7 1

Now, we activate the session by clicking on the Activate button. The Activate
Session page opens. We can add a description to the session and click Submit.

[462]

Chapter 9

Activate Session

Session Name wieblogic
User wigblogic
Description Project Travelapproval created.

Now, all changes made are activated.

Creating a connection to Oracle Service Registry

First, we start a new session in the Change Center. Then we click on the System
Administration link in the main menu. We click on the UDDI Registries and then Add
registry on the right side of the page. We enter connection parameters and click Save.

[] UDDI Configuration-Edit Registry

Name*

Description

Inquiry URL* Format: http: fhost:portiregistry uddidnguiry
http: /fvmorasoal 1gps2: 7201 /registry uddifinguiry

Publish URL* Format: bty fhost:portiegisty fuddijpublishing
http: /fvmorasoallgps2: 7201 /registry uddi/oublishing

Security URL* Format: bty fhostportiegisry fuddisecurity
http/frrnorasnallgps2: 7201 registry uddi/security

Subscription URL* Format: bt fhost:portiegistry fuddisubscription
http:/fvmorasoal lgps2: 7201 Feqgistry uddi/subscription

User Name* admin

Password stk

New Password

Confirm Password

Load tModels into Registry v

Enable Auto Import ™

Save ‘ ‘ Cancal | | Walidate

[463]

BPEL with Oracle Service Bus and Service Registry

Now, the registry is listed in the UDDI Registries list, as shown next:

All

. Items 1-10f 1 1
quiry URL Publish URL Options
o fAvmorasoallgps2: 720 registryuddi.. http: ffvrnorasoal lgps2: 7201 registry/uddi.. afe]j'

We can optionally activate a current session. In that case, we have to create a new
session before importing resources from UDDI.

Importing resources from Oracle Service Registry

We click on the Import from UDDI link on the left-hand side. As there is only one
connection to the registry, this connection is selected by default. First, we have to
select the Business Entity. We select Packt Publishing. Then we click on the Search
button to display all services of the selected business entity. In the next screenshot,
we can see that currently there is only one service published. We select the service
and click Next.

D Import From UDDI - Search Business Services and Import
Business Entity Packt Publishing =l
Service Name
Business Services

L Ttems 1-10f 1 1
¥ name o Description Business Entity
[¥, | ErployesTravelStatusservice wsdl type representing service Packt Publishing

Items 1-10f 1 1

‘ << Back | | MNext > | | Cancel |

In the second step, we select the project and folder, where we want to save the
resources. We select the TravelApproval project and the folder BusinessServices
and click Next.

[464]

Chapter 9

£ Import From UDDI - Select Import Location

Select Project /Folder “Project Sub Folder

ProxyServices
WSDL
x50

| <« Back | | Mext 3> | | Cancel ‘

On the final screen, we just click the Import button. Now we can see that a business
service, a WSDL, and three XSD resources have been created.

All resources have been created automatically, as we imported a service
%“ from the UDDI registry. If we create resources by hand, we first have to
’ create an XML Schema in WSDL resources, and then the Business service.

As all resources have been saved to the BusinessServices folder, we have to move
them to appropriate folders based on their type. We go back to the Project Explorer
and click on the BusinessServices folder in the TravelApproval project. We can
see all imported resources in the Resources list at the bottom of the page.

& Resources
[» Create Resource: | Select Resource Type j
Items 1-5of 5 1
[T Name - Resource Type Actions Options
r “*,-_-]EmployeeTrave\Stamasarvice Business Service afe & &]j'
[T | 4 wsDL_-1380577081 WSDL ale lgf| 88 B
[T [] ¥MLSchema_1202262764 ¥ML Schema ale i3 8 12}
[T | [¢] xMLSchema_1488776269 KL Schema e i B A
[T | [¢] xLschema_1685265774 *ML Schema ale g & 124
Iems 1-50f 5 1

We can move resources by clicking on the Move Resource icon and then selecting the
target folder. We move the WSDL resource to the wspL folder and the XML Schemas
to the xsp folder.

[465]

BPEL with Oracle Service Bus and Service Registry

Configuring a business service

If we want to monitor service metrics, such as average response time, number of
messages, and number of errors, we have to enable monitoring of the business
service. We will also show how to improve performances by enabling service result
caching, which is a new feature in OSB 11g PS2.

Enabling service result caching

OSB supports service result caching through the use of Oracle Coherence,
. whichis an in-memory data grid solution. In this way, we can
% dramatically improve performances if the response of the business service
= is relatively static. To enable the use of service result caching globally, we
have to open the Operations | Global Settings and set Enable Result
Caching to true.

In the Project Explorer, we click on our Business service. On the Configuration
Details tab, we will enable service result caching. We scroll-down and edit the
Message Handling Configuration. Then we expand the Advanced Settings. We
select the Result Caching checkbox. Next, we have to specify the cache token, which
uniquely identifies a single cache result. This is usually an ID field. In our simplified
example, we do not have an ID field; therefore, we will use the employee last

name for testing purposes. We enter the following cache token expression: $body/
emp : employee/LastName. Then we set the expiration time to 20 minutes.

Advanced Settings
Result Caching ¥ Supported
Expression Namespaces @ [
Prefix Namespace
erp htip: packipub.com/fservice/e mployes/
Cache Token Expression thodyfemp employeeastame
Expiration Time © Use Default
® [Duration [0 days |0 hours |20 oo min ; sec
" ¥Query Expression J

Then, we click Next and Save.

[466]

Chapter 9

Now, if the business service locates cached results through a cache key, it returns
those cached results to the client instead of invoking the external service. If the result
is not cached, the business service invokes the external service, returns the result to
the client, and stores the result in cache.

% Service result caching works only when the business service is invoked
= from a proxy service.

Enabling service monitoring

Again, we click on our Business service and then click on the Operational Settings
tab. We select the Enabled checkbox next to the Monitoring and set the Aggregation
Interval to 20 minutes. The aggregation interval is the sliding window of time over
which metrics are computed. We can also define SLA alerts which are based on these
metrics.

Monitoring

Monitoring ¥ Enabled

Aggregation Inferval 0 =) hours (20 ~| mins

SLA Alerts ¥ Enable Alerting at |Narmal | level or abowve

We click Update to save the changes. Then, we activate the changes by clicking on
the Activate button in the Change Center.

Testing a business service

After activating the changes, we can test the business service using the Test Console.
To open the console, we select the BusinessServices folder and then click on the
bug icon next to the Business service.

& Resources

[» Create Resource: J
1] |Tteme 1-1 of 1 1
[~ Name - Resource Type Actions Options
™ | E3 EmploveeTravelStatusService Business Service %] ale
Items 1-1 of 1 1

[467]

BPEL with Oracle Service Bus and Service Registry

The Test Console opens. We set the XML payload and click the Execute button.

<e» Available Operations: |EmployeeTravelStatus j

‘ Execute | | Execute-Save | | Reset | | Close

+]Request Document
Form HML

SOAP Header: |<soap:Header xmins:soap="http: /fschermas. kmlsoap.org/soap/ervelope,™=
< fs0ap:Header >

* payload: | Frefrska; ... |

<emp:employes xmins:emp="http: //packipub.com/service/employes >
<Firsthame=Marcel</Firsthama=
<LastMame=Krizevnik </LastName:
<Department>SIL</Departrment>

<fempemployes s

After executing the Business service, we can see the response message as shown in
the next screenshot:

3 Business Service Testing - EmployeeTravelStatusService Help
| Back | | Close |
+]Request Document ®

<soapeny:Envelope smins:soapeny="httn://schemas. xmlsoap.orgfsoapfenvelope" =
<spap:Header ¥mins:soap="http://schemas. xmisnap.orgfsoap/ervelope ">
«fs0ap:Header =
<spoapeny:Body =
zempremployes xminsiemp="http:ffpacktpub.com/service/ermploves, "
<FirstMarme:Marcel< fFirstMarme =
<LastMarne = Krizevnik < /LastMame >
<Department = SIL < /Department =
< fempemployees
< fsoapeny:Body =
< fsoapeny Envelopes

] Response Document (]

«S:Ervelope xmins:S="http:/fschemas, xmilsoap.orgfzoapfenvelope, "=
<S:Body =
<ns2itravelClass xmins:nsz="http://packtpub.com)service fermployee) " =First < /ns2: fravelClass >
< /S:Body =
< {5 Envelopes

Response Metadata ®

[468]

Chapter 9

Creating an Alert destination

Before creating a proxy service, we will create an Alert Destination resource, which
will be later used for sending e-mail alerts to the administrator. Remember, that we
have already created the AlertDestinations folder.

To be able to send e-mail alerts, we have to first configure the SMTP
= server on the System Administration page.

To create an Alert destination, we navigate to the AlertDestinations folder and
then select the Alert Destination from the Create Resource drop-down. We set the
name to Administrator and add an e-mail recipient by clicking the Add button. We
enter the recipient e-mail address (we can add more recipients) and select the SMTP
server.

9 Edit Email Recipient - TravelApproval/AlertDestinations /Administrator

Mail Recipients* IMail Recipients format is user Li@host], user2@host]
rnarcel krizevnik@grnail.com

SMTP Server FERI mai ~|

Mail Session J
From Name O3B Alert

From Address marcel, krizevnik@gmai

Reply To Name

Reply To Address

Connection Timeout o
Request Encoding i50-8858-1
| Save | ‘ Cancel

Then we click Save twice.

[469]

BPEL with Oracle Service Bus and Service Registry

Creating a proxy service

Although at the first sight it might seem redundant, using a proxy service instead
of calling the original business service directly has several advantages. If we add

a proxy service between the service consumer and the original service, we gain
transparency. Through OSB, we can monitor and supervise the service and control
the inbound and outbound messages. This becomes important when changes
happen. For example, when a service interface or the payload changes, the proxy
service can mask the changes to all service consumers that have not yet been
upgraded to use the new version. This is, however, not the only benefit. A proxy
service can enable authentication and authorization when accessing a service. It can
provide a means to monitor service SLAs, and much more. Therefore, it often makes
sense to consider using proxy services.

We will show an example to demonstrate the capabilities of proxy services. We will
create a proxy service, which will contain the message processing logic and will be
used to decouple service clients from the service provider. Our proxy service will
validate the request against the corresponding XML schema. It will also perform
error handling and alert the service administrator of any problems with the service
execution.

First, we start a new session (if there is no active session) by clicking the Create button
in the Change Center. Then we navigate to the Proxyservices folder in the Project
Explorer. We click on the Create Resources drop-down and select Proxy Service.

& Resources

> Create Resource::Select Resource Type i+ |

Select Resource Type | |
Service

Split-1oin
Iriterface
WSO
XML Schemna
WS-Policy
JCA Binding
Frarsformation
Xuery
¥SLT
MFL File
Secity
Service Account
Service Key Provider
ity
1AF,
Alert Destination -

| Delete

O Top

[470]

Chapter 9

The General Configuration page opens. We set the name of the proxy service to
EmployeeTravelStatusServiceProxy. We also have to define the interface of the
service. We select the Business service, as we want the proxy service to use the
same interface as the business service. We click the Browse button and select the
EmployeeTravelStatusService business service.

3 Create a Proxy Service (TravelApproval/ProxyServices,)

General Configuration

Service Name™* EmployeeTravelStatusServiceProxy
Description
Service Type* Create a New Service

(part or binding)

T Transport Typed Service

' Messaging Service

T any SOAP Service S04P 1.1 ~|
' any ¥ML Service

Create From Existing Service

* Business Service Travel&pproval/BusinessServices/Emplaye | | Browse..
€ Proxy Senvice
| Mext >> | | Last>> | | Cancel |

Then we click Next. On the Transport Configuration screen, we can change the
transport Protocol and Endpoint URL

2 Create a Proxy Service (TravelApproval /ProxyServices /EmployeeTravelStatusServiceProxy)
Transport Configuration
Protocol*® http ﬂ

Endpoint URI* Faormat: fsomebame
S Traveltpproval {ProxyServices/EmployeaTravelStatusServiceProxy

Get All Headers e
& Mo

Header Add

HEADER ACTION

There are no headers configured.

<< Prev. | | Mext >> ‘ | Last »> | ‘ Cancel

We use the defaults values and click Next. The HTTP Transport Configuration
screen opens. We click Next on the remaining configuration screens. On the
Summary page, we click the Save button at the bottom of the page.

[471]

BPEL with Oracle Service Bus and Service Registry

Configuring Message Flow

We select the new proxy service. We then click on the Edit Message Flow icon in the
Resources list to open the Message Flow editor.

&5 Resources

[> Create Resource: Select Resource Type j

||| tems 1-1of 1 1
[T Name o Resource Type Actions DOptions
r g EmploveaTravelStatusServiceProxy Proxy Service BIE @"' B ﬁ
Items 1-1of 1 1

In the Message Flow editor, we can see that a route node for the
EmployeeTravelStatusService business service already exists.

&

EmployeeTravelStatusServiceProxy

2

RouteTo_EmployeeTravelStatusService

Now, we will modify the message flow by adding a pipeline pair. Then, we will

edit the request pipeline and add a stage for validating the request against an XML
Schema. Finally, we will add an error handler to the message flow and define a stage
for sending an e-mail alert to an administrator every time the error occurs.

We click on the EmployeeTravelStatusServiceProxy envelope and select Add
Pipeline Pair. A pipeline pair node is added to the message flow.

[472]

Chapter 9

Reque

Wl
PipelinePairMode1

n

w [}

<t Pipeline Response

B

EmployeeTravelStatusServicePraxy

Pipeline

RouteTo_EmployeeTravelStatusService

Now, we will edit the request pipeline. Remember that a pipeline contains a

sequence of stages. We click on the Request Pipeline node and select Add Stage.

M

&

VU
PipelinePairtode1

L 4

ErmployeeTravelStatusServiceProxy

M)

Reguest

P Add Stage

/1 Add Pipeline Error Handler

B Pipeline

RouteTo_EmployeeTravelStatusService

[473]

BPEL with Oracle Service Bus and Service Registry

We click on the new stage and select Edit Name and Comments. We rename the
stage to Validate. Next, we click on the stage and select Edit Stage. The Edit Stage
Configuration screen appears. We click on Add an Action and select Message

Processing | Validate.

dd an Artinrd

Cammunication
Flows Conkrol

Q Top Message Processing

Reporting

Assign

Delete

Insert

Jawa Callout
MFL Transfarm
Rename
Replace
Walidate

We specify that we want to validate . /emp:employee in the variable body against
the EmployeeType defined in the XMLSchema 1488776269 XML Schema, as shown in

the following screenshot:

—r]
@ 2 yalidate fermpemploves in varisble hiodly
" Save result of validation in variable

¥ Raise Error on validation failure

@ Wiew all Commerts

* against }-{MLSchema_HBB??GEGQ* { Type = "EmployeeType”)

#

Then we click Save to save the changes and return to the Message Flow editor.

Now, we click on the envelope and select Add Service Error Handler. Then, we click
on the Error Handler node and select Add Stage.

[474]

Chapter 9

B,

Error H 5. Add Stage

We rename the new stage to Send Alert. Next, we click on the stage and select Edit
Stage. We add an Alert action as shown in the following screenshot:

Cormunicakion »
Floww Control 4
4] Top Message Processing 3
Reporting 5 Alert
Log
Report

We configure the alert as shown in the following screenshot and click Save All.

| (B
@ * Alert sdministratar with $hody@
and alert-summary Employvee Travel Status Error

at severity level Critical j*

Then we activate the current session in Change Center.

[475]

BPEL with Oracle Service Bus and Service Registry

Testing a proxy service

After activating the session, we can test the proxy service by selecting it and
clicking on the bug icon in the Resources list. The Test Console window opens.
We enter the XML payload and click Execute. We can see the service response
and the invocation trace.

3 Proxy Service Testing - EmployeeTravelStatusServiceProxy Help
| Back | | Close

+]Request Document ®
+ Response Document 'é)'

<soapeny:Envelope xminsisoapeny="htto: f/schemnas, xmisoap.org)fsoap/envelope, " »
<soapeny:Header >
<S:Body xrmins:S="httn://schemas. xmisoap.orgfsoapfenvelope "=
<ns2itravelClass xminsins2="http://packtpub.com)servicefemployveef " =First < fns2:travelClass »
<{5:Body>
< fsoapeny:Envelope >

Response Metadata

e ®

%5 Invocation Trace

4 ® (receiving request)
I PipelinePairMode1
4k B validate
Message Context Changes
My ® changed $hody
My ® changed $inbound
@ = RouteTo_EmployeeTravelStatusService
Routed Service
Q Route to: "EmplovesTravelStatusService”
Message Context Changes
added $outhound
changed $body
changed $attachments
changed $inbound
changed $header
1 PipelinePairMode 1

BB
B E B E E

| Back | | Close |

Now, we shut down the EmployeeTravelStatus service using the Oracle Enterprise
Manager Console to test the service result caching and the error hander.

Then, we initiate the proxy service using the same input payload as before.

We can see that the proxy service returns the same response although the
EmployeeTravelStatus service is not running. This means that the service result
caching works. Next, we initiate the proxy service using a different input payload.
This time the invocation fails, as the response for this input is not cached.

[476]

Chapter 9

<] Response Document

Ay The invocation resulted in an errar;

< soapeny:Envelope xrmins:soapeny = "http: fschemas xmlsoap.orgfsoap/envelope "=

<soapeny:Body s
< soapeny:Faults
< faultcode = soapeny: Server < ffaultcode >

< faultstring=BEA-330002: Mot Found < /faultstring =

<detail>
<con:fault xrins:con="http:f feese . biea, comfedifsbfcontext s

<con:error_ode »BEA-380002 < fcon:errorCode =
< Conreason: Mot Found< /con:reason:

=con:location:
<conhode>RouteTo_EmploveeTravelStatusService < fcon:node >

<con:path=response-pipeline < fcon:pathz
< fron:location:
< fron:faults
< fdetail=
< fsoapeny:Fault=
< fsoapery:Body =
< fsoapery:Envelopes

If we click on the Operations link on the left-hand side and then select the Pipeline
Alerts tab, we can see the pipeline alerts history and the details of alerts. As the
proxy service execution failed, the error handler triggered an alert, as can be seen

in the following screenshot:

SLA Alerts Pipeling Alerts Service Health & 1 Server Health

E! Services With Most Alerts

{5 Pipeline Alerts (20 mins)
13 Travelspproval FroxyServices/E mployeeTravelStatusServiceProwy

W 100% Critical

Extended Alert History

75 Alert History (30 mins)

&)
[rems 1-10f1 1
Timestamp = alert Summary Alert Severity = Service Service Type Action
29.6,10 15:53 Employee Travel Status Error & Critical @ Traveltpproval{ProsyServices EmployesTra. . Proxy Service §
Iterns 1-1of 1 1

[477]

BPEL with Oracle Service Bus and Service Registry

If we click on the Service Health tab, we can monitor metrics, such as average
response time, number of messages, and number of errors for the current
aggregation interval.

SLA Alerts Pipeline Alerts Service Health 4 1 Server Health
= Service Health
Display Statistics Current Aggregation Interval j
Server AdrninServer j
Search
Marne
Path

" Service Health Filters

Search | Viw All
Name - path Service Type Agar. Interval Avo. Resp. Time Messages Errors SLA Alerts
3 ErnployeeTravelStatisService Traveltpproval/BusinessServices | Business Service | O hr(s) 20 mins 2 msecs 2 1 i}
T2 ErnplnyeeTravelStatusSericeProey Travelspproval fProxyServices Proxy Service 0 hr(s) 20 mins 0 msecs 0 0 0

If we check an e-mail specified when configuring the Alert destination, we can
make sure that an e-mail with the alert has been automatically sent. As we can see
in the next screenshot, the alert contains data about the service, error severity, alert
timestamp, and so on.

Employee Travel Status Error erejew |x

@® 0SB Alert

Semvice Name: TravelApproval/ProxySenvices/EmployeeTravelStatusSemnviceProxy
Alert Summary: Employee Travel Status Error

Alert Destination: TravelApproval/AlertDestinations/Administrator

Severity: critical

Alert Timestamp: Tue Jun 29 16:08:11 CEST 2010

Server Name: AdminServer

Domain Name: domain3

Alert Payload:

Now we can start up the EmployeeTravelStatus service again.

[478]

Chapter 9

Publishing a proxy service to the Oracle
Service Registry

In a similar way as we imported the EmployeeTravelStatus service from the Oracle
Service Registry, we can also publish our EmployeeTravelStatusServiceProxy
proxy service in the opposite direction. This service will then be used from service
consumers.

We click on the System Administration link in the main menu and then select
Publish to UDDI. The Publish to UDDI screen appears, where we select the service
we want to publish (EmployeeTravelStatusServiceProxy) and the Business entity
(Packt Publishing).

[E Publish to UDDI - Select Individual Proxy Services and publish

v Name Type Description
= ¥ | Travelapproval Project
TraveldpprovaliProxyServices .
v
zl [EmployesTravelStatusServiceProxy Proxy Servics
Publish Services To Business Entity :* Packt Publishing j

\ << Back | Publish

We publish the service by clicking on the Publish button.

Re-wiring an SOA composite application

Now we will re-wire the Travel Approval composite application to remove the direct
connection to the service and replace it with the connection to the proxy service. We
open our TravelApproval SOA composite application in JDeveloper again, and
double-click the composite.xml to open the SOA Composite Editor. We will modify
the EmployeeTravelStatus reference binding component, as we want to remove
the direct connection to the service. Instead, we will use the proxy service we just
created. We will find the Proxy service by browsing the Oracle Service Registry,
therefore, we have to create a connection to the OSR on the Resource Palette first.
To ensure even greater flexibility, we will enable dynamic endpoint lookup, so that
the actual address of the proxy service will be retrieved from the OSR at runtime.

[479]

BPEL with Oracle Service Bus and Service Registry

We double-click the EmployeeTravelstatus reference binding component.

Then we click on the Find existing WSDLs icon next to the WSDL URL

input field. The SOA Resource Browser dialog opens. We select Resource

Palette as a source. Then we expand our UDDI connection and navigate to the
EmployeeTravelStatusServiceProxy service, as shown in the following screenshot:

é- S0A Resource Browser

|rj Resource Palette 'l

E\\[a_. IDE Connections

Eﬂ Application Server

- S04-MDS

=-{&) UDDI Registry

=[5 ¥M_Oraces0a11g_0SR

E—}D Business Entities
- é. Account Services
é. Adria Airways
- @y Americanairlines
é. Customer Management System
é. Deltasitlines
é. Daocument Services
- @y Firm1
- €y Headquarter
& T

-y Outlet Lacatar
é. Packk: Publishing

@ Contacks

E}@ Services

% EmployeeTravelstatusService

=@
é. Transackion Services
é. WebServicex
#-[7] Business Services

13 o o

| Help | | [0]'4 || Cancel

We click OK. The UDDI Deployment Options dialog opens.

[480]

Chapter 9

Help

‘-UDDI Deployment Options

Oracle S04 Suite enables dynamic resolution of WSDL and S0AP
endpoint locations at runtime using the built in Qrade Service
Registry UDDI protocol, Check the boxes below that match vour
requirements, IF vou check nothing, the locations will be set when
you deploy the composite application

v | Dynamically resolve the SOAP endpoint lacation at runtime

| Dyvnamically resolve the concrete WSDL location ak runtime

Mote: To enable at runtime, vou must first configure an Cracle
Service Registry UDDI server connection using the S04 Enterprise
Manager console as documented in the 3O4 Administration Guide,

O,

We select both checkboxes and click OK. Then we click OK again to close the

Update Reference dialog and return to the SOA composite editor. We save the

project by clicking Save All

TravelApproval BPEL process.

Now, we can re-deploy and test our composite application.

Oracle Service Bus use case

Notice that we were able to simply replace the EmployeeTravelStatus

% service with the proxy service, as the proxy service uses the same
o interface. If that was not the case, we would have to modify our

By decoupling the service provider from service consumers, we have achieved high
flexibility. Now, let's have a look at what happens if we deploy a new version of
EmployeeTravelStatus service which has a slightly different interface and different
endpoint address. If we did not use mediation, we would have to modify and re-
deploy all service consumers. In our case, there is no need to do that. Instead, we
can simply modify the Proxy message flow and service consumers do not need to be

aware of the change.

[481]

BPEL with Oracle Service Bus and Service Registry

Now, we will demonstrate this scenario. Let's say that the new version of service
uses the same namespace, but different input. The old version of service accepts
the employee of the following type:

<xsd:complexType name="EmployeeType">
<xsd:sequence>
<xsd:element name="FirstName" type="xsd:string" minOccurs="0"/>
<xsd:element name="LastName" type="xsd:string" minOccurs="0"/>
<xsd:element name="Department" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

The new service version uses an extended version of the EmployeeType
complex type.

<xsd:complexType name="EmployeeType">
<xsd:sequences>
<xsd:element name="Name" type="xsd:string" minOccurs="0"/>
<xsd:element name="Surname" type="xsd:string" minOccurs="0"/>
<xsd:element name="Department" type="xsd:string"minOccurs="0"/>
<xsd:element name="Position" type="xsd:string" minOccurs="0"/>
<xsd:element name="Age" type="xsd:int" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

The output of the service remains the same.

After deploying the new version, we publish it to the Oracle Service Registry. We
also have to create an XSLT transformation, which will be used to transform the
request message to the new type.

Modifying the Proxy message flow

We log into the Oracle Service Bus Console again and start a new session.

Then we import the new version of the EmployeeTravelStatus service
(EmployeeTravelStatus-v2) from the Oracle Service Registry, as we did before.
We also have to import the XSLT transformation and save it to the xsLT folder.

Next, we have to edit the proxy service message flow. First, we will modify the route
node, so that it will use the new version of the service. We click on the route node
and select Edit Route. Then we click on the EmployeeTravelStatusService link.
We select the new version of the service.

[482]

Chapter 9

£3 Select Service

Search: Name: Path: Search [ViewAll
Items 1-3 of 3 1

Name - Path Resource Type

| EmployesTravelStatusService Traveladpproval/BusinessServices Business Service

| EmployeeTravelStatusService-v2 Traveldpproval/BusinessServices Busingss Service

| EmployeeTravelStatusServiceProey Travelapproval/Proxy Services Prosy Service
Iterms 1-3 of 3 1

| Submit | | Cancel |

We click Submit and then Save. Then we click on the Request Pipeline and select
Add Stage. We rename the stage to TransformEmployee. Then we edit the stage.
We add a replace action.

Communication 3
Flow Contral b
o Top Message Processing 3 Aszign

Reporting » Delete
Insert
Jawa Callout
MFL Transform
Rename
Replace
Yalidate

We specify that we want to replace. /emp : employee in the variable body.

5
iz‘,’f @ Replace .femp:emplovee® in variable by * with aExpressiDn:ﬁk
% Replace entire node

" Replace node contents

[483]

BPEL with Oracle Service Bus and Service Registry

Now we have to select the XSLT transformation. We click on the Expression link.
Then we click on XSLT Resources and select the XSLT transformation we want to
use. In the Input document field we enter $body/emp: employee.

[2] XQuery/XSLT Expression Editor : Request Pipeline - TransformEmploves

Save | | YWalidate || Teast ‘ | Cancal || Clear | | Save All

HQuery Text | XQuery Resources | > ¥SLT Resources | Dynarmic XQuery

1. Select an X5LT resource to execute

HELT: TravelapprovalfXSLTfTransformEmployes
2. Bind Input

Input Document Binding

Input Docurnent: thodyfemp employes

3. Bind Variables
Yarisble Mame Binding

Ma variables have been found.

We click Save. The Edit Stage Configuration page now looks like this:

&
45 “ Replace fempemployes® in varisble [hody * with slt: Travelapp,, @

* Replace entire node

' Replace node contents

We click Save. Finally, we modify the validate stage and specify that the input has
to be validated against the new version of the XML Schema. We click Save to return
to the message flow editor.

The following screenshot shows the modified Proxy message flow:

[484]

Chapter 9

b

EmployeeTravelStatusServiceProsxy

vl
Pipelinerairkode1

¥ i

Request Pipeline Response Pipeline

b

TransformErnployes

&

Yalidate

=

RouteTo_EmployeeTravelStatusService

We click save and then activate the session by clicking the Activate button in the
Change Center.

Testing an SOA composite application

We open the Oracle Enterprise Manager Console. First, we shut down the old version
of the EmployeeTravelStatus service. Then, we initiate a new instance of the
TravelApproval composite application to test if the deployed composite application
still works and uses the new version of the service. If we open the instance flow
trace, we can make sure that the new version of the EmployeeTravelStatus service
has been successfully invoked.

As we can see, when using Oracle Service Bus as an intermediate layer between
service providers and consumers, there is no need to modify and redeploy our
existing applications when changes occur. This gives us the much-needed flexibility,
so that we are able to quickly adopt to business changes.

[485]

BPEL with Oracle Service Bus and Service Registry

Summary

In this chapter, we have learned the use of Oracle Service Registry and Oracle
Service Bus. Both products play an important role towards achieving a flexible SOA
architecture. We have explained the architecture of Oracle Service Bus, including
proxy services, business services, and message flow modeling. We have explained
how to publish business entities and services to Oracle Service Registry.

We have shown how to use the service bus console, how to create a project, and
import resources from the service registry. We have demonstrated how to configure
business services, such as caching and monitoring. We have discussed alert
destinations and shown how to create a proxy service, configure it, and publish it
to the service registry. We have also shown how to re-wire the SOA composite to
include the OSB proxy services. As these services are most usable when changes
occur, we have demonstrated such a situation and concluded that the combined

use of OSB and OSR can considerably improve the flexibility of SOA composite
applications and their architecture.

In the next chapter, we will show how to implement the BPMN to BPEL
round-tripping using Oracle BPA Suite and SOA Suite.

[486]

10

BPMN to BPEL
Round-tripping with BPA
Suite and SOA Suite

The first phase of the business process lifecycle is Business Process Modeling. During
process modeling, business analysts, together with business owners, analyze the
business process and define the activity flow. Usually BPMN (Business Process
Modeling Notation) is used for modeling (for BPMN specifications please refer to
http://www.bpmn.org/). One of the most important advantages of using BPMN is
that BPMN models can be automatically converted to BPEL, and vice versa. In that
case, we do not have to build BPEL processes from scratch. We can also propagate
changes from BPEL back to BPMN. We call this round-tripping. Round-tripping is
very important, as it eliminates the semantic gap between IT and process models,
and allows us to keep the model (BPMN) and executable code (BPEL) in sync.

In this chapter, we will get familiar with Oracle BPA (Business Process
Analysis) Suite.

. We use Oracle BPA Suite version 11.1.1.2, as version 11.1.1.3 is not yet
available at the time of writing this book. As Oracle BPA Suite 11.1.1.2
" currently supports BPMN 1.0, this version of the notation is used for

describing BPMN-BPEL round-tripping throughout this chapter.

First, we will look at the Oracle BPA Suite architecture and features. Then, we

will show how to model BPMN business processes using Oracle Business Process
Architect. We will demonstrate the modeling on our v, which we have already used
in previous chapters. Next, we will convert the BPMN model into a BPEL Blueprint.
We will also discuss how various constructs map between BPMN and BPEL. Finally,
we will open the BPEL Blueprint in JDeveloper and demonstrate the round-tripping
between BPMN and BPEL.

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Oracle SOA Suite 11¢ PS2 introduces the BPMN 2.0 service engine, which
. supports direct execution of BPMN 2.0 processes, meaning that there is no
& need to use the Oracle BPA Suite or to transform BPMN models to BPEL.
L We can model and implement BPMN processes using JDeveloper and
then deploy them to the SOA platform using Oracle BPM suite 11g, which
we will discuss in the next chapter.

In this chapter, we will discuss the following;:

e Oracle BPA Suite architecture and features

e Mapping of constructs between BPMN and BPEL

e Modeling business processes using Oracle Business Process Architect
e Converting BPMN models to BPEL Blueprint

¢ Opening and implementing the process in JDeveloper

¢ Round-tripping between BPMN and BPEL

Oracle BPA Suite architecture and
features

Oracle BPA Suite is a sophisticated tool for modeling and analysis of business
processes. It is based on the market-leading IDS Scheer ARIS design platform. Using
Oracle BPA Suite we are able to model, simulate, and optimize business processes.

It enables us not only to model business processes, but also to define organizational
models, IT architecture models, data models, and so on. The tool supports various
business process modeling notations, such as BPMN, EPC (Event-driven Process
Chain), eEPC (Extended Event-driven Process Chain), UML activity diagrams, and
other less known notations. Oracle BPA Suite can also be integrated with Oracle SOA
Suite as it supports round-tripping between business process models (BPMN) and
the execution form (BPEL).

Oracle BPA Suite consists of four components:

e Business Process Architect: This is the most important component. It
provides a user-friendly and intuitive interface for modeling, using standard
techniques and methodologies. However, we are not limited to modeling
only business processes. The tool also supports organizational modeling,
data modeling, IT system landscapes, impact analysis, and report generation.
We can also optimize business processes by performing simulations. Using
Business Process Architect we can also translate EPC and BPMN business
process models to BPEL Blueprint.

[488]

Chapter 10

e Business Process Publisher: This component allows publishing business
process models to the portal. Users can then view these models based on
their role. This promotes collaboration and information sharing among
various users in an enterprise.

e Business Process Repository: Enables storing of model metadata.

¢ Business Process Repository Server: Enables collaborative development
with a shared repository. The server supports concurrent usage, check-in
and check-out, role-based access, and so on.

Round-tripping between BPMN and BPEL

As business processes change over time, IT has to be able to react to these changes
in a quick and efficient manner. This places a high responsibility on IT. However,
in most cases IT is not flexible enough to follow these changes. The major problem
with traditional approaches to software development is the huge semantic gap
between IT and the process models. If we are able to automatically convert business
requirements (business process model) to the executable form and perform a
synchronization when changes occur, we can significantly improve flexibility.

BPMN-BPEL round-tripping follows the MDA (Model-driven Architecture)
design approach, where business requirements first need to be modeled using

a platform-independent modeling notation (BPMN) and then translated into
executable form (BPEL). Also, changes to the BPEL can be propagated back to
BPMN so that the model and the BPEL code are kept in synch. With BPMN-BPEL
round-tripping, both business analysts and IT derive from one model, which allows
us to align IT with business processes.

However, it often turns out that due to some important differences between BPMN
and BPEL, the translation is not as straightforward as it may seem. BPEL is a typical
block-structured language and does not support arbitrary cycles (the While activity
can only capture structured cycles). There are also some other workflow patterns
that cannot be translated to BPEL (for more information please refer to http://www.
workflowpatterns.com/). In contrast, BPMN allows us to define process models in
the form of graphs. We can look at BPMN as a super-set of BPEL. Therefore, not all
BPMN processes can be directly translated to BPEL. In that case, we have to refactor
the BPMN process model before the translation. This, however, can change the process
model considerably, at least from the visual perspective (the process behavior is
unchanged if the appropriate refactoring is performed). As a result, business people
might have trouble understanding the converted model. The lack of support for
arbitrary cycles usually arises if the process has many interleaved human tasks.

[489]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

As already mentioned, Oracle supports BPMN-BPEL round-tripping through the
use of Oracle BPA Suite and Oracle SOA Suite. It is worth mentioning that not only
BPMN process models can be translated to BPEL. We can also translate between
EPC (Event-driven Process Chain) and BPEL; however, BPMN is semantically much
closer to BPEL and is therefore the preferred modeling notation.

Steps for BPMN-BPEL round-tripping

If we want to perform BPMN-BPEL round-tripping, we have to carry out the
following steps:

1.

Model business process in Business Process Architect: First, we model
business process using BPMN notation. This is usually done by business
analysts and business owners. They have to define the activity flow,
information flow, roles, business rules, and business documents. During
modeling, we can use all standard BPMN activities; however, Business
Process Architect also introduces some extension activities — Automated
activity, Human Workflow activity, Notification activity, and Business Rule
activity. These activities are converted to corresponding BPEL activities upon
BPEL transformation. If the process modeler has enough technical skills, it
can also import XML schemas and concrete WSDL files of existing services,
along with associating them with the automated activities. In that case, we
get a more technical model, and corresponding BPEL Partner Links and
Invoke activities are automatically generated upon transformation.

Simulate business process: This is an optional step. By performing process
simulations, we can verify the process and identify possible bottlenecks,
assess the average costs of a process instance, and so on. The result of
running a simulation and optimizing the process is therefore called a to-be
process model.

Translate BPMN model into BPEL Blueprint: When we finish with process
modeling, we are ready to translate the BPMN model into BPEL Blueprint.
BPEL Blueprint is actually an abstract-level BPEL process that is used to
share common metadata between business users and IT. Before performing
the translation, we can also validate the model. Then we enter the model
description and select the BPEL process type (synchronous or asynchronous).
After the translation, the BPEL Blueprint is saved to the BPA Repository and
can be accessed by IT developers.

Import BPEL Blueprint in JDeveloper: First, the developer has to create

a connection to the BPA server. Then, he creates a new SOA composite
application and project, and selects the model the developer wants to import.
Using the BPA view, the developer can also read the comments to business
process and process activities to better understand the process.

[490]

Chapter 10

5. Implement BPEL process: The developer has to add implementation details to
BPEL Blueprint to make it concrete. He has to set the process input and output
data, create variables, Partner Links (if the process modeler did not define
concrete services), Assign activities, and so on. During the implementation,
he can add new activities, however, he cannot delete activities defined by the
business user. Using the SOA Composite Editor, he can always check if a new
version of process model is available. If so, he can merge both models without
losing his previous work. He can also update the BPMN model after adding
new activities. In that case, the business process modeler is notified of the
change and he has to confirm or decline the changes.

6. Continuously synchronize BPMN model and BPEL code: As business
processes change over time, business analysts have to continuously update the
process model. Also, developers have to synchronize BPEL code when changes
occur and add appropriate implementation details, as we want to avoid the IT
gap. Round-tripping is very important for real-world development, as it is the
key to iterative SOA development which guarantees short development cycles
and easy modifications to existing composite applications.

Mapping of BPMN constructs to BPEL

Before performing the BPMN-BPEL round-tripping, we have to understand
how different BPMN 1.0 constructs (and Oracle extensions) translate to BPEL.
The most important mapping rules for the translation of BPMN constructs to
BPEL are as follow:

e Automated activities are translated to BPEL Scopes. If an automated activity
is linked to a concrete business service, a corresponding Invoke and Partner
Link are also created within the Scope, and the Invoke activity is linked to
that Partner Link. If the automated activity has set input and output data,
BPEL variables are also created. The activity metrics definition is converted
into sensor variables within the scope.

e Human tasks translate to Human Task process activities. A Partner Link for
TaskService and corresponding Invoke, Receive, and Assign activities are
generated. Human Task properties are translated to business annotations.

¢ Notification activities translate to corresponding BPEL activities, based on
the channel type (for example, notification activity of type e-mail translates
to an Email extension activity). A Partner Link the for corresponding
notification service is also created.

[491]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Business rules are converted to Business Rule process activities with
business annotation.

Events translate to different BPEL activities, based on their type. Start events
translate to Receive activity. A Timer intermediate event translates to a BPEL
activity Wait. An Error intermediate event translates to a corresponding
Catch element. An End event translates to either Reply (synchronous
process) or Invoke (asynchronous process). An Error end event translates to
Throw; a terminate end event translates to a Terminate BPEL activity.

Services translate to Partner Links. However, services can be abstract or
concrete. Concrete services (services that are associated with a concrete
WSDL) translate to a concrete Partner Link, while abstract services translate
to an abstract Partner Link.

Business data translates to BPEL variables. When associated with an XSD,
the XSD is also exported and the variable is set to the XSD type. Otherwise,
variables are set to String type.

Sub-processes map to an Invoke activity.

Structured cycles (the loop has only one entry point and one exit point)
translate to a BPEL While activity. Arbitrary (non-structured) cycles cannot
be translated directly and have to be refactored before the translation.

Data-based XOR Gateway translates to a BPEL Switch activity, as shown in
the following figure (attributes of BPEL activities are not shown to improve
readability).

O <sequence>
<receive/>

<invoke name="A"/>
<switch>

<case condition="B">
X <invoke name="B"/>
i < </case>
<case condition="C">
[B] [¢] <invoke name="C'"/>
</case>
</switch>
<reply/>
</sequence>

An event-based XOR Gateway translates to a BPEL activity Pick, as shown in
the following simple example.

[492]

Chapter 10

<sequence>
<receive/>
<invoke name="A"/>
<pick>
<onMessage nhame="B">
<invoke name="B"/>
</onMessage >
<onAlarm name="C">
] <invoke name="C'/>
</onAlarm>

@ </pick>
<reply"/>
. </sequence>

¢ An AND Gateway translates to an activity Flow.

<sequence>
<receive/>
<invoke name="A"/>
“+ <flow>
A

<invoke name="B"/>
]

] <invoke name="C'/>
<reply/>
</sequence>

Mapping of BPEL constructs to BPMN

The mapping of BPEL code to BPMN 1.0 models follows the inverse rules as listed
above. In general, mapping from BPEL to BPMN is straightforward, as we can look
at BPEL as a sort of subset of BPMN. However, there are some BPEL constructs that
do not map, such as Event Handlers, Correlation Sets, and some specific Oracle

extension activities.

&
<
<

ve]
o

[493]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Demonstration scenario

We will now demonstrate how to model a business process using the Business
Process Architect. We will use our Travel Approval business process example.
First, we will show how to create a new project. Then we will get familiar with the
Designer module and demonstrate how to add process activities and connect them
into a process flow. We will also show how to validate the model and transform

it into BPEL Blueprint. We will then open JDeveloper and import the generated
BPEL Blueprint. In this chapter, we will not show how to implement BPEL, as this
was already covered in previous chapters. However, we will demonstrate how the
developer can synchronize his BPEL code with a new version of the process model.
We will also show how the developer can propose changes to the model by adding
new process steps and saving the changes to the BPA server. The business analyst
has then to confirm or decline these changes.

Business process modeling in Business
Process Architect

After opening Oracle Business Process Architect, the Home module opens, as shown
in the next screenshot. On the left-hand side, we can see the Modules pane, showing
all supported modules. We use the Explorer module for accessing the Business
Repository (also known as BPA Repository), and creating new models and other
related artifacts. The Designer module is used for business modeling. Using the
Administration module, we are able to manage users, groups, privileges, and other
system settings. We use the Simulation module for simulating business processes.

[494]

Chapter 10

B oracle Business Process Architect 11gR1 | _ (O] %]

Eile ey Help

- & iy

Modules ¥ X || Home ¥| Modules
@ Oracle Business Process Architect 11gR1

Home What would you like to do? e —

E @ Create new model B =
Explorer ¥ou can use Qracle Identity Service (0IS) as a central idertity

management system to simplity administration of users and roles in complex

% Ed})) Read "Getling started" scenarios.

Designer E
Open the last model you edited: =
\:\ Traveldpproval
Deltatirines ZRYDu can format sttributes or free-form tesds, for example by talicizing,
Matrices Americanailines changing the fort size, or numbering paragraphs.
Retrieve employee travel status
6'3:» Mare models L
O Cpen most recently edited detabase:
Administration OBP& Release 11 Quick Start [LOCAL] |
FERLenct [LOCAL] .‘?Yuu can specify the default database language to be used for your
Traveldpproval [LOCAL] attribute table.
FERI [LOCAL]
More databases...
Scripts

Jid]
Specify the module to be used at the next startup.

;"_‘\
Q.‘% Home (this page) [~ | Mt

Simulstion

FPowered by ARIS Technology

Creating the database

We open the Explorer module by clicking on the corresponding icon in the Modules
pane. Remember that all process metadata is stored in the Business Repository (BPA
Repository). BPA Repository is actually a database. In the case of local deployment,
the Architect connects directly to the database. When using the Oracle BPA Repository
Server, Architect connects to the server, which then connects to the database.

In our example, we will use local deployment. We expand the LOCAL server. Now
the database is up and running. We can see all existing projects (called databases).
We now create a new database by right-clicking the server and selecting New |
Database. The Create database dialog opens.

Create database | x|

Mame:

Traveldpproval

Versionable

0K I | Cancel | | Help

[495]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

We set the name of the database to Travelapproval. If we want our database to be
versionable, we select the Versionable checkbox and click OK. The database is now
created and can be seen in the databases list under the LOCAL server. We log in

to the database by right-clicking it and selecting Log in from the menu. The Login
Wizard dialog opens. We enter a username and password (the default values are
system and manager respectively).

ELugin Wizard EBE

Steps |Help 1. Enter uzer data

Specity the user name and passwoard you want to use ta log in.

1. Enter user data
Database: Traveldpproval

2. Select options
User: ystem)

Password: | ssssssss

l ext I | Cancel || Help |

Then we click Next. On the next screen, we select the Entire method from the Filter
list, as we want to see all the available information in our project.

By selecting the appropriate filter, we can filter the information we want
% to see. For example, if we select the Business simulator filter, we
= only see information related to performing business process simulations.

[496]

Chapter 10

E Login Wizard

Steps |Help

1. Enter user data

2. Select options

2. Select options:
Which settings do you want to use for opening the database?
Filter: Entire: methad [~]
Languste: | English (United States) (Aternstive langusge) E
I Back ‘ [Finizh J [Cancel J I Help I

We click on Finish. Now, we are able to see the content of the database. In the next
screenshot we can see that four folders (in Architect, folders are called Groups) were
automatically created.

Matrices

Administration

a

Scripts
Cg
Simulation

EE 0racle Business Process Architect 11gR1 | _ (O]
File Edit iew Evaluate Help
N & $hcon M o
r— ¥| Modules |+ Navigation
Mavigstion ¥ LOCAL
@ Fitter: [+ Madels Objects Server contents
Home B oracle BPA Suite Network Mame
= [Local 5 FER|_end
i 8 FERI_endl %9 0BPA Release 11 Quick Start
—— -9 oBPA Release 11 Guick Start @ Travelapproval
Explarer - I Travelspproval
E@ Improvement proposals
% [E’:J Tasks of system
[E‘ Locked tems
Designer 423 Main group

[497]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Next, we will create new groups, as we want to keep the content of the database
organized. We will create the following groups:

e The Business Processes group will contain business process models and
related artifacts.

o The Services group will contain business services, associated with automated
activities.

e The Participants group will be used for storing roles that participate in
the business process.

e The SOA Profile group will be used for storing the imported SOA Profiles,
which are used when translating the business process to BPEL Blueprint.

To create a group, we right-click on Main group and select New | Group.

=1 I®y Travelapproval
Eq}] Imprrovement proposals
[._“-,‘,'I Tasks of system
EE' Locked tems
E Main @
Iﬁﬁ Copy Clrl+C
3 Rename F2
Start UML action...
SO,]

Mewy L hdodel....
Group. ..

Cbject ...

iy Fing.. ClrlsF
2 Run Fr
Export ¥

o2
o)
(ot
w
i}

Service type..

Import

Evaluate]
LockMnlock]

& aftributes... F&
Attribute Wizard...
(D Properies... AR+Enter

After the group is created, we can rename it. Next, we right-click the soa profile
group and select Import | SOA Profile. In the dialog that appears we click OK.
Notice, that five sub-groups (WSDL Profile, XML Profile, XSD Datatypes, XSD
Profile, and XSD Structures) with stereotypes that are needed for performing the
BPMN-BPEL round-tripping have been created. If we did not import the profile, it
would be imported automatically during the translation of the model. However, we
show how to do this by hand, as we want to import the SOA Profile into a separate
group so that it is easier to manage.

[498]

Chapter 10

The Travelapproval database opened in the Explorer module now looks as follows:

= i) Travelapproval
E;ﬂ Improvement proposslis
E}J Tazks of system
EE‘ Locked items
= E Mzin group
E Buziness Processes
ﬁ Patticipants
59 services
=3 s04 Profile
+ (21 wsDL Profile
(2 xemL Profiie
(7 %50 Datatypes
(1 x=D Profie
DI ¥ED Structures

3 [[

We save the database by clicking on the Save icon on the toolbar.

Modeling a business process

Now we will show how to create and model BPMN business processes using
Oracle Business Process Architect.

Creating a new model

In the Explorer module, we right-click the Business Processes group and select
New | Model.

[499]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Explarer
Marvigation %
Fiter; |¥| Models Ohjects

B3 oracle BPA Suite Netwark
= gy Local
+- & FERI_end
+! ‘@i QEPA Release 11 Guick Start
= iy Traveldpprovsl
E;ﬂ Improvement propozals
[_E\ﬂ Tasks of system
EE' Locked items
= E Iain group
a Business Processes
a Participants

5 B0 & cut CHl+X
[[Copey Cirl+C

w1 [Delete Delete
3 Repame F2
Start UL action...

S0, 3

hew b Model.

lﬂi}l:a Find... Ctrl+F F_"] Group...
& Run F7 2 Cbject...
Export K

b Service type. .

Import

Evaluate]
LockUnlock]

& Aftributes.. F&
Aftribute Wizard. ..
(D Propetties... Ab+Erter

The Create model dialog opens. We select Business process diagram (BPMN)
as the model type and name the model TravelApproval, as shown in the
following screenshot.

& Note that BPMN version 1.0 is supported in Oracle BPA
e Suite 11.1.1.2.

[500]

Chapter 10

Etreate model []

Pleaze specify & model type and & name for the model.

Vigws: Model types:

Access diagram (4]
Access diagram (physical) E
Authorization map

BPEL allocation disgram

BPEL process

EPMN sllocation diagram

Qrganization Businezs controls diagram

Data Business process diagram (BPMM)
V| Processes Business segment matrix

Functions 3 methodd

ProductiService Class diagram
Classification diagram

Communications disgram

Mame: | Travelspproval

Ok] | Cancel | | Help ‘

Then we click OK. We are automatically redirected to the Designer module.

Adding process activities and defining activity flow

In the Designer module, we can see an empty process diagram in the middle of the
screen. On the right-hand side there is a Symbols palette displaying objects we can
use during the modeling.

B Oracle Business Process Architect 11gR1 M=
File Edt Wiew [nsert Format Compare Amangs HidsShow S04 Evaluste Window Help
D& HELOMh 0% GHE RO H [& Alwoow] & & [ET B2EOdh |5y LD 0
Oracie BRMN [-]: PA
Modules ¥ X | | Designer V| Modules | | Mavigation | | Properties || Symbols || UML consistency checks

@ | Traveispproval % | ‘ Symbols ¥ %
¥

)) o o . . o o ! '.@) Rule (intermediate event)
'.5] Link (infermediate event)
Explorer e 'é) Multiple (intermediate sve
% e . . e . . . @ e et s
. L () Encriend svars
Esigner - - . .
@ Linkend event)
.) .))) . -)) .))) . -) . . @ Multiple (2nd event)
Maess || v
% D] || aman e
i || o S
el . . Ce EEEEEE . . Ce EEEEEE E sutomated activity
0 S S N 1P .
Seripts :) L L . . o . s L . . o . : [Motitication
@ 51 coms -

UML consistency checks

Simulaton | |lorigin Elemert type [Paticipating stemert Element type Mote

o} i) B

[501]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

We can add objects from the Symbols palette to the canvas by clicking the object and
then clicking the place on the canvas where we want to add it.

By default, not all objects are available in the Symbols palette. We can
- add additional objects by clicking the Add symbols icon on the top
%@‘ of the palette, or by pressing the FI12 key. By clicking on the Symbols
drop-down, we can also switch between different views (Small icons,
Large icons, and Small icons with text).

Now we will add the objects and define the activity flow. First, we add the Lane object
to the business process diagram to create a swim-lane for the Approval Manager role.
We set the name of the Lane to Approval Manager. We can resize the Lane by selecting
it and dragging the corner. We can also change its name by clicking on the label next to
the object and entering the text, or by editing the object properties.

Editing object properties

To edit object properties, we right-click the object and select Properties, or simply
select the object and press Alt+Enter. In both cases, the Object properties dialog
opens, as shown in the next screenshot. Here we can change various object
properties. If we select Attributes on the left, we can change the name of the object.

Eﬂhject propetrties - Approval Manager K

Selection | Help Aftributes
rbasignments |Aﬁribute name i1 IApprD\-’al Manager(English - Aternative language) |
i fiftributes Marme Appraval Manager

at_ Type Lane

biect appearance " n

trikite placement (abjects) Tirne of generation 1.7.2010 12:18:14
i Infarmation Creatar system
[-Oeeurrences Last change 172010 12:25:14
E...-Rela.honshlps Last user system
----- Wariants

| Mare attributes... |
l o] I | Cancel | Help |

[502]

Chapter 10

If we click on Object appearance, we can set the object background color, width,
height, and so on. Then we switch to the Attribute placement (objects) screen, where
we are able to set the attributes that we want to be displayed on the business process
diagram, and their location. In the following screenshot, we can see that the attribute
Name is displayed on the object's left side.

Eﬂhiect properties - Approval Manager
Selection | Help Attribute placement (objects)
- hasignments Blaced aftributes:
Alrhutes il i
= Farmat

o) Mame
Ohject appearance Remove

Attribute placement (objects)
nformation

- OCoUrTENceS

E-"-Relaﬂonships
S ariants
Placement: Mame Representstion: Mame
With attribute name
Freely placed:
! mm Forit format:
Standard |Z|
mm V| Allowy character formatting
Alignmert:
Text box width: mm centered [|
Text hox height: mim

I OK H Cancel || Previewy |

If we would like to replace the attribute, we remove the current attribute from

the Placed attributes list and click on the Add button to open the Add attributes
dialog. Then we select the attribute and click OK to close the dialog. After that,
we can optionally change the attribute placement. We click OK to close the Object
properties dialog.

[503]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Adding a start event

Next, we add the start event and place it into the Lane. As our process starts with
receiving the message, we use the Message (start event) object. If the object is not
listed in the Symbols palette, we have to add it by clicking the Add symbols icon on
the top of the palette. By default, the object has no attributes displayed. Again, we
open the Object properties dialog and set the name of the object to Receive travel
request. As we want the name of the object to be displayed on the diagram, we
switch to the Attribute placement (objects) screen and add the Name attribute. We
also change the placement of the attribute. We set the attribute to be displayed under
the object. We click OK to close the dialog. Our business process diagram now looks
as follows:

B Dracle Business Process Architect 11gR1 =
Eile Edit “iew Insert Format Compare Arranoe Hide/Show S04 Evaluste Window Help

B-& B2l c0% GHE ROH e Blww] @ [HY wED-d@ 5~
Oracle BPMN =i i ;
Modules ¥ | | Designer v|Mocules | | Navigstion | | Praperties || Symbols || LML consistency checks

ﬁ TravelSpproval X Sytbals > X

Hame

=

Explorer

Designer

Approval Manager Receive travel request
P . | Lan
Matrices . | . [Business en ity (g
{é\b [Business en tity (Fos
=4 . | -
. | [Business en tity (e
Administration . | .
[Business en tity (End
E 2 P P [Business en tity (Rel
Soripts ’ ’ ’ ’ - ’ ’ ’ ’ ’ ’ o [Business en ity (Cof
'{f\ EE‘ —i. o e T
K;%i UML consistency checks x
Simulation |0rigin IE\emervt type Participating element Element type hote
e 111 o

Adding automated activities

First, we will add automated activity for invoking the EmployeeTravelStatus
service. In the Symbols palette, we select an Automated activity and place it next
to the Receive travel request start event. The Automated activity dialog opens,
as shown in the next screenshot. We set the name of the activity to Retrieve
employee travel status. We also enter a Description of the activity. Descriptions
are particularly useful for developers of a BPEL process to help them better
understand the process.

[504]

Chapter 10

Enutomated activity [%]
Automsted activity
DMame™ Retrieve employes travel status

Description: | This activity has to invoke the EmployeeTravelStatus service, to retrieve the travel status: First, Business, or Economy.|

Service: Mt defined Browse.. | [add. |

COperation E|

Impoet:

Ot

Activity metrics

Calculate activity processing time

* Mandatory field

Properties | | OK | | Cancel | | Delete | | Reset | | Help

Next, we can specify the service we want to invoke. We have three options:

e We do not specify the service: In this case the activity will translate into an
empty Scope upon BPEL translation, and the developer will have to add a
corresponding Partner Link and Invoke activity. This option is useful when
the business modeler does not have enough technical skills, or when the
service does not yet exist.

[505]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

e We import a concrete service by specifying the WSDL: Services can be
imported using the Explorer module; however, we can also import a service
from the Automated activity dialog. We click the Add button next to the
Service field. The Import service dialog opens. We set the Name of the
service to EmployeeTravelStatus and specify the WSDL URI. We also have
to select the folder where we want to import the service. We click the Browse
button to create a new group (we name it EmployeeTravelStatus) under
the services group. Optionally, we can also specify the service category,
capabilities, and description.

Elmpnrt Service
Mame: EmployeeTravelStatus
Service URE -avelStatus-app-v1Employvee TravelStatusP TPort Pwsdl | Browwse... |
Where do you want | wsin groupiServices' EmployesTravelStatus Browvse. ..
to insert the service
infarmation?
Category
Service capabilties |T|
| Delete |
Service description:
| 034 | | Cancel | | Help |

We click OK to import the service and close the dialog. Now we can also
select the Operation we want to invoke.

Automated activity
Name*: Retrieve employes travel status

Description: | Thiz activity has to invoke the EmployeeTravelStatus service, to retrieve the travel status: First, Business, or Economy.

Service: EmployeeTravelStatus Browse.. | | Add. || Edt || Deete

Operation: +avvadliOperations EmployeeTravelStatus(in EmployeeTravelStatusRequest: EmployveeTravelStatusReguestiessage, out EmployeeTravelStat... | ™

[506]

Chapter 10

During the translation to BPEL, a corresponding concrete Partner Link and
Invoke activity will be created.

e We can define an abstract service: The abstract service has a name, but it does
not have the WSDL specified. During the translation, an abstract Partner
Link and Invoke activity are created. To define an abstract service, we click
on the Browse button, next to the Service field. The Service browser dialog
opens. We then click on the Abstract service button. We set the service
name to EmployeeTravelStatus and save it to a new group (we name it
EmployeeTravelStatus) under the Services group. We click OK to get
back to the Service browser dialog.

EService browser E
Find: [qp ahstract service] | Import service |
|BF'A project services Category WSDL [Path Description
EmployeeTravelStatus wedl |Main groupServices'Empl...

[Ok] | Cancel | | Help

We select the new abstract service and click OK to close the dialog.

[507]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

For our example, we will create abstract services for all services we need to invoke.
We will specify concrete services later, during the BPEL implementation. In an
Automated activity dialog we can also define input and output for the service.
Similar as for services, we can also import concrete XSD files or define abstract data.
However, we will leave these fields unchecked. At the bottom of the dialog, we can
see the Calculate activity processing time checkbox. We select this checkbox if we
want the activity sensors to be automatically created during the translation to BPEL.
We leave this value unselected. Our Retrieve employee travel status automated
activity is now set as shown in the following screenshot:

Enutomated activity

Automated activity
Harme®: Retrieve employes travel status

Description: | Thig activity has to invoke the EmployeeTravelStatus service, to retrieve the travel status: First, Business, or Econamy.

Service: EmployeeTravelStaius Browrse... | | Add... | | Eclit | | Delete |
Crperation: -
Input:
o | Find.. |
Output: =

ind...
Activity metrics

Calculate activity processing time

* Mandatory field

Properties | | OK | | Cancel ‘ | Delete ‘ ‘ Reset | ‘ Help

We click OK to close the dialog. Now, we have to connect the new automated
activity to the Receive travel request start event. We select Connection in the
Symbols palette and then first click on the start event and then the automated
activity to connect them.

[508]

Chapter 10

Next, we want to invoke both airline services to retrieve flight ticket offers. We add
two new automated activities and name them Get ticket offer Delta and Get
ticket offer American. We define them similar to the Retrieve employee travel
status automated activity; therefore, we have to create two new abstract services —
DeltaAirlines and AmericanAirlines. The next screenshot shows the current
business process diagram.

JTraveIApproval x l

Fpprmfal Ma.nmer Receive travel request ﬁ

I I I '
[0]

We add two AND Gateway objects and connect them with automated activities, as
shown in the following screenshot:

JTraveIApproval x l

Approval Manager Receive travel request

| ILIE

We save the project.

[509]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Adding a human task

The next step in the process requires human intervention. The Approval Manager
has to review the offers and approve or reject the flight ticket. If he approves the ticket,
the next step is to make a reservation. If he rejects the ticket, the process finishes.

In the Symbols palette, we select a Human task and place it on the process diagram.
The Human task dialog opens, as shown in the next screenshot:

E& Human task E
Human task

General Extended

f@ Human task

Dame: Human task Priority. |4 |+
Sukject:

Description:

P Assighees* + /%
|Par‘ticipants* Pattern Motes |

Allowy assigness to change list of assigness

> Duration hefore expiration

Y
-

Cravys: u] : Hours: [u} : Mirnstes: o
Use expiration date

Activity metrics

Calculate activity processing time

* Mandatory field

Properties | | oK | | Cancel ‘ | Drelete | | Reset | | Help

We set the Name and the Subject to F1ight ticket approval.The Subject
represents the title of the human task, which will be displayed in the Oracle
Worklist Application at runtime. We also set the Priority to 3 and the expiration
time to 2 days.

Then we set the assignments. We click on the green plus icon to add a participant,
and the Pattern dialog opens. We select Single approver as the Workflow pattern.
Then we click Add to create a new participant. We name the new participant
Approval Manager and save it to the Participants group. We click on OK.

[510]

Chapter 10

g

wWiorkflowy patternt | Single approver

Participants*
Add

= Approval Manager

Remark:

id

| Ok Cancel Help |

Back on the Pattern dialog, we click on OK. The Flight ticket approval human

task is now set as follows:

B8 Human task
Human task
General | Extended
& Human task
ame* Flight ticket approval Briority: | 3 [+ |
Subject: Flight ticket approval
Description: | The Approval Manager has to confirm every ticket befare making reservation. He can APPROVE or REJECT the ticket. %
£ [T |IC1
> Assignees” + /R
|Pamclparﬂs“ |Pattem |Nmes ‘
Approval Manager |Single ApRrover |
Allovy sssignees to change list of assignees
‘@* Duration before expiration
Darys: 2'% Hours: 3'% Minutes: D'%
¥ Use expiration date
Activity metrics
Calculate activity processing time
* Manciatory field
‘ Properties | ‘ Ok | | Cancel | | Delete | | Reset | Help

[511]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Next, we click on the Extended tab to see the advanced settings. Here we can specify
the task owner and configure task outcomes, task parameters, and notification
settings. We just specify possible task outcomes to APPROVE, REJECT.

Human task
General | Extended

Cutput data: | apPROVE REJECT

9 parameters %%
|Name Description Editable by approver |
% notification settings L
[1when o Wbt |

Matification frequency | Mo notification |Z|

* Mandatory field

| Properties | |]34 | | Cancel | | Delete | ‘ Reset | | Help

We click on OK to close the dialog.

Completing the Process model

As a human task defines two possible outcomes (APPROVE or REJECT), we have to
add an XOR Gateway to handle the outcome by taking the appropriate path. An
XOR Gateway is a mutually exclusive gateway, meaning that only one path can be
taken. In the Symbols palette, we select an XOR (data based) object and place it on
the process diagram. We name it outcome. Then we connect it to the F1ight ticket
approval human task as shown in the next screenshot.

[512]

Chapter 10

J Travelfpproval X

.il.pr.i rm}al 'Ma'nag' er
Receive travel request

Outcome

If the human task outcome is APPROVE, then the next step is to make a reservation of
the selected ticket. We need another XOR (data based) object, as we need to check
which airline was selected. We also need two new automated activities—Delta
reservation and American reservation.

Travelfpproval X

‘]| |

" |Receive travel request

ol

[513]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Next, we have to set the condition expressions for both exclusive gateways. To set
a condition expression, we have to double-click the connection that represents a
possible path to open the Connection properties dialog. Then we select Attributes
on the left-hand side and set Condition to either Expression or Default. We can
also specify a Condition expression, as shown in the next screenshot.

If the Condition and Condition expression attributes are not on the list,
e we have to add them by clicking the More attributes button.

Etnnnectinn propetties E
Selection |Help Attribites
- Bssigrments |Artribute name i ||inks(Eninsh - Afternative langusge) |
i pttributes Type links
IT_!--Format Condition Expression -

~Connection appearance
: - Aftribute placement (connections)
FQocurrences

Condition expression APPROVE

| More aftributes...
ok H Cancel | [tew

After specifying all condition expressions, we add the End event object and finish
with modeling.

[514]

Chapter 10

Travelfpproval X

ticket
offer Delta

.

\ Oll=z ’ ‘[%mr Ket
© A 2
Recenve /I op | trvel status e
eceive travel requ b ticket | g
& offer £
American | APPROVE
3
Outcome
Approval :Ma_nag er \x
American Selected airline
- - REJECT
eti:an Ell!
reservation reservation
A A
X%
\;;(‘ —N
IE'E‘

Transforming a business process into BPEL

We are now ready to translate the model into BPEL Blueprint and associated BPEL
skeletal code. During the translation, the generated BPEL Blueprint is saved to the
BPA Repository. IT developers have to open the process and add implementation

details to make the process executable.

To start the transformation, we open the model in Designer module. From the SOA
menu we select Share Blueprint with IT.

Compare Arrange HideiShow | SOA | Evaluste Window Help

FO% BEE %O | TG

Share Blueprint swith IT

o Share Elueprint with IT
r a I
7) 9 [%m ticket
C/ “alidste business process... + approval
Recelve travel request = Transform business process into BPEL process... —|—/r_ﬂﬁh
APPROVE
Outcome

[515]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

The Information dialog opens.

Information

Traveldpproval
wr Do you first weant to walidate the model of type 'Business process diagram (EPMN)'?

| Yes || [0 || Cancel |

If we want to validate the model before the translation, we click Yes. The validation
result is opened in the web browser, as shown in the next screenshot. We can see that
our model contains no errors or warnings.

Server: LOCAL
Database: TravelApproval
User: system

Validation of a service-oriented BPMN model in Oracle BPA Suite
Validation of a service-oriented BPMN model for the purpose of transforming the model into
a model of the BPEL process type.
[Structure rules for BPMM in Oracle BPA Suite |

Check found no errars

|Ru|es for a senvice-oriented process model in Cracle BPA Suite |

Check found no errars.

[Rules for & serice-oriented BEMN model |

Check found no errars.

At the same time, the Transformation properties dialog opens in Business Process
Architect. Here we can enter a process description and select a process type
(Synchronous or Asynchronous). We select Asynchronous, as our process contains
a human task.

[516]

Chapter 10

Transformation properties I

Description

This is the first version of the TravelApproval process,

Process maodeler: Ales Frece

EPEL process type

Synchronous 8 Azvnchronous

929 | | Cancel

We click on OK to start the transformation. If the transformation was successful, the
Message dialog is displayed.

The transformation was performed successiully.

. Not all BPMN process models can be converted into BPEL. For example,
% BPEL does not support arbitrary (unstructured) cycles. If a BPMN
%= model contains arbitrary cycles, we have to refactor the model before the
translation. This is usually done by an IT expert.

Now the BPEL Blueprint and associated skeletal BPEL code have been generated and
saved to the BPA Repository.

[517]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Using BPEL Blueprints in Oracle
JDeveloper

The business process model is used as a starting point to generate the BPEL
executable code. To import the generated BPEL Blueprint, we first have to create

a connection to the BPA Repository. Next, we create a new SOA project and select
the model we want to import. Then we can start adding implementation details to
make the BPEL code executable. When a new version of a process model is available
in the BPA Repository, we have to synchronize our BPEL code with the new model
version. We can also add new activities and try to update the BPMN model in the
BPA Repository. However, these changes have to be accepted by a business analyst.

Creating a connection to the BPA Repository

First we have to make sure that the Business Process Architect is up and running. We
open Oracle JDeveloper and select New in the File menu. The New Gallery dialog
opens. In the Categories section on the left we select Connections and then BPA
Server Connection from the Items list on the right.

& New Gallery
|/ Al Technalogies |/ Current Praject Technologies |

(@

Cateqgories: Items: [] show Al Descriptions

=-General .J-] Application Server Connection

E BAM Conneckion
|) {& BPA Server Connection
""" Deployment DesFrlptors Launches the 'BPA Server Connection’ dialog which allows you ko specify the
""" Deployment Profiles connection information ko a BPA server,
----- Diagrams
_____ Java a Database Connection
""" Frojects {5} File System Connection
..... UML
..... uML d 504-MDS Connection
----- BPM Ti
. ter) Subwersion Repositary Connection

[=+-Business Tier
----- ADF Business Companents [a UDDI Regiskry Connection
----- Business Intelligence)
----- Business Rules ‘ﬁ LRL Connection
""" Data Controls [Eh webDay Connection
..... EIE
..... Security @ WSIL Connection

Help [a]'4 | | Cancel

[518]

Chapter 10

We click OK. In the BPA Server Connection dialog we enter the connection name,
select Local server for Location, select the database, and enter a Username and
Password. If we open the Test tab, we can also test the connection.

é- BPA Server Connection Ed

BPA Server
,
~,
A Business Process Analvsts (BPA) server connection allows vou to browse Qd

BPEL process model kemplates,

Settings Tesk

Marne: |BP.°.anaICOnn |

Location: |Lucal Server '|

Database:! | 3 Travelapproval "|

Lacale: |United States '|

Username: |system |

Passward;

| Help | [o]4 || Cancel

We click on OK to close the dialog.

[519]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Creating an application and an SOA Project

First we create a new SOA application and SOA project. We already described
how to do this in previous chapters; therefore, we will not explain all the steps in

detail. However, this time we select Composite From Oracle BPA Blueprint as a
Composite Template.

& Create SOA Project - Step 2 of 2

Configure SOA settings

Composite Mame:
|Travelnpproval

Project Name

) Project SOA Settings coocoie Tamplate:

Ermnpty Composibe
Composite With BPEL Process
Compasice With Business Rule
Compasite With Mediakar
Compasite With Human Task
Composite With Spring Conkext

ysite From Oracle BPA Elueprint

|| Customizable

| Help | | < Back | | Finish || Cancel |

We click on Finish. The Create BPA Blueprint Composite dialog opens. We select
the process model we want to implement and click on OK.

" .
é- Create BPA Blueprint Composite E
S

BPA Blueprint Composite

A BPA Blueprint Composite is a composite which is based on a Business Process Analyst (BPA) model
which allows users to design business processes based an both BPMN and the BPEL standards,

Select the BPA composite model that you want to use as the base model For the new SO/ composite application.
Cancelling out of this dislog will cause an empty S04 composite to be created by default,

+ 7 %@

»& EPA Servers
=8 BPALocalConn
=13 Traveldpproval
=23 Main group
=23 Business Processes
[N Travelapproval (EPMM)

[] Show Detailed Node Information
Export Subprocesses

| Help | oK || Cancel

[520]

Chapter 10

Understanding the generated BPEL code

When the project is created, the SOA Composite Editor opens, as shown in the

following screenshot.

H[Jcomposite.xml

=

FLYLRRD BHAIFTFD

Composite: TravelApproval_composite

Operations:
process

travelapproval...

processRespon.. .

Design | Source | Hiskary

We can see that an SOA Composite application contains a BPEL process and Human
Task service components. Now we double-click the Travelapproval BPEL process
to open the BPEL Component Designer. The BPEL Component Designer opens in
BPA view, where we can see the generated BPEL Blueprint.

[521]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Chapter 10

Using the BPA view, we can read annotations to the process and process activities
to better understand the process. To read annotations, we have to click on the sticky
notes icon next to the activity. The annotation of the F1ight ticket approval
Human Task activity is shown as follows.

[]17 Lok
Tame value
Pricrity 3
Cutcarmes APPROVE,REIECT
Cuelate 1
LastUpdateDate 7/1/1006:16:35 PM
Curatian 0002:03:00:00
Label Flight_ticket_approwal
workflowPatkern SingleApprover-Approval Manager
Docurmentation The Approval Manager has to confirm every ticket before making reservation. He can APPROWE or REJECT the bicket.
Subject Flight ticket approval

Fit To Width

Locks next to the activities indicate that the IT developer cannot delete these steps.
Using the BPA view, the developer can also add process steps that he wants to be
propagated back to the BPMN model. We will demonstrate this later in this chapter.

If we look at the BPEL source code, we can see how annotations are added to the
process and process activities. In the following code snippet, we can see annotations
to the scope Retrieve_employee travel status. Under <bpelx:analysis>, we
can see several properties that include information about when the business activity
was last updated (LastUdpateDate), the ID of the activity (Business1d), and
documentation (Documentation).

<scope name="Retrieve employee travel status"s>
<bpelx:annotation
xmlns:bpelx="http://schemas.oracle.com/bpel/extension">
<bpelx:pattern patternName="bpelx:automated"/>
<bpelx:analysis>
<bpelx:property name="LastUpdateDate">
7/1/10 3:34:05 PM</bpelx:property>
<bpelx:property name="Documentation">This activity has to
invoke the EmployeeTravelStatus service, to
retrieve the travel status: First, Business, or
Economy.</bpelx:property>
<bpelx:property name="BusinessId">
Scope 69d341e5-84f9-11df-4948-000c29bla451</bpelx:property>
</bpelx:analysis>
</bpelx:annotations>

</scope>

[523]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

To implement the process, we have to switch to the BPEL view. In the next
screenshot, we can see that automated activities were translated into Scopes

with the same name. As we defined abstract services, abstract Partner Links and
Invoke activities were also generated and the AND Gateway was translated into
the Flow activity. A Human Task activity and corresponding Partner Link for the

TaskService were also generated.

Partner Links

o

o
travelapproval_ch... =

R

Recaive_travel_request

&

Retrieve_employves_travel_status

4

o ¥

Get_ticket_offer_Delta

"

Flight_ticket_approval

bpwsigetiarisble...

+

Drelta_reservation

3

End_swent

Get_ticket_offer_American

bpwsigetariable. .,

American

Ametican_tesery ation

__Partner

EmployeeTravelSt .,

e}

Delta_ilines

S IR
ArmeticanAitines
08

Flight_ticket_appr...

[524]

Chapter 10

To make the BPEL process executable, we have to follow these steps:

1. Import XML Schemas and set the process input and output.

2. Link abstract Partner Links to a concrete service by providing WSDL.

3. Create BPEL variables.

4. Set Invoke activities by selecting an operation and input and output
variables.

5. Add Assign activities to copy data between variables.
6. Set the Human Task assignment and payload.

7. Set Condition expressions.

In this chapter we will not demonstrate how to implement the BPEL process, as this
was already covered in previous chapters.

BPMN-BPEL round-tripping

We have demonstrated how to model the first version of a business process and
translate it into BPEL Blueprint. As business processes change over time, new
process versions occur. Therefore, the BPMN model and BPEL code have to be
continuously synchronized. We will demonstrate this BPMN-BPEL round-tripping
in the following sections.

Propagating changes from BPMN to BPEL

First, we will demonstrate how changes to BPMN model can be propagated to BPEL.
Then, we will show how changes made in BPEL code can be propagated back to the
BPMN model to keep both models in sync.

[525]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Modifying the BPMN model

Let us open the Oracle Business Process Architect again. We open our
TravelApproval business process in Designer module. We modify the process by
adding a Notification activity at the end of the process flow. The modified model
now looks like the following screenshot.

Travelapproval X

ticket

r offer Delta
rieve

@;Iwee

travel status

aT——
[%m ticket

= approval

: Receive travel request

offer
American

Outcome

Approval Manager

American

Selected airline

REJECT

(| (R
Lﬂ
ﬁ:;".:: FO
E'E‘

Then we translate the new version of the process into BPEL Blueprint again, by
selecting Transfer business process into BPEL process from the SOA menu.

Refreshing BPEL Blueprint

Every time we open the SOA Composite Editor, the tool checks if a new version of
the process is available in the BPA Repository. If so, the text New version has been
detected! is displayed on the top of the page.

HfZcomposite.xml =
@ F 8@ | ¥ D @ D |© New version has been detected! | Composite: TravelApprov:
Exposed Senices Components Exterr

e @ (%Travcdlfzpm...? é Fligh'g‘?icknl...]
travelapproval...

Operations:

process
processRespon

Design | Source | History

[526]

Chapter 10

We can then refresh the BPEL process by clicking on the Refresh from BPA
Server icon.

ol composite.xml |

@ TN ol 90 | #00 B D @ Hew version has heen detected)

The Refresh from BPA Server dialog opens. We select a connection to the BPA
server and click on the Compute Model Differences to analyze the differences
between the local blueprint and the new version, available on the BPA server.
The differences are displayed as shown.

é-Refresh From BPA Server

Select the BPA server connection which contains the latest version of the model that you would like ko refresh vour local model
from, Hit the "Compute Model Differences’ button in arder ta merge the BPA server model with vour local model and to view the
differences, If vou want ko accept the merge, click the Ok buttan,

Server: |@ BPALocalConn ; Traveldpproval ;@ svstem '| 4

Eig=c!

% Composite Differences
=23 Additions

ﬁ Wiew Process Differences

BPFEL Model Merge Results
Server Additions

1. Send_email_notification

Server Deletions
[Server Deletions

BB Modifications & Server Modifications
O N EFEL Fron g

Local IT Changes

Ok | | Cancel

[527]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

We click on the View Process Differences link to see the differences in visual mode.

The Process Differences dialog opens. At the bottom of the page, we can see how
the process will look, after the merging.

é- Process Differences
Server Process: Client Process:
Unkitled
: 0
’ Ei' E
L oa

Merged Process:

| Close |

We click Close to close the dialog. Then we click OK to accept the changes and
refresh the BPEL code.

If we look at the BPEL Blueprint, we can see that an Email notification activity

has been added at the end of the process and that, corresponding Partner Link
has been created.

[528]

Chapter 10

nkitled

& e [
DA

OD

Propagating changes from BPEL to BPMN

If the developer adds some important steps to the process and wants to propagate
those changes back to the BPMN model, he can save the new version of the model to
the BPA server. A business analyst is automatically notified of the proposal and has

to accept or decline the changes.

[529]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

Adding process steps to the BPEL

We open the BPEL process in BPA view. We will modify the process by adding a
step for saving the request at the beginning of the process. This step will be used for
storing every received request to the database.

First, we expand the BPA Blueprints section in the Component Palette. Then we
drag-and-drop the IT Details step to the process. This is actually a BPEL scope that
can be used by developers to add implementation details. In our case, this can be an
Invoke activity for invoking the database adapter. We set the name of the scope to
Save request.

&= Travelapproval.bpel | =
Main Process: True | || ﬂJg | &% BPEL :|||E|Monitor || v BPA | @

rﬁeg

o

Save_requesk

R

2 SN

\ g

Unkited

Design | Source | Hiskory

We open the SOA Composite Editor and click on the Save to BPA Server icon.

‘D-"ﬂ compaosite.sml |

N LER0O | akade

[530]

Chapter 10

We select the connection to the server and click Save.

If the model is currently opened in the Business Process Architect,
s the operation will fail.

Now, the changes have been propagated to the BPA server.

Updating the BPMN model

When the process modeler tries to open the model in Designer module, the
following message box is displayed.

Message E

The business process has been updated as indicated in the model. Please accept or decline the changes by clicking on the corresponding button on the toolbar.

After clicking OK, the model is displayed and the new activity is highlighted.

8 Travelapproval X

~

A

1 Receive travel .
. ticket
. e
ave_fequest American
Approval Manager
. { American | Selected airline
REJECT
@}lericm @ena
reservation reservation
&
d email
notification
g 4
&
IIIE‘

[531]

BPMN to BPEL Round-tripping with BPA Suite and SOA Suite

The modeler has to decide whether he will accept the changes or not. He confirms his
decision by clicking on the appropriate icon on the toolbar (Accept changes made by
IT or Decline changes made by IT).

B O P

|.ﬂ-.|:|:ept changes made by IT |

After taking a decision, the new model version is transformed into BPEL Blueprint
and saved to the BPA Repository.

Summary

In this chapter, we discussed BPMN-BPEL round-tripping with Oracle BPA Suite
and Oracle SOA Suite. First, we explained the architecture and features of Oracle
BPA Suite. We learned that round-tripping is very important for eliminating the
semantic gap between IT and process models. We have also discussed how various
constructs map between BPMN and BPEL.

We have shown how to model business processes using Oracle Business Process
Architect and how to translate those models to BPEL Blueprints. We also
demonstrated how to open BPEL Blueprints in JDeveloper and how to merge BPEL
code with a new model version when changes occur. At the end, we showed how IT
developers can propose improvements to a BPMN model using JDeveloper and how
a business analyst can approve or decline those changes.

[532]

11

Integrating BPEL with BPMN
using BPM Suite

In the previous chapter, we got familiar with how BPMN process models modeled
with Oracle BPA Suite have to be converted into BPEL skeletal code before we can
implement them and deploy to the runtime environment. This approach has some
drawbacks, as the resulting BPEL code can sometimes be very hard to understand.
Oracle SOA Suite 11¢ PS2 introduces an interesting new feature — BPMN 2.0
execution engine. BPMN 2.0 engine is provided by the Oracle BPM (Business
Process Management) Suite 11g, which is layered on top of the Oracle SOA Suite.
Oracle BPM Suite provides full support for all stages of the business process
development lifecycle, including business process modeling, process simulations,
business process implementation, deployment, and execution. As BPMN processes
can be directly implemented and deployed, there is no need to transform them to
BPEL. The result is a much shorter and simplified development cycle. However, in
order to be executable, BPMN models have to be modeled with much more detail.
With Oracle BPM Suite, BPMN Process is a new type of service component in
SOA Composite Editor. This means that we can use it together with other service
components (BPEL Process, Human Task, Business Rule, Mediator, and Spring
Context) inside a single SOA composite application.

In this chapter, we will get familiar with the Oracle BPM Suite 11g. First, we will look
at the Oracle BPM Suite architecture and features. Then we will demonstrate how to
model and implement the BPMN business process using Oracle BPM Studio.

The main focus of this chapter will be to show how both, BPMN and BPEL
processes, can be used inside a single SOA composite application. We will
demonstrate this on our TravelApproval process example. We will use a BPMN
process for defining the top-level process flow, which will include human interaction
and will invoke two BPEL processes: one for retrieving flight ticket offers and one
for making the ticket reservation. Finally, we will deploy the composite and initiate

a new instance to test the application and see the instance audit trail.

Integrating BPEL with BPMN using BPM Suite

In general, BPMN processes are more appropriate for human-centric
%j%‘\ flows, while BPEL processes are well suited for automated service
g orchestrations.

In this chapter, we will discuss the following;:

e Oracle BPM Suite architecture and features

e Modeling and implementing business processes using BPM Studio
e Integrating BPEL with BPMN inside a single composite application
e Deploying and testing BPMN processes

Oracle BPM Suite architecture
and features

Oracle BPM Suite provides a unified environment for designing, implementing,
executing, and monitoring processes. It provides full support for the Business
Process Modeling Notation (BPMN) version 2.0. High-level architecture of BPM
Suite is shown in the following figure:

Modeling
| Oracle BPA Suite |
¥ Oracle Busi
racle Business
Oracle BPM Studio
—‘ Process Composer Implementation
\ ad
Oracle MDS
Repository
A
A2 Runtime
Deployment
BPEL BPMN H
Senvice | Service | Oracle Rules Wc;JrrI?ﬂiTN Oracle BPM
Engine | Engine Engine Engine > Workspace
Process core
SOA Infrastructure PR Oracle Enterprise
: Manager
Oracle WebLogic Server

[534]

Chapter 11

The first stage of every business process lifecycle is process modeling. Business
analysts can model business processes using one of the following tools:

e Oracle BPM Studio runs in JDeveloper and provides a user-friendly
environment for business process modeling and implementation. Business
analysts can use a BPM role, which enables them to use a simplified version
of JDeveloper by hiding all unnecessary technical functionality. Using BPM
Studio, they can also perform process simulations.

e Oracle Business Process Composer is a web-based application for business
analysts. They can model business processes and save the projects to the
common metadata repository (MDS). They can also create projects based on
predefined project templates, edit them, and deploy them directly to runtime.
Using Business Process Composer, business analysts can also edit Oracle
Business Rules at runtime.

e Oracle BPA Suite has been already presented in the previous chapter. Oracle
BPM suite enables us to import business process models from Oracle BPA
Suite and implement them using Oracle BPM Studio.

Before a business analyst can start with process modeling, they have to create a new
Oracle BPM project. Projects are some sorts of containers for business processes and
related data. When the business analyst finishes with modeling, they save the project
into the common MDS (Meta Data Service) repository, which enables collaboration
between business analysts and developers. Using BPM Studio, process developers
are able to connect to the repository and open the project to add implementation
details. During implementation, developers can also use other components, such as
Adapters, Business Rules, Human Tasks, BPEL Processes, and so on. Oracle BPM
projects are deployed at runtime as SOA composite applications. The most important
component of BPM runtime is the Oracle BPM Engine. Oracle BPM Engine provides
support for BPMN and BPEL processes. The engine consists of three separate
components: a BPMN service engine, a BPEL service engine, and a common process
core. Oracle BPM Suite also uses product components provided by Oracle SOA Suite,
including Business Rules, Human Workflow, and so on.

When an SOA composite application created using Oracle BPM is deployed, it

can be managed and configured with the use of Oracle Enterprise Manager

Console, which we already got familiar with in Chapter 4. Another important

runtime web-application is Oracle BPM Workspace, which embeds a lot of task list
functionality and enables human interaction with SOA composite applications created
using Oracle BPM. Using Oracle BPM Workspace, users can act on tasks assigned to
them, view process instances, and monitor business processes using the dashboard.
Oracle BPM also enables collaboration by providing integration with Oracle Process
Spaces, which is a collaborative workspace built on top of WebCenter Spaces.

[535]

Integrating BPEL with BPMN using BPM Suite

Demonstration scenario

We will demonstrate the use of Oracle BPM Suite on our Travel Approval business
process example. To be able to show how BPMN and BPEL processes can be used
inside a single composite application, we will restructure the process into two levels.
We will use a BPMN process for defining the high-level process flow, which will
include human interaction and will invoke two BPEL processes: one for retrieving
ticket offers and one for making the ticket reservation. Finally, we will deploy the
composite application to the BPM runtime and test it.

Business Process Modeling and
implementation in Oracle BPM Studio

To be able to create and deploy BPM projects, we first have to install the
* Oracle BPM Studio 11g extension for JDeveloper, which is an extension
on top of the Oracle SOA Composite Editor JDeveloper extension. It can
’ be accessed at http://www.oracle.com/technology/products/
jdev/101/update/fmw_products.xml.

Creating a BPM application and project

Let us open the Oracle BPM Studio using the Default role, so that we will be able
to model and implement the process at the same time.

We create a new application and select BPM Application for Application Template.

We can also create an SOA Application
= and add the BPM technology scope later.

[536]

Chapter 11

MName your application

é- Create BPM Application - Step 1 of 3

).\ Application Name

/T\ Project Mame

application Mame:

|Trave|npprnvaIBPM

Directory:

|C:'l,JDeveloper'l,mywork'l,Trave\ApprovaIBPM ‘ | Browse, ..

Application Package Prefix:

Application Template:

Generic Application
Creates an application which includes a single project. The project is not
preconfigured with IDeveloper technologies, but can be customized ta include ary
technologies,

BPM Application

Creates a BPM application. The application consists of one BPM project. This project
has also S04 technology

Fusion Web Application {A0DF)
Creates a databound ADF web application. The application consists of one project
far the view and controller components (ADF Faces and ADF Task Flows), and
another project For the data model (ADF Business Components),

=Y LN "

| beb |

| Next = J| Finish || Cancel

We click Next. On the next screen, we set the name of the project to TravelApproval
and click Next again. On the Configure SOA settings screen, we select Empty
Composite from the Composite Template list, as we want to show how to create

a BPMN process using the SOA Composite Editor.

é- Create BPM Applic

on - Step 3 of 3

Configure SOA settings

Application Mame

/T\ Project Mame
w Project SOA Settings

Composite Mame:
|Trave|npproval |

Composite Template:

Composite With BPEL Process
Composite With Business Rule
Carnposite With Mediator
Composite With Human Task
Composite With Spring Context
Composite wWith EPMM Process

[] Custamizable

< Back. | Finish | Cancel

[537]

Integrating BPEL with BPMN using BPM Suite

We click Finish. The SOA Composite Editor opens. If we look at the Component
Palette, we can see the BPMN Process on the list of available service components.

B Component Palette LgzRes. ..
508

&0

— Service Components
533 BPEL Process

@ BPMM Process

0 Business Fule

{5 Human Task

<% Mediakor

@ Spring Conkexk

— Service Adaokers

Creating a BPMN process

We drag-and-drop a BPMN Process service component from the Component Palette

to the Components swim-lane of the composite diagram. The Create BPMN Process
wizard opens.

é-treate BPMN Process
BPMN Process:
Preview
() Default Process
() From Patkern
Start End
Help Mext = | | Finish | | Cancel

[538]

Chapter 11

Here we have to select the process type. If we select Default Process, a BPMN process
with a message start and end event is created. The process is also exposed as a service
and can be invoked from other service components inside the same composite and
from other composite applications. The exposed service is asynchronous, meaning
that it defines two port types (interfaces): the request port type is used by the client

to invoke the composite and the callback port type is used by the composite to perform
the callback to the client. If we click on the From Pattern, we can choose between
Manual Process, Asynchronous Process, and Synchronous Process. Manual process
is a special type of process that requires human interaction. It starts and ends with one
start and end event and is not exposed as a service; however, it can be invoked from
other BPMN processes inside the same composite.

We select Default Process and click Next. On the next screen, we set the process name
to TravelApproval. We can also enter a process description and an author here.

é-l:reate BPMM Process [] I
BPMMN Process:

r General r Advanced Arguments Definition
Mame

|Travelnppr0val

Id: Travelippraval

Description

COthers

Author: |Marcel

| Help | < Back | | Finish || Cancel |

Then we click on the Advanced tab. Here we can set process sampling points

and the namespace. Process sampling points are used for collecting information
about the performance of flow objects. The generated data is stored into BPM,
pre-defined cubes, which enable advanced process analytics. Using BPM we can also
define Business Indicators and send data to Oracle BAM. Process analysts can then
view these metrics using Oracle BPM Workspace Dashboards or Oracle BAM. We
discussed Oracle BAM in Chapter 8.

[539]

Integrating BPEL with BPMN using BPM Suite

We leave the Inherit project default option selected. We set the namespace
of the BPMN process to http://packtpub.com/bpmn/travel/.

& Create BPMN Process E3
BPMN Process:

rGeneraI rndvanced |/ Arguments Definition
Process Sampling Painks

()

) Inherit project default
() menerate for Inkeractivels) only
() @enerate for All activities

() Do Mot generate

Service Info

Namespace; |http:,l',l'packtpub.com,l'bpmn,l'travel,l'

| Help | | < Back. | | Finish || Cancel |

Then we click on the Arguments Definition tab to set the process input and output.
We will use the same input and output as for the Travelapproval BPEL processes,
which we discussed in the previous chapters. First, we click on the green plus icon
to add an input argument. We name the argument TravelRequest.

& Create Argument E3

Marne: |TraveIRequest |

Twpe: |5tring |'| |:|

| Help | | QK || Cancel |

As the argument will be of complex type, we click on the three dots icon to open
the Browse Types dialog. From the Type drop-down, we select <Component>.

[540]

Chapter 11

é- Browse Types E
Type: |€:Cnmpnnent> '|

Camponent

Find: | ‘ [;‘é
| Help | | Ok || Cancel |

Then we click on the New icon next to the Find search field. The Create Business
Object dialog opens, as shown in the following screenshot. We name the business
object TravelRequest.

Create Business Object I

Business Object
[arme: |TraveIRequest |
Destination Module: | | Q,
|| Based an External Schema 'y
| Help | | QK | | Cancel

[541]

Integrating BPEL with BPMN using BPM Suite

We also have to set the Destination Module in the catalog. We click on the

magnifying glass icon to open the Browse Modules dialog. We create a new
module and name it Data.

é- Browse Modules E

Search:

| |

=l Business Catalog

IData:

| Help | | [o]'4 || Cancel |

We click OK to close the dialog. As our new business object will be based on an
XML Schema, we check the Based on External Schema checkbox and click on the
magnifying glass icon on the right. We import the schema using the Type Chooser
and select the type or element we want to use. The Create Business Object dialog
now looks like shown on the following screenshot:

Create Business Object [x|

Business Object

Marne: |TraveIRequest |

Destination Module: |Data | Q§

Based on External Schema |:| Q,

| Help | | [a]4 || Cancel |

[542]

Chapter 11

We click OK. Back in the Browse Types dialog, we select TravelRequest business

object and click OK.
Type: |<C0mponent> v|
Component
Find: |

G

_r-a;‘.' TravelRequest

Data. Travelkequest:

Help | [o]4 || Cancel

The Create Argument dialog now looks as shown on the following screenshot:

We click OK to return to the Arguments Definition tab of the Create BPMN

Process wizard.

MNarne: |TraveIRequest |
Type: |Data.TravelRequest Iv| |_|
| Help | | (0] 4 || Cancel |

@ Create BPMN Pracess

BPMMN Process:

| General | Advanced | [Arguments Definition
Inputs Oubputs

Arguments Diefinition

+ /K

Mame

Type

TravelRequest

Data. TravelRequest

Help

< Barck

Finsh || Cancel

[543]

Integrating BPEL with BPMN using BPM Suite

In the same way, we also set the process output and click Finish. Our composite
application opened in SOA Composite Editor now looks like this:

a3 composite, xml =
LIFVNHDERD Bt RD Composite! TravelApproval
Exposed Services Components External References

Be
TravelApproval...
Opermations:)
operation

operationCallback

Design | Source | History

Overview of Oracle BPM Studio

In the SOA Composite Editor, we double-click the Travelapproval BPMN process
to open the Oracle BPM Studio.

é Oracle IDeveloper 11g Release 1 - TravelApprovalBPM.jws : Travelapproval.jpr : C:) JDeveloperimywork', TravelpprovalBPM', TravelApprovaliproce... [Hi[=] E3
File Edit V¥iew Application Refactor Search Mawvigate Build Run VYersioning Tools Window Help
@@ e XEEh Q-0 & aidda- b -&- BE ()
i=lap... @ &) (2] |F=iTravelapproval 1G] Component.. . 5] =
=-F) Travelapproval @) ol Layout | /&y Show warnings | O |EPM 'l
(-l Processes & 5]
% Activity Guide -
&% Organization Activities
b Business Catalog — Default
&) Simulations D Activity
@ Resources 42+ Business Rule
. CB‘ Ewent Subprocess
Start End Marusl
Receive
= TravelApproval - Str... [L) Seript
o send
o Service
[~ Activities
i Subprocess
I Business Indicators Q P
{7 Measurements — Interactive
Pracess Diata Objects Complex
Project Data Objects Frl
[Elvessages -Log o JSmulations | [F Documentation (B mronm
[+ Ewents
|- Gateways
[Artifacts
Messages Extensions A=

[544]

Chapter 11

In the middle of the screen, we can see the BPMN Process Editor, which enables us
to model business processes by dragging and dropping BPMN components (called
flow objects) from the Component Palette. If we look at the Component Palette on
the right-hand side, we can see the list of supported BPMN flow objects. Flow
objects are divided into four groups: Activities, Events, Gateways, and Artifacts.

B comporent,.. (=) =]

|BPr -

&8 (3]
Ackivities

— Default

[activity

Business Rule
{_EE.;' Ewvent Subprocess

ranual
Receive
[5] Soript
Send
Service
@ Subprocess

— Interactive

[@ Complex
FYI

D6l Granim
Events

Gateways
Aptifacts

In the upper-left corner, we can see Oracle BPM Project Navigator, which shows
the hierarchical content of the BPM project.

E)BPM Project Navig.. | (2} &

SR | Travelap
B@ Processes
g Travelapprowal
- Ackiviey Guids
-ﬁ% (Organization
@ Business Catalog
@ Simulations
@ Resources

[545]

Integrating BPEL with BPMN using BPM Suite

The Processes component contains all BPMN and BPEL processes inside the project.
Activity Guide contains information about defined milestones for the project.
Organization contains organizational elements, such as Roles, Organizational chart,
Holidays, and Calendar. Business Catalog is a repository for storing components
we use to implement a BPMN process, such as Errors, Events, Human Tasks,
Business Rules, Business Objects, Business Exceptions, and so on. Business Catalog
is organized using modules. It provides the following predefined modules: Errors,
Events, HumanTasks, References, BusinessRules, Services, and Types. Predefined
modules cannot be removed or renamed, because the components stored in them
are dynamically generated, based on the SOA composite. These components are also
called synthesized components. However, we are able to create custom modules.
Modules can be also nested, which allows us to create a hierarchical structure.
Organizing components using modules significantly improves the readability of

the project and it makes it easier to locate a specific component. The Simulations
component contains simulation models.

Oracle BPM MDS Browser allows us to access projects and project templates
stored in the Oracle BPM MDS Repository. We can check out, lock, export, and
delete projects.

E,BPM MDS Navigator =)

W & -

=[] Public

: @Trave'“ rueceal

R el Checkout
Lock.
@ Export
3 Delete

The Structure window displays a structural view of the components selected in
the BPM Project or Application Navigator. Using the Structure window, we can
edit process properties, create data objects, create simulations, convert BPMN
process to BPEL, and so on.

[546]

Chapter 11

:‘f:TravEIAppruval - Structure =]
=

{5 Activities

- Business Indicators
---1‘§| Measurements
Process Data Cbjects
Project Data Ohjects

Implementing a BPMN process

Now we will demonstrate how to implement a simple BPMN business process using
Oracle BPM Studio. First, we will create a variable (data object) which will store
information about the received travel request.

Creating data objects

Oracle BPM supports two types of data objects: process data objects and project data
objects. The difference between the two is that the scope of a process data object is
limited to the process within which it is defined. On the other hand, the definition
of project data object is shared across all processes within the same project (actual
values of data objects may be different for every instance). The main benefit of using
project data objects is that when changing the definition of the data object, we do
not have to make those changes in all the processes that define the same data object.
In our simple example, we will use only process data objects. We right-click on the
Process Data Objects in the Structure window and select New. We name the data
object travelRequest and use the previously created TravelRequest business
object for the data type.

& Create Data Object

Marne: |traveIRequest |

Type: |Data.TraveIRequest |v| |_|

Auta initialize

| Help | | (a4 || Cancel |

[547]

Integrating BPEL with BPMN using BPM Suite

We click OK. In the same way, we create another data object for storing the result
of the process. We name it travelResponse and use the TravelResponse business

object for the data type.

Configuring start and end events

We double-click the start event. On the Basic tab, we change the name of the event
to Receive travel request. Then we click on the Implementation tab.

é- Properties - Skark

rBasic rlmplementati-:n |

Implementation Type: | 2| Massage

Caonversation

Properties

Implementation: |@ Define Interface

Arguments Definition 4 / 3@
MNarme Type
TravelRequest [aka, TravelRequest
+ Advanced
[rata Associations
Use Associations Twpe: |Simple v| /
[] Use Transformations 7
Help | k. | | Cancel

[548]

Chapter 11

Here we have to configure the mapping between the received input and the
travelRequest data object, which will be used throughout the process. Remember
that in BPEL, we have to use Assign and Transform activities to define the mapping.
In BPMN processes, this can be easily done using Data Associations. We can use
data associations to define the input and output from a flow object to an external
service or process. To define expressions, we use the Data Association Editor.

To open the Data Association Editor, we select the Use Associations checkbox

and then click on the edit icon on the right. Here we can simply drag-and-drop

the travelRequest data object from the data objects list on the right-hand side

to the Outputs field, as shown in the following screenshot:

& Data Associations
HE Felea & [B]=
Drrag variables From the right panel into fields on the left, El Traveldpproval
travelResponse
=5 Traveldpproval
&) Skark Cukputs
5= TravelReguast bz el e quest
| Help | | OF || Cancel |

We click OK to close the Data Associations editor. In a similar way, we configure
the end event. However, this time we have to map the data from the travelRequest
data object to the process output.

[549]

Integrating BPEL with BPMN using BPM Suite

Invoking synchronous service

The next step in the process requires invoking the EmployeeTravelStatus service
to retrieve the employee travel class. Synchronous service can be invoked with the
use of the Service task. However, before we are able to invoke an external service,
we have to add it to the business catalog as a reference. To do that, we have to open
SOA Composite Editor and add a reference binding component on the composite
diagram. We drag-and-drop a Web Service from the Component Palette to the
External References swim-lane. In the Create Web Service dialog, we name the
reference EmployeeTravelStatus, enter WSDL URL, and select Port Type. Then
we click OK. In the Customize Adapter Settings dialog, we click Cancel. Our SOA
composite application now looks as shown in the following screenshot:

D{E composite.xml = Traveldpprowval @

@ F Y DR o Fod Composite: TravelApproval
Exposed Services Components External References
ad |5J‘q|
@ T
s EmployeeTrav...
'ﬁ:’ @ Operations:
TravelApproval... EmployesTravel. .
Operations:
cperation

cperationCallback

Design | Source | History

We cannot wire a BPMN process with other binding or service
components using the SOA Composite Editor. However, when we add
% a new component, it is automatically available in the business catalog.
The wire on the composite diagram is automatically added when we
configure the BPMN flow object for invoking the component.

[550]

Chapter 11

We double-click the Travelapproval BPMN process to open the Oracle BPM
Studio. We drag-and-drop the Service flow object from the Component Palette to
the process. The Properties - Service Task dialog opens. On the Basic tab, we set
the name to Retrieve employee travel class. Then we open the Implementation
tab. From the Implementation drop-down, we select Service Call. Then we click
on the magnifying glass icon next to the Name field. In the Type dialog, we select
EmployeeTravelStatus and click OK.

Now we have to define input and output for the service call. We select the Use
Associations checkbox and click on the edit icon. In the Data Associations editor, we
first set the input by dragging and dropping employee from the travelRequest data
object to the Inputs field. Before setting the output, we have to create an appropriate
data object for storing the returned travel class data. This can be done by simply
right-clicking the TravelApproval process on the right and selecting Add.

-

travelRequest

; — travelResponse
o @ Traveldppraval

In the Create Data Object dialog, we name the data object travelclass and set
the type to TravelClass.

* The TravelClass business object has been automatically added
to the catalog when we created the EmployeeTravelStatus
reference binding component.

é- Create Data Object E

Marne: |trave|CIass |

Type: |Types.TraveIC|ass |v| |:|

Auta initialize

| Help | | [o]'4 || Cancel |

[551]

Integrating BPEL with BPMN using BPM Suite

We click OK to close the dialog. Now we can drag-and-drop the travelcClass data
object to the Outputs field, as shown in the following screenshot:

HE ol & [&]=

Drag variables from the right panel into Fields on the left, Traveldpproval

travelRequest
travelResponse

Inputs Retrieve emplovee travel class Qutputs Travelbpproval

svelRequest, emplo Ef"! EE employes
[T travelClass travelClass

Help | QK || Cancel

We click OK to return to the Properties - ServiceTask dialog.

é- Propetties - ServiceTask E

|/Basic rImpIementatiDn |

Implementation Tvpe: | Service kask "|

Service task

Implementation: |-3; Service Call 'l
Marme: |EmpluveeTraveIStatus |C% é
Operation: |emplayeeTraveI5tatus "l

Daka Associakions

Use Associations| Type: |Simple > | o

[] Use Transfarmations 7

Help | (o] 4 || Cancel

[552]

Chapter 11

We click OK again to return to the BPMN process.

Ff|TravelApproval l =
Q @ [x] -|- [I‘i:_j) O [B Iﬂg Layout | /& Show Warnings Ck

A

e p—

Retrieve travel request Retrieve employee travel dass End

B
b

If we open the SOA Composite Editor, we can see that the wire between the
TravelApproval BPMN process and EmployeeTravelStatus reference has
been added automatically.

Exposed Services Components External References

EmployeeTrav...

Operations:
operation EmployeeTravel. ..
operationCallback

We save the project.

[553]

Integrating BPEL with BPMN using BPM Suite

Adding the first BPEL process

Now we will create a BPEL process, which will be used for retrieving flight ticket
offers. The process will also compare the offers and return data about the selected
flight ticket and the selected airline. We open the SOA Composite Editor and
drag-and-drop the BPEL Process service component to the Components swim-lane
of the composite diagram. The Create BPEL Process dialog opens.

é- Create BPEL Process E3
BPEL Process

m
& BPEL process is a service orchestration, used to describefexecute a business process {or large grained ﬁ‘/ﬁ
service), which is implemented as a stateful service.

Marne: |Ticket0ffersRetrieval |

Marmespace: |http:,l',fpacktpub.cc-m,l'bpel,l’ticketnffers,l’ |

Template: |§> Asyvnchronous BPEL Process "l =)

Seryice Mare: |Ticket0fFersRetrieval |

Expose as a SOAF service

Input: |~{http:,l',l'packtpub.cDm,l'bpel,l'ticketUFFer,l'}FIightTicketRequest | ~—£

Qukput: |~{http:,l',l'packtpub.cDm,l'bpel,l'ticketUFFer,l'}FIightTicketResponse | Q,

| Help | | (a4 || Cancel

We set the name the process name to TicketOffersRetrieval and the namespace
to http://packtpub.com/bpel/ticketoffers/.

A BPEL process has to be exposed as a service
s to be able to invoke it from a BPMN process.

[554]

Chapter 11

We also set the process input and output. The process input is defined by the
FlightTicketRequestType, which contains data about the desired flight and the
employee travel class:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://packtpub.com/bpel/ticketoffer/"
xmlns:tns=" http://packtpub.com/bpel/ticketoffer/"
xmlns:emp="http://packtpub.com/service/employee/"
xmlns:aln="http://packtpub.com/service/airline/"
elementFormDefault="qualified">

<xsd:complexType name="FlightTicketRequestType">
<xsd:sequences>
<xsd:element name="flightData" type="aln:FlightRequestType"/>
<xsd:element name="travelClass" type="emp:TravelClassType"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

The process output is defined by the FlightTicketResponseType, which contains
data about the selected flight ticket and the airline:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://packtpub.com/bpel/ticketoffer/"
xmlns:tns=" http://packtpub.com/bpel/ticketoffer/"
xmlns:aln="http://packtpub.com/service/airline/"
elementFormDefault="qualified" >

<xsd:complexType name="FlightTicketResponseType">
<xsd:sequences>
<xsd:element name="flightData" type="aln:FlightConfirmationType
ll/>
<xsd:element name="airline" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

[555]

Integrating BPEL with BPMN using BPM Suite

Then we add references for two airline services and wire them with the BPEL
process, as shown next.

Exposed Senvices Components External References

FlightAvailability

MakeReservation
FlightTicketCallb...
MakeReservatio. ..

=]
AmericanAirin...

Flighttwailability
MakeReservation

FlightTicketCallb...
MakeReservatio. ..

=
EmployeeTrav...

EmployeeTravel. ..
| —

[556]

Chapter 11

In this chapter, we will not explain how to implement the BPEL process.

The following screenshot shows the implemented BPEL process.

Partner Links

[
Unitedaitines

@&
R

UnitedaidinesCallback

TicketOffersRetria, .,

*

Arnetican is cheaper

sebZukput

=
(=
-

&

callbackClient

receivelnput

TransformFlightCeetails

[F Tl
[

ArmeticanAidines

(E,
-
ArmeticandidinesCallback

serCkput

Partner Links

Unitedaivines

Ameticandidines

[557]

Integrating BPEL with BPMN using BPM Suite

Invoking a BPEL process from BPMN

We open Oracle BPM Studio again. As the BPEL process is asynchronous, we need
two flow objects to be able to invoke it (the first for invoking the process and the
second for receiving the response). In general, we have two options when invoking
asynchronous services or processes:

e We can use a Message Throw event to invoke the process or service
and a Message Catch event to receive an asynchronous response

e We can use Send Task to invoke the process or service and Receive Task
to receive an asynchronous response

Both approaches perform similar functionalities. However, we cannot use the
message throw event to invoke a BPMN process that is initiated with a message
receive task. Similarly, we cannot use the send task to invoke a BPMN process that
is initiated with a message start event. When invoking an asynchronous BPEL
process we can use both presented approaches. In our example, we will use the
latter approach. First, we drag-and-drop a Send Task flow object to the process.
The Properties-SendTask dialog opens. On the Basic tab, we set the name of

the object to Retrieve of fers. Then we open the Implementation tab. We

select Service Call from the Implementation drop-down list and select the
TicketOffersRetrieval BPEL process.

é-Pruperties - SendTask [x|

(Basiu: rlmplementatinn |

Implementation Type: ||@ Send task "l

Conversation

(%) Initiates () Cantinues

Properties

Implementation: |2 Service Call ~|
Marne: |TicketOFFersRetrievaI |.§ &
Operation: ||:|r'l:|CE'.'55 'l

[Daka Associakions

Use Associations Twvpe: |Simple '| /

[| use Transformations &

| Help | | [a's || Cancel

[558]

Chapter 11

We also configure data associations.

é-Data Associations
a0
i3

Drag wariables fram the right panel inta fields on the lsft.

Inputs

‘traveIRequest‘FlightData

‘travelclass

‘ Help |

B3 Retrieve offers

BEE
5= FlightData

5] travelclass

il B &)=

travelRequest
email

8= employee
8= flightData
8= travelResponse
@ Trawvelapproval

| ok H Caneel

We click OK to close the close both dialogs.

Next, we drag-and-drop a Receive Task flow object and place it just after the Send
Task. We name the object Retrieve offers callback. On the Implementation tab,
we select Continues for the conversation type, and select Retrieve offers from
the Initiator Node drop-down list. We also configure data associations. In the Data
Associations dialog, we have to create a new data object to store the result from the
BPEL process. We set the name of the new data object to selectedTicket and the
type to FlightTicketResponseType.

é-Data Associations
HE

Drag wariables From the right panel into Fields on the left.

B8 Retrieve offers callback

5= flightTicketResponse

Help

Cukpuks

selectedTicket

RN
=5 Travelapproval
= selectedTicket
travelClass
travelRequest

-5
o=

@ Traveldpproval

| OF, || Cancel

[559]

Integrating BPEL with BPMN using BPM Suite

We click OK. The new Receive Task flow object is now configured as shown next.

é- Properties - ReceiveTask E I

rBasic rlmplementation |

Implementation Type: |@ Receive task '|
Create Instance: D
Conversation

() Initiates (=) Continues

Tnitiator Mode: |@ Retriewve offers '|
Tanne: |TicketOfFersRetrieval.Callback | Qb {I
Cperation: |pr0cessRespDnsE '|

Data Associations

Use Associations Type: |Simple '| /

[]Use Transformations Va

| Help | | (a4 || Cancel |

We click OK to close the dialog. Our Travelapproval BPMN process now looks
like this:

{=i TravelApproval | =

Q@.x..*_.” \)Q W | fig]Lavout | A Show warnings | O

Retrieve travel request Retrieve employee travel class Retrieve offers Retrieve offers callback

If we open the SOA Composite Editor, we can see that a wire between the
TravelApproval BPMN process and the TicketOffersRetrieval BPEL
process has been added automatically.

[560]

Chapter 11

Exposed Services Components External References
¥ B
EmployeeTrav...
Operations:
EmployeeTravel. ..
CER
TravelApproval... Di? o

Operations: Travalhppm... ® = w5
operation UnitedAirlines
operationCallback Operations:

Flight&vailability
MakeRese vation
FlightTicketCallb...
MakeRese rvatio. ..
G ®
TicketOffersR...

Operations: @ Py
process = s
processRespon... AmericanAirdin...

Operations:
Flight&vailability
MakeRese vation
FlightTicketCallb...
MakeRese rvatio. ..

Adding a human task

The next step in the TravelApproval process requires human intervention, as the
Approval Manager has to approve or reject the selected flight ticket. When creating
human tasks in BPM project, we can follow two approaches:

e We can create a human task using the SOA Human Task Editor
e We can use the simplified interface that Oracle BPM provides
We will demonstrate the latter approach. We open Oracle BPM Studio and

drag-and-drop a User interactive flow object from the Component Palette
to the process diagram.

+ Oracle BPM Suite enables us to use interactive activities, which are
shortcuts to different workflow patterns supported by the Oracle
Human Workflow.

[561]

Integrating BPEL with BPMN using BPM Suite

The Properties - UserTask dialog opens. On the Basic tab, we set the name of the
object to Flight ticket approval. Then we open the Implementation tab.

é- Properties - UserTask
Basic | Implementation
Implementation Type: ||__EJ User task, '|
Hurnan Task: | | 4 Q§ é

= Human Task attributes

Title: [Plain Text > | | |

Priarity: |3(normal) '|
[Reinitiate
Advanced

Data Associations

[] Use Associations Va
[] use Transformations Va
| Help | | OF | | Cancel |

We click on the green plus icon to create a new human task definition. The Create
Human Task dialog opens. This is a simplified version of the SOA Human Task
Editor that we are already familiar with.

& Create Human Task E3
General |

Marme: |Humantask1 |Prinrity: |3(normal) v|
Pattern: |@ Simple '|
Title: | |
Outcomes: | APPROVE,REIECT Q
Parameters: + %
Parameter |Name Type Editable

Cukcome target: | | I* é
 Hep | [Tok || cancel |

[562]

Chapter 11

We name the human task F1ightTicketApproval. We use the default workflow
pattern. Then we set the title to F1ight ticket approval. The title will be displayed
in the Oracle BPM Workspace during runtime. We accept the default outcomes
(aPPROVE and REJECT). Next, we have to set human task parameters. To add a
parameter, we click on the green plus icon. The Data Objects window appears on
the right side. We simply drag-and-drop the selectedTicket data object to the
Parameters list on the left. Now we have to create a data object to store the human
task outcome. We right-click the TravelaApproval process in the Data Objects
window and select Add. We name the data object taskOutcome and select String
from the Type drop-down menu. Then we drag-and-drop the new data object

to the Outcome target field. The F1ightTicketApproval human task is now
configured as shown in the following screenshot:

é- Create Human Task
General

Mame: |FIightTicketAppr0vaI | Priarity: |3 { normal) v|
Pattern: | [&] Simple b7 |
Title: Flight ticket approwval |
Outcomes: |APPROVE,REJECT | &
Parameters: GF 2@
Parameter |Name Tvpe |Editable
FlightTicketResponse selectedTicket Twpes.Flight Ticketr.... O

Oubcome target: |task0utc0me | + é
[helb | [Tok |[cancel |

We click OK twice to close both dialogs. The Role properties dialog is displayed.
We create a new logical role and name it Approval Manager.

é- Role properties []
Mame

|Appr0vaIManager '|| Mew |

Use variable value as parameter content

Help | OF || Cancel

[563]

Integrating BPEL with BPMN using BPM Suite

We use roles to model who is responsible for performing the human task. These
roles are automatically mapped to the corresponding LDAP roles during runtime.
We click OK to close the dialog. Notice that a swim-lane with a role name has been
automatically created. Our Travelapproval BPMN process now looks like this:

[=Z|Travelapproval

=

ElEXIeleL [

Retrieve travel request

Approval Manager

o @ @ @).

Retrieve employee travel class

Retrieve offers

Retrieve offers callback

n@ Laynut /B, Show Warrings Q

Flight ticket approval End

If we open the SOA Composite Editor, we can see that the F1ightTicketApproval
human task is wired with the Travelapproval BPMN process.

Exposed Senices

&=
TravelApproval...
Operations:)

operation
operationCallback

&
TicketOffersR...
Operations:

process
processRespon...

-

Components

External References

O
EmployeeTrav...
- \
Operations:
EmployeeTravel. ..

> g %

UnitedAirlines

Flightwvailability

MakeReservation
FlightTicketCallb..
MakeReservatio. ..

g

AmericanAirlin...

Flightwvailability
MakeReservation

FlightTicketCallb..
MakeReservatio. ..

Chapter 11

Now we double-click the F1ightTicketApproval human task to open the SOA
Human Task Editor. Then we click on the Assignment tab and edit the stage
to assign the task to a static user weblogic.

Edit Participant Type

Type: |'_:;—!Single v| Label: |Appr0\-'a| Manager

Participant List

Build a list of participants using: |Mames and expressions ¥

Specify attributes using: (3) ¥alue-based () Rule-based
Participant Mames 4" R
Identification Type Data Type Walue

By Mame i L]

Help OF | | Cancel

We click OK to close the dialog. We also close the SOA Human Task Editor
and save the project.

[565]

Integrating BPEL with BPMN using BPM Suite

Adding a second BPEL process

If the Approval Manager approves the selected flight ticket, the next step of the
process is flight ticket reservation. For this, we will create another BPEL process.
We open the SOA Composite Editor and drag-and-drop a BPEL Process service
component to the Components swim-lane of the composite diagram. The Create
BPEL Process dialog opens.

& Create BPEL Process
BPEL Process

A BPEL process is a service orchestration, used to describe/execute a business process {or large grained ﬁva
service), which is implemented as a stateful service,

Marne: |TicketReservati0n |

Mamespace: |htt|3:,l',l'packtpub.com,l'bpel,l'ticketreservation,l' |

Template: |@ Asynchronous BPEL Process '| @

Service Name: |TicketReservation |

Expose as a SOAP service

Input; |{htt|:n:,l',l'packtpub.com,l'bpel,l'ticketoffer,l'}-FIightTicketResponse | \-{

Qukput: |{htt|:-:,l',l'packtpub.com,l'service,l'airline,l'}reservationData | _%

| Help | | OF;, || Cancel

We set the process name to TicketReservation and the namespace
tohttp://packtpub.com/bpel/ticketreservation/. We also set the process
input and output. The process input is defined by the F1ightTicketResponseType,
which was used to define the result of the TicketOffersRetrieval BPEL process
that we are already familiar with.

For the process output, we use the FlightReservationType, which contains data
about the selected flight number:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://packtpub.com/service/airline/"
targetNamespace="http://packtpub.com/service/airline/"
elementFormDefault="qualified">

<xsd:complexType name="FlightReservationType">
<xsd:sequence>
<xsd:element name="FlightNo" type="xsd:string"/>
<xsd:element name="Confirmed" type="xsd:boolean"/>

[566]

Chapter 11

</xsd:sequence>
</xsd:complexType>
</xsd:schemas>

Then we wire the new BPEL process with both airline services using the SOA
Composite Editor.

Exposed Services Components External References
B> O
TicketReserva...

Operations: :
process FlightAvailability
processRespon... MakeResernvation
—_— FlightTicketCallb..

MakeResenatio. .
e e
TicketOffersR...

Operations: N e
process ~
process Respon. Operations:
— FlightAvailability

MakeReservation

FlightTicketCallb..
MakeResenatio.

TravelApproval...

EmployeeTrav...

Operations:
=
—————/
0

In this chapter, we will not explain how to implement the BPEL process. The
following is a screenshot of the implemented BPEL process.

operation
operaticnCallback

[567]

Integrating BPEL with BPMN using BPM Suite

Partner Links

receivelnput

Partner Links

TransformTicketCata

American Airlines is selected

&33' [MakeReservationAmerican

TicketReservation

&-

MakeReservationAmericanCallback

setOutput

g

callbackClient

Q

— 2
@0 1 s
L Unitedairlines
Mak.eResery ationUnited
pry
" L
{

ArnericanAirlines

I/

MakeReseryationUnited Callback.

We close the BPEL Editor and save the project.

[568]

Chapter 11

Completing the process

We open Oracle BPM Studio. As the human task defines two possible outcomes
(APPROVE or REJECT), we have to add an Exclusive Gateway flow object to handle
the outcome by taking the appropriate path. We drag-and-drop an Exclusive
Gateway from the Gateways category of the Component Palette to the process
diagram after the F1ight ticket approval human task. We set the name of the
gateway to Task outcome?. Then we add Send Task and Receive Task flow objects
and configure them to invoke the TicketReservation BPEL process in a similar
way as we invoked the TicketOffersRetrieval process. We also add another
Exclusive Gateway flow object to merge both paths.

Dlg Laynut /B, Show Warnings -Q

P %—0

Flight ticket approval Task outcoms? erge

G

Male reservation Male reservation callback

[569]

Integrating BPEL with BPMN using BPM Suite

In the previous screenshot, we can see an error icon indicating that conditions for the
Exclusive Gateway flow object are not set. We double click the transition that connects
the gateway flow object and the Make reservation Send Task. In the dialog, we open
the Properties tab and select Condition from the Type drop-down menu.

é- Transition from Activity: 'Task outcome?” to Activity: ‘Make reservation® [x|

(Description r E Properties

Type

| Condition

Expression:

(3) Simple () ®Path

| Help |

| OF, || Cancel |

Here we can select whether we want to define simple a condition expression or use
the XPath. We select Simple and click on the calculator icon on the right to open the
Expression Editor. We enter a simple condition expression, as shown next:

B expression Builder

]|

@ &0
tasklutcone = "APPROVE™

Expression:

M Insert Inko Expression

Yariables

&=

{5 Travelapproval
a—

[5] travelClass
8= travelRequest

~B=

~8= travelResponse
@ Travelapproval

Conkent Preview: Description:

Data Object

taskOutcome

Help [0]4 | | Cancel

[570]

Chapter 11

We click OK twice to close both dialogs. Our BPMN process is now implemented
and is ready to be deployed.

Travelapproval |

&
B@®+00@H

S | [&]Lavaut | A Show Warmings |Gy

~
i E & ==)
£ X X
5
E | Retrieve bravel request N
= Retrieve employee travel class petrieve offers Retrieve offers calback Flight ticket approval Task outcome? erge End
s
&
-y
q F -
Make ressrvation Make reservation callback

~

-

We open the SOA Composite Editor. We can see that our composite application
contains four service components. The TravelApproval BPMN process is on
the top level and uses two BPEL processes (TicketOffersRetrieval and
TicketReservation) and a FlightTicketApproval human task. As both
BPEL processes are exposed as web services, they can also be invoked from

the outside world.

Exposed Services

Components

External References

e
TicketOffersR...
Operations:
process
processRespon

TravelApproval...
operation
operationCallback

EmployeeTrav...
EmployeeTravel. ..

FlightAvailability
MakeResevation
FlightTicketCallb...
MakeReservatio. ..

e
TicketReserva...
0 tions: MakeResevation
par FlighiTicketCallb...
g;x:mspon MakeRese natio

We save the project.

[571]

Integrating BPEL with BPMN using BPM Suite

Deploying a BPM project

Now we can deploy our BPM project to runtime. BPM projects can be deployed in the
same way as regular SOA projects. We open Application Navigator, right-click the
project, and select Deploy | Project_name. We will not discuss further deployment
steps, as this is already covered in Chapter 4, Using BPEL with Oracle SOA Suite 11g.

Testing an SOA composite application

Now we are ready to test our SOA composite application using Oracle Enterprise
Manager Console.

Initiating an SOA composite instance

We open Oracle Enterprise Manager Console and initiate a composite instance.
Then we open the instance flow trace.

Trace
Click a component instance to see its detailed audit trail,
Show Instance I0s [
Instance Type Usage State
-] %&b Travelapproval service wieh Service "ﬂ Service & Completed
] “E Traveldpproval BPMM Component Running
@;- EmployeaTravelstatus weh Service “J;Eﬁ Reference % Completed
B EEE TicketOffersRetrieyal BPEL Component " Completed
-] b Americanairlines web Service(local Invocatio “J}ﬁ Reference % Completed
@;- TicketService web Service(Local Invocatio "ijﬂ Service % Completed
&% Americanairines BPEL Compaonent & Completed
= gp Unitedairlines web Servicel(Local Invocatio “Jg Reference & Completed
% Unitedaitlines_ep web Service(local Invocatio "i‘;ﬂ Service % Completed
Ega Unitedairlines BPEL Component & Completed
&3 FlightTicketapptoval Hurnan Warkflow Componen! Running

We can see that the instance is still running, as it is waiting for the Approval
Manager to complete the F1ightTicketApproval task. If we click on the
TravelApproval link, we are able to see the audit trail of the BPMN process.

[572]

Chapter 11

Flow Trace = Instance of Traveldpproval Data Refrashed 08-1ul-2010 11:52:04 CEST £)

&fInstance of TravelApproval @

This page shows BPMM process instance details,

Instance I bpmn:360003
Started 06-Jul-2010 11:48:28

Audit Trail | Flow Faults

Current Audit Level: development @

Ackivity Ewent Date

—| |1 Retrieve travel request activity completed 06-Jul-10 11:48:28 CEST

instance created 06-Jul-10 11:45:28 CEST

inskance left the activity 06-Jul-10 11:48:28 CEST
+ |@ Retrieve employee travel class activity completed 06-Jul-10 11:48:28 CEST
|4 Retrieve offers activity completed 06-Jul-10 11:48:28 CEST
+ |® Retrieve offers calback activity completed 06-Jul-10 11:48:28 CEST
+ |§J Flight ticket approval activity executing 06-Jul-10 11:48:28 CEST

1 J i

By clicking on the links in the Event column, we can see the values of BPMN
data objects.

Flow Trace = Instance of Travelapproval Drata Refreshed 06-Jul-2010 11:52:04 CEST L)
dFInstance of TravelApproval @
This page shows BPMM process instance details, '3) Instance I bpmn:360003
tarted 06-Jul-2010 11:48:28
Payload XML (%]
Audit Trail | Flow Faults
260008
travelClass false ket Audit Level: development @
Ackivity Economy | Copy
+| | F Retrieve travel requesk §CEST 1]
] .§| Retrieve employee travel clg § CEST 1}
§CEST 1]
§cEST 0
+ .E| Retrieve offers §CEST a
¥ Eﬂ Retrieve offers callback §CEST a
] ZI Flight ticket approval 8 CEST i}
|
’
! i

[573]

Integrating BPEL with BPMN using BPM Suite

If we click on the Flow tab, we can also see the visual flow of the instance. All flow

objects that have already been executed, or are currently running, are highlighted
with green.

Flovt Trace = Instance of Travelappraval

Data Refreshed 06-Jul-2010 10:54:03 CEST c}
Instance of TravelApproval ®

This page shows BPMM process instance details. @ Instance 1D bpmn:360002
Started 06-Jul-2010 10:47:25
audit Tral | Flow Faults

Current Audit Level: developrment @

o—@-E-F) % @

Retrieve travel request Retrieve employee travel clagetrieve offers Retrieve offers callbacklight ticket approvalyask outcome? End

ApprovaliManager

Make reservation Make reservation callback

We can also view the audit trail and visual flow of both BPEL processes. The following
screenshot shows the flow of the TicketOffersRetrieval BPEL process.

Flow Trace = Instance of TicketOffersRetriewal

.{_%.Instance of TicketOffersRetrieval @
This page shows BPEL process instance details, (21

Dt Poefvem e 06002000 11:56.53 CEST L)

Instance [0 bpel:370009
Started 06-Jul-2010 11:48:28
Audic Tral | Flow ~ SensorValues | Fauls

Click an activity to wievs the details, Current Audie Lewel: developrnent @ Wiew Rauwe NML

-

@

receivelnput

TransformFlig...

= Scope_t
Sequence_1 Sequence_L
))
AmericanAirlines UnitedAirlines
Americanditlin Unitedairine...
= CompareOfiers

[574]

Chapter 11

Now we open Oracle BPM Workspace to complete the human task.

Completing the human task using Oracle
BPM Workspace

To complete the human task, we have to log into the Oracle BPM Workspace web
application using the following URL: http://host_name:port/bpm/workspace/,
where host_name is the name of the host on which Oracle BPM Workspace is
installed and port is the port number of the SOA managed server (default is 8001).
Oracle BPM Workspace is a very powerful application, allowing users to not only
act on tasks, but also use the following functionality:

¢ Customizing the visual appearance and behavior

e Reassigning tasks to other users

e [Escalating, renewing, withdrawing, and suspending tasks

e Setting the vacation period to automatically reassign tasks during absence

e Creating reports on task productivity, time distribution, and so on

e Viewing process and custom dashboards to monitor effectiveness

e Sending of notifications and alerts
In this chapter, we will not discuss Oracle BPM Workspace in detail. We will
just show how to complete the task. We log into the BPM Workspace as the user
weblogic, as the task is assigned to him. The BPM Workspace opens as shown in
the following screenshot. By default, the Inbox view is selected and the user can see
all tasks assigned to him in the My Tasks list. In our case, there is only one active

task: Flight ticket approval. Remember that this is the name of the human task
that we set during the creation of the human task definition.

[575]

Integrating BPEL with BPMN using BPM Suite

ORACLE Business Process Workspace Logged in as weblogc Home Administration Preferences Help Logout €

PS
Tasks Process Tracking Standard Dashboards Hide Tabs [€
> Applications My Tasks Initiated Tasks Administration Tasks

Worklist Views ‘4‘/ 5 Actions + Eﬂ Assigree Me & Group LI Status | Assigned LI »

- Inbox Title \Numher |Priority |Assignees \State

VB My work Queues [] Flight ticket approval 200204 3 weblogic (U} Assigned

¥ Standard Wigws
[%] Due Soon
High Pricrity
Past Day
D Past week

E] Past Maonth
Past Quartar
[E] New Tasks
My Wignis
V@3 Proxy Work Queles
Shared Wiews

| _.,LI

Flease select a task to see the details
> Reports

* Task Status

. Notice that a Oracle BPM Workspace application looks very similar
a to a Oracle BPM Worklist, which we are already familiar with.
% However, BPM Workspace provides some additional functionality,
like monitoring process performance using the Dashboard.

Now we select the Flight ticket approval task. Notice that the human task form
is not displayed at the bottom of the screen, as we did not create it. We complete the
task by selecting Approve from the Actions drop-down menu. The task is completed
and is removed from the My Tasks list.

Now we open the flow trace of the instance again. We can see, that all flow objects
are highlighted, meaning that the instance has successfully completed.

[576]

Chapter 11

Flow Trace > Instance of TravelApproval Diata Refreshed 06-Jul-2010 11:53:4% CEST L)

MInstance of TravelApproval @
This page shaws BPMM process instance details, @ Instance ID bpmn:360002
Started 06-Jul-2010010:47:25

Audit Trail | Fiow Faults

Current Audit Level: developrent @

Retrieve travel request eqieve employee travel clapstrieve offers Retrieve offers callbackiight ticket approvalr ask sutcome? End

ApprovalManager

Make reservation Make reservation callback

Summary

In this chapter, we have become familiar with Oracle BPM Suite 11g. We have
described the Oracle BPM Suite architecture and features. We have discussed
the importance of being able to directly implement and deploy BPMN processes,
without the need to transform them to BPEL.

We have shown how to use Oracle BPM Studio, how to create a new BPM project,
and how to model and implement business processes using BPMN 2.0. We have
also demonstrated how a BPMN process and BPEL process service components can
be used inside a single SOA composite application.

We have also shown how to deploy a BPM project and how to debug a process
instance by opening the instance audit trail and the visual flow. Finally we
have become familiar with the Oracle BPM Workspace application.

[577]

Symbols

<assign> activity 76
<bindEntity> activity 331
<bpelx:bindEntity>, BPEL extension
activities 318
<bpelx:createEntity>, BPEL extension
activities 318
<bpelx:removeEntity>, BPEL extension
activities 318
<copy> activity
ignoreMissingFromData attribute 79
keepSrcElementName attribute 79
validate attribute 79
<exit> activity 122
<flowN> activity 286
<forEach> loop
about 117
syntax 118
using 118, 119
<fromParts> activity 199
<invoke> activity 74
about 74
outputVariable attribute 74
<joinCondition> 191, 192
<onAlarm> element, event handlers
about 166
example 167
syntax 167
<onAlarm> event 166
<onEvent> element, event handlers
about 165
example 166
<pick> activity, event management
<onAlarm> element 161
<onMessage> element 160

Index

example 162,163

syntax 160
<process> tag 70
<receive> activity 73

about 74

createlnstance attribute 74

messageExchange attribute 75
<repeatUntil> loop

about 116

syntax 116

using 117
<reply> activity 73, 75
<rethrow> activity 136
<switch> activity 287
<toParts> activity

about 200

syntax 200
<transitionCondition> 190
<wait> activity

for attribute 120

until attribute 120
<while> loop 287

about 115

syntax 115

A

abnormal termination 170
abstract business processes
about 201
defining 202
for observable behavior 202
for templates 202
using 201, 202
ACID 152
ActiveBPEL Engine
URL 54

Active Endpoints ActiveVOS
URL 53
adapters 34
ADEF-BC 318
advanced activities, BPEL
<exit> activity 122
<if> 114
<invoke> 114
<reply> 114
<sequence> 114
<variable> 114
delays 119
empty activities 122
loops 114
Ant Scripts
SOA composite application, deploying
from 256, 257
Apache Agila
URL 54
Application Development Framework Busi-
ness Component. See ADF-BC
assertion 241
AssignTravelRequestEvent 358
AssignTravelResponseEvent 359
asynchronous business process
BPEL process definition, modifying 110
consequences 107
modified sequence diagram 108
modifying 108
partner link types, modifying 109
WSDL, modifying 108, 109
Atomicity, Consistency, Isolation,
and Durability. See ACID

B

BAM
about 18, 32, 408
component, time 32
feature 409
KPIs, monitoring 408
user interface 33
BAM dashboard, building
airline reserved ticket number,
displaying 444, 445
Approval Manager effectiveness,
displaying 445-448

confirmed flight tickets percentage,
displaying 442-444
dashboards, testing 448, 449
instance list, displaying 441, 442
report, creating 439-441
report template, choosing 439-441
BAM data gathering, from BPEL process
about 411
monitoring objects 412
monitoring objects, business indicators 412
monitoring objects, counters 413
monitoring objects, intervals 412
Oracle BAM Adapter, using 412
sensors 413
basic activities, BPEL
activity name 84
asynchronous business process 64, 65
asynchronous services, invoking 63
conditions 83, 84
documentation 85
partner links 65
partner links, defining 70
partner links types 67
process tag 71
services, invoking 61, 62
synchronous business process 64
variables 72
WSDL document 68, 69
bexee BPEL Execution Engine
URL 54
binding components, composite
applications building
references 211
services 211
binding components, Oracle SOA
Suite 11g PS
ADEF-BC Service 211
B2B Service 211
BAM adapter 212
Direct Binding Service 212
EJB Service 212
HTTP binding 211
JCA Adapters 211
Oracle applications 211
web services 211

[580]

BPEL
about 7,13, 38
advanced activities 114
advanced advantages 113
advanced features 113
basic activities 57
business events, using 354
business processes, describing 43
business processes, developing 56
business process example 85
choreography 41
core concepts 57-60
example, asynchronous business
process 107
example, synchronous business process 85
features 40
generating, from BPMN diagrams 203
goal 38
history 39
Human Task 368
loops 114
orchestration 41
other specifications 44
process automation 21-23
structured activities 58
workflow languages, WSFL 39
workflow languages, XLANG 39
BPEL 2.0 205
BPEL 2.0 processes
deploying 274
developing 273
developing, in JDeveloper 224
BPEL4People 32
<b4p:humanlInteractions> 404
<b4dp:peopleActivity> 404
<b4p:peopleAssignments> 404
about 397, 402
human roles 404, 405
overall structure 403, 404
people activities 405
version 1.0 397
WS-HumanTask 397
BPEL Blueprints, using in Oracle
JDeveloper
connection creating, to BPA
Repository 518, 519
generated BPEL code 521-525
SOA application, creating 520

BPEL Component Designer
BPA view 206
monitor view 206
bpel:doXslTransform() function 82
BPEL process
BPEL Component Designer 206
BPEL Service Engine 207
database 208
EM console 208
BPEL processes developing, in JDeveloper
implementing 224
process activity diagram 213
SOA composite application,
creating 217, 218
steps 213
WSDL interface, defining 216, 217
XML schemas, defining 215, 216
BPEL processes implementation
BPEL processes, validating 239
partner links, adding 226
process activities, adding 229-238
steps 224
variables, adding 227-229
BPEL processes monitoring, BAM used
BAM 408
BAM, architecture 409
BAM dashboard, building 439
BAM data, gathering 411
demonstration scenario 414
SOA composite application, deploying 436
BPEL Service Engine
clustering 208
dehydration feature 207
key functionalities 207
BPEL to BPMN changes, propagating
BPEL process steps, adding 530, 531
BPMN Model, updating 531, 532
BPM 23
BPM, Business Process Architect
about 494
business process transforming,
into BPEL 515-517
database, creating 495-498
modeling 499
BPM, in Oracle BPM Studio
applications, creating 536-538
BPMN Process, creating 538-544

[581]

Oracle BPM Studio, overview 544-546
project, creating 536-538
project, deploying 572
BPML 46
BPMN
about 50, 52, 57, 203
designing, goal 51
element, categories 51
future developments 54
servers 52
BPMN-BPEL round-tripping
about 489, 490
BPEL constructs mapping, into BPMN 493
BPEL to BPMN changes, propagating 529
BPMN constructs mapping, into
BPEL 491, 492
BPMN to BPEL changes, propagating 525
steps 490, 491
BPMN-BPEL round-tripping, steps
BPEL Blueprint, importing
in JDeveloper 490
BPEL code, continuous synchronizing 491
BPEL process, implementing 491
BPMN model, continuous synchronizing
491
BPMN model, translating into BPEL
blueprint 490
business process, modeling in Business
Process Architect 490
business process, stimulating 490
BPMN constructs mapping, into BPEL
AND Gateway 493
automated activities 491
business data 492
business rules 492
data-based XOR Gateway 492
event-based XOR Gateway 492
events 492
human tasks 491
notifications 491
services 492
structured cycles 492
sub-process map 492
BPMN diagrams
BPEL, generating from 203
BPMN Process
creating 538-544
implementing 547

BPMN Process, implementing
data objects, creating 547
end events, creating 548, 549
final completion 569-571
first BPEL process, adding 554, 556
human task, adding 561-565

implemented BPEL process, screenshot 556

invoking, from BPMN 558-560
second BPEL process, adding 566-568
start events, creating 548, 549
synchronous service, invoking 550-553
BPMN servers
about 52
commercial SOA platforms 52, 53
open source implementations 53
SAP Enterprise SOA 53
BPMN to BPEL changes, propagating
BPEL Blueprint, refreshing 526-528
BPMN Model, modifying 526
bpws:getVariableData() function 286
branch nodes 456
BRMS 18, 34
Browse Modules dialog 542
Business Activity Monitoring. See BAM
business events, using in BPEL
about 354
BPEL process, modifying 356-360
defining 355, 356
demonstrating 355
SOA Composite Application,
testing 360-362
Business Indicator
business metrics, adding 420
dialog box 421
monitoring object, creating 419
Business Process Analysis. See Oracle
BPA Suite
Business Process Architect
BPM 494
business process definition
activities 98
clients 98
partner links 100, 101
process main body 103-107
process outline 100
variables 102

[582]

business processes
about 9
diagrammatic representation 9
disadvantages 8
human interactions 366, 367
importance 8
business processes, BPEL
abstract business processes 43, 56
assignments 76
executable business processes 43, 56
business process example
about 85-87
business process definition 98
involved web services 88
partner link types 95, 97
WSDL 94
Business Process Execution Language. See
BPEL
business process lifecycle 168-170
Business Process Management. See BPM
business process modeling
activity flow, defining 501, 502
automated activities, adding 504-509
completing, steps 512-515
fault handling 113
Human Task, adding 510-512
new model, creating 499, 501
object properties, editing 502, 503
process activities, activating 501, 502
start event, adding 504
Business Process Modeling Language. See
BPML
Business Process Modeling Notation. See
BPMN
Business Rules Management Systems. See
BRMS
business service configuration, Oracle
Service Bus Console
service monitoring, enabling 467
service result caching, enabling 466
business system
forces 10, 11
IT alignment 10

C

CCM 24
choreography, BPEL 42
in services composition 42
languages 44
choreography languages, BPEL
WS-CDL 44, 49
WSCI 44, 49
WSCL 44, 48
client policies 351
clustering 208
COM+ 24
Common Object Request Broker
Architecture. See CORBA
compensation
about 152

fault handling, differentiating between 153

goal 152
handlers 153
compensation handlers
about 153, 154
default compensation handler 156
example 155,156
invoking 156, 157
Component Object Model. See COM+
Component Palette
components, BPMN Process 538
composite applications building, SOA
Composite Editor used
about 209, 210
binding components 211, 212
Bottom-Up approach 210
service components 210
Top-Down approach 210
wires, restrictions 212
concurrent activities
about 178
standard elements 179
standard elements, example 180-182
standard elements, <source> 179
standard elements, <target> 179
constructs
<flow> 61
<invoke> 61
<receive> 61

[583]

Coordinated Universal Time. See UTC
CORBA 24
CORBA Component Model. See CCM
correlation 170
correlation set

about 175

using 175-178
Create Argument dialog 543
Create BPEL Process dialog 566
Create Composite Test dialog 241
Create Emulate dialog 244
Create Human Task dialog 562
createlnstance attribute 169
Create model dialog 500

D

DCE 24
DCOM 24
dead-path-elimination 194
delays, business process
<wait> activity 120
deadline expressions, specifying 120, 121
duration expressions, expressions 121
duration expressions, specifying 120, 121
demonstration scenarios
activity monitoring, enabling 416, 417
BAM Adapter Partner Link, using 432-435
monitoring objects, using 418
sensors, using 422
Distributed Component Object Model.
See DCOM
Distributed Computing Environment.
See DCE
dynamic parallel flow
about 285-287
Airline Web Services list,
providing 288, 289
dynamic partner link, creating 290, 291
example 287, 288
example, testing 293, 294
offer selection code, modifying 291-293
parallel invocations part, modifying 289
dynamic partner links 194-196

E

EAI 11
ebXML BPSS

BPSS 47

Collaboration Protocol Agreement

(CPA) 47

Collaboration Protocol Profile (CPP) 47

core components 47

messaging 47

registry 47

repository 47
ebXML BPSS specification 47
EDA 354
EDL

global name 355

payload definition 355
EDN 354
eEPC 203
EJB 24
element attribute, variables 72, 80
elements

<partnerLinks> 70

<process> 61

<sequence> 61

<variables> 72
e-mail notification, sending

code, reviewing 301, 302

example, testing 302

steps 298-301
EM console

about 208

features 208
EmployeeSDOAppModule 324
employeeTravelStatus() method 306
emulations 241
enableInstanceCompensation attribute,

process tag 72

Enterprise Application Integration. See EAI
Enterprise Java Beans. See EJB
Enterprise Manager Console

SOA composite application, using 259
Enterprise Service Bus. See ESB
Entity variables 227

about 318

ADEF-BC service, creating 322-329

data source, creating 320-322

[584]

EMPLOYEES table, altering 320
enabling, in BPEL processes 318
SOA Composite application, modifying
329-333
testing 334-337
using 318, 319
EPC 203, 490
ESB
about 18, 26
aspects 26
features 27, 28
uses 26
event
<onAlarm> event 166
AssignTravelRequestEvent 358
AssignTravelResponseEvent 359
managing 159
publishReservationSuccessfulEvent 359
TravelRequest_Event 358
TravelResponse_Event 359
Event Definition Language. See EDL
Event Delivery Network. See EDN
Event-Driven Architecture. See EDA
Event-driven Process Chain. See EPC
event handlers, event management
<onAlarm> element 166
<onEvent> element 164, 165
about 163
syntax 164
event management
<pick> activity 160
about 159
alarm events 159
event handlers 163
message events 159
Event Process Chain. See EPC
example, scope
about 141-144
first scope 145,146
second scope 147-149
third scope 150
expressionLanguage attribute, process
tag 71
Extended Event Process Chain. See eEPC
eXtensible Access Control Markup
Language. See XACML

Extensible Stylesheet Language
Transformations. See XSLT
extension functions
array manipulation 281, 282
data manipulation 281, 282
date expression 284
LDAP access 285
process identification 285
query support 280
time expression 284
transformation support 280
user authentication 285
XML manipulation 283
extension functions and activities.
See extension functions, Oracle
SOA Suite 11g
extension functions, Oracle SOA Suite 11g
LDAP access, XPath 279
Oracle-specific XPath 279
Oracle-specific XSLT transformation 279
XPath 2.0 279

F

fault management framework
about 309
fault policy, creating 310-315
recovery options 309

faults
causes 123
handling 122,129
information, adding to operation 123, 124
signaling 124
trv:TicketNotApproved fault 131
WrongEmployeeName fault 124
WSDL faults 123

faults, handling
<catch> activity, attributes 130
about 129
asynchronous example 134, 135
default fault handler 136
fault handler, selecting 131
fault, propagating 136
inline fault handling 136-138
synchronous example 132-134

[585]

faults, signaling
about 124,125
to clients, in asynchronous replies 127, 128
to clients, in synchronous replies 125-127
File getContentFile() method 305
File Transfer Protocol. See FTP
Fiorano SOA Platform
URL 53
FlightNo property 174
flow construct 61
followers 175
FTP 25
Fujitsu Interstage
URL 53

G

getVariableData() extension function 278
getVariableProperty 174

Globally Unique ID. See GUID

GUID 285

H

Hitachi uCosminexus Service Platform
URL 53
HTTP 25
Human Task
about 365
adding 383
in BPEL 368
using, in BPEL processes 382
Human Task, BPEL
about 369
approaches 368
BPEL4People specification 368, 369
integrating 370
Oracle Human Workflow, concepts 370
workflow patterns 373
Human Task definition
assignment, configuring 379, 380
creating 374, 375
deadlines, configuring 380
notifications, configuring 381
outcomes, adding 377
payload, configuring 378, 379
Task Title, configuring 376, 377
Human task dialog 510

Human Task forms
Auto-generating task form, adding 389, 390
creating, options 389
modifying 391, 392
SOA composite, deploying 393
Human Task support
about 31
best practice 31
interleaving, with BPEL 32
WS-Human Task specification 32
Human Task, using in BPEL processes
<switch activity>, adding 382
about 382
adding 383-386
case branches, creating 387, 388
variable, creating 382, 383
Hyper Text Transfer Protocol. See HTTP

IBM WebSphere
URL 52
IDS Scheer ARIS 488
initiator 175
inputVariable attribute, <invoke>
activity 74
insurance requester 70
insurance service 70
Intalio BPM
URL 53
interfaces, BPEL processes. See message
flow
InterSystems Ensemble
URL 53
invoke construct 61
involved web services
airline service 91
Employee Travel Status service 88-90
FlightAvailability port type 91, 92
Flight Callback port type 92, 93
IT alignment
business system 10, 11
shortcomings 11
IT gap 10
IT gap time 10

[586]

J

Java code embedding
about 303
built-in methods 304, 305
Java class invoke, from embedded code
305-308
Java Message Service. See JMS
JBoss Enterprise SOA Platform
URL 53
JDeveloper
BPEL processes, developing 213
SOA composite application, deploying
from 248-253
SOA composite application, managing 258
JMS 52
join failures
about 192
suppressing 193, 194

K

Key Performance Indicators. See KPI
KPI 406

L

LDAP 367
LDAP access, extension functions
ldap:authenticate 285
Idap:listUsers 285
Idap:search 285
ldap:authenticate function 285
ldap:listUsers function 285
Idap:search function 285
lifecycle, business process 168-170
Lightweight Directory Access Protocol.
See LDAP
links
defining 178
defining, <flow> activity 184-189
naming 184
status 191
Locator getLocator() method 304
Login Wizard dialog 496
long getInstanceld method 304
Long-Running Transactions. See LRT

loops, BPEL
<forEach> 117-119
<repeatUntil> 116, 117
<while> 115, 116

LRT 153

Master-Detail processes
<receiveSignal>, adding 343-347
<signal> activity, adding 343-347
BPEL extension activities,

<bpelx:receiveSignal> 338
BPEL extension activities,
<bpelx:signal> 338
coordination overview, diagram 338
coordination, testing 348, 349
Detail process, creating 339-342
Master process, modifying 342
overview 337
use, demonstrating 338

MDA 489

MDS 288

message correlation 63

message exchanges
<fromParts> activity, using 199
<toParts> activity 200
using 197

message flow 73
<invoke> activity 74
<receive> activity 74
<reply> activity 75
attributes 73

message flow modeling, OSB architecture
branch nodes 456
error pipeline 456
Message flow definitions 455
request pipeline 456
response pipeline 456
route nodes 456
stages 456

message properties
about 171
assignments 174
defining 171
example 171
mapping, to messages 172,173
values, extracting 174

[587]

messageType attribute, variables 72, 80
Metadata Store. See MDS
method
File getContentFile() 305
int getPriority() 304
Locator getLocator() 304
long getInstanceld() 304
Object getVariableData() 304
Object lookup 304
String getCreator() 304
String getIndex() 305
String getMetadata() 305
String getPreference() 305
String getStatus() 304
String getTitle() 304
void addAuditTrailEntry() 304
void setCreator() 304
void setCustomKeyr() 305
void setIndex() 305
void setMetadata() 305
void setPriority() 304
void setStatus() 304
void setTitle() 304
void setVariableData() 304
Microsoft Message Queue. See MSMQ
MIME 25
Model-driven Architecture. See MDA
monitoring objects, types
Business Indicator data object 413
business indicators 412
COMPONENT data object 413
COUNTER data object 413
counters 413
INTERVAL data object 413
intervals 412
MSMQ 52

Multipurpose Internet Mail Extensions.

See MIME
myRole, partner links 70

N

name attribute, process tag 71
name, partner links 70
normal termination 170
notification services
<invoke>, using 294
<receive>, using 294

about 294

channels, supporting 294

Email Driver, setting 296, 297

e-mail notification, sending 298

extension activities, dragging 295

User Messaging Service, overall
architecture 294

using 295

(0

Object getVariableData() method 304
Object lookup() method 304
Object lookup method 304
Object Management Group. See OMG
Object Request Brokers. See ORBs
OMG 50
Open ESB
URL 53
OpenLink Virtuoso Universal Server
URL 53
ora:addQuotes() function 284
Oracle BAM architecture
diagrammatic view 410
Oracle BAM Server 410
web applications 411
Oracle BAM Server 407
Active Data Cache (ADC) 410
Event Engine 410
Report Cache 411
Oracle BPA Suite
about 487
architecture 488
features 488
Oracle BPA Suite, architecture
components, Business Process
Architect 488
components, Business Process
Publisher 489
components, Business Process
Repository 489
components, Business Process
Repository Server 489
Oracle BPM Project Navigator
Activity Guide 546
Business Catalog 546
Organization 546

[588]

Processes component 546
Simulations 546
Oracle BPM Studio
BPMN Process Editor 545
Oracle BPM Project Navigator 545
overview 544
Oracle BPM Suite
architecture 534
Oracle BPM Suite 11g 533
Oracle BPM Suite, architecture
Oracle BPA Suite 535
Oracle BPM Studio 535
Oracle Business Process Composer 535
Oracle BPM Worklist application
about 372
completing 396
Human Task expiration, testing 396, 397
logging into 394-396
using 394
Oracle BPM Workspace 535
features 575
using, for human task completion 575, 576
Oracle Coherence 466
Oracle Enterprise Manager Console
using 535
Oracle Human Workflow, concepts
about 365
Evidence Store Service 372
Identity Service 371
Notification Service 371
Runtime Configuration Service 372
Task Assignment Service 371
Task Metadata Service 371
Task Query Service 371
tasks, assigning to 372
tasks, assigning to user groups 372
task services 371
User Metadata Service 371
Oracle JDeveloper
BPEL Blueprints, using 518
Oracle Service Bus. See OSB
Oracle Service Bus Console
Alert Destination, creating 469
business service, configuring 466
business service, testing 467, 468
Dashboard page 460
logging 460

OSR, connecting with 463, 464

project , creating 461

proxy service, creating 470, 471

resources, importing from OSR 461-465

screenshot 460
Oracle Service Registry. See OSR
Oracle SOA Suite

URL 52
Oracle SOA Suite 11g

activities 278

extension functions 278
Oracle SOA Suite 11g PS2 488
Oracle Sun Java Composite Application

Platform Suite

URL 52
Oracle Web Service Manager. See OWSM
ora:countNodes() function 292
ora:formatDate() function 284
ora:generateGUID() function 285
ora:getContentAsString() function 284
ora:getConversationld() function 285
ora:getCreator() function 285
ora:getCurrentDate() function 284
ora:getCurrentDateTime() function 284
ora:getCurrentTime() function 284
ora:getElement() function 292
ora:getInstanceld() function 285
ora:getProcessId() function 285
ora:parseEscapedXML() function 283, 284
ora:processXSLT() function 280
ora:processXSQL() function 281
ora:readFile() 284
ORBs 24
orchestration, BPEL 41

advantages 42

languages 44
orchestration languages, BPEL

BPML 46, 47

BPSS 44

WSFL 44, 46

XLANG 44, 45

YAWL 44, 48
OSB

about 451

Proxy Message Flow, modifying 482-484

SOA composite application, testing 485

use case 481, 482

[589]

OSB, architecture
about 452
business service 454
composition layer 453
management layer 454
message flow modeling 455
messaging layer 453
proxy services 454
security layer 453

OSR
about 451, 456
business entity, publishing 458
business service, publishing 459
logging into 457

OWSM 248

P

Parasoft BPEL Maestro
URL 53
partner links
about 56, 66
asynchronous callback 66
client partner links 66
defining 70
dynamic partner links 194-196
invoked partner links 66
parameters 70
summing up 66
types 67
partnerLinks element 70
partnerLinkType, partner links 70
partner link types, business process
example
employeeLT 95, 97
flightLT 96,97
travelLT 95
partnerRole, partner links 70
PolarLake Integration Suite
URL 53
process identification, extension functions
functions 285
ora:getConversationld() 285
ora:getCreator() 285
ora:getInstanceld() 285
ora:getProcessld() 285
ora:generateGUID() 285

Process Monitoring. See BAM
Properties - Service Task dialog 552
Properties - User Task dialog 562
property
FlightNo 174
property aliases 172
proxy service, Oracle Service Bus Console
creating 470, 471
Message Flow, configuring 473-475
publishing, to OSR 479
testing 476-478
publishReservationSuccessfulEvent 359
Publish WSDL document page 459

Q

queryLanguage attribute, process tag 71

R

registry
about 29
features 30
Remote Method Invocation. See RMI
Remote Procedure Call. See RPC
repository
about 29
features 30
RMI 24,212
Role properties dialog 563
route nodes 456
RPC 24
Rule Engine. See BRMS

S

SAR file 262
SCA
about 35

basic building blocks, components 35
composites 36
SCA Domain diagram 37, 38
scope
about 139, 140
example 141
isolated scopes 151
primary activity 140

[590]

sensors
actions, configuring 414
BAM data objects, creating 422-425
BAM server connection, creating 425, 426
fault sensors 414
using 426-430
variables sensors 414

Service Component Architecture. See SCA

service components, composite applications

building

BPEL Process 210

BPMN Process 210

business rules 210

Human Task 210

mediator 210

Spring Context 210, 211
Service Level Agreements. See SLAs
Service-Oriented Architecture. See SOA
service policy 351
services, SOA

about 13

business services 14

developing 14

Web Services 15
setVariableData() function 306
Simple Mail Transfer Protocol. See SMTP
Simple Object Access Protocol. See SOAP
simple workflow, workflow patterns

escalation 373

renewal 373
SLAs 28
SMTP 25
SOA

about 7,11, 12

BPEL 13

building blocks 18

composite and Human Task forms,

deploying 393

concepts 15

diagram 12

goals 13

governance 38

SCA 35

services 14

using 11
SOA Archive. See SAR file

SOA, building blocks
adapters 18, 34
architecture 19
BAM 18, 32
bottom-up view 21
BPEL 18, 21
BRMS 18, 34
ESB 18
human task support 18, 31
process monitoring 18
registry 18, 29
repository 18,29
rule engine 18, 34
technology view 20
web services 18
SOA composite application
BPEL Process service component, adding
219, 220
created data objects, creating 436
creating 217, 218
data objects, testing 437, 438
deploying 436
managing 257
managing, Enterprise Manager Console
used 259
managing, JDeveloper used 258
references, adding 222-226
re-wiring 479-481
testing 572
SOA composite application, deploying
from Ant Scripts 256, 257
from JDeveloper 248-253
packaged SAR, components 248
steps 247
SOA composite application deployment,
from JDeveloper
configuration plans, creating 254-256
deploying, to Application Server 250
deploying, to SAR 250
steps 248-253
SOA composite application management,
Enterprise Manager Console used
deploying 260-262
instance, automatic testing 270-272
instance flow trace, viewing 266-270
test instance, initiating 264-266
undeploying 263

[591]

SOA composite applications test suite 241

deploying 247, 248 TIBCO ActiveMatrix
securing 349 URL 53
testing 240-247 TravelRequest_Event 358
SOA composite applications, securing TravelResponse_Event 359
Management policies 350 type attribute, variables 72, 80
policies, attaching in JDeveloper 351
policies, detaching in JDeveloper 351 U
policies, managing in Enterprise Manager
console 352, 353 UDDI 24, 451
Reliable Messaging policies 350 UML 57
security policies 350 Unified Modeling Language. See UML
security, testing 354 Universal Description, Discovery,
WS-Addressing policies 350 and Integration. See UDDI
SOA composite application, testing UTC 120
human task completion, Oracle BPM
Workspace used 575, 576 \"/
instance, initiating 572-575 .
SOA Composite Editor variables
. S ol about 72
composite applications, building 209 S .
SOA, concepts accessing, in expression 80-82

element attribute 72, 80

InsuredPersonRequest variable 83

messageType attribute 72, 80

type attribute 72, 80

validating 80

WSDL message types 77

XML schema primitive types 76
void addAuditTrailEntry() method 304
void setIndex() method 305
void setMetadata() method 305
void setStatus() method 304

void setTitle () method 304

Sgs?)ei(;:e;g ance 38 void setVariableData method 304

SOAP 24 W
String getCreator() method 304
String getMetadata() method 305
String getPreference() method 305
String getT.itle(). method' 304 active viewer 411
suppressJoinFailure attribute, administrator 411
process tag 71 architect 411

report server 411
T weblogic-application.xml file 328
WebLogic Scripting Tool. See WLST

about 15

interfaces 16
loose-coupling 17
messages 16
Quality of Service 17
registry 17
repository 17
reusability 17
service composition 18
services 16
synchronicity 16

web applications, Oracle BAM architecture
active studio 411

targetNamespace attribute, process tag 71
termination handler

about 158

default termination handler 158

[592]

Web Services
CCM 24
COM+ 24
CORBA 24
DCE 24
DCOM 24
EJB 24
important changes 24, 25
ORBs 24
predecessors, difference 24
RMI 24
RPC 24
technology stack 25
Web Services Description Language. See
WSDL
Web Services Flow Language. See WSFL
Web Services technology stack
about 25
Transactions specifications 25
WS-Addressing 25
WS-Coordination 25
WS-Eventing 25
WS-Inspection 25
WS-Policy 25
WS-ReliableMessaging 25
WS-Security 25
WLST 248
workflow patterns
Ad-hoc (dynamic) workflow 374
FYI workflow 374
parallel workflow 373
sequential workflow 373
serial 373
simple workflow 373
Single approver 373
Task continuation 374

wsa:EndpointReferences 288
WS-BPEL Extension for People. See
BPEL4People

WS-CDL
about 49
using 50

WSCI 49

WSCL 48

WSDL 24

WSFL 39, 46

WS-HumanTask, BPEL4People
escalations, defining 400, 401
human tasks, defining 399, 400
notifications, defining 401
overall structure 398, 399
overview 398
programming interface 402

X

XACML 30
XLANG 39, 45
xmlns attribute, process tag 71
XSLT 26
transformations 82

Y

YAWL
about 48
advantages 48

Y4

z 120
ZIP file 262

[593]

[594]

enferprise

PUBLISHING

Thank you for buying

WS-BPEL 2.0 for SOA Composite Applications
with Oracle SOA Suite 11g

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

PUBLISHING

Business Process Driven SOA using

BPMN and BPEL

E

PACKT

Business Process Driven SOA

using BPMN and BPEL
ISBN: 978-1-847191-46-5 Paperback: 328 pages

From Business Process Modeling to Orchestration
and Service Oriented Architecture

1. Understand business process management
and how it relates to SOA

2. Understand advanced business process
modeling and management with BPMN
and BPEL

BPEL Cookbook: Best Practices
for SOA-based integration

and composite applications
development

ISBN: 978-1-904811-33-6 Paperback: 188 pages

Ten practical real-world case studies combining
business process management and web services
orchestration

1. Real-world BPEL recipes for SOA integration
and Composite Application development

2. Combining business process management and
web services orchestration

3. Techniques and best practices with
downloadable code samples from ten
real-world case studies

Please check www.PacktPub.com for information on our titles

professional expertise distilled

[enterprise 8
PUBLISHING

BPEL PM and OSB operational
management with Oracle
Enterprise Manager 10g Grid

Control
ISBN: 978-1-847197-74-0 Paperback: 248 pages

Manage the operational tasks for multiple BPEL

BPEL PM and OSB Operational and OSB environments centrally

Management with Oracle Enterprise

Manager 10g Grid Control 1. Monitor and manage all components of your

SOA environment from a central location

2. Save time and increase efficiency by automating
all the day-to-day operational tasks associated
with the SOA environment

Narayan Bharadwaj

Oracle SOA Suite 11g R1

Developer's Guide
ISBN: 978-1-849680-18-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions
with the Oracle SOA Suite

1. A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery

Oracle SOA Suite 11g R1 of real-world SOA applications
Developer's Guide

2. Detailed coverage of the Oracle Service Bus,
BPEL PM, Rules, Human Workflow, Event
Delivery Network, and Business Activity
Monitoring

Antony Reynolds Matt Wright [I:

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to BPEL and SOA
	Why business processes matters
	Business and IT alignment
	Service-Oriented Architecture
	BPEL
	Services
	How to develop services

	SOA concepts
	Services
	Interfaces
	Messages
	Loose Coupling
	Reusability
	Registries and repositories
	Quality of Service
	Composition of services into business processes

	SOA building blocks
	BPEL for process automation
	Web Services
	How Web Services differ from their predecessors
	Web Services technology stack

	Enterprise Service Bus
	ESB features

	Registry and repository
	Human task support and identity management
	Process Monitoring or Business Activity Monitoring
	Business Rules Management Systems (BRMS) or Rule Engine
	Adapters
	Service Component Architecture
	SOA governance

	Understanding BPEL
	BPEL features
	Orchestration and choreography
	Executable and abstract processes

	Relation of BPEL to other languages
	XLANG
	WSFL
	BPML
	ebXML BPSS
	YAWL
	WSCL
	WSCI
	WS-CDL
	BPMN

	BPEL servers overview
	The future of BPEL
	Summary

	Chapter 2
: Service Composition with BPEL
	Developing Business Processes with BPEL
	Core concepts
	Invoking services
	Invoking asynchronous services
	Synchronous/Asynchronous business processes
	Understanding links to partners
	Partner link types
	Defining partner links
	BPEL process tag
	Variables
	Providing the interface to BPEL processes: <invoke>, <receive>, and <reply>
	<invoke>
	<receive>
	<reply>

	Assignments
	Validating variables
	Accessing variables in expressions
	XSLT transformations
	Conditions
	Activity names
	Documentation

	BPEL business process example
	Involved services
	Employee Travel Status service
	Airline Service

	WSDL for the BPEL process
	Partner link types
	Business process definition
	BPEL process outline
	Partner links
	Variables for the Travel Process
	BPEL process main body

	Asynchronous BPEL example
	Modify the BPEL Process WSDL
	Modify partner link types
	Modify the BPEL process definition

	Summary

	Chapter 3
: Advanced BPEL
	Advanced activities
	Loops
	While
	Repeat Until
	For Each

	Delays
	Deadline and duration expressions

	Empty activities
	Ending a process

	Fault handling and signaling
	WSDL faults
	Signaling faults
	Signaling faults to clients in synchronous replies
	Signaling faults to clients in asynchronous scenarios

	Handling faults
	Selection of a fault handler
	Synchronous example
	Asynchronous example
	Propagating faults
	Default fault handler
	Inline fault handling

	Scopes
	Example
	First scope
	Second scope
	Third scope

	Isolated scopes

	Compensation
	Compensation handlers
	Example
	Default compensation handler

	Invoking compensation handlers

	Termination handler
	Default termination handler

	Managing events
	Pick activity
	Message events
	Alarm events
	Example

	Event handlers
	<onEvent>
	<onAlarm>

	Business process lifecycle
	Correlation and message properties
	Message properties
	Mapping properties to messages
	Extracting properties
	Properties and assignments

	Correlation sets
	Using correlation sets

	Concurrent activities and links
	Sources and targets
	Example

	Transition conditions
	Join conditions and link status
	Join failures
	Suppressing join failures

	Dynamic partner links
	Message exchanges
	From-parts and to-parts
	<fromParts>
	<toParts>

	Abstract business processes
	Generating BPEL from BPMN diagrams
	Summary

	Chapter 4
: Using BPEL with Oracle SOA Suite 11g
	Overview
	BPEL Component Designer
	BPEL Service Engine
	Database
	Enterprise Manager Console (EM)

	Building composite applications with SOA Composite Editor
	Service components
	Binding components
	Wires

	Development of BPEL processes in JDeveloper
	Defining XML schemas
	Defining a WSDL interface
	Creating an SOA composite application
	Adding the BPEL Process service component
	Adding references

	BPEL process implementation
	Adding partner links
	Adding variables
	Adding process activities
	Validating BPEL processes

	Testing SOA composite applications
	Deploying SOA composite applications
	Deploying from JDeveloper
	Creating configuration plans in JDeveloper

	Deploying using Ant Scripts

	Managing SOA composite applications
	Managing SOA composites using JDeveloper
	Managing SOA composites using Enterprise Manager Console
	Deploying and undeploying SOA composite applications
	Initiating an SOA composite application test instance
	Viewing the SOA composite instances flow trace
	Automatic testing of SOA composite instances

	Developing and deploying BPEL 2.0 processes
	Summary

	Chapter 5
: BPEL Extensions, Dynamic Parallel Flow, Dynamic Partner Links, Notification Service, Java Embedding, and Fault Management Framework
	Extension functions and activities
	Transformation and query support
	Data and array manipulation
	XML manipulation
	Date and time expressions
	Process identification
	LDAP access and user management

	Dynamic parallel flow
	Dynamic flow example
	Provide list of partner links
	Dynamic parallel invocation of airline services
	Dynamic partner links
	Offer selection loop
	Testing the example

	Notification Service
	Setting the Email Driver
	Sending e-mail notifications
	Review of code
	Testing the example

	Java code embedding
	Invoking Java class from embedded code

	Fault management framework
	Creating a fault policy

	Summary

	Chapter 6
: Entity Variables, Master and Detail Processes, Security, and Business Events in BPEL
	Entity variables
	Altering the EMPLOYEES table
	Creating the data source
	Creating the ADF-BC service
	Modifying the SOA composite application
	Testing the entity variable

	Master and Detail processes
	Creating the Detail process
	Modifying the Master process
	Adding <signal> and <receiveSignal> activities
	Testing the Master-Detail coordination

	Securing SOA Composite applications
	Attaching and detaching policies in JDeveloper
	Managing policies in the Enterprise Manager console
	Testing security

	Using business events in BPEL
	Defining the business event
	Modifying the BPEL process
	Testing the SOA composite application

	Summary

	Chapter 7
: Human Interactions in BPEL
	Human interactions in business processes
	Human Tasks in BPEL
	Human Task integration with BPEL
	Oracle Human Workflow concepts
	Workflow patterns

	Creating Human Task definitions
	Configuring a Human Task title and outcomes
	Configuring Human Task payload
	Configuring Human Task assignments
	Configuring Human Task deadlines
	Configuring Human Task notifications

	Using Human Tasks in BPEL processes
	Creating variable and adding <switch> activity
	Adding a Human Task
	Configuring Human Task case branches

	Creating Human Tasks forms
	Auto-generating a task form
	Modifying the task form

	Deploying the SOA composite
and task form
	Using Oracle BPM Worklist application
	Logging into BPM Worklist application
	Completing the task
	Testing Human Task expiration

	BPEL4People
	Brief look at WS-HumanTask
	Overall structure
	Human Tasks
	Escalations
	Notifications
	Programming interface

	Brief look at BPEL4People
	Overall structure
	People assignments
	People activities

	Summary

	Chapter 8
: Monitoring BPEL Processes with BAM
	Business Activity Monitoring
	Oracle BAM architecture and features
	Oracle BAM Server
	Oracle BAM web applications

	Gathering BAM data from BPEL process
	Monitoring objects
	Sensors and sensor actions

	Introduction to demonstration scenario
	Enabling activity monitoring
	Using monitoring objects
	Creating a Business Indicator monitoring object

	Using sensors
	Creating BAM data objects
	Creating a BAM server connection
	Creating sensors and sensor actions

	Using the BAM Adapter partner link
	Deploying SOA composite application
	Checking created data objects
	Testing data objects

	Building the BAM dashboard
	Creating areport and choosing a report template
	Displaying a list of process instances
	Displaying the percentage of confirmed flight tickets
	Displaying the number of reserved tickets by airline
	Displaying the effectiveness of the Approval Manager
	Testing the dashboard

	Summary

	Chapter 9
: BPEL with Oracle Service Bus and Service Registry
	Oracle Service Bus architecture and features
	Proxy services and business services
	Message flow modeling

	Oracle Service Registry
	Logging into Oracle Service Registry
	Publishing a business entity
	Publishing a business service

	Using Oracle Service Bus Console
	Creating a project and importing resources from OSR
	Creating connection to Oracle Service Registry
	Importing resources from Oracle Service Registry

	Configuring a business service
	Enabling service result caching
	Enabling service monitoring

	Testing a business service
	Creating an Alert destination
	Creating a proxy service
	Configuring Message Flow

	Testing a proxy service
	Publishing a proxy service to the Oracle Service Registry

	Re-wiring an SOA composite application
	Oracle Service Bus use case
	Modifying the Proxy message flow
	Testing an SOA composite application

	Summary

	Chapter 10
: BPMN to BPEL Round-tripping with BPA Suite and SOA Suite
	Oracle BPA Suite architecture and features
	Round-tripping between BPMN and BPEL
	Steps for BPMN-BPEL round-tripping
	Mapping of BPMN constructs to BPEL
	Mapping of BPEL constructs to BPMN

	Demonstration scenario
	Business process modeling in Business Process Architect
	Creating the database
	Modeling a business process
	Creating a new model
	Adding process activities and defining activity flow
	Editing object properties
	Adding a start event
	Adding automated activities
	Adding a human task
	Completing the Process model

	Transforming a business process into BPEL

	Using BPEL Blueprints in Oracle JDeveloper
	Creating a connection to the BPA Repository
	Creating an Application and an SOA Project
	Understanding the generated BPEL code

	BPMN-BPEL round-tripping
	Propagating changes from BPMN to BPEL
	Modifying the BPMN model
	Refreshing BPEL Blueprint

	Propagating changes from BPEL to BPMN
	Adding process steps to the BPEL
	Updating the BPMN model

	Summary

	Chapter 11
: Integrating BPEL with BPMN using BPM Suite
	Oracle BPM Suite architecture
and features
	Demonstration scenario
	Business Process Modeling and implementation in Oracle BPM Studio
	Creating a BPM application and project
	Creating a BPMN process
	Overview of Oracle BPM Studio
	Implementing a BPMN process
	Creating data objects
	Configuring start and end events
	Invoking synchronous service
	Adding first BPEL process
	Invoking a BPEL process from BPMN
	Adding a human task
	Adding a second BPEL process
	Completing the process

	Deploying a BPM project

	Testing an SOA composite application
	Initiating an SOA composite instance
	Completing the human task using Oracle
BPM Workspace

	Summary

	Index

