
www.allitebooks.com

http://www.allitebooks.org

Web Application Development
with Yii 2 and PHP

Fast-track your web application development using
the new generation Yii PHP framework

Mark Safronov

Jeffrey Winesett

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Web Application Development with Yii 2 and PHP

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Second edition: November 2012

Third edition: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-188-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Mark Safronov

Jeffrey Winesett

Reviewers
Ajay Balachandran

Maher Elaissi

Md. Rashidul Hasan Masum

Mohammed Hussein Othman

Commissioning Editor
Usha Iyer

Acquisition Editor
Harsha Bharwani

Content Development Editor
Madhuja Chaudhari

Technical Editors
Veronica Fernandes

Pramod Kumavat

Copy Editors
Roshni Banerjee

Sarang Chari

Gladson Monteiro

Adithi Shetty

Project Coordinators
Venitha Cutinho

Akash Poojary

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Joel T. Johnson

Jonathan Todd

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Tejal Soni

Graphics
Disha Haria

Production Coordinators
Kyle Albuquerque

Melwyn D'sa

Saiprasad Kadam

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Mark Safronov is a professional web application developer from the Russian
Federation, with experience and interest in a wide range of programming languages
and technologies. He has built and participated in building different types of web
applications, from pure computational ones to full-blown e-commerce sites. He is
also a proponent of following the current best practices of test-first development
and clean and maintainable code.

He is currently employed at Clevertech and is working on Yii-based PHP web
applications. He was also a maintainer of the popular YiiBooster open source
extension for some time.

Back in 2008, he translated the book Visual Prolog 7.1 for Tyros, Eduardo Costa,
in Russian with a totally new color layout. In 2013, along with Jacob Mumm,
he co-authored the book Instant Yii Application Development Starter, Packt Publishing.

Jeffrey Winesett is a partner at SeeSaw Labs in Austin, Texas, and has over 10 years
of experience building large-scale, web-based applications. He is a strong proponent
of using open source development frameworks when developing applications,
and a champion of the Yii framework in particular since its initial alpha release.
He frequently presents on, writes about, and develops with Yii as often as possible.

I would like to thank Qiang Xue for creating this amazing
framework, and the entire Yii framework development team who
continually improve and maintain it. I thank all of the technical
reviewers, editors, and staff at Packt Publishing for their fantastic
contributions, suggestions, and improvements. I would also like
to thank my family, who have provided encouragement and
unconditional support, and to my many colleagues over the years
for providing invaluable opportunities for me to explore new
technologies, expand my knowledge, and shape my career.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ajay Balachandran is a hardcore PHP developer and an avid Yii lover from India.
He is a huge advocate of writing modular, reusable, and standards-based code,
which leads to his love for the Yii framework.

He is an expert in federated authentication using OpenID Connect, and now
specializes in providing single sign-on and analytics solutions for the enterprise
customers on behalf of his company, HiFX IT & Media Services.

Having a UI/UX background, Yii and its robust Web 2.0 oriented development
has enabled Ajay to easily write applications ranging from simple shopping carts
to robust APIs.

Maher Elaissi is a web developer based in Canada. He has good knowledge of
object-oriented analysis and designs and specializes in PHP programming. His
first experience with the Yii framework was in 2012, with a startup company Cisha
GmbH based in Germany, to create an online chess game (www.chess24.com).

I would like to thank the Super Mario team (dev team) for all their
support and help in producing this book.

www.allitebooks.com

www.chess24.com
http://www.allitebooks.org

Md. Rashidul Hasan Masum is a professional Software Engineer. Over the
last 6 years, he has designed and developed a wide range of desktop and web
applications using the enterprise framework Spring.NET NHibernate and websites
using HTML, DHTML, JavaScript, jQuery, SignalR, Ext JS 4, ASP.NET (C#), PHP
(Yii framework), Spring.NET, NHibernate, Google App Engine (Java), OpenLayer,
Android with MSSQL, MySQL, and Bigtable, including sites for startup companies
and small businesses. His core competency lies in complete end-to-end management
of a new application development.

He also has experience in the following areas: OOP, AOP, DI, ORM, SOA, n-Tire,
highly configurable applications, neural networks, and software design and testing.

He now works at OnnoRokom Software Ltd. as a Software Architect. From the
beginning, they have been using the Yii framework for their large-scale web
application development. S. M. Quamruzzaman Rahmani (www.byronbd.com),
Project Manager, and GM Nazmul Hossain, (www.gmnazmul.com), System Analyst,
have been working with him. The three of them are a super combination for
teamwork according to their personality profiles.

I'd like to thank Venitha Cutinho and Akash Poojary for their
coordination. Also, I'd like to thank my friend Maruf Maniruzzaman
who works at Microsoft. He has taught me a lot about computer
engineering. Thank you to my friend K. M. Masum Habib. I'd also
like to thank Packt Publishing. I have read lots of e-books published
by Packt Publishing.

Mohammed Hussein Othman is a Software Engineer who has graduated from
Damascus University in Syria. He has 4 years of experience in working with the Yii
framework in a variety of small and enterprise projects. Mohammed has also been
working on various modern web technologies, such as PHP, ASP.NET, Ruby on
Rails, Node.js, and many others. Currently, he works as a Senior Web Developer and
Project Manager at Flex Solutions, which specializes in enterprise web applications.

www.allitebooks.com

www.byronbd.com
www.gmnazmul.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started 7

A basic application 7
Installation of a basic application template 7
Specifics of the basic application template 9

An advanced application 10
Installation of an advanced application template 11
Specifics of the advanced application template 13

Summary 14
Chapter 2: Making a Custom Application with Yii 2 15

The design stage 16
Task at hand 16
Domain model design 16
Target feature 18

Initial preparations 19
Setting up project management 19
Setting up the testing harness 20
Setting up the deployment pipeline 22

Making a web application entry point visible 26
Introducing the Yii framework into our application 26

First end-to-end test 27
Yii 2 installation to the bare code base 34

Checking the requirements 34
An introduction to Yii conventions 34
Building the wireframe code 36
Adding a controller 37
Handling possible errors 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Making the data and application layers 39
Defining the customer model at the data layer 40
Setting up the database 41
Object-relation mapping in Yii 45
Decoupling from ORM 47

Creating the user interface 49
The Add New Customer UI 50
Routing 101 51
Layouts 52
Finishing the Add New Customer UI 53
Widgets 55
The List Customers UI 56
Customer Query UI 58

Using the application 58
Summary 60

Chapter 3: Automatically Generating the CRUD Code 63
Definition of the model to work with 63
Using Gii 64

Installing Gii into the application 64
Generating the code for the Model class 66
Generating the CRUD code 69

Finishing touches 72
Creating a new layout to support pages generated by Gii 72

An overview of the generated CRUD UI 74
Pros and cons of generated classes over manually created ones 78
Summary 78

Chapter 4: The Renderer 79
Anatomy of Yii rendering 79
The Yii application components 81
The View component 84

Algorithm to find the view files 84
Algorithm to search the layout file to be used 87
The internal workings of rendering the view file 89

Custom renderers 90
A custom response formatter 95
The asset bundles 100

An asset bundle with files from an arbitrary folder 100
Asset publishing 101
An asset bundle with files from a web-accessible folder 103

Table of Contents

[iii]

Registering CSS and JavaScript files manually 104
Placing JavaScript in different positions in the asset bundles 105
Making a custom asset bundle for our application 106

Themes 107
Making a custom snowy theme 108

Widgets 111
Summary 111

Chapter 5: User Authentication 113
Anatomy of the user login in Yii 114
Password-based login mechanics in general 114
Making the user management interface 116

Acceptance tests for the user management interface 116
Database table to store user records 118
Generating the model and CRUD code by Gii 118
Removing the password field from the autogenerated code 119

Hashing a password upon saving a user record 119
Functional tests for password hashing 120
Password hashing implementation inside the active record 123

Making a user record into an identity 126
Making the login interface 128

Specifications of user authentication 129
Making the authentication indicator 131
The login form functionality 132
The logout functionality and wrapping things up 137

Summary 138
Chapter 6: User Authorization and Access Control 139

Access control using the state of user authentication 140
FEATURE – hook methods of the controller 140
FEATURE – exception handling in Yii 143
FEATURE – controller action filters 147

Role-based access control 151
Protecting the CRM management from CRM users 152

Installing predefined users 153
RBAC managers in Yii 155
The failing test for our role hierarchy 157
Setting up the role hierarchy 159
The failing test for access control in controllers 162
FEATURE – access control filter 165
Applying access control to the site 166

Summary 170

Table of Contents

[iv]

Chapter 7: Modules 173
FEATURE – Yii modules 173

The informal concept of reachability 175
Exploring the intricacies of module configuration through
simple examples 176
The Debug module 180

Building the API module 183
Building a test suite to support testing the API module 184
Defining the requirements for automatic tests of API modules 187
Moving the controller actions to a separate module 191

Retrospective on the modules mentioned in previous chapters 193
Summary 195

Chapter 8: Overall Behavior 197
FEATURE – message log 197

Actually storing the log messages 200
Setting up the e-mailing component so that log messages can be mailed 201

Reading the stored log messages 203
FEATURE – profiling 206
Error handling details 211

FEATURE – error handling controller action 213
List of built-in exceptions 214

Caching 216
FEATURE – cache component 217
FEATURE – database queries caching 220
FEATURE – page fragment caching 221
FEATURE – whole page caching 221
FEATURE – caching the request by HTTP headers 222

Minimizing the assets 223
Summary 232

Chapter 9: Making an Extension 233
Extension idea 233
Creating the extension contents 234

Preparing the boilerplate code for the extension 235
FEATURE – bootstrapping 235
FEATURE – extension registering 237
Making the bootstrap for our extension – hideous attachment
of a controller 238

Making the extension installable as... erm, extension 240
Preparing the correct composer.json manifest 242

Table of Contents

[v]

Configuring the repositories 244
Summary 251

Chapter 10: Events and Behaviors 253
Automatically marking database records with the timestamp
and user ID 253

Test case for customer creation 254
Test case for updating customer updates 257

Preparing the database fields 259
Using the timestamp and blameable behaviors 260

FEATURE – behaviors 263
FEATURE – events 265
Built-in events 270

Events of \yii\base\Application 271
Events of \yii\base\Controller 271
Events of \yii\base\Module 272
Events of \yii\base\View 273
Events of \yii\web\View 274
Events of \yii\base\Model 274
Events of \yii\db\BaseActiveRecord 275
Events of \yii\db\Connection 276
Events of \yii\web\Response 277
Events of \yii\web\User 277
Events of \yii\mail\BaseMailer 278

Summary 278
Chapter 11: The Grid 279

Dismissing of the domain layer 279
Designing for the customers' index 280

Making address, e-mail, and phone active records 281
Making the common base controller for submodels 285
Making relations from customer to address, e-mail address, and phone 288

FEATURE – widgets 290
Creating the index page for customers 292

Making a base GridView for customers 293
Changing the format of the column content 295
FEATURE – formatter 296
Making the custom GridView column for the customer audit info 299
Compressing submodels related to customers into single columns 307
FEATURE – GridView columns 308
Implementing filtering inside GridView of customers 310

Table of Contents

[vi]

Implementing sorting inside GridView of customers 316
Summary 321

Chapter 12: Route Management 323
Yii 2 routing 102 323
FEATURE – routing using names of modules, controllers, and actions 325

Fundamental rules of URL management in Yii 2 326
FEATURE – creating URLs in Yii 327

Custom routes using a configuration 328
FEATURE – URL rules 328

Custom routes using custom URL rule classes 331
Summary 334

Chapter 13: Collaborative Work 335
Configuration construction 336

Adding local overrides to the configuration 337
Console application 341

Custom console commands 342
Database migrations 345

Making custom templates for database migrations 349
Summary 352

Appendix A: Deployment Setup with Vagrant 353
Planning 354
Initial setup 354
Fine-tuning the virtual machine 356

Preparing the guest OS 356
Preparing the database and web server 357
Preparing the application 358

Using the virtual machine as a local deploy target 359
Appendix B: The Active Form Primer 361

Making the Edit form for customer 361
Active query 362
Customizing the autogenerated form 364
Passing the customer ID to submodels 371
Returning to the Update Customer form after updating the submodel 373
Custom column value for the addresses table 374

Index 377

Preface
This book is a guide that describes the process of incremental, test-first development
of a web application using Yii framework Version 2.

The Yii framework, hosted at http://www.yiiframework.com/, is a PHP-based
application framework built around the Model-View-Controller composite pattern.
It is suitable for building both web and console applications, but its feature set makes
it most useful for web applications. It has several code generation facilities, including
the full create-read-update-delete (CRUD) interface maker. It relies heavily on the
conventions expressed in its default configuration settings.

Overall, if all you need is a fancy interface for the underlying database, there
is probably nothing better for you than the Yii framework. Given the extensive
configuration options, any kind of application can be made from Yii.

Version 2 of the Yii framework is built utilizing the latest improvements in the PHP
infrastructure collected over the years. It uses the Composer utility (see https://
getcomposer.org/) as a primary distribution method, PSR levels 1, 2, and 4 from
the PHP Framework Interop Group guidelines (see http://www.php-fig.org/),
and PHP 5.4+ features, such as short array syntax and closures.

At the time of writing, Yii 2 is at the stage of late beta. Some changes are expected,
but there should not be backward-compatibility-breaking changes anymore. Thus,
the content of this book can be reasonably trusted even if the framework can attain
some additional features after this book is published.

What this book covers
Chapter 1, Getting Started, covers the simplest possible methods to raise a working
web application completely from scratch using the Yii framework.

http://www.yiiframework.com/
https://getcomposer.org/
https://getcomposer.org/
http://www.php-fig.org/

Preface

[2]

Chapter 2, Making a Custom Application with Yii 2, shows how the process of
implementation of a web application with a single, working, tested feature can
be done from scratch using the Yii framework.

Chapter 3, Automatically Generating the CRUD Code, shows how we can implement
a working, tested feature in an existing web application using only the code
generation facilities and not a line of custom code written.

Chapter 4, The Renderer, describes the details of how the framework renders its output
and presents some tricks to introduce customizations to the rendering process.

Chapter 5, User Authentication, discusses the tools to provide authentication to
application visitors.

Chapter 6, User Authorization and Access Control, explains the ways to control access
for application visitors, and, especially, about the role-based access control system.

Chapter 7, Modules, returns from the exact features of the framework to its
fundamentals. Here we will clearly understand the internal structure and logic
of the Yii-based application and how it influences the overall design.

Chapter 8, Overall Behavior, is about the infrastructure of the Yii-based application.
We will learn about several features that affect the application as a whole.

Chapter 9, Making an Extension, tells us how to make the extension to the Yii 2
framework and prepare it so that it is installable in the same way as the extensions
built-in to the basic distribution of the framework itself.

Chapter 10, Events and Behaviors, investigates the intricacies of the system inside
the Yii 2 framework allowing us to attach custom behavior to many of the usual
activities of the application, such as fetching a record from the database or rendering
a view file.

Chapter 11, The Grid, has two purposes. First, it explains the powerful and complex
GridView widget, which allows you to make complicated, table-based interfaces
relatively easily. Second, it presents a different approach in developing applications
using the Yii 2 framework, the one that is customary in its community, so you can
see both the advantages and the disadvantages of both approaches.

Chapter 12, Route Management, explains the top level of the framework, that is, how it
responds to HTTP requests from actual visitors.

Chapter 13, Collaborative Work, concludes the book by presenting the methods that
help to manage the code base of a Yii-based application when there are several
developers working on it.

Preface

[3]

Appendix A, Deployment Setup with Vagrant, shows a simple way to construct a virtual
machine for your local development, which you can use for building the examples
from this book.

Appendix B, The Active Form Primer, contains an extension to Chapter 11, The Grid, in
which we use another powerful user interface widget of Yii 2, the ActiveForm. It
was excluded from the chapter text because it's not directly related to the GridView
widget, but we could not gloss over it completely. Without the ActiveForm, the
feature we were building in Chapter 11, The Grid, is not complete.

Through the course of the book, starting from Chapter 2, Making a Custom Application
with Yii 2, we'll be working with a single code base. Later chapters will build over
the work previously done, so the book is expected to be read sequentially, without
skipping or changing order.

Who this book is for
The text is targeted at existing, established developers who want to learn quickly
whether the Yii framework can fit their demands and, especially, workflow. It is not
a reference, but rather a guide. More than that, the reader is expected to have a copy
of the source code and an official documentation as supplementary material
while reading.

We will expect some relatively high qualifications from the reader, as several basic
development concepts such as POSIX-compatible command line, version control
system, deployment pipeline, automated testing harness, and an ability to navigate
through the code base by fully qualified names of classes are assumed as obvious
and not requiring any explanation.

What you need for this book
A workstation with the full LAMP stack installed, that is, having Apache web
server, MySQL relational database management system, and PHP runtime installed
over some Linux-based distribution. If the reader is capable enough, then any of
these requirements can be swapped for different vendors, except PHP, which is
quite obvious.

You have to use PHP Version 5.4 and higher, because it's a requirement for Yii 2,
and generally, you don't have any reason to use previous versions anymore.

Even if you don't use a POSIX-compatible OS, such as any Linux-based distribution
or Mac OS X, you should have a Bash-like shell, as all command-line examples in
this book assume the availability of this shell.

Preface

[4]

An Internet connection is required to download many necessary libraries used
throughout this book. Even if you don't update anything, you'll download
approximately 320 MB of libraries, so mobile Internet probably will not cut it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now run the following command to create a subdirectory called basic, and fill it
with the basic application template."

A block of code is set as follows:

require_once(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

require_once(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

Any command-line input or output is written as follows:

$ php composer.phar require --prefer-dist yiisoft/yii2-debug "*"

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You should fill the
available fields as shown in the following table, and hit the Preview button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started
Let's see how we can set up a website with Yii 2 from scratch and with a minimum
amount of effort. The goal is to learn about the installation procedure of the Yii
application boilerplates offered by developers and the starting set of features
provided in them.

A basic application
The most basic and straightforward way to get started with Yii 2 is to use the
application boilerplate published by the Yii 2 team on their GitHub repository
(https://github.com/yiisoft/yii2) and available through the Composer tool.
In the prior versions of Yii, you had to manually download and extract the archive
with the framework contents. While you can still do the same in Yii 2, this version is
carefully crafted so that it's especially simple to install it using the Composer tool.

Installation of a basic application template
Find a suitable directory in your hard drive and fetch the Composer PHP
archive (PHAR) into it in any way suitable for you, for example, using the
following command:

$ curl -sS https://getcomposer.org/installer | php

Now run the following command to create a subdirectory called basic, and fill it
with the basic application template:

$ php composer.phar create-project --prefer-dist --stability=dev \

yiisoft/yii2-app-basic basic

https://github.com/yiisoft/yii2

Getting Started

[8]

Please note that Yii 2 specifies several system-wide dependencies
for itself. You probably will need to consult the composer.json
file inside their GitHub repository to learn about them beforehand
(https://github.com/yiisoft/yii2). But in any case,
Composer will tell you what you need to install to make Yii 2
workable. Yii 2 gets new updates quite often and its requirements
are a moving target.

It's a line split into two lines for readability, with a slash denoting the overflow of the
command line to the next line of text. Shell interpreters on Unix-like systems should
understand this convention, so you can probably just copy and paste the code verbatim
and it'll be executed correctly. You better check the documentation of Composer for
the meaning of the beginning of the preceding command, but the part relevant to us is
yiisoft/yii2-app-basic basic, which means "copy contents of the repo published
at https://github.com/yiisoft/yii2-app-basic to our local folder named
basic." The command will install the project skeleton in the form of a set of predefined
folders, and among them the vendor subdirectory, which contains quite a lot of other
Composer packages. Inside the basic folder will be your application root.

After Composer finishes installing the required packages, you can just issue the
following command:

$ php -S localhost:8000 –t basic/web

Here, 8000 is the port number, which you can change to anything you want.
This will launch the web server built into PHP.

This is not the preferred setup for PHP-based web applications, of
course. The built-in web server was used only as a "smoke test" to
verify that everything in general works. It is suitable only for local
development without a heavy load. The next chapter will deal with
the real-world deployment of a Yii-based web application.

Point your web browser at the http://localhost:8000/ URL. You should see
the welcome page for the Yii 2 application, which means that you're done setting
things up.

https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2-app-basic
http://localhost:8000/

Chapter 1

[9]

Specifics of the basic application template
You can get a comprehensive overview of the various folders inside the basic
template by reading the README file provided with the template (https://
github.com/yiisoft/yii2/blob/master/apps/basic/README.md), or by reading
the global Yii 2 documentation page describing basic applications (http://www.
yiiframework.com/doc-2.0/guide-start-installation.html).

The most important thing you should understand is that the publicly available web
root directory is just one folder in the overall code base. It's the web directory for our
basic application. Every other folder is outside the web root directory, that is, out of
reach for the web server.

As you have already seen in the installation description, given that you have PHP
and, optionally, curl, this code base is ready to use right from the start; no specific
environment is needed to be set up. All the dependencies are managed through the
Composer tool.

https://github.com/yiisoft/yii2/blob/master/apps/basic/README.md
https://github.com/yiisoft/yii2/blob/master/apps/basic/README.md
http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

Getting Started

[10]

A three-tier automatic testing harness is already set up in the basic template. It contains
acceptance, functional, and unit tests covering most of the functionalities. The tests
already included in the template are useful as examples that show how to utilize the
testing framework used, which is Codeception (http://codeception.com/).

The template can be really useful to you if all you need is something like a news feed
feature or a web tool spanning a couple of pages. However, the absence of separation
by subsystems, such as the administrative backend and public frontend, will start to
hinder you on a larger web application; probably, an application with more than just
10 unique routes.

Note that by reading the project dependencies in the composer.json file, Yii 2 has
several important parts separated out as pluggable packages, and they are already
included in your code base by Composer. These packages are listed as follows:

• Gii, the code generator, which we will discuss in detail in Chapter 3,
Automatically Generating the CRUD Code

• The debug console that is already enabled on the basic application template
• A wrapper around the Codeception testing framework
• A wrapper around the SwiftMailer library (http://swiftmailer.org/),

which can be found at https://github.com/yiisoft/yii2-swiftmailer
• The Twitter Bootstrap UI library packaged as a Yii 2 asset bundle

(it's practically ubiquitous nowadays, but here's the link anyway:
http://getbootstrap.com/)

The first three are set up so that you get them only when you are developing the
application, since they are useless and even harmful in the production environment.
Most probably, you'll need all of these on any serious project though.

A short overview of the basic application installation:
$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar create-project --prefer-dist \
--stability=dev yiisoft/yii2-app-basic basic
$ php -S localhost:8000 -t basic/web

An advanced application
Apart from the basic application template, Yii 2 has an advanced application
template. It's geared more towards medium-sized applications (such as applications
that are really useful to businesses), and its main feature is two separate web
interfaces: one dedicated to content management and the other to presenting this
content to visitors. So, you get an almost complete CMS skeleton with this template.

http://codeception.com/
http://swiftmailer.org/
https://github.com/yiisoft/yii2-swiftmailer
http://getbootstrap.com/

Chapter 1

[11]

Installation of an advanced application
template
The first steps are the same as for a basic template. You need to fetch the Composer
executable and set up a new project using it:

$ curl -sS https://getcomposer.org/installer | php

$ php composer.phar create-project --prefer-dist --stability=dev \

yiisoft/yii2-app-advanced advanced

You can see that the difference is just that instead of the word "basic", we use the
word "advanced".

Now, let's make further changes. First, go to the newly created directory named
advanced. After this, you need to generate the required local configuration by
running the following command:

$./init

Yes, it's just the init script from the root of the code base. It'll ask you whether
you want a development mode or a production mode and create all the necessary
auxiliary configuration snippets and entry scripts. To be precise, it just copies the
contents of the dev or prod folders from the environments subdirectory depending
on whether you selected the development environment or the production one. Just
open the environments subdirectory and you'll understand how it works.

Next, you need to create the database to be used by this application. By default, for
configuration of a development environment, you have to set up a MySQL database
named yii2advanced accessible from the localhost at the default MySQL port for
user root without any password. You can see the details in the common/config/
main-local.php file.

Given that you have the database set up, you need to run migrations. We'll talk
about migration scripts in the next chapter (and we will even write several scripts
ourselves), but if the very concept of database migrations is foreign to you, you can
read about it in the official documentation at the Yii 2 website (at the time of writing
this, there is no official documentation, but the framework has the docs included
in the GitHub repository at https://github.com/yiisoft/yii2/blob/master/
docs/guide/db-migrations.md).

Just run the following command anyway:

$./yii migrate

https://github.com/yiisoft/yii2/blob/master/docs/guide/db-migrations.md
https://github.com/yiisoft/yii2/blob/master/docs/guide/db-migrations.md

Getting Started

[12]

It'll present you with a list of exactly one migration and ask you for confirmation
before doing its job.

Now, you are ready. Make both the sides of the application accessible for you by
executing the following commands:

$ php -S localhost:8080 -t frontend/web

$ php -S localhost:8081 -t backend/web

As with the basic application template, we are using the built-in PHP web server just
because it's a lot simpler to be demonstrated in the book than explain how to set up
Apache or some other web server to serve from these folders.

Now you'll have the backend side of the application intended to be used by content
managers and the frontend side of the application intended to be the website your
visitors will see. Also, note that you have a completely controllable console runner
launched by the yii script you used when doing migrations.

Advanced application has exactly the same frontend as basic application. Here is
how its backend looks like:

Chapter 1

[13]

The advanced template backend is locked down initially. After logging in, you get
the same page as the one from the basic template or the advanced template frontend,
but with only the login feature in the menu.

Specifics of the advanced application
template
The most important thing about the advanced application template is that it is three
basic application templates wired together as one:

• Inside the frontend folder is the application structure for the public-facing
side of your website. Real functionalities and the content of your website or
web application is expected to be placed here.

• The folder named backend is for your CMS, protected from unauthorized
access. You are expected to place all of your admin-accessible CRUD here.

• The console folder is mainly for your custom console commands, in hope
you'll have any, and a lot more likely, for your migration scripts.

• The common folder contains code that will be used by all the entry points,
since it's a single application after all.

Of course, nobody forces you to use the frontend and backend sides as described.
You just have two web frontends sharing the same code base, so you are free to use
them as you wish. However, the UI already prepared for the advanced template that
has a password-protected backend right from the start.

You should know about the login feature for the freshly installed advanced
application template. Initially, it had no users defined, and you had to create one by
utilizing the signup feature at the frontend. After that, you'll be able to login to both
backend and frontend using the created credentials. The frontend is identical to the
basic application, and the backend is stripped of everything except the login feature
and front page, so everything is up to you.

A short overview of the installation of the advanced application:
$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar create-project --prefer-dist \
--stability=dev yiisoft/yii2-app-advanced advanced
$ cd advanced
$./init
$ mysql -u root -e 'create database yii2advanced'
$./yii migrate
$ php -S localhost:8080 -t frontend/web
$ php -S localhost:8081 -t backend/web

Getting Started

[14]

Summary
Yii 2 allows you to configure almost all paths used by the framework, and hence you
can create any directory tree you wish. By utilizing the PHP 5.3 namespaces wisely,
you can even have a physical structure of your project different from the logical one,
that is, your files will lie in folders differently from how your classes are structured
by namespaces. This will surely be quite tedious to do though.

In the next chapter, we'll look at how we can utilize Yii in a (albeit small) real-world
project, built completely from scratch, and without using the templates we saw in
this chapter.

Making a Custom Application
with Yii 2

In this chapter, we'll see how Yii can help us build web applications. The example
will be reasonably small, but it will be done using proper software engineering
disciplines. We'll go through all the steps of application development, each step
backed by the bleeding-edge best practice described in the definitive books on
this topic:

• Building the domain model: This is explained in Domain-Driven Design:
Tackling Complexity in the Heart of Software, Eric Evans, Addison-Wesley
Professional

• Setting up the testing harness: We'll follow the acceptance test-driven
development practice described in Growing Object-oriented Software, Guided by
Tests, Steve Freeman and Nat Pryce, Addison-Wesley Professional

• Setting up the deployment pipeline: This is explained in the
following books:

 ° Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation, Jez Humble and David Farley, Addison-Wesley
Professional

 ° Continuous Integration: Improving Software Quality and Reducing Risk,
Paul M. Duvall, Steve Matyas, and Andrew Glover, Addison-Wesley
Professional

www.allitebooks.com

http://www.allitebooks.org

Making a Custom Application with Yii 2

[16]

• The Red-Green-Refactor development cycle: This is explained in depth in
the following books:

 ° Clean Code: A Handbook of Agile Software Craftsmanship, Robert Martin,
Prentice Hall

 ° Test-Driven Development by Example, Kent Beck, Addison-Wesley
Professional

• Deployment and manual tests: This fits into the Continuous Delivery
paradigm too, but these steps are inevitable anyway

Stay focused.

The design stage
Pay attention to the fact that we will be using this example application through
the whole book. In this section we'll define the landscape for the whole adventure
before us.

Task at hand
Let's pretend we are a small business providing some services. We have a particular
number of clients we have connections with, and the amount is so large that managing
it on paper and business cards is too unwieldy. So, we need some sort of automated
way of finding the full profile about a given client.

For starters, we need some sort of create-read-update-delete (CRUD) user interface
for simple records describing the most essential attributes of our clients.

It's obvious that as we as a business will grow and evolve, the same will happen with
our client management, and so our application will grow and evolve too. We should
account for changes right from the start.

As we will be eating our own dog food, this software better be of the highest
possible quality.

Domain model design
Obviously, we will be dealing with customer models in our application. Between
the "customer" and "client" terms, we choose "customer" for accuracy.

A customer is a person who has a name, address, e-mail, and phone number at the
minimum. We provide services for customers, which are counted in hours, and we
are being paid fees for these hours according to the contract. That's what we will
include in the first iteration of designing.

Chapter 2

[17]

Our primary assumption is that each customer is a single person, so we don't
deal with companies that can have multiple people as contacts. The name is an
incredibly complex construct; if we are to delve into the details of its structure, such
as honorifics, titles, nicknames, middle names, patronymics, and so on. But we
aren't really interested in the structure of the customer's name, we need it only for
identification purposes. So, we will represent it as a line of text, allowing us to write
a name in free format. The address is a construct of the same complexity, but this
time we have to retain the structure instead of using plain strings again, because we
will need to do two things with addresses:

• Calculate some statistics, such as how many customers we have in
a particular city

• Properly generate the address lines according to the postal rules in
different cultures

So, we decide on the structure as follows:

• Purpose (for example, billing address, shipping address, home address,
or work address)

• Country
• State, for countries partitioned into several regions, such as the USA
• City
• Street
• Building
• Apartment/office
• Receiver name
• Postal code

We should note that an address can be for an apartment, postal box, office in an
office building, employee in an organization, or for a whole building. Also, a
customer can have many addresses.

The phone entity has the following attributes:

• Purpose (personal or work)
• Number

A customer can have several phone numbers, hence the "purpose" field.

Making a Custom Application with Yii 2

[18]

Apart from names, addresses, and phone entities, our staff will surely need a way to
assign a free-form textual description of a customer, which we'll simply name notes.
Also, taking note of a birthday would be cool too. And e-mail, of course. By the way,
a single customer can have several e-mails.

Let's stop here.

We can now figure out the complete aggregate for the customer model, which is
depicted in the following diagram:

Customer

Notes

Name

Email Phone

Address

Birthday

**

*

According to the Eric Evans book Domain-Driven Design, the customer is an entity,
that is, an object whose state will surely change over time, and we care about
its identity across the system. Everything else is a value object, that is, an object
whose state will not change after initial creation, and thus they are completely
interchangeable.

For the sake of simplicity, we will not detail how business is done with the
customer, because we will just not be able to cover it all across this book. However,
let's mention that we have some sort of services we provide to our customers,
and it'll be useful to maintain records of them too. This model will be used in the
following chapter.

Target feature
Let's fulfill one specific task. Given that someone called us by phone (assuming we
have identified the number), we want to get all the details we have gathered so far
about the person who's calling. If we don't have such a number associated with
someone registered in our application, then we know he or she is not our customer
(yet). If we do have the number registered, then we can at least greet this person by
his or her name, which is superb customer service.

Chapter 2

[19]

We should understand that to make queries to the database, we need a way to at
least insert data into it and potentially a way to edit and delete it. Thus, our feature
set for the first iteration of development will be as follows:

• To record info about a customer into the database
• To edit info about a customer in the database
• To delete info about a customer from the database
• To query info about a customer by his or her phone number from

the database

Building the way to make generic queries to a database is not the goal. We will only
deal with the queries containing a phone number.

Let's begin then.

Initial preparations
We will be working on the same application in all of the following chapters until the
end of the book, so the preparations are to be done only once.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Setting up project management
Our example application is essentially a Customer Relation Management one,
that is, a CRM application. Thus, we will start with a folder named crmapp.

Please note that all examples of command-line invocations
through the whole book assume that your current working
directory is the crmapp folder and not anywhere deeper or
higher in the filesystem hierarchy.

Version 2 of Yii has the Composer package manager as the preferred method of
installation, so we will use this tool too. While you can read the details in Composer's
full documentation, here's a crash course of it:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Making a Custom Application with Yii 2

[20]

• All packages installed by Composer are kept inside a special subdirectory
under your project's root called vendor.

• All dependencies and other information about your data relevant to
Composer are kept in the manifest file called composer.json under your
project's root. As long as you have the dependencies declared there, you can
safely purge the vendor folder at any time as it'll be repopulated by the next
call to php composer.phar install or php composer.phar update.

The documentation for Composer presents a nice one-line command that will get the
Composer executable to you:

$ curl -sS https://getcomposer.org/installer | php

Of course, if you don't have CURL lying somewhere in your PATH, you can just go
to the official site of Composer at https://getcomposer.org/ and grab the PHAR
archive from there.

After that, Composer will be invoked whenever composer.phar is called:

$ php composer.phar <command>

It is assumed that you use some version control system for your code base. The code
bundle for this book uses Git (http://git-scm.com/).

Preparations in essence
$ mkdir crmapp

$ cd crmapp

$ curl -sS https://getcomposer.org/installer | php

$ git init

Setting up the testing harness
As we declared in the opening paragraph of this chapter, we will follow the test-first
development practice based on acceptance tests. The reasons behind this decision are
as follows:

• We will have a way to check whether the application works as intended
without resorting to tedious manual testing

• We do not have a real need for deep unit testing because most of our work
will involve wiring together already-existing components with rudimentary
logic in between, so end-to-end acceptance tests through the UI is the most
simple and viable solution

https://getcomposer.org/
http://git-scm.com/

Chapter 2

[21]

We need some form of acceptance tests in the system anyway if we care about user
feature requests at all.

Yii 2 has support for the Codeception testing framework built-in, with http://
codeception.com/ being the official website for it. We will never use it in this book,
but the extension named yii2-codeception (see https://github.com/yiisoft/
yii2-codeception) provides a set of helper classes to integrate your tests more
deeply with the Yii framework.

Let's declare that we want Codeception available in our project. Run the
following command:

$ php composer.phar require "codeception/codeception:*"

Wait a bit until Composer finishes.

Here are the contents of your composer.json at this point:
{
 "require": {
 "codeception/codeception": "*",
 }
}

The php composer.phar require <packagename:version>
command is just a helper method to insert lines inside the require
block of the manifest and call the update routine.

Of course, we'll need to add Yii 2 as a dependency at some point, but for now, let's
do one thing at a time.

Now, we have the Codeception executable available at ./vendor/
bin/codecept. This location is a bit long to type, so a POSIX-
compatible shell like bash allows you to reduce it as follows:
$ alias cept="./vendor/bin/codecept"

It's better now. In all of the following command-line examples in this
chapter, we assume you have done this substitution.

Codeception is a complex system, so we'll need to rely on its self-building system
for now. To not delve unnecessarily into the inner workings of Codeception, let's
just stick to defaults. Call the following command:

$ cept bootstrap

This will generate a tests directory and configuration tree for Codeception.

http://codeception.com/
http://codeception.com/
https://github.com/yiisoft/yii2-codeception
https://github.com/yiisoft/yii2-codeception

Making a Custom Application with Yii 2

[22]

Now, let's create the first dummy acceptance test to check the top level of our
test harness:

$ cept generate:cept acceptance SmokeTest

This command will generate SmokeTestCept.php in the tests/acceptance
directory. When you open it, you'll see something like the following, depending
on the version of Codeception:

$I = new AcceptanceTester($scenario);
$I->wantTo('perform actions and see result');

AcceptanceTester is the class of objects holding all the methods we can use to
test our application imitating a real user behind the browser. Codeception also has
CodeGuy for unit tests and TestGuy for functional tests, but that's for later.

When we say AcceptanceTester.wantTo("do something"), we just create a title
(enclosed in double quotes) for the test actions following this invocation.

Let's change the dummy test to a simple smoke test that our landing page is up for:

$I = new AcceptanceTester($scenario);
$I->wantTo('See that landing page is up');
$I->amOnPage('/');
$I->see('Our CRM');

So, we expect to see the line Our CRM when we access the landing page of our
future application. Let's pretend that we'll have such a title somewhere in there.

Now we run the test:

$ cept run

We see it fail because we don't have the web server serving anything on
the / request. Thus, we arrive at the point where we need to write production
code to satisfy our tests. However, right now, it's not the production code we need,
but the infrastructure to serve it. We need a machine to deploy to.

Setting up the deployment pipeline
The problem is described here. The web acceptance tests that we will be writing
imitate a real user who opens the web application in the browser and interacts
with it using the visible UI. So, for them to work, we need an application that is
fully deployed to somewhere accessible from the machine on which we will run
acceptance tests.

Chapter 2

[23]

In most cases, you'll decide to just run the application on the same
machine on which you'll do the source code editing. Wrong! Don't
do it.

Most probably your own workstation is not the same as the machine your web
application will ultimately run on. This has been an ongoing problem in the industry
for decades now, and you can be sure that when your application's lifetime is
measured in years, you will get the same integration problems if you test your
application on the machine with a different environment than the production server.
Of course, this doesn't apply to the prepackaged software that you sell to various
users and when you require portability. In our case, we assume a stationary web
application for a single deploy point, so portability is not an issue, but reproducible
tests are an issue.

Ultimately, your acceptance testing will consist of the following steps:

1. Deploy the application to the test server.
2. Run acceptance tests on your machine.

Of course, you can run acceptance tests on the test server. To do so, you just need to
configure tests to use the usual loopback network interface, localhost. However,
it will require you to install additional software for your test server irrelevant to the
application itself. For example, if you decide to run full-stack, in-browser tests using
Selenium, you'll probably need to install a web browser, Java runtime, and virtual
framebuffer software on the test server, and this will lead to installation of a significant
amount of system-related libraries, which probably is just a waste. It's a lot more
efficient to use your own desktop environment to run the web acceptance tests.

This cannot be said about unit and functional tests, of course. Unit tests, due
to their nature, are run on the raw code base, without the need to deploy at
all. Functional tests should be run on the deployed application because they
are required to test the validity of interactions between the configured and
working parts of the final application.

In any case, ideally you should end with a simple command, named something like
deploy, which will do the following:

1. Access and launch the target machine (especially if it's a virtual
machine instance).

2. Ensure that there is a valid environment expected by the application.
3. Copy the current state of the code base to the target machine.

Making a Custom Application with Yii 2

[24]

4. Configure the copied code base for the environment on the target machine.
5. Launch the application.

You should be able to do all of the preceding steps by typing deploy in the
command line and hitting Enter. As Martin Fowler said in his definitive article
Continuous Integration (seen last time at http://martinfowler.com/articles/
continuousIntegration.html), this should become a non-event for you.
Ideally, deployment should happen automatically when you launch the
acceptance test harness.

In this book, we'll concern ourselves with only the last two steps of the procedure.
As we're working with a PHP application, the "launch the application" step typically
will be completed as soon as we have a web server running on a target machine.

This is a book about web application development and not about system
maintenance, and it's targeted at web developers and not operation engineers.
However, in Appendix A, Deployment Setup with Vagrant, we prepared the description
of one setup based on the usage of a virtual machine, which you can easily repeat
on just any desktop workstation. You will not need a separate physical machine,
and you will still be able to imitate a real-world deploy procedure. If you don't have
other options, you are strongly encouraged to read it. In fact, all of the code in this
book was prepared using the setup described there. Let's pretend that you have an
environment prepared with a deploy command, and for simplicity, we assume it'll
be run before each run of the acceptance testing suite. The result of your deploy
should be the single URL accessible from your machine, which the acceptance
testing harness will use as the entry point to your application.

Now, let's go to the section of Codeception configuration that is relevant for the
acceptance test suite within the file tests/acceptance.suite.yml, and add that
URL in the modules.config.PhpBrowser.url token. The file, assuming you did
not modify anything else and nothing has changed in the default Codeception
installation since this chapter was written, should look like the following:

class_name: AcceptanceTester
modules:
 enabled:
 - PhpBrowser
 - WebHelper
 config:
 PhpBrowser:
 url: 'http://YOUR.APPLICATION.URL'

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Chapter 2

[25]

For example, if you configure the target machine with the Apache web server using
the IP-based virtual host technique (as described at https://httpd.apache.org/
docs/2.2/vhosts/ip-based.html), the modules.config.PhpBrowser.url value
can look like http://127.0.0.1:8000.

As we change the configuration, we should rebuild the Codeception harness. Here is
the command to do it:

$ cept build

Do not forget that cept is an alias we created ourselves. The real executable is in the
./vendor/bin/codecept file.

If you run the tests now:

$ cept run

You will see an output as shown in the following screenshot:

You'll see that Codeception now shows something on the / route but not what
we expected it to. It'll either be a 404 error or 403 error, depending on the version
of Apache used, or maybe something else if you are using a different web server.
Anyway, the root of the problem is simple, that is, we need an index.php file inside
the web-accessible directory.

https://httpd.apache.org/docs/2.2/vhosts/ip-based.html
https://httpd.apache.org/docs/2.2/vhosts/ip-based.html

Making a Custom Application with Yii 2

[26]

Making a web application entry point visible
Let's decide on the convention here: the only folder that will be accessible from
the Web will be called web, placed at the root of the code base. For example, if
your web server is Apache, it'll be the web folder's path that you put into the
DocumentRoot directory.

Given that, just put the following content as the index.php file in the
web subdirectory:

Our CRM

Yes, just a seven-character text file. After all, that's everything our acceptance test
expected, right?

Then we run the tests:

$ cept run

We get the following output:

Now we need to allow ourselves to use Yii 2 in our project. An easy way to do this is
just to write the full, end-to-end test, which describes our desired functionality.

Introducing the Yii framework into our
application
Now that we have the entire supporting infrastructure we need to begin working
with, let's return to our first feature we defined at the design stage and define the
acceptance test for it.

Chapter 2

[27]

First end-to-end test
The main point with end-to-end acceptance tests is that we have to deal with our
application using only its UI. We don't have any way of direct access to the database
or, worse, filesystem around the application. So, to test a query for some data in the
database, this data should be inserted into the database first. And it should be done
using the UI.

Here are the resulting test steps:

1. Open the UI for adding customer data to the database.
2. Add customer #1 to the database. You should see the Customer List UI

with one record.
3. Add customer #2 to the database. You should see the Customer List UI

with two records now.
4. Open the UI to query customer data by the phone number.
5. Query using the phone number of customer #1. You should see the query

results UI with data for customer #1 but not for customer #2.

So, this test forces us to have three user-interface pages: the new customer records,
the customer list, and the query UI. That's part of why it's called "end-to-end" testing.

Translated to the Codeception acceptance test suite, the procedure just described will
look like this:

$I = new \AcceptanceTester\CRMOperatorSteps($scenario);
$I->wantTo('add two different customers to database');

$I->amInAddCustomerUi();
$first_customer = $I->imagineCustomer();
$I->fillCustomerDataForm($first_customer);
$I->submitCustomerDataForm();

$I->seeIAmInListCustomersUi();

$I->amInAddCustomerUi();
$second_customer = $I->imagineCustomer();
$I->fillCustomerDataForm($second_customer);
$I->submitCustomerDataForm();

$I->seeIAmInListCustomersUi();

$I = new \AcceptanceTester\CRMUserSteps($scenario);

Making a Custom Application with Yii 2

[28]

$I->wantTo('query the customer info using his phone number');

$I->amInQueryCustomerUi();
$I->fillInPhoneFieldWithDataFrom($first_customer);
$I->clickSearchButton();

$I->seeIAmInListCustomersUi();
$I->seeCustomerInList($first_customer);
$I->dontSeeCustomerInList($second_customer);

Let's put it as is inside the tests/acceptance/QueryCustomerByPhoneNumberCept.
php file. This is our goal for the current chapter.

Let's go over the not-so-obvious things in this test script.

First, we broke down the scenario into two logical parts and made two different
subclasses of AcceptanceTester to stress this distinction. Codeception has a nice
helper to automatically generate subclasses of different Guy classes, using which
we created the \AcceptanceTester\CRMOperatorSteps class as shown in the
following command:

$ cept generate:stepobject acceptance CRMOperatorSteps

Composer will prompt you for the names of the methods in the step where the object
class is being generated. Just hit Enter there without writing anything to tell it that
you want to start afresh.

This helper is used to support the StepObject pattern (see http://codeception.
com/docs/07-AdvancedUsage#StepObjects), so it'll automatically append the
Steps suffix to the CRMOperatorSteps class name. Of course, it's a lot more natural
to reason about the subclasses of AcceptanceTester as having different roles than
having some abstract containers of steps. However, if we forcefully rename the
generated classes, removing the unnecessary suffix, we would lose the auto-loading
ability that Codeception automatically provides us with, so we'll just tolerate it. The
preceding incantation places the CRMOperatorSteps.php class file into the tests/
acceptance/_steps subdirectory.

In the same way, the CRMUserSteps class can be generated.

Now, let's define the steps mentioned in the test scenario. Almost all of these
high-level steps will just be the containers of the more low-level steps built-in
with the acceptance tester shipped with Codeception.

First, we will see the CRM operator steps.

http://codeception.com/docs/07-AdvancedUsage#StepObjects
http://codeception.com/docs/07-AdvancedUsage#StepObjects

Chapter 2

[29]

The "I am in Add Customer UI" step will just be an opening of the route
corresponding to our future Add Customer UI, so it'll look like this:

 function amInAddCustomerUi()
 {
 $I = $this;
 $I->amOnPage('/customers/add');
 }

"Imagine Customer" is a helper to generate customer data to be entered in the Add
Customer UI automatically and in a random way. Such placeholder data can be
generated in any way. We'll be using the amazing Faker library (https://github.
com/fzaninotto/Faker) to generate the correct-looking data for us. However, we'll
look into that a bit later. Right now, the need to enter data in the Add Customer UI
forces us to decide on the actual UI. We don't go after any fancy interface here; it'll
be just a plain HTML form with the Submit button. But what fields should be there?
Let's return to our Customer aggregate and see what parts of it we crucially need to
fulfill our test scenario:

Customer

Notes

Name

Phone

Birthday

*

For simplicity, we leave off the E-mail and Address models for later. Of course,
we don't take into account the Contract aggregate at all. For the task to be any
"interesting", we include all the unique parts of the customer: Name, Birthday, and
Notes. Do remember that Name is a structure and not just a line of text like Notes.

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Making a Custom Application with Yii 2

[30]

Now, let's settle on the fields in our Add Customer form. Please pay attention to
the naming of form fields; it's not arbitrary and corresponds to our future database
schema and the Yii 2 model's configuration. Have a look at the following table:

Field Name in form
Full Name CustomerRecord[name]

Birth Date CustomerRecord[birth_date]

Notes CustomerRecord[notes]

Phone Number PhoneRecord[number]

Note that while in our design one customer can have several phones, here we allow
only one. We cannot implement features until we have a basic test done for it, and
our test does not explicitly check the ability to enter several phone numbers (yet).

So, we can now define the CRMOperatorSteps.imagineCustomer method. First of
all, let's bring the Faker library into our project:

$ php composer.phar require "fzaninotto/faker:*"

Then, let's consider a customer with the attributes defined in the following method:

 public function imagineCustomer()
 {
 $faker = \Faker\Factory::create();
 return [
 'CustomerRecord[name]' => $faker->name,
 'CustomerRecord[birth_date]' => $faker->date('Y-m-d'),
 'CustomerRecord[notes]' => $faker->sentence(8),
 'PhoneRecord[number]' => $faker->phoneNumber
];
 }

Our imagination here makes a structure for us, which we can easily use in our
fillCustomerData method:

 function fillCustomerDataForm($fieldsData)
 {
 $I = $this;
 foreach ($fieldsData as $key => $value)
 $I->fillField($key, $value);
 }

Chapter 2

[31]

The method to submit the form will be straightforward; let's just name the
button Submit:

 function submitCustomerDataForm()
 {
 $I = $this;
 $I->click('Submit');
 }

Then, we need only two methods, one for checking whether we are inside the
Customer List UI and another to actually go there:

 public function seeIAmInListCustomersUi()
 {
 $I = $this;
 $I->seeCurrentUrlMatches('/customers/');
 }

function amInListCustomersUi()
 {
 $I = $this;
 $I->amOnPage('/customers');
 }

In the Codeception ideology, assertion methods are expected to have the see prefix
on the names, so we adhere to it.

We use CurrentUrlMatches to match URLs using regular expressions instead
of the more strict CurrentUrlEquals, because we assume there'll be some query
parameters at the end of the URL.

With all these methods defined in the CRMOperatorSteps class, we now have the
first half of our test case completed (which means runnable).

Let's get done with the test steps for a CRM user, who'll do the querying.
The following changes are to be done in the CRMUserSteps class. First, the
obvious one is as follows:

 function amInQueryCustomerUi()
 {
 $I = $this;
 $I->amOnPage('/customers/query');
 }

Making a Custom Application with Yii 2

[32]

Let's just name the field to enter the phone number in the same way we named it in
the Add Customer form as follows:

 function fillInPhoneFieldWithDataFrom($customer_data)
 {
 $I = $this;
 $I->fillField(
 'PhoneRecord[number]',
 $customer_data['PhoneRecord[number]']
);
 }

Let's name the button to start searching for customer data as the Search button
as follows:

 function clickSearchButton()
 {
 $I = $this;
 $I->click('Search');
 }

Then, we arrive at the duplication of CRMOperatorSteps.
seeIAmInListCustomersUi:

 function seeIAmInListCustomersUi()
 {
 $I = $this;
 $I->seeCurrentUrlMatches('/customers/');
 }

Let's just stick to the Rule of Three proposed in Refactoring: Improving the Design of
Existing Code, Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts,
Addison-Wesley Professional, and let this method be as it is.

Lastly, here are our assertions:

 function seeCustomerInList($customer_data)
 {
 $I = $this;
 $I->see($customer_data['CustomerRecord[name]'], '#search_
results');
 }
 function dontSeeCustomerInList($customer_data)
 {
 $I = $this;

Chapter 2

[33]

 $I->dontSee($customer_data['CustomerRecord[name]'], '#search_
results');
 }

We should note that this is an extremely simple implementation, and it relies on
several assumptions, which will be held true at this stage of development:

• All customers have a name defined
• No customers have identical names
• Search results are being rendered inside the HTML element with the ID

search_results

Let's keep this test as it is for simplicity, but when we have more than one search
result, we should think about how to properly check for a particular search result's
existence (and most probably, the default semantics of the see method will not be
enough for us).

Quite an important question is why we don't check for the customer data being
shown in the Customer List UI after each addition of a new customer. After we
query for the phone number, we end up in the same Customer List UI after all.

Well, for now, the reasoning is dead simple: our goal is to check that we can query
for a customer by the phone number. Also, the existence of some assertions halfway
through the test case would violate the Single Assertion principle (explained in
detail in Clean Code, Robert Martin, Prentice Hall). However, as this is the end-to-
end acceptance test, doing this is probably not such a bad thing. Anyway, nothing
prevents us from extending this test further (again, it's an acceptance test imitating
the behavior of a real user), but for now, let's stick with this simple scenario.

If you run the completed test scenario now, you should get the following
error message:

1) Failed to add two different customers to database in
QueryCustomerByPhoneNumberCept
Sorry, I couldn't fill field "CustomerRecord[first_name]","Cheyanne":
Field by name, label, CSS or XPath 'CustomerRecord[first_name]' was
not found on page.

Scenario Steps:
2. I fill field "CustomerRecord[first_name]","Cheyanne"
1. I am on page "/customers/add"

We get this error because we don't have the HTML form served for the /customers/
add request.

We have finally arrived at the Yii 2 installation procedure.

Making a Custom Application with Yii 2

[34]

Yii 2 installation to the bare code base
We're going to make a totally custom application, which will not have the intention
to rely much on the directory structure conventions of the Yii framework, instead
just using its classes where it's convenient.

First of all, you need to declare Yii 2 as a dependency of your application.

Either add the required require line for Yii 2 manually in the composer.json file
or run the following command:

$ php composer.phar require "yiisoft/yii2:*"

If you edited the manifest manually, do not forget to call the installation command:

$ php composer.phar install

Composer will bring Yii 2 to your code base after that. It should end inside the
vendor/yiisoft/yii2 folder.

Checking the requirements
Yii 2 includes an important feature, which is a built-in requirement checker. When
you install one of the application templates discussed in Chapter 1, Getting Started,
you get a script named requirements.php in the root of your code base. It's very
useful, so make a copy and place it into the web subfolder. You can download this
file from the Yii 2 repository at https://github.com/yiisoft/yii2/blob/master/
apps/basic/requirements.php. After you get the file, you can run it from the
command line by calling the following:

$ php web/requirements.php

Alternatively, you can just point your browser at the URL http://<your_domain>/
requirements.php and get a nicely laid-out page with detailed explanations about
whether your deploy target satisfies the framework requirements.

An introduction to Yii conventions
A really high-level explanation of things is as follows. To serve any of the
requests coming to the application, Yii uses a single physical PHP script that
instantiates a special object of the \yii\web\Application class. This object uses
Yii's interpretation the of Model View Controller (MVC) composite pattern to
process the request and display the result back to the sender. If you forgot or were
unaware of the MVC before, then you probably want to read at least the official
documentation for Yii for an in-depth explanation.

https://github.com/yiisoft/yii2/blob/master/apps/basic/requirements.php
https://github.com/yiisoft/yii2/blob/master/apps/basic/requirements.php

Chapter 2

[35]

The Yii interpretation of MVC is as follows:

• View is a class that does the rendering of whatever you send to the client.
Usually, it is the HTML page, but you are not restricted to this

• Model is a class that contains all the business logic
• Controller is a class that receives the user request, decides what to do with it,

calls models if necessary to do the real work, and then uses a view to render
and send the result back to the user

The most subtle part of this scheme is the model concept. Depending on the
interpretations, a model is either what the controller uses to get data to put into a
view or actually is what the controller puts into a view. Yii 2 does not enforce any
approach, but its implementation of models assumes that the model is a container for
some data, either transient (in-memory only) or persistent (with the support of the
active record pattern).

So, a request passes through the following steps:

1. The web server receives the request and passes it to the index.php script.
2. A Yii Application object is created. It decides which Controller class

should be used to handle this request.
3. A Controller object is created. It decides what Action it should run

(they can be either methods of Controller or separate classes), and run it,
passing the request details there.

4. An action is performed, and, if it were properly constructed by the
programmer, it returns something rendered by the view. It's not enforced
by the framework in any way; you can have controller actions that do not
render anything.

5. A special application component is responsible for formatting data before
sending it back to the user.

6. Resulting data, be it HTML, JSON, XML, or an empty response, is sent
to the user.

Knowing these steps, let's modify our current entry script, so it'll render the same
thing, but using the Yii framework instead of displaying a raw text output. We'll look
at a nice flowchart with all the details in Chapter 12, Route Management.

www.allitebooks.com

http://www.allitebooks.org

Making a Custom Application with Yii 2

[36]

Building the wireframe code
Right now, we should have the following project structure:

We will start by introducing Yii 2 from the entry point script. At a reasonable
minimum, the index.php file should look like this:

<?php
// Including the Yii framework itself (1)
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
// Getting the configuration (2)
$config = require(__DIR__ . '/../config/web.php');
// Making and launching the application immediately (3)
(new yii\web\Application($config))->run();

At (1) in the code, we bring all that Yii needs to function properly to
our environment.

At (2) in the code, we get the configuration tree for the application. Yii application
config is a massive PHP array describing the initial values of attributes of the
application itself as well as its various components.

At (3) in the code, we make a new instance of the Application subclass representing
web applications and immediately call the method called run on it.

At (2) in the code we are loading a nonexistent file config/web.php. Let's make it:

<?php
return [
 'id' => 'crmapp',
 'basePath' => realpath(__DIR__ . '/../'),
 'components' => [
 'request' => [
 'cookieValidationKey' => 'your secret key here',
],
],];

Chapter 2

[37]

We must specify three settings:

• id: This is a mandatory identifier for our application. It is required because
later we can split our application into different so-called modules, which we
refer to using these IDs, and the top-level application obeys the same rules as
a common module.

• basePath: This is mandatory because it's basically the way for Yii to
understand where it exists in the host filesystem. All relative paths allowed
in other settings should start from here.

• components.request.cookieValidationKey: This is a leak from the
user authentication subsystem, which we will discuss in Chapter 5, User
Authentication. This setting is the private key for validating users using the
remember me feature, which relies on cookies. In earlier beta versions of Yii
2, this key was generated automatically. It was made visible by the 4e4e76e8
commit (https://github.com/yiisoft/yii2/commit/4e4e76e8838c
be097134d6f9c2ea58f20c1deed6). Apart from this setting, you can set
components.request.enableCookieValidation to false, thus disabling
cookie-based authentication completely. This will get your application
working, too.

Next, we'll add some mandatory folders, because Yii just throws exceptions in case
they are not there, and doesn't create them itself: web/assets and runtime. These
folders are used by the framework when the application is running.

Adding a controller
Each controller class should have three distinct qualities:

• It must belong to the namespace defined in the controllerNamespace
setting of the Application class.

• It must have a Controller suffix in the name.
• It must extend the \yii\base\Controller class. In the case of the

controllers that are meant to be used by the web application and not the
console one, we should extend the \yii\web\Controller class instead.

In addition, it's important to understand how Yii 2 will actually search for
controller classes.

Yii 2, in general, utilizes the autoloader compatible with the PSR-4 standard
(http://www.php-fig.org/psr/psr-4/). To put it simply, such an autoloader
treats namespaces as paths in the filesystem, given that there is a special root
namespace defined, which maps to the root folder of the code base.

https://github.com/yiisoft/yii2/commit/4e4e76e8838cbe097134d6f9c2ea58f20c1deed6
https://github.com/yiisoft/yii2/commit/4e4e76e8838cbe097134d6f9c2ea58f20c1deed6
http://www.php-fig.org/psr/psr-4/

Making a Custom Application with Yii 2

[38]

In our case, Yii 2 defines the \app namespace for us, which maps to the root
folder of the code base. As a result, for example, the default value of the
controllerNamespace setting of the application, which is \app\controllers,
will map to the directory called controllers at the root of code base, so all
controller class definitions must be placed in there.

Also, each class to be available through the Yii 2 autoloader has to be put into its own
file named exactly like the class itself.

So, let's create our first controller to satisfy the smoke test. We will not change the
default controller namespace setting, and so we will write the following piece of code
in the controllers/SiteController.php file:

namespace app\controllers;
use \yii\web\Controller;
class SiteController extends Controller
{
 public function actionIndex()
 {
 return 'Our CRM';
 }
}

This code heavily relies on the conventions of Yii. Without delving deep into the
topic of routing in Yii, we can say that without special settings defined, Yii uses the
actionIndex method of the controller named SiteController for the "/" request.

The most basic and straightforward way to define controller actions is to define them
as public methods of the controllers having the name prefixed by action. To get into
the SiteController.actionIndex method explicitly, you should request site/
index.php.

So, we have our smoke test passing with the Yii-based routing. Let's add some
helpers for ease of debugging.

Handling possible errors
You can get a lot of strange errors at this stage of development. Let's look at the
ways you can use to set up your application quickly and gather as much feedback
as possible.

First of all, when you make a really dire mistake, such as not defining id or
basePath in the application config, you basically get a blank page as a response from
the Yii application. The only place you can look at is the logs of your web server. For

Chapter 2

[39]

example, in Apache you can use the ErrorLog directive to specify the file in which
such game-breaking error reports will end. Of course, any other application error
will end there, regardless of whether it was rendered in the browser.

To fight off the "white screen," you can add a force override display_errors setting
in your index.php entry point right after you require the Yii library, but before the
creation and execution of the Application object as follows:

ini_set('display_errors', true);

Also, you should add one handy constant before you require the Yii library.
It's extremely important to define it before you require the Yii library, because
the Yii library will define it in the event that you don't define it yourself. That's it.
Here's how you do it:

define('YII_DEBUG', true);

This will change the application to debug mode, and if some nasty exceptions are
thrown, you'll get the generic status 500 page or blank screen but also a detailed
report from Yii with the most important lines highlighted.

Lastly, you can add a custom logger to your application, which will log the errors
happening within the application to a file. Chapter 8, Overall Behavior, explains this
in great detail.

Making the data and application layers
Now, let's get started on the real work.

To satisfy our end-to-end test, we can start from many different levels of our
application. But as we already know we will work with Yii, let's figure out what
we should do in the controller.

We need to provide two routes: /customers/add and /customers. Here is the
controller declaration we need for them:

namespace app\controllers;
use yii\web\Controller;

class CustomersController extends Controller

Obeying the default settings, route /customers equals to the route /customers/
index. We need to provide the method named actionIndex to enable this route.

Making a Custom Application with Yii 2

[40]

What will we do in this route? Our intention is to provide a list of customers
recorded in the database. We have a separate route for querying the database for
specific customers; thus we will have a special query parameter when accessing /
customers/index. If this parameter is set, we filter the customer list. Otherwise, we
display all customers from the database.

Here is the high-level representation of the actionIndex method:

 public function actionIndex()
 {
 $records = $this->getRecordsAccordingToQuery();
 $this->render('index', compact('records'));
 }

PHP's built-in function compact('var_name_1', 'var_name_2',
...) is immensely useful when using Yii. There are a lot of places
where you should pass associative arrays to some functions, and the
variables will have the same names as the keys of these arrays. If you
did not know about this function already, we suggest that you consult
the PHP function reference and learn about it.

Now we just need to figure out getRecordsAccordingToQuery. To get to this,
we need to have our database first. But before that, let's settle on the customer
aggregate definition.

Defining the customer model at the data layer
Why do we need the customer domain model separate from the handy ORM at
all? For a simple reason: we will lay our data in the database in a different way
than our domain model will be structured. Some parts of the customer domain
model will be stuffed into a single database table. Some parts will be separated
out to different tables, and maybe there'll be some additional tables to represent
many-to-many relations. More than that, we definitely don't want the ORM details
to leak to the layer where the controller is, because the very moment we do this,
we'll bind ourselves to this ORM forever with no chance to replace it with
anything modern.

A customer model is just a data holder class (for now), so it doesn't need any tests
for it. Here's how we'll define it:

namespace app\models\customer;

class Customer {
 /** @var string */

Chapter 2

[41]

 public $name;

 /** @var \DateTime */
 public $birth_date;

 /** @var string */
 public $notes = '';

 /** @var PhoneRecord[] */
 public $phones = [];

 public function __construct($name, $birth_date)
 {
 $this->name = $name;
 $this->birth_date = $birth_date;
 }
}

As we place it in the app\models\customer namespace, for it to be found by
the autoloader, we need to place the file in the models/customer subdirectory.

We imagined one additional domain object: Phone. Here's how it is defined:

namespace app\models\customer;

class Phone {
 /** @var string */
 public $number;
}

So, for a while, our Customer aggregate will be just a dumb data structure, holding
other data structures consisting of primitive values. To create a Customer object, we
must provide the name and birthdate, but apart from that, all fields are public, so
anyone can do anything with the aggregate.

Now let's think about how we'll store this model in the database.

Setting up the database
Consider you ran the following query in your MySQL database:

create database `crmapp` default character set utf8 default collate
utf8_unicode_ci;

Making a Custom Application with Yii 2

[42]

According to our Customer aggregate, we need the database structure depicted in
the following figure (taken by using the MySQL Workbench, which is available for
download at http://dev.mysql.com/downloads/workbench/).

As we certainly don't want to set up this database schema manually on each deploy,
we need some kind of automated way of doing this. Yii supports the concept of
migrations exactly for this purpose.

But to be able to use it, we need two things.

First, we need our own version of the console runner from Yii. With this, we'll be
able to make our own console commands to automate things, but for now, all we
need is the built-in migrate command. The script named yii should be placed in
the root of the code base with the following content in it:

#!/usr/bin/env php
<?php
define('YII_DEBUG', true);

require(__DIR__ . '/vendor/autoload.php');
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

This is basically a trimmed version of the yii launcher script bundled with the basic
application template we set up in Chapter 1, Getting Started. You can see both the
differences and similarities with index.php for the web application. Don't forget to
make this file executable! Given that you're on a POSIX-compatible system this can be
done with chmod +x.

http://dev.mysql.com/downloads/workbench/

Chapter 2

[43]

This script requires the config/console.php configuration script. Let's make
it as follows:

<?php
return [
 'id' => 'crmapp-console',
 'basePath' => dirname(__DIR__),
 'components' => [
 'db' => require(__DIR__ . '/db.php'),
],
];

Note that line starting with db? That's where our database is being introduced (at
last). Settings for the db component are in a separate configuration snippet because
we'll use exactly the same settings for our web application. Here's how the db.php
file looks:

<?php
return [
 'class' => '\yii\db\Connection',
 'dsn' => 'mysql:host=localhost;dbname=crmapp',
 'username' => 'root',
 'password' => 'cheesy/hamburger'
];

Well of course, your username and password will be different. A database with that
name should also exist in MySQL at this time.

Having all these three elements in place: yii launcher script, console.php
configuration file for it, and the database settings separated out to db.php, we can
now create a migration script using the following console command:

$./yii migrate/create init_customer_table

This will automatically generate the directory named migrations under the root of
your code base and the class with a really lengthy name like m140204_190825_init_
customer_table in its own file.

To keep it short, a Yii-style migration script is a class with two methods: up and
down. In the up method, you describe the change you want to make in the database.
In the down method, you describe how to revert the changes in the up method or
specify by returning false that you give up; it's impossible, and you cannot revert
from this particular migration.

Making a Custom Application with Yii 2

[44]

When you run yii migrate/up or its shorthand yii migrate, Yii checks all classes
inside the migrations subdirectory, which are sorted naturally by the datetime
stamps in their names, and executes the up method in all of them, from first to last.
It then writes the names of the migrations applied to the tbl_migration table in the
database affected, so it will not rerun the same migration again next time. For safety,
yii migrate/down does not have any shorthand and reverts only one migration at
a time by default. You can specify the number of migrations to revert via call to yii
migrate/down <number>.

With the migration scripts, you can just add the line yii migrate to your deploy
script and can be sure that all changes you want to be done in the database will
be there.

Here's the content of the up method, which we set up for the customer table:

 $this->createTable(
 'customer',
 [
 'id' => 'pk',
 'name' => 'string',
 'birth_date' => 'date',
 'notes' => 'text',
],
 'ENGINE=InnoDB'
);

You revert this change with a simple line of code:

$this->dropTable('customer');

In another migration, we'll write the generation of the phone table, with the foreign
key explicitly declared against the customer table:

 $this->createTable(
 'phone',
 [
 'id' => 'pk',
 'customer_id' => 'int unique',
 'number' => 'string',
],
 'ENGINE=InnoDB'
);
 $this->addForeignKey('customer_phone_numbers', 'phone',
'customer_id', 'customer', 'id');

Chapter 2

[45]

You write it in reverse order, or else MySQL will complain:

 $this->dropForeignKey('customer_phone_numbers', 'phone');
 $this->dropTable('phone');

Let's not bother with Address and Email tables for now. We wrote so much of the
untested code already that it's giving me chills.

Don't forget to actually run these migrations you just created by this command:

./yii migrate

Now, while we're at it, let's set up the object-relation mapping (ORM) for these
two tables.

Object-relation mapping in Yii
ORM in Yii is supported using the Active Record pattern. A developer declares the
class of objects corresponding to the tables (so, you have one active record class
definition per table), and then you have quite a lot of functionality already done
for him. Yii implementation of this pattern helps to:

• Store active records in the database
• Validate data assigned to the active record's fields before storing it in

the database
• Retrieve active record using the primary key, some specific attribute(s),

custom queries, or just all of them at once

All you need to do is set up the active record definition properly. Let's begin with the
customer table.

As we already have the customer name reserved for the domain model, we'll name
the active record CustomerRecord, which is logical. We'll define the following class
in the app\models\customer namespace:

namespace app\models\customer;

use yii\db\ActiveRecord;

class CustomerRecord extends ActiveRecord
{
 public static function tableName()
 {
 return 'customer';
 }

}

Making a Custom Application with Yii 2

[46]

Again, for the autoloader to work, this file should be saved as CustomerRecord.php
in the models/customer folder.

Well, honestly, that's all you need to define right now. If you worked with Yii 1.x
before, you're probably as amazed as we were. We're lacking the validation rules,
though. As we already have our database schema defined and loaded, nothing stops
us from defining some validation rules:

 public function rules()
 {
 return [
 ['id', 'number'],
 ['name', 'required'],
 ['name', 'string', 'max' => 256],
 ['birth_date', 'date', 'format' => 'Y-m-d'],
 ['notes', 'safe']
];
 }

That already reads like prose apart from the safe rule. Right now, it's sufficient
to know that this rule means that we can assign anything to this field. Why does
the safe rule exist at all, you may wonder; because of a special helper method in
the \yii\base\Model class, called setAttributes, which accepts an associative
array with attribute names and values. By default, if an attribute is not constrained
by some validation rule and not marked as safe by the safe rule, it'll be ignored
by this method. This feature allows us to pass the entire content of $_POST to the
setAttributes() method and be sure that only expected values will be assigned to
the model.

You can read the full list of built-in validators in the Yii documentation:
https://github.com/yiisoft/yii2/blob/master/docs/
guide/input-validation.md.

The PhoneRecord class is a lot simpler:

namespace app\models\customer;
use yii\db\ActiveRecord;

class PhoneRecord extends ActiveRecord
{
 public static function tableName()
 {
 return 'phone';
 }

https://github.com/yiisoft/yii2/blob/master/docs/guide/input-validation.md
https://github.com/yiisoft/yii2/blob/master/docs/guide/input-validation.md

Chapter 2

[47]

 public function rules()
 {
 return [
 ['customer_id', 'number'],
 ['number', 'string'],
 [['customer_id', 'number'], 'required'],
];
 }
}

We declared the number field to be validated as string because we don't want to
enforce the proper phone format at this stage. Later, we'll probably invent our own
validator for this.

The CustomerRecord. name, PhoneRecord.customer_id, and PhoneRecord.
number fields declared are required to prevent the possibility of submitting
empty forms.

Both these classes should be placed in files in the models/customer subfolder.

Now, we've done everything related to the database preparation. Let's use it.

Decoupling from ORM
We need two pieces of functionality to satisfy our end-to-end test:

1. Get the customer record from the database that has the given phone number.
2. Store a new customer record in the database.

We don't even need to fetch the full list of customers, because we don't check it.

As we have our tiny domain model layer consisting of the Customer and Phone
models, it would be wise to keep it isolated from the framework, so we need a
translation layer between ORM from Yii 2 and the domain models. However,
it would take a lot of pages to describe a proper setup of the repository pattern,
and it's not really one of the topics of this book.

Making a Custom Application with Yii 2

[48]

We'll settle on just two methods inside CustomersController, but overall, it's just a
tradeoff only for our example application. In real-world, large-scale applications, you
will surely need a proper translation layer for three reasons:

• ORM using active records is convenient to use, but it is very costly as it
makes too many requests to database. At some point, you'll want to replace
your usage of active records in some places to something at a lower level,
such as Yii DAO (https://github.com/yiisoft/yii2/blob/master/
docs/guide/db-dao.md) or maybe completely bypass Yii and use raw PDO
calls. Without the repository, it's possible that your only option will be full
text search for names of your ActiveRecord-based classes through the whole
code base.

• It's possible that at some point you'll want to change the underlying database
from something supported by Yii to something unsupported. Again, to make
this change you'll need to do a lot of changes in various places.

• It's completely possible that your application will outlive Yii Version 2
and will meet Version 3, which will have random changes to the public
API. Without the decoupling from the framework, at least its most invasive
part, which is the database access layer, you'll get almost no possibility
to upgrade.

To not bloat this chapter too much, let's make the following methods in
CustomersController.

The first one is the method to store the customer model in the database as follows:

 private function store(Customer $customer)
 {
 $customer_record = new CustomerRecord();
 $customer_record->name = $customer->name;
 $customer_record->birth_date = $customer->birth_date-
>format('Y-m-d');
 $customer_record->notes = $customer->notes;

 $customer_record->save();

 foreach ($customer->phones as $phone)
 {
 $phone_record = new PhoneRecord();
 $phone_record->number = $phone->number;
 $phone_record->customer_id = $customer_record->id;
 $phone_record->save();
 }
 }

https://github.com/yiisoft/yii2/blob/master/docs/guide/db-dao.md
https://github.com/yiisoft/yii2/blob/master/docs/guide/db-dao.md

Chapter 2

[49]

As you can see, we receive the Customer instance but are using the active
records to record the data from it to the database. Note that the new instance
of CustomerRecord magically gets the id field value after it was saved by the
save() method.

The following is the method to convert from ActiveRecord instances to Customer:

 private function makeCustomer(
 CustomerRecord $customer_record,
 PhoneRecord $phone_record
) {
 $name = $customer_record->name;
 $birth_date = new \DateTime($customer_record->birth_date);

 $customer = new Customer($name, $birth_date);
 $customer->notes = $customer_record->notes;
 $customer->phones[] = new Phone($phone_record->number);

 return $customer;
 }

We accept a single PhoneRecord instance because we are dealing only with single
phone number per customer right now. This method needs to be changed when
there'll be a need to support several phones per customer.

These two methods are essentially the translation layer between Yii and our
domain model.

Now, we will build the actual user interface and implement querying by phone
number along the way.

Creating the user interface
With the CustomersController able to convert between domain models and active
records, we move to the actual user interface pages at last.

Making a Custom Application with Yii 2

[50]

The Add New Customer UI
What should Controller do for us when we arrive at the /customer/add URL? Well,
it should just render the UI for us:

 public function actionAdd()
 {
 $this->render('add');
 }

That's right, that's all. This code relies on the important convention of Yii
describing from where the controller should get its views. Basically, if we have
CustomersController, then its views are expected to be in the views/customer
subdirectory. So, when we render something called add here, we're referring to the
file views/customer/add.php. Let's create it.

What do we want on this page? According to our end-to-end test, there should be
just the form to enter the customer information, along with their phone number and
a Submit button.

Yii has a very extensive set of helpers to implement the web forms quickly and
easily. The core concept behind them is the ActiveForm, which is the abstraction
of the web form corresponding to some model from the Yii MVC interpretation.
We initialize the ActiveForm and then use its methods to generate the HTML for
fields corresponding to the model's attributes. Using the ActiveForm, here's how
the views/customers/add.php view will look:

<?php
use app\models\customer\CustomerRecord;
use app\models\customer\PhoneRecord;
use yii\web\View;
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/**
 * Add Customer UI.
 *
 * @var View $this
 * @var CustomerRecord $customer
 * @var PhoneRecord $phone
 */

$form = ActiveForm::begin([
 'id' => 'add-customer-form',
]);

Chapter 2

[51]

echo $form->errorSummary([$customer, $phone]);
echo $form->field($customer, 'name');
echo $form->field($customer, 'birth_date');
echo $form->field($customer, 'notes');

echo $form->field($phone, 'number');

echo Html::submitButton('Submit', ['class' => 'btn btn-primary']);
ActiveForm::end();

That's basically the no-frills version; we don't provide any HTML wrappers besides
the ones that will be generated by the ActiveForm and Html helper classes.

This is the only verbatim example of the view file in this book. We won't present the
use clauses and documentation blocks again to save space.

The method called errorSummary is a nice shorthand, which will show all validation
errors from the models in question in the event that the input is invalid according to
the declared validation rules.

But to function, ActiveForm should have access to the model objects—in our case,
$customer and $phone. This is done using the special mechanism of passing data to
View from Controller via the second argument of the render method. Basically,
we at least need the following in the actionAdd method for the form to get
correctly rendered:

 public function actionAdd()
 {
 $customer = new CustomerRecord;
 $phone = new PhoneRecord;
 $this->render('add', compact('customer', 'phone'));
 }

Now we need to solve two issues before we are able to actually look at our UI.

Routing 101
Default routing in Yii looks like this:

http://yourdomain/index.php?r=controller/action.

So, if we now have the CustomersController and actionAdd methods in it, we
should access it using the URL http://yourdomain/index.php?=customers/add.

http://yourdomain/index.php?=customers/add

Making a Custom Application with Yii 2

[52]

This is quite an unfortunate situation, and the Yii application object has a special
setting in one of its components to change it to a more usual path format. You need
to add the following to the components section of your application configuration:

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false
]

With the enablePrettyUrl value set, URLs will become like this:
http://yourdomain/index.php/customers/add.

With the showScriptName value set, URLs being constructed by Yii will not have the
index.php starting point for them. For your web application to be able to parse such
URLs, you should configure the corresponding URL rewriting in your web server.
For example, Yii developers routinely hack Apache with the following lines in the
.htaccess file lying in the web directory:

RewriteEngine on

if a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

otherwise forward it to index.php
RewriteRule . index.php

For any other web server, the logic should be the same. With rewriting a set
correctly, you'll be able to use URLs such as http://yourdomain/customers/add.
This is, of course, the best way to do it.

Layouts
We'll be talking about rendering in Yii in great detail in Chapter 4, The Renderer.
For now, it's enough to know that by default, when you do render in the controller,
it assumes that the view you're rendering is just a snippet wrapped by a particular
script called the layout. By default, all controllers search for layout in the file
views/layouts/main.php. The view rendering the result will be passed to the
layout script as a variable named $content. Apart from that, layout is just another
view script. It's expected that you have some parts of the web application UI
common to all pages, and a layout is exactly the place to hold them.

http://yourdomain/index.php/customers/add
http://yourdomain/customers/add

Chapter 2

[53]

We're pretty content with the defaults here, so let's just create some basic HTML5
boilerplate as the layout and see our Add Customer form at last. Place the following
script as the views/layouts/main.php:

<!DOCTYPE html>
<html>
<head>
 <title>CRM</title>
</head>
<body>
 <?= $content; ?>
</body>
</html>

So, now you can open the /customers/add route with whatever method you
employed when we were at the Routing 101 section.

What? Did you expect some fancy CSS stuff at this stage of development? Our
goal right now is to implement the bare functionality, so this basic HTML is more
than enough.

Finishing the Add New Customer UI
Idiomatic Yii code assumes that forms send data to the same route that renders them.
We'll utilize the same approach; thus, in the actionAdd method, we need to process
possible input data. We will do it like this:

 public function actionAdd()
 {
 $customer = new CustomerRecord;
 $phone = new PhoneRecord;

 if ($this->load($customer, $phone, $_POST))
 {

Making a Custom Application with Yii 2

[54]

 $this->store($this->makeCustomer($customer, $phone));
 return $this->redirect('/customers');
 }

 // stateful magic: both $customer and $phone will be validated
at this point
 return $this->render('add', compact('customer', 'phone'));
 }

Note the highlighted lines. When (and if) we successfully load the new data
submitted to us via a POST request, we store the resulting customer model in the
database using methods defined in our translation layer. A method called load is
shorthand for the following four checks:

 private function load(CustomerRecord $customer, PhoneRecord
$phone, array $post)
 {
 return $customer->load($post)
 and $phone->load($post)
 and $customer->validate()
 and $phone->validate(['number']);
 }

Here are the four checks:

• \yii\base\Model::load() is a built-in method that allows the filling
of the model attributes with the data from the POST request made by the
ActiveForm widget.

• \yii\base\Model::validate() is a built-in method that checks the
attribute values of the model against the validation rules defined in \
yii\base\Model::rules(). Note how we can validate only a select few
attributes instead of all of them. In our case, we need to validate only the
number attribute because in the form data just submitted, there will be no
customer_id field, which was declared required by our current rules.

• \yii\db\BaseActiveRecord::save() method calls validate() before
actually saving the data in the database.

The idea behind the validate() implementation is that if there are any erroneous
values, it will put an error message in the special attribute of any model called \
yii\base\Model::$errors. This is what allows us to utilize the errorSummary()
method on ActiveForm, because it will check the error messages one by one and
print them nicely.

Chapter 2

[55]

When the item is added successfully, we redirect to the customer list. It's probably
the most interesting controller action so far.

 public function actionIndex()
 {
 $records = $this->findRecordsByQuery();
 return $this->render('index', compact('records'));
 }

This part was already discussed before. Now, we are ready to really get records
according to the query. Usually, we'll just access the $_GET superglobal to get the
query parameters, but Yii has an authentic wrapper around it, so let's use it. A special
Application component called Request manages the query parameters and exports
the method called get. With this method, we can check whether a certain $_GET
parameter was set to a certain value:

private function findRecordsByQuery()
 {
 $number = Yii::$app->request->get('phone_number');
 $records = $this->getRecordsByPhoneNumber($number);
 $dataProvider = $this->wrapIntoDataProvider($records);
 return $dataProvider;
 }

We cheated here a bit: you don't know what the data providers are yet.
To understand why we need to wrap the records fetched by the query to
the data provider, we need to know how we are going to render the results.

Widgets
As themselves, data providers are not important. Their importance is that almost all
widgets built in Yii use them as a source of models to render.

Widget can be seen just as the encapsulated view along with some supplementary
logic. Typical widgets are:

• ListView for encapsulating a list of models.
• DetailView for encapsulating rendering of the attributes of models.
• GridView for encapsulating the tabular representation of the set of models.

We'll discuss this enormously powerful UI element in Chapter 11, The Grid.

Widgets are used in views like this:

echo \yii\widgets\DetailView::widget($settings);

Making a Custom Application with Yii 2

[56]

Settings are passed to the widget as an associative array of initial values of the
widget member variables. Given the amount of self-documentation on all Yii classes,
even without any documentation and code examples, you can just open the class
definition of the widget and figure out how to configure it.

So, we need data providers because they encapsulate the act of finding the set of
models appropriate to render right now. They do sorting, pagination, and filtering
for you. They are most useful when you use the active records as a domain model
in your application (that is, when you map tables to domain objects exactly). In our
case, when we try our best to decouple from the ORM, we need data providers just
as wrappers around our data to satisfy the widget's requirements.

The List Customers UI
The perfect data provider for our cause is ArrayDataProvider, which just gets the
list of ready-made models and wraps them, allowing us to feed them to widgets.

So, here's what we do in wrapIntoDataProvider:

 private function wrapIntoDataProvider($data)
 {
 return new ArrayDataProvider(
 [
 'allModels' => $data,
 'pagination' => false
]
);
 }

Setting the pagination setting to false means that we want to disable pagination
capabilities as for now the pagination under the list looks just ugly.

The actual data to wrap into DataProvider and send to render is found like this:

 private function getRecordsByPhoneNumber($number)
 {
 $phone_record = PhoneRecord::findOne(['number' => $number]);
 if (!$phone_record)
 return [];

 $customer_record = CustomerRecord::findOne($phone_record-
>customer_id);
 if (!$customer_record)
 return [];

 return [$this->makeCustomer($customer_record, $phone_record)];
 }

Chapter 2

[57]

So many wrappers for our findByPhone method!

Here, we meet the query methods of the ActiveRecord class for the first time. They
are so numerous and the API in general is so vast, that it is probably better if you
turn to the official documentation here: https://github.com/yiisoft/yii2/blob/
master/docs/guide/db-active-record.md.

It's reasonable to construct the List Customers UI on the base of the \yii\widgets\
ListView widget. This is how you can configure it in our case:

echo \yii\widgets\ListView::widget(
 [
 'options' => [
 'class' => 'list-view',
 'id' => 'search_results'
],
 'itemView' => '_customer',
 'dataProvider' => $records
]
);

That's the exact content of the views/customers/index.php file.

We need to set the id HTML attribute for the widget because we assume our search
results are? inside the #search_results element in our end-to-end test.

The itemView element holds the name of a separate view, which will actually render
each individual model from a given DataProvider. It's reasonable to define it in
terms of the DetailView widget. The following is its implementation in the views/
customers/_customer.php file:

echo \yii\widgets\DetailView::widget(
 [
 'model' => $model,
 'attributes' => [
 ['attribute' => 'name'],
 ['attribute' => 'birth_date', 'value' => $model->birth_
date->format('Y-m-d')],
 'notes:text',
 ['label' => 'Phone Number', 'attribute' =>
'phones.0.number']
]
]);

https://github.com/yiisoft/yii2/blob/master/docs/guide/db-active-record.md
https://github.com/yiisoft/yii2/blob/master/docs/guide/db-active-record.md

Making a Custom Application with Yii 2

[58]

As we did not have a flat single-table-based ActiveRecord as our model, but a
complex aggregate domain data object, it's a bit tricky to configure the fields as you
can see in the code. However, even the array attributes can be referenced in the
widget, which is just amazing, honestly.

Customer Query UI
The last piece of UI is laughably simple:

 public function actionQuery()
 {
 return $this->render('query');
 }

We just show a custom handcrafted form in there:

<?php
use yii\helpers\Html;

echo Html::beginForm(['/customers'], 'get');
echo Html::label('Phone number to search:', 'phone_number');
echo Html::textInput('phone_number');
echo Html::submitButton('Search');
echo Html::endForm();

We believe this code is straightforward enough to understand without any
explanation. In general, the Html helper class makes writing view files really easy
and declarative, because, as you probably noticed, we did not write any of the bare
HTML code in any of our views except for the layout file.

Using the application
Now, we can look back at our end-to-end test. We assumed there that we can just
use relative URLs in it like /customers/add, but as we learned in the Routing 101
section, to do so, we need to tweak our web server to understand routes without the
index.php related part. Let's assume you've done it already for simplicity.

Chapter 2

[59]

That's what you should get when you destroy your deploy machine, recreate it,
and redeploy your application there, and run the acceptance tests from your own
machine pointing to the deploy machine:

Let's walk through the UI manually, though.

For exactness, let's assume your deploy machine is reachable at http://
localhost:8080/. Then, after the clean deploy, first you open up the Add New
Customer UI at http://localhost:8080/customers/add, and fill the fields with
something. Remember the phone number you entered. Then you click on the Submit
button and end up at the List Customers UI, which tells you that no results were
found. Have a look at the following screenshot:

http://localhost:8080/customers/add

Making a Custom Application with Yii 2

[60]

It's clear that a feature is missing here: when we are on the List Customers UI we
expect to see all the customers recorded in the database. Right now, this UI works
like the Query Results UI really.

Manually move to the http://localhost:8080/customers/query, and you end up
in the Query Customers UI. Paste the remembered phone number in the query field
and hit Search. Have a look at the following screenshot:

You should end up on the List Customers UI, which tells you that only one record is
found and lists the details about this record. In fact, even if there are several customers
with the same phone, we know right from the source code that the system will return
only one record to us anyway. That's another feature missing for us. Not mentioning
that, we allow only one phone number per customer.

Let's end the session now and get out to conclude this chapter.

Summary
We covered a lot of ground in this chapter while delivering just a single feature.
We did not bother with the graphic part of the web application, concentrating only
on the functionality provided. A full stack of basic Yii technologies was used here,
from the bottom with active records and data providers to the top with controllers,
widgets, and active forms.

This chapter was expected to be an example of what is being used when developing
the application with Yii. We glossed over the important part of the rendering
process—the assets—but that's for the chapters to come. Next, we'll see what else Yii
has up its sleeve to reduce the coding effort of the developer: the CRUD automatic
code generators.

http://localhost:8080/customers/query

Chapter 2

[61]

In short, you must know a lot of concepts beforehand when
developing and application using Yii. We hope that after this coding
session you got a good grasp of them.

Also note that while we're not really going to follow the Yii conventions for
structuring the files in our project, we ended up with a structure surprisingly similar
to the basic application template. This came up naturally, and part of the answer to
this is in Chapter 7, Modules, where we'll find out more about the internals of MVC
implementation in Yii.

Automatically Generating
the CRUD Code

If some part of your application just needs to have a user interface to manipulate the
database table, Yii has everything to support such a design decision. Using active
records that are mapped to database tables in a ratio of 1:1, you can write very
succinct code in your controller that will correspond to the standard create, read,
update, and delete operations on table records.

Unfortunately, when you have many similar tables to manipulate, you end up with
highly repetitive code, which is also quite boring to write. To overcome this issue, Yii
has a tool called Gii to automatically generate standard code for you.

In this chapter, we will see how Gii can help you while developing a
Yii-based application.

Definition of the model to work with
We'll continue with the example defined in Chapter 2, Making a Custom Application
with Yii 2. Let's pretend we need to manage a list of services in our database. It will
just be a lookup table, defining the most important properties of a service we need:

• Name
• Hourly rate

Automatically Generating the CRUD Code

[64]

We will create this table via the migration mechanics we covered in Chapter 2, Making
a Custom Application with Yii 2:

1. First, we generate a new migration by calling the following command from
the command line:
$./yii migrate/create init_services_table

2. Then, we write the following up and down methods:
 public function up()
 {
 $this->createTable(
 'service',
 [
 'id' => 'pk',
 'name' => 'string unique',
 'hourly_rate' => 'integer',
]
);
 }

 public function down()
 {
 $this->dropTable('service');
 }

3. Finally, we run the migration we created:
$./yii migrate

Now we have a table. Our strategy from now on will be to use Gii to perform
the following:

• Generate the Model class for the service table to set up ORM
• Generate the CRUD interface

Using Gii
Before we use Gii, the automatic code generator, we need to install it into
our code base.

Installing Gii into the application
Run the following command to fetch the required files to use Gii:

$ php composer.phar require --prefer-dist "yiisoft/yii2-gii:*"

Chapter 3

[65]

The command-line parameter --prefer-dist is used, so we'll only get the files
needed to use Gii, not develop it.

Now we need to wire Gii into our application:

1. First, as we're going to use something installed by Composer in our
application, we need the autoloader from Composer. It's located as a file
called autoload.php under the vendor subdirectory. The require call
should be placed inside the entry point of our application in the web/index.
php file:
<?php
define('YII_DEBUG', true);

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

ini_set('display_errors', true);

$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config))->run();

The line you have to insert is highlighted.

2. Then, we need to add the Gii user interface to our application. This is done
by declaring the gii module in the application config in the file config/web.
php:
 'modules' => [
 'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['*']
]
],

This modules section should be at the top level in the configuration array. The
allowedIPs section is needed if you're working with an application that is deployed
remotely (which you expected to do). By default, Gii allows access only from the
localhost (127.0.0.1 and ::1 IP addresses).

Also, it's pretty important that you add another wiring to Yii 2 internals—this time
not where they should be, but inside the application config. Put the following line at
the end of the config tree in the same config/web.php file:

'extensions' => require(__DIR__ . '/../vendor/yiisoft/extensions.php')

Automatically Generating the CRUD Code

[66]

This extensions section should be at the top level too. Your real path can be
different, but it should ultimately point at the extensions.php file under the
yiisoft subdirectory. We'll explore the real meaning of this file in Chapter 9,
Making an Extension.

With this, you can open the /gii route in your application and should finally
see the Gii UI, as shown in the following screenshot:

Generating the code for the Model class
From the main menu of Gii, select the Model item and end up in Model Generator.
It'll make the active record definition for you based on the table in the database.

Chapter 3

[67]

The purpose of this generator is to take the table from the database and make the
ActiveRecord class configured to support ORM with this table. So, note that all
the fields in the generator's UI are quite easy to understand, especially with all
the tooltips.

You should fill in the available fields as shown in the following table and hit the
Preview button:

Field name Value to enter (verbatim)
Table Name service

Model Class ServiceRecord

Namespace app\models\service

Automatically Generating the CRUD Code

[68]

After this, you should get a page exactly like the one presented in the
following screenshot:

We named the model ServiceRecord to follow the convention
set in the previous chapter. To be totally clear, this is not a standard
naming convention (and Yii 2 does not impose any on you). The
suffix Record is added to explicitly state that the class in question
is a descendant of ActiveRecord and has nothing to do with the
domain model of our application.

This generator exclusively creates the descendants of the ActiveRecord class.
We declared the desired namespace for the same reason. The app\models\service
namespace is mapped to the models/service subdirectory in our project.

Chapter 3

[69]

Once you hit Preview, a small area listing the files to be generated will be rendered
below the UI, and the Generate button will appear. This is a standard two-step
behavior of Gii that allows you to see exactly what will be automatically generated
and where.

Hit Generate and we're done. We have the ServiceRecord class definition in the
models/service/ServiceRecord.php file.

Generating the CRUD code
Now, let's open the CRUD Generator item from the main menu. You will see the
following page:

Automatically Generating the CRUD Code

[70]

The purpose of this generator is to create a controller for you based on the model
you specify. The controller being generated will have five actions already prepared
for you:

• index: This action will list the models recorded in the database. This will
correspond to our Services List UI.

• view: This action allows us to see the detailed view of a single model. This
will correspond to our View Service Details UI.

• create: This action allows us to record new models in the database. This will
correspond to our Register New Service UI.

• update: This action allows us to change a single model's details and update
them in the database. This will correspond to our Edit Service Details UI.

• delete: This action allows us to remove a single model's record from
the database.

In the index route, the controller will render not just a list of records, but the search
functionality as well. To support this, Gii generates an additional class called Search
Model, which encapsulates the mechanics of searching models by their field values.

The create and update routes are so similar in their functionality that they even use
the same script to generate a web form to fill the field values of a model. The only
difference between those actions is that in create, the controller will add a new record
to the database, and in update, it will change the existing record.

One special route in here is the delete route because of its potentially dangerous
nature. First of all, it's extremely simple and designed to just do its job and redirect
the visitor back to the index, making it an ideal target for an AJAX call. Second, Gii
generates the controller in such a way that the delete route is accessible only by the
POST request, essentially making AJAX the only way to activate this action.

Let's create the CRUD at last. Fill in the fields as described in the following table:

Field name Field value
Model Class app\models\service\ServiceRecord

Search Model Class app\models\service\ServiceSearchModel

Controller Class app\controllers\ServicesController

In the Model Class field, there's the name of an existing class generated previously.
In other fields, there are names we created that conform to our Yii project's structure.
Once you click on the Preview button, you should see the result shown in the
following screenshot:

Chapter 3

[71]

Note how much code this generator generates. You are encouraged to read through
the code that Gii will generate. You may use a decent IDE that has a feature
similar to Go to definition to easily navigate between the generated code and base
classes in the Yii framework. We will not discuss the default boilerplate code in Yii
applications in much detail, or this book will become a code-only book and will
probably be three times as large.

Click on Generate and then we'll turn to some finishing touches we need to make.

Automatically Generating the CRUD Code

[72]

Finishing touches
You will need to apply some visual tweaks to your UI to make it appear more clean
and appealing.

Creating a new layout to support pages
generated by Gii
Here is how our UI looks right now, given that one record is already inserted into the
services table:

Given our spartan visuals from Chapter 2, Making a Custom Application with Yii 2, you
most probably did not expect much from the UI generated by Gii anyway; however,
this obviously has some serious layout problems. The issue is that we jumped too far
with this step, as we have not bothered with the looks of our application until now.
Chapter 4, The Renderer, talks about rendering a system in Yii 2. However, we can take
a glimpse into the future and prepare a bare minimum of the view code to enable the
standard Yii 2 project design, as you may have seen in the basic application
template already.

Our only issue, really, is the too-limited layout file. Let's recall what our views/
layouts/main.php looks like:

<!DOCTYPE html>
<html>
<head>
 <title>CRM</title>
</head>
<body>
 <?= $content; ?>
</body>
</html>

Chapter 3

[73]

This is not what Gii expects from us. To not delve into much detail, which will be
given in Chapter 4, The Renderer, we'll just replace this layout with the one copied
directly from the basic application template:

<?php
use yii\helpers\Html;

\yii\bootstrap\BootstrapAsset::register($this);
\yii\web\YiiAsset::register($this);
?>
<?php $this->beginPage() ?>
 <!DOCTYPE html>
 <html lang="<?= Yii::$app->language ?>">
 <head>
 <meta charset="<?= Yii::$app->charset ?>"/>
 <title><?= Html::encode($this->title) ?></title>
 <?php $this->head() ?>
 <?= Html::csrfMetaTags() ?>
 </head>
 <body>
 <?php $this->beginBody() ?>
 <div class="container">
 <?= $content ?>
 <footer class="footer"><?= Yii::powered();?></footer>
 </div>
 <?php $this->endBody() ?>
 </body>
 </html>
<?php $this->endPage() ?>

This is the only time we need to do something without using Gii to satisfy our
end-to-end tests, and this is a one-time issue because all of the future sections
generated by Gii will use the same layout without any changes.

Except various useful calls such as inserting an HTML language attribute, inserting a
metatag with a charset, and HTML encoding the title of the page, pay attention to the
highlighted lines. They are the framework of the Yii 2 renderer. We will explore it in
Chapter 4, The Renderer.

Automatically Generating the CRUD Code

[74]

An overview of the generated CRUD UI
Let's see how this UI looks.

Inside the code bundle that comes with this book, you will find the
acceptance test definitions for the CRUD UI we have been building
in this chapter. This was not included in the text for brevity. Run the
following command:

$./cept run acceptance

This command will produce an output as shown in the following
screenshot:

Note that we haven't manually written a single line of production code
to make these tests pass (with the exception of the layout). Also, given
that all the possible preparations were done already, the next time we
need to make such a CRUD UI, we will just need to fill in six fields and
click on two buttons, and we'll have it.

Chapter 3

[75]

By going to the /services route, we get a nice table, filled to the brim with features:

Each record is represented by a row in the table. This tabular UI has pagination with
the default page size of 20 lines (this can be a problem if you run acceptance tests too
many times without cleaning the database upon deploying or redeploying a target).
Also, it has fields at the top of the table to filter rows by the field values, as shown in
the following screenshot:

Automatically Generating the CRUD Code

[76]

Finally, the last column in each row contains three iconic buttons: one with an eye,
one with a pencil, and one with a trash can. They correspond to the view, update,
and delete actions, respectively. The view action renders a nice list of fields and their
values for the selected record.

The view route will be /services/view?id=:id, where :id is the primary key
of the Service record in the database. In there, you'll see the Update and Delete
buttons too.

If you click on the Update button either from the list UI or from the view UI, you get
a form to edit the fields of the selected record.

The update route will be /services/update?id=:id, with the same rules as that of
the view route. This form is absolutely identical to the form where we create a new
record, which we will see in the following chapters.

Chapter 3

[77]

If you click on the Delete button either from the list UI or from the view UI, you
will get a delete confirmation, which, as we saw earlier in this chapter, is potentially
dangerous in nature:

If you accept the deletion, the table will be refilled via AJAX. If you have JavaScript
disabled, you'll get no delete behavior at all because /services/delete?id=:id is
configured to be accessible only by POST requests.

If you click on the big green Create Service Record button, you'll get a form to enter
data for a new ServiceRecord model. The create route will be /services/create.
This form has built-in client-side validation. It won't allow you to submit the form if
there are errors in the input data.

All of this UI is based on the Twitter Bootstrap UI framework plus some Yii-specific
JavaScript code.

Automatically Generating the CRUD Code

[78]

Pros and cons of generated classes over
manually created ones
Like with every automatic generator, Gii should not be treated as an automatic
programmer doing all the work for you.

First of all, Gii obscures the mechanics of CRUD. So, when you automatically
generate the controller actions, it'll be difficult for you to understand how they
work, especially if you are new to the framework. This is a common issue with all
automatic code generators; they are useful only for people who already know what
code they need to write and just don't want to write it themselves.

Second, it's possible that you will need a set of absolutely standardized uniform
CRUD UI pages for many models. In this case, code repetition induced by Gii in the
generated controllers will be completely unnecessary. In Chapter 11, The Grid, we
will show you how three controllers generated by Gii can be reduced to one base
Controller class and three specific controllers trimmed down to virtually two lines
of custom code each.

To sum up, the automatic generation of a CRUD UI in Gii is especially usable only
when you need some generic baseline for your actual work, and the changes in index,
create, edit, and delete actions are expected. In other cases, maybe it'll be easier to just
write controllers from scratch, which is not so hard anyway.

Do note, however, that Gii is not restricted to generating the CRUD UI. Its model
generator is virtually priceless, because you certainly do not need to write boilerplate
code for your active records, and Gii can infer a lot of information from the table
schema for you. Also, it has several other generators, including an Extension generator;
we will not be using it in Chapter 9, Making an Extension, though, because it will hinder
your ability to understand how things work inside Yii 2.

Summary
In this chapter, we learned how to integrate Gii into an existing project and wire it
to the code base. Also, we discussed the bare minimum of view code that the Yii
framework expects from us to have if we are building everything from scratch.

We have used quite a lot of code related to the view part of the MVC ideology
in this and the preceding chapters, and the necessity of layouts has been especially
obscure so far. In the next chapter, we'll talk about how Yii 2 actually performs
rendering of a view.

The Renderer
Towards the end of the last chapter, we were forced to jump over our heads and
touch the view code. This chapter will basically be an explanation of what we really
did then.

Despite the name of this chapter, there's no such thing as a separate Renderer object
in Yii. Being an MVC-based framework, Yii employs an entire set of processes that
perform the rendering. These processes are spread through the whole code base.

Anatomy of Yii rendering
When a web application visitor's request is being handled, there are a few processing
steps your data goes through before it is sent to the visitor's browser:

1. A controller action is run. It will use the render() method to process a PHP
script (sending it some parameters if necessary) and get HTML form from
it to send to the client browser. Please note that this action is voluntary, not
mandatory. You can have controller actions that do not call the render()
method at all.

2. The render() method on the View component is called and the $view and
$params arguments are passed to it.

3. The View component figures out the view file to be used with the help of the
path alias passed in the $view argument.

4. The View component checks whether it has any view renderers associated
with the filename extension of the view file it has just found.

5. If there's indeed such a view renderer, its render() method is called, and the
path to the view file, the View component instance, and the original $params
arguments are passed to it.

6. If there's no such view renderer, the view file is processed using the
traditional PHP require() method mechanics.

The Renderer

[80]

7. If the result of the rendering is not an instance of the yii\web\Response
class, such an instance is created and the rendering result is passed to it as
the data attribute.

8. The instance of Response looks at the value of its format attribute and
checks whether it has custom ResponseFormatterInterface implementers
associated with this value. The value of the format attribute can also be one
of the built-in formats, which can be handled by the Response instance itself.

9. If indeed there is such a response formatter, its format() method is called,
and the whole Response instance is passed to it so that format() can
properly set the headers and content of the Response instance.

10. If the Response instance can process the given format itself, it does so by
modifying its headers and content.

11. Finally, the headers are sent using the standard PHP header() mechanics,
and the content is just flushed down the pipe to the client's browser.

The view renderer concept is implemented in Yii 2, unsurprisingly, by the \yii\
base\ViewRenderer abstract class. The response formatter is implemented by the \
yii\web\ResponseFormatterInterface interface.

In the most rudimentary case, where you don't have any themes, tweak the view
renderers or response formatters, and execute the following in your controller:

$this->render('index', ['dataProvider' => $dataProvider]);

When the preceding line of code is executed, the following happens:

1. The index.php file is checked for its own existence at the following location
<root_directory>/<views_directory>/<controller_id>/.

2. Inside the View component, the extract(['dataProvider' =>
$dataProvider]) action happens. As a result, the value stored in the
dataProvider key becomes accessible as the $dataProvider variable in the
current scope.

3. The require("<root_directory>/<views_directory>/<controller_
id>/index.php") method is run inside the ob_start() … ob_get_clean()
pair, so all of its output is captured as a string.

4. The Content-Type: text/html; charset=<yii application charset>
header is sent to the client.

5. Finally, the return value of the render() method is sent to the client verbatim.

Chapter 4

[81]

Now, to know the intricate details of how render() does its job, we can look
into both the documentation and the source code of the yii\base\Controller.
render() method. What we are really interested in are four simple questions:

• How do we specify the first argument of the render() method so that Yii
will find it?

• How does Yii determine what layout is to be used and how we can set
it explicitly?

• Can we use other template formats as view files?
• Can we send the rendering result to the client in some unusual way? JSON

being the most obvious example.

Before we talk about the answers to these questions, an explanation about the
concept of Yii application components will be useful.

The Yii application components
Let's take a look at the application initialization happening in the index.php entry
point file:

require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
$config = require(__DIR__ . '/../config/web.php');
(new yii\web\Application($config))->run();

As per the ideology of Yii, the preceding three lines mean the following:

1. Set up the Yii class definition.
2. Create the yii\web\Application instance.
3. Create various components declared in the components section of $config

and attach them to the application instance.
4. Next, perform all the other processing of $config like setting up the

application's own attributes.
5. Attach the loaded yii\web\Application instance to the Yii class as the

Yii::$app static variable.

In step 3, the components are created using the following rule: each array inside
the components section of the application config is transformed into the instance of
the class mentioned in the class key of the array, and other key/value pairs define
the initial values that should be set for the properties of these instances. This rule is
recursive. There are some special components for which the application knows the
default classes beforehand. These components will be attached to the application as
properties whose names are equal to the key/value pairs of the configuration in the
components section.

The Renderer

[82]

For example, consider the following configuration snippet from the components
section, perfectly fitting our didactic purposes:

 'log' => [
 'traceLevel' => 3,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],

This configuration means that the following code will be executed during the
creation of the application:

$log = new yii\log\Logger; // default class name
$log->traceLevel = 3;
$fileTarget = new yii\log\FileTarget;
$fileTarget->levels = ['error', 'warning'];
$log->targets = [$fileTarget];
Yii::$app->log = $log;

There is a whole bunch of components that are attached by default to any application.
Their IDs, by which they are mentioned in the configuration, are already known, so Yii
2 knows which classes to use for these components even if you don't specify them.

Also, basically, each array that has a key named class and a valid class name as the
value of this key will be treated as the configuration for the instance of that class.

These rules are encapsulated in the Yii::createObject()
invocation. You can always consult the source code for an enthralling
adventure into the Dependency Injection Containers implementation,
which we will skip in this book both because these implementation
details are irrelevant to us and to save our sanity overall.

As soon as the log component is generated, it is attached to the application as the
log property. As a result, you'll be able to reach this newly created instance of the
yii\log\Logger component with the following incantation:

Yii::$app->log

The logger is not so useful in this case though as it is usually used only indirectly
through the Yii::error(), Yii::warning(), Yii::info(), and Yii::trace()
calls (you probably already know what they do).

Chapter 4

[83]

Here is a list of the components attached to both yii\console\Application and
yii\web\Application by default, whether you specify the configuration for them
or not:

Component ID Component class
log yii\log\Dispatcher

formatter yii\base\Formatter

i18n yii\i18n\I18N

mailer yii\swiftmailer\Mailer

urlManager yii\web\UrlManager

view yii\web\View

assetManager yii\web\AssetManager

security yii\base\Security

The following components are attached only to the console application:

Component ID Component class

request yii\console\Request

response yii\console\Response

errorHandler Yii\console\ErrorHandler

The following components are attached only to the web application:

Component ID Component class

request yii\web\Request

response yii\web\Response

session yii\web\Session

user yii\web\User

errorHandler yii\web\ErrorHandler

Note that both the console and web applications have the response, request,
and errorHandler components, but they are of different classes.

In case Yii 2 updates itself in some way or another, you can always see the
actual list of the built-in components inside the definition of the Application.
coreComponents() method.

The most important point of this system of components is that nothing prevents you
from creating and registering your own component. It is indistinguishable from the
built-in components.

The Renderer

[84]

The View component
The View component responsible for making the output for the web application
clients is one of application components configurable through the application config
in the components.view key. To learn the complete list of parameters, you can either
look at the documentation about the yii\web\View class or just take a look at its
source code, as the documentation is autogenerated from the comments in the source
code anyway.

View, being an application component, allows you to execute the following:

Yii::$app->view->render($viewAlias, $params);

The Controller class has a wrapper method that abstracts the View component
a bit:

$this->render($viewAlias, $params);

However, the controller doesn't just wrap the call to the View component. It also
renders the special view file, which in Yii terms is called layout, and then passes the
view file to be rendered into this layout file. Before we talk about layouts, let's first
see what the $viewAlias argument is.

Algorithm to find the view files
The concept of modules, in some ways being core to Yii as a whole, complicates
things a bit. We'll discuss modules later in Chapter 7, Modules, where we'll go into
more theoretic detail in an attempt to bring you an insight into how Yii is really
constructed. Until then, let's pretend we're dealing with a plain application that
doesn't have submodules.

An application, as you remember from Chapter 2, Making a Custom Application with Yii
2, must have its basePath property defined. The base path is the path to the root of
the application's code base.

In fact, an application has another property called viewPath. It points to the folder
in which all of the views of that application should reside. By default, viewPath
contains a relative path to the folder named view. Being relative, this path resolves
to the view folder under the application's basePath.

The viewPath, in turn, acts as the base to determine the relative path you mention
as the first argument of the Controller.render($view, $params) method. This
viewPath is appended with the ID of the controller we call render() on.

Chapter 4

[85]

That's it! When you call the following actionIndex() method (the one we used to
search customers when developing the UI), all the settings of the Yii application are
set to their default values:

class CustomersController
{
 public function actionIndex()
 {
 $this->render('index');
 }
}

The following file will be used:

Yii::$app->basePath . "/views/customers/index.php"

The customers part of the path in the preceding code is the controller ID parsed
directly from the name of CustomersController.

Yii 2 creates a controller ID in a very simple way. The name of
the Controller class is stripped off the Controller suffix,
and then the leftover name in the uppercase is replaced with
the dash-separated one.

Previously, we mentioned that the default extension expected from the view file
is php.

However, fully relative paths are not all that you can use. If you start a path with
the "@" symbol, it'll be treated as the Yii path alias.

Path aliases were in Yii 1.x too, but for Yii 2 the syntax has changed greatly. Now,
only the first token will be expanded. This works as shown in the following code
(no need for a dedicated chapter specifically for path aliases):

Yii::setAlias("@token", "some/filesystem/path/to/application");
Yii::$app->view->render("@token/subfolder/view");

As a result of the preceding code, the view.php file will be searched in the some/
filesystem/path/to/application/subfolder/ location.

www.allitebooks.com

http://www.allitebooks.org

The Renderer

[86]

Well, of course, the setAlias() call is usually done a lot earlier in the application
lifetime. Yii 2 is so nice that it defines the five most important alias tokens for you:

• @webroot is the absolute path to the directory containing the index.php
entry point script

• @web is the relative path to the directory containing the index.php entry
point script, relative to the document root defined by the web server

• @app points to the directory set in the basePath setting of the application
instance (this is expected to be the actual application code base root)

• @runtime and @vendor are set to the runtime and vendor subfolders of @
app, respectively

All of these aliases expand without the trailing slash.

To be absolutely precise, @webroot is basically dirname($_
SERVER['SCRIPT_FILENAME']). On the other hand, @web is the
path from $_SERVER['DOCUMENT_ROOT'] till the index.php script
(Yii also tries very hard to standardize the value of DOCUMENT_ROOT
between different platforms). As a result, in the default application setup
(for example, in the basic application template), @webroot equals the
document root set in the web server host setup, and @web is empty.

You can use aliases when specifying the path to the view file. Almost any setting of
the base Yii components, which accepts some sort of path, accepts aliases as well.

Apart from aliases, you can specify the absolute path for the view files. Absolute
means not in terms of a filesystem, but in terms of the application code base. If you
start the path to the view file with // (two forward slashes), Yii will start looking for
the view file in the viewPath of the application.

When your application grows and you separate it into modules, you can fine-tune
the path specifications for view files by starting them with the / (single forward
slash) symbol. In this case, Yii will start from viewPath of the current module. In
case an application lacks any modules, it will work as the only module, so a single slash is
equivalent to two slashes. In fact, in the case of a fully relative view file path, the path
expands relative to the current module, and not just from the application's viewPath.

Chapter 4

[87]

The following table is a summary of the view file path specifications:

Specification Meaning

$filename Yii::$app->viewPath . '/' . Yii::$app-
>controller->id . '/' . $filename

"@aliasname" .
$filepath

Yii::getAlias("@aliasname") . '/' . $filepath

"//" . $filepath Yii::$app->viewPath . '/' . $filepath

"/" . $filepath Yii::$app->controller->module->viewPath . '/'
. $filepath

In all cases mentioned, if you omit the file extension at the end of $filename or
$filepath, php will be assumed by default.

Algorithm to search the layout file to be used
The Controller.render() method not only renders the view file it was told to
render, but places the result of this rendering inside another view file called Layout.

An actual implementation of this mechanics is as follows:

 public function render($view, $params = [])
 {
 $output = $this->getView()->render($view, $params, $this);
 $layoutFile = $this->findLayoutFile($this->getView());
 if ($layoutFile !== false) {
 return $this->getView()->renderFile($layoutFile,
['content' => $output], $this);
 } else {
 return $output;
 }
 }

This code is taken verbatim from the sources of the yii\base\Controller class.
A method called getView() grabs the View component from the current
application instance, which is identical to the Yii::$app->view incantation. The
View.render() and View.renderFile() methods are virtually identical for our
examples (renderFile() does not locate the view file explained in detail in the
previous section).

The Renderer

[88]

From these sources of the Controller class, you can infer the following points:

1. Layout is just another view file and it's processed as any other view file.
2. Layout has the $content variable accessible (and no other variable can be

passed there, with $this being the only exception). It's the text string that
contains the result of rendering the view file we really want to render.

3. The controller has to find the Layout file in some way. In this way, it does not
depend on the view file alias that we pass to the render() method.

In fact, Controller has the layout property that holds the path alias to the Layout
file render() has to use. If for some reason you set the layout property to false,
the layout system will be disabled and the controller will render just the view file
requested. You can also achieve these results by directly calling the \yii\base\
View::renderFile() method. If the layout property is set to null, the value of
the layout property of the parent module will be used. As mentioned in Chapter 2,
Making a Custom Application with Yii 2, the top-level module, which is a parent to all
the other ones, is the application itself.

After the value of the layout property is fetched, and it's neither null nor empty nor
false, the rules summarized in the following table are applied:

Specification Meaning

"@alias" Yii::getAlias("@alias")

"/" + $filepath Yii::$app->layoutPath . '/' . $filepath

$filepath $module->layoutPath . '/' . $filepath

As you can see, there's a layoutPath property in each module, which should
contain the path to the directory holding the layout files of that module. By default,
layoutPath contains the folder named layout inside the folder pointed by the
viewPath property. By using path aliases with the @ symbol, you can point to any
folder in the application code base. By starting the layout value with /, you force
Yii to find the layout path specifically inside the layoutPath application. In all other
cases, as we noted in the preceding table, using the $module symbol, the layoutPath
of the module whose layout property we ended up using will be searched.

By default, Controller.layout contains null. This means that Yii should use the
layout property of the module containing that controller. Even if you use the system
of modules, by default, each module starts with the layout property equal to null
anyway. This means that the application's global layout value will be used, which
is usually set in the application config. The default value of this property is main,
which is the main.php file under layoutPath. If you specify the file extension, the
php extension will not be appended automatically.

Chapter 4

[89]

If you don't override any of the default values, don't use modules, and execute
the following:

class CustomersController
{
 public function actionIndex()
 {
 $this->render('index');
 }
}

Then, the following layout file will be used:

Yii::$app->basePath . '/views/layouts/main.php'

It is an amazingly simple mechanism to have the HTML markup common to many
(usually all) pages of your web application.

The internal workings of rendering the view file
While we certainly don't want to go too deep into the internal workings of the
View component, Yii forces us to do so by the conventions of structuring the layout
files. We will look at the custom renderers in the very next section. For now, let's
remember how the typical PHP layout in Yii is structured, as we used it in Chapter 3,
Automatically Generating the CRUD Code. We have used the following methods
of the View component there:

Method Explanation
beginPage() This starts buffering the content that follows it. Everything after this call

is buffered until the endPage() call is expected to be postprocessed. It
also triggers the View::EVENT_BEGIN_PAGE event.

head() This marks the location to place the dynamically-registered elements
into. These elements include the <meta> elements, custom <link>
elements, and the registered CSS and JavaScript files with the
View::POS_HEAD positioning.

beginBody() This marks the location to insert JavaScript with the View::POS_BEGIN
positioning. It also triggers the View::EVENT_BEGIN_BODY event.

endBody() This marks the place to insert JavaScript with the View::POS_END,
View::POS_READY, and View::POS_LOAD positioning. Asset
Bundles register their CSS and JavaScript files here. It also triggers the
View::EVENT_END_BODY event.

endPage() This triggers the View::EVENT_END_PAGE event. It also puts an end
to buffering. It actually inserts the registered meta, link, style, and
script elements into the resulting HTML page.

The Renderer

[90]

A call to View.endPage() clears everything that was registered
in its View. So if you're absolutely crazy, you can even start the
second sequence of the HTML page rendering afterwards.

The goal of this elaborate structure of the conventional methods is to help you have
total control on the semantics of the different View::POS_* position specifiers.
Moreover, everything around the beginPage() ... endPage() calls will be left
unprocessed by the View component, and due to the cleanup behavior of the
endPage() call, you can even generate several pages in one run of Yii::$app-
>view->render().

Custom renderers
With all this, you now probably know the most contrived part of the Yii conventions.
Let's now talk about the custom renderers.

Yii uses renderers to process the view file you referenced in the render() method,
based on its file extension. If the View component of Yii is unable to find any renderer
for the given view file, it treats this view file as a PHP script, and executes the
renderPhpFile() method:

 /**
 * @param string $_file_ the view file.
 * @param array $_params_ the parameters (name-value pairs) that
will be extracted and made available in the view file.
 * @return string the rendering result
 */
 public function renderPhpFile($_file_, $_params_ = [])
 {
 ob_start();
 ob_implicit_flush(false);
 extract($_params_, EXTR_OVERWRITE);
 require($_file_);
 return ob_get_clean();
 }

As you can see in the preceding code, Yii will just require the file for buffering the
output. An important effect of custom renderers is that you can do anything inside
your view files, which will be dangerous if you really do anything. You should
ideally treat PHP view files as being in some template system's format, only allowing
them to paste data passed to them as associative arrays or plain data structures.

Chapter 4

[91]

Yii 2 does not ship along with any custom renderers. Let's think about how we can
utilize this feature for our convenience.

The original design goal of the developers, obviously, was that you'll write the parser
for some template system format, and then you'll be able to write view files not as
raw PHP, but as these (supposedly, more restricted, and domain-specific) templates.
By giving the templates a new format with a distinct extension, you'll force Yii to use
your custom parser on them, which will supposedly convert the given template to,
say, HTML, which you'll send to the client.

Let's employ a simple solution here, which is using Markdown (http://
daringfireball.net/projects/markdown/syntax) to author the static pages. Let's
say we want the set of user-level documentation pages, which will be handcrafted by
a skilled tech writer. You probably neither want to force him or her to author pages
in HTML nor allow him or her to author them in Word to painfully convert it to
HTML yourself. Markdown will be a simple middle ground for this task.

Employing a custom renderer to render static Markdown files is pretty simple.
We assume that you have the same CRM application we have been building in the
previous two chapters.

First, let's declare what we want:

./cept generate:cept acceptance Documentation

Then, in the tests/acceptance/DocumentationCept.php file just generated,
use the following code:

$I = new AcceptanceTester\CRMUserSteps($scenario);
$I->wantTo('see whether user documentation is accessible');

$I->amOnPage('/site/docs');
$I->see('Documentation', 'h1');
$I->seeLargeBodyOfText();

The seeLargeBodyOfText() method will be defined in the CRMUserSteps class
as follows:

 public function seeLargeBodyOfText()
 {
 $I = $this;
 $text = $I->grabTextFrom('p'); // naive selector
 $I->seeContentIsLong($text);
 }

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

The Renderer

[92]

We basically assert that we do see a documentation page if there's a heading called
Documentation and a lengthy body of text below that. It's pretty naïve, of course,
but we cannot afford to write an AI code capable of automatically checking whether
the given text is indeed a documentation page or not.

We will place the seeContentIsLong() method in the AcceptanceHelper class
inside tests/_support/AcceptanceHelper.php:

 public function seeContentIsLong($content, $trigger_length = 100)
 {
 $this->assertGreaterThen($trigger_length, strlen($content));
 }

We have to do this because we don't have assertions in the AcceptanceTester
class itself. Don't forget to run ./cept build afterwards, as we have modified
the module of AcceptanceTester (yup, AcceptanceHelper is technically a
Codeception module).

Now, run the test and watch it fail:

$./cept run tests/acceptance/DocumentationCept.php

1) Failed to see whether user documentation is accessible in
DocumentationCept.php

Sorry, I couldn't see "Documentation","h1":

Failed asserting that any element by 'h1' on page /site/docs

Elements:

+ <h1> Not Found (#404)

contains text 'Documentation'

Scenario Steps:

2. I see "Documentation","h1"

1. I am on page "/site/docs"

Of course, we don't have the /site/docs route handler yet. Create the
SiteController.actionDocs method:

 public function actionDocs()
 {
 return $this->render('docindex.md');
 }

Chapter 4

[93]

Note the absence of any Markdown-handling code, which is the whole point of using
a custom renderer.

Now, the view file at views/site/docindex.md should look as follows:

Documentation

Here we'll see some *Markdown* code.
It's easier to write text documents with simple formatting this way.

Imagine the user documentation here, describing:

1. [How to add Customers](/customers/add)
2. [How to find Customer by phone number](/customers/query)
3. [How to manage Services](/services)

The preceding code is a perfectly valid page in the Markdown format.

If you access the /site/docs page now, you'll see that the text is rendered verbatim,
because docindex.md is being processed as the PHP script, and as it does not contain
the <?php processing instruction, it is parsed as HTML text. Here is the screenshot:

Finally, let's write the custom renderer itself. As this class is a part of the application
infrastructure and has nothing to do with the domain model or the route handling,
let's create a separate utilities subdirectory and namespace for it. So, in a
utilities/MarkdownRenderer.php file, write the following:

<?php
namespace app\utilities;

use yii\helpers\Markdown;
use yii\base\ViewRenderer;

class MarkdownRenderer extends ViewRenderer
{
 public function render($view, $file, $params)
 {
 // TODO
 }
}

The Renderer

[94]

The app\utilities namespace is automatically mapped to the utilities directory
under the root of the code base, thanks to the Yii 2 autoloader we require in the
index.php entry script.

You may ask, how do we render the Markdown? We can render the Markdown
as follows:

 public function render($view, $file, $params)
 {
 return Markdown::process(file_get_contents($file));
 }

Yii 2 includes the whole Markdown processor as one of its dependencies.

Be cautious, though, because just calling the raw file_get_contents() method is
pretty unsafe. We rely on $file being safely constructed by the Yii internals here.

The MarkdownRenderer class does not have the proper unit tests
because arguably all we did was wrap two built-in and already
extensively tested functions into one call. To simplify the discussion,
we omitted the proper test-driving MarkdownRenderer. Note,
however, that in more complex cases, you must not do this. It is not all
the time that you have a parser as simple as the one presented here.

With MarkdownRenderer written, we have to wire it to the application. Add the
description of our custom renderer to the components.view.renderers.md section
of the config at config/web.php:

 'components' => [
 'view' => [
 'renderers' => [
 'md' => [
 'class' => 'app\utilities\MarkdownRenderer'
]
]
]
]

The index in the renderers array is the filename extension. In our case, it should
be md. Our renderer does not have any properties, so to properly reference it in the
application configuration, we just need to provide the fully qualified name of its class.

Chapter 4

[95]

Now run the tests. They will be executed successfully, as shown in the
following screenshot:

At the /site/docs location, you can see the properly formatted HTML page now:

A custom response formatter
As was mentioned at the beginning of this chapter, the last stage of processing the
data before sending it to the client is passing it through the response formatter.
Anything that the controller action returned is wrapped into the Response object,
which decides how to ultimately send the data down the pipe. Let's see how we can
utilize a custom response formatter for our purposes.

Probably the most obvious use of the custom response formatter is returning the
JSON data for a given route. The following is a throwaway snippet of the exploratory
code, which returns the list of attributes of the registered services from the database:

 public function actionJson()
 {
 $models = ServiceRecord::find()->all();
 $data = array_map(function ($model) {return $model-
>attributes;}, $models);

The Renderer

[96]

 $response = Yii::$app->response;
 $response->format = Response::FORMAT_JSON;
 $response->data = $data;

 return $response;
 }

In the following screenshot, the result of talking to the /services/json route from
the command line is presented. Note that the correct content-type HTTP header was
set by the server.

First, we have to note that we do not render anything here. The data we get, an
associative array, is wrapped into a manually crafted Response instance and
returned from the controller action and added to the Response.data field. When we
return the string generated by the Controller.render() method, Yii wraps it in the
Response instance behind the curtains for us. In fact, everything that is not Response
descendant and is being returned from the controller action will be added to the
Response.data field automatically.

Chapter 4

[97]

Secondly, we do not create the Response object ourselves, but we get the reference
to it as a Yii component instead. This way, we get the default values of its properties
already set by Yii at the application initialization step. The Response object is used
exactly once in an application's lifetime, so there's really no difference whether we'll
get it as a Yii component or by calling __construct().

The format field tells the Response object how to format the outgoing data. At the
time of writing, Yii developers have the following types built-in, and hence don't
need to re-implement them:

Literal Effect

Response::FORMAT_
HTML

This is the default literal. Content-Type will be set
to text/html. No processing will be done on the
data, except that objects will be serialized using the __
toString() call.

Response::FORMAT_RAW Data will be returned without any processing, except that
objects will be serialized using the __toString() call.
Content-Type will not be set by Yii.

Response::FORMAT_
JSON

Data will be processed by the Json::encode() method
shipped with the Yii framework. Content-Type will be
set to application/json.

Response::FORMAT_
JSONP

Data must be an array with the callback string
element and the data element. The response is the
string callback(data), where data is processed by
Json::encode(). This literal basically implements a
strict JSONP recommendation (see http://json-p.
org/). Content-Type will be set to text/javascript.

Response::FORMAT_XML Data will be processed by the XmlResponseFormatter
class. In short, this means that the well-formed XML string
has a response, and the Content-Type header is set
to application/xml. Data is expected to be either an
associative array or an object with public fields.

In each case when the Content-Type header is set, charset will be set to the value
of the charset property of the Response instance else, to the value of the charset
property of the application. The only exception here is JSON, where charset will
always be UTF-8 by specification.

Let's do something crazy and serialize the data about services not to JSON but to
YAML (see http://www.yaml.org/spec/1.2/spec.html). One of Codeception's
dependencies is the YAML library from the Symfony2 project, so we'll just utilize it
instead of writing our own serializer.

http://json-p.org/
http://json-p.org/
http://www.yaml.org/spec/1.2/spec.html

The Renderer

[98]

Create the YamlResponseFormatter class inside the utilities directory with the
following content:

<?php
namespace app\utilities;

use Symfony\Component\Yaml\Yaml;
use yii\web\ResponseFormatterInterface;

class YamlResponseFormatter implements ResponseFormatterInterface
{
 const FORMAT = 'yaml';

 public function format($response)
 {
 $response->headers->set('Content-Type: application/yaml');
 $response->headers->set('Content-Disposition: inline');
 $response->content = Yaml::dump($response->data);
 }
}

Note the highlighted parts. We are using the Yaml class from the Symfony library,
and we have to implement the ResponseFormatterInterface.

A class constant named FORMAT is just convenient so when we set the format of the
Response instance, we'll be more descriptive.

The implementation of the format() method is pretty straightforward, thanks to
the intuitive Yaml::dump() method. The idea is that we need to set the headers and
content fields of the Response instance and not return anything from this method.

The YAML format does not have a Multipurpose Internet Mail Extensions (MIME)
type registered (check here: http://www.iana.org/assignments/media-types/
media-types.xhtml), so we have arbitrarily decided to use application/yaml to
stress the fact that YAML format a serialization format intended to be read by
some program.

To wire this formatter to the Response component, we need to add the formatter's
declaration to the components.response.formatters item during the application
configuration, as follows:

 'components' => [
 'response' => [
 'formatters' => [
 'yaml' => [
 'class' => 'app\utilities\YamlResponseFormatter'
]
]

http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml

Chapter 4

[99]

]
]

The highlighted part is the declaration of YamlResponseFormatter to handle the
yaml format.

Finally, add the action routine to ServiceController:

 public function actionYaml()
 {
 $models = ServiceRecord::find()->all();
 $data = array_map(function ($model) {return $model-
>attributes;}, $models);

 $response = Yii::$app->response;
 $response->format = YamlResponseFormatter::FORMAT;
 $response->data = $data;

 return $response;
 }

Note that the code is almost identical to the code that formatted data as JSON. This is
the whole point of the custom response formatters. An example result of reaching the
/services/yaml route using CURL is shown in the following screenshot:

The Renderer

[100]

This YAML data can be read back to the PHP data structures using the
Yaml::parse() method, which mirrors the Yaml::dump() method. If you open
this route in the browser, it'll open the Save as... dialog prompting you to save the
file, since the application/yaml MIME type will not be opened as plain text in
the browser. We included the Content-Disposition: inline header to force the
browser to display the data if it's capable of doing so.

The asset bundles
We already mentioned and used asset bundles in brief back in Chapter 3,
Automatically Generating the CRUD Code. Let's discuss them in more detail.

The purpose of an asset bundle is to have a group of related CSS and/or JavaScript
files lying somewhere in the code base, and to be able to register them in the HTML
page with a single PHP call. More than this, asset bundles can depend on other asset
bundles, and in this case, a single call to register one top-level "master" asset bundle
can result in registering the whole UI for the application. The CSS and JavaScript files
are called "assets" here, hence the name of the concept is asset bundle.

An asset bundle with files from an arbitrary
folder
The following is a typical asset bundle, which references files from an arbitrary
folder in the code base:

class YiiAsset extends AssetBundle
{
 public $sourcePath = '@yii/assets';
 public $js = [
 'yii.js',
];
 public $depends = [
 'yii\web\JqueryAsset',
];
}

Chapter 4

[101]

It's a built-in asset bundle, which is required for any built-in widget of Yii 2 to work.
It extends the AssetBundle class, and has the following properties defined:

Property name Meaning
sourcePath It gives the path alias to the folder, which is prepended to all

the paths in JS and the CSS properties in the bundle. This is
effectively the only arbitrary folder in the code base containing
all of the assets we are going to register.

js This is an array of relative paths to the files that will be
registered as the <script src=""></script> elements in
HTML. They are presumably the JavaScript files.

css This is an array of relative paths to the files that will be
registered as the <link rel="stylesheet" href="" />
elements in the resulting HTML file. These files are presumably
the CSS files. YiiAsset does not define anything in this
property, that is, it does not contain any CSS files.

depends This is an array of fully qualified names of classes that should
be treated as asset bundles and registered before this asset
bundle.

This is, of course, not the complete list of properties. A complete description of
the AssetBundle class can be found in the Yii 2 source code, in the yii2/web/
AssetBundle.php file.

What does it mean to "register" a few CSS or JavaScript files? It means to put the
corresponding HTML element into the resulting page and fill its href or src
attribute. However, if we store the asset files in some arbitrary folder in the code
base, maybe in a place inaccessible by the web server, what URLs do we use?

Asset publishing
To answer the questions just asked, Yii has the AssetManager class and the concept
of asset publishing. When you use AssetBundle with the sourcePath property
defined, the Yii application utilizes the AssetManager component to copy the
directory specified by sourcePath to some directory specified in the AssetManager.
basePath parameter. By default, AssetManager.basePath is equal to @webroot/
assets, and so in effect, the AssetBundle directory will be copied to some web-
accessible location. It will be renamed to a unique, timestamp-dependent hash so
that AssetManager will not unnecessarily republish the AssetBundle folder if it has
not changed any content at all.

The Renderer

[102]

Asset publishing is a very complex part of the Yii framework and, surely, a very
important and useful feature. You can get into details of it by reading the official
documentation for Yii 2. We will now concentrate on the practical consequences of
publishing assets, which are as follows:

• By default, all the assets are being published in the assets subfolder of
your web root. Usually, you have no reason to change this default setting.

• You can completely erase the contents of this folder, which holds the
assets, at any time without any problem except at the time of copying
assets again.

• You must not delete this folder because Yii never checks for its existence and
doesn't create it.

• The whole AssetBundle.sourcePath folder is copied to assets. This means
that you can have, say, CSS files in the css subfolder that reference the
PNG images stored in the img subfolder by using relative paths such as ../
img/<imagename>. This is the same case for fonts.

• When developing an application, it's meaningless to change files in the
@webroot/assets directory. You have to change the original files in
AssetBundle.sourcePath and then republish the files again. Yii 2 tries to
decide whether it needs to republish assets by comparing timestamps, but
it can fail. So a foolproof way to republish assets is just to purge the assets
directory so that Yii will be forced to repopulate it.

• There is this configuration setting called AssetManager.linkAssets, which
you can set in the application configuration. When it is true, AssetManager
doesn't copy the assets folder but makes a symbolic link for it. This does not
work on Windows and may have possible security issues. For example, you
have to have FollowSymlinks enabled inside the @webroot/assets folder
if you're using Apache. However, on a system where it's not a problem,
symlinking assets instead of copying them removes the problem described
previously, as @webroot/assets will always have the newest "copy" of the
CSS and JavaScript files.

You can publish any folder or file from the code base by making the following call:

list($dir, $url) = Yii:$app->assetManager->publish($path)

• The $path variable is the path to the file or directory inside the code base. It
is processed by Yii::getAlias(), so it can be any path alias understandable
by Yii 2.

• The $dir variable will hold the complete absolute path, given by the $path
variable just published.

Chapter 4

[103]

• The $url variable will hold the complete absolute URL to the path
($path) just published, so you'll be able to use this URL in your HTML
file and be sure that the browser's request to it will really return the
published file or directory.

An asset bundle with files from a
web-accessible folder
Here is the example AssetBundle definition, which references files that already lie in
the web-accessible folder:

class MyUiAsset extends yii\web\AssetBundle
{
 public $basePath = '@webroot/ui';
 public $baseUrl = '@web/ui';
 public $css = ['main.css'];
 public $js = ['main.js'];
}

Dependencies were omitted for brevity.

Here, we see the basePath and baseUrl properties. The base path is the path alias to
the folder that contains the files relevant to this bundle. The base URL is the absolute
URL prefix that should be appended to all the file references so that the browser will
be able to properly request it. Note that the alias system can also be applied to URLs.

Usually, the base URL and base path are similar as we utilize the ability of a web
server to serve files directly using the path in any filesystem. However, in more
complex cases, you may have complicated URL rewriting in place or maybe routes
that dynamically generate CSS or JavaScript code on the fly. All of these are pretty
rare, of course, but Yii provides the capabilities anyway.

The point is that when you use the sourcePath property in your asset bundle, Yii
first publishes this source folder and modifies the basePath and baseUrl properties
of the asset bundle in question for you. As a side effect, it's pointless to use all three
properties at the same time as sourcePath will have precedence anyway.

This usage is meaningful when you can tolerate the folders that pre-exist in your
web root directory. However, the whole reason to use the asset bundle is to contain
the assets relevant to a single library inside a single folder. If you use a lot of asset
bundles based on the base path, you will inevitably fill your web root with a lot of
different folders from different libraries. And this can become really ugly really fast.

The Renderer

[104]

However, nothing will stop you from using the same base path for all the asset
bundles (for example @webroot) and just referencing different files in each bundle.
This will lead to a tangled mess of interrelated files and is a maintenance nightmare
waiting to happen.

Thus, asset bundles based on the source path, in spite of the cumbersome change-
republish cycle, look like a more maintainable and idiomatic solution.

Registering CSS and JavaScript files
manually
Given the system of asset bundles, you probably will never really need to register
assets manually, but in case you do, here's a list of methods you can use for it:

Method call Effect
registerCss($css,
$options)

It will place the <style> HTML element inside the
<head> element with the value of $css as the content
and the attributes listed in the optional $options
array. Ultimately, it makes the Html::style($css,
$options) call.

registerCssFile($url,
$depends, $options)

It will place a <link> element pointing to $url inside
the <head> element of the resulting HTML file. If the
optional $depends attribute(s) are defined, then the
additional AssetBundle is registered with just $url
as the sole CSS element and the dependencies listed
in $depends. The optional $options attribute is an
array of attributes for the <link> element. Ultimately, it
makes the Html::cssFile($url, $options) call.

registerJs($js,
$position)

It will place the <script> HTML element as specified
by the $position attribute with the value of $js as the
content. Ultimately, it makes the Html::script($js,
['type' => 'text/javascript']) call.

registerJsFile($url,
$depends, $options)

It will place a <script> HTML element as
specified by the position that is determined by the
$options['position'] field this time. If the
$depends attributes are specified, then the additional
asset bundle is registered with just the value specified
by the $url attribute as the sole JS element and the
dependencies listed in $depends. Ultimately, this
method makes the Html::jsFile($url, $options)
call (the 'position' key being removed from
$options).

Chapter 4

[105]

Do note that the CSS and JavaScript files are still better than writing
the <script> and <link> elements in HTML layouts or, worse, view
files directly. One of the most obvious reasons why they are better is the
ability to include only those assets that are relevant to the route currently
being processed (that is, to the page being currently rendered).

All these methods are in the View class, so you can use them as $this-
>registerCss($css) inside the view files and as Yii::$app->view-
>registerCss($css) anywhere else.

Note that we did not list exact function declarations, only the parts most useful
in practice.

For JavaScript files, there's the concept of positions. Here's a list of the possible
positions for JavaScript files:

• View::POS_HEAD places the JavaScript files inside the <head> element
• View::POS_BEGIN places the JavaScript files at the beginning of the <body>

element
• View::POS_END places the JavaScript files at the end of the <body> element
• View::POS_READY means the JavaScript code block will be enclosed within

jQuery(document).ready() and placed at end of the <body> element
• View:: POS_LOAD means the JavaScript code block will be enclosed within

jQuery(window).load() and placed at the end of the <body> element

We discard the possibility that you need to include <script>
somewhere inside the HTML page. Yii will not help you with
this misbehavior.

Placing JavaScript in different positions in the
asset bundles
There's a really useful trick with asset bundles related to manually registering the
JavaScript and CSS files described in the previous section.

By default, when registering an asset bundle, all JavaScript files mentioned in it will
be placed at the bottom of the body element. However, there's a method to change
this position. Unfortunately, you cannot specify the position for each individual
JavaScript file, only for the whole asset bundle.

The Renderer

[106]

There's a property called jsOptions in the AssetBundle class. It holds the
parameters that will be passed to the registerJsFile call as the $options
argument when each of the JavaScript files in the asset bundle will be registered.
So you can add the following line to your AssetBundle definition:

public $jsOptions = ['position' => View::POS_HEAD];

All JavaScript files mentioned in the js property will be placed in the <head>
element of the resulting HTML page instead of at the end of <body>.

There is also the cssOptions property that can be used to set options for the
registerCssFile calls for CSS files. Using these options, you can set the media
property of the resulting <link> tag, for example:

public $cssOptions = ['media' => 'print,aural,tty'];

Making a custom asset bundle for our
application
Let's create our own asset bundle so that we can initialize our styles and client-side
behavior with just a single call.

Create a directory called assets in the root of the code base. Inside it, create a file
called ApplicationUiAssetBundle.php with the following definition:

namespace app\assets;

use yii\web\AssetBundle;

class ApplicationUiAssetBundle extends AssetBundle
{
 public $sourcePath = '@app/assets/ui';
 public $css = [
 'css/main.css'
];
 public $js = [
 'js/main.js'
];
 public $depends = [
 'yii\bootstrap\BootstrapAsset',
 'yii\web\YiiAsset'
];
}

Chapter 4

[107]

Hopefully, this definition completely makes sense. For it to not be a lie, we need to
create two asset files in the code base root, which will be empty for now: assets/ui/
css/main.css and assets/ui/js/main.js.

As we declared that our assets depend on YiiAsset and BootstrapAsset, we can
replace the option of registering them with registering our asset bundle. Inside the
main layout file, consider the following line:

\yii\bootstrap\BootstrapAsset::register($this);
\yii\web\YiiAsset::register($this);

We can replace these lines with the following:

app\assets\ApplicationUiAssetBundle::register($this);

Now we have the foundation to write custom styles for our example application.

Themes
One of the interesting things built into the rendering system of Yii 2 is the
support for themes. Together with the amazingly versatile asset bundle system,
Yii 2 gives another level of control over the appearance of the web application
under maintenance.

The definition of a theme from the official documentation and DocBlock in the
comments is probably the best explanation of this concept ever. Here it is:

A theme is a directory of view and layout files. Each file of the theme overrides
corresponding file of an application when rendered. A single application may use
multiple themes and each may provide totally different experience. At any time
only one theme can be active.

The crucial part is that a theme is a separate set of view files that can override the
existing view files. The data that will be sent to the view files from the controller
will be the same for all view files, but the view file from the theme can do something
completely different with it. With the support of the asset bundle concept, you can
not only rearrange the stuff in the resulting page but also restyle it.

You can read the exact rules of applying a theme in the documentation; they're not
worth long descriptions here. Let's look at some sufficiently small examples instead.

The Renderer

[108]

Making a custom snowy theme
Let's restyle the home page of our example CRM application in such a way that
it'll have snowflakes in background and an enlarged title "Our CRM" on it. There's
no real meaning behind the snowflakes (yet). Right now, our SiteController.
actionIndex() method looks like this:

 public function actionIndex()
 {
 return 'Our CRM';
 }

So, it doesn't really render any view file and, as a result, the layout is not applied.
Change the actionIndex() method to:

 public function actionIndex()
 {
 return $this->render('homepage');
 }

Then, make the views/site/homepage.php file with the letters Our CRM as the only
content inside it. Nothing else is needed here.

All acceptance tests should still pass after this change.

As the theme is a directory with view files, and those view files override the view
files that already exist in your code base, let's create a themes/snowy/views/site/
homepage.php view file.

We'll also use a separate asset bundle for this theme, so create the directory for it,
named assets/snow. Also, create a SnowAssetsBundle.php class file in the assets
directory and a snow.css CSS file in the assets/snow directory.

The resulting directory tree should look like the following (files highlighted in green
are to be created):

Chapter 4

[109]

The snow assets bundle will have the obvious declaration:

class SnowAssetsBundle extends AssetBundle
{
 public $sourcePath = '@app/assets/snow';
 public $css = ['snow.css'];
 public $depends = ['app\\assets\\ApplicationUiAssetBundle'];
}

It depends on the main assets bundle because we want it to override the default
styles, that is, be loaded last.

CSS is really simple; we just apply a background to the body and add a class to make
some text stand out:

body {
 background: #a6e1ec url(snow.jpg) repeat;
}
.inside-snowflakes {
 margin: 10% 15%;
 font-size: 2em;
}

The Renderer

[110]

The image of the snowflakes is inside the code bundle, which can be downloaded
from the Packt Publishing website and is courtesy of Jordan Lloyd. The URL is
http://www.flickr.com/photos/jordanlloyd/5342749399/in/photostream/.

After this, we apply the new assets bundle and wrap the text inside the newly styled
container in homepage.php, as follows:

<?php app\assets\SnowAssetsBundle::register($this); ?>
<p class="inside-snowflakes">Our CRM</p>

So, the preparations are done; there's a theme contained in a folder and a new asset
bundle is referenced from this theme. Now to apply the newly created theme to
the site, we need to add the following declaration to the components.view.theme
application configuration key:

 'components' => [
 ...
 'view' => [
 ...
 'theme' => [
 'class' => yii\base\Theme::className(),
 'basePath' => '@app/themes/snowy',
]
 ...

],

Here is the end result that you should get:

It's a bit silly but illustrates the concept well. The real power of themes comes with
their dynamic loading based on some condition, which ideally should be done
during application loading. The first option is to create a subclass of yii\web\
Application with the appropriate override of the init() method and instantiate it

http://www.flickr.com/photos/jordanlloyd/5342749399/in/photostream/

Chapter 4

[111]

inside the index.php entry point script. The second option is to use the event system
and add a hook to the yii\base\Application::EVENT_BEFORE_REQUEST event. We
will discuss more on events in Chapter 10, Events and Behaviors.

Widgets
In the user interface of your web application, you will often have some parts that
should be placed on several pages but cannot be simply placed in the layout file,
for example, because they should be filled with the data generated by the route being
processed. Yii 2 encapsulates this into the concept of a widget, which is essentially
a way to render a separate view file with some arbitrary logic attached to it.

Widgets can be very specific, such as some custom-crafted shorthand widget to
render a specific button in our user interface, or very abstract, such as the \yii\
widgets\ListView, widget which encapsulates the activity of rendering a view
file repeatedly given an array of data in a list-like fashion.

While it seems like this chapter is the appropriate place to discuss widgets in detail,
it's better to wait until Chapter 11, The Grid, when we will have a chance to actually
use a widget and see how it can be configured. So, if you are interested, skip to the
FEATURE — widgets section of that chapter right now.

Summary
The resulting HTML page is being generated by Yii in three steps.

First, Yii prepares all of the HTML code you provide to it in the view files.

Second, it "registers" the CSS and JavaScript files you tell it to register either by
means of asset bundles or with manual calls to the register*() methods.

Finally, all the registered assets are being put inside the HTML page to be sent to
the client.

The second step that decouples adding assets and rendering the page allows us to do
really interesting things such as conditional loading of CSS and/or JavaScript files.

We learned about application components, a core feature of Yii 2, and a lot of
features that allow us to control and customize the process of rendering the resulting
page, that is, asset bundles, view renderers, response formatters, themes, and the
workings of the view itself in general.

The Renderer

[112]

However, we skipped several themes here related to the rendering process. The first
is the concept of widgets and the list of built-in widgets in particular. We'll use a lot
of widgets throughout this book so you'll definitely get an understanding about how
they work, and a lot of them will be used in other chapters when the appropriate
topic arises. Also, we did not cover the various helper methods of the View
component that deal with the caching of content. This will be revealed in Chapter 8,
Overall Behavior.

Now, we'll digress from the fundamental things a bit and go more practical in the
next two chapters when we'll add the authentication and authorization mechanics
to our application. No more silly simple examples.

User Authentication
In the previous chapter, we discussed in detail the precise mechanics of how Yii 2
renders anything for the client browser. In the following chapters, we will look at
features we have not used before.

Let's talk about user authentication now. Our CRM application example in its current
state is pretty useless. It allows everyone to access it, and more often than not we
don't want just anyone to be able to fiddle with the personal data of our customers.

In this chapter, we'll look at what Yii offers us to help identify the user, that is, user
authentication. In the next chapter, we'll answer the question of user authorization,
that is, deciding whether to allow a user to perform an action in the application.

We'll add the following features to our example CRM application in this chapter:

• A table to record users known to the system and the corresponding user
interface to manage it.

• An indicator visible on all pages displaying whether the person currently
using the application is registered in the table. However, he/she will need
to explicitly declare it to "log in to" the application.

At this point, you already understand what Yii Application Component is,
especially, how to configure them and how to access them. If you don't, then it's
better that you re-read the previous chapter and the official documentation about
this concept, as we'll use more and more built-in Yii Components from now on.

User Authentication

[114]

Anatomy of the user login in Yii
You need the following to successfully authenticate the user using Yii:

1. An object implementing the IdentityInterface interface.
2. Call Yii::$app->user->login() and pass this object there.

The main catch here is the concept of Identity. To Yii 2, this can be any class
implementing IdentityInterface. You are encouraged to read through the
definition of IdentityInterface in the web/IdentityInterface.php file inside
the Yii 2 framework code base, as it's very thoroughly explained there.

When a user is not logged in (no successful call to yii\web\User.login() was
performed), the property Yii::$app->user->isGuest will return true. After
successful login and as long as the user stays logged in, Yii::$app->user->isGuest
will always return false and Yii::$app->user->identity will return the object
that was passed to the call to the login() method (that is, the user identity).

This basically concludes the high-level usage of the authentication system built-in to
Yii 2.

Yii only manages the state of the authentication, that is, it holds the data
identifying the user. Any check regarding user authentication should be
performed by the application.

While nowadays user authentication by login ID / password pair is slowly becoming
old-fashioned, chances are, you'll still need to implement it in your next application.
Let's consider the following use case.

Password-based login mechanics in
general
Everyone knows the decades-old scheme of password-based login. Records about
users known to the application are stored in the database table called users.
Each record has the username and password fields (the actual information tokens
necessary for authentication) along with other information about the user.

The basic table looks like this in the MySQL Workbench (http://www.mysql.com/
products/workbench/):

http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/

Chapter 5

[115]

The username field is used to actually identify the user among others. Therefore,
it has the UNIQUE constraint.

The password field contains a special string known, by definition, only to the user
and the application. To further protect the password, the application does not store
it as plain text, but as its cryptographically secure hash value, which is generated by
an algorithm such as bcrypt. In this way, the application has no way to know the
original plaintext version of password.

The most important part of password storage is the cryptographically secure
part. So, the algorithm of hashing should exhibit the following traits
useful for our purposes:

• It should use the cryptographic hash function, the main characteristic
of which is being one-way, that is, you can compute hash from
plaintext easily but getting plaintext from hash is very hard.

• It should ideally use a different hashing function for each given
plaintext. This is done by the technique called salting.

• It should be slow.

When authenticating, a user provides the username to claim who he is and the
password to prove it. As the application knows which algorithm it used to hash the
password when the user was registering, it hashes the provided password in the
same way and compares the resulting string with what it has in the database for
the provided username. If hashes are found identical, then the user is really who
he claims to be and we consider him authenticated.

Well, you probably know that already. Let's implement this authentication method
in our example CRM application.

User Authentication

[116]

Note that username/password authentication is not the only way
to authenticate the user. There are other methods, varying both in
complexity of security checks and the user interface. To name a few,
there is the OpenID initiative (http://openid.net/) and the OAuth
protocol (http://oauth.net/2/) to authenticate in an application
using credentials of another application, and signed and confirmed
SSL certificates (https://developer.mozilla.org/ru/docs/
Introduction_to_SSL#_Client_Authentication_).

We will ultimately perform the following steps:

1. Build the user records management interface.
2. Build the user login form.
3. Introduce the indicator to display user status (logged in/logged out).

Making the user management interface
There is no need for us to make some custom user interface. Also, for simplicity, we
will not bother with separating from ORM as we did in Chapter 2, Making a Custom
Application with Yii 2. Thus, we can live with the interface automatically generated by
Gii as described back in Chapter 3, Automatically Generating the CRUD Code. We will
not list here the exact same steps as were described already, but will present a short
outline before implementing features that are specific for users.

Acceptance tests for the user management
interface
Similar to the services back in Chapter 3, Automatically Generating the CRUD Code,
we need to be able to create, update, view, and delete users in the system.

As the acceptance tests for user management are going to be almost
exactly the same as for services management, if you just follow the
lessons in this book, you don't need to implement them. However,
strictly speaking, in a real-world production environment you do
need to implement them anyway. They are included in the code
bundle relevant to this chapter.

http://openid.net/
http://oauth.net/2/
https://developer.mozilla.org/ru/docs/Introduction_to_SSL#_Client_Authentication_
https://developer.mozilla.org/ru/docs/Introduction_to_SSL#_Client_Authentication_

Chapter 5

[117]

The easiest way right now is to copy RegisterNewServiceCept.php,
EditServiceCept.php, and DeleteServiceCept.php from the tests/
acceptance directory to the RegisterNewUserCept.php, EditUserCept.php,
and DeleteUserCept.php files in the same directory, respectively, and then replace
all mentions of the following in method names, variable names, and strings:

• services to users
• Services to Users

By doing this, we get the reference to a nonexistent class AcceptanceTester\
CRMUsersManagementSteps, which we create by copying the file tests/
acceptance/_steps/CRMServicesManagementSteps.php to tests/acceptance/_
steps/CRMUsersManagementSteps.php and replacing all mentions of Services by
Users.

Of course, it's blatant code duplication and it really needs to be refactored
out, but you can take it as the home assignment, because you really
can't escape at least some duplication in your highest level feature
specifications for manipulating with entities in application, and it's
outside the scope of this book to teach proper refactoring techniques. Just
remember that you absolutely MUST get rid of this duplication.

The only functional difference in the specs for user management will be inside the
CRMUsersManagementSteps class. After the proposed replacements, it mentions
the UserRecord[name] string several times now. Our user record will not have the
name field, but the username one. Then, you'll need to change UserRecord[name]
to UserRecord[username]. We'll stick with the username field name because it's
not the actual name of the real-world person behind this UserRecord, it's just the
identifier it presents to our application.

Also, the imagineUser() method in the same class becomes as follows:

 function imagineUser()
 {
 $faker = \Faker\Factory::create();
 return [
 'UserRecord[username]' => $faker->userName,
 'UserRecord[password]' => md5(time())
];
 }

User Authentication

[118]

We will not bother with password hashes, as all data here is the user input, not
what will be stored in the database. Note the way we generate a random password,
although this way we can get only alphanumeric characters. We are doing this just
for simplicity, as the password ideally should be a string containing any possible
characters, including non-printing ones.

The PHP built-in function md5() was chosen only as an easy way to get a long
stream of pseudorandom alphanumeric characters. You should not use a fast
hashing algorithm to get a password hash. See this excellent answer if you're
still not convinced: http://security.stackexchange.com/a/31846.

Database table to store user records
We need to prepare the table to hold our future user records. Here's the database
migration you'll need to implement the schema displayed before:

 public function up()
 {
 $this->createTable(
 'user',
 [
 'id' => 'pk',
 'username' => 'string UNIQUE',
 'password' => 'string'
]
);
 }

 public function down()
 {
 $this->dropTable('user');
 }

Generating the model and CRUD code by Gii
Perform the same steps discussed in Chapter 3, Automatically Generating the CRUD
Code. We will store the UserRecord model into the separate namespace app\models\
user.

Field name Field value
Model class app\models\user\UserRecord

Search Model class app\models\user\UserSearchModel

Controller class app\models\user\UsersController

http://security.stackexchange.com/a/31846

Chapter 5

[119]

Removing the password field from the
autogenerated code
We will handle the password field automatically behind the scenes, but Gii
doesn't know our intentions. You need to remove mentions of this field manually
from the following places. Please note that we don't want to see passwords for any
user records.

• models/user/UserSearchModel.php: First, remove the password field from
the safe rule inside the rules() method. Then, remove the following line
from the search() method:
$query->andFilterWhere(['like', 'password',
 $this->password])

• views/user/_search.php: Remove the following line from the ActiveForm
widget configuration:
<?= $form->field($model, 'password') ?>

• views/user/index.php: Remove the password field from the columns
setting inside the GridView widget configuration.

• views/user/view.php: Remove the password field from the attributes
setting inside the DetailView widget configuration.

However, we do want to be able to enter and change the password for user
records, so the input field for password in the views/user/_form.php view
file should stay intact.

Now the interesting part begins: password should be hashed upon saving.

Hashing a password upon saving a
user record
What do we lack in our current scheme? Obviously, before saving a user record in
the database, we need to compute the secure hash of the password provided and
store the hashed value instead of the plaintext one. More than that, when updating
the user record, we don't want to rehash the already hashed value in case we don't
change the password at all.

User Authentication

[120]

Yii 2 (as well its predecessor, Yii 1.1.x) defines several methods for the instances of
the ActiveRecord class, which we can override to do stuff at several predefined
stages of the active record life. While you can read about them all in more detail in
the Events of \yii\db\BaseActiveRecord section of Chapter 10, Events and Behaviors, we
will be using one of them right now, the beforeSave() method. We will use it right
before the active record is to be saved to the database.

It has the following default definition:

public function beforeSave($insert) { return true; }

The $insert argument passed to this method indicates whether the active record
in question is a new one that is to be inserted into the database or if it's an already
existing one that is to be updated into the database.

This method must return a Boolean value indicating whether this record is allowed
to be saved. If not, it will not be saved, without any additional indication to the user
or program. It's really important to remember this fact. If you don't return anything
from this method, then a null will be implicitly returned, which is equal to false
and you will effectively prohibit the relevant operation completely. We will be
overriding this method in the UserRecord class for our purposes.

Additionally, Yii 2 has the special \yii\base\Security application component
that holds, among others, the helper methods for securely computing hashes for
passwords. This component is accessible through the Yii::$app->security
invocation. This is of great help to us, as we become relieved from the task
of manually fiddling with the specifics of PHP's crypt() method. We are
particularly interested in the Security::generatePasswordHash() and
Security::validatePassword() methods.

Functional tests for password hashing
How do we check that a password is stored in the hashed form in the
database? After saving a user record, we will simply check that a call to the
Security::validatePassword() method returns true for a given plaintext
and hash.

This feature doesn't need to be tested by the end-to-end acceptance test. We will be
using the functional testing suite for it, which is already included by the Codeception
framework for us since Chapter 2, Making a Custom Application with Yii 2, but is
unused until now.

Chapter 5

[121]

For functional (or, in different words, integration) testing in Codeception,
a special module called Db exists, documentation for which can be found at
http://codeception.com/docs/modules/Db. Its most important feature for
us is the fact that before each test run it reverts the database to the state described
in the tests/_data/dump.sql file, which does not exist yet. This SQL file should
contain instructions about how to create the database schema. With the default
toolset of MySQL 5 it can be generated as follows, given that your database doesn't
require credentials and is named crmapp:

$ mysqldump -d crmapp > tests/_data/dump.sql

The -d flag means no data, only schema .

We need to configure the functional test suite in the tests/functional.suite.yml
file like this (lines to be inserted are highlighted):

class_name: FunctionalTester
modules:
 enabled: [Db, Filesystem, FunctionalHelper]
 config:
 Db:
 dsn: 'mysql:host=localhost;dbname=crmapp'
 user: 'root'
 password: 'mysqlroot'
 dump: tests/_data/dump.sql

Of course, you need to insert your own hostname, database name, username,
and password for a database on the deploy target. You also need to rebuild the
Codeception suite using the ./cept build invocation.

So, generate the new functional test, as we will be testing the database:

$./cept generate:test functional PasswordHashing

Here's how we encode this test in the generated tests/functional/
PasswordHashingTest.php file:

 /** @test */
 public function PasswordIsHashedWhenSavingUser()
 {
 $user = $this->imagineUserRecord();

 $plaintext_password = $user->password; //1

 $user->save();

 // Don't care about mutated model now, just fetch new one.

http://codeception.com/docs/modules/Db

User Authentication

[122]

 $saved_user = UserRecord::findOne($user->id); //2

 $security = new \yii\base\Security();
 $this->assertInstanceOf(get_class($user), $saved_user);
 $this->assertTrue(
 $security->validatePassword(// 3
 $plaintext_password,
 $saved_user->password
)
);
 }

The entire idea is expressed in highlighted lines of the preceding code:

• At 1, the user is not stored in the database yet, and the password field still
holds the plaintext value, which we save for future reference.

• At 2, after the user is saved to the database it is assigned an ID. To imitate
the temporal gap between creating a new user record and logging in,
we fetch this user again from the database.

• At 3, we test whether our initially generated plaintext version of the
password can be successfully validated against the now hashed value,
which is stored in the password field of the UserRecord class fetched
from the database.

We don't really care here how exactly the password is hashed. All we want to
know is whether validatePassword() will return true for the given plaintext
and hash value.

We are imagining the user record the same way as in our acceptance tests for
user management:

 private function imagineUserRecord()
 {
 $faker = Faker\Factory::create();

 $user = new UserRecord();
 $user->username = $faker->word;
 $user->password = md5(time());
 return $user;
 }

This is obviously a case of code duplication here, and it should be refactored too.

Chapter 5

[123]

This test will not run yet, though. If you run it right now, it will say that it cannot
find the UserRecord model. This is because you don't have the appropriate
autoloaders prepared in the Codeception harness. Fortunately, this harness includes
special bootstrap scripts, which are executed before all of the tests in the given
suite. So, we will utilize the tests/functional/_bootstrap.php file and put the
require calls to our autoloaders in there:

require_once(__DIR__ . '/../../vendor/autoload.php'); require_once(__
DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');

new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

Unfortunately, we need to create the full application for Yii autoloader to be
initialized. We need it to get to our UserRecord class.

After the bootstrap file is in place, configuration is appropriately changed and the
Codeception harness is rebuilt, the password hashing test should finally fail with the
message Hash is invalid. It's time to actually implement password hashing.

Password hashing implementation inside the
active record
To really implement this feature, you need the now-obvious method inside the
UserRecord class:

 public function beforeSave($insert)
 {
 $return = parent::beforeSave($insert);

 $this->password = Yii::$app->security-
>generatePasswordHash($this->password);

 return $return;
 }

Well, turns out, it's not so obvious really. The highlighted part in the preceding
code is the line we need. Lines before and after this line are framework-related
code to preserve the original behavior of the beforeSave() method on the all the
ActiveRecord instances. To be short, parent implementation of beforeSave() uses
the concept of Yii 2 called Event. It triggers the particular event telling to whoever is
listening in the ActiveRecord component that this record is being saved now. The
point is that listeners can deny the event. You can read more about events in Chapter
10, Events and Behaviors, but here we don't really have any use of this system at all.

User Authentication

[124]

Note that in our functional test, we generate the Security class
instance manually. But in production code, we reuse the application
component. In tests, it was done so because it's generally not
acceptable that tests are dependent on some global state, which Yii
singleton clearly is. In production code, it was done so because it's
simply irrational to not use what is already here. However, if for
some reason you have some custom-crafted component in your
application named security, you will end up changing tests.

We now have a problem that was already mentioned before: when we save the
UserRecord instance again, the password will be hashed again. Now, we have
no way to know how this user will login, because he now needs to enter the
hash of his original password in the password field in login form!

The problem is expressed in the following test:

 /** @test */
 public function
PasswordIsNotRehashedAfterUpdatingWithoutChangingPassword()
 {
 $user = $this->imagineUserRecord();
 $user->save();

 /** @var UserRecord $saved_user */
 $saved_user = UserRecord::findOne($user->id);
 $expected_hash = $saved_user->password;

 $saved_user->username = md5(time());
 $saved_user->save();

 /** @var UserRecord $updated_user */
 $updated_user = UserRecord::findOne($saved_user->id);

 $this->assertEquals($expected_hash, $saved_user->password);
 $this->assertEquals($expected_hash, $updated_user->password);
 }

The difference between $saved_user->password and $updated_user->password
in the assertions (at the end of the test) is that $saved_user at that point in time is
the UserRecord instance modified in the memory, and $updated_user at that point
in time is the UserRecord instance newly-fetched from the updated record in the
database. We need to be sure we don't have mangled data in both cases.

Chapter 5

[125]

Stateful programming is hard, and now we see it ourselves.

Fortunately for us, Yii 2 has a functionality integrated into its active records, which
allows us to check whether any field was changed. You can choose among the
following options:

Method of ActiveRecord Usage

getOldAttributes() This method will get the array of original
values of attributes of the current active
record since the last save() or find() call.

getDirtyAttributes($names =
null)

This method will get the array of all the
values of the attributes that were changed
since the last save() or find() call.
Basically, it returns those results from
getOldAttributes() that are different
from those returned by getAttributes().
You can specify the $names parameter
mentioning which particular attributes you
are interested in.

isAttributeChanged($name) This method will check an attribute whether
it was changed since the last save() or
find() call.

markAttributeDirty($name) This method will tell Yii that this particular
attribute should be treated as changed
irrelevant of whether it really is. This way,
you can force the resaving of this attribute to
the database.

The idea is that only values of "dirty" (changed) attributes are saved into the
database when you call the save() method. Obviously, when you create a new
record, all attributes are "dirty," so all of them will be saved to the database.

The method named isAttributeChanged() is exactly what we need. Just adding
one line to the beforeSave() handler as follows makes our test pass:

 public function beforeSave($insert)
 {
 ...
 if ($this->isAttributeChanged('password'))
 $this->password = Security::generatePasswordHash($this-
>password);
 ...
 }

User Authentication

[126]

So, we don't unnecessarily rehash the password now. The backend of user
management is now complete.

Making a user record into an identity
To be usable in the login/logout functionality we are building, our UserRecord
class should implement the yii\web\IdentityInterface and it doesn't do this
yet. Let's start with the addition of implements yii\web\IdentityInterface
declaration and proceed from that. We need to implement five methods for it.

Two of the methods are directly relevant to the concept of "user identity." The
first one is the getId() method, which should return a unique identifier of user
among others. In our case, it's the database ID of the user record in question,
so the implementation is easy:

 public function getId()
 {
 return $this->id;
 }

The second one is the static findById() method, which, given the ID of the user,
should return an instance of the corresponding model. In our case, the ID of the user
was defined by the getId() method as a database ID of the user record, and we need
to return an instance of the UserRecord class, so the implementation as follows:

 public static function findIdentity($id)
 {
 return static::findOne($id);
 }

Two other methods are there to support the well-known "remember me" feature.
Given that we provide these methods, Yii 2 will handle this feature automatically
behind the scenes. We will not bother testing this feature as it wasn't one of our
initial goals, but it's not hard at all to implement, so let's just do it.

The first method is getAuthKey(), which should return some persistent ID (different
from the user ID we return from getId() method) uniquely associated with the user
identity in question. The hard part is that this authentication key must be persistent
for Yii to be able to check its validity between the requests.

Let's make up some special attribute on UserRecord and return its value as the
authentication key:

 public function getAuthKey()
 {

Chapter 5

[127]

 return $this->auth_key;
 }

We need three steps to actually "make up" this attribute. First, we need a migration
to add this column to the table. The actual call in this migration should be as follows:

$this->addColumn('user', 'auth_key', 'string UNIQUE');

A UNIQUE constraint is required as the user record must be identifiable by this field.

Do not forget to repopulate the tests/_data/
dump.sql file after the migration.

We'll populate this field at its creation and never change afterwards. Thus, we can
add the following lines to the beforeSave() handler:

 if ($this->isNewRecord)
 $this->auth_key = Yii::$app->security-
>generateRandomKey($length = 255);

The meaning of this code should be obvious, but the urge to read the documentation
for both \yii\db\BaseActiveRecord.$isNewRecord and \yii\base\Security.
generateRandomKey is encouraged anyway.

Finally, the auth_key field should be added to list of required fields in UserRecord.
rules() as follows:

 [['username', 'password', 'auth_key'], 'string',
 'max' => 255],

This concludes our addition of a column to the table.

The second method required for the "remember me" feature is validateAuthKey().
It actually checks whether the given authentication key is corresponding to the
current user identity. In our case, we can just compare the given key with the value
stored in the database for current the user record, as follows:

 public function validateAuthKey($authKey)
 {
 return $this->getAuthKey() === $authKey;
 }

User Authentication

[128]

The final fifth method required to be implemented in the IdentityInterface is the
findIdentityByAccessToken() method. Given some special access token, it should
return an instance of UserRecord (in our case) directly, with some internal checks
probably. The nature of this token is not defined, and this method is obviously useful
in case of authorization by means of something like OAuth2 or OpenID. We are not
going to use such features, so we'll just make the stub:

public static function findIdentityByAccessToken(
 $token,
 $type = null
) {
 throw new NotSupportedException(
 'You can only login by username/password pair for now.');
}

All of these five methods, getId(), findIdentity($id), getAuthKey(),
validateAuthKey($authKey), and findIdentityByAccessToken($token),
are used internally by the Yii 2 mechanics of user login. In most cases, you'll
never ever need to call them in your client code.

After the user record becomes the identity, you need to declare it in the components.
user.identityClass setting in the application config. For our example application,
it'll look like the following:

 'user' => [
 'identityClass' => 'app\models\user\UserRecord'
]

Making the login interface
At last, we need to implement the feature we were interested in at the beginning:
authenticating the user. First, we need to decide what it will mean for the user
to be authenticated.

In the next chapter, which is dedicated to user authorization, we will check whether
a user is allowed to do something in the system. But for now, we don't care about
authorization, just the authentication, that is, some indication that the system recognized
the user.

Chapter 5

[129]

Specifications of user authentication
Let's look at the specifications of user authentication:

• At each page of the application, in the top-right corner is the indicator of
user authentication

• When a user is not authenticated, the indicator holds the string guest and
a link named login

• When a user is authenticated, the indicator holds the user's username and
a link named logout

• A click on login leads to the Login page
• A click on logout de-authenticates the user and redirects him to the homepage

This is pretty hard to comprehensively cover by use cases and the acceptance tests.
As our goal is to learn about the features of Yii 2 that help us to implement stuff we
want, let's settle with satisfying just the following acceptance test:

./cept generate:cept acceptance LoginAndLogout

Here are its full contents translated from the preceding high-level description:

$I = new AcceptanceTester\CRMUsersManagementSteps($scenario);
$I->wantTo('check that login and logout work');

$I->amGoingTo('Register new User');

$I->amInListUsersUi();
$I->clickOnRegisterNewUserButton();
$I->seeIAmInAddUserUi();
$user = $I->imagineUser();
$I->fillUserDataForm($user);
$I->submitUserDataForm();

$I = new AcceptanceTester\CRMUserSteps($scenario);
$I->amGoingTo('login');

$I->seeLink('login');
$I->click('login');
$I->seeIAmInLoginFormUi();
$I->fillLoginForm($user);
$I->submitLoginForm();

$I->seeIAmAtHomepage();
$I->dontSeeLink('login');

User Authentication

[130]

$I->seeUsername($user);
$I->seeLink('logout');

$I->amGoingTo('logout from arbitrary page');
$I->amInQueryCustomerUi();
$I->click('logout');

$I->seeIAmAtHomepage();
$I->dontSeeUsername($user);
$I->dontSeeLink('logout');
$I->seeLink('login');

First, we create a user, then we try to login and see whether the indicator is reflecting
the authentication, and then we try to logout and see whether the indicator is back to
the state meant for guests.

The highlighted lines are the steps that are not defined yet. They are pretty
straightforward.

Checking that we are in the Login Form UI:

 public function seeIAmInLoginFormUi()
 {
 $I = $this;
 $I->seeCurrentUrlEquals('/site/login');
 }

Filling the login form with the data generated previously:

 public function fillLoginForm($user)
 {
 $I = $this;
 $I->fillField('LoginForm[username]',
$user['UserRecord[username]']);
 $I->fillField('LoginForm[password]',
$user['UserRecord[password]']);
 }

Note that the function shown in the preceding code is the exact duplicate of the
similar "fill form" method in AcceptanceTester\CRMUsersManagementSteps.
We skipped the refactoring step again.

Chapter 5

[131]

Submit the login form using the submitLoginForm() method:

 public function submitLoginForm()
 {
 $I = $this;
 $I->click('button[type=submit]');
 $I->wait(1);
 }

As we saw in Chapter 3, Automatically Generating the CRUD Code, the login form will
have client-side validation too, so we are forced to wait.

Check that we are on homepage, that is, on the route /:

 public function seeIAmAtHomepage()
 {
 $I = $this;
 $I->seeCurrentUrlEquals('/');
 }

Check that we have the username from the given fields somewhere on the page:

 public function seeUsername($user)
 {
 $I = $this;
 $I->see($user['UserRecord[username]']);
 }

Check that we don't see the same as above:

 public function dontSeeUsername($user)
 {
 $I = $this;
 $I->dontSee($user['UserRecord[username]']);
 }

This test fails at the step where we try to click the link named login. Let's add it to
the layout.

Making the authentication indicator
As specified, the authentication indicator should show the guest text and the login
link for the unauthorized users, and it should show the user's username text and the
logout link for the authorized users.

User Authentication

[132]

We can check whether the user is a guest using the following invocation:
Yii::$app->user->isGuest

So, the following HTML code in the views/layouts/main.php layout file right after
the <div class="container"> opening tag will suffice:

 <div class="authorization-indicator">
 <?php if (Yii::$app->user->isGuest):?>
 <?= Html::tag('span', 'guest');?>
 <?= Html::a('login', '/site/login');?>
 <?php else:?>
 <?= Html::tag('span', Yii::$app->user->identity-
>username);?>
 <?= Html::a('logout', '/site/logout');?>
 <?php endif;?>
 </div>

Now, given that we have ApplicationUiAssetBundle described in Chapter 4,
The Renderer, we can add the following bit of CSS to assets/ui/css/main.css
to make the authorization indicator right-aligned:

.authorization-indicator {
 float: right;
 width: 25%;
 text-align: right;
}

That's pretty rude, but for now our UI is rudimentary anyway, so it'll suffice.

The login form functionality
Here's how the homepage should look like when opened in a browser (without the
theme introduced in Chapter 4, The Renderer):

Chapter 5

[133]

Now we need to make the login form functionality. As we already mentioned at two
places in acceptance tests, the route to login is /site/login, so we need to provide
the SiteController.actionLogin() method. Starting from here, we'll make the
canonical login form implementation, which can be seen in the advanced application
template from Yii 2. It's really hard to make password-based authentication in some
other way in Yii, and to do so is unnecessary anyway.

Here's the logic for the traditional /site/login route handler:

public function actionLogin()
{
 if (!\Yii::$app->user->isGuest)
 return $this->goHome();

 $model = new LoginForm();
 if ($model->load(Yii::$app->request->post()) and $model->login())
 return $this->goBack();

 return $this->render('login', compact('model'));
}

If a user is already authenticated, we redirect him back to the homepage using
the \yii\web\Controller.goHome() helper method that does the 302 redirect
to the / root route for us.

If there's some data POSTed to us, we try to check with the LoginForm.login()
method whether this data is sufficient to authenticate the user. In case of successful
authentication, we redirect the user to the last URL visited by him by using the
goBack() helper method. Otherwise, we render the login form HTML.

The most interesting part is the highlighted lines. We are going to utilize the power
of models here. Using the same model, we'll both authenticate the user and manage
the HTML form for providing username and password.

Let's start with the login form appearance in the views/site/login.php view file.
A typical, minimal login form looks like this:

<?php
use yii\helpers\Html;
use yii\widgets\ActiveForm;

$form = ActiveForm::begin(['id' => 'login-form']);
echo $form->field($model, 'username');
echo $form->field($model, 'password')->passwordInput();
echo $form->field($model, 'rememberMe')->checkbox();
echo Html::submitButton(

User Authentication

[134]

 'Login',
 ['class' => 'btn btn-primary', 'name' => 'login-button']
);
ActiveForm::end();

There is the usual call to the ActiveForm widget and three calls to render different
kinds of inputs. Note the style in which the fields are rendered. You can consult the
documentation and/or source for the ActiveForm.field() method for details.

We have an additional checkbox for the "remember me" feature, which we have
already prepared in the previous section.

The form described here looks like this (given our application's layout):

You will not see it, although, until we will have the LoginForm class in place.
It should be a model but not an ActiveRecord one, just a yii\base\Model.

This model has three fields, as expected in the view file. For our purposes, we
need to provide the validation rules and the login() method we use in the
SiteController.actionLogin().

This is the boilerplate of the LoginForm model, placed in models/user/LoginForm.
php:

<?php
namespace app\models\user;

use yii\base\Model;

class LoginForm extends Model
{
 public $username;

Chapter 5

[135]

 public $password;
 public $rememberMe;
}

For validation, we need three rules:

• Both a username and a password are required
• The "remember me" option is a Boolean (set/not set) value
• The password should be valid, that is, if there's a user recorded for the given

username, the given password should have the same hash as the one saved
for this user (as explained before).

This can be expressed in the following way in the LoginForm class:

 public function rules()
 {
 return [
 [['username', 'password'], 'required'],
 ['rememberMe', 'boolean'],
 ['password', 'validatePassword']
];
 }

If the validator to apply is not one of the built-in ones, we need to provide at least a
method in this model class with the same name as the validator. The second option is
to make a full-fledged custom Validator class and register it for the Application.
For now, we can do with the inline type of validators. The validatePassword()
inline validator looks like this:

 public function validatePassword($attributeName)
 {
 if ($this->hasErrors())
 return;

 $user = $this->getUser($this->username);
 if (!($user and $this->isCorrectHash($this->$attributeName,
$user->password)))
 $this->addError('password', 'Incorrect username or
password.');
 }

User Authentication

[136]

The guard case at the start is standard: if there are errors already, do not do anything.
Then, we try to get UserRecord with the username provided. If such a record does
not exist, or the provided password does not correspond to the hash stored in this
record, we add an error to this model, what a proper validator should really do.

Getting the user record, given its username field value, can be done in any way,
but for a nice clean solution, we decided to use lazy loading:

 /** @var UserRecord */
 public $user;

 private function getUser($username)
 {
 if (!$this->user)
 $this->user = $this->fetchUser($username);

 return $this->user;
 }

 private function fetchUser($username)
 {
 return UserRecord::findOne(compact('username'));
 }

To check whether the password provided is valid, the following implementation
is sufficient:

 private function isCorrectHash($plaintext, $hash)
 {
 return Yii::$app->security->validatePassword($plaintext,
$hash);
 }

That's the distilled core of our user authentication. In fact, everything until this point
was just the support boilerplate code for it. All we really wanted to know is whether
Security::validatePassword() returns true for the given plaintext version of the
password and a hash taken from the database.

Then, at last, the login() method for LoginForm that is used in SiteController.
actionLogin() concludes the mechanics of the login form:

 public function login()
 {
 if (!$this->validate())
 return false;

 $user = $this->getUser($this->username);

Chapter 5

[137]

 if (!$user)
 return false;

 return Yii::$app->user->login(
 $user,
 $this->rememberMe ? 3600 * 24 * 30 : 0
);
 }

If the field values are not valid, obviously, don't allow the user to log in successfully.
Finally, call the Yii built-in method for logging a user in and pass the fetched user
record to it as identity. The second parameter is the time for which to keep the user
session active (in seconds). A zero value means until the closure of the browser
window. If "remember me" is set, we keep the user logged in for a month here.

The logout functionality and wrapping
things up
Now we only need the logout handler, which can be done by the following almost
one-liner method in the SiteController class:

 public function actionLogout()
 {
 Yii::$app->user->logout();
 return $this->goHome();
 }

This is the conclusion to the feature we've built so far. Now run the test:

./cept run tests/acceptance/LoginAndLogoutCept.php

It should pass, as shown in the following screenshot:

User Authentication

[138]

Summary
Logging in with a username and password is both cumbersome to use and boring
to write. A lot of concepts are involved in this form of user authentication. In fact,
we basically repeated the authentication already shipped with the advanced Yii 2
application template, probably with different code style convention. However, if you
just looked at the source code for advanced template, chances are that you would
spend a lot of time trying to understand which pieces, in the form of class methods,
variables, classes, and view files, are used in the login functionality and what role
does each play in it.

By doing this exercise, we briefly glimpsed over such tricks of Yii 2 and PHP
application development in general:

• Writing stuff to the view file depending on whether the user is authenticated
or not

• Making the non-active record models in Yii and using them to generate
input forms

• The beforeSave() method of active records
• The yii\base\Security helper class to not bother with securely generating

hashes for strings
• Inline validators
• Lazy object loading
• Probably something other which is hard to decouple

Again, of course there is authorization using other means: the OAuth2 protocol,
OpenID, hardware tokens, SMS codes, you name it. We cannot cover everything,
so the most usual method was explained here, which you probably will be asked
to implement anyway.

However, we should not forget that we covered only half of the access control.
We still need to implement the user authorization after he's authenticated,
which will be the topic of the next chapter.

User Authorization and
Access Control

Authenticating users is just half of the story. Even if you are writing some Web
community hub or, God forbid, social network, and identifying users is crucial part
of your business rules, you almost always need to control which users can access
which part of the application's functionality. It can be said that there's no real point in
authentication without access control accompanying it, which is, user authorization.

In this chapter, we'll see how Yii 2 can help us in preventing or allowing users to
access the functionality of the web application. We will focus on the following four
features of Yii:

• Hook methods of the controller
• Exception handling in Yii 2
• Controller action filters
• Role-based access control

As a code example, we'll implement a simple scheme of access control to our
example CRM application based on the preceding four features.

Let's start simple.

User Authorization and Access Control

[140]

Access control using the state of user
authentication
We already learned about rudimentary access control in the previous chapter,
when we wrote the code to render the authentication indicator like the following:

if (Yii::$app->user->isGuest)
 // render the indicator for guests
else
 // render the indicator for authenticated users

So, we are able to differentiate the content based on whether the user is authenticated
or not.

Similarly, we cannot just differentiate the content, but totally prohibit visitors from
entering some routes without authentication. For this we need to learn about two
features of Yii: exception handling and the hook methods of the controller.

FEATURE – hook methods of the controller
Similar to the beforeSave() method we used in the previous chapter, Controller
classes also have hook methods. They are as follows:

Method name What it does

beforeAction($action) This executes before the actual controller action executes.
As with ActiveRecord.beforeSave(), it must return
a Boolean value indicating whether the given action is
allowed to be run.

afterAction($action,
$result)

This executes after the actual controller action finishes
executing, but before the result is sent to ViewRenderer.
In fact, the $result argument is the result of the action,
and we can do something with it. Of course, we need to
return this argument or else the route will output nothing.

Chapter 6

[141]

Both of these hooks get the $action argument, which represents the controller
action being executed. This object is of little use, really, being just the container
for the following:

• Action ID, which can be useful for ultra-precise access control based on the
action IDs.

• Reference to the controller this action belongs to.
• The run() method, which is why this action exists in the first place, as it's the

actual route handler represented by the action.

Please note that in the case where beforeAction() returns false,
the client browser will get a blank page without any explanations. This in
fact can happen quite often when writing these hooks and forgetting to
return a Boolean value from them! The same will happen if you forget
to return $result from afterAction().

While it's certainly interesting to know what this action really is, right now its brief
description is perfectly sufficient. A close inspection of what role an action plays
in route handling will be done in Chapter 12, Route Management. Most of the time,
there's no need to care about the actions.

All possible hooks, how they work, and how we can use them for our
benefit will be discussed in the Chapter 10, Events and Behaviors.

Given the definition of the beforeAction() method, it is obvious that we can restrict
access to some parts of the application in the simplest possible way:

public function beforeAction($action)
{
 $parentAllowed = parent::beforeAction($action);
 $meAllowed = !Yii::$app->user->isGuest;
 return $parentAllowed and $meAllowed;
}

First we check whether the parent implementation allows the execution of the action
in question. We then check whether the current user is unauthenticated by querying
the isGuest property of the user component. If both these conditions are true, then
we allow the execution of the action.

User Authorization and Access Control

[142]

What checks does the yii\web\Controller.beforeAction()
method do? It protects you from Cross-Site Request Forgery (CSRF)
attacks. In Yii 2, each and every form generated by the ActiveForm
widget, by default, includes a special token as the additional request
parameter. Only if the expected token from the form is equal to the token
included in the client request will the request be processed. Of course,
this check is unnecessary (and is not being done) for the GET, HEAD,
and OPTIONS requests (the last one being extremely rare). You can also
disable this check (don't do this) via the enableCsrfValidation
setting directly in the application configuration.

By the way, in the main layout file we made in Chapter 3, Automatically
Generating the CRUD Code, and discussed in detail in Chapter 4, The
Renderer, there is a call to the Html::csrfMetaTags() method that we
haven't even mentioned yet. This call is here exactly to support the CSRF
protection. More than that, with the enableCsrfValidation setting
set to true, you must call this method or else you will lose the ability to
submit any HTML form generated by the ActiveForm widget.

Most of the time you wouldn't do any serious harm if you don't call
parent::beforeAction(), but you better do it, because if you forget
to do this in the form-submitting action you'll lose an important line
of security.

However, this way of blocking is not really interesting. First, it does not show the client
any feedback about what really happened. Second, such a usage of beforeAction() is
already anticipated in Yii 2 in the form of a special concept called filters.

Let's postpone the explanation of filters for a while and look at how we can show the
client's browser what really happened with its request.

Chapter 6

[143]

FEATURE – exception handling in Yii
Yii employs its own handler for unhandled exceptions, which is really usable
right out of the box without any further improvements. Basically, if you throw an
exception of any Exception class descendant somewhere in your controller action
and not handle it, Yii will show the following error message to the client:

However, here's what it will show if you throw the yii\web\
NotFoundHttpException:

Note that it correctly shows the status code and the error message according to the
specification of HTTP status codes. The actual status code returned will also be 404.

In fact, yii\web\NotFoundHttpException is a wrapper around the base yii\web\
HttpException, which you can throw to emit arbitrary status code and message to
the client, as follows:

throw new HttpException(406, 'Pretty rare error, usually you should
never see it.');

User Authorization and Access Control

[144]

Don't forget to write use yii\web\HttpException at the beginning of your script.
Here is what will be shown:

Note that the message provided in the exception constructor is shown underneath
the main message of the 406 status code, which is autogenerated according to HTTP
specification and is not changeable. The status code actually returned from the server
will also be 406.

So, just by throwing the various kinds of HTTP exceptions you can block the
user request with a descriptive message. Note, however, that nothing prevents
someone from getting the following output when using yii\web\HttpException
instead of its specialized subclasses:

Well, indeed anyone will think this is a server error. Even while Yii really returns
status code 200, the response will be the error page. In case anyone tries to throw the
HttpException with the status code 302, for example, the status code will be 302 but
no redirection will happen. This is just the static page error handler in all cases.

Chapter 6

[145]

Here is the list of all descendants of HttpException that Yii 2 defines for its
users' convenience:

Exception HTTP status code shown
BadRequestHttpException 400 Bad Request
ConflictHttpException 409 Conflict
ForbiddenHttpException 403 Forbidden
GoneHttpException 410 Gone
MethodNotAllowedHttpException 405 Method Not Allowed
NotAcceptableHttpException 406 Not Acceptable
NotFoundHttpException 404 Not Found
TooManyRequestsHttpException 429 Too Many Requests (from RFC

6585 additional HTTP status codes, see
http://tools.ietf.org/html/
rfc6585)

UnauthorizedHttpException 401 Unauthorized
UnsupportedMediaTypeHttpException 415 Unsupported Media Type

Another good feature of Yii exception handling is its error reporting in case the
debugging mode is enabled.

Inside the index.php entry point script, before a call to require() for Yii library,
the constant YII_DEBUG will be defined with the value of true:

define('YII_DEBUG', true);

It's vital for this constant to be defined before the Yii library is loaded, as
in its absence Yii will define it to be false. Note that YII_DEBUG also
performs other tasks apart from enabling verbose error reporting.

If an unhandled exception like the following one is thrown in the code (this is
different from the HttpException):

throw new \LogicException('I am unhandled exception and I am proud of
it');

http://tools.ietf.org/html/rfc6585
http://tools.ietf.org/html/rfc6585

User Authorization and Access Control

[146]

Then here's what will be shown instead of the generic "Exception" page:

Chapter 6

[147]

This is a really amazing stacktrace page. It's so long that to fit it here we had to tear
the non-unique pieces out of it. It gives several layers of code before the failed line
with code highlighting, filenames, line numbers, and links to the documentation pages
for the Yii classes and methods mentioned (!). It shows the server runtime configuration
and also cookies sent by the client.

This page should not be presented to visitors in the production
environment. Always set YII_DEBUG to false there.

Okay, now here's the guard case that prevents unauthenticated users from using the
controller action it is in:

if (Yii::$app->user->isGuest)
 throw new ForbiddenHttpException;

This is the simplest line of access control available for us in Yii 2. Of course, any
check can be used as long as the HttpException descendant is being thrown.
This is so fundamental that Yii has a special built-in AccessControl filter for it.
We'll learn about the AccessControl filter later. Let's learn about what a filter is
in Yii terminology.

FEATURE – controller action filters
An action filter, in short, is the beforeAction() and afterAction() methods
packed into a single class, pluggable to the Controller instances through the
Controller.behaviors() method.

The benefits of this approach are as follows:

• You can define arbitrarily long and complex guard cases and/or post- or
pre-process them, given that you now have an entire class dedicated for
this purpose.

• You can combine different filters in any combinations and order.

For the class to become the action filter for some controller, it needs to be:

• A descendant of the ActionFilter class.
• Referenced in the controller's behaviors() method.

The ActionFilter itself is the special case of the behaviors that are described in
Chapter 10, Events and Behaviors. For now, it's sufficient to understand that a behavior
is some class containing some methods that can be declared to be an integral part
of some other class, extending its feature set. If you are familiar with the concept of
"traits" from PHP 5.4, this is it.

User Authorization and Access Control

[148]

We'll not look at how to create our own ActionFilter, as it's quite unnecessary
given that we already know how the beforeAction() and afterAction() methods
work. Let's briefly look at the built-in Yii 2 filters instead. Detailed information about
their usage can be read from their corresponding documentation pages.

Filter class What it does
\yii\filters\
VerbFilter

This filter prevents or allows access to controller actions based
on the HTTP method used for request. For example, you can
allow only POST requests for your log in and log out actions
with this filter. This is the only action filter that doesn't inherit
the ActionFilter class but directly inherits the Behavior
class instead. It responds with the 405 Method Not Allowed
message if the action is not to be executed. Visit http://
www.yiiframework.com/doc-2.0/yii-filters-
verbfilter.html for more information.

\yii\filters\
PageCache

This filter caches the rendering result of the given controller's
actions. It has a sufficiently complex and flexible configuration
to control where, for how long, and which particular routes
should be cached. Visit http://www.yiiframework.
com/doc-2.0/yii-filters-pagecache.html for more
information.

\yii\filters\
HttpCache

This filter is conceptually equivalent to PageCache, but it uses
the HTTP Last-Modified and ETag headers to perform caching.
In effect, the client's browser will be responsible for keeping
and presenting the cached version of the response to the user.
Visit http://www.yiiframework.com/doc-2.0/yii-
filters-httpcache.html for more information.

\yii\filters\
AccessControl

This filter prevents or allows access to the actions depending on
the set of rules in a very flexible and expressive syntax. It is so
powerful that often there's no need to implement any other form
of access control in the controller at all. This filter can control
access using the HTTP method, user authentication status,
user role (to be defined later), action and/or controller ID, user
IP, or even a custom callback provided. It responds with 403
Forbidden if the action is not to be executed. Visit http://
www.yiiframework.com/doc-2.0/yii-filters-
accesscontrol.html for more information, but we'll be
discussing this filter in this chapter anyway.

\yii\filters\
ContentNegotiator

This filter is a very handy filter for large applications. It
automatically changes the application language and response
format based on the HTTP headers and query parameters send
by the client browser. Visit http://www.yiiframework.
com/doc-2.0/yii-filters-contentnegotiator.html
for more information.

http://www.yiiframework.com/doc-2.0/yii-filters-verbfilter.html
http://www.yiiframework.com/doc-2.0/yii-filters-verbfilter.html
http://www.yiiframework.com/doc-2.0/yii-filters-verbfilter.html
http://www.yiiframework.com/doc-2.0/yii-filters-pagecache.html
http://www.yiiframework.com/doc-2.0/yii-filters-pagecache.html
http://www.yiiframework.com/doc-2.0/yii-filters-httpcache.html
http://www.yiiframework.com/doc-2.0/yii-filters-httpcache.html
http://www.yiiframework.com/doc-2.0/yii-filters-accesscontrol.html
http://www.yiiframework.com/doc-2.0/yii-filters-accesscontrol.html
http://www.yiiframework.com/doc-2.0/yii-filters-accesscontrol.html
http://www.yiiframework.com/doc-2.0/yii-filters-contentnegotiator.html
http://www.yiiframework.com/doc-2.0/yii-filters-contentnegotiator.html

Chapter 6

[149]

Filter class What it does
\yii\filters\
RateLimiter

This filter prevents the access for users who exceeded their
rate limit, that is, amount of page requests in some time range.
The user identities (explained in the previous chapter) need to
implement the \yii\filters\RateLimitInterface to
support specifying the allowed rates per user. Visit http://
www.yiiframework.com/doc-2.0/yii-filters-
ratelimiter.html for more information.

As this chapter is about access control, let's look at some examples of the usage
of VerbFilter and AccessControl. The AccessControl filter is so important
and powerful that we'll look at it later in more detail after we explore the user
roles system.

Here's how Gii protects the controller autogenerated by the VerbFilter:

 public function behaviors()
 {
 return [
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'delete' => ['post'],
],
],
];
 }

Note the VerbFilter::className() invocation. It is the Yii 2
idiom allowing us to easily get the fully qualified name of any class
extending the base yii\base\Object, and the Yii 2 code uses
this idiom extensively. In this case, it will always return the \yii\
filters\VerbFilter string.

The behaviors() method must return an array of configurations for the filters to be
attached to the controller. In this case, we attach the VerbFilter at the arbitrarily
chosen verbs key. This VerbFilter is configured so that the delete action can be
accessed only by the POST request. All other actions are unguarded, because the
update form request accepts the data being POSTed and renders the HTML page for
the form.

http://www.yiiframework.com/doc-2.0/yii-filters-ratelimiter.html
http://www.yiiframework.com/doc-2.0/yii-filters-ratelimiter.html
http://www.yiiframework.com/doc-2.0/yii-filters-ratelimiter.html

User Authorization and Access Control

[150]

Here's how we can quite naively protect our login and logout actions using the
AccessControl filter:

 public function behaviors()
 {
 return [
 'access' => [// 1
 'class' => AccessControl::className(), // 2
 'only' => ['login', 'logout'], // 3
 'rules' => [
 [
 'actions' => ['login'], // 4
 'roles' => ['?'], // 5
 'allow' => true, // 6
],
 [
 'actions' => ['logout'], // 7
 'roles' => ['@'], // 8
 'allow' => true, // 9
]
]
]
];
 }

In the preceding code, we are using the behaviors property of our Controller
to attach the \yii\filters\AccessControl class to it, which will be already
configured as specified.

Let's understand the preceding code line-by-line from the top to bottom:

1. An arbitrarily-selected name access is used to return back to the calling
method from the behaviors() method.

2. We register the AccessControl filter.
3. The only variable denotes that only the login and logout actions, which

translate to actionLogin() and actionLogout() methods of the controller,
are used. The default for access control filter is to deny everything not
explicitly allowed, so we need to restrict it here.

4. For the login action.
5. For unauthenticated users. The symbol ? means guest users.
6. Allow request.

Chapter 6

[151]

7. For the logout action.
8. For authenticated users. The symbol @ means authenticated users.
9. Allow request.

The specific configuration parameters for each rule can be read in the documentation
and/or source of the yii\filters\AccessRule class (http://www.yiiframework.
com/doc-2.0/yii-filters-accessrule.html).

Role-based access control
Yii 2 uses an extremely easy-to-use form of user access control called permissions.
When employed, each user can be given permission (exact mechanics are not
important right now). When necessary, the application can check whether
authenticated user has this permission by calling:

Yii::$app->user->can($permission);

Here, the $permission argument is the string that is the textual label for the
permission. That's it.

There are two important additional features provided by the concept of permissions:

• A permission can be declared as the child of other permission. However,
when some user has the parent permission, he is automatically considered
granted of all his child permissions.

• We can assign some additional parameterized constraint named rule to the
permission. Technically, a rule is a PHP function that takes parameters as
arguments. If this function returns false, even if the user is assigned the
permission in question, he is considered blocked anyway.

This scheme is certainly lacking a concept of role to be called role-based access
control (RBAC). Yii 2 has roles working the same way as the permissions. In fact,
they are implemented using the same base class \yii\rbac\Item, differing only by
a value of one class constant. There is no Yii::$app->user->is($role) invocation,
so you need to check for a user being assigned some role by the same call to \yii\
web\User.can(). Roles in RBAC of Yii 2 are meant to be used only as a group
of permissions.

http://www.yiiframework.com/doc-2.0/yii-filters-accessrule.html
http://www.yiiframework.com/doc-2.0/yii-filters-accessrule.html

User Authorization and Access Control

[152]

The application component handling the RBAC is called the authorization manager
and is accessible as the authManager component by the Yii::$app->authManager
property. The previously described \yii\web\User.can() method is a shorthand
wrapper around the call to Yii::$app->authManager->checkAccess($user_id,
$permission). For convenience, there exists a concept of default role. The list of
default role names can be set in the components.authManager.defaultRoles
setting in the Application configuration, which corresponds to the \yii\rbac\
BaseManager::$defaultRoles property. A user is assumed to have the default role
all of the time, that is, given the value of defaultRoles as ["guest"], the call to
Yii::$app->authManager->checkAccess($user_id, "guest") will always
return true.

In the AccessFilter described previously, each rule can be configured to check for
the user role. We used the special symbols ? and @ back there, which denoted guests
and authenticated users, respectively, but in fact, the role names can be used there.

A big challenge for this system to work is to set up the required associations between
users and roles. Let's explore how it's done by making a feature in our example
CRM application.

Protecting the CRM management from
CRM users
We have differentiated the CRM manager and CRM user roles since the very
beginning in our specifications for the application. So far, each acceptance test began
with some work on the side of database management and ended with either usage of
public interface or checking some assumptions right in the management UI.

Now, it's time to really prohibit the CRM user from accessing the database
management UI pages. We are going to implement the following business ruleset:

• Unauthenticated (guest) users should not be able to access anything except
the home page and the login form.

• User-level users should be able to access the Query Customer By Phone UI.
• Manager-level users should be able to access everything except the User

Management UI.
• Administrator-level users should be able to access everything.

Chapter 6

[153]

Have a look at the following scheme:

We already have tests for the login and logout functionality without testing for
access rights afterwards. However, now we are forcing users of our application to
log in first. This would mean that in all our existing acceptance tests, the first step
should be the logging in one as some users have enough rights to do what the test
needs to do.

It is incredibly hard to do proper end-to-end tests, as it'll require not only using the
corresponding admin UI to generate entities for manipulation with which we want
to test, but also using the root-level administration UI to create the user and grant it
with enough rights to perform such manipulations. Not even saying that we need
a working UI to assign access rights (that is, roles) to users, this is too much of a
preliminary work to tolerate. However, such a course of actions is preferable for
extremely thorough end-to-end tests, ensuring that every part of the application
works without missing anything important.

Installing predefined users
In this example, we will trade the time required for preparing the users to hold them
in the database right from the start. Instead of creating a user of sufficient caliber
for each individual test, we'll predefine one user for each role in the database right
from the start, and our acceptance tests will use credentials of those users for logging
in before doing anything. Of course, it will not relieve us from the task of actually
making the logic to login before each action.

User Authorization and Access Control

[154]

Here are the users that should be created (passwords are arbitrary high-entropy
phrases that are easy to remember):

Username Password Role name
No username, default role No password guest

JoeUser 7 wonder @ American soil user

AnnieManager Shiny 3 things hmm,
vulnerable

manager

RobAdmin Imitate #14th syndrome
of apathy

admin

You can get a nice breakdown of the password strength at http://
www.passwordmeter.com/. Currently, the most important trait of a
good password is the length and the types of characters used in it (see for
example this note from Microsoft: http://www.microsoft.com/en-
gb/security/online-privacy/passwords-create.aspx). We
deliberately chose simple phrases with uppercase and lowercase letters,
numbers, and special symbols in them. Note that we don't have any
reason to exclude the space symbol from our passwords.

Create a migration to add them to the database:

./yii migrate/create add_predefined_users

Users listed in the preceding table can be generated using whatever style seems
reasonable, but remember that a user must be created like this:

 $user = new \app\models\user\UserRecord();
 $user->attributes = compact('username', 'password');
 $user->save();

Our beforeSave() hook handles the generation of password hashes and
authorization tokens for us.

You can look at the way we generated our users in the migrations/
m140718_063423_add_predefined_users.php file in the example
code base accompanying this book.

Then, we need to enable the RBAC manager role in our application in order to be
able to assign roles to the users.

http://www.passwordmeter.com/
http://www.passwordmeter.com/
http://www.microsoft.com/en-gb/security/online-privacy/passwords-create.aspx
http://www.microsoft.com/en-gb/security/online-privacy/passwords-create.aspx

Chapter 6

[155]

RBAC managers in Yii
Yii has two built-in RBAC managers. One is \yii\rbac\PhpManager, which reads
the role assignments from the PHP script each time the application is loaded, and the
other is \yii\rbac\DbManager, which stores assignments in the database. We'll use
the DbManager, as it'll allow more freedom in manipulation of assignments.

Database-based RBAC manager uses the following schema to store the information
about user roles:

In fact, Yii's RBAC manager does not operate in terms of roles at all. It operates in
terms of authorization items, which can be of two types. Here's the excerpt from the
class definition:

namespace yii\rbac;
class Item extends Object
{
 const TYPE_ROLE = 1;
 const TYPE_PERMISSION = 2;

The database manager stores the authorization items in the table named auth_item
by default. As usual in Yii 2, this is configurable.

User Authorization and Access Control

[156]

The problem is that these types are neither enforced nor checked anywhere.
Yii::$app->user->can($itemName) fits them all. So, for simplicity, it's easier
to talk in terms of roles instead of authorization items. However, in case of really
elaborated RBAC, this distinction can be useful from the design standpoint.

Authorization items, be it role or permissions stored by the authorization manager,
form a directed acyclic graph so they can have children, as was mentioned before.
Let's elaborate on that, for simplicity, supposing that we are dealing only with roles.

If a user $user has a role $role and this role has a child role $child, then the call
to $user->can($child) will return true, that is, parent has access to everything that
child has. However, if a user has a role $child and this role is a child of $role, then
the call to $user->can($role) will return false, that is, the child role has no access to
what the parent role has access to.

Parent-child relationships between roles are stored by DbManager in the table named
auth_item_child by default.

The actual assignments of roles to users are stored inside the table named auth_
assignment. Note that in the user_id column there is not a foreign key and it is
not even of INT type in default schema shown before. This is, of course, because the
default schema has no knowledge about how you store your user records (they can
even be in different databases, after all). Also, the user_id column should be filled
with IDs that are returned by the IdentityInterface.getId() method, which our
UserRecord class happily implements This is not necessarily the actual primary keys
of the records in the user table. However, this is indeed exactly as it is in our case.

Yii 2 developers provided us with the migration already prepared to initialize the
database schema for \yii\rbac\DbManager. You can set up the appropriate tables
using the following console command:

./yii migrate --migrationPath='@yii/rbac/migrations'

Chapter 6

[157]

You can also use the following hack to fill our database with the tables
expected by the database manager. The schema is stored in the set of files
with names schema-*.sql inside the rbac directory under the root
folder of Yii 2 installation. Each file corresponds to some specific RDBMS.
Under the assumptions of using MySQL and Yii 2 being installed by
composer, the required file should be exactly vendor/yiisoft/yii2/
rbac/schema-mysql.sql. Create the migration as follows:

./yii migrate/create create_rbac_tables

Then, in the up() method inside the generated migration script, write
the following hack which loads the raw SQL from the file just discussed:

 $this->execute(

 file_get_contents(

 Yii::getAlias('@yii/rbac/schema-mysql.
sql')));

This trick is really useful in cases when you have an already battle-tested,
very old database schema, large enough that rewriting it in Yii idiomatic
migrations code will be too cumbersome.

The failing test for our role hierarchy
Before we start to really fill our database with roles, how can we ensure that our
access control is actually in place? Let's construct a functional test for our role
hierarchy. Create the test:

./cept generate:test functional RoleHierarchy

Things became a little tricky with the addition of predefined roles. To
have a clean state in our functional tests, we are using the dump from
clean database, which is not so easy to get now with the migrations that
generate actual records in the table. Even without them, there's still
need to regenerate the dump after each migration added. Also, with this
approach we can completely wipe out production database if we launch
the functional tests on the production environment. All of these issues
we'll postpone until the final chapter, Chapter 13, Collaborative Work. Let's
pretend until then that we somehow have the clean state before running
any of the functional and acceptance tests provided.
Look at the files tests/functional.suite.yml, tests/
functional/_bootstrap.php, and config/test.php in the code
base bundled with this book to see how we solved this problem.

User Authorization and Access Control

[158]

Inside this test, we'll write the brute-force implementation of checking the default
role, which is a guest, as shown in the following code:

 /** @test */
 public function DefaultRoleIsGuest()
 {
 // no login at all

 $this->assertFalse($this->user->can('admin'));
 $this->assertFalse($this->user->can('manager'));
 $this->assertFalse($this->user->can('user'));
 $this->assertTrue($this->user->can('guest'));
 }

Yes, we need to use the can() method for checking the assigned roles, which reads
really strange.

The class property $this->user is set up with the \yii\web\User component at the
setup stage of the test to act both as shorthand and as a single place for changes:

 /** @var \yii\web\User */
 private $user;

 protected function _before()
 {
 $this->user = Yii::$app->user;
 }

We will test the roles of the predefined users using the DataProvider feature of the
PHPUnit framework (visit http://phpunit.de/manual/current/en/writing-
tests-for-phpunit.html#writing-tests-for-phpunit.data-providers, do not
mistake it for the DataProvider concept from Yii):

 public function PredefinedUserRoles()
 {
 return [
 ['RobAdmin', ['admin' => true, 'manager' => true,
'user' => true, 'guest' => true]],
 ['AnnieManager', ['admin' => false, 'manager' => true,
'user' => true, 'guest' => true]],
 ['JoeUser', ['admin' => false, 'manager' => false,
'user' => true, 'guest' => true]],
];
 }

 /**

http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers
http://phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers

Chapter 6

[159]

 * @test
 * @dataProvider PredefinedUserRoles
 * @param string $username
 * @param array $rbac
 */
 public function PredefinedUsersHasProperRoles($username, $rbac)
 {
 $identity = \app\models\user\UserRecord::findOne(compact('use
rname'));

 $this->user->login($identity);

 foreach ($rbac as $role => $allowed)
 $this->assertEquals($allowed, $this->user->can($role));
 }

The foreach instruction will partially hinder us in case an error occurs in checking
the access. However, increase in readability is an important tradeoff.

For each dataset provided by our data provider, we find the user record in database
with the provided username, and then check whether Yii::$app->user->can() is
behaving according to our role hierarchy for each of these users.

As we're logging into the system on each test, let's log out at the teardown stage:

 protected function _after()
 {
 $this->user->logout();
 }

This test should obviously fail, because we did not even attach the RBAC Manager
component to our application.

Setting up the role hierarchy
We'll fill the database with our roles and role assignments using the migration.
This means that we need to attach the RBAC manager both to the console application
that will be used when we'll launch the ./yii migrate script in the root of code
base and by the web application that will actually use the RBAC. In addition to being
able to write this one migration, we'll be able to write custom console commands
which use our RBAC manager, if necessary.

User Authorization and Access Control

[160]

To attach the database-based RBAC manager to our application, we only need to
reference it in the components section of the configuration:

'authManager' => [
 'class' => 'yii\rbac\DbManager',
 'defaultRoles' => ['guest'],
],

As explained, this should be either added to both @app/config/web.php and @app/
config/console.php or separated out to an additional config snippet and included
in both of these configurations anyway. The paths provided are valid for the example
CRM application so far.

So, from now on, we have Yii::$app->authManager available, pointing to the
instance of yii\rbac\DbManager. The default role, as specified in the highlighted
part of the preceding code, will be the guest, that is, everyone who is not
authenticated or does not have role assigned will be treated as having a guest role.

We are now able to make migrations which install the needed roles. We can use the
following methods in the yii\rbac\DbManager class:

Method name Reason to use
createRole($name) This method is the main method to create roles.

This returns a configured instance of \yii\
rbac\Role.

createPermission($name) This method is same as createRole(), but
creates instances of \yii\rbac\Permission.
We will not use this method as, for simplicity, we
are using only roles in our security schema.

assign($role, $userId) This method binds the instance of \yii\rbac\
Role to the user with $userId. The $userId
must be the ID that IdentityInterface.
getId() returns!

add($item) This method registers the given authorization
item, be it an instance of \yii\rbac\
Permission or \yii\rbac\Role.

addChild($parent, $child); This method registers one authorization item to
be the child to the other.

There are many more methods, but we listed only the most fundamental
ones. Others can be found in the reference documentation for \yii\rbac\
ManagerInterface at http://www.yiiframework.com/doc-2.0/yii-rbac-
managerinterface.html.

http://www.yiiframework.com/doc-2.0/yii-rbac-managerinterface.html
http://www.yiiframework.com/doc-2.0/yii-rbac-managerinterface.html

Chapter 6

[161]

Finally, here's the migration to set up our role hierarchy:

 public function up()
 {
 $rbac = \Yii::$app->authManager;

 $guest = $rbac->createRole('guest');
 $guest->description = 'Nobody';
 $rbac->add($guest);

 $user = $rbac->createRole('user');
 $user->description = 'Can use the query UI and nothing else';
 $rbac->add($user);

 $manager = $rbac->createRole('manager');
 $manager->description = 'Can manage entities in database, but
not users';
 $rbac->add($manager);

 $admin = $rbac->createRole('admin');
 $admin->description = 'Can do anything including managing
users';
 $rbac->add($admin);

 $rbac->addChild($admin, $manager);
 $rbac->addChild($manager, $user);
 $rbac->addChild($user, $guest);

 $rbac->assign(
 $user,
 \app\models\user\UserRecord::findOne(['username' =>
'JoeUser'])->id
);
 $rbac->assign(
 $manager,
 \app\models\user\UserRecord::findOne(['username' =>
'AnnieManager'])->id
);
 $rbac->assign(
 $admin,
 \app\models\user\UserRecord::findOne(['username' =>
'RobAdmin'])->id
); }

User Authorization and Access Control

[162]

 public function down()
 {
 $manager = \Yii::$app->authManager;
 $manager->removeAll();
 }

We really can recover from this migration by using the yii\rbac\DbManager.
removeAll() method, which is not really useful otherwise.

Now our functional test for roles hierarchy passes. We're ready to implement the real
protection for our controllers.

The failing test for access control in
controllers
In this section, we return from the implementation details of the RBAC management
to the feature we actually want to implement.

How are we going to test the access restrictions described in the Protecting the CRM
management from CRM users section? It's a really tough question, and it's amazingly
hard to do it in the right way. For ease of explanation, let's make a very, very simple
implementation that will just work for us right now.

Each of the subclasses of AcceptanceTester we created for our acceptance tests so
far are implied to have some roles from our hierarchy. We will treat each of them as
users from the predefined ones in the following manner:

• AcceptanceTester\CRMOperatorSteps corresponds to 'AnnieManager',
who is a manager

• AcceptanceTester\CRMServiceManagementSteps corresponds to
'AnnieManager', who is a manager

• AcceptanceTester\CRMUserSteps corresponds to 'JoeUser', who is a user
• AcceptanceTester\CRMUsersManagementSteps corresponds to 'RobAdmin',

who is the admin and the only role capable of managing users

We'll write the set of absolutely straightforward acceptance tests to check our
assumptions in access rights:

./cept generate:cept acceptance AdminAccessRights

./cept generate:cept acceptance ManagerAccessRights

./cept generate:cept acceptance UserAccessRights

./cept generate:cept acceptance GuestAccessRights

Chapter 6

[163]

Here's the content of tests/acceptance/ManagerAccessRightsCept.php
(other tests are similar):

$I = new AcceptanceTester\CRMOperatorSteps($scenario);
$I->wantTo('Check Manager-level access rights');

$I->amOnPage('/customers/query');
$I->dontSee('Forbidden');

$I->amOnPage('/customers/index');
$I->dontSee('Forbidden');

// ... and so on...

$I->amOnPage('/users/create');
$I->see('Forbidden');

$I->amOnPage('/users/index');
$I->see('Forbidden');

The preceding test code is neither maintainable nor thorough. Do not
write your tests like this. This style was chosen because it expresses the
idea well and is concise enough to present in the book format.

We just go to each of the routes we have on the system and check whether we will
get the 403 Forbidden error page, which has the word Forbidden written on it in
huge letters. The routes /services/delete and /users/delete were omitted,
because (as explained earlier in this chapter) they're protected by the VerbFilter
and can be accessed only by POST requests. The routes /site/index, /site/login,
and /site/logout were omitted because they will have their own special tests for
access rights.

The preceding list of see and don't see should be repeated for each of the
CRMOperatorSteps, CRMServiceManagementSteps, CRMUserSteps, and
CRMUsersManagementSteps AcceptanceTester classes. The test scenario for
manager access rights, thus, should have two classes tested.

For guest users, there should be a slightly different expected behavior. While it's
possible to change it, by default Yii 2 will redirect guest users to the login form
instead of showing them as 403 Forbidden. This is really a nice addition. So,
GuestAccessRightsCept should have checks not in the form:

$I->see('Forbidden');

User Authorization and Access Control

[164]

Checks should be in the following form:

$I->seeElement('#login-form');

Codeception's seeElement() method from the WebDriver module (visit http://
codeception.com/docs/modules/WebDriver#seeElement) can search DOM
elements by CSS selectors, and login-form is what we specified as ID for this form
when configuring it.

We should have the additional AcceptanceTester subclass that represents the guest
users. A guest user is what LoginAndLogoutCept from the previous chapter really
requires. Let's create it:

./cept generate:stepobject acceptance CRMGuest

This subclass will just be empty for now, because it's only used in
GuestAccessRightsCept.

In the end, using this test strategy, we will end up with the following set of
acceptance test scenarios:

• tests/acceptance/GuestAccessRightsCept.php: This file checks the
access rights for the guest role, which is represented by the newly-created \
AcceptanceTester\CRMGuestSteps class

• tests/acceptance/UserAccessRightsCept.php: This file checks the access
rights for the user role, which is represented by the \AcceptanceTester\
CRMUserSteps class

• tests/acceptance/ManagerAccessRightsCept.php: This file checks
the access rights for the manager role, which is represented by two
classes in our test suite, \AcceptanceTester\CRMOperatorSteps and \
AcceptanceTester\CRMServicesManagementSteps

• tests/acceptance/AdminAccessRightsCept.php: This file checks
the access rights for the admin role, which is represented by the \
AcceptanceTester\CRMUsersManagementSteps class

Access rights will be checked by combinations of calls to the see('Forbidden') and
dontSee('Forbidden') methods, according to the access rights scheme we decided
to use at the beginning of this section.

After that, our tests will run without exceptions, but without success too. How
do we make them pass, that is, how do we protect the controllers from access by
unauthorized users?

We'll use the access control filter.

http://codeception.com/docs/modules/WebDriver#seeElement
http://codeception.com/docs/modules/WebDriver#seeElement

Chapter 6

[165]

FEATURE – access control filter
An access control filter is a special action filter that allows us to specify access rights
to actions inside some controller.

It should be attached to the controller in the following way:

 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'rules' => [
 // rules in the format described above
]
]
];
 }

So, the predefined behaviors() method should return an array that should have the
configuration for the AccessControl class initialization.

Each element in the rules setting is an array with the following fields:

 [
 'allow' => true, // or false
 'actions' => ['ids', 'of', 'actions', 'to', 'apply', 'rule',
'to'],
 'controllers' => ['ids', 'of', 'controllers', 'to', 'apply',
'rule', 'to'],
 'roles' => ['roles', 'including', 'symbols', '?', 'and', '@',
'explained', 'before'],
 'ips' => ['IP', 'addresses', 'possibly', 'including', 'wildcards',
'*'],
 'verbs' => ['HTTP', 'Request', 'Methods', 'to', 'apply', 'rule',
'to'],
 'matchCallback' => $callable1, // to determine whether we should
apply rule in arbitrary way
 'denyCallback' => $callable2 // defining what to do when the
access is rejected by this rule
]

The highlighted fields correspond to the public attributes of the \yii\web\
AccessRule class. To save space, we will not discuss the full meaning of every field,
especially when the class definition for \yii\web\AccessRule holds a complete
description for them.

User Authorization and Access Control

[166]

Rules are checked in order of appearance, so they can have overlapping
prerequisites. If no rule was fired, the request is blocked. So if the rules section
of AccessControl filter configuration is left empty, everything is banned in this
controller for everyone.

The denyCallback field mentioned in the rule configuration, as all other options, is
optional. If omitted, the similar denyCallback property of the AccessControl class
will be used. By default, it shows the 403 Forbidden page for authenticated users
and the login form page for guests, which is exactly the behavior we anticipate in our
acceptance tests. Yeah, we cheated again.

Applying access control to the site
First, we need to protect the UsersController, so it'll be only accessible by users
with the admin role:

 'rules' => [
 [
 'roles' => ['admin'],
 'allow' => true
]

We presented only the rules, as the AccessControl config surrounding them is the
same all of the time. We need to add our AccessControl config to the behaviors()
method. Note that the UserController class already has this method defined by Gii
upon generation.

For CustomersController we need the following:

 'rules' => [
 [
 'actions' => ['add'],
 'roles' => ['manager'],
 'allow' => true
],
 [
 'actions' => ['index', 'query'],
 'roles' => ['user'],
 'allow' => true
],
]

According to our specifications for access rights, any user has read access to the
customers management UI, but manager-level access rights requires one to register
as a new customer.

Chapter 6

[167]

For ServicesController, we need the following rule, which is similar to the
UsersController but has a different role:

 'rules' => [
 [
 'roles' => ['manager'],
 'allow' => true
]
]

Well, that's all that we needed to do. The most interesting part is the restructuring of
our AcceptanceTester variants so that they survive in this new world filled with
restrictions. All of our tests now basically require a log in first. Allow CRMGuest to
log in and log out, and then have all other AcceptanceTester subclasses extend
CRMGuest so they'll also be able to do so:

 function login($username, $password) // 1
 {
 $I = $this;
 $I->amOnPage('/site/login');
 $I->fillField('LoginForm[username]', $username);
 $I->fillField('LoginForm[password]', $password);
 $I->click('Login');
 $I->wait(1); // 2
 $I->seeCurrentUrlEquals('/'); // 3
 }

The highlighted parts show the important pieces of this code. First of all, this method
is versatile and accepts the username and password as parameters. Secondly, it's
using our login form, which still has JavaScript validation, so we are forced to wait
a second after submitting it. Thirdly, to protect us early in case of problems, as the
acceptance tests are notoriously slow, we immediately check whether we were
redirected to the homepage after logging in. This means the login was successful.
The code is as follows:

 function logout()
 {
 $I = $this;
 $I->amOnPage('/');
 // Expecting that this button is presented on the homepage.
 $I->click('logout');
 }

User Authorization and Access Control

[168]

The logout option is a lot simpler here. We just need to move to the homepage,
because we can be on some page like 403 Forbidden (and in fact, we'll end up there a
lot) where there's no logout link at all. However, we should be careful where we use
this test step, as the logout link exists only when the user is authenticated.

As mentioned before, we need to make all kinds of AcceptanceTester
subclasses into descendants of CRMGuestSteps now: CRMOperatorSteps,
CRMUsersManagementSteps, CRMUserSteps, and CRMServicesManagementSteps.

Having all of that in place, we now have the ability to make all of our
AcceptanceTester instances login right after birth. We just put the following
two properties and a constructor in CRMGuestSteps:

 public $username;
 public $password;

 public function __construct($scenario)
 {
 parent::__construct($scenario);

 if ($this->username and $this->password)
 $this->login($this->username, $this->password);
 }

So, if the descendant has the username and password defined, it'll login as the
very first step in any test. We don't need to change any of our existing tests using
this technique.

In CRMOperatorSteps, therefore, the first lines should be as follows:

class CRMOperatorSteps extends CRMGuestSteps
{
 public $username = 'AnnieManager';
 public $password = 'managerpass';

These steps can be the performed in a similar manner for the other
CRM...Steps classes.

We need to make five changes in our existing tests nevertheless.

Chapter 6

[169]

The first change is in LoginAndLogoutCept. After AcceptanceTester\
CRMUsersManagementSteps finishes creating a new user, this user is obviously a
guest, as we don't have any RBAC management UI. So, the user who will be doing
real testing of the login and logout functionality should not be associated with
AcceptanceTester\CRMUserSteps, but AcceptanceTester\CRMGuestSteps. Also,
AcceptanceTester\CRMUsersManagementSteps should log out after it finishes work.

Now, it's clear that it's very hard to relate the notion of step objects
enforced by Codeception with the intuitive understanding of how
we should treat the subclass of AcceptanceTester. Why did they
not name the inheritors of Tester classes a TesterKinds or something
like that?

We'll not show the full final code, as it's quite easy to implement in tests/
acceptance/LoginAndLogoutCept.php:

$I = new AcceptanceTester\CRMUsersManagementSteps($scenario);
// … steps to create a user ...
$I->logout();
$I = new AcceptanceTester\CRMGuestSteps($scenario);
// … steps to check the login/logout features.

The second change is that we have the following lines in LoginAndLogoutCept.php:

$I->amGoingTo('logout from arbitrary page');
$I->amInQueryCustomerUi();
$I->click('logout');

Given our new access control rules, guest users cannot go to a arbitrary page, so this
test is meaningless for now. Just remove the preceding code lines.

The third change is in the same LoginAndLogoutCept.php file. Here is the line:

$I->seeLink('logout');

This line is there so we will be able to check whether we logged in successfully.
After that, there are another four test steps that are there to check that logout
actually works. But for that, we need to actually log out! Put the following line
after that seeLink() invocation:

$I->logout();

The fourth change is that you must move definitions for seeIAmInLoginFormUi(),
fillLoginForm(), submitLoginForm(), seeIAmAtHomepage(),
seeUsername($user), and dontSeeUsername($user) to the AcceptanceTester\
CRMGuestSteps class from AcceptanceTester\CRMUserSteps.

User Authorization and Access Control

[170]

The last change we should make is to log out from
QueryCustomerByPhoneNumberCept after we're done creating a customer:

$I = new \AcceptanceTester\CRMOperatorSteps($scenario);
// … steps to create a customer ...
$I->logout();
$I = new \AcceptanceTester\CRMUserSteps($scenario);
// … steps to try the "query by phone number" feature.

This is the end of our implementation. Run the tests as shown in the
following screenshot:

Success! More than that, we now have a sufficiently reliable automatic test suite
which will relieve us from the job of clicking through these login forms manually.

Summary
In this chapter, you learned about a number of features of Yii that help us control
the access to the parts of our application. Also, you learned that behind the scenes,
Yii silently protects us from the CSRF attacks, which is quite cool actually.

In addition to this, we saw how exception handling is being employed by Yii 2
and looked at the special exceptions based on HttpException, which shows the
appropriate response with the proper HTTP status code to the user.

You learned about the concept of controller action filters that help us to build
combinations of stuff we can do before the controller action fires.

Chapter 6

[171]

The most important part of this chapter is the building of the access control policy
based on user roles. We saw how the RBAC manager's application component works
together with the AccessControl filter class to provide such functionality. Finally,
when implementing the testing harness for access control, we saw the intricacies
of the automated authentication in the end-to-end tests and simple methods of
overcoming them. There can be entire books written about full-featured solutions.

In the next chapter, we'll finally unfold the fundamental basis of the Yii 2 structure, the
Modules system, which are the embodiment of the Model-View-Controller technique.

Modules
This chapter will unveil at last the concept of modules, which we mentioned in
almost all the previous chapters. Modules impact the working of every feature of
Yii, from the level of controllers to the level of views. However, it's possible that
in small- to medium-sized web applications you'll never use them (apart from the
single exception that we'll describe shortly).

First, we'll explore what the Module concept is and how it's implemented in Yii 2.
After that, we'll rearrange things in our example CRM application and add a special
section exclusively to report API using the Modules feature.

Let's start.

FEATURE – Yii modules
A module is the entity that has its own views, controllers, components, and possibly
other modules. So, it's basically the embodiment of the MVC composite pattern.

As you probably guessed, the root Yii application is an example of a module.

The official documentation is a bit misleading when it states that a
module is like an application, but can't be used alone. It's really a clunky
explanation. Quite the contrary, an application is a special kind of
module that is enhanced with the features that allow it to run, just like
the entry point of a Java application is not just any class but the class
holding the main() method. This is clearly expressed in the \yii\
base\Application class that extends the \yii\base\Module class,
adding several methods to it.

Modules

[174]

What is meant by "has its own views"? It means that a module has the settings to set
all the following entities:

Settings Meaning
controllerPath This is the path to the folder that contains all the

controller classes that should be reachable from this module.
This property is read only and is being automatically set
based on the controllerNamespace setting.

controllerNamespace This is the fully qualified name of the namespace in which
all controllers from controllerPath should belong. This
will be used to calculate the controllerPath setting
according to the PSR-4 specification (visit https://
github.com/php-fig/fig-standards/blob/
master/accepted/PSR-4-autoloader.md).

controllerMap This is an array that specifies precisely the controllers that
should be reachable from this module. Each key-value pair
is the controller ID and either the array with controller
properties or the controller instance itself.

basePath This is a path alias to the folder that will be the default base
for all relative paths inside this module.

viewPath This is a path alias to the folder that will hold all the view
files for controllers in this module.

layoutPath This is a path alias to the folder that will hold all the layout
files for this module.

layout This is a path alias to the view file that will be treated as
the layout for all view files in this module. If relative, it's
expanded relative to the layoutPath setting. If this setting
is not set, the layout setting of parent module will be used.
If it ultimately resolves to a false value, no layout will be
applied (view files will be rendered raw).

modules This is an array of other modules that should be reachable
from this module.

components This is an array of components that are available in this
module.

module This is the parent module that has the current module in its
modules array.

This table uses a specific term: reachable. It's used for our own convenience and is
related to the routing system employed by Yii. This really helps us to understand
how the MVC pattern in Yii influences the system.

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Chapter 7

[175]

The informal concept of reachability
Let's look at the controller action we introduced to show the list of services in YAML
format back there in Chapter 4, The Renderer. It's implemented as the actionYaml()
method inside the ServicesController class, which is in the app\controllers
namespace, so its fully qualified name is app\controllers\ServicesController.
actionYaml(). When someone requests the URI http://yourdomainname.dom/
services/yaml, Yii 2 will call this exact actionYaml() method. This is possible for
two reasons:

• The application has the namespace app\controllers set in the
controllerNamespace setting (we did not set it explicitly, but it's the
default value)

• By convention, any public method of a controller whose name starts with
action is treated as the controller action (this is called the inline action)

Based on this, we say informally that the actionYaml() method is reachable from the
ServicesController class and, subsequently, from the application instance because
we can essentially call this method by accessing some known URI.

Note that the application has the controllerNamespace setting too, and this is
because the application is just another module in the system.

The modules add another step to the previous description of reachability. If some
controller is inside the namespace mentioned in the controllerNamespace setting
of some Module class in the system, its actions will be reachable by the URIs only if
this module is registered in the modules setting of the application or in the modules
setting of another module.

Thus, basically, the routing mechanics that we'll inspect in
detail in Chapter 12, Route Management, boils down to the
following URI pattern:

/moduleid/moduleid/.../moduleid/controllerid/
actionid.

Of course, there is a lot of detail, such as the ID conversion rules,
non-inline actions, and so on, but its core doesn't change.

http://yourdomainname.dom/services/yaml
http://yourdomainname.dom/services/yaml

Modules

[176]

Exploring the intricacies of module
configuration through simple examples
At the bottom of it all, a module is just a PHP class extending the yii\base\Module
class. This class has to be registered in the modules setting in either the application
itself or some other module. Due to the referencing of modules by the fully qualified
name, the exact location of the file with the definition of this class can be arbitrary.
More than that, the existence of all the preceding configuration variables, such as
basePath, viewPath, and others, allows us to have great freedom in choosing the
physical structure of our application.

While we're on the topic of the physical structure of an application, let's make a
really, really simple hierarchy of modules. It will be constructed in such a way that
SiteController and other controllers under the app\controllers namespace will
be reachable not only by the default URLs but also from the URL containing the
chain of calls to modules. This will become clearer in a while.

Remember that Yii 2 uses a PSR-4-compliant autoloader and the app\
namespace corresponds to the root directory of the application. So, the
app\controllers namespace maps to the controllers directory
under the root of the code base. This, in turn, corresponds to the @app/
controllers path alias of Yii 2.

We'll utilize the app\utilities namespace for our design. We created this namespace
in Chapter 4, The Renderer, to hold the custom view renderer and response formatter.
Let's create the module FirstModule there with absolutely minimal definition. Here is
the full content of the utilities/FirstModule.php file we require:

namespace app\utilities;
use yii\base\Module;
class FirstModule extends Module { }

It's better if you perform the changes described in this section
in a separate branch of your version control system. It's all a
throwaway code.

Congratulations, you've just created your first module. It's absolutely basic though,
because of the following reasons:

• It thinks that its basePath is the folder it is in
• It thinks that views and layouts are in the views and views/layouts

subdirectories of its basePath

Chapter 7

[177]

• It thinks that it has controllers reachable in the controllers subnamespace
under its own one

• It's attached neither to the application nor to some other module

This module will be attached to the application using its modules config setting
as follows:

'modules' => [
 ...
 'firstlevel' => [
 'class' => 'app\utilities\FirstModule',
]
]

So, we attached the module with the ID firstlevel to our application. This ID is
arbitrary and will be used to construct the URLs for us later. The class representing
this module is app\utilities\FirstModule. Now create the second module in the
same way, and name the class as SecondModule this time.

This second module will be attached to the firstlevel module in the application
config. It's possible because the config will be processed recursively. Modify the
modules.firstlevel configuration setting as follows:

 'modules' => [
 ...
 'firstlevel' => [
 'class' => 'app\utilities\FirstModule',
 'modules' => [
 'secondlevel' => [
 'class' => 'app\utilities\SecondModule',
]
]
]
],

Each module has its own modules setting configurable identically.

It'll be too boring to add a third module in the same manner. Let's add it more
dynamically using the special init() method of the Module class, which is called at
the end of the constructor. Include the following code in the SecondModule class:

 public function init()
 {
 parent::init();
 $this->modules = [

Modules

[178]

 'thirdlevel' => [
 'class' => 'app\utilities\ThirdModule',
 'basePath' => '@app'
]
];
 }

When overriding the init() methods of the base Yii 2 classes, do not
forget to always call parent::init(). There's usually a lot of stuff
happening behind the curtains for you.

The preceding init() method will do essentially the same as putting the
configuration array for ThirdModule into the application config, but the binding
of a module will happen a bit later this time. Of course, you also have to create
the @app/utilities/ThirdModule.php file with the definition of ThirdModule.

We specified the basePath of ThirdModule to be the root directory of our
application. By doing this, we effectively converted this module into the application
itself in terms of locating views and controllers, with one exception. To complete the
unification, we have to reset the ThirdModule.controllerNamespace as follows:

 public $controllerNamespace = 'app\controllers';

Do note that we are using the strings that contain namespace
declarations extensively in the Yii application configuration. As
namespaces in PHP have to contain backslashes, we should take care
that this is the escaping character; if our subnamespace starts with
something like n, v, or t, we'll get the escape sequence (\n, \v, or \t,
according to our example) in the middle of the namespace declaration,
which can lead to nasty untraceable errors. The simplest way to
prevent this is to develop a habit to always use single quotes for string
literals in PHP that do not expand escape sequences. You can also
escape the backslash itself, by writing "\\", if you absolutely must use
double quotes in your string literals. The Yii 2 source code uses exactly
this method; however, it's way easier to just use single quotes.

Chapter 7

[179]

Now let's remember that we built a nice documentation viewer in Chapter 4,
The Renderer, at the URL /site/docs. Let's open the /firstlevel/secondlevel/
thirdlevel/site/docs route now:

Except the authentication indicator built in later chapters, it's identical to the /
site/docs output. In fact, it's the exact same app\controllers\SiteController.
actionDocs() method, reachable from two URLs now. All other controllers from the
app\controllers namespace got this trait as well.

As we're using the default values for the viewPath setting in our thirdlevel
module, it is assumed to be relative to the basePath of the module ThirdModule.
If we do not redefine it in the configuration for the secondlevel module, we
would get the following message when accessing the /firstlevel/secondlevel/
thirdlevel/site/docs route:

As was said before, the default basePath of the module is the folder its class
definition is in. In the preceding error message, it can be seen that when we do
the following inside the SiteController:

 return $this->render('docindex.md');

We are referring to different files depending on what module we are currently in and
its basePath setting. The root directory of the code base is /vagrant in case you set
up your deploy remote machine using the Vagrant toolset (http://www.vagrantup.
com/), as described in Appendix A, Deployment Setup with Vagrant.

http://www.vagrantup.com/
http://www.vagrantup.com/

Modules

[180]

Now everything referring to modules in the previous chapters should become clear
to you. When we treat the Yii application as a single entity, we just throw away
the possibility that controllers and views (and to some extent models too) can be
grouped together and everything is reachable by the URIs in the following form:

/controllerid/actionid

However, even this is not true, as we will learn in Chapter 12, Route Management.

Breaking up the application into modules using only the default Yii-implied values
of basePath, viewPath, layoutPath, and controllerNamespace can be either really
tricky and unmaintainable or really simple and understandable depending on how
you physically structure your modules. You can completely omit the redefinition of
these settings if the following prerequisites are met:

• Everything related to a single module is inside a single subdirectory and
nothing else is there

• This module is inside the namespace that is mapped to this subdirectory;
thus, the file containing its definition is inside this subdirectory as well

We'll rely on this trick in the very next section, when we'll actually use the feature
of modules to rearrange stuff in our example CRM application more nicely.

The Debug module
Apart from the Gii automatic code generator, Yii 2 has another built-in mechanism:
the Debug module. Like Gii, it is separated out as an extension (more about Yii 2
extensions in Chapter 9, Making an Extension) and is attached to the application as
a module.

The Debug module was already seen as far back as Chapter 1, Getting Started, when
we installed the basic application template. That module provided a nice debug
toolbar at the bottom of each page on the site.

As this requires some additional steps, we have not enabled the same toolbar at our
example CRM application yet. Now it's time to do it.

In fact, we are repeating the installation instructions from the yii2-
debug repository (visit https://github.com/yiisoft/yii2/
blob/master/extensions/debug/README.md). Our purpose is not
only to use this extension but to also understand how it works.

https://github.com/yiisoft/yii2/blob/master/extensions/debug/README.md
https://github.com/yiisoft/yii2/blob/master/extensions/debug/README.md

Chapter 7

[181]

Add the dependency on the yiisoft\yii2-debug package to our example CRM
application as follows:

$ php composer.phar require --prefer-dist yiisoft/yii2-debug "*"

Wait a bit until it ends rebuilding. This package provides the special yii\debug\
Module class that we need to attach to our application as usual:

 'modules' => [
 ...
 'debug' => [
 'class' => 'yii\debug\Module',
]
],

That's not all, though. We also need to force Yii 2 to initialize this module at the same
time as the application itself, that is, to bootstrap it:

 'bootstrap' => ['debug'],

You can check the documentation for the yii\base\Application.bootstrap
property to see how it works in detail.

Almost everything in Yii is created "lazily", on demand, usually in
the getter method. This has a consequence of initialization code for
some components being run too late or at an inappropriate time,
resulting in the slowdown of the application. By bootstrapping a
component, you prohibit the lazy behavior and force the component
to be initialized at the start of the application, moving its initialization
at the expected time frame.

If you are deploying the application to a separate machine, the Debug
module will not be visible to you, as it is protected by the \yii\debug\
Module::$allowedIPs property, whose default setting is to listen
only to localhost. You may want to set an additional configuration for the
Debug module, as shown in the following, for example:

'debug' => [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['IP of your development machine']
]

Modules

[182]

In the preceding information block, by "component" we mean not the application
component concept explained in the previous chapters but the basic building block
of Yii 2, the yii\base\Component class, which can be described roughly as the
"stdClass on steroids". This class is the base for a lot of built-in classes in Yii 2,
including the Module class. We'll not delve into the details of this class separately,
because features of the concept of the component are spread through the whole
Yii 2 framework, especially the event handling and behaviors system (which is
implemented in the yii\base\Component class).

Anyway, let's return to the issue of bootstrapping. Why do we need to bootstrap the
Debug module? Isn't the module just the proxy for reaching the controllers?

It turns out that as long as the current module has the init() method, it can also
be used for other tasks apart from its initialization. The Debug module needs to be
bootstrapped to present you with the debug toolbar at the bottom of the page. It does
this by listening on the View::EVENT_END_BODY event and registering its assets when
this event is triggered, which (as you have probably guessed right) is when the view
ends rendering the body of the page. This is what the debug toolbar looks like:

In fact, in this case the browser window was intentionally shrunk horizontally,
so the panel collapsed into three rows. Normally, it shows all the indicators on
the same row. All the indicators presented are the links to the respective sections
of the full Debug module interface.

If you do not bootstrap this module, you'll still be able to access its full version at
the /debug route, but the panel at the bottom of other pages will not be rendered.
That's what the performance section of the Debug module looks like:

Chapter 7

[183]

Do you remember that when we attached the Gii module to our application, we did
not bother with anything like bootstrapping? It's precisely because the Gii module
is indeed just a proxy for a set of controllers that is packed into a separate folder.
It does not do anything invasive with your application (at least until you hit the
button, of course). You should understand this trick with init() because when
you'll develop your own components and modules it can help you make more
robust plugins for the applications.

Now let's make some meaningful module in our application ourselves.

Building the API module
We have two controller actions currently in our system, which:

• Are not needed for the user interface
• Provide the API-like representation of the information in the system

Modules

[184]

All this makes these actions perfect targets for our practice in building modules.
Let's make an API module that will contain the actions currently reachable by the
/services/json and /services/yaml routes.

The following use cases should be supported:

• The GET request to the /api/services/json route should return the list of
attributes of all registered services in the JSON format

• The GET request to the /api/services/yaml route should return the list of
attributes of all registered services in the YAML format

We define result in JSON format as the string that can be converted to the PHP
data structures without error using the yii\helpers\Json::decode() method.

We define the result in YAML format as the string that can be converted to
the PHP data structures without error using the Symfony\Component\Yaml\
Yaml::parse() method.

Building a test suite to support testing the
API module
We will not make a REST-compliant API here. We will get just the minimal reader
API to provide us with the list of records registered in the database. However, to use
the end-to-end acceptance tests as we did all the time until now is an overkill in this
case. We need some simple way to perform the following actions:

• Install some known data to the database
• Poll the API endpoint for the data
• Ensure the data returned is indeed a serialized representation of the

data from the database

Codeception, which we are using as our test harness, has a limitation here. On one
hand, it has the REST module that provides exactly what we need: the sendGET(),
canSeeResponseCodeIs(), and grabResponse() methods (their names tell it all).
On the other hand, the REST module cannot be used together with the WebDriver
module that our acceptance test suite is using.

Let's just create a separate test suite just for testing API endpoints. Run the
following autogenerator:

$./cept generate:suite api ApiTester

Chapter 7

[185]

We have the tests/api directory and the tests/api.suite.yml
configuration now.

To properly configure this suite, we should understand that these tests will make
requests to the web server serving the application, but we must have a connection to
the database to be able to write the data we control. So, we have to run the test suite
from within the deploy target machine, such as the functional tests. However, unlike
the functional tests, the API test suite requires that the full application environment
together with the web server is up and available, so it's more like the end-to-end tests
in this regard. This will be quite tricky to implement on a testing server.

It is obvious now that we wrapped ourselves into the tight mess of the
high-level tests that require the runtime environment to be prepared
and the application deployed and running. This setup is slow to run
and hard to implement reliably. This is because we rely too much on
the Yii machinery in our code, having stopped decoupling from the
framework for simplicity in Chapter 3, Automatically Generating the
CRUD Code. As a rude workaround, we could completely drop the
requirement of having the Yii application up and running by testing
the controller action methods directly, as they return the result of
their work, and not (for example) print the result directly to STDOUT.
However, this will make us unable to see integration problems
with Yii in a production environment. In fact, you should have the
multilayered test harness, spanning from unit tests of the business
rules up to the end-to-end acceptance tests using the UI in an abstract
way. To restrict the span of this book, we are showing only the
highest-level tests for you here. Fine-grained refactoring was omitted
for the same reasons. Although its name has two components, this
book is more about Yii 2 and less about the web development in
general after all.

Knowing that we'll run the API tests on the deploy target, and therefore call the web
server by the loopback interface, we are now able to properly configure the API test
suite by means of tests/api.suite.yml:

class_name: ApiTester
modules:
 enabled:
 - ApiHelper
 - PhpBrowser
 - REST
 - Db
 config:

Modules

[186]

 PhpBrowser:
 url: 'http://localhost'
 REST:
 url: 'http://localhost'

Let's discuss the highlighted lines from top to bottom:

• The REST module requires the PhpBrowser module as the transport provider,
so it'll be able to actually send requests to the application.

• We need the Db module to reset the database after each test run, as we'll
autogenerate the data to be present in the database.

• The PhpBrowser module forces us to provide the base URL for the
application. This will be the loopback interface at the same machine.
The web server must be running and be serving our application.

• The REST module should have the means to access the application, so we
provide the base URL for it. In our case it's clearly a code duplication, which
is unavoidable. This is not so in a general case, as the REST module can be
configured to access some specific subroute defined to be the API endpoint,
and thus all requests routes specified in our tests can be shortened by this
API endpoint prefix.

As we're using the Db module, we need to configure it to be able to access our
database. We already did this for the functional test suite, in the tests/functional.
suite.yml file. So, to avoid code duplication, we can just move the whole modules.
config.Db section from the tests/functional.suite.yml file to the global
codeception.yml file at the root of the code base. However, if your functional
suite is configured to be connected to a database that is different from the one your
application is using, then you should not do this and instead configure the Db module
in the API suite individually.

This is not all. We need to instantiate the Yii application for our test cases to be able
to utilize the database connection from application classes. We'll do it inside the
generated tests/api/_bootstrap.php file in the same way it was done for the
functional test suite:

require_once(__DIR__ . '/../../vendor/autoload.php');
require_once(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
new yii\web\Application(
 require(__DIR__ . '/../../config/web.php')
);

We're creating a web application again.

Chapter 7

[187]

Do not forget that in the case of API, as well as acceptance suites the
instance of yii\web\Application and the one that we made requests
to are completely separate entities and you cannot hope to share data
between them in any way except the filesystem and the database
(or maybe some other trick from the domain of crazy professional
workarounds). Be very careful when configuring the API suite that the
Db module in Codeception and the application itself will be talking with
the same database!

Don't forget to generate a tester class for the API test suite by running the
build command:

$./cept build

Defining the requirements for automatic tests
of API modules
Now, the preparations are complete and we can create the actual test script:

$./cept generate:test api ServicesListApi

We're essentially making the API for managing the list of services, after all.

It'll not be the cept-style test, written as a prose, but a normal test case that is written
as a PHP class. That's how the requirements can be defined as a Codeception test:

 /** @test */
 public function ReturnsValidJson()
 {
 $expectedData = [];
 $expectedData[0] = $this->registerService();
 $expectedData[1] = $this->registerService();

 $this->tester->sendGET('/api/services/json');

 $response = $this->tester->grabResponse();
 $responseData = \yii\helpers\Json::decode($response);

 $this->assertInternalType('array', $responseData);
 $this->assertEquals($expectedData[0], $responseData[0]);
 $this->assertEquals($expectedData[1], $responseData[1]);
 }

Modules

[188]

For the sake of simplicity, we are going for relatively large steps here. We register
two services in the database to test the ability of our code to deal with
nontrivial datasets.

Then, we send the GET request to our predefined API endpoint and check whether
we get the JSON response with the data we have just saved to the database.

The test for the YAML endpoint will be exactly the same, except the API endpoint
will end in yaml instead of json and the decoding will be done by a different class.
So instead of the line:

 $this->tester->sendGET('/api/services/json');

We will use the following line:

 $this->tester->sendGET('/api/services/yaml');

Also, instead of using the line:

 $responseData = \yii\helpers\Json::decode($response);

We will use the line:

 $responseData =
 \Symfony\Component\Yaml\Yaml::parse($response);

However, before that, let's define the smoke test to check whether we actually have
the endpoints we want:

 /** @test */
 public function HasJsonEndpoint()
 {
 $this->tester->sendGET('/api/services/json');
 $response = $this->tester->grabResponse();

 $this->tester->canSeeResponseCodeIs(200); //1
 $this->assertNotEquals('', $response); //2
 }

Chapter 7

[189]

We're asserting the following points:

• The response code is HTTP 200 OK
• The response body is not empty (it should never be empty as the Yii error

handler sends quite a long HTML body for error pages)

The same applies for the HasYamlEndpoint() test.

Before we make the actual module, let's deal with the ServicesApiTest.
registerService() helper method we glossed over. The idea behind the reader API
is that it returns a plain JavaScript object, a set of key-value pairs. So, we certainly do
not want the full serialized yii\db\ActiveRecord returned from there, but rather
just its attributes. Given all that, we define the following helper method:

 private function registerService()
 {
 $service = $this->imagineService();

 $service->save();

 return $service->attributes;
 }

So we both have a cake and eat it: a record is saved into the database and we know
its attributes that should be returned by the API endpoint.

We imagine a service with the help of the Faker library, as usual:

 private function imagineService()
 {
 $faker = \Faker\Factory::create();

 $service = new \app\models\service\ServiceRecord();
 $service->name = $faker->sentence($words = 3);
 $service->hourly_rate = $faker->randomNumber($digits = 2);

 return $service;
 }

Modules

[190]

It's the same method as in the acceptance tests for services management. We run the
tests and we get the following output:

Of course, four failing tests at once is a huge step in the test-driven development
(TDD) process. However, first of all, you're not writing it yourself and are following
a guide, and secondly, all these failures are only because of a simple problem: we
don't have anything on the /api/services/json and /api/services/yaml routes.

Chapter 7

[191]

Moving the controller actions to a
separate module
We have everything we need already implemented; it just needs to be moved at
appropriate places. We'll utilize the power of Yii 2 conventions here, starting from
the routes we require to be available. Let's reverse-engineer the project structure,
so we don't need any special configuration aside from the defaults.

We want the /api/services/json route to be available. This means that we need
the following three entities:

• A module with ID api, that is, some yii\base\Module descendant
registered in the application config with the modules.api key.

• A controller with ID services, that is, a descendant of yii\web\Controller
named ServicesController (ID is parsed automatically from the name of
the class), reachable from the module with the api ID.

• A controller action with the json ID, reachable from the controller with
the services ID. We'll explore some other options in Chapter 12, Route
Management, but in the simplest case it means that we need the method called
actionJson() defined in the ServicesController class.

The default conventions of Yii 2 expect each module to reside in a separate directory.
Let's make the api directory and place the minimal ApiModule definition in there:

namespace app\api;
use \yii\base\Module;
class ApiModule extends Module { }

Because we are conforming to PSR-4 in the names of directories and namespaces, we
don't need anything special for the ApiModule class to be accessible in the code base.
The class definition is completely empty, as there's no mandatory configuration for
a module.

As our ApiModule is in the app\api namespace, it will automatically assume that
its controllerNamespace is in app\api\controllers. Let's not disappoint it and
create this directory together with the ServicesController.php file in there. This
file will obviously contain the ServicesController class definition, as follows:

namespace app\api\controllers;
use yii\web\Controller;
class ServicesController extends Controller
{
 // empty for now
}

Modules

[192]

We have two out of three steps. Now all we need is to move the actionJson()
and actionYaml() methods from the controllers/SiteController.php file
to this new class definition.

Note that we have two classes with the same names in our code base.
Usually, that was a really big problem back in Yii 1.x, but now we have
namespaces everywhere. As long as the fully qualified names of classes
are different, we're totally OK.

Now we have the complete API module (trust us here). All we need to do now is
to tell the Yii application that it exists by placing its declaration in the config inside
modules as follows:

 'modules' => [
 ...
 'api' => [
 'class' => 'app\api\ApiModule'
]
],

Now, we run the tests and all four of them pass (provided you really have the
actual actions for JSON and YAML serialization implemented according to
Chapter 4, The Renderer):

As was said in the beginning of the Building the test suite to support testing
the API module section, this API module example is not REST-compliant.
If you want a REST API, you should check the built-in class yii\
rest\Controller for the controller specifically tailored for REST API
requests and the whole yii\rest* family of classes in general.

Chapter 7

[193]

If you open the JSON endpoint in the browser (after the API test suite has dutifully
added some records to the database), you'll see the following:

There is no simple way to present a screenshot to you from a YAML endpoint, as all
browsers will try to download the response from the server instead of presenting it
in a textual format on the screen.

Retrospective on the modules mentioned
in previous chapters
Let's remember when we mentioned modules previously and hand-waived them
for simplicity.

We mentioned modules in Chapter 2, Making a Custom Application with Yii 2, when
we created the configuration file for our application and discussed that the id
setting is mandatory. You have learned that the application is just a special kind of
module and all modules have an ID. For a module, this ID is defined in the modules
configuration setting when you assign a distinct key for the configuration array of
this module. In the API module example that we just implemented, we used the api
ID. The application itself, of course, is not listed in any modules section anywhere
so it must get its ID in some other way. To be honest, an application needs an ID
for different reasons than a module (it's a special kind of module, after all), but it's
mandatory anyway.

Later in the same chapter, we noted that we ended up with the project structure
surprisingly similar to the basic application template from Yii 2. Now you
understand why it is, as we discussed the various configuration settings and
conventions in full in this chapter.

Modules

[194]

In Chapter 3, Automatically Generating the CRUD Code, we actually used the module
without knowing what it is. We learned back then that whatever it is, the module is
something that is a fully qualified class name you declare in the modules section of
the configuration. After declaration, you receive a set of additional routes available
in your application for browsing. Also, you can note now that we can set values for
the properties of the modules right when declaring them in the configuration. This
will not help when you need to configure the module at runtime, depending on some
data not known at the stage of constructing the application (in this case, your only
option is overriding the init() method or hooking onto events), but it can really
help you when developing some prepackaged, reusable modules, such as Gii itself.

Please understand that everywhere when we talk about Modules (with
the uppercase M at the start of word), we're talking about the specific
concept of the Yii 2 framework, implemented as the yii\base\Module
class. Codeception has a completely different notion of a module, which
does not help in any way in understanding this important term.

In Chapter 4, The Renderer, when discussing how Yii 2 finds the view files for the
render() method calls, we finally came to the point when we have to really pretend
that modules do not exist at all to simplify the explanations. Now, we know that the
viewPath under which the View component searches for view files can be defined
individually per module. In fact, this setting is defined individually by default. As
an application is a module, it has its own viewPath; however, when we're executing
a controller action that belongs to the controller reached through some module, this
module's viewPath is used instead of the application's. The same rules apply to the
layoutPath setting, and the layout setting was already discussed in the same table
in the same section.

As a result, if you are rearranging the controllers and especially
when rearranging the actions, you have to be careful to move the
corresponding view files between modules as well!

Apart from the importance for the view rendering, the system of modules greatly
affects route handling. If you paid attention, you probably already noted that you
can have arbitrarily deep filesystem-like URLs without any special treatment, just
by defining a hierarchy of modules in the application config. However, that's the
theme for Chapter 12, Route Management.

Chapter 7

[195]

Summary
Yii 2 implements the MVC composite pattern using the Modules system. Each module
has a means to reference and access the controllers and views. Modules are attached
to the application and additionally you can attach them to other modules, creating
the hierarchy.

By utilizing the system of modules, you can have an arbitrary number of arbitrarily
deep routes available in your application in the following general form:

/moduleid/moduleid/.../moduleid/controllerid/actionid

This basic routing system will thus be constructed entirely by means of the PHP classes
appropriately wired together by Yii 2 conventions. No additional customizations of the
Yii 2 router will be required.

In the next chapter, we'll discuss the issues of security and performance. Yii 2
provides us with some means of housekeeping to make the UI of our application a
bit more neat and confirming best practices without any serious work from our side.

Overall Behavior
In this chapter, we'll look at some features of the Yii 2 framework that are non-local
in some sense. They will not help you implement new features per se, but without
these features, your ability to make robust applications both from the developer and
user points of view will be severely hindered.

Here is the list of features we will explore shortly:

• Logging messages
• Handling errors
• Caching
• Compiling assets

As usual, in this book, we'll concentrate more on the practical aspects of actually
using these features, as for the precise technical details of their implementation you
can look up either in the excellent Yii documentation or directly in the source code.

Let's start with how message logging is implemented in Yii 2.

FEATURE – message log
More often than not when developing and debugging an application, you want to
know about how its internal state changes. In the web-covered, PHP-based world
there's usually no habit to use the tools, such as Xdebug, to peek into the individual
variables, like beard-wearing C programmers do. Most problems can be solved by
thoughtfully placed print statements showing the values at the time they are used.

Overall Behavior

[198]

The Yii framework provides the facility to organize this peeking into the internal
state and relieves you from writing var_dump($variable);die() everywhere. You
can record messages from anywhere inside your application to some predefined,
controllable, and centralized locations where they can be read without the need to
intervene with the rendering process.

The log message concept of Yii 2 is an entity consisting of the following:

• A line of text with the message itself
• The severity level
• The category of a message
• The timestamp
• The stack trace at the time of recording a message

We have control only over the first three properties.

Obviously, you can write anything in the message itself, as long as it stays a string.

The severity levels are predefined, and while technically you can force Yii to
record the message with a non-standard severity level, it's not guaranteed that it'll be
handled like others. Here is the list of constants you can use as a severity level for
log messages:

• yii\log\Logger::LEVEL_TRACE: This constant is used for messages that are
only for debugging

• yii\log\Logger::LEVEL_INFO: This constant is used for general-purpose
messages

• yii\log\Logger::LEVEL_WARNING: This constant is used for
warning messages

• yii\log\Logger::LEVEL_ERROR: This constant is used for error messages

Except for LEVEL_TRACE, which you'll read about shortly, there is no enforced
distinction between these levels. Of course, you better assign appropriate severity to
the messages you log for the sake of your own sanity.

There are also pseudo-levels LEVEL_PROFILE, LEVEL_PROFILE_BEGIN, and LEVEL_
PROFILE_END, but you should never concern yourself with them directly but use the
helper methods to perform profiling of the Yii-based application. This will be shown
in the next section, shortly.

Chapter 8

[199]

The category of the log message is an arbitrary string that can be used for group-
related messages. Inside its own methods, the Yii framework almost always uses the
__METHOD__ superglobal PHP constant as the category for messages, so it basically
proposes that you group messages by the currently executing method's fully
qualified name. As you'll see later in this section, this categorization scheme has an
additional positive aspect.

The timestamp of the log message is set by the microtime(true) call, so it's
the automatically calculated time at the moment the message is logged with the
precision down to microseconds.

The stack trace of the log message is recorded from whatever the call to the built-in
function debug_backtrace() returns. The recording of the stack trace is governed
by the value of the Yii::$app->log->traceLevel property or, identically, the
components.log.traceLevel setting in the application configuration. By default,
the value of traceLevel is set to 0.

It should be obvious that as the stack trace is associated with
every log message, setting traceLevel to anything above 0 will
seriously decrease the performance of the application.

Yii itself logs quite a lot of messages at different stages of its life. You will probably
not even need to record any additional messages. It's a lie of course, but we can hope
for it to be true anyway, right? That's how you do recording of log messages in Yii 2.
Have a look at the following table:

Method name Meaning

Yii::trace($message, $category) This method records the LEVEL_
TRACE message in the given category.
If the YII_DEBUG constant is set to
false, this method won't record
anything.

Yii::warning($message, $category) This method records the LEVEL_
WARNING message in the given
category.

Yii::error($message, $category) This method records the LEVEL_
ERROR message in the given category.

Yii::info($message, $category) This method records the LEVEL_INFO
message in the given category.

As the Yii::trace() call silently does nothing if YII_DEBUG is set to false (which
basically means that we are in a production environment), it is perfectly fit to record
the state of some variables at some precise time for debugging purposes.

Overall Behavior

[200]

Actually storing the log messages
The four helper methods described in the preceding table record the log messages
and do not persist the messages in any way. All they do is tell the message
dispatching mechanism to send these messages to whatever log targets we as
developers have configured for the application.

Let's look at an example application configuration that not only tells Yii to store log
messages in the database, but to send LEVEL_ERROR messages right to the project
manager's e-mail:

 'components' => [
 'log' => [
 'traceLevel' => 3,
 'targets' => [
 'all_messages' => [
 'class' => 'yii\log\DbTarget',
 'levels' => ['info', 'trace', 'warning', 'error']
],
 'problems' => [
 'class' => \yii\log\EmailTarget::className(),
 'levels' => \yii\log\Logger::LEVEL_ERROR,
 'message' => [
 'to' => 'pm@crmapp.us'
]
]
],
],
 ...
],

Note the highlighted parts. You will see that the log component of the application
has the target array, and the class of the target defines the log message target at
which the log message will be stored. The names of the log targets are arbitrary and
provided only as a help for the maintainer.

Chapter 8

[201]

You can see two interesting conventions in the preceding configuration
snippet.

First, we can either use a string literal to specify the fully qualified name
of the class or call className() on them, which is a special static
method defined by Yii on virtually all of its classes that returns the fully
qualified class name for us.

Second, in the components.log.targets.[].levels setting, you
can specify levels either as the array of literal names of severities or as
the binary combination of the Logger::LEVEL_* constants as follows:
Logger::LEVEL_ERROR | Logger::LEVEL_WARNING (binary OR in
this case).

We have the following log message targets at our disposal:

• yii\log\EmailTarget sends the log messages as e-mail messages.
• yii\log\FileTarget writes the log messages to the file, with log rotation

provided for free
• yii\log\DbTarget stores the log messages as records in the database. You

must have the table configured there as said in the documentation for the
yii\log\DbTarget.logTable property.

• \yii\log\SyslogTarget sends the log messages to the syslog system
facility by means of the openlog(), syslog(), and closelog() PHP
built-in calls.

The EmailTarget is a special beast. First of all, it does not store the messages in the
usual sense, as it sends them to the remote e-mail address. Second, it requires the
Mail component configured and attached to the application.

Setting up the e-mailing component so that log
messages can be mailed
If we need to send e-mails from our application, Yii 2 ships with yet another
extension, which brings the power of SwiftMailer (see http://swiftmailer.org/)
for this task. As the other option would be to write the implementation of the\yii\
mail\BaseMailer descendant ourselves, we better digress and just declare this
extension as a requirement for our application:

$ php composer.phar require --prefer-dist yiisoft/yii2-swiftmailer "*"

http://swiftmailer.org/

Overall Behavior

[202]

This extension will bring us the \yii\swiftmailer\Mailer class, which we are
able to use as the Mail component for our application. This is the example of
a minimal configuration, which will use the mail() PHP built-in function as the
transport mechanism:

 'components' => [
 …
 'mail' => [
 'class' => yii\swiftmailer\Mailer::className(),
 'messageConfig' => [
 'charset' => 'UTF-8',
 'from' => 'noreply@crmapp.me'
],
 'transport' => [
 'class' => 'Swift_MailTransport',
],
],
 ...
]

The tricky parts of configuration are the highlighted ones.

The components.mail.messageConfig setting defines the attributes of all e-mail
messages that will be sent by this Mail component. As the From field is mandatory in
21st century e-mail correspondence, we have to declare it explicitly. Yii does not help
us here in any way. The UTF-8 charset, in the case of some systems, doesn't know
that it's the year 20xx now and still uses something other than Unicode.

The components.mail.transport setting defines which transport method from
the SwiftMailer package should, and will, be used. The most common are probably
Swift_MailTransport, which uses the mail() PHP built-in function, and Swift_
SmtpTransport, which can connect to remote SMTP servers with authentication
and all that stuff. You are encouraged to sift through the SwiftMailer documentation
to look at other pretty cool transport methods, such as the load-balanced and
failover methods.

Chapter 8

[203]

Reading the stored log messages
When the message is stored in the configured target, you'll need it someday. Here's
how the message stored in the FileTarget looks:

2014/04/12 01:44:27 [10.0.2.2][3][pccg3bq84sm6b4mnutsa07lk31][trace]
 [yii\base\Controller::runAction] Route to run: site/index

The preceding message is split into several lines only to fit the book format. In the
logfile, it's a single line of text. It can be seen that we have a timestamp, a series of
tokens enclosed in brackets, and some text of the message itself. Here are the tokens
being written:

• IP of the user
• User ID of the user or the - symbol if the user is not authenticated
• Session ID of the user or the - symbol if the user is not authenticated
• Severity level in textual representation
• Category of the log message

You can see that the category of default system messages is indeed just a fully
qualified name of the method inside which this message was logged. Here's how the
message from a non-authorized request looks:

2014/04/12 01:44:27 [10.0.2.2][-][-][error]
 [yii\web\HttpException:404]
 exception 'yii\base\InvalidRouteException'
 with message 'Unable to resolve the request "favicon.ico".'
 in /vagrant/vendor/yiisoft/yii2/base/Module.php:440

Again, it's all in one line in the log. Note that after the error-level messages, there's a
stack trace printed (if the components.log.traceLevel was configured), in human-
readable format. You should understand this so that your script parsing the Yii log
output will be prepared to either skip all lines not starting with a timestamp or have
some kind of elaborate stack-trace fetcher.

You can greatly ease the parsing of logs, though, if you use
DbTarget, which stores each token, including the text of the
stack trace, separately in the database table's fields.

Overall Behavior

[204]

The Debug module extension (which we introduced in our project back in Chapter
7, Modules) uses its own secret \yii\debug\LogTarget class to store the logged
messages independently from your logging configuration. In the case of composer
installation of the Debug module, this class is inside the vendor/yiisoft/yii2-
debug/LogTarget.php file. Here's how the same previous messages look in the
Debug module:

There's a lot of structure in the log messages presented by the Debug module,
because in fact, Yii does not store them strictly one by one.

The Yii logger will buffer the log messages until the end of request (normally) or
until the components.log.flushInterval is reached, which is by default set to
1000. Usually you'll have (a lot) less than 1000 log messages, so you can relatively
safely assume that you have one batch of messages per request.

At the end of the batch, at the moment of actually writing the logged messages to
the target specified, the logger grabs the values of some global variables, that is,
the context of the request, and executes var_export() on them, writing the result
as the ending log message. This is configurable, and you can specify which exact
global variables will be written in the logVars setting of each individual log target.
By default, it's the $_GET, $_POST, $_FILES, $_COOKIE, $_SESSION, and $_SERVER
variables describing the request in full, but you can list any variable name as long as
it is accessible through the $GLOBALS superglobal.

Chapter 8

[205]

So, knowing all that, the Debug module reflects this behavior by grouping messages
by batch and doing several other things to present the full runtime information of the
application under debug.

Note that you do not have any control over that special log target
defined by the Debug module. It mainly uses the defaults, which
are quite all-encompassing.

You are encouraged to try the Debug module yourself, because it's simple enough
that explaining its workings in text will be more cumbersome than just clicking
through the user interface.

Even if the Debug module removes the control over its own log messages from
you, you still have control over the log messages recorded by your own application
configuration. You can format them differently using two methods, one provided by
Yii developers and the other being the invasive method.

First, you have control over the tokens with IP, user ID, and session ID. You can
replace them with anything you want by specifying the prefix setting of the
individual log target. It should be callable, receiving $message as the only argument,
and the structure of $message can be sniffed from the documentation of the \yii\
log\Logger::$messages property. Have a look at the following code:

 [
 [0] => message (mixed, can be a string or some complex data,
such as an exception object)
 [1] => level (integer)
 [2] => category (string)
 [3] => timestamp (float, obtained by microtime(true))
 [4] => traces (array, debug backtrace, contains the
application code call stacks)
]

By default, \yii\log\Target::getMessagePrefix() is a private method of the
base class for all log targets, which indeed formats the IP, user ID, and session ID
in brackets and does not even use the provided $message argument. You can write
anything you want.

The second, invasive, choice is to write your own log target, extending \yii\log\
Target, and override the formatMessage() method there. This way, you acquire
total control over the way in which $message should be serialized.

Overall Behavior

[206]

Insert a switch that will replace each log message with Lorem Ipsum during April
1, and enrage/scare your system administrators. In fact, it's not a good idea to do
anything with your log messages apart from increasing the information density there,
as often it's the only way to grasp the situation on a production system.

FEATURE – profiling
You probably noticed the Profiling menu item in the previous screenshot:

In fact, profiling is not a separate feature in the Yii architecture but a part of logging
mechanics, which we glossed over so as not to overcomplicate things.

There are actually three more severity levels of log messages:

• yii\log\Logger::LEVEL_PROFILE indicates the message is for profiling
purposes in general

• yii\log\Logger::LEVEL_PROFILE_BEGIN marks the beginning of a
profiling block

• yii\log\Logger::LEVEL_PROFILE_END marks the end of a profiling block

You cannot specify LEVEL_PROFILE_BEGIN and LEVEL_PROFILE_END in the levels
setting of a target, and they are in general not meant to be used manually. The
profiling mechanism in Yii 2 has the following simple API:

Chapter 8

[207]

Method Usage

\yii\BaseYii::beginProfile(

 $token,

 $category = 'application'

)

Begin the profiling block by inserting the
log message with the LEVEL_PROFILE_
BEGIN severity level. The token ($token)
is the unique name of the block. Specifying
$category can be used to filter the various
profiling blocks later in the getProfiling()
call.

\yii\BaseYii::endProfile(

 $token,

 $category = 'application')

Ends the profiling block by inserting the
log message with the LEVEL_PROFILE_
END severity level. The token ($token)
must be the same as in the corresponding
beginProfile() call, or the block will be
skipped. The $category is irrelevant here
(when filtering in the getProfiling()
call, only the category recorded by the
beginProfile() call will be considered), so
it's only for categorizing the message itself.

\yii\log\Logger::getProfiling(

 $categories,

 $excludeCategories

)

Walks through all of the collected log
messages at the moment of the call and
calculates the time between corresponding
pairs of LEVEL_PROFILE_BEGIN-level and
LEVEL_PROFILE_END-level messages. You
can specify the categories and which messages
to be considered in the report.

\yii\log\
Logger::getDbProfiling()

This is a helper method to get the statistics
about database usage. It returns an array with
the number of SQL commands executed and
the total time spent talking with the database.

\yii\log\
Logger::getElapsedTime()

This is a microscopic method that returns
the time with microseconds since the very
beginning of the Yii framework's launch.
Beware, though, as it subtracts the float
values involved.

The preceding method signatures are not very helpful to understand how to reach
the methods in an already-running Yii application. Here's an example:

 public function actionProfile()
 {
 Yii::beginProfile('outer', 'beginning');
 Yii::getLogger()->log('first', Logger::LEVEL_PROFILE);
 Yii::trace('second');

Overall Behavior

[208]

 Yii::info('third');

 Yii::beginProfile('inner', 'beginning');
 Yii::warning('fourth', 'nonapplication'); // note the category
 Yii::error('fifth');
 Yii::endProfile('inner', 'ending');

 Yii::endProfile('outer', 'ending');

 $result = Yii::$app->response;
 $result->data = Yii::getLogger()->getProfiling(
 ['beginning', 'application', 'ending']);
 $result->format = Response::FORMAT_JSON;

 return $result;
 }

As it was said before, the default category for the log messages recorded manually is
application, so we specify in the call to getProfiling() that we're interested only
in this particular category. Note that we can nest the profiling blocks.

Here is the result rendered by the action mentioned in the preceding code:

Chapter 8

[209]

Note that there are no in-between messages but only the beginProfile ones.

The profiler calculates the time between corresponding pairs of LEVEL_PROFILE_
BEGIN and LEVEL_PROFILE_END messages, which appear on the same level of
nesting. The result of profiling each level is returned as the array with the
following fields:

• info: This is the $token specified in the call to beginProfile() as the
first argument.

• category: This is the category to which the current profiling process belongs.
It's snatched from the beginProfile() call.

• timestamp: This is the timestamp of the beginProfile() call.
• trace: This is the stack trace information for the profiling message (to know

in which method it was recorded).
• level: This gives an indication of how deep down the stack of profiling

blocks we currently are, starting from 0.
• duration-: This is the time in seconds (!) from beginProfile() until the

endProfile() call. This value is calculated by subtracting results of the
microtime($as_float = true) calls, so it's a float value representing
duration in seconds with some precision after the comma.

There is no real-world example of the usage of low-level API to view profiling
results, for the simple reason that the Debug module already has the way to visualize
them. Here is the same request being viewed in the Profiling tab:

Overall Behavior

[210]

Of course, there's not so much to see, because everything we did is marked at two
places in code. Yii 2 by default marks every call to the DBMS for profiling, so a request
that makes a roundtrip to the database is a lot more interesting target to profile:

We did nothing to get this very useful information; Yii profiles it by default. This
is the most valuable source of information about performance bottlenecks in your
application. However, it's only the database queries that are covered by profiling. If
there is anything else, you should mark it manually.

Chapter 8

[211]

Error handling details
We covered error (exceptions) handling in great detail back in Chapter 6, User
Authorization and Access Control. We glossed over, however, the exceptions not
related to HTTP status codes, and we just barely mentioned the way in which you
can actually control how Yii handles errors.

The important point is that you will probably never need to change
the way Yii handles errors, because it's really a well thought out
algorithm covering all kinds of exceptional situations possible in a PHP
application, so maybe you will never need to add anything to it.

The story about how Yii 2 handles errors is pretty simple. A Yii application has a
special component attached by default, called the \yii\base\ErrorHandler. To
be precise, for a web application, an extension of the base error handler is attached,
that is, \yii\web\ErrorHandler. This component holds three methods, which are
registered in PHP as exception handler, error handler, and a fatal error handler. All
these methods convert all three types of reported problems into an exception of some
kind and pass this exception to a method called renderException, thus uniformly
handling any possible error that can happen in the PHP code and displaying
information about it to the user.

Here is the exact code that hooks all error handling to the Yii framework at the time
of this writing:

 public function register()
 {
 ini_set('display_errors', false);
 set_exception_handler([$this, 'handleException']);
 set_error_handler([$this, 'handleError']);
 if ($this->memoryReserveSize > 0) {
 $this->_memoryReserve = str_repeat('x', $this-
>memoryReserveSize);
 }
 register_shutdown_function([$this, 'handleFatalError']);
 }

The $this variable is \yii\base\ErrorHandler. As was said earlier, all three
methods, handleException(), handleError(), and handleFatalError(),
ultimately resolve into the \yii\base\ErrorHandler::renderException(\
Exception $exception), which is just great, because we have only one place of
change to override.

Overall Behavior

[212]

Let's look in detail at what exactly will be presented to the client depending
on various conditions. Given that the PHP errors and fatal errors already were
converted into exceptions, we have the following options:

Conditions What should be shown

The global Response component
has the format field set to
something other than the FORMAT_
HTML value (which is the default
value).

The exception will be converted into an array
according to \yii\web\ErrorHandler::conv
ertExceptionToArray, and this array will then
be rendered according to whatever Yii::$app-
>response->format is set to.

YII_ENV_TEST is true. The exception will be converted into a string
according to the \yii\base\ErrorHandler::con
vertExceptionToString method, and this string
will be rendered HTML-encoded inside the <pre>
element as the only response from server.

The request is an AJAX
one, checked by the $_
SERVER['HTTP_X_REQUESTED_
WITH'] value.
YII_DEBUG is true and the
exception is not a descendant of \
yii\base\UserException.

The exception will be rendered using
the view file referenced in \yii\web\
ErrorHandler::$exceptionView, which is by
default the full exception report we showed back in
Chapter 6, User Authorization and Access Control.

The ErrorHandler component
has the errorAction setting set
(it should be some route in the
application, such as site/error).

The controller action reachable by this route will be
run. It is expected to check the value of Yii::$app-
>errorHandler->exception and render it in
some way. Traditionally, this action is \yii\web\
ErrorAction.

All other cases. The exception will be rendered using
the view file referenced in \yii\web\
ErrorHandler::$errorView, which is by default
the short exception report meant for end users, which
we showed back in Chapter 6, User Authorization and
Access Control, just before the full exception report.

These options exclude each other from top to bottom, that is, the first one that applies
is considered true.

Note that the exceptions descending from UserException are always
rendered by the error view, which is short and non-informative. This
type of exception is meant for end users, that is, it's an exceptional
situation resulting from the actions of the user. So, even in production,
we'll show not just the internal server error occurred, but the precise
exception message.

Chapter 8

[213]

In all cases, if the exception thrown is a descendant of HttpException, then the
proper HTTP status code from this exception will be set. Otherwise, the status code
will always be 500.

The preceding table describes the algorithm to render the exception employed by the
built-in class from Yii 2, encoded in \yii\web\ErrorHandler::renderException.
If you need to employ a different logic for rendering exceptions, you are free
to override \yii\web\ErrorHandler and attach your custom class to the
components.errorHandler setting. If you need to employ a different logic for
handling exceptions, errors, or PHP fatal errors, you can even override \yii\base\
ErrorHandler or write an analogous class. It's hard to imagine a use case in which
you will need to do this, though.

FEATURE – error handling controller action
Yii 2 has one built-in place where you can use the composition instead of inheritance
to control how the exceptions will be rendered in your application. It's listed as the
second-to-last row in the table in the previous section.

We can set the components.errorHandler.errorAction setting to a route on our
application, which will be used to render the errors. This setting corresponds to the \
yii\web\ErrorHandler::$errorAction property, obviously.

This will work only if all previous options were discarded!

While we can reference any route in this setting, Yii 2 has a built-in controller action
that does the rendering for us called \yii\web\ErrorAction. As the result, you can
set up a custom error page that your application will show to your users with the
following two steps.

First, you tell the error handler in the application configuration that you want to use
your own error handling route, for example, site/error as follows:

'errorHandler' => [
 'errorAction' => 'site/error',
]

Overall Behavior

[214]

Second, you go to SiteController and declare the error action using the
actions() method as follows:

public function actions()
{
 return [
 'error' => ['class' => 'yii\web\ErrorAction'],
];
}

You're done. Now any exception that the visitors of your web application will
encounter will be shown using the view file in the views/site/error.php file.

You can control the exact location of the view file using the view setting of
ErrorAction. This view file will receive three variables (apart from the $this
variable, bound to the View instance) as follows:

• $name, which is the exception name calculated by ErrorAction for you that
you can safely show to visitors

• $message, which is the exception message calculated by ErrorAction for
you that you can safely show to visitors

• $exception, which is the original exception for you to mess with

Note that ErrorAction tries to be generic too and will
handle AJAX requests to itself by returning just the $name:
$message PHP string, verbatim.

And yes, there are no real-world examples here either.

List of built-in exceptions
In Chapter 6, User Authorization and Access Control, we listed all the HttpException-
based exceptions built into Yii 2. But HttpException descendants are not all
exceptions available for you in Yii 2. Here is the list of all other exceptions for you to
use. In the Purpose column of the following table, we explain how and where Yii 2
itself uses the corresponding exception class:

Chapter 8

[215]

Exception class Purpose

\yii\base\ErrorException This class represents the exceptions caused by PHP
errors and fatal errors. You'd better not raise them
manually, for they have a lot of logic inside.

\yii\base\Exception This class is used in the case of generic exceptions
for all purposes.

\yii\base\ExitException This class represents an exception caused by the
exiting of an application, such as using the Ctrl +
C key pair in the POSIX-compatible terminal. The
first argument of the constructor of this class is the
return code, which is useful for console commands.

\yii\base\
InvalidCallException

This class represents an exception caused by
calling a method in the wrong way.

\yii\base\
InvalidConfigException

This class represents an exception caused by
incorrect object configuration. You'll get a lot
of these exceptions when experimenting with
application configuration or widgets.

\yii\base\
InvalidParamException

This class represents an exception caused by
invalid parameters passed to a method.

\yii\base\
InvalidRouteException

This class represents an exception caused by an
invalid route. This exception will be re-thrown
as NotFoundHttpException by \yii\web\
Application.

\yii\base\
NotSupportedException

This class represents an exception caused by
accessing features that are not supported.

\yii\base\
UnknownClassException

This class represents an exception caused by using
an unknown class.

\yii\base\
UnknownMethodException

This class represents an exception caused by
accessing an unknown object method.

\yii\base\
UnknownPropertyException

This class represents an exception caused by
accessing unknown object properties.

\yii\base\UserException This class represents the exception we talked about
earlier. You are expected to throw it when you
want to point at the user's own mistake.

\yii\console\Exception This class represents the exception that is identical
in purpose to the \yii\base\UserException
but is intended to be used in a console application.

Overall Behavior

[216]

Exception class Purpose

\yii\db\Exception This class represents the problems reported
by the database manipulation mechanics.
When Yii throws it, it fills its additional
errorInfo property with the result of the
PDO::errorInfo() call.

\yii\db\
StaleObjectException

This class represents an exception that is thrown
when the object being referenced in the database
(by UPDATE or DELETE operations) is not there
anymore, which is possible in parallel applications.

Caching
As long as PHP programs continue being scripts to launch, output the results, and
then die, the idea of caching results of computations is used. The mathematical
concept of memoization, implemented at the level of a language runtime
environment, is used extensively in the PHP ecosystem, and the Yii framework
supports a wide range of caching techniques to speed up your program.

There are four levels of caching in Yii 2, which are as follows:

• The database queries cache
• The HTML page fragments cache
• The whole request cache
• The HTML response cache with the help of some HTTP headers

Before we look at all of these features in turn, we need to understand that
there's a cache component inside the Yii 2 framework that is the heart of the
caching functionality.

Chapter 8

[217]

FEATURE – cache component
Three out of four caching levels presented in the preceding section use the
centralized caching component, which is configurable at the components.cache
setting in application configuration. This component is a representation of some key-
value storage, capable of saving data marked by some key and returning this data
when given its key.

Of course, while the caching in Yii 2 uses this component implicitly, you as a
developer can use it manually too by accessing the Yii::$app->cache object.
Without many other details of the Cache API, you can reliably depend on the
following calls:

Method Meaning

add($key, $value, $duration = 0,
$dependency = null)

Add $value marked by $key for
$duration in the seconds specified.
If something is already stored in $key,
do nothing. If $dependency changes,
$value will be considered invalid
regardless of $duration.

set($key, $value, $duration = 0,
$dependency = null)

Set $value provided in $key and set the
new $duration. If nothing is stored in
$key, this method is identical to add().
If $dependency changes, $value will
be considered invalid regardless of
$duration.

get($key) Get the object stored in $key.

delete($key) Delete the object stored in $key.

exists($key) Check whether something exists in $key.

flush() Clean the cache completely, removing all
the stored values.

When stored, $value will be serialized either by the serialize()
PHP built-in method or by the callable method specified in the
components.cache.serializer setting. The same applies to
retrieving $value, which will use the unserialize() PHP built-in
method if there is no custom serializer. Check the documentation on
that setting for details.

Overall Behavior

[218]

When you register an object in the cache, you can specify two ways in which the
object can be invalidated, that is, becomes unavailable under the key where it was
stored. One way is through the $duration parameter, essentially restricting the time
to live for this cache object. Another way is a lot more interesting, because you can
also set arbitrary $dependency for this cache object. The $dependency argument
for the add() and set() methods is an object of some subclass of \yii\caching\
Dependency. To better understand what this all is about, here is the list of all the
built-in kinds of caching dependencies:

• \yii\caching\DbDependency: The cached object will depend on the result
of a SQL query to a database (probably different from the main one).

• \yii\caching\ExpressionDependency: The cached object will depend on
the result of some arbitrary eval() PHP expression.

• \yii\caching\FileDependency: The cached object will depend on the last
modification time of a file in the filesystem.

• \yii\caching\TagDependency: The cached object will be marked by a tag
by this dependency. Later, at some point, the application can invalidate all
cached objects with the same tag by calling TagDependency::invalidate($
cache, $group) and passing the Cache component and the desired tag
to it.

• \yii\caching\ChainedDependency: This is a special kind of dependency
that groups other dependencies together, allowing you to make complex
conditions to invalidate cached items.

The main issue with caching, of course, is that sometimes, the actual content
refreshes faster than the cached objects become invalidated. This results in obsolete
data being shown to visitors. Dependencies are a means to solve these problems,
because you can basically force the content to be re-cached based on a condition,
such as a changed file, database query result, or some arbitrary PHP expression.

We'll not delve into the details of fine-tuning your application
with this elaborate means. It's better to look into the official
documentation for them.

The Cache component in Yii 2 is a class that extends \yii\caching\Cache, and the
framework provides eight caching solutions for you out of the box:

• \yii\caching\ApcCache: This uses the APC PHP extension (see http://
php.net/manual/book.apc.php).

• \yii\caching\DbCache: This uses the table in the database (you can even set
a different connection from the application's main one).

http:// php.net/manual/book.apc.php
http:// php.net/manual/book.apc.php

Chapter 8

[219]

• \yii\caching\DummyCache: This provides no caching but provides the
mandatory API, so you can use this component to satisfy the requirements of
some other facility.

• \yii\caching\FileCache: This stores objects in files in a directory, thus
relying on the capabilities of the filesystem. Note that depending on the
filesystem and the data storage type, you can get lower performance with this
type of caching.

• \yii\caching\MemCache: This uses the memcache solution (see http://
php.net/manual/intro.memcache.php). You can switch to memcache by
means of a single Boolean setting (see documentation).

• \yii\caching\WinCache: This uses Windows Cache by means of WinCache
PHP extension (see http://www.iis.net/expand/wincacheforphp).

• \yii\caching\XCache: This uses XCache (see http://xcache.lighttpd.
net/).

• \yii\caching\ZendDataCache: This uses the Zend Data Cache
(see http://www.zend.com/en/products/server/) PHP extension.

As usual, you are encouraged to read the corresponding documentation to learn the
details about the correct configuration of these components.

In addition to the built-in ones, there is the Redis Yii extension, installable by using
the following command:

$ php composer.phar require --prefer-dist yiisoft/yii2-redis "*"

After installation, you'll have the \yii\redis\Cache component, which provides
caching using the Redis server (see http://redis.io/ for details).

Here is the example configuration snippet required to enable the cache component
with the Redis provider:

 'components' => [
 'cache' => [
 'class' => 'yii\redis\Cache',
 'redis' => [
 'hostname' => 'localhost',
 'port' => 6379,
 'database' => 0,
]
],
],

http:// php.net/manual/intro.memcache.php
http:// php.net/manual/intro.memcache.php
http://www.iis.net/expand/wincacheforphp
http://xcache.lighttpd.net/
http://xcache.lighttpd.net/
http://www.zend.com/en/products/server/
http://redis.io/

Overall Behavior

[220]

FEATURE – database queries caching
Yii 2 has a set of properties on the DB connection component that control caching for
DB queries. You can set them in the following application settings:

Setting Meaning

enableSchemaCache Whether to enable schema caching at all.

schemaCacheDuration The duration in seconds to cache the schema data for. By
default, it is 3600 seconds (1 hour).

schemaCacheExclude Tables whose schema should not be cached as a list of
strings.

schemaCache Which cache component to use for caching. By default, it is
the system's component configurable at the components.
cache key.

enableQueryCache Whether to enable query-result caching at all.

queryCacheDuration The duration in seconds to cache the query results for. By
default it is 3,600 seconds (1 hour).

queryCacheDependency The dependency that will additionally control the
invalidation of cached data.

queryCache Which cache component to use for caching. By default, it is
the system's component configurable at the components.
cache key.

Normally, everything you need to enormously speed up interaction with the database
(given that you're in a production environment and have thousands of records in
tables) is the following configuration for the Database Connection component:

'components' => [
 'db' => [
 // …all usual stuff with 'class', 'dsn', 'username' and
'password'…
 'enableSchemaCache' => true,
 'enableQueryCache' => true,
]
]

Assuming that you have configured the Cache component you want, you're done.
Both schema and query results will be cached for one hour by default.

Chapter 8

[221]

FEATURE – page fragment caching
At a level higher than the caching of database results, you can cache pieces of view
files. You do this in the following fashion in the view file:

$this->beginCache(uniqid());
… this content will be fetched from cache if present, and re-
calculated and put into cache again otherwise...
$this->endCache();

The widget called \yii\widgets\FragmentCache encapsulates this feature.
The methods shown, \yii\base\View::beginCache() and \yii\base\
View::endCache(), are helpers to ease the usage of this widget.

The beginCache() method accepts two arguments: $id and $properties. The value
of $id has to be a unique ID, and the $properties argument consists of properties
for the FragmentCache widget. Look at the documentation of this widget for details.

This level of caching is perfect for things like dynamic advertising banners, the
content of which has to be rendered based on the information from the database.

FEATURE – whole page caching
Then, on the next level of caching, you're able to cache the whole page rendered in
response to the request. Remember that the previous two levels of caching will still
speed up things, decreasing the overall time required to render the whole view file
starting from the layout.

You use the \yii\web\PageCache action filter for this task, and if you remember, we
already mentioned this back in Chapter 6, User Authorization and Access Control. When
you want a controller to cache the whole content of a response, you put the following
setup in its behaviors() method:

public function behaviors()
{
 return [
 'pageCache' => [
 'class' => \yii\web\PageCache::className(),
 'only' => ['list', 'of', 'actionIDs', 'to', 'be',
'cached'],
 'duration' => 60, // seconds
 'dependency' => [config for the Cache Dependency],
]
]
}

Overall Behavior

[222]

The absolutely required properties are the name of the behavior (can be arbitrary)
and the class name of the PageCache action filter. If you omit the only setting,
every action of this controller will be cached, which most probably is not what
you really want.

Please note that if you blindly throw PageCache on the example
CRM application we're experimenting with in this book, you will most
probably make the acceptance tests fail. For example, if you just register
PageCache for the whole array of actions in ServicesController,
the system will not be able to even save new ServiceRecord
instances because of caching. Even if you restrict PageCache only until
actionIndex(), you still get the problems with acceptance tests,
because you basically will have to invalidate the cache after each new
service is added, changed, or deleted. This requires quite an elaborate
cache dependency declared in the dependency setting of PageCache.
You are free to experiment with implementing the whole page caching in
ServicesController, but generally it's just not a good idea to employ
such caching to highly volatile parts of web applications, such as CRUD.

Page-level caching by the PageCache filter is in fact the same as calling the
beginCache() method before rendering the view file and calling the endCache()
method after rendering. In fact, PageCache does exactly this, as can be seen from
the source code of this class. Using this behavior will save you from repeating of the
same code over and over in all places where you need the caching.

FEATURE – caching the request by HTTP
headers
This is the least reliable, last line of caching, which is done (almost) exclusively
on the browser side. By utilizing the Last-Modified and ETag HTTP headers, the
server can tell the browser whether the page was modified since the last request and
whether it will be useful to redownload it. By correctly utilizing these headers, we
can save both the time to download the HTML and/or all of its referenced assets,
and the time and assets to render it at the server.

Look at the RFC 2616 section 13.3 at http://tools.ietf.org/
html/rfc2616#section-13.3 for an authoritative explanation
about how these headers work.

http://tools.ietf.org/html/rfc2616#section-13.3
http://tools.ietf.org/html/rfc2616#section-13.3

Chapter 8

[223]

This kind of caching is being done by the \yii\web\HttpCache action filter. Its
configuration is a bit more elaborate, as we have to provide two callbacks: first,
one that will generate the value for the Last-Modified header, and second that will
generate the value for the ETag header.

Let's say we add the last_updated field to the table of customers in the database,
which will auto-update when any other field will change in this table. So, we can add
an additional caching level to the CustomersController.actionIndex() method
by setting the Last-Modified header to the timestamp of the customer's record in this
table with the maximum value of this timestamp. To properly version the resulting
page by ETag, we can use the same function as follows:

public function behaviors()
{
 return [
 'httpCache' => [
 'class' => \yii\web\HttpCache::className(),
 'only' => ['index'],
 'lastModified' => [$this, 'getMaxCustomerTimestamp'],
 'etagSeed' => [$this, 'getMaxCustomerTimestamp'],
],
];
}
public function getMaxCustomerTimestamp($action, $params)
{
 return strtotime((new Query())->from('customers')->max('last_
updated'));
}

Minimizing the assets
Obviously, in complicated setups, you'll have a lot of CSS and JavaScript files
registered to pages, and this is a major drawback. The current best practice is to
compress and combine all CSS files into a single file and do the same with JavaScript
files. As a result, we serve just two files instead of the whole bunch. You probably
already know all of this. It would be really cool to have the asset system in Yii do it
for you implicitly, though currently, there is no such provision. Yii has, however, got
the helper console command that you can use to simplify the process of compressing
your assets and wiring them to your application. The most beautiful part is that you
will not need to change any of your view files; all existing *Asset::register() calls
can stay the same.

Overall Behavior

[224]

Although the documentation describes the full process of introducing combined
assets to the Yii application, we repeat it here to bring a lot more detail to this really
complex process.

The overall idea behind asset compiling in Yii is that you prepare a special asset
bundle with just two files: one containing all of the compiled CSS and the other
containing all of the compiled JavaScript. Then, you override the configuration for
asset bundles using the components.assetManager.bundles setting (read about
it in the documentation) telling Yii to use this special, newly-created asset bundle
instead of all of the usual bundles.

The \yii\console\controllers\AssetController class, which provides you
with the ./yii asset command, encapsulates and automates the procedure of asset
compilation. It even deals with the issue of files referenced from the CSS code for
you, which is really amazing.

Let's see what we need to do to accomplish this. First, we remember the HTML
structure we have when accessing a route at our application, for example /site/
login. The following picture is a screenshot from Firebug in which we see the
number of elements our UI consists of:

Chapter 8

[225]

You can see both Twitter Bootstraps and our own stylesheets inside the head
element. At the bottom of the body element, there's a whole bunch of script elements
with various pieces of JavaScript UI. Our goal is to replace all CSS references with
just one reference and all these script tags with just a single one.

We need the actual executables that will do the job of compressing the assets. Yii 2
uses the YUI compressor for CSS compression and the Google Closure compiler for
JavaScript compression, available at http://yui.github.io/yuicompressor/ and
https://developers.google.com/closure/compiler/, respectively.

Let's create a directory named compression under the assets subdirectory
and put everything related to the task at hand there. You have to download
two JAR files from the preceding links to this folder. The YUI compressor
should be named yuicompressor.jar, and the Google Closure compiler should
be named compiler.jar.

After that, we need to create a special configuration file for the compressor. Yii has
the console command to help you make a boilerplate template for this configuration.
Run the following at the root of code base:

$./yii asset/template assets/compression/config.php

If you open the template generated by the preceding command, you should see the
following code:

<?php
return [
 // Adjust command/callback for JavaScript files compressing:
 'jsCompressor' => 'java -jar compiler.jar --js {from} --js_output_
file {to}',
 // Adjust command/callback for CSS files compressing:
 'cssCompressor' => 'java -jar yuicompressor.jar --type css {from}
-o {to}',
 // The list of asset bundles to compress:
 'bundles' => [// 1
 // 'yii\web\YiiAsset',
 // 'yii\web\JqueryAsset',
],
 // Asset bundle for compression output:
 'targets' => [// 2
 'app\assets\AllAsset' => [
 'basePath' => 'path/to/web',
 'baseUrl' => '',
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',

http://yui.github.io/yuicompressor/
https://developers.google.com/closure/compiler/

Overall Behavior

[226]

],
],
 // Asset manager configuration:
 'assetManager' => [// 3
 'basePath' => __DIR__,
 'baseUrl' => '',
],
];

It's quite long to be included verbatim in a book, but a lot of important but not so
obvious pieces of code are mentioned here.

The first part of the code is quite simple: you should define the list of asset
bundles you want to compress together. Note that they are named by their
fully qualified names.

Please specify the fully qualified names of asset bundles without the
leading slashes; otherwise, you will break the mechanics.

By definition, the contents of the asset bundles listed under the bundles setting will
be registered on each and every page of your web application. If you want some
asset bundles to be registered based on a condition, such as SnowAssetsBundle from
Chapter 4, The Renderer, you better leave them off as they can contain overrides for
standard styles.

It would be nice to combine all CSS and JavaScript files from our main asset
bundle and all its dependencies. For this, we need only the following value for
the bundles setting:

 'bundles' => [
 'app\assets\ApplicationUiAssetBundle',]

Do not worry about the files referenced in the CSS files, such as the
images and fonts. All asset bundles will be published as usual anyway,
so all their supplementary files will still be available in the web-
accessible directories. The ./yii asset command does this so that it
is able to rewrite all the url('') annotations in a compressed CSS file
to point to their actual URLs. This will be as if the corresponding asset
bundles were registered as usual, without any compression.

Chapter 8

[227]

The second part of the code is a lot trickier. In the targets setting, you should list
the asset bundles that will receive the compressed files. It's really a generic setting,
but for our cause, when we need a single, all-encompassing asset bundle containing
just two compressed files, the code offered to us by the template is completely
sufficient. It says that there'll be the app\assets\AllAsset asset bundle that will
contain one JavaScript file and one CSS file. We need only to correct the paths in
this definition.

However, the targets setting lies with us. There's no app\assets\AllAsset
class definition anywhere, and Yii will not generate it for us. You must put the
implementation for this class into the appropriate file assets/AllAsset.php. Have
a look at the following code:

namespace app\assets;
use yii\web\AssetBundle;
class AllAsset extends AssetBundle { }

As for paths, we need a plan for it. Our plan will be simple: the two compressed files
we are interested in will be placed in @webroot to be accessible without publishing
into the compiled-assets subdirectory.

So, AllAsset should have the basePath setting equal to @webroot and the baseUrl
setting equal to /. The problem is, at the point when assets/compressed/config.
php will be evaluated, there'll be no @webroot alias defined, so we are left with
 paths shown in the following code:

 'targets' => [
 'app\\assets\\AllAsset' => [
 'basePath' => realpath(__DIR__ . '/../../web'),
 'baseUrl' => '/',
 'js' => 'compiled-assets/all-{hash}.js',
 'css' => 'compiled-assets/all-{hash}.css',
],
],

This funny {hash} token will be replaced by a unique hash for the corresponding file.

The third part of the code shows the asset manager configuration in which we
have to repeat the configuration for the Asset Manager component attached to
the main application. We have to specify the working paths there, because as we
said earlier, there's no @webroot alias defined at the point when the ./yii asset
command works.

Overall Behavior

[228]

The rationale behind assetManager.basePath and assetManager.baseUrl is
for the Asset Manager component to know where to put the published assets. We
already decided at the stage of constructing the application that the assets will be
published to the web/assets directory and so will be accessible by the /assets/*
routes (as @webroot is the directory we published through the web server). Given
all that, we should write the following into the assetManager setting in the
configuration for the ./yii asset command:

 'assetManager' => [
 'basePath' => realpath(__DIR__ . '/../../web/assets'),
 'baseUrl' => '/assets',
],

The last part is the configuration for paths to the compressors at the top of the
configuration template. By default, the ./yii asset command expects the JAR
files for compressors to be in the root of the code base. But in our case, they're in the
assets/compression directory, so as not to have stuff lying around in no particular
order. The yii\console\controllers\AssetController, whose properties we
are setting in this supplementary configuration file, has two special settings for us,
however, they are quite cumbersome to override:

 public $jsCompressor = 'java -jar compiler.jar --js {from} --js_
output_file {to}';
 public $cssCompressor = 'java -jar yuicompressor.jar --type css
{from} -o {to}';

As you see, full console commands are required to launch the JavaScript and CSS
compressors, and they indeed assume JAR files to be in the root of the code base
(or at least in the folder in which we call the ./yii asset command). As we will
always use this command from the root of the code base, we will override these
settings in the assets/compression/config.php file in the following way:

 'cssCompressor' => 'java -jar assets/compression/yuicompressor.jar
--type css {from} -o {to}',
 'jsCompressor' => 'java -jar assets/compression/compiler.jar --js
{from} --js_output_file {to}',

Chapter 8

[229]

With this, you get the complete, proper configuration for the compressor. Before
you run it, though, you have to prepare the web/compiled-assets/ directory you
promised to AssetController in the targets.app\\assets\\allAsset.js and
targets.app\\assets\\allAsset.css settings. Don't forget to put this directory
under the version control system you use.

Now, run the command at last:

$./yii asset assets/compression/config.php config
 /assets_compressed.php

The first argument to the ./yii asset command is the path to the supplementary
configuration file we worked so hard to forge until now. The second argument is the
path to the file that will hold the resulting configuration snippet we'll need to attach
to our application. We decided to put it to the assets_compressed.php file near our
other main configuration files.

The configuration snippet generated will hold the definitions of all asset bundles
listed in bundles with js and css settings cleaned out. All these asset bundles will
be made dependent on the newly-created asset bundle containing the compressed
CSS and JavaScript files. We need to use the content of this configuration snippet
as the value of the components.assetManager.bundles setting in the application
configuration, so in our case, we just paste the following into the components section:

 'assetManager' => [
 'bundles' => (require __DIR__ . '/assets_compressed.php')
],

Finally, all this would be meaningless if we did not change the insertion of asset
bundles in our layout. Currently the relevant code looks like the following:

app\assets\ApplicationUiAssetBundle::register($this);

Now, we need to use the AllAsset class we have created so far:

app\assets\AllAsset::register($this);

Overall Behavior

[230]

Now, you can open the same route /site/login we were using for the previous
screenshot, and you'll see the following:

As you can see, we removed the main.css, main.js, bootstrap.css, yii.js, and
jquery.js scripts from the assets. However, there are still scripts for validation and
the ActiveForm widget. We can compress them (we are using these features anyway
through the whole application) by including them in the bundles setting:

 'bundles' => [
 'app\assets\ApplicationUiAssetBundle',
 'yii\widgets\ActiveFormAsset',
 'yii\grid\GridViewAsset',
 'yii\validators\ValidationAsset',
],

Well, GridViewAsset was added just because we have two GridView widgets in
our application.

Chapter 8

[231]

After you recompress assets with the configuration shown in the preceding code,
you should not see the assets from the validator and active form:

Now, we come to the timings. Here is the table without implementing compression:

This is after compression:

Overall Behavior

[232]

Note that we saved six requests out of 10, and our timing is 31 percent better. Of
course, any benchmark is a lie regarding the times, but what is most important is
reducing the number of asset files requested. We got these screenshots of Firebug
after cleaning the cache and rebuilding the assets in Yii, so no in-browser caching
should be involved in the timings presented.

Summary
We looked at two aspects of overall behavior of the application based on Yii 2,
namely introspection, which is provided by logging and error reporting facilities,
and response speed, which is provided by the four-level caching facility and
asset compressor.

In fact, logging will impact performance too. Enabling database query logging
usually cripples the processing speed for real, so you probably will never be using
it in production.

Nothing we discussed here really adds any features visible for the end user, except
for the custom error page probably. It's of doubtful value nevertheless, because the
default Yii 2 error page meant for end users meets almost all best practices for
error pages. However, in a serious application of any reasonable size, you will need
these best practices without any doubt.

In the next short chapter, we'll look at how we can create our own Yii 2 extension.
We have used two extensions already and one briefly mentioned. We'll discuss the
concepts of the framework prepared for us to package the extensions.

Making an Extension
We have used quite a bunch of pre-built Yii 2 extensions, shipped as
composer-installable libraries separately from the main framework. In this
chapter, we'll learn to make our own extension using the same simple way
of installation.

There is a process we have to follow, though some preparation will be
needed to wire up your classes to the Yii application. The whole chapter
will be devoted to this process.

Extension idea
So, how are we going to extend the Yii 2 framework as an example for
this chapter? Let's become vile this time and make a malicious extension,
which will provide a sort of phishing backdoor for us.

Never do exactly the thing we'll describe in this chapter!
It'll not give you instant access to the attacked website
anyway, but a skilled black hat hacker can easily get enough
information to achieve total control over your application.

The idea is this: our extension will provide a special route (a controller with a single
action inside), which will dump the complete application configuration to the web
page. Let's say it'll be reachable from the route /app-info/configuration.

Making an Extension

[234]

We cannot, however, just get the contents of the configuration file itself and that too
reliably. At the point where we can attach ourselves to the application instance, the
original configuration array is inaccessible, and even if it were accessible, we can't
be sure about where it came from anyway. So, we'll inspect the runtime status of the
application and return the most important pieces of information we can fetch at the
stage of the controller action resolution. That's the exact payload we want to introduce.

 public function actionConfiguration()
 {
 $app = \Yii::$app;
 $config = [
 'components' => $app->components,
 'basePath' => $app->basePath,
 'params' => $app->params,
 'aliases' => \Yii::$aliases
];
 return \yii\helpers\Json::encode($config);
 }

The preceding code is the core of the extension and is assumed in the
following sections.

In fact, if you know the value of the basePath setting of the application, a list of its
aliases, settings for the components (among which the DB connection may reside),
and all custom parameters that developers set manually, you can map the target
application quite reliably. Given that you know all the credentials this way, you
have an enormous amount of highly valuable information about the application
now. All you need to do now is make the user install this extension.

Creating the extension contents
Our plan is as follows:

We will develop our extension in a folder, which is different from our example
CRM application.

This extension will be named yii2-malicious, to be consistent with the naming
of other Yii 2 extensions.

Given the kind of payload we saw earlier, our extension will consist of a single
controller and some special wiring code (which we haven't learned about yet)
to automatically attach this controller to the application.

Finally, to consider this subproject a true Yii 2 extension and not just some random
library, we want it to be installable in the same way as other Yii 2 extensions.

Chapter 9

[235]

Preparing the boilerplate code for the
extension
Let's make a separate directory, initialize the Git repository there, and add the
AppInfoController to it. In the bash command line, it can be achieved by the
following commands:

$ mkdir yii2-malicious && cd $_

$ git init

$ > AppInfoController.php

Inside the AppInfoController.php file, we'll write the usual boilerplate code for
the Yii 2 controller as follows:

namespace malicious;
use yii\web\Controller;
class AppInfoController extends Controller
{
 // Action here
}

Put the action defined in the preceding code snippet inside this controller and we're
done with it. Note the namespace: it is not the same as the folder this controller is in,
and this is not according to our usual auto-loading rules. We will explore later in this
chapter that this is not an issue because of how Yii 2 treats the auto-loading of classes
from extensions.

Now this controller needs to be wired to the application somehow. We already
know that the application has a special property called controllerMap, in which we
can manually attach controller classes. However, how do we do this automatically,
better yet, right at the application startup time? Yii 2 has a special feature called
bootstrapping to support exactly this: to attach some activity at the beginning of the
application lifetime, though not at the very beginning but before handling the request
for sure. This feature is tightly related to the extensions concept in Yii 2, so it's a perfect
time to explain it.

FEATURE – bootstrapping
To explain the bootstrapping concept in short, you can declare some components
of the application in the \yii\base\Application::$bootstrap property. They'll
be properly instantiated at the start of the application. If any of these components
implement the BootstrapInterface interface, its bootstrap() method will be called,
so you'll get the application initialization enhancement for free. Let's elaborate on this.

Making an Extension

[236]

The \yii\base\Application::$bootstrap property holds the array of generic
values that you tell the framework to initialize beforehand. It's basically an
improvement over the preload concept from Yii 1.x. You can specify four kinds
of values to initialize as follows:

• The ID of an application component
• The ID of some module
• A class name
• A configuration array

If it's the ID of a component, this component is fully initialized. If it's the ID of a
module, this module is fully initialized. It matters greatly because Yii 2 has lazy
loading employed on the components and modules system, and they are usually
initialized only when explicitly referenced. Being bootstrapped means to them that their
initialization, regardless of whether it's slow or resource-consuming, always happens,
and happens always at the start of the application.

If you have a component and a module with identical IDs, then the
component will be initialized and the module will not be initialized!

If the value being mentioned in the bootstrap property is a class name
or configuration array, then the instance of the class in question is created using
the \yii\BaseYii::createObject() facility. The instance created will be thrown
away immediately if it doesn't implement the \yii\base\BootstrapInterface
interface. If it does, its bootstrap() method will be called. Then, the object will be
thrown away.

So, what's the effect of this bootstrapping feature? We already used this feature while
installing the debug extension. We had to bootstrap the debug module using its ID,
for it to be able to attach the event handler so that we would get the debug toolbar
at the bottom of each page of our web application. This feature is indispensable
if you need to be sure that some activity will always take place at the start of the
application lifetime.

The BootstrapInterface interface is basically the incarnation of a command
pattern. By implementing this interface, we gain the ability to attach any activity,
not necessarily bound to the component or module, to the application initialization.

Chapter 9

[237]

FEATURE – extension registering
The bootstrapping feature is repeated in the handling of the \yii\base\
Application::$extensions property. This property is the only place where the
concept of extension can be seen in the Yii framework. Extensions in this property
are described as a list of arrays, and each of them should have the following fields:

• name: This field will be with the name of the extension.
• version: This field will be with the extension's version (nothing will really

check it, so it's only for reference).
• bootstrap: This field will be with the data for this extension's Bootstrap.

This field is filled with the same elements as that of Yii::$app->bootstrap
described previously and has the same semantics.

• alias: This field will be with the mapping from Yii 2 path aliases to real
directory paths.

When the application registers the extension, it does two things in the
following order:

1. It registers the aliases from the extension, using the Yii::setAlias()
method.

2. It initializes the thing mentioned in the bootstrap of the extension in exactly
the same way we described in the previous section.

Note that the extensions' bootstraps are processed before the
application's bootstraps.

Registering aliases is crucial to the whole concept of extension in Yii 2. It's because of
the Yii 2 PSR-4 compatible autoloader, which we have already discussed briefly in
Chapter 2, Making a Custom Application with Yii 2.

Here is the quote from the documentation block for the \yii\BaseYii::autoload()
method:

If the class is namespaced (e.g. yii\base\Component), it will attempt to include the
file associated with the corresponding path alias (e.g. @yii/base/Component.php).

This autoloader allows loading classes that follow the PSR-4 standard and have its
top-level namespace or sub-namespaces defined as path aliases.

The PSR-4 standard is available online at http://www.php-fig.org/psr/psr-4/.

http://www.php-fig.org/psr/psr-4/

Making an Extension

[238]

Given that behavior, the alias setting of the extension is basically a way to tell the
autoloader the name of the top-level namespace of the classes in your extension code
base. Let's say you have the following value of the alias setting of your extension:

"alias" => [
 "@companyname/extensionname" => "/some/absolute/path"
]

If you have the /some/absolute/path/subdirectory/ClassName.php file,
and, according to PSR-4 rules, it contains the class whose fully qualified name
is \companyname\extensionname\subdirectory\ClassName, Yii 2 will be able
to autoload this class without problems.

Making the bootstrap for our extension –
hideous attachment of a controller
We have a controller already prepared in our extension. Now we want this controller
to be automatically attached to the application under attack when the extension is
processed. This is achievable using the bootstrapping feature we just learned. Let's
create the \malicious\Bootstrap class for this cause inside the code base of our
extension, with the following boilerplate code:

<?php

namespace malicious;

use \yii\base\BootstrapInterface;

class Bootstrap implements BootstrapInterface
{
 /** @param \yii\web\Application $app */
 public function bootstrap($app)
 {
 // Controller addition will be here.
 }
}

With this preparation, the bootstrap() method will be called at the start of the
application, provided we wire everything up correctly. But first, we should consider
how we manipulate the application to make use of our controller. This is easy, really,
because there's the \yii\web\Application::$controllerMap property (don't forget
that it's inherited from \yii\base\Module, though).

Chapter 9

[239]

We'll just do the following inside the bootstrap() method:

$app->controllerMap['app-info'] = '\malicious\AppInfoController';

We will rely on the composer and Yii 2 autoloaders to actually find \malicious\
AppInfoController.

Just imagine that you can do anything inside the bootstrap.
For example, you can open the CURL connection with some
botnet and send the accumulated application information
there. Never believe random extensions on the Web.

This actually concludes what we need to do to complete our extension.

All that's left now is to make our extension installable in the same way as other
Yii 2 extensions we were using up until now. If you need to attach this malicious
extension to your application manually, and you have a folder that holds the code
base of the extension at the path /some/filesystem/path, then all you
need to do is to write the following code inside the application configuration:

 'extensions' => array_merge(
 (require __DIR__ . '/../vendor/yiisoft/extensions.php'),
 [
 'malicious\app-info' => [
 'name' => 'Application Information Dumper',
 'version' => '1.0.0',
 'bootstrap' => '\malicious\Bootstrap',
 'alias' => ['@malicious' =>
 '/some/filesystem/path']
 // that's the path to extension
]
]
)

This type of extension attaching is illustrated in the extension-manual-
loading branch of the Git repository in the code bundle provided with
this book. It is accessible via the following console command:
$ git checkout "extension-manual-loading"

Please note the exact way of specifying the extensions setting. We're merging
the contents of the extensions.php file supplied by the Yii 2 distribution from
composer and our own manual definition of the extension. This extensions.php file
is what allows Yiisoft to distribute the extensions in such a way that you are able to
install them by a simple, single invocation of a require composer command .
Let's learn now what we need to do to repeat this feature.

Making an Extension

[240]

Making the extension installable as...
erm, extension
First, to make it clear, we are talking here only about the situation when Yii 2 is
installed by composer, and we want our extension to be installable through the
composer as well.

This gives us the baseline under all of our assumptions. Let's remember what
extensions we have installed so far:

• Gii the code generator from Chapter 3, Automatically Generating the
CRUD Code

• The Twitter Bootstrap extension from Chapter 4, The Renderer
• The Debug extension from Chapter 7, Modules
• The SwiftMailer extension from Chapter 8, Overall Behavior

We have installed all of these extensions using composer. We can remember now
that we introduced the extensions.php file reference when we installed the Gii
extension, and then we did not touch this part of the application configuration
until now. Have a look at the following code:

'extensions' => (require __DIR__ .
 '/../vendor/yiisoft/extensions.php')

If we open the vendor/yiisoft/extensions.php file (given that all extensions from
the previous chapters were installed) and look at its contents, we'll see the following
code (note that in your installation, it can be different):

<?php

$vendorDir = dirname(__DIR__);

return array (
 'yiisoft/yii2-bootstrap' =>
 array (
 'name' => 'yiisoft/yii2-bootstrap',
 'version' => '9999999-dev',
 'alias' =>
 array (
 '@yii/bootstrap' => $vendorDir . '/yiisoft/yii2-bootstrap',
),
),
 'yiisoft/yii2-swiftmailer' =>
 array (

Chapter 9

[241]

 'name' => 'yiisoft/yii2-swiftmailer',
 'version' => '9999999-dev',
 'alias' =>
 array (
 '@yii/swiftmailer' => $vendorDir . '
 /yiisoft/yii2-swiftmailer',
),
),
 'yiisoft/yii2-debug' =>
 array (
 'name' => 'yiisoft/yii2-debug',
 'version' => '9999999-dev',
 'alias' =>
 array (
 '@yii/debug' => $vendorDir . '/yiisoft/yii2-debug',
),
),
 'yiisoft/yii2-gii' =>
 array (
 'name' => 'yiisoft/yii2-gii',
 'version' => '9999999-dev',
 'alias' =>
 array (
 '@yii/gii' => $vendorDir . '/yiisoft/yii2-gii',
),
),
);

One extension was highlighted to stand out from the others. So, what does all this
mean to us?

• First, it means that Yii 2 somehow generates the required configuration
snippet automatically when you install the extension's composer package

• Second, it means that each extension provided by the Yii 2 framework
distribution will ultimately be registered in the extensions setting of
the application

• Third, all the classes in the extensions are made available in the main
application code base by the carefully crafted alias settings inside the
extension configuration

• Fourth, ultimately, easy installation of Yii 2 extensions is made possible
by some integration between the Yii framework and the composer
distribution system

Making an Extension

[242]

The magic is hidden inside the composer.json manifest of the extensions built
into Yii 2. The details about the structure of this manifest are written in the
documentation of composer, which is available at https://getcomposer.org/
doc/04-schema.md. We'll need only one field, though, and that is type.

Yii 2 employs a special type of composer package, named yii2-extension. If you
check the manifests of yii2-debug, yii2-swiftmail and other extensions, you'll see
that they all have the following line inside:

"type": "yii2-extension",

Normally composer will not understand that this type of package is to be installed.
But the main yii2 package, containing the framework itself, depends on the special
auxiliary yii2-composer package:

"require": {
 … other requirements ...
 "yiisoft/yii2-composer": "*",

This package provides Composer Custom Installer (read about it at
https://getcomposer.org/doc/articles/custom-installers.md),
which enables this package type.

The whole point in the yii2-extension package type is to automatically update
the extensions.php file with the information from the extension's manifest file.
Basically, all we need to do now is to craft the correct composer.json manifest file
inside the extension's code base. Let's write it step by step.

Preparing the correct composer.json manifest
We first need a block with an identity. Have a look at the following lines of code:

"name": "malicious/app-info",
"version": "1.0.0",
"description": "Example extension which reveals important
 information about the application",
"keywords": ["yii2", "application-info", "example-extension"],
"license": "CC-0",

https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/articles/custom-installers.md

Chapter 9

[243]

Technically, we must provide only name. Even version can be omitted if our
package meets two prerequisites:

• It is distributed from some version control system repository, such as the
Git repository

• It has tags in this repository, correctly identifying the versions in the
commit history

And we do not want to bother with it right now.

Next, we need to depend on the Yii 2 framework just in case. Normally, users will
install the extension after the framework is already in place, but in the case of the
extension already being listed in the require section of composer.json, among
other things, we cannot be sure about the exact ordering of the require statements,
so it's better (and easier) to just declare dependency explicitly as follows:

"require": {
 "yiisoft/yii2": "*"
},

Then, we must provide the type as follows:

"type": "yii2-extension",

After this, for the Yii 2 extension installer, we have to provide two additional
blocks; autoload will be used to correctly fill the alias section of the extension
configuration. Have a look at the following code:

"autoload": {
 "psr-4": {
 "malicious\\": ""
 }
},

What we basically mean is that our classes are laid out according to PSR-4 rules in
such a way that the classes in the malicious namespace are placed right inside the
root folder.

Making an Extension

[244]

The second block is extra, in which we tell the installer that we want to declare a
bootstrap section for the extension configuration:

"extra": {
 "bootstrap": "malicious\\Bootstrap"
},

Our manifest file is complete now. Commit everything to the version control system:

$ git commit -a -m "Added the Composer manifest file to repo"

Now, we'll add the tag at last, corresponding to the version we declared as follows:

$ git tag 1.0.0

We already mentioned earlier the purpose for which we're doing this. All that's left is
to tell the composer from where to fetch the extension contents.

Configuring the repositories
We need to configure some kind of repository for the extension now so that it
is installable.

The easiest way is to use the Packagist service, available at https://packagist.
org/, which has seamless integration with composer. It has the following pro
and con:

• Pro: You don't need to declare anything additional in the composer.json file
of the application you want to attach the extension to

• Con: You must have a public VCS repository (either Git, SVN, or Mercurial)
where your extension is published

In our case, where we are just in fact learning about how to install things using
composer, we certainly do not want to make our extension public.

Do not use Packagist for the extension example we are building in
this chapter.

https://packagist.org/
https://packagist.org/

Chapter 9

[245]

Let's recall our goal. Our goal is to be able to install our extension by calling the
following command at the root of the code base of some Yii 2 application:

$ php composer.phar require "malicious/app-info:*"

After that, we should see something like the following screenshot after requesting
the /app-info/configuration route:

Making an Extension

[246]

This corresponds to the following structure (the screenshot is from the
http://jsonviewer.stack.hu/ web service):

Put the extension to some public repository, for example, GitHub, and register a
package at Packagist. This command will then work without any preparation in
the composer.json manifest file of the target application.

http://jsonviewer.stack.hu/

Chapter 9

[247]

But in our case, we will not make this extension public, and so we have two options
left for us.

The first option, which is perfectly suited to our learning cause, is to use the archived
package directly. For this, you have to add the repositories section to composer.
json in the code base of the application you want to add the extension to:

"repositories": [
 // definitions of repositories for the packages required by this
 application
]

To specify the repository for the package that should be installed from the ZIP
archive, you have to grab the entire contents of the composer.json manifest file of
this package (in our case, our malicious/app-info extension) and put them as an
element of the repositories section, verbatim. This is the most complex way to set
up the composer package requirement, but this way, you can depend on absolutely
any folder with files (packaged into an archive).

Of course, the contents of composer.json of the extension do not specify the actual
location of the extension's files. You have to add this to repositories manually. In
the end, you should have the following additional section inside the composer.json
manifest file of the target application:

"repositories": [
 {
 "type": "package",
 "package": {
// … skipping whatever were copied verbatim from the composer.json
 of extension...
 "dist": {
 "url": "/home/vagrant/malicious.zip", // example file
 location
 "type": "zip"
 }
 }
 }
]

JSON does not have comments, so remove them if you are going to the
copy and paste code directly from the book.

Making an Extension

[248]

This way, we specify the location of the package in the filesystem of the same
machine and tell the composer that this package is a ZIP archive. Now, you should
just zip the contents of the yii2-malicious folder we have created for the extension,
put them somewhere at the target machine, and provide the correct URL. The URL
we specified in the previous example is for the Vagrant setup described in Appendix
A, Deployment Setup with Vagrant.

Please note that it's necessary to archive only the contents of the
extension and not the folder itself.

After this, you run composer on the machine that really has this URL accessible
(you can use http:// type of URLs, of course, too), and then you get the following
response from composer:

To check that Yii 2 really installed the extension, you can open the file vendor/
yiisoft/extensions.php and check whether it contains the following block now:

 'malicious/app-info' =>
 array (
 'name' => 'malicious/app-info',
 'version' => '1.0.0.0',
 'alias' =>
 array (
 '@malicious' => $vendorDir . '/malicious/app-info',
),
 'bootstrap' => 'malicious\\Bootstrap',
),

(The indentation was preserved as is from the actual file.) If this block is indeed
there, then all you need to do is open the /app-info/configuration route and
see whether it reports JSON to you. It should.

Chapter 9

[249]

The pros and cons of the file-based installation are as follows:

Pros Cons
You can specify any file as long as it
is reachable by some URL. The ZIP
archive management capabilities exist
on virtually any kind of platform
today.

There is too much work in the composer.
json manifest file of the target application.
The requirement to copy the entire
manifest to the repositories section is
overwhelming and leads to code duplication.

You don't need to set up any version
control system repository. It's of
dubious benefit though.

The manifest from the extension package will
not be processed at all. This means that you
cannot just strip the entry in repositories,
leaving only the dist and name sections
there, because the Yii 2 installer will not be
able to get to the autoloader and extra
sections.

The last method is to use the local version control system repository. We already
have everything committed to the Git repository, and we have the correct tag placed
here, corresponding to the version we declared in the manifest. This is everything
we need to prepare inside the extension itself. Now, we need to modify the target
application's manifest to add the repositories section in the same way we did
previously, but this time we will introduce a lot less code there:

"repositories": [
 {
 "type": "git",
 "url": "/home/vagrant/yii2-malicious/" // put your own URL
 here
 }
]

All that's needed from you is to specify the correct URL to the Git repository of the
extension we were preparing at the beginning of this chapter. After you specify
this repository in the target application's composer manifest, you can just issue
the desired command:

$ php composer.phar require "malicious/app-info:1.0.0"

Everything will be installed as usual. Confirm the successful installation again
by having a look at the contents of vendor/yiisoft/extensions.php and by
accessing the /app-info/configuration route in the application.

Making an Extension

[250]

The pros and con of the repository-based installation are as follows:

• Pro: Relatively little code to write in the application's manifest.
• Pro: You don't need to really publish your extension (or the package in

general). In some settings, it's really useful, for closed-source software,
for example.

• Con: You still have to meddle with the manifest of the application itself,
which can be out of your control and in this case, you'll have to guide your
users about how to install your extension, which is not good for PR.

In short, the following pieces inside the composer.json manifest turn the arbitrary
composer package into the Yii 2 extension:

• First, we tell composer to use the special Yii 2 installer for packages as
follows:
"type": "yii2-extension"

• Then, we tell the Yii 2 extension installer where the bootstrap for the
extension (if any) is as follows:
"extra": {"bootstrap": "<Fully qualified name>"}

• Next, we tell the Yii 2 extension installer how to prepare aliases for your
extension so that classes can be autoloaded as follows:
"autoloader": {"psr-4": { "namespace": "<folder path>"}}

• Finally, we add the explicit requirement of the Yii 2 framework itself in
the following code, so we'll be sure that the Yii 2 extension installer will
be installed at all:

"require": {"yiisoft/yii2": "*"}

Everything else is the details of the installation of any other composer package,
which you can read in the official composer documentation.

In the code accompanying this book, for all of the previous three
options (except publishing with Packagist), there are three separate
branches in the repository. So check out the git branch output,
and choose what to look at. This extension is contained only in these
branches; you'll never see it in the master branch anymore.

Chapter 9

[251]

Summary
In this chapter, we looked at how Yii 2 implements its extensions so that they're
easily installable by a single composer invocation and can be automatically attached
to the application afterwards. We learned that this required some level of integration
between these two systems, Yii 2 and composer, and in turn this requires some
additional preparation from you as a developer of the extension.

We used a really silly, even a bit dangerous, example for extension. It was for
three reasons:

• The extension was fun to make (we hope)
• We showed that using bootstrap mechanics, we can basically automatically

wire up the pieces of the extension to the target application without any
need for elaborate manual installation instructions

• We showed the potential danger in installing random extensions from the
Web, as an extension can run absolutely arbitrary code right at the application
initialization and more than that, at each request made to the application

We have discussed three methods of distribution of composer packages, which also
apply to the Yii 2 extensions. The general rule of thumb is this: if you want your
extension to be publicly available, just use the Packagist service. In any other case,
use the local repositories, as you can use both local filesystem paths and web URLs.
We looked at the option to attach the extension completely manually, not using the
composer installation at all.

In the next chapter, Chapter 10, Events and Behaviors, we'll dive from the heights of the
Yii 2 extensions, floating at the topmost point of the framework architecture, to the
dark depths of the Yii 2 event system, spanning down to the framework's lowest levels.

Events and Behaviors
In this chapter, we'll return to our decoupled design introduced in Chapter 2, Making
a Custom Application with Yii 2. We left the customer domain model as it was and
explored the various separate helpful features of the Yii 2 framework. Now, let's
go back to the customer model and implement some of its interesting and useful
behaviors, which will undoubtedly be needed for any business application. While
implementing this behavior, we'll learn about two related concepts from the Yii 2
framework: events and behaviors.

Automatically marking database records
with the timestamp and user ID
Let's implement one useful feature, which you'll undoubtedly be asked to use one
day by the client on a real enterprise-grade application project. It is described like
this, in the words of some unknown Mr. Arbitrary Stakeholder:

"When a new Customer is recorded, a date and time of creation and the user who
did it, should be recorded. Upon any update of the Customer in the database, a date
and time of the update and the user doing it should be recorded."

We, as developers, will translate it to the following specification:

1. Add four fields to the customer table in the database, which are as follows:
 ° created_at: This field is of the integer type, holding a

Unix timestamp
 ° created_by: This field is of the integer type, and is a foreign

key to the user.id field

Events and Behaviors

[254]

 ° updated_at: This field is of the integer type, holding a
Unix timestamp

 ° updated_by: This field is of the integer type, and is a foreign key to
the user.id field

2. When a new customer record is added to the database, automatically fill the
created_at field with the current timestamp and the created_by field with
the ID of the user currently logged in. Automatically fill the updated_at field
with the same value as the created_at field, and the updated_by field with
the same value as the created_by field.

3. When some customer record is updated in the database, automatically fill
the updated_at field with the current timestamp and the updated_by field
with the ID of the user currently logged in.

To keep things simple, we will use the Unix timestamps instead of proper
DATETIME fields.

Test case for customer creation
We will be blunt and encode the given specifications as the integration test, checking
the actual state of the database. The resulting test case will be quite long, so instead
of writing it completely as a single listing, we'll describe its construction step by step.
We'll start from the case of the new customer record creation.

The following are the steps for this:

1. First, we generate the test as follows:
$./cept generate:test functional CustomerAudit

2. Then we clean up the generated test case in the tests/functional/
CustomerAuditTest.php file until it looks like the following:
class CustomerAuditTest extends \Codeception\TestCase\Test
{
 /**
 * @var \FunctionalTester
 */
 protected $tester;
 /** @test */
 public function NewCustomerHasAuditInfo()
 {
 // Test scenario here...
 }
}

Chapter 10

[255]

We will not need before() or after() methods here because it's a single
scenario we're testing here. All of the following will apply to the contents
of the NewCustomerHasAuditInfo() test method.

3. After this, we declare the dependencies for the scenario. For simplicity, we
will work with the database using active records directly. Also, as we need
to store the ID of the currently logged-in user, we need the UserRecord class
instance of some user known to us beforehand and a system for handling
authentication. We have not decoupled from the Yii in the authentication
mechanics, so we'll just use yii\web\User Component directly. This is not
a good style, but in functional tests, we have a Yii singleton lying around
anyway. Have a look at the following code:
 // Dependencies
 $identity = UserRecord::findOne(['username' =>
 'RobAdmin']);
 $user = Yii::$app->user;

We will use the administrator account for our test.

4. As a preparation step, we log in, imagine a customer record, and store it in
the database as follows:
 // Given
 $user->login($identity);
 $customer = $this-> imagineCustomerRecord();
 $before = time();
 $customer->save();
 $after = time();

We imagine a customer record in the following way:
 private function imagineCustomerRecord()
 {
 $faker = \Faker\Factory::create();
 $record = new CustomerRecord();
 $record->name = $faker->name;
 return $record;
 }

For simplicity, we only set the required attribute of the customer, which is
his/her name.
We expect a timestamp to be saved, so to be able to test its correctness,
we remember the timestamps before and after the saving of the record.

Events and Behaviors

[256]

5. Then, we do nothing more than fetch the saved customer from the
database immediately:
 // When
 $saved = CustomerRecord::findOne($customer->id);

We use the customer record ID which was generated with Yii 2 when we saved
the $customer object to the database. This ID is fed to the findOne()query
method to construct a new active record instance, so we can be sure that we
use the data actually stored in the database and not an in-memory record.

6. Finally, we check our assumptions about the customer we fetched as follows:
 // Then
 $this->assertInstanceOf
 ('app\models\customer\CustomerRecord', $saved);
 $this->assertBetween
 ($before, $saved->created_at, $after);
 $this->assertEquals($user->id, $saved->created_by);
 $this->assertEquals
 ($saved->created_at, $saved->updated_at);
 $this->assertEquals
 ($saved->created_by, $saved->updated_by);

We'll check the correctness of the created_at timestamp by a custom
assertion called assertBetween(), which should check whether its three
arguments are in order of increasing value. We are yet to create it. We'll
check the correctness of the created_by field by comparing its value with
the value of Yii::$app->id because we have not logged out of the system
after creating the customer record. Therefore, it should still hold the same
ID of the administrator account.
As stated in the specification, values of updated_at and updated_by should
be equal to created_at and created_by, correspondingly.

We basically do not need to even touch the UI to implement
the feature in question and be sure that it works. This test
case and the one following it will cover everything needed.
To test it manually through the UI, we would need to make
changes to the currently existing UI.

7. The custom assertion we're using to check the correctness of the timestamp
is implemented extremely simply and generically:

 private function assertBetween($before, $value, $after)
 {

Chapter 10

[257]

 $this->assertLessThanOrEqual($before, $value);
 $this->assertGreaterThanOrEqual($after, $value);
 }

We're comparing the integers in our case, but due to the nature of built-in assertions
used, we can compare anything that is comparable in PHP with this assertion, such
as strings.

Now, as we cheat and know beforehand what the correct production code satisfying
this test case is, we will write the test for updating a customer record next.

Test case for updating customer updates
Let's make the second test method in the same \CustomerAuditTest test class
as follows:

 /** @test */
 public function CustomerRecordRemembersUpdateDatetimeAndUser()
 {
 // Test scenario here...
 }
}

Let's follow the same steps as in the previous section, which were "Dependencies",
"Given", "When", "Then".

1. We still depend on the yii\web\User class here, and we will use
two user identities, because we really want to check changes in the
updated_by attribute:
 // Dependencies
 $first_identity = UserRecord::findOne
 (['username' => 'RobAdmin']);
 $second_identity = UserRecord::findOne
 (['username' => 'AnnieManager']);
 $user = Yii::$app->user;

2. As a preparation, we log in as the first identity, save the customer record,
and remember the initial values of the updated_at and updated_by fields:
 // Given
 $user->login($first_identity);
 $record = new CustomerRecord;
 $record-> name = 'John';

Events and Behaviors

[258]

 $record->save();

 $initial_updated_at = $record->updated_at;
 $initial_updated_by = $record->updated_by;

3. In the most interesting part of the test, we log out from the first user account,
log in to the second user account, and resave the record:
 // When
 $user->logout();
 sleep(1);
 $user->login($second_identity);
 $record-> name = 'Bill';
 $record->save();

Note the call to sleep(). Unix timestamps have precision in seconds, and
our test most possibly will run much faster than that. For updated_at to
change by any amount, we need to wait for at least a second.

We must change some field in the record as if nothing were
changed in the ActiveRecord class. The call to save()
will not bother with actually going to the database. It's a
really nice feature, by the way.

4. Assertions in this case are a lot simpler, because we just need to check that
the current values of updated_at and updated_by fields differ from the
initial ones:

 // Then
 $this->assertGreaterThan
 ($initial_updated_at, $record->updated_at);
 $this->assertNotEquals
 ($initial_updated_by, $record->updated_by);
 $this->assertEquals($user->id, $record->updated_by);

We do not bother checking the accuracy of the timestamp in our case, but of course,
we do check that the user ID is actual.

We log in and log out of the system extensively during these tests. We need to be
sure that we are logged out after each test run, to preserve a clean state for all other
tests. Here is the appropriate teardown method to achieve that:

 public function _after()
 {
 Yii::$app->user->logout();
 }

Chapter 10

[259]

Now, we run the tests and watch them fail:

$./cept run functional

The expected outcome will be as follows:

Let's start with the fields required in the database records.

Preparing the database fields
As usual, we make a migration as follows:

$./yii migrate/create add_audit_fields_to_customer

Let's write the following code as a migration script:

 $this->addColumn('customer', 'created_at', 'integer');
 $this->addColumn('customer', 'created_by', 'integer');
 $this->addColumn('customer', 'updated_at', 'integer');
 $this->addColumn('customer', 'updated_by', 'integer');

 $this->addForeignKey('customer_created_by', 'customer',
 'created_by', 'user', 'id');
 $this->addForeignKey('customer_updated_by', 'customer',
 'updated_by', 'user', 'id');

Events and Behaviors

[260]

Foreign keys are not really required by our feature, but for the sake of completeness,
we include them, because they will be needed anyway in a real-world setting. Run
the migration:

$./yii migrate

That's all. The CustomerRecord class will automatically pick these fields. What code
do we need to write next to finally satisfy our tests?

Using the timestamp and blameable behaviors
We need to write the following code into our CustomerRecord class:

 public function behaviors()
 {
 return [
 'timestamp' =>
 \yii\behaviors\TimestampBehavior::className(),
 'blame' =>
 \yii\behaviors\BlameableBehavior::className()
];
 }

As a result, our tests magically pass, which can be seen in the following screenshot:

What did we actually do here?

In high-level terms, the behaviors() method on yii\base\ActiveRecord exists to
declare some classes that will provide additional functionality to the active record in
question. This functionality can be of two forms:

• New methods available to use
• Event handlers attached

Chapter 10

[261]

Actually, everything that is an inheritor of \yii\base\Component has the
behaviors() method, so you can attach something to the controllers, modules
and application components too.

With the CustomerRecord class, we attached two behaviors, \yii\behaviors\
TimestampBehavior and \yii\behaviors\BlameableBehavior, which are built
in to the Yii 2 framework.

We used the shorthand syntax to specify the behaviors to attach. The full version is
to assign not just the fully-qualified name of the class, but the associative array with
the values of properties for this class as follows:

 public function behaviors()
 {
 return [
 'timestamp' => [
 'class' =>
 \yii\behaviors\TimestampBehavior::className(),
 // other settings here ...
]
 'blame' => [
 'class' =>
 \yii\behaviors\BlameableBehavior::className()
 // other settings here ...
]
];
 }

In fact, this is the same syntax that is parsable by \yii\BaseYii::createObject,
which we discussed several chapters ago, accepting arrays, class names, or callable
instances.

Both TimestampBehavior and BlameableBehavior extend the more generic
\yii\behaviors\AttributeBehavior. The following is the example from
the official documentation:
public function behaviors()
{
 return [
 'attributeStamp' => [
 'class' => AttributeBehavior::className(),
 'attributes' => [
 ActiveRecord::EVENT_BEFORE_INSERT =>
 ['attribute1', 'attribute2'],
 ActiveRecord::EVENT_BEFORE_UPDATE => 'attribute2',

Events and Behaviors

[262]

],
 'value' => function ($event) {
 return 'some value';
 },
],
];
}

There are two settings in AttributeBehavior:

• The attributes setting: This is an array that maps event names from the
ActiveRecord class to the names of the attributes. You can specify several
attributes for a single event using arrays.

• The value setting: This is the callable instance receiving the event being
reacted at by AttributeBehavior. This callable instance should return the
value to be assigned to the attribute associated with this event. Instead of a
callable instance, you can specify a fixed value. Of course, you should take
care about the type of value being something that ActiveRecord can process;
it cannot magically save object or array instances to the database.

The timestamp behavior is a special case of AttributeBehavior. It sets the
attribute setting according to the following code:

BaseActiveRecord::EVENT_BEFORE_INSERT =>
 ['created_at', 'updated_at'],
BaseActiveRecord::EVENT_BEFORE_UPDATE => 'updated_at',

This setup exhibits exactly the behavior we specified at the start of this section,
filling up the created_at and updated_at fields at the appropriate steps of the
ActiveRecord lifetime. This was our first cheating, when we named the fields
according to default values of TimestampBehavior.

By default, it uses the value of the call to time() as the value setting. You can do the
same with setting value to the following in the AttributeBehavior:

function ($event) {
 return time();
},

Our second cheating was when we used timestamps as a value of the created_at
and updated_at fields in the database records.

Chapter 10

[263]

Blameable behavior is also a special case of AttributeBehavior. It sets the
attribute setting in almost the same way as TimestampBehavior, but the names
of the fields are different:

BaseActiveRecord::EVENT_BEFORE_INSERT => ['created_by', 'updated_by'],
BaseActiveRecord::EVENT_BEFORE_UPDATE => 'updated_by',

So, we cheated a third time here, again with the choice for the field names.

The default value that blameable behavior sets for these attributes is the current
user ID, fetched simply from Yii::$app->user->id. So, with the traditional
authentication mechanics that we implemented in Chapter 5, User Authentication,
we had everything in place for us without any additional setup.

It should be mentioned that all of the previous cheating was needed only for the
awesomeness of making two functional tests pass by adding a method with four lines
in it (two of them being the array's literal syntax). Overall, the concept stays the same:
in Yii 2 (and, to be honest, back in Yii 1.x, too), you can attach some behavior defined
in separate classes to objects. Let's look at the concept of behaviors in more detail.

FEATURE – behaviors
The three behavior classes, TimestampBehavior, BlameableBehavior, and
AttributeBehavior, described earlier are the only behaviors built into the Yii 2
framework. The behavior concept is implemented by the \yii\base\Behavior
class, so nothing stops you from implementing your own behaviors by extending it.

The basic idea behind behaviors was explained before: you can attach behavior to
some other object, and this object will get the methods and properties defined on
that behavior. What this means is that behavior is the same as the concept of trait,
introduced in PHP 5.4 (read about traits at http://www.php.net/manual/en/
language.oop5.traits.php). In fact, behaviors were introduced to Yii 1.x to
use the features of traits before they were implemented in PHP natively.

But behaviors in Yii 2 have another feature loaded: they also attach event handlers
to the object they're being bound to. This is exactly what enabled the functionality
of AttributeBehavior earlier.

http://www.php.net/manual/en/language.oop5.traits.php
http://www.php.net/manual/en/language.oop5.traits.php

Events and Behaviors

[264]

Let's look at the four distinctive pieces a behavior class is composed of:

• First, a behavior has an owner. Inside the methods of behavior, you can rely
on the $this->owner object to be the object we are currently being attached to.

• Second, a behavior has a special method named events. This method can
(and should) be overridden in the subclasses, and it must return an array
that maps event names to callable instances.

• Lastly, a behavior has attach($component) and detach($component)
methods, which you probably will never need to override. Using them,
you can attach a behavior to a $component object, and it will attach all
event handlers to it. Note that it will not provide methods and properties
of a behavior to the owner! So, while these methods are there for you to use,
they're basically useless in reality.

Event names specified in events() should be events of the owner, for reasons that
will be described later. This is extremely important, but at the same time it's quite
handy, as the events which the owner does not fire will just silently be ignored.

You can assign any kind of callable instance allowed in PHP as an event handler, and
additionally, you can specify just a string, which will be interpreted as the name of
the method in the behavior itself (so instead of writing [$this, 'handlerName']
you can just write 'handlerName'). The event handler will receive the \yii\base\
Event object as a sole argument.

To properly attach and detach behaviors, you need to use the four special methods
of \yii\base\Component:

Method name Meaning
attachBehavior($name, $behavior) It means attach a $behavior behavior

to this component under $name.
attachBehaviors($behaviors) It means attach an entire array of

behaviors to this component. The array
should map names to behaviors, like
arguments, to attachBehavior().

detachBehavior($name) It means detach a named behavior from
this component.

detachBehaviors() Here, detachBehavior() on all
behaviors of the component will
effectively remove all behaviors.

By attaching a behavior to a component, you make event handlers and methods
declared in the behavior available to the component. By detaching a behavior,
you make these event handlers and methods unavailable.

Chapter 10

[265]

As an example, we can take TimestampBehavior, which declares the
touch($attribute) helper method. We know that we don't have this method on the
UserRecord model, but we can do the following:

$user = UserRecord::findOne($id);
$behavior = new TimestampBehavior();
$behavior->value = function () { return date('Y-m-d'); };
$user->attachBehavior('ts', $behavior);

After that, let's imagine we have the lastLoggedDatetime attribute on UserRecord,
and then we can perform the following action:

$user->touch('lastLoggedDatetime');

The lastLoggedDatetime attribute will then hold the value of date('Y-m-d') at
that moment.

To relieve you from the hassle of attaching behaviors manually, each component in
Yii 2 has a special behaviors() method defined. By overriding this method, you
can specify the behaviors to be attached to this component at the moment of creating
its instance. You already know that almost anything in Yii 2 is a descendant of \
yii\base\Component. An example of attaching behaviors using the behaviors()
method was provided earlier with the customer model.

It's important to remember that the properties of the behavior will be
available to the owner object, too. One should understand that in Yii
2, if you have a set of getSomething() and setSomething(), then
you have a "something" property even if you don't have $something
defined in the class at all. The source code for the __call(), __get()
and __set() magic methods inside the \yii\base\Component class
definition contains the exactly the description of the mechanics behind
this trait-like behavior of behaviors.

FEATURE – events
The concept of events in itself is almost an observer pattern incarnate (see http://
c2.com/cgi/wiki?ObserverPattern). An object at some point in time can realize
it is going to meet some event. If this object has any event handlers associated with
this event, it executes these handlers. Then the object continues to do whatever it
did before. So, there are no explicit observers, just the separate, distinct functions
attached to observable as event handlers.

http://c2.com/cgi/wiki?ObserverPattern
http://c2.com/cgi/wiki?ObserverPattern

Events and Behaviors

[266]

This concept is implemented by three methods and one class in Yii 2 as follows:

• The \yii\base\Component::on($name, $handler, $data = null,
$append = true) method assigns the $handler event handler to the
event named $name. Depending on $append, this $handler will be either
appended or prepended to the possible list of handlers already assigned
to this event. By specifying $data, you can pass some arbitrary data to
$handler (more about this later).

• The \yii\base\Component::off($name, $handler = null) method
removes the $handler event handler from the list of handlers for the event
named $name. There is some magic here: if you do not provide $handler
to this method, all handlers will be removed. If, on the other hand, you do
provide $handler, the handler which is equal to $handler will be removed.
A comparison is done using the simple == operator, so you cannot detach the
handler specified by an anonymous function, for example.

• The \yii\base\Component::trigger($name, $event = null) method
triggers the event named $name, which simply means that it calls all of the
event handlers associated with this event. The $event argument, if not
empty, must be a \yii\base\Event descendant. If this argument is left
empty, trigger() will create an instance of \yii\base\Event by itself.

How can you use this system? Just as with the observer pattern, an events system
like this is useful when you need to perform some actions in response to something
that happened in a different layer of the application. Another important benefit is
that you can dynamically change the behavior that should emerge in response to the
events, which can be useful, too. And of course, we can attach any number of event
handlers to the single event.

Let's look at the problem of handling user-generated content, specifically the
uploading of photos. We assume that you have a separate image component attached
to the application, which is accessible through the Yii::$app->images call. This
component has one method available, which is named handleUpload; so when you
upload an image, you ultimately call Yii::$app->images->handleUpload($_FILES).

Let's say, you already have the business rule that all uploaded photos are to be
downscaled to, at the most, 2,000 pixels. So, in this photo-handling routine, you
have an appropriate call to the background task (however, you have implemented
the background tasks in your application), which calls some separate library to
perform the conversion.

Chapter 10

[267]

Imagine that at some point one of the stakeholders tells you that we need to
additionally copy this uploaded image (unchanged) to a separate subsystem of the
application, where the manager will manually review it for copyright violations. Of
course, this will add just a call to another function into your photo-handling routine,
but there's a very high possibility that feature requests like this will continue to come.

Instead of this, the handleUpload() routine can do just one thing: put the image
to a known temporary location where it will not be cleaned up by the underlying OS
(like the uploaded images in PHP usually end up). After that it will run the following
line of code:

$this->trigger(self::IMAGE_UPLOADED, $event);

Thus, it will announce to all interested parties that the image is indeed uploaded. The
$event parameter is the new instance of \yii\base\Event loaded with information
about the filesystem path to the uploaded image.

Given this setup, we can declare in an appropriate place in the application that we
want to downscale the uploaded image and put the result to the database as follows:

Yii::$app->images->on(Images::IMAGE_UPLOADED,
 $downscale_and_save);

Here, the $downscale_and_save parameter is the callable instance in the
following form:

function ($event) {
 // getting the path to file from $event parameter…
 // downscaling the image
 // saving it to the database
}

At another appropriate place (for example, in the init() method of the controller,
which will render the image uploading UI), you place another declaration of the
event handler for the IMAGE_UPLOADED event. This handler will publish the image
to some special part of the administrative UI for a copyright violations review.

It's hard to justify the value of the off() method in PHP and where the application
starts, works, and dies for each separate HTTP request. It's most useful in systems
that silently wait for user input and respond to events happening all of the time.
With the off() method able to remove event handlers, a system can virtually
reconfigure itself when needed, depending on some factors. When your script
lives only for the span of a single HTTP request, you usually don't need this
level of polymorphism. However, your mileage may vary.

Events and Behaviors

[268]

The \yii\base\Event class represents information about the event that occurred.
It has four pieces of information associated with it:

• $name: This is the name of this event object. When you call trigger(), you
need to pass an event name to it as a first argument. That name is what will
be the value of this $name attribute. You have no control over this attribute,
even if you pass the manually constructed $event in the call to trigger().

• $sender: This is the object that triggered the event. If it is not set manually,
trigger() sets it to $this, which means that by default, you can rely on the
value of $sender, it being the object that called trigger().

• $data: This is the additional data associated with the handler when you set
it by the on() method. So, at the time of attaching an event handler, you can
specify some data to be available inside the handler via $event->data. We
need to stress that it's the data calculated not at the time of the trigger()
call, but at the time of the on() call.

• $handled: This is the special flag (initially set to false) that, when set to
true, stops handling this event. So, if there were any additional handlers
specified for this event, they will not fire. This is why the $append argument
to the on() call: order of event handlers attached does matter.

The on(), off(), and trigger() methods given earlier are specified in terms
of some class instance, that is, a specific object will trigger the event handlers
attached to it exclusively. But sometimes, it's useful not to have object-bound but
class-bound event handlers that will fire regardless of the exact instance triggering
the event. There are three methods in the \yii\base\Event class that provide this
functionality. They are as follows:

• The \yii\base\Event::on($class, $name, $handler, $data = null,
$append = true) method attaches the $handler to the event named $name
firing on any instance of $class. The $class is a fully-qualified class name.
The semantics of the $data and $append parameters are the same as in the
Component.on() method.

• The \yii\base\Event::off($class, $name, $handler = null) method
removes the $handler associated with the event named $name from the list
of handlers for $class. $class is a fully-qualified class name and works in
the same manner as the Component.off() method.

• The \yii\base\Event::trigger($class, $name, $event = null)
method, similar to \yii\base\Component::trigger($name, $event =
null), triggers the event handlers for the event named $name defined for
$class passing $event to them. $class is either a fully-qualified class name
or an object. If it is an object, then trigger() will extract the class name from
it. If $class is a class name and not an object, then the $sender property of
the event object passed to the handlers will be null.

Chapter 10

[269]

For example, let's say your business need is to send an e-mail each time a new user
is registered in your application. Why should the createUser() method, whose
only responsibility is to create a new user record in the database, also call the
mail() function? This will bloat it and violate the Single Responsibility Principle
(look, for example, http://blog.8thlight.com/uncle-bob/2014/05/08/
SingleReponsibilityPrinciple.html). It will be a cleaner solution to use the
class-based event propagation instead.

The main idea would be this: we set up the handler for the event of inserting the new
UserRecord (or whatever its name is in your code base) inside some initialization code
on an appropriate layer. For example, in the init() method of the whole application,
we may put the following line:

Event::on(
 '\app\models\user\UserRecord',
 \yii\db\ActiveRecord::EVENT_AFTER_INSERT,
 $send_email
);

The $send_email variable is the callable instance in the following form:

function ($event) {
 // extracting the data about UserRecord from $event parameter…
 // sending the email
}

It's quite important to know that when you trigger an event on the object, you trigger
the event with the same name on the class of this object. This means, triggering
an object-bound event triggers a class-bound event. Or, simply put, \yii\base\
Component::trigger() calls \yii\base\Event::trigger() as the last action,
passing its own arguments.

If the event object passed to the object-bound trigger() has the
$handled flag set to true and its handling stops, it will still be
passed to the class-bound trigger() and will get the $handled
flag reset to false again. You cannot prevent the class-bound
events from occurring by manipulating the $handled flag.

http://blog.8thlight.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
http://blog.8thlight.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

Events and Behaviors

[270]

In the preceding section, we briefly mentioned the events() method on the behavior
class meant to be overridden to specify the event handlers for the owner of this
Behavior. Now it should be quite obvious what the behavior does internally when it
gets attached to its owner using the attach() method: it calls $owner->on() on each
event-handler pair defined in the events() method. This is exactly why the behavior
should better declare only the events expected from its future owner, because it's the
owner who calls trigger(), and there's only a limited choice of events it is triggering.
Any other event handler declared in the Behavior.events() method has the chance
of never being called.

Now, have a look at the following code:

$behavior->attach($owner);

Then, have a look at this code:

$owner->attachBehavior($behavior);

We can clearly see the distinction between the preceding two codes. The $behavior-
>attach() form will only call $owner->on() for all events listed inside its events()
method. The $owner->attachBehavior() form will do the same and also register
the $behavior inside the $owner component, so it'll be able to use properties and
methods defined on $behavior.

The events system in Yii 2 allows you to write your application at least partially in
the event-based paradigm, which is quite cool by itself. But what makes it really
useful right from the start is that a lot of built-in components in the framework
already have some events triggering for you. So, you can hook onto various stages
of the lifetime of the components, such as active records, controllers, and modules
(by the way, it's exactly why we could use the AttributeBehavior descendants
previously). If ActiveRecord would not trigger() EVENT_BEFORE_INSERT
and EVENT_BEFORE_UPDATE, then all of the previous manipulations would be
meaningless. In the next section, we'll take a look at the events that are already
there for you to use.

Built-in events
Here, we'll save you from a full-text search through the quite extensive code base
of Yii 2 and will list everything starting with EVENT_ defined in the framework.
Note that you should provide a string as a $name argument in the on() method.
All built-in events define these strings as class constants, and you should always
use these class constants when attaching event handlers instead of its actual values.

Chapter 10

[271]

Events of \yii\base\Application
Both the web and the console applications shipped with Yii 2 will trigger the
following events. Nothing will be passed as $event to trigger(), so expect a
default event object. Then, we can proceed to your handlers. Have a look at the
following table:

Event name When is it triggered
EVENT_BEFORE_REQUEST It is triggered right before starting the request

handling, basically at the beginning of the application
lifetime. This is the earliest event taking place in the
application that you can hook on to.

EVENT_AFTER_REQUEST It is triggered right after successful request handling
or when you call Yii::$app->end(). This forcibly
shuts the application down. This is not the last
event occurring in the application; \yii\web\
Response::EVENT_AFTER_SEND is the last one.

Events of \yii\base\Controller
Both the web and the console controllers will trigger the following events. Note that
the instance of \yii\base\ActionEvent will be passed to the handlers, so check
the documentation for this class at http://www.yiiframework.com/doc-2.0/yii-
base-controller.html. It has some nice additional features. Have a look at the
following table:

Event name When is it triggered
EVENT_BEFORE_ACTION It is triggered right before running any controller action.

If the controller belongs to a module, then this module's
EVENT_BEFORE_ACTION is triggered first. As was said
before, an instance of ActionEvent will be passed to the
handlers of this event. You may set its isValid attribute
to false, and this will prevent the action in question
from happening (the application will shut down without
rendering anything, only further events will be triggered).

EVENT_AFTER_ACTION It is triggered right after the execution of the controller
action. Note that the response object generated by
this action will be available in the result field of the
ActionEvent passed to the handler, so you can post-
process it in some way.

http://www.yiiframework.com/doc-2.0/yii-base-controller.html
http://www.yiiframework.com/doc-2.0/yii-base-controller.html

Events and Behaviors

[272]

Note that both of these events are triggered inside the beforeAction()
and afterAction() methods. With the Yii 1.1.x framework, it was quite
traditional to override these methods in the child classes to achieve some
pre- or post-processing effects. While you can do the same in Yii 2, you
should always call parent::beforeAction() and parent::afterAction(),
respectively, otherwise, you will prevent the triggering of the earlier events.

It's better to use proper event handlers instead of overriding the beforeAction()
and afterAction() methods.

Events of \yii\base\Module
The semantics of the \yii\base\Module events are exactly the same as those of \
yii\base\Controller. But they are called around the respective controller events.
Have a look at the following table:

Event name When is it triggered
EVENT_BEFORE_ACTION This event is triggered before running any controller action

and before the same event on the controller is triggered.
An instance of ActionEvent will be passed to the
handlers of this event. You may set its isValid attribute
to false and this will prevent the action in question
from occurring (the application will shut down without
rendering anything, only further events will be triggered).

EVENT_AFTER_ACTION This event is triggered after the controller action has
finished working and after the same event on the
controller is triggered. Though we have to note here that
this event always fires, even if the action was disabled by
setting the isValid attribute to false in the EVENT_
BEFORE_ACTION event.

Modules have their beforeAction() and afterAction() methods, too. Look at the
Events of \yii\base\Controller section for an explanation about complications raised
by this.

Chapter 10

[273]

Events of \yii\base\View
Please note that the view component used in web pages is \yii\web\View, and it
defines two additional events you can hook on to. This particular class defines only
the basic events in the rendering process. Have a look at the following table:

Event name When is it triggered
EVENT_BEGIN_PAGE The call to $this->beginPage() inside the view

file triggers this event. This method is described in
Chapter 4, The Renderer, in great detail and is used in
the layout framework.

EVENT_END_PAGE The call to $this->endPage() inside the view
file triggers this event. This method is described in
Chapter 4, The Renderer, in great detail and is used in
the layout framework.

EVENT_BEFORE_RENDER When rendering a view file, this will trigger before
actually rendering it. The handlers will receive the
instance of \yii\base\ViewEvent, and you can set
its isValid attribute to false to prevent rendering
from occurring. The actual call to trigger()
for this event is wrapped into the method named
beforeRender(), and so if you override it, you
should call the parent::beforeRender() or
lose the event handlers for this event. The base
beforeRender() returns exactly the value of
ViewEvent.isValid.

EVENT_AFTER_RENDER When rendering a view file, this will trigger after
the view file is rendered. The handlers will receive
the instance of \yii\base\ViewEvent, and you
can use its output attribute to post-process the
output in some way. The actual call to trigger()
for this event is wrapped into the method named
afterRender(), and so if you override it,
you should call parent::afterRender() or
lose the event handlers for this event. The base
afterRender() has $output of rendering as
a sole output argument.

Events and Behaviors

[274]

Events of \yii\web\View
Let's look at the additional events declared specifically for the view component used
in the web application. Have a look at the following table:

Event name When is it triggered
EVENT_BEGIN_BODY The call to $this->beginBody() inside the view file triggers

this event. This method is described in Chapter 4, The Renderer, in
great detail and is used in the layout framework.

EVENT_END_BODY The call to $this->endBody() inside the view file triggers
this event. This method is described in Chapter 4, The Renderer, in
great detail and is used in the layout framework. This is a good
place to work with AssetBundles, as right after triggering this
event, the assets are registered in the view.

Events of \yii\base\Model
The base model class is the foundation of active records. Only the most basic events
are defined here, but they are applicable to the ActiveRecord lifetime too. Have a
look at the following table:

Event name When is it triggered
EVENT_BEFORE_
VALIDATE

It is triggered right before validating attributes by the
validate() method (remember that save() also calls
validate() if you do not suppress this behavior). An
instance of \yii\base\ModelEvent is passed to the
handler of this event. You can use the isValid attribute of
this event's subclass to control whether the model should be
considered validated. If isValid is false, then the model
fails the validation even without the validators firing, so be
wary of this feature, because this way you will not get any
automatic feedback about the reasons for failure.

EVENT_AFTER_VALIDATE It is triggered right after all validators finish their work.
Nothing special is being passed to the handlers of this event.
This event is there for you to do some post-processing of the
attributes of the model in question.

Note that similar to the beforeAction() and afterAction() methods of the
controller, the triggering of these events is wrapped into the beforeValidate() and
afterValidate() methods, with all warnings about overriding them applicable.

Remember that you can access the model that is being validated by the $event-
>sender field. It's the only hassle you should overcome when using proper event
handlers instead of overriding beforeValidate() and afterValidate().

Chapter 10

[275]

Events of \yii\db\BaseActiveRecord
BaseActiveRecord is the base class for the ActiveRecord you'll be using most of the
time. Active records, being the subclasses of \yii\base\Model, trigger its events too.

To not repeat the same warning again and again, we will give it once right
now. All of the events listed here are triggered inside the special methods of the
BaseActiveRecord class. In Yii 1.1.x, it was customary to override these methods in
the model classes, but if you continue this practice in Yii 2, then you should always
call the parent implementation first, or you will lose the trigger() call. Have a look
at the following table:

Event name When is it triggered
EVENT_INIT It is triggered at the end of the init() method of the

BaseActiveRecord class, which is called right after the
constructor.

EVENT_AFTER_FIND It is triggered after the ActiveRecord is found by some
query to the database. The triggering of this event is wrapped
into the afterFind() method of BaseActiveRecord.

EVENT_BEFORE_INSERT It is triggered before the actual saving of the new active
record to database. The triggering of this event is wrapped
into the beforeSave() method of BaseActiveRecord.
This event passes the instance of \yii\base\ModelEvent
to its handler. If you set its isValid attribute to false in the
handler, then saving will be silently canceled.

EVENT_AFTER_INSERT It is triggered after the actual saving of the new active record
to the database. The triggering of this event is wrapped into
the afterSave() method of BaseActiveRecord.

EVENT_BEFORE_UPDATE It is triggered before the actual updating of the active record
to the database. The triggering of this event is wrapped into
the beforeSave() method of BaseActiveRecord. This
event passes the instance of \yii\base\ModelEvent to
its handler. If you set its isValid attribute to false in the
handler, then saving will be silently canceled.

EVENT_AFTER_UPDATE It is triggered after the actual updating of the active record to
the database. The triggering of this event is wrapped into the
afterSave() method of BaseActiveRecord.

EVENT_BEFORE_DELETE It is triggered before the deleting of the active record from
the database. The triggering of this event is wrapped into the
beforeDelete() method of BaseActiveRecord. This
event passes the instance of \yii\base\ModelEvent to
its handler. If you set its isValid attribute to false in the
handler, then the deletion will be silently canceled.

Events and Behaviors

[276]

Event name When is it triggered
EVENT_AFTER_DELETE It is triggered after the deleting of the active record from the

database. The triggering of this event is wrapped into the
afterDelete() method of BaseActiveRecord.

Two events are being triggered in a single beforeSave() method: EVENT_BEFORE_
INSERT and EVENT_BEFORE_UPDATE. Similarly, two events are being triggered in
a single afterSave() method: EVENT_AFTER_INSERT and EVENT_AFTER_UPDATE.
Please consult the implementation of these methods in the source code of the Yii 2
framework to learn how they work. They are constructed to selectively trigger events
depending on whether the saving inserts a new record or updates the existing one.

For example, let's look at the succession of events when you create and save a model
based on the ActiveRecord class: EVENT_INIT → EVENT_BEFORE_VALIDATE →
EVENT_AFTER_VALIDATE → EVENT_BEFORE_INSERT → EVENT_AFTER_INSERT.

Events of \yii\db\Connection
The instance of \yii\db\Connection is the component that you have attached
to the application which is accessible by the db ID. When you do Yii::$app->db,
you access the connection. This class triggers just a single event. Have a look at the
following table:

Event name When is it triggered
EVENT_AFTER_OPEN It is triggered after all of the work to set up the

connection to the database driver is done. This event
does not pass anything special to its handlers.

EVENT_BEGIN_TRANSACTION It is triggered right before the database transaction
actually starts using the underlying PDO library.
Note that it will be quite deep inside the call to
Yii::$app->db->beginTransaction().

EVENT_COMMIT_TRANSACTION It is triggered right after the database transaction
is actually committed using the underlying PDO
library.

EVENT_ROLLBACK_TRANSACTION It is triggered right after the database transaction is
rolled back because of some error.

Chapter 10

[277]

Events of \yii\web\Response
All events of the response take place inside the \yii\web\Response::send() method.
They mark three steps of the response lifetime. Have a look at the following table:

Event name When is it triggered
EVENT_BEFORE_SEND It is triggered at the very beginning of the response

sending.
EVENT_AFTER_PREPARE It is triggered after the response is formatted

by appropriate formatters in the \yii\web\
Response::prepare() method.

EVENT_AFTER_SEND It is triggered after the response is sent.

Events of \yii\web\User
The user component tells the world only about the login and logout events. All
event handlers will receive an instance of \yii\web\UserEvent. Apart from other
properties about which you can read in the documentation, it has the isValid
attribute. It has the same semantics that we have seen already in the event instances
for classes Response, View, ActiveRecord, and Controller. Have a look at the
following table:

Event name When is it triggered
EVENT_BEFORE_LOGIN It is triggered at the start of the procedure to sign in, located

inside the login() method. If you set the isValid
attribute of UserEvent to false inside the event handler,
login() will silently fail.

EVENT_AFTER_LOGIN It is triggered after the user successfully logs in, at the end of
the login() method.

EVENT_BEFORE_LOGOUT It is triggered at the start of the procedure to sign out,
located inside the logout() method. If you set the
isValid attribute of UserEvent to false inside the event
handler, logout() will silently fail.

EVENT_AFTER_LOGOUT It is triggered after the user successfully logs out, at the end
of the logout() method.

Note the quite surprising feature to prevent the user from logging out of the
application by manipulating the event object. It's really hard to imagine a situation
in which you would need to force users to stay authenticated.

Events and Behaviors

[278]

Events of \yii\mail\BaseMailer
BaseMailer is an abstract class that is meant to be overridden by some concrete
implementation of the actual e-mail sender. We saw the example in Chapter 8,
Overall Behavior, when we set up the sending of log messages through SwiftMailer.
It publishes only two events, and both of them pass an instance of \yii\base\
MailEvent to the event handler. Have a look at the following table:

Event name When is it triggered
EVENT_BEFORE_SEND It is triggered at the beginning of the send() method. The triggering

of this event is wrapped in the beforeSend() method, so you need
to call parent::beforeSend() if you override it. The MailEvent
object passed to the handler of this event has the isValid attribute.
If you set it to false, the sending will be silently canceled.

EVENT_AFTER_SEND It is triggered at the end of the send() method. The triggering of
this event is wrapped in the afterSend() method, so you need to
call parent::afterSend() if you override it. The MailEvent
object passed to the handler of this event has the isSuccessful
attribute, which tells whether the sending was successful.

Note that the value of isSuccessful is just a blind copy of the return value of the
sendMessage() method, which concrete classes should implement.

Summary
Honestly, it's hard to justify using proper event-based programming in PHP, where
the program starts, handles the request, and then dies. However, when coupled with
the concept of behaviors, events provide places to extend the existing functionality,
which can lead to very simple solutions like the one presented at the beginning of
this chapter.

That's the power given to you by the events and behaviors in the Yii 2 framework.

In this chapter, we first scratched the surface of the events system using the behaviors
prepackaged in the Yii framework. Then, we investigated in great detail just what
exactly the event and behavior concepts in Yii 2 are and how they are implemented.
Finally, we completely scrutinized the types of events that already occur inside the
Yii 2 application and to which you can hook on without special preparation.

The next chapter will mean a lot of work for us. First, we'll enhance our customer
model with all of the missing pieces we left over and did not implemented in
Chapter 2, Making a Custom Application with Yii 2. After that, we'll use the most
complex widget from the Yii framework: the Grid view.

The Grid
Back in Chapter 2, Making a Custom Application with Yii 2, we cut some corners and
implemented only part of the functionality of our already rudimentary example
CRM application. This chapter will conclude the example.

Our goal here will be to finish the CRUD for the customer model and to have in the
end an efficient user interface to filter the recorded customers.

We'll learn to use arguably the most complex widget among the ones shipped together
with the Yii framework, the GridView widget. But the GridView widget is there only
to present records from the database; we will also make the form to actually enter the
customer models into the database, utilizing the ActiveForm widget.

In this chapter, we'll discuss the following topics:

• The widgets concept in general
• The structure of the GridView widget, especially its concept of columns
• The built-in features of the GridView widget
• Making custom columns via the GridView widget in two ways
• Implementing sorting and filtering inside the GridView widget for

custom columns

Dismissing of the domain layer
In Chapter 2, Making a Custom Application with Yii 2, we tried pretty hard to decouple
ourselves from the framework to continue being able to test and extend our application
later, when we get some real business rules apart from the mindless CRUD interface.
Of course, this is a lot of additional work, as we're essentially placing an additional
level of abstraction over the active records.

The Grid

[280]

This is not idiomatic Yii code. Yii provides you with a really robust and useful API
for a lot of areas but, at the same time, it tries really hard to couple you to both its
data and presentation layer, which is trouble all the way down the road.

Most probably, you'll see such a code out in the wild a lot of times when maintaining
Yii-based applications, and, hence, we decided to show you how the web application
development is done the Yii way, as opposed to using the Yii way shown in Chapter
2, Making a Custom Application with Yii 2. We'll call the active records directly
from the controllers and pass them directly to our views. Most of our code will
be autogenerated and left untouched. We basically throw away the domain and
application layers from our application. Let's see how it'll look and feel this way.

As we already have the active records in our data layer, such a change will cost us
nothing, because we would be generating them anyway. We will also not write any
automatic tests, relying only on looking visually at our pages being developed. This
way, we'll get a working application too, and we will get it even faster than before.

Designing for the customers' index
It's assumed that you do not start from scratch but continue with the example
we've been working on until now. However, if you actually do want to start from
scratch, just use the migration that creates the customers table and autogenerate
the customer model and the associated CRUD using Gii. You will also need the
changes described in Chapter 10, Events and Behaviors, as we'll utilize the audit fields
introduced there.

We will be working on the /customers/index route in our example application.
We want this route to show us the table with a list of all customers registered in our
database. Additionally, this table should provide filtering capabilities, allowing us to
filter customers by their first and last names, phone number, country, city, and date
of birth. We also want to sort the list by the same fields.

We need to implement the Address model for this to work, and we need to
greatly enhance the Create Customer form to accommodate assigning addresses
to customers. The same is applicable to the Email model. This chapter is devoted
to GridView only, so you can read about changes in the Customer Edit and Create
forms in Appendix B, The Active Form Primer.

We need to take care, as the customer has too many pieces of information now. If we
show each field from all the records contained in the Customer model as a column
in a table, this table will be too wide to show on screen. Our main problem with
GridView will be to show several active record fields in the same table column.

Chapter 11

[281]

The following is a sketch of the target GridView for the Customer model:

Making address, e-mail, and phone
active records
We need to prepare tables and ActiveRecord definitions for all of our submodels,
Address, Email, and Phone.

Let's create a table for AddressRecord using the following migration script:

 $this->createTable(
 'address',
 [
 'id' => 'pk',
 'purpose' => 'string',
 'country' => 'string',
 'state' => 'string',
 'city' => 'string',
 'street' => 'string',
 'building' => 'string',
 'apartment' => 'string',
 'receiver_name' => 'string',
 'postal_code' => 'string',
 'customer_id' => 'int not null'
]
);
 $this->addForeignKey('customer_address', 'address',
 'customer_id', 'customer', 'id');

To keep things simple, we make all parts of the address just strings. We need to
explicitly create a foreign key for reasons we will describe shortly.

The Grid

[282]

The \yii\db\Migration.addForeignKey() function is a pretty
horrible function, given its five positional arguments, and probably
your only option to remember how it works is to have an IDE with the
ability to go to the function's definition. One way to remember how to
specify it correctly is by utilizing the following sentence featuring all the
arguments in the correct order and with sort-of memorable names: add
foreign key with name on table column referencing table column.

After this migration is applied, we open Gii and generate the AddressRecord model
using the following settings in the model generator:

• Table Name: address
• Model Class: AddressRecord
• Namespace: app\models\customer
• Generate Relations: Keep this checked

The ActiveRecord class in Yii has special means to facilitate relations between DB
tables bound by foreign keys. The Generate Relations checkbox will enable their
generation in AddressRecord.

Then, open the CRUD generator and create the CRUD for AddressRecord using the
following settings:

• Model Class: app\models\customer\AddressRecord
• Search Model Class: Leave this field empty
• Controller Class: app\controllers\AddressesController

We leave the Search model, because its purpose in the autogenerated CRUD
is to provide filtering inside the GridView widget, and we don't need it for the
AddressRecord model. We don't need it, because it's not our intent to see all models
of AddressRecord, without the context of a customer.

Chapter 11

[283]

The /addresses route should show you the following:

Next, we will create the email table with the following migration:

 $this->createTable(
 'email',
 [
 'id' => 'pk',
 'purpose' => 'string',
 'address' => 'string',
 'customer_id' => 'int not null'
]
);
 $this->addForeignKey('customer_email', 'email',
 'customer_id', 'customer', 'id');

Create the EmailRecord class with the same model generator and with the
following settings:

• Table Name: email
• Model Class: EmailRecord
• Namespace: app\models\customer
• Generate Relations: Keep this checked

Then generate the CRUD with the following settings:

• Model Class: app\models\customer\EmailRecord
• Search Model Class: Leave this field empty
• Controller Class: app\controllers\EmailsController

The Grid

[284]

The /emails route should show you the following:

We already have the PhoneRecord model. Generate the CRUD with the
following settings:

• Model Class: app\models\customer\PhoneRecord
• Search Model Class: Leave this field empty
• Controller Class: app\controllers\PhonesController

Our newly created CRUD at /phones should look like the following screenshot
(given that we have two records in the database already):

In all three cases, we encounter the GridView widget; we'll toy with this shortly.
But first we will carry out some cleaning.

Chapter 11

[285]

Making the common base controller for
submodels
We have three absolutely identical controllers now, except for several ActiveRecord
class names there. It's distasteful to leave such a duplication in the code, so let's see
how we can unify it.

First, pick one out of AddressesController.php, EmailsController.php, or
PhonesController.php; copy it to the @app/utilities folder; and rename it to
SubmodelController.php. Change the namespace declaration inside this file to
app\utilities and the class name to SubmodelController. Now, we are ready
to generalize the controllers for submodels.

We need the following instance variable to hold the piece of configuration that
is changeable:

 /** @var string Name of the class to be manipulated */
 public $recordClass;

This is the reason we generalize the controller's definition. The controllers created by
the CRUD generator are almost identical except for the name of the class of the active
record being manipulated. We will not add any special behavior to these controllers,
as we are perfectly happy with the default one, so we can just pass the name of the
class as a configuration setting.

Then, go to the actionIndex() method and delete it completely. We will never look
at the list of submodels separately from the root model.

Next, go to the actionCreate() method and the first line will be as follows:

 $model = new AddressRecord;

Replace this line with the following lines:

 /** @var ActiveRecord $model */
 $model = new $this->recordClass;

The first line is the hint to both your IDE, if any, and the people who'll read your
code, that you are creating an instance of at least ActiveRecord here.

At the second line, we see the application of a really high-order feature of the
PHP, when we create a class given its name as a string stored inside a variable
(string literals will not work, though).

The Grid

[286]

Take a look at the following if-else condition:

 if ($model->load(Yii::$app->request->post()) &&
 $model->save()) {
 return $this->redirect(['view', 'id' => $model->id]);
 } else {
 return $this->render('create', [
 'model' => $model,
]);
 }

Increase the readability of the previous if-else condition by replacing it with the
following command with guard case:

 if ($model->load(Yii::$app->request->post()) &&
 $model->save())
 return $this->redirect(['view', 'id' => $model->id]);

 return $this->render('create', compact('model'));

Perform the same simplification in actionUpdate():

 if ($model->load(Yii::$app->request->post()) &&
 $model->save())
 return $this->redirect(['view', 'id' => $model->id]);

 return $this->render('update', compact('model'));

Note the highlighted part. That's the only line that is different from the same block in
actionCreate(). But to remove this duplication, we'll need to rethink our approach
towards the Create and Update concepts, so we'll just let it be, especially when it's not
so important in this particular chapter.

Next, go to the findModel() method. Take a look at the following incantation inside
the condition of the if clause:

$model = CustomerRecord::findOne($id)

Replace this incantation with the following code (in the same place):

$model = call_user_func([$this->recordClass, 'findOne'], $id)

This is an obvious generalization, given that call_user_func is able to call static
methods of classes.

Chapter 11

[287]

Then, let's increase the readability of the whole findModel() method. You should
have the following code in the beginning:

 if (($model = call_user_func([$this->recordClass,
 'findOne'], $id)) !== null) {
 return $model;
 } else {
 throw new NotFoundHttpException
 ('The requested page does not exist.');
 }

And you should end with the following code:

 $model = call_user_func([$this->recordClass, 'findOne'],
 $id);
 if (!$model)
 throw new NotFoundHttpException
 ('The requested page does not exist.');

 return $model;

It's completely redundant to check whether the query results are exactly
null. We usually don't care whether it's an empty array, empty string,
zero, false, or null, as long as it's not an instance of the ActiveRecord
that we need. Not to mention that ActiveRecord::findOne(), by
definition, cannot return any other false-y value.

We now have a generic, base controller class doing the same as the controller
generated automatically by Gii, except for the mercilessly removed actionIndex()
method. Using it, we can reduce AddressesController to the following code:

class AddressesController extends SubmodelController
{
 public $recordClass = 'app\models\customer\AddressRecord';
}

The EmailsController is reduced to the following:

class EmailsController extends SubmodelController
{
 public $recordClass = 'app\models\customer\EmailRecord';
}

The Grid

[288]

And PhonesController is reduced to the following:

class PhonesController extends SubmodelController
{
 public $recordClass = 'app\models\customer\PhoneRecord';
}

Note that we need to use the fully qualified names for the ActiveRecord classes in
the world of namespaced PHP. Do not forget that you need the corresponding use
app\utilities\SubmodelController clause if you use the previous code verbatim.

Making relations from customer to address,
e-mail address, and phone
In the design of the Edit Customer form, we envisioned three tables that list the
phone numbers, e-mail addresses, and postal addresses related to the customer
in question. It would be useful if we could somehow get this information in an
easy way. After all, we have just removed actionIndex() from all of the CRUD
controllers for our submodels, and now we need a way to list them somehow.

For this task, Yii 2 has a nice feature on the active records: you can have virtual
read-only properties that will return active records related by the foreign keys
in the underlying tables.

The following method adds the relation to Phone models in CustomerRecord:

 public function getPhones()
 {
 return $this->hasMany(PhoneRecord::className(),
 ['customer_id' => 'id']);
 }

This is the relation concept in the Yii 2 framework. It has the following practical
effects for us:

• Calling $customer->phones with $customer being the CustomerRecord
instance will return an array of PhoneRecord instances that have customer_
id that is the same as $customer->id

• Calling $customer->getPhones() will return a \yii\db\ActiveQuery
instance, which we can feed to the constructor of a DataProvider to pass
as a data source for widgets

Chapter 11

[289]

This is made possible by the magic of the overridden __get() magic method.

We also need the relations to addresses and e-mails, which are done in exactly the
same manner:

 public function getAddresses()
 {
 return $this->hasMany(AddressRecord::className(),
 ['customer_id' => 'id']);
 }

 public function getEmails()
 {
 return $this->hasMany(EmailRecord::className(),
 ['customer_id' => 'id']);
 }

Apart from hasMany(), ActiveRecord also has the hasOne() method, which
accepts the same arguments, but the meaning of the second argument is changed:
in hasMany() we point from the related table to this table, but in hasOne(), we point
from this table to the related one.

Note that we don't technically need the FOREIGN KEY defined in the database tables
for this relation to work, as we specify the relation manually at the application level.
The foreign keys definition is there for two reasons:

• It's a documentation in code: anyone reading the database schema will be
able to understand that there is a logical relation between tables.

• Gii can automatically generate the relation methods based on the foreign
keys defined in tables. It generates relation methods from both sides
of the relation; that is, for the EmailRecord class, it will generate the
getCustomer() method, too.

We can skip the manual construction of these relation methods
altogether. The model generator in Gii can overwrite the already
existing model classes, and you can even look at the differences it will
introduce before that. So, given all these foreign keys in the tables
related to the customer one, if we run the model generator to generate
the CustomerRecord model again, Gii will regenerate the class
with all the relation methods necessary. You will lose the behaviors
attached in Chapter 10, Events and Behaviors, though, and you will
need to add them manually again.

The Grid

[290]

Before we actually start working with the GridView widget, we need to decide on
how we will insert the database records to see that our user interface is actually
working. We have two options:

• Insert a couple of handcrafted records manually into the database using the
console interface of MySQL. This is pretty simple, given that we carefully
ensure that the customer ID is correctly inserted to all appropriate foreign
key fields. Instead of the console interface, we can use the CRUD we
generated. Actually, removing the actionIndex() method is an unnecessary
hindrance to us in this case.

• Introduce the user interface that allows us to generate the customer
record along with all related records. This involves a lot of work with the
ActiveForm widget, and so as not to bloat this chapter too much with not-so-
related things, we decided to separate this section as Appendix B, The Active
Form Primer. If manually constructed database records aren't your style,
you are encouraged to turn to this appendix right now and implement the
described user interface.

Please understand that all of the following discussion assumes you have at least
one record in the customer table with several related records in the address, phone,
and email tables. This is a direct consequence of working and relying only on
manual testing.

FEATURE – widgets
We have seen two styles of using the Yii 2 widgets so far. The first was as follows:

$form = ActiveForm::begin();
// … lots of other code ...
ActiveForm::end();

When Gii generates the Create Record and Update Record user interfaces, it uses this
format in the _form.php partial view files.

The second was as follows:

GridView::widget([
// … lots of configuration …
]);

When Gii generates the List Records user interface, it uses the previous format in the
index.php view files.

Now we can talk about what a widget concept is in the Yii 2 ideology.

Chapter 11

[291]

To simplify things greatly, a widget is something that allows us to render a
view file inside another view file that is already being rendered. Unlike the
$this->render($viewFile) incantation inside usual view files, widgets allow
us to apply any amount of logic to rendering this subview file, which helps to
simplify the top-level view files and opens the possibility of reusing the same
pieces of content in several places on the web application. And this is surely useful.

Of course, as view files in Yii 2 are just plain PHP scripts, you can
theoretically have any amount of logic in there, and so you don't need an
abstraction of widgets. But if you use your presentation layer in such a
way, you surely deserve the consequences you will inevitably meet.

To be more specific, a widget in Yii 2 is a subclass of \yii\base\Widget, which has
several auxiliary methods defined to help you utilize the concept.

Most importantly, it has the render() method defined in itself, so it's capable of
rendering the output using the View application component.

The main logic of any widget is supposed to be hidden inside the init() and run()
methods. Any subclass of \yii\base\Widget is expected to override these methods.

When you call WidgetClassName::widget($configuration), it calls init() and
run() in succession. This way all rendering is hidden inside the widget; thus, if you
want the widget to render any output, you have to send it in $configuration.

When you call WidgetClassName::begin($configuration), it calls its init()
method and buffers all output until you call WidgetClassName::end(). At that
point, it calls its run() method, collects whatever was buffered, appends the result of
the run() method to it, and then returns the resulting string. This way you can make
reusable widgets that will decorate whatever you output between the begin() and
run() calls.

Note that both the widget() and end() calls return the rendering result as a string in
the same way Controller.render() does. Nothing will be actually printed on the
page if you don't explicitly echo it.

The base widget class has a special facility for you to be able to nest widget
invocations, so you'll be able to use begin() to begin several widgets in succession
and then use end() to end them one by one later; this will just work.

The Grid

[292]

All of the configuration we do to the widgets by passing configuration arrays to the
widget() and begin() calls is possible by the mighty Yii::createObject() method.
All configuration settings in these arrays correspond to the public properties of the
widget classes being prepared. This greatly helps in reading code by other developers
even if you don't know the widget being configured: if you encounter some setting
you don't understand, you can just go to the definition of the widget and search for the
public property with the same name. In the case of Yii 2 built-in widgets, it's usually a
lot of help, because its code base has outstanding documentation.

Creating the index page for customers
We are now ready to create the interface we spoke about at the start of
this chapter.

We will leave our UI from Chapter 2, Making a Custom Application with Yii 2, and
generate the CRUD for CustomerRecord directly this time.

Use the following configuration for the CRUD Generator:

• Model Class: app\models\customer\CustomerRecord
• Search Model Class: app\models\customer\CustomerRecordSearch
• Controller Class: app\controllers\CustomerRecordsController

Note the list of files it will generate for us:

Chapter 11

[293]

The controller named CustomerRecordsController has a folder inside views
named customer-records. Just to remind ourselves: the string customer-records
is an ID for this controller, which is recognizable by the Yii 2 engine. So actions
inside the CustomerRecordsController folder will be reachable by the /customer-
records route. We discussed this in previous chapters.

Click on the Generate button and then open the /customer-records route. Here is
what it renders with a single customer record in the database:

This is quite a simple implementation, and that's what we will be working with
through the rest of this chapter.

Making a base GridView for customers
Let's decide which columns we want in the customers table:

• ID

• Name

• Birthday

• Phones

• Emails

• Addresses

The Grid

[294]

This list is naturally sorted in order of increased complexity. Let's look at the current
autogenerated code for the customers' GridView inside the views/customer-
records/index.php:

 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],

 'id',
 'name',
 'birth_date',
 'notes:ntext',
 'created_at',
 // 'created_by',
 // 'updated_at',
 // 'updated_by',

 ['class' => 'yii\grid\ActionColumn'],
],
]); ?>

Let's note several points the Gii made to us.

First, we have \yii\grid\SerialColumn as the first column of a table. This is just
an auxiliary column that gives us row numbers. In paginated grids, this can be
quite useful, as the row number is displayed not relative to the page currently
being shown, but relative to the whole dataset from dataProvider.

Secondly, we have all the fields from CustomerRecord listed in the column
definitions, but all except the first five from them are commented out, so as not
to impact the table being rendered.

Next, note the special syntax for the notes field: notes:ntext. We'll discuss
this syntax a bit later but, in short, Yii 2 allows us to specify columns as strings
in the attribute:type:label format. This is the shorthand syntax for the full
configuration array with those three settings. It has made the ActionColumn for
us already, with default settings.

Chapter 11

[295]

And finally, we see the settings we did not see previously: the filterModel
property, to which the instance of \app\models\customer\CustomerRecordSearch
is being passed. We specified this class name when generating the CRUD in Gii, in
the Search Model Class field. We'll talk about it later, because this setting enables
filters in the table being rendered. You can see that this particular table has one
element that was absent on the GridView views we made for phones, e-mails, and
addresses in the previous section: the row with text inputs. This row is a working
filter for the table, as it was shown in Chapter 3, Automatically Generating the CRUD
Code. We'll discuss filtering later in this chapter. Now let's do something simpler:
put the pieces of information we want into this little space we have.

Changing the format of the column content
We can quite easily clean up our customer list by leaving only simple fields among
those we want to see in the table: id, name, and birth_date. The following is the
columns definition for this:

 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],

 'id',
 'name',
 'birth_date',
 ['class' => 'yii\grid\ActionColumn'],
],

In all the following code snippets, we'll omit the lines for SerialColumn
and ActionColumn for brevity. We will not touch them in this chapter
at all. But it does not mean that we will remove those lines from the code,
as the columns still should be there in the table.

The following screenshot is our starting point being rendered on the page.
Note that the columns already have automatically generated headers with
proper capitalization:

The Grid

[296]

The Id column looks identical to the serial number column; let's move it to the right-
hand side edge of the table. Also, the ISO format for dates looks really strict. We can
make it a little more attractive using the following configuration:

 'columns' => [
 'name',
 [
 'attribute' => 'birth_date',
 'format' => ['date', 'jS M, Y'],
],
 'id',
],

The DataColumn class has a property called format, using which we can declare how
to represent the data inside the cell. In the case of the date format, we can specify the
format string itself as an additional parameter. To do it, we provide an array value
to the format setting. Many other formats are not parameterized, such as ntext
mentioned previously for the notes field. In this case, we can provide either a
one-element array or string.

By default, the list of all of the formats available to you can be inferred
from the methods of \yii\base\Formatter, whose names start
with the prefix as. For example, the ntext format corresponds
to the asNtext($value) method, and date corresponds to the
asDate($value, $format) method.

Before looking at the table rendered, we can come up with a trick to increase
the usefulness of the information presented in the ID column. Let's stuff the audit
data there, using the Popover feature from Twitter Bootstrap (read about it at
http://getbootstrap.com/javascript/#popovers). But beware, we will need a
lot of code to make it work, so we will wrap this into the new column type, named
app\utilities\AuditColumn.

FEATURE – formatter
The Yii application has a special component attached, named \yii\base\
Formatter. This component encapsulates the feature of formatting the input
data according to specified rules.

The main purpose of the formatter is to provide the following method:

 public function format($value, $format)

http://getbootstrap.com/javascript/#popovers

Chapter 11

[297]

A lot of other components depend on this method of the formatter.
So if you override this component, be sure that you still have the
format() method defined, as it'll break a lot of Yii 2 otherwise.

As a $format argument for the format() method, you can pass either a string or an
array. In the case of an array, its first element should be a string. In both cases, the
string given will define the format to which $value should be converted. To perform
the actual conversion, the formatter will try to find and use its method, named as the
format given but with the prefix as. Thus, the following incantation will ultimately
call \yii\base\Formatter.asRaw($string):

Yii::$app->formatter->format($string, 'raw');

The following incantation will ultimately call \yii\base\Formatter.
asDatetime($datetime, 'Y-m-d H:i:s'):

Yii::$app->formatter->format(
 $datetime,
 ['datetime', 'Y-m-d H:i:s']
);

As has already been shown, this feature is used extensively in places where you
can specify a format for something to be rendered, such as the GridView column
declarations.

At the time of this writing, the following formats were defined at the formatter:

Name Meaning
raw This means that processing will be done to the value. Note that this is

quite useful in DataColumn, as the default format in it is text, which
turns HTML markup to visible text.

text This means that the value will be processed by the Html::encode()
call to reduce HTML tags to plain text.

ntext This is the same as text, but the result will be additionally processed
by the nl2br() method, a PHP built-in function, replacing line breaks
with the br HTML elements.

paragraphs This is the same as text, but the blocks of text separated by two or
more consecutive empty lines will be wrapped in the p HTML elements.

html This accepts the additional $config parameter. The value will be
processed by the HtmlPurifier::process($value, $config)
call. Thus, instead of making the HTML markup into visible text, we
strip it completely.

The Grid

[298]

Name Meaning
email Here, the given $value will be processed by the Html::mailto(Htm

l::encode($value), $value) call; you will get the mailto: link
with the same visible label as the e-mail itself.

image Here, the given value will be used as an src attribute of the img
element declaration, which will be returned. This is useful when
you have a URL to the image and want to automatically create the
 tag from it on the resulting HTML page. Note,
however, that you don't have any control over other properties of the
resulting img element (at the moment of writing, at least).

url Here, the given value will be used as a href attribute of the a element
declaration, which will be returned. The omitted http:// prefix
will be inserted if needed. This is useful to convert URLs to clickable
links but note that you don't have any control over other properties of
the resulting a element (the same as with image formats).

boolean If given the false-y value (anything that evaluates to false), it
will return the string No, localized to the current application locale.
Otherwise, it will return the localized string Yes. You can change the
booleanFormat property of Formatter to your own definition of
["No", "Yes"]. It should be a two-element array.

date This converts the given value to the date format given as a second
argument. If no format is explicitly given, the dateFormat property of
Formatter will be used. This method accepts strtotime()-parsable
strings, integer Unix timestamps, and DateTime objects.

time This is the same as date, but the timeFormat property of Formatter
will be used by default.

datetime This is the same as date, but the datetimeFormat property of
Formatter will be used by default.

integer This converts the given value to a string containing its integer
representation. Note, however, that it works differently from a
simple typecast to the int type. Check the definition of \yii\base\
Formatter::asInteger to understand exactly how it performs
the conversion.

double This converts the given value to the string representation of a floating-
point real number. You can specify the number of digits after the
decimal separator; if you don't do that, the default of two digits will
be used. The default decimal separator is the dot (.) symbol, but you
can specify another symbol in the decimalSeparator property of
Formatter.

Chapter 11

[299]

Name Meaning
number This processes the given value with the number_format() PHP built-

in. You can pass the number of digits after the decimal separator as an
argument, with the default as 0. The decimalSeparator property of
Formatter will be used to set the symbol for the decimal separator,
with the default being the . symbol. The thousandSeparator
property will be used to set the symbol for thousands, with the default
as the , symbol.

size This treats the given value as the number of bytes and tries hard
to describe this number in larger byte sizes, such as kilobytes or
megabytes. The additional argument to this format is a flag declaring
whether we should use short names of sizes (such as B, KB, MB, and
TB) or full names (such as bytes, kilobytes, megabytes, and so on). This
defaults to false, which means short names. Look at the definition of the
sizeFormat property of Formatter to see other options to control
this format.

relativeTime Here, given value is treated as the date/time definition, and the
additional argument is treated as the other date/time definition, with
the default as of now. This returns the textual description of the time
interval between those definitions. You can pass timestamps, strings
parsable by the strtotime() PHP built-in, and DateTime objects
as both value and additional argument. Additionally, you can pass
the instance of DateInterval or string acceptable by the constructor
of this type as the value to be processed. In this way the additional
argument will be ignored. Look at the definition of \yii\base\
Formatter::asRelativeTime to see which localized strings this
formatter uses.

Making the custom GridView column for the
customer audit info
We imagine very simple-looking cell content for the new column type. It will show
the ID of the record, and then it will show the special icon. By clicking on that icon,
one can see the popover with the information shown in the following screenshot:

The Grid

[300]

We will override the DataColumn class. Let's create the app\utilities\
AuditColumn class inside the AuditColumn.php file at utilities:

namespace app\utilities;

use yii\grid\DataColumn;

class AuditColumn extends DataColumn
{
 // future code here
}

In Yii 1.x and PHP 5.3, it was quite tedious to make a custom column class, because
it usually involved overriding the renderDataCellContent method, carefully
preserving the default supplementary code it included.

In Yii 2, the column class has a powerful property called content that accepts
arbitrary objects of the callable type and passes the following arguments to it,
in the order given:

1. The data object returned from the DataProvider for this row. In the case
of ActiveDataProvider, it'll be the ActiveRecord instance; in the case of
ArrayDataProvider, it'll be the associative array.

2. The key associated with this row by DataProvider. In the case of
ActiveDataProvider, it'll usually be the values of the field declared as the
primary key for the corresponding database table.

3. The zero-based number of this row among all returned by DataProvider.
4. Finally, the whole instance of the column itself.

To have visual identification, the manual setting of the content of the column looks
like the following:

$column->content = function ($model, $key, $index, $column) {
 return "contents for the table cell as string";
}

This property provides an opportunity to make very clean and simple solutions
for us.

Of course, if you want to customize the contents of the header or filter
cells in some DataColumn, you're out of luck and have to override the
\yii\grid\DataColumn::renderHeaderCellContent and \
yii\grid\DataColumn::renderFilterCellContent methods,
correspondingly. They have a lot of convoluted logic inside, so it'll not
be a joyful ride. It's quite rarely needed, though.

Chapter 11

[301]

We will not show the full step-by-step refactoring process that leads us to the
resulting code, as it would be too long; only the end result will be presented.

The init() method in AuditColumn would be the most suitable to initialize the
content property. Let's write the following simple code to it:

 public function init()
 {
 $this->content = [$this, 'makeAuditCellContent'];
 }

The makeAuditCellContent method will be the place where we'll construct our cell
internals. This method should be at least of protected visibility, or else our column
will not be able to call it (the one performing the call_user_func call will be the
parent DataColumn class).

This method looks as follows:

 protected function makeAuditCellContent($model)
 {
 $id = $this->formatID($model);
 $audit = $this->makeAuditPopoverElement
 ($this->getAuditValues($model));

 return sprintf('%s %s', $id, $audit);
 }

We don't need anything special in there. The cell will be composed of the prettified
ID and the symbol to call the popover with audit info.

By prettifying the ID, we mean just making it a seven-digit number padded
with zeros:

 protected function formatID($model)
 {
 return sprintf("%07d", $model->id);
 }

From the documentation about popovers in Twitter Bootstrap (http://
getbootstrap.com/javascript/#popovers) and after taking a quick look at the
icons bundled in there (http://getbootstrap.com/components/#glyphicons-
glyphs), we infer that we need the following HTML code for the icon to reveal the
audit info:

<span class="audit-toggler glyphicon glyphicon-list"
 data-toggle="popover"
 data-html="true"

http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/javascript/#popovers
http://getbootstrap.com/components/#glyphicons-glyphs
http://getbootstrap.com/components/#glyphicons-glyphs

The Grid

[302]

 data-title="Audit"
 data-content="...">

This can be converted to the following function, creating an HTML code for
popover toggler:

 protected function makeAuditPopoverElement($values)
 {
 return Html::tag(
 'span',
 '',
 [
 'class' => 'audit-toggler glyphicon
 glyphicon-list',
 'data-toggle' => 'popover',
 'data-html' => 'true',
 'data-title' => 'Audit',
 'data-content' =>
 $this->makePopoverContent($values)
]
);
 }

Don't forget to insert the use yii\helpers\Html clause at the beginning of the file.
The contents that the makePopoverContent() method makes would be as follows:

• Created At (in bold): This is the date of creation in the PHP's Y-m-d
date format

• Created By (in bold): This is the username of the user who was blamed
for the creation

• Updated At (in bold): This is the date of the last update in PHP's Y-m-d
date format

• Updated By (in bold): This is the username of the user who was blamed
for the last update

This is a lot of repetition, so let's become functional and write the following code
creating the contents of the popover:

 protected function makePopoverContent($values)
 {
 $formatter = function ($pair) {
 return sprintf(
 "<div>%s: %s</div>",
 $pair[0],

Chapter 11

[303]

 $pair[1]
);
 };

 $appender = function ($accumulator, $value) {
 return $accumulator . $value;
 };

 return array_reduce(array_map($formatter, $values),
 $appender, "");
 }

This is a lot more high-order than anything else written in this book, but the intent
should be obvious: we make a single line of audit information in the previous
format by the $formatter function and then append all the lines into a single string
by array_reduce. The definition of $formatter suggests that $values, which is
converted into the text contents of the popover, is an array of arrays. The inner arrays
are two-element arrays, and we call them $pair. Each such pair consists of a label
(that should be presented in bold) and a value (presented after the colon). Here is
how we construct this value list:

 protected function getAuditValues($model)
 {
 return [
 [
 $model->getAttributeLabel('created_at'),
 date('d.m.Y', $model->created_at)
],
 [
 $model->getAttributeLabel('created_by'),
 UserRecord::findOne($model->created_by)->username
],
 [
 $model->getAttributeLabel('updated_at'),
 date('d.m.Y', $model->updated_at)
],
 [
 $model->getAttributeLabel('updated_by'),
 UserRecord::findOne($model->updated_by)->username
]
];
 }

This concludes the generation of the HTML contents for our new audit column.

The Grid

[304]

In the documentation for popovers in Bootstrap, it is said that we have to enable
this JavaScript plugin manually. We have the asset named BootstrapAsset as
the dependency for our \app\assets\ApplicationUiAssetBundle, but it holds
just the CSS file for the bootstrap. To also include the JavaScript part of Twitter
Bootstrap, we have to depend on another asset bundle, named yii\bootstrap\
BootstrapPluginAsset.

Let's just create a small asset bundle for our audit column. Create the assets/
AuditColumnAssetsBundle.php file with the following class definition:

namespace app\assets;

use yii\web\AssetBundle;

class AuditColumnAssetsBundle extends AssetBundle
{
 public $sourcePath = '@app/assets/audit-column';
 public $css = [
 'styles.css'
];
 public $js = [
 'scripts.js'
];
 public $depends = [
 'yii\bootstrap\BootstrapPluginAsset',
];
}

Inside the assets/audit-column/scripts.js file, we write the following:

$(".audit-toggler").popover();

This will enable our popovers, as they have to be enabled manually. Inside the
assets/audit-column/styles.css file, we write the following code:

.audit-toggler {
 cursor: pointer;
}
.audit-toggler:hover {
 outline: 1px solid cyan;
}

This will bring a bit of style to the button.

Chapter 11

[305]

Let's also make ApplicationUiAssetsBundle depend on the new assets bundle
as follows:

class ApplicationUiAssetBundle extends AssetBundle
{
// … other declarations...
 public $depends = [
 'yii\bootstrap\BootstrapAsset',
 'yii\web\YiiAsset',
 'app\assets\AuditColumnAssetsBundle',
];
}

After you have prepared the asset bundle, register it at the end of the AuditColumn.
init() method as follows:

 app\assets\AuditColumnAssetsBundle::register
 ($this->grid->view);

Do not forget to rerun the assets minifier if you have set it up in Chapter 8,
Overall Behavior.

In fact, we could just place two commands at the end of the init()
method instead of registering the whole asset bundle:

$this->grid->view->registerJs(
 '$(".audit-toggler").popover();'
);
$this->grid->view->registerCss(
 '.audit-toggler { cursor: pointer; }
 .audit-toggler:hover { outline: 1px solid cyan; }'
);

Such lines can drive any maintainer crazy. You can just imagine more
than five such custom widgets through the web application having 50
different view files and who knows how many controller actions. When
they start conflicting with each other or, even worse, other code becomes
dependent on their styles or scripts, the only option your colleagues will
present to you at some point is to rewrite the UI from scratch.
Do not just blindly initiate the registerCss and registerJs calls in
random places like this. In any real-world project, you should always care
about separation of concerns, and your assets should be encapsulated
somewhere else.

The Grid

[306]

Let's also put the Audit label in the header cell by adding the following line at the
beginning of the init() method:

$this->label = $this->label ?: 'Audit';

With the AuditColumn class defined, we can reference it among the columns inside
views/customer-records/index.php:

 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 'first_name',
 'last_name',
 [
 'attribute' => 'birth_date',
 'format' => ['date', 'jS M, Y'],
],
 ['class' => 'app\utilities\AuditColumn'],
 ['class' => 'yii\grid\ActionColumn'],
],
]); ?>

Finally, we open the /customer-records route, and we should see the
following screenshot:

Note that this column does not have either filtering or sorting capabilities.
We'll address this problem later.

Chapter 11

[307]

Compressing submodels related to
customers into single columns
The most problematic part of the customer information is the availability of multiple
addresses, phones, and e-mail IDs. One way to simplify the representation for them
is to write, for example, all phones in a single table cell. The same is the case with
addresses and e-mail IDs.

We'll solve this issue in a more simple way than making the custom column class.
The following is the full code to meditate on:

 [
 'label' => 'Addresses',
 'format' => 'paragraphs',
 'value' => function ($model) {
 $result = '';
 foreach ($model->addresses as $address) {
 $result .= $address->fullAddress . "\n\n";
 }
 return $result;
 }
],

We are utilizing the paragraphs format described before. It will treat all blocks of
text delimited by two newlines as p elements and, as a value, we'll produce the string
with combined addresses separated by two newlines. The only thing we don't have
yet is the fullAddress property on the AddressRecord model. The following is the
definition of the AddressRecord.getFullAddress() method we need:

 public function getFullAddress()
 {
 return implode(', ',
 array_filter(
 $this->getAttributes(
 ['country', 'state', 'city', 'street',
 'building', 'apartment'])));
 }

The magic getter in ActiveRecords will call the getFullAddress() method when
we try to read the nonexistent fullAddress property.

In the same way, we can create the Emails and Phones column, except that we
don't need a virtual aggregating field and can directly use address and number
fields, respectively.

The Grid

[308]

FEATURE – GridView columns
So, GridView is composed of column entities. This concept is implemented by
the \yii\grid\Column class. Each column conceptually consists of the following
four elements:

• The header row, in which the label for the column is written. Yii 2 places the
header properly inside the thead HTML element. The header is rendered by
the \yii\grid\Column::renderHeaderCell method.

• The filter row, in which the input fields are presented for you to specify
the filtering condition on the dataset. It's inside the second row of the
same thead element. The filter is being rendered by the \yii\grid\
Column::renderFilterCell method.

• The body rows, which hold the values to be rendered in the tbody element
of the GridView in question. The body rows are being rendered by the \yii\
grid\Column::renderDataCell method.

• The footer row, which is being rendered in the tfoot element. The footer
row is rendered by the \yii\grid\Column::renderFooterCell method.

We have already shown that you can just use the content property of the \yii\
grid\Column class to do some quite heavy processing on the data cells of the
column. But if you have to do the same amount of custom rendering inside the other
three parts of a column, you have to override those methods (and read their default
implementation beforehand, of course).

When GridView is rendering itself, it goes through the list of columns in its columns
property and initializes everything listed there. If the column is specified as an
array, it is being send to Yii::createObject() directly. Note that the default class
assumed is \yii\grid\DataColumn, not plain column.

If the column is specified as a string, this string is treated as follows, in the
given order:

• attribute:format:label

• attribute:format

• attribute

• InvalidConfigException

The InvalidConfigException is, of course, not a value, but what you'll get in the
event that there's no such attribute on the model being rendered.

Chapter 11

[309]

The label is what will be put into the header cell. The format is the identifier of the
format for the formatter component. The attribute is either the name of an attribute
of ActiveRecord in the dataset returned by DataProvider or, in the case of
associative arrays, the key inside the array.

DataColumn differs from a bare column by relying on the ActiveRecord mechanics.
Unlike column, it has the renderFilterCell method fully defined, and it is able to
automatically generate the header cell. It even places a link to perform the sorting
request inside the header cell, if applicable.

The following is the list of all column types built into Yii 2 (there are not many
of them):

• The \yii\grid\CheckboxColumn column type renders the checkbox as a
data cell. This is useful to enhance the JavaScript-backed rich UI, because you
can get the row keys for the rows with checked checkboxes.

• The \yii\grid\ActionColumn column type is an enormously useful column
type that allows you to put a column inside the table, which will hold
arbitrary buttons. By default, it renders three buttons view, update, and delete,
which you have seen already. You define the buttons available to render in
this column using the buttons property of this class, and you define how
they should be placed relative to the column contents using the template
property.

• The \yii\grid\DataColumn column type has already been discussed in
great detail, and we'll explore its filtering and sorting feature in the next
sections. It allows you to output the attribute values of the objects from the
dataset returned by DataProvider and passed to GridView.

• The \yii\grid\SerialColumn column type just provides you with a column
with a counter displaying a row number among the rows in the whole
dataset, which is useful in many domains. This counter is not related to the
primary key of the ActiveRecord being rendered in any way, as we have
already said.

And you can always just use the base column class with its universal
content property.

You are encouraged to read through the excellent Yii 2 documentation about the grid
columns and learn about how to use the action column yourself (it's the most useful
column right after DataColumn), or just read the DocBlocks inside the source code.

The Grid

[310]

Implementing filtering inside GridView of
customers
By now, after implementing the Emails and Phones columns, you should have the
following table:

You can see that some columns have the filter row (Name and Birth Date) and some
do not. We'll make two changes to this table in this section: first, we'll add filtering
by ID in the Audit column (which is easy), and second, we'll add filtering by country
in the Addresses column (which is a lot harder).

If you try the filtering feature, you'll see that it works as follows:

1. Enter some text in the input field in the filter row.
2. Hit Enter, or make the input field lose focus any other way.
3. The whole page gets reloaded.
4. In the reloaded page, there are only rows corresponding to the

filtering condition.

Let's see what URL we end up with after filling the previous table with the string
Kasey in the filter for the Name column:

/customer-records
 ?CustomerRecordSearch[name]=Kasey
 &CustomerRecordSearch[birth_date]=

Chapter 11

[311]

You probably thought right then: "Hey, but that's just a GET request, and
all this filter thing should be a plain HTML form with some JavaScript in
place." Note that we are passing not $_GET["CustomerRecord"], but $_
GET["CustomerRecordSearch"]; not the ActiveRecord we have generated in the
model generator, but the search model generated by the CRUD generator. Let's look
at the implementation of CustomerRecordsController.actionIndex() now:

 public function actionIndex()
 {
 $searchModel = new CustomerRecordSearch;
 $dataProvider = $searchModel->search
 (Yii::$app->request->getQueryParams());

 return $this->render('index', [
 'dataProvider' => $dataProvider,
 'searchModel' => $searchModel,
]);
 }

Indeed, the index controller action is not just the list of all CustomerRecords to
show; it has querying capabilities built-in.

The idea is simple. In the view file for the index action, we will render GridView,
which requires a DataProvider class instance. Obviously, we'll create this
DataProvider in the controller action, before rendering the view.

The special search model will perform the generation of the DataProvider class
instance required. As we have seen before, you can create DataProvider based on
ActiveQuery. So, as is stated on the second line of actionIndex, we just grab all of the
GET parameters and pass them to the search model; it will construct the appropriate
ActiveQuery to load into DataProvider and return the provider to us. No parameters
means unrestricted DataProvider, returning all records from the database.

We pass the search model used to the view file (and subsequently, to GridView
inside it), so the filter row will display the filtering conditions to us. Also, the very
presence of the search model serves as a trigger to show the filter row at all. No
search model passed, no filter row rendered. If the filterModel property of the
GridView instance will not be set to some search model, we'll get no filter row.

Let's open the CustomerRecordSearch.search() method:

 public function search($params)
 {
 $query = CustomerRecord::find();

 $dataProvider = new ActiveDataProvider([
 'query' => $query,

The Grid

[312]

]);
 if (!($this->load($params) && $this->validate())) {
 return $dataProvider;
 }

 $query->andFilterWhere([
 'id' => $this->id,
 // … same lines for birth_date, created_at,
 created_by, updated_at and updated_by ...
]);

 $query->andFilterWhere(['like', 'name', $this->name])
 ->andFilterWhere(['like', 'notes', $this->notes]);
 return $dataProvider;
 }

This is the canonical preparation to filter the GridView in question.

Note the highlighted line. This is an important guard case, as it states that, if no data
for the CustomerRecordSearch model was passed as an input argument or if it was
malformed, we return the DataProvider class instance with a blank ActiveQuery,
filtering nothing.

The next lines are somewhat sneaky in the sense that we modify the object already
passed as an input argument to another object. This is quite dangerous in general.

First we add the where conditions for comparing the non-textual fields, using the
special andFilterWhere() method. Then we add the where conditions for non-strict
comparing of textual fields, using the same method but with a different syntax for
input arguments.

This is the real power of the search() method. We have all of the functionality of
the ActiveQuery class, and the whole class of the corresponding search model to
use. This allows us to make arbitrarily complex filters. More than that, we are not
restricted to only GridView views here, as we can pass the resulting DataProvider
instance to anything that accepts them.

To enable filtering by the id attribute inside our new audit column, we need a
laughably small change in the code base. All we need is to tell this column class
which attribute it corresponds to, that is, fill its attribute property. We can pass the
id value when declaring the audit column in the columns property of the GridView
instance, as follows:

 [
 'class' => 'app\utilities\AuditColumn',
 'attribute' => 'id'
],

Chapter 11

[313]

We can also be more obstinate and initialize this property at the start of the
AuditColumn.init() method as follows:

 $this->attribute = $this->attribute ?: 'id';

We'll not be as obstinate as we could be and will allow overriding of the attribute
property in the column's declaration after all. Now we are able to filter by ID:

Now let's implement a more interesting filtering condition: by country name in the
Addresses column.

First, we'll need to define a virtual attribute of the CustomerRecordSearch model,
that is, an attribute that does not exist among the fields of the customer table but will
be treated as such by the filtering mechanics.

To define a virtual attribute, we need to do two things. First, we need to declare it as
public on the CustomerRecordSearch model:

 public $country;

Second, we need to mention it among any validation rules, except the safe =>
false one. The point is, you need to declare this attribute safe for use by the user
interface. Let's use the safe rule that is already there in the model class:

 public function rules()
 {
 return [
 // … not interesting lines omitted...
 [[/* … other fields ... */, 'birth_date', 'notes',
 'country'], 'safe'],
];
 }

The Grid

[314]

OK, as we need to filter by the value of the field in the related table, we obviously
need to join some tables in the SQL query under ActiveQuery. Fortunately, we
have exactly the right method to use, named joinWith(), that tells ActiveQuery
to take into account the relation, defined in the base ActiveRecord. Read the
documentation for the joinWith() method for intricate details. As we have defined
the getAddresses()method for this inside the CustomerRecord class, our relation
is named addresses, so, let's call joinWith() at the end of the search() routine
(before the return clause, of course):

 $query->joinWith('addresses');

And after that, as we have the address table joined by LEFT JOIN, we can just add
the same search condition we have seen for other textual attributes as follows:

 $query->andWhere(['like', 'address.country',
 $this->country]);

If the JOIN clauses in SQL queries make you shudder because of a
possible performance hit, you can add the simple guard case around this
whole condition:

if ($this->country)
{
 $query->joinWith('addresses');
 $query->andWhere(['like', 'address.country',
 $this->country]);
}

But, be aware that you should always check such changes in the profiler.
For example, exactly this change (joining only when the country name is
passed to the query) actually increased the number of queries made by
Yii 2 ORM to the database when authors checked it in the Database Queries
section of the Debug Panel Extension.

We also should correct the filtering condition on the id field in the same
CustomerRecordSearch.search() method, because of the same LEFT JOIN.
We need to be more specific so that the ActiveQuery backend will be able to
understand precisely which id you want to compare. Have a look at the
following code:

 $query->andFilterWhere([
 'customer.id' => $this->id,
 'birth_date' => $this->birth_date,
 // … other declarations ...
]);

The highlighted part is to be inserted.

Chapter 11

[315]

With the CustomerRecordSearch model improved like this, we can now declare that
the Addresses column actually corresponds to the country attribute:

 [
 'attribute' => 'country',
 'label' => 'Addresses',
 'format' => 'paragraphs',
 // … long irrelevant definition of the value
 skipped ...
],

And we get the filtering by country name in there:

You can note that LEFT JOIN with the one-to-many relationship
actually produces partially duplicated rows in the resulting dataset.
However, as you can see in the GridView after the described changes,
ORM in Yii 2 automatically takes care of it, so you are able to see only
the distinct top-level records in the table rows and are able to use all of
the related records, as you wish.

The Grid

[316]

Implementing sorting inside GridView of
customers
It's time now to uncover the truth behind the color coding of the labels in the header
of GridView. The blue headers are links. By clicking on them, you trigger sorting
of the table: the page is being reloaded and the rows are reordered according to the
column targeted. The first click on the header performs the sorting by this column in
ascending order, the second click sorts in descending order, and all successive clicks
toggle the order. Clicking on any other header sorts by the corresponding column
again in ascending order.

Let's look again at the URL we end up with after the click on the Name
column header:

/customer-records/index?sort=name

The second click on the same header moves us to the following route:

/customer-records/index?sort=-name

If a filter is active, we'll get something like the following code:

/customer-records/index
 ?CustomerRecordSearch[name]=
 &CustomerRecordSearch[birth_date]=
 &CustomerRecordSearch[country]=
 &CustomerRecordSearch[id]=1
 &sort=- name

It can be clearly seen that sorting and filtering are integral parts of the GridView UI,
and they can work together. But we have already seen the complete implementation
of the actionIndex() method, and there was nothing that accepted the sort
parameter, right? In fact, GridView, with some support from DataProvider, cheats
on us here.

The sorting activity is encapsulated in the \yii\data\Sort class in Yii 2. The
configured instance of this class can be attached to the DataProvider instance to
tell it how it should order the resulting dataset. If the Sort instance is not defined
specifically, ActiveDataProvider will configure sorting by all attributes available
in the ActiveRecord instance in question. All other data providers will just use
whatever order the underlying database used.

Chapter 11

[317]

While Sort objects have quite a lot of properties, we are mostly interested in
sortParam and attributes. If you read the source code of the Sort class, you will
see that the default value of sortParam is sort, exactly what GridView is passing
to actionIndex() in the first URL example presented four paragraphs earlier. The
attributes property holds the description of how the DataProvider class instance
can potentially sort the dataset.

The idea is this: we configure the Sort object attached to the DataProvider class
instance, describing to it the various options to sort the dataset. Afterwards, we can
tell this Sort object that we need to sort in some way; if this way was configured
previously, the Sort object will instruct its parent, the DataProvider class instance,
about the ordering of the resulting dataset. That's quite an inverted flow of control,
but it allows Yii 2 to hide the cheating inside the Sort object where it should belong
and not leak it to the DataProvider component.

According to these explanations of the process, you should perform the sorting in the
following way:

$query = $this->makeSomeQueryForActiveRecords();
$sort = new Sort;
$sort->sortParam = 'sort'; // only for clarity, it's default value
anyway
$sort->attributes = $this->makeDescriptionsOfKindsOfSorting();
$dataProvider = new ActiveDataProvider(compact('query', 'sort'));
// … some time later, maybe ...
$dataProvider->sort->params = ['sort' => 'one-of-kinds-defined-in-
 attributes-property'];
$models = $dataProvider->getModels();

After that, $models are the iterable collections of the ActiveRecord objects sorted by
the attribute passed as $dataProvider->sort->params['sort'].

The cheating here is this: as GridView cannot go so deep inside the DataProvider
class instance, and to relieve developers of the burden of fiddling with this low-level
detail in the controller actions, just as with filtering, Sort, when it's time to decide on
the ordering, just goes to the Request Application component and asks for the GET
parameters passed by the client. This is an amazing violation of the borders between
abstractions, of course, but it's what allows us to use the convenient UI to sort in
GridView. At the time of this writing, it can be seen how exactly it's done inside the
\yii\data\Sort::getAttributeOrders method, which is ultimately called by \
yii\data\ActiveDataProvider::prepareModels, required for the call to \yii\
data\BaseDataProvider::getModels.

The Grid

[318]

So, let's solve two exercise problems, again one easy and one not so easy. As an easy
task, let's implement sorting by our Audit column; as a hard task, let's implement
sorting by the Addresses column and the Emails column.

Let's see what we have right now:

Wait, what? The Audit column header is a blue link, and it sorts the table already!

That's right. When we wanted to enable the filtering by the id attribute, we declared
the attribute setting for the Audit column. This was enough to also enable sorting
by the same attribute.

As we said earlier, if there's no specific configuration for the sort setting of
ActiveDataProvider, it creates an empty Sort instance and then actually goes to
the model, fetches all its declared attributes, corresponding to the database table
columns, and installs them one by one to the attributes setting of the Sort object.

This has a nice side-effect: you can sort GridView by fields not
visible as a table column, but existing in the underlying database
table. For example, open the following file:

/customer-records/index?sort=-created_at

This will get the table reordered. The rows should be in decreasing
order of the IDs in the Audit column, as the customer.id field is
automatically incremented and later records obviously have a later
creation timestamp.

That was too easy, really. However, with our setup, we can implement sorting by
country name quite easily, too.

Chapter 11

[319]

From all the explanations so far, it's pretty clear that we need to configure the data
provider to enable custom sorting. So, the best place to place our changes will be the
CustomerRecordSearch.search() method again.

It's quite important to understand at this point that the actual sorting
done by the data provider will be performed by carefully constructing
the SQL query on the side of the database. The data provider itself will
not reorder records in the fetched dataset by means of PHP!

After a quick peek at the documentation for the \yii\data\Sort::$attributes
property to learn the precise configuration syntax, let's append the definition of
sorting by country name to the search() method:

 $dataProvider->sort->attributes['country'] = [
 'asc' => ['address.country' => SORT_ASC],
 'desc' => ['address.country' => SORT_DESC]
];

We are appending to the already-filled attributes property; otherwise, we will
need to rewrite definitions of sorting by other attributes again. It's absolutely crucial
that you put this configuration command before the guard case shown in the
previous section:

 if (!($this->load($params) && $this->validate())) {
 return $dataProvider;
 }

Otherwise, you'll end in a silly situation when you will have sorting enabled only
when the table is filtered in some way. Also, the $query->joinWith('addresses')
invocation should be moved up there, too, so it doesn't just work when there's some
filtering condition.

This line is all we need to enable sorting by country. If you reload the page with
GridView on it, you should note that the Addresses label turned into a blue link and
really reorders the table after a click. The resulting order can look quite strange and
non-obvious, though, because the database sorts the table made by LEFT JOIN, and
Yii 2 then collapses this table behind the scenes.

The Grid

[320]

We can add sorting by the emails attribute by doing exactly the same, except we
need to tell ActiveQuery to join another table to the party:

 $query->joinWith('emails');
 $dataProvider->sort->attributes['email'] = [
 'asc' => ['email.address' => SORT_ASC],
 'desc' => ['email.address' => SORT_DESC],
];

A similar code for countries worked without other additions, because we already
declared the Addresses column to correspond to the virtual country attribute while
implementing filtering. The Emails column doesn't have the attribute declaration
yet, and this is the only thing left to do:

 [
 'attribute' => 'email',
 'label' => 'Emails',
 // … collapsing declared here ...
],

After inserting the highlighted line of code into the view file and reloading the page,
you'll get sorting by the Emails column too. Note that here we do not need to declare
the virtual email attribute on the CustomerRecordSearch class as we have to do
when implementing filtering. This is because just the side-effect of declaring this
setting is enough to turn the header label into a link for sorting, which is all we need
here. If we need filtering, making a virtual attribute will become mandatory.

In this chapter, we have not written a single line of testing code. In part,
it was because there was no business logic at all. Partially, it was because
the only way we could test the work we have done is through end-to-end
acceptance tests. The GridView widget presents a feature set so large that
the end-to-end test suite needed to cover all of it would be absolutely
tremendous. So, all the code we have produced in this chapter is a legacy
you put into your application, destined to be tested manually.

This is the lesson we wanted to teach you in this chapter while dropping
the ATDD approach: you can construct an amazing UI really quickly
by blindly using the Yii 2 capabilities everywhere. But you should
understand that you willingly trade the confidence that all of your
code works as expected for the speed of developing a UI. If you are still
unsure or unclear about the meaning of this tradeoff, then imagine what
you will need to do several years later in the application lifetime, when
Yii 2 becomes Yii 3 or Twitter Bootstrap should be suddenly replaced by
something like Foundation (see http://foundation.zurb.com/).

http://foundation.zurb.com/

Chapter 11

[321]

Summary
Thus, our adventure into the world of setting up tabular interfaces has come to an
end. At this point, you probably want to turn to Appendix B, The Active Form Primer,
which will continue from there and show the development of the UI to update our
CustomerRecord model along with all its submodels.

The GridView widget is an enormously complex component of the Yii 2 framework.
It's not a widget anymore in the usual sense of widget; it's a complete user interface
for managing datasets in a tabular format. A lot of moving parts are involved in
its functioning.

We covered a lot of ground in this chapter, that is, we performed the following:

• Aggressively autogenerated the CRUD interface for a set of database tables
related to each other by foreign keys

• Shamelessly used the bootstrap styles for our UI
• Quickly snapped together the whole custom GridView column to be able to

click on the icon and be proud of the tooltip that appeared
• Made major customizations blazingly fast to the appearance of the data in

GridView by writing custom callbacks to render cell content
• Were amazed at how easy it is to implement simple and not-so-simple kinds

of filtering and sorting inside GridView

And a couple of not-so-great achievements were also performed.

At the same time, we glossed over a lot of mechanics we used in this chapter.
Among them are:

• Other types of GridView filters, such as dropdowns. We are able to put
custom HTML there!

• JavaScript bindings to the events happening in the table. The concept of row
keys and how we can use them in our rich UI.

We have to have some kind of scope, and this book is not an all-encompassing
reference anyway.

The next chapter, the last-but-one chapter of this book, will be dedicated to the
routing system in the Yii 2 framework. Finally, here will be two real-world features,
that we'll implement in our example CRM application.

Route Management
In this chapter, we will explore how the Yii 2 routing system works, that is, how the
framework responds to different URL routes requested from it.

We'll start with the description of the process that the Yii application performs to
determine the controller action to execute in response to client requests. Then, we
will implement a small feature, which will demonstrate how we can control our
routes using just the application configuration.

And lastly, we'll implement one particularly interesting feature that will require
our own custom rule class and show the considerations while doing so.

Yii 2 routing 102
We have seen Yii 2 routing 101 in Chapter 2, Making a Custom Application with Yii 2,
and this section is an extension of it.

As we already know, everything in Yii 2 starts with the entry-point script, which in
our example application is web/index.php. This script should be the only PHP script
in the directory published by the web server.

As everything comes to this script, all routes we used in the 10 chapters (excluding
Chapter 1, Getting Started, discussing the installation of the framework) look as follows:

protocol://domainname/path/to/
 index.php?r=module/controller/action¶m=value&etc

Route Management

[324]

So, any request is being processed by accessing the index.php file, and passing it
the further route inside the application as the GET parameter named r. This name is
configurable in the \yii\web\UrlManager::$routeParam property, so the following
configuration snippet will set the name of the route parameter to icecream:

[
 'components' => [
 'urlManager' => [
 'routeParam' => 'icecream'
]
]
]

Such fiddling is irrelevant in most cases, though, because we have two other
properties, UrlManager: enablePrettyUrl and showScriptName, the usage of
which we discussed in the Routing 101 section in Chapter 2, Making a Custom
Application with Yii 2:

• The enablePrettyUrl property effectively removes the ?r= part from
the URLs acceptable by the application. What was accessible by index.
php?r=module/controller/action will be accessible by just index.php/
module/controller/action. But in addition to that, it enables the support
to define custom rules of parsing and generating routes. Basically,
it completely changes the way the Yii application handles requests.

• The showScriptName property, when set to false, will prohibit the URL
manager from adding the script name to the URLs it generates. The actual
name of the entry-point script is irrelevant; it's inferred from the current
$_SERVER settings automatically.

Practically speaking, you will almost always use the following combinations of
the parameters:

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
]

The only downside of this approach is that you have to configure your web server
to send all requests to your entry point, like the following Apache rewrite directive:

RewriteRule . index.php

Chapter 12

[325]

Note that the enablePrettyUrl modes are incompatible. If you are using pretty
URLs, you cannot request your application using the ?r=:route notation and
vice versa.

Getting the actual route from the request string is just the first step in the Yii 2
routing system.

As discussed in the The informal concept of reachability section in Chapter 7, Modules,
the route concept boils down to the following string:

/moduleid/moduleid/.../moduleid/controllerid/actionid

This string allows the framework to guess which controller action it should execute.
If there is no moduleid, then the application itself is considered as a target module.

When we have enablePrettyUrl set to true, though, we are able to define special
URL rules to parse client requests to the application. In fact, we are able to use
arbitrary strings as routes in our system.

There are three ways to control routes, which are as follows:

• Names of modules, controllers, and actions
• Custom rule definitions inside the components.

urlManager.rules setting of the Yii application
configuration

• Custom rule classes referenced inside the same setting

FEATURE – routing using names of
modules, controllers, and actions
Unless you make really convoluted URL rules using the other two options (custom
URL rules and custom URL rule classes, see the end of the preceding section),
you can rely on the basic path format Module ID – Controller ID – Action ID with
arguments to the action being inside the request parameters. This already gives you a
lot of power and is suitable in most cases. By carefully and thoughtfully choosing the
names of modules, controllers, and actions, you probably will never need to define
any other routing rules.

Inside the module, you have the controllerMap property, which allows you to
assign controller IDs to specific controller classes manually.

Route Management

[326]

Otherwise, controllerNamespace works as a fallback mechanism. The controller
ID will be used to infer the expected controller class name, and the namespace in
controllerNamespace will be used to find the physical location of the file holding
its definition.

The controller ID is converted to the controller class name using exactly
the following conversion:

$className = str_replace(' ', '', ucwords(str_replace
 ('-', ' ', $className))) . 'Controller';

That is, the dash-separated format of the ID becomes replaced by the
uppercase format of the class name, and additionally Yii 2 expects that the
controller class name will end with the string Controller.

Inside the controller, you have similar mechanics. Using the actions property (never
before discussed in this book), you can assign action IDs to specific controller action
classes, which are descendants of \yii\base\Action.

If there are no actions declared this way, the controller will use its public methods,
the names of which start with the string action, as actions. This is called inline
action. In fact, when you request the user/view route and UserController does
not have anything assigned to the view ID in its actions property, it actually creates
the instance \yii\base\InlineAction, instructs it to refer to the actionView
method, and then uses this inline action as any other \yii\base\Action action (see
the documentation and definition of \yii\base\Controller::runAction, which
is available at http://www.yiiframework.com/doc-2.0/yii-base-controller.
html#runAction%28%29-detail, for the exact reference).

Maybe it's quite ironic, but these two fallback mechanisms of the module and
controller are what you usually use when developing web applications with Yii 2.

Fundamental rules of URL management in
Yii 2
It is quite important to understand some fundamental concepts behind the Yii 2
routing system; it will make everything easier to understand:

1. Any request you pass to the Yii application eventually will be resolved as
the name of the module, name of the controller, name of the action, and
parameters to this action.

http://www.yiiframework.com/doc-2.0/yii-base-controller.html#runAction%28%29-detail
http://www.yiiframework.com/doc-2.0/yii-base-controller.html#runAction%28%29-detail

Chapter 12

[327]

2. The universal format, which allows Yii 2 routing mechanics to understand
which controller action to call, is as follows:
[
 "/moduleid/.../moduleid/controllerid/actionid",
 [
 "param1" => "value1",
 …,
 "paramN" => "valueN"
]
]

3. The URL manager component parses the incoming request to the format
described earlier using the URL rule entities.

4. The URL manager component converts the route from this format to the
string to be placed as the URL into the HTML page being rendered, using
the same URL rule entities.

5. The URL rules define the parsing of URLs and the creating of URLs as
completely separate activities. In fact, by using custom URL rules, you'll
be able to create URLs from one route definition, which will be parsed as a
completely different route definition.

FEATURE – creating URLs in Yii
Before we delve into the details of how the URLs are parsed by Yii 2 and converted
into calls to controller actions, let's mention the enormously important function that
actually creates the URLs to be displayed to the client. This function is the \yii\
web\UrlManager.createUrl($params) function. You can access this method by the
following incantation from anywhere in your application:

Yii::$app->urlManager->createUrl($params);

This method receives one argument, which has the parameters to create a text
representation of the URL in the universal format presented in the previous section.
This method is so widely and often used that there is a helper method to simplify its
usage, the \yii\helpers\BaseUrl::toRoute() method, which you have to call
as follows:

URL::toRoute($params);

Route Management

[328]

Custom routes using a configuration
Look at the following path we go to when opening the View Customer Record page:

/customer-records/view?id=1

This is quite verbose. Why not just use the following:

/customer/1

We can implement it quite easily using the following declaration inside the
components.urlManager.rules setting of the Yii application configuration:

'components' => [
 'urlManager' => [
 'rules' => [
 'customer/<id:\d+>' => 'customer-records/view',
]
]
]

This declaration is being read and understood as follows:

1. If the request begins with customer/.
2. After this there are only digits.
3. Store these digits as an argument named id.
4. Process the request as the customer-records/view route.
5. Pass the stored id argument to the resulting controller action.

FEATURE – URL rules
The components.urlManager.rules setting of the application, which corresponds
to the \yii\web\UrlManager::$rules property, can be filled with objects in
two notations. The full notation is the array notation to be consumed by the
Yii::createObject() method. You define the instances of the \yii\web\UrlRule
class here. The following table has the most crucial properties of the URL rules:

Property Meaning
pattern This means what the incoming request should look like for this rule to take

effect.
verb This means which HTTP method should be used in the request for this rule

to take effect.
route This is the route to the controller action in the moduleid/

controllerid/actionid format, to which the pattern should resolve
to.

Chapter 12

[329]

Property Meaning
suffix This means what string to append when creating URLs and what string

must be present at the end of the pattern when parsing the request for this
rule to take effect.

mode If set to 0, the rule will be used both to create URLs and parse them.
Otherwise, you can set it to \yii\web\UrlRule::PARSING_ONLY or \
yii\web\UrlRule::CREATION_ONLY.

There are some other properties, which have more specific usages, such
as host and defaults. You are encouraged to read the documentation
(http://www.yiiframework.com/doc-2.0/yii-web-urlrule.html)
and/or source code of the \yii\web\UrlRule class to get the exact details.

The most important and useful property here is the pattern property. It defines
what should be presented to Yii as a request string (without the request parameters),
with the addition of the named parameters. The named parameter is the construct of
the form given as follows:

<Name:RegularExpression>

Angle brackets and colons are the mandatory syntax. Named parameters can be
referenced in the route property later, increasing the genericity of the rule. If they
are not referenced in the route, they become stored as a $_GET parameter with the
specified name (overriding existing values, if any).

The shorthand notation for defining the URL rules is as follows:

"[verb]pattern" => "route"

This will initialize the URL rule object with just the pattern, verb, and route
properties specified, leaving everything else blank, with verb being optional. The Yii
2 documentation for \yii\web\UrlManager::$rules presents a great self-describing
example of a URL manager configured for REST-compliant requests:

'rules' => [
 'dashboard' => 'site/index',

 'POST <controller:\w+>s' => '<controller>/create',

 '<controller:\w+>s' => '<controller>/index',

 'PUT <controller:\w+>/<id:\d+>' => '<controller>/update',

 'DELETE <controller:\w+>/<id:\d+>' => '<controller>/delete',

 '<controller:\w+>/<id:\d+>' => '<controller>/view',
];

http://www.yiiframework.com/doc-2.0/yii-web-urlrule.html

Route Management

[330]

It actually reads quite easily given that you always remember that the line noise
between the colon and the closing angular bracket is just a regular expression. As
you can see, the named id parameters from the pattern are not mentioned in the
route part of the rule, which means that they will be passed to the corresponding
controller action as arguments with the same names. The parameter named
controller makes this ruleset generic, applicable to all controllers in the system.

The rules declared in the rules setting are checked in the order of appearance.
The first rule, which corresponds to the current request, is applied, and everything
else is ignored after that. If no rule was fired, then the URL manager falls back on the
parsing of the base /moduleid/controllerid/actionid format.

Apart from manipulating the properties of the base \yii\web\UrlRule class, we can
reference any other class as the URL rule inside the rules setting, given that this class
implements \yii\web\UrlRuleInterface. This interface declares two fundamental
activities of the URL rule:

Method Meaning
parseRequest(
 $manager,
 $request
)

The $manager argument is an instance of the
UrlManager class. The $request argument is an
instance of a request class, which you can use to get the
request string and parameters to parse. This method must
return either a route in the canonical format shown in
the Fundamental rules of URL management in Yii 2 section
or exactly false, which means that this rule cannot be
applied to the current request.

createUrl(
 $manager,
 $route,
 $params
)

The $manager argument is an instance of the
UrlManager class. The $route argument is a
string denoting the route in the base /moduleid/
controllerid/actionid format. This can have
variations, such as omitted parts. Be careful about it.
The $params argument is an array of key-value pairs
specifying the query parameters for this route. This
method is expected to return a string, which should be a
relative URL, ideally parsable back to route/parameters
by the parseRequest call of the same UrlRule class.
If the route/parameters do not correspond to this rule,
this method should return exactly the false value.

Chapter 12

[331]

Custom routes using custom URL
rule classes
As a harder task, let's implement a more convoluted feature. Given our migration
script creating default users in the database, the following URL brings us to the View
page for the user who has the username AnnieManager:

/users/view?id=2

A real-world feature request from the higher-ups can be the following: make the
same page accessible by the following URL:

/AnnieManager

This rule cannot be represented as the pattern-route pair, because we should
match the given username stored inside the database, with the ID expected by
the actionView() controller action.

To understand custom URL rules, you should understand this concept
very well: in the end, a particular action of the controller will be called,
and we should pass to it the arguments it expects. What we are talking
about in this chapter is the abstraction, which is one level above that,
when we hide this base routing under a different vocabulary, with the
goals to be more SEO-friendly, more regular like REST, or just overall
more pleasant to see. But this level is ultimately resolved to the base
route/parameters pair.

We will solve this task by introducing the custom URL rule class. Declare it in the
ruleset as follows:

 'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'rules' => [
 'customer/<id:\d+>' => 'customer-records/view',
 // our rule from previous task
 [
 'class' => 'app\utilities\UsernameUrlRule'
]
]
],

Route Management

[332]

This time, we started with the declaration instead of wiring up the already existing
class. Let's create the class, then, inside the @app/utilities/UsernameUrlRule.php
file as declared:

namespace app\utilities;

use yii\web\UrlRuleInterface;

class UsernameUrlRule implements UrlRuleInterface
{
 public function parseRequest($manager, $request)
 {
 // parse request here ...
 }
 public function createUrl($manager, $route, $params)
 {
 // make the URL from route/params pair here...
 }
}

First, parse by the parseRequest() method. We will check whether the rule applies
to us as follows:

$maybeUsername = $request->pathInfo;

$user = UserRecord::findOne(['username' => $maybeUsername]);
if (!$user)
 return false;

There is a very simple logic here. If the string between hostname and the ? symbol
denoting the start of request parameters is not a username of UserRecord in our
database, we tell UrlManager that we can't do anything here.

Chapter 12

[333]

It is a serious security breach here, which you must solve in some way if
you really end up implementing such a feature on your web application.
If users can register themselves and choose their username, then
nothing stops them from choosing names, such as site, or users, or
customer-records, which correspond to the controller IDs. As URL
rules are checked first, the existence of such a user will damage access to
the referenced controller. For example, the /customer-records URL,
which normally is identical to /customer-records/index, will be
resolved to the View page of the user with the username customer-
records.

One way, which is quite cumbersome to maintain, is to check whether
$maybeUsername is among some set of prohibited keywords, and this
set can be automatically generated from the controller IDs used in
your application.

On the other hand, if $user is really found, we construct the required route/
parameters pair and return it:

 $route = 'users/view';
 $params = ['id' => $user->id];
 return [$route, $params];

Second, we should be able to create URLs in the same format through our
application by the createUrl() method. One place where we can find URLs to the
View User pages is /users/index, with GridView listing the UserRecord models.

We should first check whether the route and parameters given to us are really
relevant to us:

 if ($route !== 'users/view' || !array_key_exists
 ('id', $params))
 return false;

We don't care about routes other than users/view, and we require that id to be
given to us.

Also, we must be sure that the UserRecord really exists in the database, or else we
will not be able to fetch the username:

 $user = UserRecord::findOne($params['id']);
 if (!$user)
 return false;

Route Management

[334]

If everything's all right, all we have to do is return the username:

 return "{$user->username}";

Note the absence of a leading slash, made explicit by the string interpolation
notation. Yii 2 automatically inserts this slash for us, so createUrl() should return
only the remaining string.

Now open the /users page, and hover on any button with the icon of an eye. It
should have the URL equal to the corresponding username. After clicking on this
button, you should end on the View page for the corresponding UserRecord object.

Summary
This chapter summarizes the routing mechanics that we dealt with through the
whole book. We discussed the layer of custom routes that can be resolved back to
basic controller actions.

We looked at two practical examples from real life that showed how we can utilize
these mechanics. Everything else can be read in the documentation for UrlManager
and UrlRule and additionally, in the \yii\helpers\Url helper class.

The next chapter will be the final one in our adventure. We'll deal with the
infrastructure problems of developing a Yii 2 application, especially the problem
of sharing the code base between developers and between development and
production environments.

Collaborative Work
This is the last chapter of the book, except the appendices (which have useful
information too; don't skip them).

We will conclude the adventure we started 12 chapters ago with the features of Yii 2,
which are not related to the business value of the application being constructed but
are related to its infrastructure.

When working with the code base together with a team of other developers and
routinely deploying code between test and production servers, you will inevitably
face some problems you need to solve to continue effectively delivering new features.

First, we'll learn some nice tricks to manage the application configuration to
accommodate different deploy targets.

Secondly, we'll talk about the database migrations we were using the entire time
until now. Hopefully, we have enough practical knowledge about using migrations.
Here, we'll talk about the reasons to use them and some nice tricks to maintain them
more effectively.

Finally, we'll look at the Yii console applications, the side we implicitly used several
times in this book but never explicitly talked about.

Collaborative Work

[336]

Configuration construction
We all know the following problem:

Imagine we are developing a web application, and we do it at our local workstation.
The application uses the locally-installed MySQL instance with some particular
database name, username, and a password. When we deploy this application, it'll
use the MySQL instance installed at the deploy target, over which we can or cannot
have control in choosing names and passwords. Even if we have total control over
the deploy target and can use the same connection settings, it's highly impractical
to enforce our own usernames and passwords on other people in the team, who are
working on the same web application on their own workstations.

As the Yii application configuration is just a PHP script returning an associative
array, we have a simple way of solving this problem: all pieces of configuration
that should be specified for each deploy target individually can be moved to
separate files. The main configuration will just include their contents using
standard require() calls.

In fact, we already have such a setup in our example CRM application. The
following are the lines of code that include other pieces of configuration into
our main configuration file, which is ultimately passed to the constructor of
\yii\web\Application:

return [
 // … global settings skipped here ...
 'components' => [
 'db' => require(__DIR__ . '/db.php'),
 // … a lot of other components skipped here …
 'assetManager' => [
 'bundles' => (require __DIR__ .
 '/assets_compressed.php')
],
],
 'extensions' => (require __DIR__ .
 '/../vendor/yiisoft/extensions.php')
];

We have already used separate configuration for database, compressed assets
(from Chapter 8, Overall Behavior), and extensions.

It's probably the only place where an alternate syntax for the
require() PHP built-in method looks useful. The (require
PATH) notation explicitly expresses that we fetch something from
PATH and put it right inside the brackets, which is arguably easier to
read than the usual function-call notation.

Chapter 13

[337]

Using the same technique, you can separate the declarations of the custom
parameters in the params setting of the application. The Yii basic-application
template uses this trick (see https://github.com/yiisoft/yii2/tree/master/
apps/basic/config).

Configuration overriding can be raised to the next level if you take into
account the array_merge_recursive() PHP built-in method and the \yii\
helpers\ArrayHelper::merge() method from the Yii framework. The
ArrayHelper::merge() static function is especially useful. Instead of combining
values with identical keys, array_merge_recursive() overrides the initial value
with the new one.

How can it be used? Obviously, we can have the default application configuration
in one file and deploy target-specific overrides in another file. Then the resulting
configuration to be fed to the Yii web application instance will be constructed by
ArrayHelper::merge(), as follows:

// config/web.php, as we always had
return \yii\helpers\ArrayHelper::merge(
 (require "default.php"),
 (require "local.php")
);

Inside the local.php file, you maintain exactly the same structure as the default.
php file, which is a lot easier to do than constantly remembering which part of the
configuration lies in what configuration snippet. Of course, some files, such as the
extensions.php file will be left as is. In case of the extensions.php file, we don't
have control over its contents anyway.

Adding local overrides to the configuration
In Chapter 2, Making a Custom Application with Yii 2, we introduced a separate db.php
configuration snippet to conform to the Yii basic application template, without really
explaining exactly why we needed to separate this configuration at all. In fact, such
a separation is a rudimentary step to making a code base more portable between
developers and deploy targets. On each of them you can have different db.php
scripts with credentials and the like. To achieve that, you cannot just commit this
snippet to the version control system. However, such an approach has a serious
drawback: each instance of the application should have a database configuration
written manually from scratch. You need to communicate any common settings
between developers in some other way than the code committed into repository,
which means you cannot have any common settings committed to the repository,
like maybe the custom database connection class or caching settings.

https://github.com/yiisoft/yii2/tree/master/apps/basic/config
https://github.com/yiisoft/yii2/tree/master/apps/basic/config

Collaborative Work

[338]

Let's apply the technique explained earlier to our code base. To do this, we need to
make some really small changes:

1. First, create a subdirectory named overrides inside the config directory.
It's more correct to name it layers, though, but overrides implies the
meaning that the snippets will override each other, while layers require
additional understanding about the technique we are employing.

2. Inside overrides create a file named base.php, that will hold the basic
configuration for both console and web applications on any deploy target.

3. We will move a really small number of configuration settings to config/
overrides/base.php. They are as follows:
return [
 'basePath' => realpath(__DIR__ . '/../../'),
 'components' => [
 'db' => [
 'class' => '\yii\db\Connection'
],
]
];

In the Yii advanced application template, there are separate subdirectories for the
console and two web applications, so basePath for them will be different. In our
case, both applications share the basePath setting.

We have initialized the database connection component with just the name of the
class. The credentials will be provided in later overrides. We need the database
connection in the console application as well as in the web application because
of migrations.

Here are the steps to perform it:

1. Move the web.php configuration file to the config/overrides/web_base.
php file. This name is chosen because we will recreate the config/web.php
file later, and it's generally not so good to have two files in the code base
sharing a name, even if they are in different folders.

2. Inside web_base.php, we need to remove parts of the configuration
already defined in the base configuration, which are just the basePath
and components.db settings.

Chapter 13

[339]

3. Apart from that, it's important to change the paths to the extensions.php
and assets_compressed.php configuration snippets inside web_base.php,
as we are one folder deeper now. It's up to you whether to move assets_
compressed.php somewhere, but it'll be a violation of the overrides concept
to move this snippet to the overrides directory.

4. Next, move the console.php configuration file to the config/overrides/
console_base.php file. Similarly, remove the basePath and components.db
settings from there.

5. Now we arrive at the most interesting part. Create the config/overrides/
local.php config file, with just the database connection settings in there
as follows:
return [
 'components' => [
 'db' => [
 'dsn' => 'mysql:host=localhost;dbname=crmapp',
 'username' => 'root',
 'password' => 'mysqlroot'
]
]
];

Regardless of how specific the local overrides, you need to have exactly
the same structure of the configuration file as in the main Yii configuration.
The whole idea of overrides is based on this sharing of structure.

6. With this local override in place, we can finally reconstruct config/web.
php and config/console.php expected by our entry points. Here is how
config/web.php will look:

return \yii\helpers\ArrayHelper::merge(
 (require __DIR__ . '/overrides/base.php'),
 (require __DIR__ . '/overrides/web_base.php'),
 (require __DIR__ . '/overrides/local.php')
);

We just merge the three configurations, and the order is crucial. Now, if you open
the website in a browser, nothing should change, which is exactly what we need.
All tests should still pass as well.

In the same manner, construct config/console.php, except instead of the
web_base.php, we'll use console_base.php.

Collaborative Work

[340]

These changes lead to important consequences. The main benefit is that we can
now add to the version control system only the base and web base configuration
overrides. The local override will be constructed on each deployment. To help
developers and operation engineers, we can commit to the repository a specially
prepared copy of local.php, with all exact credentials replaced by some meaningful
placeholders. Such configuration templates are usually named after the file they
represent, with the -example suffix appended, for example, local-example.php.
Here is how we can format such an example in our CRM application:

<?php
/**
 * This is the example for local configuration overrides.
 * You must declare at least the database connection parameters.
 */

return [
 'components' => [
 'db' => [
 'dsn' => 'mysql:host=localhost;dbname=DB_NAME',
 'username' => 'DB_USERNAME',
 'password' => 'DB_PASSWORD'
]
]
];

So as not to commit the real local.php configuration snippet to
the repository, in the Git version control system, you can add the
.gitignore rule to it.

The advanced application template from the Yii bundle already uses a similar
trick with overrides but only for custom application parameters (see, for example,
https://github.com/yiisoft/yii2/blob/master/apps/advanced/frontend/
config/main.php). To look at a real-world example of elaborated multilevel
configuration building, you can turn to the YiiBoilerplate project from Clevertech at
https://github.com/clevertech/YiiBoilerplate. It's for Yii 1.x, but the concept
is the same, albeit a lot more extended.

https://github.com/yiisoft/yii2/blob/master/apps/advanced/frontend/config/main.php
https://github.com/yiisoft/yii2/blob/master/apps/advanced/frontend/config/main.php
https://github.com/clevertech/YiiBoilerplate

Chapter 13

[341]

Console application
In Chapter 2, Making a Custom Application with Yii 2, we set up the entity we called
console runner in the form of the PHP script called yii in the root of the code base
and skipped the explanations about what it really is. Starting then, we extensively
used two particular command-line invocations, which used the scripts ./yii
migrate/create and ./yii migrate. Also, we used the ./yii asset invocations
in Chapter 8, Overall Behavior, to prepare our compiled assets. Now it's time to explain
the value and possibilities of this entity.

Apart from the \yii\web\Application class, which represents the web application
we were building in the previous 11 chapters (Chapter 1, Getting Started, was
excluded), the Yii 2 framework includes the \yii\console\Application class,
which represents the console application. This kind of application conceptually is
exactly the same as a web application in the sense that it is a module supporting
MVC, too. Specifics of the console application lie in the fact that it must render the
results of its work to the console, and it needs to receive input parameters from
the command line. Apart from that, the console application uses the same concept
of controllers (which should be descendants of the \yii\console\Controller,
though) and is configured and created in the same way, which is obvious when you
compare the contents of the yii and web/index.php scripts.

In essence, to reach the controller action using the console application, you make the
following command-line invocation:

./yii controllerid/actionid param1value param2value
 --property1=value1

The details should be read from the framework documentation (http://www.
yiiframework.com/doc-2.0/guide-tutorial-console.html). Note that the
controller action parameters are passed as unnamed command-line arguments,
and the values for controller properties are passed as named ones.

Unless you are exactly making the console application using the Yii framework, it's
hard to justify the need to group the console controllers using modules. However,
as the console application is still a module and uses the same routing mechanics
as a web application, you can use the /moduleid/.../moduleid/controllerid/
actionid routes as well.

http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html

Collaborative Work

[342]

As talking about console controllers is somewhat cumbersome, we'll refer to them as
console commands, as Yii 1.x did, but what we really mean is the controller classes
inheriting \yii\console\Controller. You get the set of console commands built
into the framework, like \yii\console\controllers\MigrateController. They
are listed in the \yii\console\Application::coreCommands() method, and you
are encouraged to read through their classes' documentation. These commands are
always accessible from the console application unless you override this method
(and why should you do it at all?). We will not discuss them in detail as apart from
the migrate and asset commands, all other are somewhat too specific.

You can declare and use custom properties on the console controllers. How to
pass values to them at the time of calling a controller action will be discussed in the
next section. How to set up values for them in the console application configuration
will be explained in the next major section, which will deal with the database
migrations specifically.

Custom console commands
Let's make some custom console command. We'll do a little hacking for developers
to be able to custom-craft the user records directly in the database.

As you remember from Chapter 5, User Authentication, we store user passwords
hashed using the Yii framework built-in helper classes. This hinders the ability of
developers to make the user records manually using direct access to the database.
As we can imagine and use some plaintext password easily, we need to store it in
database hashed, and this hash needs to be computed somehow, which is basically
impossible to do with pen and paper. More than that, we don't want to know exactly
which methods of hashing were used at all.

So, let's make the console command which, given some string, computes
and shows its hashed value in the same way our \app\models\user\
UserRecord::beforeSave() method does.

As console controllers are controller classes, the Yii framework requires them all to
be in the same directory. We arbitrarily decided that it was going to be the commands
subdirectory under the root of the code base. According to PSR-4 rules and Yii
framework conventions, this directory represents the app\commands namespace; so
let's wire this namespace to our console application right now. Open the config/
overrides/console_base.php file, and insert the controllerNamespace
setting there:

return [
 'id' => 'crmapp-console',
 'controllerNamespace' => 'app\commands',
];

Chapter 13

[343]

Let our new command be named hash, so it will be invocable by the ./yii hash
command. We need the HashController class, the Controller suffix being
mandatory, inside the commands directory, with the following boilerplate code in it:

namespace app\commands;
use yii\console\Controller;
class HashController extends Controller
{
 public function actionIndex()
 {
 // don't know what to do yet
 }
}

You should already know how to declare new controllers, so the namespace and use
clauses are most important pieces here. It's really important that we remember that
we create the console controller and not a web one, as they run actions differently.
The default action is index, as in web controllers.

Instead of using the echo PHP built-in to output to the console, we'll utilize the \
yii\helpers\Console helper class from the Yii 2 framework. It has the output()
method that will handle the newlines automatically, as appending them each time
always was a hassle. Here is what we need to insert in order to satisfy our needs:

 public function actionIndex($string)
 {
 \yii\helpers\Console::output(\Yii::$app->security->
 generatePasswordHash($string)); }

The call to Security::generatePasswordHash() is exactly how we generate hash
for the passwords inside our user records. Here is what you should get after calling
./yii hash 1234, to see the hash of a really dumb user password:

You can also call this command ./yii hash/index 1234. The hash will be different,
of course, but it will be the same action being run nevertheless.

Collaborative Work

[344]

Note that the arguments of the controller action are passed as unnamed command-line
arguments. This means, among other things, that you should pass strings containing
special characters enclosed in quotes to the console commands of Yii. To help visualize
what we are really hashing, let's output the string to be hashed as well. However,
it's pretty nice that our initial command conforms to the Unix way of doing things of
our initial command (that is, the fact that it emits results directly to standard output
without any additional information). We'll utilize the built-in flag of the console
controller to check whether we really need to output this additional data. Add the
following two lines at the beginning of the actionIndex() method:

 if ($this->interactive)
 Console::output(sprintf('Input string was: %s',
 $string));

The $this->interactive property being referenced is the \yii\console\
Controller::$interactive one, available in all console commands. As was said
before, you can set the values of such properties using named parameters. In our
case, this means we need to pass --interactive=0 to the ./yii hash 1234 call to
suppress the debug output. Otherwise, we'll get a helpful reminder:

This will help to resolve silly mistakes when handcrafting reasonably complex
passwords, as otherwise you would not know what you are really hashing. Note
which string was passed to our controller action in the first case, when we haven't
escaped the input string.

To pass false to the controller properties, use any string that parses to the
false-like value, like empty string or zero. The string null or false will be
treated as a non-empty string and as such will be treated as a true Boolean value.
So --interactive=false will not work as intended, but --interactive= will.

Chapter 13

[345]

Database migrations
Dependency on the database is a hard one. Ideally, your application will not depend
on the separate relational database management system (RDBMS) at all. But, most
of the time, clients need the applications, which are conceptually just the elaborate
CRUD interfaces over the database, so this dependency is inevitable.

The troubles caused with collaborative development are well known. If the
application expects the database to be of some structure, and in the process of
development a change is made to the code base, which changes some of these
expectations, we need to correct the database schema on every machine this code
base is currently deployed to. Of course, we should also have some sort of database
schema initialization script, and this change must be introduced in this script too.

The migrations trick employed by Yii (and described in the documentation at
http://www.yiiframework.com/doc-2.0/guide-db-migrations.html) has roots
in the Ruby on Rails migrations concept (described in their alien documentation at
http://guides.rubyonrails.org/migrations.html). You already saw that the
Yii 2 database migration is essentially a small program that can use the methods of
the \yii\db\Migration class to perform changes in the relational database schema
in a uniform, vendor-independent way. Using them has obvious benefits over
running the raw SQL scripts:

• You are independent of the database vendor. In fact, you can even swap the
underlying database over the application lifetime without any change in the
existing migrations collected over the time.

• You are at the application level when inside a migration. Arbitrary checks
can be done before messing with the database. More than that, you actually
can run the arbitrary code in the migration, not necessarily database-related
at all.

There is an additional non-obvious feature: if you want, you can define both upgrade
and downgrade routines. As a result, you will be able to move back and forth
between versions of the database. However, this is only if you are very careful with
your changes in the database, as some changes can be irreversible. This feature was
presented to you in every migration template so far:

class m140318_173202_add_auth_key_to_user extends
 \yii\db\Migration
{
 public function up()
 {
 $this->addColumn('user', 'auth_key', 'string UNIQUE');
 }

http://www.yiiframework.com/doc-2.0/guide-db-migrations.html
http://guides.rubyonrails.org/migrations.html

Collaborative Work

[346]

 public function down()
 {
 $this->dropColumn('user', 'auth_key');
 }
}

While the up() method is what you usually want to make the change you need, the
down() method is there to rollback changes. As it was said, there exist irreversible
changes. For example, you can decide at some point to rehash user passwords
using a newer crypt algorithm, and this is really a one-way operation, as you
certainly don't want to store the old dataset just to have downgrading support.
For such irreversible operations, you can just omit the down() method, and when
downgrading, this migration will be silently skipped.

If the up() method returns a false Boolean value, this migration is considered not
applied and all of the possible future migrations are canceled. This is useful if you
make the changes that require possible manual preparations from the operator.
The conditional expression in the migration will check whether the preparations
are needed and halt the migration if necessary. Then, after the problem is resolved,
the migration will proceed as usual.

The down() method has the same feature. If it returns a false Boolean value, the
current downgrade along with all possible next downgrades will be canceled. This
can be used in case you have some really irreversible changes in the up() method,
after which there's nowhere to revert to. The default template for migrations in Yii 2
prepares exactly this kind of down() method for you.

While downgrading is especially useful for you to be able to easily correct possible
mistakes in the up() method, it can be used to revert the state of the application
to some specific point of the development history. This means that if someone
encounters the bug in the database-dependent code in version x of your application,
and the most recent version is, say, x + 5, then you can peek at the commit history in
your version control system, notice the latest migration script present there, and roll
back the migrations to that point. After that, you revert the code base five versions
back using the version control system and will get the state of the application exactly
at version x. This is less invasive than rolling the code base back to the version
x, destroying the current database, and recreating it from scratch using only the
up() methods, but you need pretty serious discipline to always make reversible or
harmless irreversible changes in migrations.

Chapter 13

[347]

Apart from this complication with the downgrade feature, there's absolutely
nothing complex in the migrations concept itself. Using them, on the other hand,
is a different topic.

We have used migrations extensively through the course of this book already, so you
should be accustomed to the ./yii migrate command itself (which is a shorthand
to ./yii migrate/up, and in the next section we'll explain why). In addition to this,
running the ./yii help migrate command will bring you the list of all possible
invocations of ./yii migrate.

To know which migrations are applied to the database and which are not (yet), Yii
2 creates and manages a special table in the database behind your back, the name of
which is configured at the \yii\console\controllers\MigrateController::$m
igrationTable property. Each record in this table holds the name of the migration
class used and the time of its usage. The default name for this table is migration,
and if you happen to use this name for one of your own tables, you need to change
this setting of MigrateController.

For such a fundamental change, it'll be cumbersome to pass the --migrationTable
named parameter to each invocation of ./yii migrate, so it's better to use the
application configuration instead. As this is a controller and not a component, you
need to use the controllerMap setting of the console application for this, as follows:

'controllerMap' => [
 'migrate' => [
 'class' => 'yii\console\controllers\MigrateController',
 'migrationTable' => 'my_custom_migrate_table',
],
]

In the same way, you can override any other property of the console controllers.
This technique is applicable to web controllers as well.

Collaborative Work

[348]

Note that this parameter overriding has an important side effect: we
essentially declare the ID for the specific controller with preset parameters.
Nothing stops us from declaring the same console controller class several
times under different IDs and with different settings. For example, with
HashController discussed before, we can do the following:

 'controllerMap' => [
 'silentHash' => [
 'class' => 'app\commands\HashController',
 'interactive' => false
]
]

This enables the ./yii silentHash invocation for us without the
need of additional class definition.

Another important property is migrationPath, which is the directory where
MigrationController will search for the migration classes. By default, its
migrations subdirectory is under the root of code base, and this is exactly what
we decided on in Chapter 2, Making a Custom Application with Yii 2 (miraculously).
We used this property in Chapter 6, User Authorization and Access Control, when we
set up the initial schema for RBAC in the database.

You can also use the db property, which should be either the \yii\db\Connection
instance or the string ID of the application component, that is, the \yii\db\
Connection instance. Using this property, you can run migrations on different
databases. By manipulating the migrationPath and db properties inside the
controllerMap setting of the console application, you can even manage several
different databases inside the same application. By default, it has the value db,
which is the ID of the default database connection component in the Yii application.

Finally, there is the templateFile setting, which we'll play with in the next section.

Chapter 13

[349]

You can read in the documentation for MigrateController that there
are two complementary methods named safeUp() and safeDown(),
which do what up() and down() do, correspondingly, except they
do it in transactions. There is an important catch though. In MySQL,
for versions up to 5.5 (at least), you may as well forget about them, as
any command from the data definition language will automatically be
committed. Thus, the following code will create the first and second
tables, even while the transaction should fail because of an exception:

 public function safeUp()
 {
 $this->createTable('first',
 ['id' => 'pk', 'name' => 'string']);
 $this->createTable('second',
 ['id' => 'pk', 'value' => 'int']);
 throw new \LogicException;
 $this->createTable('third',
 ['id' => 'pk', 'value' => 'date']);
 }

This is documented behavior, but the importance of this point is maybe
not stressed enough. The net result is that you should just not use the safe
methods with MySQL at all. More than that, you should never override
both the up() and safeUp() methods in the same migration class, as the
parent implementation of up() is what calls safeUp() internally. The
same is the case for down() and safeDown().

Making custom templates for database
migrations
Here is what a default template for database migrations looks like in the Yii 2
framework at the time of writing this chapter:

use yii\db\Schema;

class <?= $className ?> extends \yii\db\Migration
{
 public function up()
 {

 }

 public function down()
 {

Collaborative Work

[350]

 echo "<?= $className ?> cannot be reverted.\n";

 return false;
 }
}

Let's pretend that we are a careful and disciplined team of developers, which has
excellent documentation on all source code files. We use the capable RDBMS,
so transactions is a norm for us (let's not call any names, as flame war is not our
intention), and we are pretty strict in our changes to the database schema, so our
changes are almost always reversible. In this case, the following template will be
more suitable for us:

/**
 * TODO: Migration explanation.
 */
class <?= $className ?> extends \yii\db\Migration
{
 public function safeUp()
 {
 // TODO: migration routine contents.
 }

 public function safeDown()
 {
 // TODO: migration rollback contents.
 }
}

The changes are as follows:

• Introduced the DocBlock for the explanation for migration
• Used the transactional versions of the up() and down() methods
• Clearly marked the places to be filled with actual code
• Removed return false from rollback routine, as our migrations will be

reversible more often than irreversible

Chapter 13

[351]

To not bloat the code base with another subdirectory, let's place this template in
the views/layouts/migration.php file, as it is the most logical place to use. Do
not forget that this file is a PHP script that will be processed by PHP runtime and
outputted as any other PHP script. So, in addition to the previous code, the views/
layouts/migration.php file should contain the following lines at the top:

<?php
/**
 * Template for migrations.
 * Property named `MigrateController.templateView` controls what
template to use.
 */
echo "<?php\n";
?>

It's good style to provide explanations for any source code file overall, and we must
output the <?php processing directive at the beginning of the resulting file.

Now, it's really simple to wire this template to our application, so all future migrations
will be written based on this template. We need to use the controllerMap.migrate.
templateFile setting in the console application configuration:

 'controllerMap' => [
 'migrate' => [
 'class' =>
 'yii\console\controllers\MigrateController',
 'templateFile' => '@app/views/layouts/migration.php'
]
]

Unfortunately, even if Yii automatically enables MigrateController to be available,
we still must specify the class setting for the migrate controller ID. Not so hard,
though. Note that the templateFile setting can accept the path aliases, which is
really useful.

With this preparation in place, all future migrations created will look as described
before, quite differently from the standard view. As we already explored before,
by defining several different controller IDs in the controllerMap setting, we can
configure several different invocations of the MigrateController using different
templates, if needed.

Collaborative Work

[352]

Summary
That's all, folks.

This chapter, the last one in the book, has dealt with the furthest layer of the Yii 2
framework: maintenance of the code base itself. We covered three topics here:

• How to construct the application configuration dynamically so that
developers will be able to easily deploy it to any target machine

• How to make custom console commands to provide nice tricks that help
in development

• How to customize the default look of the autogenerated migration scripts

We also learned how the database migrations and console commands in general are
implemented in Yii. And let's not forget that we know about two helper classes now:
ArrayHelper and Console.

To be honest, we glossed over a lot of topics, and a lot of information was simply
not present here, because it would be a verbatim copy from the already existing Yii
documentation. To become even more fluent in the Yii 2 framework, it would be
quite useful to learn about the following advanced features in real depth instead
of a quick mention in this book:

• At the data layer: Validators, active query, and \yii\db\Command
• At the presentation layer: Built-in widgets, the entire yii\rest namespace,

support for files uploading, methods of the active form widget rendering the
form fields, and also, surprisingly, the \yii\captcha\Captcha class, which
is a complete captcha solution implemented

• Middleware components: The dependency injection container
implementation inside the yii\di namespace, mutexes inside the yii\mutex
namespace, helper classes, and the support to internationalize the application

The Yii framework documentation is excellent and all-encompassing, and the
documentation blocks inside the source code are more like the definitive reference.
In this book, we tried to cover the themes which are either not obvious from these
sources of information or for some reason, were not exposed from the underlying
source code.

Deployment Setup
with Vagrant

As it's pretty important that you should be able to develop the application locally,
let's use the Vagrant project for setting up the local deploy target.

To be brutally short, Vagrant (see http://www.vagrantup.com/) is a toolset to
manage virtual machines from the command line. The end result of your setup
would be this:

1. You boot your own workstation.
2. You go to the root of the code base.
3. You issue vagrant up in the command line.
4. You wait and then open the http://localhost:8888/ URL in

your browser.
5. Your web application responds to you from there.
6. You issue vagrant halt in the command line.
7. Your web application is not accessible now and does not waste any

resources anymore.

All dependencies for your application, including the web server and database,
are inside the virtual machine image managed implicitly by the Vagrant toolset.
Nothing leaks to your host system.

Vagrant supports several virtual machine vendors, and we should have no trouble
if we decide to use the VirtualBox project (see https://www.virtualbox.org/)
as both technologies are open source and free to use.

http://www.vagrantup.com
https://www.virtualbox.org/

Deployment Setup with Vagrant

[354]

Planning
As we'll configure the virtual machine, we need to plan our LAMP stack in detail
right from the start.

We need to set up four things:

1. PHP 5.4.
2. Apache 2.4 (it's modern standard anyway).
3. MySQL 5.5 (we need a database because of our application domain, which is

data management).
4. A website configured to be accessible from inside the virtual machine.

More than that, we'll need a setup script that will automate the necessary
preparations of the base system, including installing all the things mentioned
for setup.

Deployment will be greatly simplified by Vagrant, because it just makes the directory
holding the code base (where you call vagrant up, specifically) shared inside the
virtual machine as the directory named /vagrant. That slash is important as it's the
vagrant folder at the root of the directory tree. As a result, the code base will always
be synchronized between the deploy target and the development workstation, so you
can use whatever toolchain you use to write and maintain the code base, and it will
transparently and constantly be sent to the deployment target.

Vagrant hides the management of the virtual machine behind the concept of box.
The box is a specially prepared virtual machine image in any format recognizable
by Vagrant. These boxes have to be downloadable from somewhere, and a website
located at http://www.vagrantbox.es/ holds references to a lot of such prepared
images for Vagrant.

However, Vagrant recognizes, and is able to, install some boxes right out of the box.
One of them is called precise64, which is Ubuntu 12.04. For simplicity, we'll use this
box as it requires essentially no additional setup outside the box.

Initial setup
Before we go into explanations, let's create the required configuration for Vagrant.
Create a file named Vagrantfile at the root of your project code base, and write the
following code into it:

Vagrant.configure("2") do |config|

Which box we'll be using as base

http://www.vagrantbox.es/

Appendix A

[355]

 config.vm.box = "hashicorp/precise64"

Following is only for reference, as Vagrant knows
where to get the "precise64" box right from the start.
config.vm.box_url = "http://files.vagrantup.com/precise64.box"

What to do with the base box as initial setup
 config.vm.provision :shell, :path => "bootstrap/01-prepare-
precise64.sh"
 config.vm.provision :shell, :path => "bootstrap/02-configure-app-
for-precise64.sh"
 config.vm.provision :shell, :path => "bootstrap/03-prepare-
application.sh"

How to expose the web application inside the box:
publish port 80 at the virtual machine as port 8888 at the host
machine.
 config.vm.network "forwarded_port", guest: 80, host: 8888

end

This file is Ruby code. If you want, you can write arbitrary expressions here as long
as you do Vagrant.configure in it as well.

With this file in place, you can do the magic of vagrant up. When you issue this
command for the first time in an unprepared machine and code base, Vagrant will
do the following:

1. Download the box from box_url. In our case, Vagrant knows already where
the box named hashicorp/precise64 is.

2. Unpack the box and register it as the virtual machine image in the VirtualBox
suite. The unpacked box will be stored in the home directory of the current
user and will be reused for all later invocations of vagrant up.

3. Launch the virtual machine using the usual VirtualBox means. If you wish,
you can even open the VirtualBox management UI and see the Vagrant-
managed virtual machine listed among other machines, if any.

4. Run the provisioning scripts, that is, launch everything listed in the config.
vm.provision setting. In our case, provisioning is split into three separate
shell scripts, which must be run in exactly that order.

5. Perform the port forwarding as we specified.

It can do some other things as well, but we are interested only in these steps.

Deployment Setup with Vagrant

[356]

At the second and later invocations of vagrant up, Vagrant will just launch the
virtual machine and forward the ports. As was already said, the code base will be
constantly shared between virtual and host machines.

It is obvious that Vagrant provides an enormously useful local deployment
environment for developers. The most complex part is to correctly craft the
provisioning scripts.

Fine-tuning the virtual machine
As specified in the Vagrantfile, we are going to have three provisioning scripts
to be run in that order. Let's look at them in the same order.

In the code bundle provided with this book, these scripts are in the bootstrap
directory exactly as shown in the preceding code example. In this folder, a bunch of
other files also exists; these are various configuration files for different programs that
Vagrant will place in appropriate places according to our bootstrap scripts.

Preparing the guest OS
We are using Ubuntu 12.04, which does not have PHP 5.4 in its installation
repositories. On the other hand, we are in an environment where apt-get is
available, so we can install absolutely anything we need relatively easily.

We will not provide the complete content of the 01-prepare-precise64.sh file
as it's quite long and boring. You can look at it in the code provided with this book
in the bootstrap folder. Here is what this script does in the order in which it
appears here:

1. Adds the special Personal Package Archives (PPA) with the latest
PHP versions.

2. Updates the package database of apt-get.
3. Installs the latest Apache 2, PHP 5.4, vim, latest MySQL (both server and

client), git (it's required to launch the composer inside the virtual machine),
and the CURL package for PHP5 (it's required for almost anything related to
PHP nowadays).

4. Installs the X virtual framebuffer, Java runtime, and the Firefox browser so
you will be able to run acceptance tests directly inside the Vagrant box.

5. Removes the default virtual host defined for Apache.
6. Enables the mod_rewrite option for Apache as it's required for Yii 2 to deal

with some URLs.

Appendix A

[357]

7. Makes Apache run under the Vagrant user account, so we'll get the application
code base writable by the web server (no need for strict security in this setup).

8. Does a small additional tweak to suppress the default warning about the
server name not being defined.

Essentially, this script is for setting up the platform, not an application. However, as
we will, for simplicity, use the root password to access the database, it will leak from
the level next to this one.

You should know about the VirtualBox Guest Additions plugin to
comfortably work with Vagrant over VirtualBox. Vagrant relies on this
plugin to perform the magic code base synchronization, and the catch is
that it must be installed both on the host and the guest machines, and their
versions must exactly match. Most probably, the VirtualBox Guest Additions
plugin on your host machine will be newer than the one installed inside
the guest box. As a result, Vagrant will complain and nothing good will
happen. To resolve this problem, the Vagrant team has provided us with
their own plugin called vagrant-vbguest. You need to call vagrant
plugin install vagrant-vbguest, and after that at every call,
vagrant up, so that this plugin checks the versions of Guest Additions
and installs the correct version into the guest machine if necessary (it can
take significant time, though).

Preparing the database and web server
The second level of provisioning is a bridge between a platform and an application.
It is quite short:

Separately specified settings for database
NOTE that the password was already specified before in previous
bootstrap script!
DB_USER=root
DB_PASS=mysqlroot
DB_NAME=crmapp

Creating database
NOTE the absence of the space between `-p` flag and the password!
mysql -u ${DB_USER} -p${DB_PASS} -e "create database if not exists
`${DB_NAME}` default character set utf8";
mysql -u ${DB_USER} -p${DB_PASS} -e "create database if not exists
${DB_NAME}_test default character set utf8 default collate utf8_
unicode_ci";

Deployment Setup with Vagrant

[358]

Copy the prepared Apache config from codebase to the Apache config
folder.
cp -f /vagrant/bootstrap/frontend.apache2.conf /etc/apache2/sites-
enabled/
Restart Apache so new virtual host will be published.
/etc/init.d/apache2 restart

All we do is create the databases for the application and the functional tests and copy
the already-prepared Apache configuration from the bootstrap folder inside the
code base to the place expected by Apache. This configuration holds the definition
of a port-based virtual host, which is the reason why we removed the default
configuration at the previous level.

Preparing the application
The last provisioning script is the most semantically complex. Here are its contents,
at the final stage of the example application development, after Chapter 13,
Collaborative Work:

Go to the root project folder
cd /vagrant

Install all prerequisites, including Yii
php composer.phar install --prefer-dist

Copy the prepared config snippets to the configuration tree
cp bootstrap/local.php config/overrides/

Copy the prepared config snippet for test database connection to the
configuration tree
cp bootstrap/test.php config/

Initialize the RBAC tables
./yii migrate --migrationPath='@yii/rbac/migrations' --interactive=0

Initialize the database overall
./yii migrate --interactive=0

Here, we proceed in the following order:

1. Install all dependencies managed by the composer, including Yii 2 itself.
2. Copy the configuration for this local deploy target to the location expected by

our application (see Chapter 13, Collaborative Work, for details).

Appendix A

[359]

3. Run the built-in migration in Yii to set up tables for the database-backed
RBAC manager (see Chapter 6, User Authorization and Access Control,
for details).

4. Run all of our migrations collected over the course of the book.

All three of these scripts are relatively harmless, and as a result, you can launch
provisioning manually and safely without breaking anything. This is done by
calling vagrant provision. It's useful to quickly reload the Apache configuration,
for example.

Using the virtual machine as a local
deploy target
You stop the virtual machine managed by Vagrant by calling vagrant halt. If you
want to completely get rid of the machine, you call vagrant destroy, which can be
really useful when preparing the local setup.

Automatic sharing of the code base between the guest and host machines relieves
you from manually deploying the code base. Basically, your deploy action reduces
to just running migrations from time to time.

You access your newborn local deploy target by issuing vagrant ssh at the
root of the code base, after which you are free to do anything. With the MySQL
configuration shown previously in this appendix, you can access the database
from within the virtual machine by issuing the following command:

$ mysql -u root -pmysqlroot crmapp

Do remember that your code base is not in the home directory of the Vagrant user,
at which you end right after the vagrant ssh call, but in the /vagrant one, so doing
cd /vagrant can easily become your habit.

The most important setup is the test suite carefully constructed in Chapter 2,
Making a Custom Application with Yii 2, and Chapter 3, Automatically Generating
the CRUD Code.

As was stated back in Chapter 3, Automatically Generating the CRUD Code, running
acceptance tests too many times (more than 10, actually) will overfill the grid views
in the CRUD interfaces, which are configured to show only 20 items per page. After
that, tests start to fail.

Deployment Setup with Vagrant

[360]

So, it's up to you to manually clean the database after acceptance tests as they have
no means to clean up themselves. Inside the code bundle provided for this book
there is a script called reset_database.sh, which helps you in this task. It contains
just four lines of shell code as follows:

Drop the production database
mysql -u root -pmysqlroot -e "drop database if exists crmapp; create
database crmapp default character set utf8 default collate utf8_
unicode_ci";

Initialize the RBAC setup in empty database
./yii migrate --interactive=0 --migrationPath='@yii/rbac/migrations'

Run all our own migrations
./yii migrate --interactive=0

Make the SQL data dump for Codeception
mysqldump -u root -pmysqlroot crmapp > tests/_data/dump.sql

In effect, running this script will completely rebuild your database to clean its state.
Do not use something like that on the application deployed in production! The
second helper script that is provided with this book is selenium.sh. This script
will launch the local instance of the Selenium server configured in such a way that
you will be able to run acceptance tests right there in the Vagrant box. It's not as
reliable as using an actual remote connection to separate a deploy target (because
a connection is being made to the localhost, bypassing DNS and other things like
proxies), but it's convenient, as you are able to use it immediately. Launch this helper
script in a separate command line, and then run the acceptance tests in another one.

The third helper script is called minify_assets.sh, and it's just running the correct
invocation of the ./yii asset command described in Chapter 8, Overall Behavior, in
the section about minifying assets.

Overall, the code bundle provided with this book is configured in such a way that
you will be able to launch Vagrant box and then immediately be able to launch the
full test suite using the single command:

$./cept run

This cept script is a shorthand to call the Codeception executable inside the
vendor directory.

The Active Form Primer
When making the Yii-flavored user interface in Chapter 11, The Grid, we centered only
around the GridView widget, as it was the topic of the chapter. But there is another
important part of any web application, and it's an HTML form.

The Yii 2 framework provides a very robust and convenient-to-use widget called
ActiveForm, which can semi-automatically construct an HTML form for us given the
ActiveRecord instance describing the model being manipulated. We'll just continue
from where we stopped, at the very end of Chapter 11, The Grid.

Making the Edit form for customer
Our Customer models are already being stored in two separate tables in the
database, and two different active records are used to create a single customer.
With the addition of the Address and Email models, we are meeting the problem
of the need for a user interface to create and update Customer models.

The Active Form Primer

[362]

We don't have either the book volume or the intention necessary to implement some
JavaScript-heavy rich UI, even if it would undoubtedly be more responsive and
visually pleasing. So, let's go old school and make a web interface traditional to the
world of static HTML pages. Here is the sketch:

So, phones, e-mails, and addresses will be presented as tables, with the buttons
Add, Edit, and Delete. These tables will behave in exactly the same manner as the user
interface used at /user/index and /services/index, which we have made using the
Gii automatic CRUD generator. The Add and Edit buttons will transfer us to the add/
edit pages corresponding to the submodel we want to add/edit, and when we click on
Save on those pages, we'll be transferred back to this Edit Customer Form page.

Active query
What is the active query concept? It is a domain-specific language (DSL) for various
tasks used to query the database for active records, which are possibly related to one
other. On the one hand, it hides the intricacies of constructing the appropriate SQL
and on the other, constructs the ActiveRecord instances from raw datasets. This
concept is implemented as a \yii\db\ActiveQuery class, which is an extension
of \yii\db\Query.

Appendix B

[363]

While a simple query returns data as associative arrays from the database, an
active query is tailored to return iterable collections of active records, which is
useful when you are on a level higher than raw data from the database. Of course,
constructing the full ActiveRecord instance for each record returned by a query
is a costly operation, so with convenience comes a performance penalty. However,
generally it's wiser to think about your architecture first and tweak performance later
when needed, because if you don't use ActiveRecords or Repository pattern over
ActiveRecords, you will use the API for direct database access, and it's a lot harder to
maintain it in the long term.

The ActiveQuery is a very large class ultimately. It inherits from
the Query class, which uses the trait \yii\db\QueryTrait, which
itself uses two traits, \yii\db\ActiveQueryTrait and \yii\db\
ActiveRelationTrait. There can be a whole book written only for
the sake of explaining the intricacies of using the ActiveQuery class of
Yii 2. You are encouraged to look at the documentation and source code
for this class and explore it yourself.

We don't need all the functionality of ActiveQuery. To show a simple, expressive
example, here is how you can get the customers who should be congratulated with
their birthday in this week, but only those who were registered by the manager
currently being logged in:

 $week_ago = (new DateTime)->sub(new DateInterval('P1W'))-
>format('Y-m-d');
 $current_user = Yii::$app->user->id;
 $customers = CustomerRecord::find()
 ->where(
 ['and', 'created_by=:current_user', 'birth_
date>=:week_ago'],
 compact('current_user', 'week_ago')
)->all();

What does this code do? Here's what it does:

1. The call to ActiveRecord.find() returns us an ActiveQuery instance
configured for the CustomerRecord active record.

2. Its where() method configures this ActiveQuery instance to filter the records
according to two of our conditions.

3. Finally, the all() method returns the array of ActiveRecord instances to us.

We already mentioned long ago the built-in PHP function named compact().

The Active Form Primer

[364]

This is usually the way to use ActiveQuery: we enter the querying mode by
calling find() on the ActiveRecord class, and when we finish chaining all the
methods required, we pull out the ActiveRecord instances back, returning from the
ActiveQuery DSL.

Another way to use ActiveQuery is to manually construct and pass them to the
methods that expect it. One such place is the DataProvider instance, which was
described back in Chapter 2, Making a Custom Application with Yii 2.

Customizing the autogenerated form
Let's look at what the Create Customer Record form looks like by opening
the /customer-records page and clicking on the big green Create Customer
Record button above the table:

Appendix B

[365]

How is it implemented? Tracing the /customer-records/create route, we end
in the views/customer-records/create.php view file, which calls _form.php in
the same folder. This view file is what governs the rendering of this form. You can
note that update.php and create.php are almost the same and use the same form
inside the _form.php script. This is intentional, as in Yii 2 ideology, the creating and
updating of an ActiveRecord are very similar actions.

If you open the view file, you will see quite a simple structure, ignoring the raw
HTML code:

1. We initialize the ActiveForm by calling $form = ActiveForm::begin().
2. Then we output input fields by calling $form->field($model, $attr)-

>textInput($setup).
3. Then, we do some magic to render either the Create or Update submit button

with proper CSS classes.
4. Then, we end the ActiveForm by calling ActiveForm::end() (note that we

call the static method and not the method of $form instance).

First, let's change this form layout to horizontal according to our sketch. As we already
have the Yii 2-bootstrap extension attached to our application, this is extremely simple.
We just have to declare our form to be not of the class \yii\widgets\ActiveForm, but
of the class \yii\bootstrap\ActiveForm. This can be done in the block of use clauses
at the top of the view file. Find the following declaration:

use yii\widgets\ActiveForm;

Replace it with the following line of code:

use yii\bootstrap\ActiveForm;

With this declaration substitution, we don't even need to change the code in the
view file itself.

After that, we need to modify the ActiveForm::begin() call by adding a layout
setting to the widget config:

 <?php $form = ActiveForm::begin(['layout' => 'horizontal']);?>

The Active Form Primer

[366]

That's all, our form now looks like the one shown in the following screenshot:

We certainly don't need an editable ID of the customer, so we need to remove the
following line:

 <?= $form->field($model, 'id')->textInput() ?>

We have to introduce an important guard case here. To create the new customer
record, we need to remove the subtables for phones, addresses, and e-mails, because
we need an ID that will be assigned to the customer record only after it is saved to
the database.

Put the following if-endif brackets into the _form.php file:

 <?= $form->field($model, 'notes')->textarea(['rows' => 6]) ?>

 <?php if (!$model->isNewRecord):?>
 <!-- subtables will be here… -->
 <?php endif?>

 <div class="form-group">

Appendix B

[367]

This will prevent Yii from rendering the tables we're going to describe next just in
case the customer record is a new one. All the following code examples are assumed
inside the if-endif brackets!

Next, let's turn to the topic of adding a grid view for phone records associated with
the customer being updated. We will start simple:

 <h2>Phones</h2>
 <?= \yii\grid\GridView::widget([
 'dataProvider' => new \yii\data\ActiveDataProvider([
 'query' => $model->getPhones(),
 'pagination' => false
]),
 'columns' => ['number']
]);?>

This will give us the following output when phones are to be attached to this new
customer record:

We will use the relation method created in Chapter 11, The Grid, on the
CustomerRecord class to return an ActiveQuery instance to find the
PhoneRecord instances.

We don't need pagination in this grid view, as the number of records most probably
will be small anyway. While GridView has a special pager setting, it is to customize
the whole \yii\widgets\LinkPager widget, which is responsible for rendering
all of those numbers and arrows inside squares. We, on the other hand, want to
disable the whole notion of pagination for the Phones list. Thus, we need to use the
pagination setting on ActiveDataProvider one abstraction deeper.

We don't need anything apart from the phone number, so only one column is
explicitly declared. Without the declaration of columns, this grid view will break
inside the Create Customer Record form, because there will no PhoneRecord
instances to extract the column schema from.

The Active Form Primer

[368]

Now, we'll do the real magic and wire this table to the CRUD functionality we have
made for PhoneRecord in the previous section. For this, we need to add a special
column that defines actions available to be performed on the corresponding active
phone records as follows:

 <?= \yii\grid\GridView::widget([
 // ...
 'columns' => [
 'number',
 [
 'class' => \yii\grid\ActionColumn::className(),
]
]
]);?>

You can guess now that the column definition can be the configuration array to be
consumed by Yii::createObject(). Here is how this column will look:

If you look at the URLs behind the icons, you can see that it's the view, update,
and delete actions we need, but they're tied to the current controller; we want
phones instead of customer-records. This is solved quite simply by telling the
ActionColumn class which controller it should relate itself to:

 <?= \yii\grid\GridView::widget([
 // ...
 'columns' => [
 'number',
 [
 'class' => \yii\grid\ActionColumn::className(),
 'controller' => 'phones'
]
]
]);?>

Appendix B

[369]

Last, but not least, we need the Add Phone button. Let's do this now and put the
button link right inside the column header as we sketched it previously:

 <?= \yii\grid\GridView::widget([
 // ...
 'columns' => [
 'number',
 [
 'class' => \yii\grid\ActionColumn::className(),
 'controller' => 'phones',
 'header' => Html::a('Add New', ['phones/create']),
]
]
]);?>

To make it better, let's stuff the icon for the plus sign beside the Add New label
as follows:

'header' => Html::a(
 '<i class="glyphicon glyphicon-plus"></i> Add New',
 ['phones/create']
),

Also, we don't need the view icon (the one with the eye), as the number is shown to
us anyway, and we can see the details in the Update Phone form in the same way.
Have a look at the following code:

 <?= \yii\grid\GridView::widget([
 // ...
 'columns' => [
 'number',
 [
 'class' => \yii\grid\ActionColumn::className(),
 // ...
 'template' => '{update}{delete}',
]
]
]);?>

The Active Form Primer

[370]

Now it's perfect. The preceding code will give us the following output:

The column width can be corrected by applying CSS, which we don't care
about now.

Then we add the Addresses grid view as follows:

 <h2>Addresses</h2>
 <?= \yii\grid\GridView::widget([
 'dataProvider' => new \yii\data\ActiveDataProvider(
 ['query' => $model->getAddresses(), 'pagination' => false]
),
 'columns' => [
 'purpose',
 'country',
 'city',
 'receiver_name',
 'postal_code',
 [
 'class' => \yii\grid\ActionColumn::className(),
 'controller' => 'addresses',
 'template' => '{update}{delete}',
 'header' => Html::a(
 '<i class="glyphicon glyphicon-plus"></i> Add
New',
 ['addresses/create']
),
],
],
]);?>

Appendix B

[371]

The pieces different from the Phones grid view are highlighted. This should result in
the following table:

Similarly, you can craft the code yourself for the Emails grid view given this
empty reference table:

Passing the customer ID to submodels
We have a small problem in our UI. Let's click on this new Add New button that we
have created just now for the Phones grid view:

We don't pass the customer ID to the phone record being created! And we don't
need this field at all, actually, especially if we are passing the ID automatically.
We need a way to pass the customer ID to the Create Phone Record submodel
(and other submodels too).

The Active Form Primer

[372]

The simplest way is to modify SubmodelController.actionCreate() in such a
way that it accepts an additional parameter. Let's name it in a generic way as follows:

 public function actionCreate($relation_id)

Then, in the configuration for the header of the last action column, we can add the
relation_id parameter to the URL being created:

'header' => Html::a(

 '<i class="glyphicon glyphicon-plus"></i> Add New',

 ['phones/create', 'relation_id' => $model->id]

),

It should be clear now after explanations in Chapter 12, Route Management, that
arguments to the action* methods on the controllers become mandatory GET
or POST parameters for the associated route with the same name.

Then, we can correctly place the given relation_id in the record being created:

 public function actionCreate($relation_id)
 {
 /** @var ActiveRecord $model */
 $model = new $this->recordClass;
 $model->customer_id = $relation_id;
// … other code ...

However, as we already named our input argument in a generic way, let's abstract
from the customer concept here and make the target field generic too as follows:

 $model->{$this->relationAttribute} = $relation_id;

This is another example of the capabilities of PHP in metaprogramming, as we have
just used the string stored inside a variable as an attribute name of an object (whose
class itself was deduced from a string stored inside a variable). Of course, we have to
declare this property now. Have a look at the following code:

 /** @var string Name of the attribute which will store the given
relation ID */
 public $relationAttribute;

Also, correct the definition of AddressesController, EmailsController, and
PhonesController by adding the following declaration inside them:

 public $relationAttribute = 'customer_id';

Appendix B

[373]

This is an example of the harm caused by over-generalizing in your code.
What began with seemingly small and nice generalization now cost us
triple code duplication. And we cannot default the value to customer_
id, because we have SubmodelController completely decoupled from
our domain now, and by doing so, we will break the abstraction, which
looks even worse than blunt code duplication.

We can now remove the fields for the customer_id property from views/
addresses/_form.php, views/emails/_form.php, and views/phones/_form.php
in the same way we removed the id field from the Update Customer form.

Returning to the Update Customer form after
updating the submodel
That's not all, though. When we create or update the phone, address, or e-mail, after
clicking on the submit button, we are redirected to the /phone/view, /address/
view, or /email/view, respectively, which is not what we want. It's better if we
would be redirected to the page we were on before, that is, the Update Customer
Record form page. This is quite easy to achieve using the tools Yii 2 provides
us with.

First, we need to record the Update Record page URL by doing this in the \app\
controllers\CustomerRecordsController::actionUpdate() method as follows:

$this->storeReturnUrl();

The storeReturnUrl() is a well-named function, which we define ourselves
as follows:

 private function storeReturnUrl()
 {
 Yii::$app->user->returnUrl = Yii::$app->request->url;
 }

We are storing the URL from \yii\web\Request.getUrl() with a \yii\web\User.
setReturnUrl() call using a nice syntax provided to us by the __get() and __
set() magic methods from Yii 2.

Then we go to the SubmodelController class again to the method actionCreate(),
and find the following redirection:

 return $this->redirect(['view', 'id' => $model->id]);

The Active Form Primer

[374]

We need to change it to the following code:

 return $this->goBack();

This is simpler and does what we need. The \yii\web\Controller.goBack()
method does redirect to the URL stored in \yii\web\User.getReturnUrl(),
and it's exactly what we set before. Documentation for this property of the User
component states that it's the URL we should redirect the user to after a successful
login, but in reality, you can call goBack() in any place, thus this returnUrl is
general-purpose.

You should perform the same replacement in the actionUpdate() method.
Additionally, inside the actionDelete() method, you should replace the
following redirect:

 return $this->redirect(['index']);

The preceding code should be replaced with the following code:

 return $this->goBack();

Or else, after you click on the Delete button beside any phone, address, or e-mail
and confirm deletion, the system will try to redirect you to the nonexistent
actionIndex() for the corresponding model.

Custom column value for the addresses table
We have only one discrepancy left between our sketch and the current state of the
Update Customer form: the look of the addresses subtable. We need only a single
column with the whole address written in one line.

Yii 2 provides two options for us here, which are as follows:

1. The first option is to subclass \yii\grid\DataColumn, which is the
default class for the GridView column, and write our own code to make
the cell contents.

2. The second option is to use just the \yii\grid\DataColumn.value property
to display the value we need. This is perfectly suitable for our problem as we
don't need to do much apart from gluing together pieces of information from
AddressRecord.

Appendix B

[375]

So, let's make the following straightforward implementation of the value for the
Address column in the Addresses subtable:

 'columns' => [
 [
 'label' => 'Address',
 'value' => function ($model) {
 return implode(', ',
 array_filter(
 $model->getAttributes(
 ['country', 'state', 'city', 'street',
'building', 'apartment'])));
 }
],
 'purpose',
 [
 // … ActionColumn here which we don't care about...
],
],

You can see that we can pass arbitrary callables to the value property. Also, the
label property controls the text in the header of the column. In the end, here is what
we get with this column definition:

The Active Form Primer

[376]

In the end, we get the result pretty close to what we sketched at the beginning of
this section:

We have not covered in detail the important topic of the active form handling: the
validators. Do not miss the opportunity to learn about form validation in official
documentation, as it's a really useful feature of the framework.

Index
A
AcceptanceTester class 92
acceptance tests, user management

interface 116-118
access control

applying, to site 166-170
in controllers, failing test 162-164
user authentication used 140

access control filter 165, 166
AccessControl filter 149
action filters

\yii\filters\AccessControl filter 148
\yii\filters\ContentNegotiator filter 148
\yii\filters\HttpCache filter 148
\yii\filters\PageCache filter 148
\yii\filters\RateLimiter filter 149
\yii\filters\VerbFilter filter 148
about 147-151
advantages 147

actions, controller
create 70
delete 70
index 70
update 70
view 70

active query 362-364
ActiveQuery class 363
active record

password hashing, implementing
inside 123-125

Add New Customer UI
about 50, 51
finishing 53-55

load() method 54
rules() method 54
save() method 54
URL 59
validate() method 54

addresses table
custom column value, creating for 374-376

advanced application 10
advanced application template

installing 11-13
specifics 13

aliases
registering 237

alias tokens
@app 86
@runtime 86
@vendor 86
@web 86
@webroot 86

anatomy, Yii rendering 79-81
APC PHP

about 218
URL 218

API module
automatic tests, requisites 187-190
building 183
test suite, building 184-186

application layers, custom application
creating 39

AssetBundle class, properties
css 101
depends 101
js 101
sourcePath 101

[378]

asset bundles
about 100
JavaScript, placing in different

positions 105, 106
manual registration, of CSS files 104, 105
manual registration, of JavaScript

files 104, 105
with files, from arbitrary folder 100, 101
with files, from web-accessible folder 103

assets
minimizing 223-232

assets publishing
about 101
practical consequences 102

AttributeBehavior class
about 263
attributes setting 262
value setting 262

authentication indicator, login interface
making 131

authentication key 126
autogenerated form

customizing 364-371
automatic tests, API modules

requisites 187-190

B
BaseMailer class 278
basic application 7
basic application template

installing 7, 8
specifics 9, 10

basic table, MySQL Workbench
URL 114

beginCache() method 221
behavior

about 253, 263
attaching 264, 265
detaching 264, 265
methods 264

behavior classes
about 264
AttributeBehavior 263
BlameableBehavior 263
TimestampBehavior 263

behaviors() method 149
black hat hacker 233
blameable behavior

using 260-263
BlameableBehavior class 263
boilerplate code

preparing, for extension 235
bootstrap

creating, for extension 238, 239
bootstrap() method 235
bootstrapping 235, 236
built-in events 270
built-in exceptions 214-216
built-in validators

URL 46

C
cache component 217-219
caching

about 216
cache component 217-219
database queries caching 220
HTTP headers, using 222
levels 216
page fragment caching 221
whole page caching 221, 222

caching, dependencies
\yii\caching\ChainedDependency 218
\yii\caching\DbDependency 218
\yii\caching\ExpressionDependency 218
\yii\caching\FileDependency 218

caching solutions
\yii\caching\ApcCache 218
\yii\caching\DbCache 218
\yii\caching\DummyCache 219
\yii\caching\FileCache 219
\yii\caching\MemCache 219
\yii\caching\WinCache 219
\yii\caching\XCache 219
\yii\caching\ZendDataCache 219

code
generating, for Model class 66-69

code base, custom application
Yii 2, installing to 34

[379]

Codeception
about 21, 184
URL 10, 21

column types, Yii 2
\yii\grid\ActionColumn 309
\yii\grid\CheckboxColumn 309
\yii\grid\DataColumn 309
\yii\grid\SerialColumn 309

component, Yii application 81-83
Composer

about 7, 19
URL 20

Composer Custom Installer
URL 242

composer.json manifest
preparing 243

configuration
local overrides, adding to 337-340

configuration construction 336, 337
console application 341, 342
constants, message log

yii\log\Logger::LEVEL_ERROR 198
yii\log\Logger::LEVEL_INFO 198
yii\log\Logger::LEVEL_TRACE 198
yii\log\Logger::LEVEL_WARNING 198

controller actions
moving, to separate module 191-193

controller class
adding 38
adding, to custom application 37
qualities 37

Controller.render() method 87
controllers

access control, failing test 162-164
hook methods 140-142

CRM management
protecting, from CRM users 152, 153

Cross-Site Request Forgery (CSRF) 142
CRUD code

generating 69-71
CRUD user interface 16
cryptographic hash function 115
custom application

application layers, creating 39
controller class, adding 37, 38
data layers, creating 39

design 16
developing, Yii 2 used 26
domain model design 16-18
end-to-end test, performing 27-33
errors, handling 38
preparations 19
target feature 18, 19
task 16
user interface, creating 49
using 58-60
wireframe code, building 36, 37
Yii 2, installing to code base 34

custom asset bundle
creating, for application 106, 107

custom column value
creating, for addresses table 374-376

custom console commands 342-344
customer

Edit form, creating for 361, 362
customer creation

test case 254-257
customer ID

passing, to submodels 371-373
Customer Query UI

about 58
URL 60

customers' index designing
about 280
address, creating 281-284
common base controller, creating for

submodels 285-287
e-mail, creating 281-284
phone active records, creating 281-284
relations, creating 288-290

customer updates
test case 257-259

custom renderers
overview 90-95

custom response formatter
overview 95-100

custom routes
implementing, configuration used 328
implementing, custom URL rule classes

used 331-334
custom snowy theme

creating 108-110

[380]

custom templates
creating, for database migrations 349-351

custom URL rule classes
used, for implementing custom

routes 331-334

D
dash-separated format 326
database migrations

about 11, 345-348
custom templates, creating for 349-351
references 11, 345

database queries caching 220
database records

marking, with timestamp 253, 254
marking, with user ID 253, 254

data layers, custom application
creating 39
customer model, defining 40, 41
database, setting up 43-45
decoupling, from ORM 47-49
ORM 45-47

DB connection component, property
settings

enableQueryCache 220
enableSchemaCache 220
queryCacheDependency 220
queryCacheDuration 220
schemaCacheDuration 220
schemaCacheExclude 220

Db module, Codeception
URL 121

Debug module 180-183
default role 152
Dependency Injection Containers 82
deployment pipeline, custom application

setting up 22-25
web application entry point visibility,

enabling 26
DetailView widget 55
domain layer

dismissal 279, 280
domain model design, custom

application 16-18

domain-specific language (DSL) 362
down() method 346

E
Edit form, for customer

about 361, 362
active query 362-364
autogenerated form, customizing 364-371
custom column value, creating for

addresses table 374-376
customer ID, passing to submodels 371-373
Update Customer form, after submodel

update 373, 374
e-mailing component

setting, for message log 201
enablePrettyUrl property 324
end-to-end test

performing, on custom application 27-33
error handling

about 211-213
built-in exceptions 214-216

error handling controller action 213, 214
errors, custom application

handling 38
errorSummary method 51
ETag header 148, 222
events

about 253, 265
classes 266
example 269, 270
methods 266

events, \yii\base\Application
EVENT_AFTER_REQUEST 271
EVENT_BEFORE_REQUEST 271

events, \yii\base\Controller
EVENT_AFTER_ACTION 271
EVENT_BEFORE_ACTION 271

events, \yii\base\Model
EVENT_AFTER_VALIDATE 274
EVENT_BEFORE_VALIDATE 274

events, \yii\base\Module
EVENT_BEFORE_ACTION 272

events, \yii\base\View
EVENT_AFTER_RENDER 273
EVENT_BEFORE_RENDER 273

[381]

EVENT_BEGIN_PAGE 273
EVENT_END_PAGE 273

events, \yii\db\BaseActiveRecord
EVENT_AFTER_DELETE 276
EVENT_AFTER_FIND 275
EVENT_AFTER_INSERT 275
EVENT_AFTER_UPDATE 275
EVENT_BEFORE_DELETE 275
EVENT_BEFORE_INSERT 275
EVENT_BEFORE_UPDATE 275
EVENT_INIT 275

events, \yii\db\Connection
EVENT_AFTER_OPEN 276
EVENT_BEGIN_TRANSACTION 276
EVENT_COMMIT_TRANSACTION 276
EVENT_ROLLBACK_TRANSACTION 276

events, \yii\mail\BaseMailer
EVENT_AFTER_SEND 278
EVENT_BEFORE_SEND 278

events, \yii\web\Response
EVENT_AFTER_PREPARE 277
EVENT_AFTER_SEND 277
EVENT_BEFORE_SEND 277

events, \yii\web\User
EVENT_AFTER_LOGIN 277
EVENT_AFTER_LOGOUT 277
EVENT_BEFORE_LOGIN 277
EVENT_BEFORE_LOGOUT 277

events, \yii\web\View
EVENT_BEGIN_BODY 274
EVENT_END_BODY 274

exception classes
\yii\base\ErrorException 215
\yii\base\Exception 215
\yii\base\ExitException 215
\yii\base\InvalidCallException 215
\yii\base\InvalidConfigException 215
\yii\base\InvalidParamException 215
\yii\base\InvalidRouteException 215
\yii\base\NotSupportedException 215
\yii\base\UnknownClassException 215
\yii\base\UnknownMethodException 215
\yii\base\UnknownPropertyException

215
\yii\base\UserException 215
\yii\console\Exception 215

\yii\db\Exception 216
\yii\db\StaleObjectException 216

exception handling 143-147
extension

about 233, 234
boilerplate code, creating for 235
bootstrap, creating for 238, 239
installable making 240, 241
registering 237
repositories, configuring for 244-250

extension contents
creating 234

F
failing test, access control in

controllers 162-164
failing test, role hierarchy 157-159
Faker library

URL 29
features, Yii 2

assets, minimizing 223-232
caching 216
error handling 211-213
message log 197-199
profiling 206-210

file-based installation
cons 249
pros 249

filters 142
format() method 80, 297
formats

boolean 298
date 298
datetime 298
double 298
email 298
html 297
image 298
integer 298
ntext 297
number 299
paragraphs 297
raw 297
relativeTime 299
size 299

[382]

text 297
time 298
url 298

formatter
about 296
purpose 296

functional tests, password hashing 120-123

G
generated classes, over manual classes

cons 78
pros 78

generated CRUD UI
overview 74-77

Gii
about 10
code, generating for Model class 66-69
CRUD code, generating 69-71
installing, into application 64, 65
layout, creating for pages 72, 73
using 64

Google Closure compiler
about 225
URL 225

GridView columns
about 308
body rows 308
filter row 308
footer row 308
header row 308

GridView, customers
filtering, implementing inside 310-314
sorting, implementing inside 316-320

GridView widget 55

H
handleUpload() routine 267
hook methods

afterAction($action, $result) 140
beforeAction($action) 140
of controller 141, 142

HTTP headers
ETag 222
Last-Modified 222

reference link 222
used, for caching request 222

I
identity

user record, making into 126-128
index page, for customers

base GridView, creating 293-295
creating 292, 293
custom GridView column, creating for

customer audit info 299-306
format, modifying of column

content 295, 296
submodels, compressing 307

index.php file
about 25
basePath 37
components.request.cookieValidationKey 37
id 37

informal concept of reachability 175
installation, advanced application

template 11-13
installation, basic application template 7, 8
installation, Gii

into application 64, 65
installation, Yii 2

application requirements, checking 34
to custom application code base 34

L
LAMP stack

planning 354
Last-Modified header 148, 222
layouts

about 52, 53
creating, for pages support 72, 73

List Customers UI 56, 57
ListView widget 55
local deploy target

virtual machine, using as 359, 360
local overrides

adding, to configuration 337-340
login interface

authentication indicator, making 131
creating 128

[383]

login form functionality 132-137
logout functionality 137
user authentication, specifications 129-131

log rotation 201

M
Markdown

URL 91
MarkdownRenderer class 94
md5() function 118
memcache solution

URL 219
message log

about 197-199
e-mailing component, setting 201
stored log messages, reading 203-205
storing 200

message log, methods
Yii::error($message, $category) 199
Yii::info($message, $category) 199
Yii::trace($message, $category) 199
Yii::warning($message, $category) 199

message log, targets
yii\log\DbTarget 201
yii\log\EmailTarget 201
yii\log\FileTarget 201
yii\log\SyslogTarget 201

methods, asset bundles
registerCss($css, $options) 104
registerCssFile($url, $depends,

$options) 104
registerJs($js, $position) 104
registerJsFile($url, $depends, $options) 104

methods, behavior
attachBehavior($name, $behavior) 264
attachBehaviors($behaviors) 264
detachBehavior($name) 264
detachBehaviors() 264

methods, Cache API
add($key, $value, $duration = 0,

$dependency = null) 217
delete($key) 217
exists($key) 217
flush() 217
get($key) 217

methods, View component
beginBody() 89
beginPage() 89
endBody() 89
endPage() 89
head() 89

methods, yii\rbac\DbManager class
add($item) 160
addChild($parent, $child); 160
assign($role, $userId) 160
createPermission($name) 160
createRole($name) 160

methods, \yii\web\UrlRuleInterface
createUrl($manager, $route, $params) 330
parseRequest($manager, $request) 330

MigrateController
about 349
safeDown() method 349
safeUp() method 349

model
defining 63, 64

Model class
about 35
code, generating for 66-69

Model View Controller. See MVC
module configuration

examples 176-180
modules 173
Multipurpose Internet Mail Extensions

(MIME) 98
MVC

about 34, 35
Controller 35
Model 35
View 35

MySQL Workbench
URL 42

O
OAuth protocol

URL 116
object-relation mapping. See ORM
observer pattern incarnate

URL 265

[384]

OpenID
URL 116

ORM
about 45-47
data layers, decoupling from 47-49

P
Packagist service

cons 244
pros 244
URL 244

page fragment caching 221
password-based login mechanics

about 114-116
password field 115
user field 115

password hashing
functional tests 120-123
implementing, inside active record 123-125
upon saving user record 119, 120

password strength
URL 154

PDO calls 48
permissions

about 151, 152
features 151

Personal Package Archives (PPA) 356
phishing backdoor 233
PHP archive (PHAR) 7
PHP script 336
popovers, Twitter Bootstrap

reference link 301
positions, for JavaScript files

View::POS_BEGIN 105
View::POS_END 105
View::POS_HEAD 105
View::POS_LOAD 105
View::POS_READY 105

predefined users
installing 153, 154

preparations, custom application
deployment pipeline, setting up 22-25
project management, setting up 19
testing framework, setting up 20-22

profiling 206-210
profiling, methods

\yii\BaseYii::beginProfile() 207
\yii\BaseYii::endProfile() 207
\yii\log\Logger::getDbProfiling() 207
\yii\log\Logger::getElapsedTime() 207
\yii\log\Logger::getProfiling() 207

profiling security levels, log messages
yii\log\Logger::LEVEL_PROFILE 206
yii\log\Logger::LEVEL_PROFILE_BEGIN

206
yii\log\Logger::LEVEL_PROFILE_END

206
project management, custom application

setting up 19
PSR-4 standard

URL 237

R
RBAC 151
RBAC managers 155, 156
Redis

URL 219
relational database management system

(RDBMS) 345
render() method 90
renderPhpFile() method 90
repositories

configuring, for extensions 244-250
repository-based installation

cons 250
pros 250

repository pattern 47
requirements.php file

URL, for downloading 34
require() method 79
Response::FORMAT_HTML literal 97
Response::FORMAT_JSON literal 97
Response::FORMAT_JSONP literal 97
Response::FORMAT_RAW literal 97
Response::FORMAT_XML literal 97
rich UI 362
role-based access control. See RBAC
role hierarchy

failing test 157-159
setting up 159-162

[385]

routes
controlling, ways 325

routing
actions, using 325, 326
controllers, using 325, 326
modules name, using 325

routing 101 51, 52
routing 102, Yii 2 323-325
Ruby on Rails migrations

reference link 345

S
salting 115
Selenium 23
settings, modules

basePath 174
components 174
controllerMap 174
controllerNamespace 174
controllerPath 174
layout 174
layoutPath 174
module 174
modules 174
viewPath 174

showScriptName property 324
Single Assertion principle 33
Single Responsibility Principle

about 269
URL, for example 269

SSL certificates
URL 116

Stack Exchange
URL 118

StepObject pattern
URL 28

stored log messages
reading 20-205

submodels
customer ID, passing to 371-373

SwiftMailer library
about 201
URL 10

Symfony2 97

T
tags 243
test case, customer creation 254-257
test case, customer updates

about 257-259
database fields, preparing 259, 260

test-driven development (TDD) 190
testing framework, custom application

setting up 20-22
themes 107
timestamp behavior

using 260-263
TimestampBehavior class 263
touches

finishing 72
Twitter Bootstrap UI library

URL 10

U
Update Customer form

returning, after submodel
update 373, 374

up() method 346
URL management

fundamental rules 326
URL rules

about 328-330
reference link 329

URL rules, properties
mode 329
pattern 328
route 328
suffix 329
verb 328

URLs
creating, in Yii 327

user
authenticating, Yii used 114

user authentication, login interface
specifications 129-131

user authorization 139
user interface, custom application

Add New Customer UI 50, 51
Add New Customer UI, finishing 53-55

[386]

creating 49
Customer Query UI 58
layouts 52, 53
List Customers UI 56, 57
routing 101 51, 52
widgets 55, 56

user login, Yii
anatomy 114

user management interface
about 116
acceptance tests 116-118
CRUD code, generating by Gii 118
database table, preparing for user records

storage 118
model, generating by Gii 118
password field, removing from

autogenerated code 119
user record

making, into identity 126-128

V
Vagrant

about 353
initial setup, creating 354-356
references 179, 353, 354

VerbFilter::className() invocation 149
View component

about 35, 79, 84
algorithm, for finding view files 84-86
algorithm, for searching layout file 87-89
internal working, of rendering view

file 89, 90
methods 89

VirtualBox
URL 353

VirtualBox Guest Additions plugin 357
virtual machine

using, as local deploy target 360
virtual machine, fine-tuning

about 356
application, preparing 358, 359
database, preparing 357, 358
guest OS, preparing 356, 357

W
whole page caching 221, 222
widgets

about 55, 56, 111
DetailView 55
GridView 55
ListView 55
using 290-292

Windows Cache
URL 219

wireframe code, custom application
building 36, 37

X
XCache

URL 219
Xdebug 197

Y
YAML

URL 97
Yaml::dump() method 100
Yaml::parse() method 100
Yii

exception handling 143-147
RBAC managers 155
URLs, creating in 327
used, for authenticating user 114

Yii 2
about 7
column types 309
features 197
installing, to custom application

code base 34
MVC 34, 35
routing 102 323-325
URL, for application boilerplate 7
URL, for documentation page 9
used, for developing custom application 26

yii2-debug repository
URL, for installation instructions 180

Yii application
components 81-83

[387]

Yii basic-application template
reference link 337

YiiBoilerplate project, Clevertech
URL 340

Yii::createObject() invocation 82
Yii DAO

URL 48
Yii::error($message, $category) method 199
Yii::info($message, $category) method 199
Yii rendering

anatomy 79-81

Yii::trace($message, $category) method 199
Yii::warning($message, $category)

method 199
YUI compressor

about 225
URL 225

Z
Zend Data Cache

URL 219

Thank you for buying
Web Application Development with Yii 2 and PHP

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Yii Application Development
Cookbook
Second Edition
ISBN: 978-1-78216-310-7 Paperback: 408 pages

A Cookbook covering both practical Yii application
development tips and the most important Yii features

1. Learn how to use Yii even more efficiently.

2. Full of practically useful solutions and concepts
you can use in your application.

3. Both important Yii concept descriptions and
practical recipes are inside.

Web Application Development
with Yii and PHP
Second Edition
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework
by taking a step-by-step approach to building a
Web-based project task tracking system from
conception through production deployment

1. A step-by-step guide to creating a modern Web
application using PHP, MySQL, and Yii.

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework.

3. Start with a general idea, and finish with
deploying to production, learning everything
about Yii in between, from "A"ctive record to
"Z"ii component library.

Please check www.PacktPub.com for information on our titles

Yii Rapid Application Development
HOTSHOT
ISBN: 978-1-84951-750-8 Paperback: 340 pages

Become a RAD hotshot with Yii, the world's most
popular PHP framework

1. A series of projects to help you learn Yii and
Rapid Application Development.

2. Learn how to build and incorporate key web
technologies.

3. Use as a cookbook to look up key concepts, or
work on the projects from start to finish for a
complete web application.

Agile Web Application
Development with Yii1.1
and PHP5
ISBN: 978-1-84719-958-4 Paperback: 368 pages

Fast-track your web application development by
harnessing the power of the Yii PHP Framework

1. A step-by-step guide to creating a modern,
sophisticated web application using an
incremental and iterative approach to
software development.

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework.

3. Take a test-driven design (TDD) approach
to software development utilizing the Yii
testing framework.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	A basic application
	Installation of a basic application template
	Specifics of the basic application template

	An advanced application
	Installation of an advanced application template
	Specifics of the advanced application template

	Summary

	Chapter 2: Making a Custom Application with Yii 2
	The design stage
	Task at hand
	Domain model design
	Target feature

	Initial preparations
	Setting up project management
	Setting up the testing harness
	Setting up the deployment pipeline
	Making a web application entry point visible

	Introducing the Yii framework into our application
	First end-to-end test
	Yii 2 installation to the bare code base
	Checking the requirements

	An introduction to Yii conventions
	Building the wireframe code
	Adding a controller
	Handling possible errors

	Making the data and application layers
	Defining the customer model at the data layer
	Setting up the database
	Object-relation mapping in Yii
	Decoupling from ORM

	Creating the user interface
	The Add New Customer UI
	Routing 101
	Layouts
	Finishing the Add New Customer UI
	Widgets
	The List Customers UI
	Customer Query UI

	Using the application
	Summary

	Chapter 3: Automatically Generating
the CRUD Code
	Definition of the model to work with
	Using Gii
	Installing Gii into the application
	Generating the code for the Model class
	Generating the CRUD code

	Finishing touches
	Creating a new layout to support pages generated by Gii

	An overview of the generated CRUD UI
	Pros and cons of generated classes over manually created ones
	Summary

	Chapter 4: The Renderer
	Anatomy of Yii rendering
	The Yii application components
	The View component
	Algorithm to find the view files
	Algorithm to search the layout file to be used
	The Internal workings of rendering the view file

	Custom renderers
	A custom response formatter
	The asset bundles
	An asset bundle with files from an arbitrary folder
	Asset publishing
	An asset bundle with files from a
web-accessible folder
	Registering CSS and JavaScript files manually
	Placing JavaScript in different positions in the asset bundles
	Making a custom asset bundle for our application

	Themes
	Making a custom snowy theme

	Widgets
	Summary

	Chapter 5: User Authentication
	Anatomy of the user login in Yii
	Password-based login mechanics in general
	Making the user management interface
	Acceptance tests for the user management interface
	Database table to store user records
	Generating the model and CRUD code by Gii
	Removing the password field from the autogenerated code

	Hashing a password upon saving a
user record
	Functional tests for password hashing
	Password hashing implementation inside the active record

	Making a user record into an identity
	Making the login interface
	Specifications of user authentication
	Making the authentication indicator
	The login form functionality
	The logout functionality and wrapping
things up

	Summary

	Chapter 6: User Authorization and Access Control
	Access control using the state of user authentication
	FEATURE – hook methods of the controller
	FEATURE – exception handling in Yii
	FEATURE – controller action filters

	Role-based access control
	Protecting the CRM management from CRM users
	Installing predefined users
	RBAC managers in Yii
	The failing test for our role hierarchy
	Setting up the role hierarchy
	The failing test for access control in controllers
	FEATURE – Access control filter
	Applying access control to the site

	Summary

	Chapter 7: Modules
	FEATURE – Yii modules
	The informal concept of reachability
	Exploring the intricacies of module configuration through simple examples
	The Debug module

	Building the API module
	Building a test suite to support testing the
API module
	Defining the requirements for automatic tests of API modules
	Moving the controller actions to a
separate module

	Retrospective on the modules mentioned in previous chapters
	Summary

	Chapter 8: Overall Behavior
	FEATURE – message log
	Actually storing the log messages
	Setting up the e-mailing component so log messages can be mailed

	Reading the stored log messages

	FEATURE – profiling
	Error handling details
	FEATURE – error handling controller action
	List of built-in exceptions

	Caching
	FEATURE – cache component
	FEATURE – database queries caching
	FEATURE – page fragment caching
	FEATURE – whole page caching
	FEATURE – caching the request by HTTP headers

	Minimizing the assets
	Summary

	Chapter 9: Making an Extension
	Extension idea
	Creating the extension contents
	Preparing the boilerplate code for the extension
	FEATURE: Bootstrapping
	FEATURE: Extension registering
	Making the bootstrap for our extension – hideous attachment of a controller

	Making the extension installable as... erm, extension
	Preparing the correct composer.json manifest
	Configuring the repositories

	Summary

	Chapter 10: Events and Behaviors
	Automatically marking database records with the timestamp and user ID
	Test case for customer creation
	Test case for updating customer updates
	Preparing the database fields

	Using the timestamp and blameable behaviors

	FEATURE: Behaviors
	FEATURE: Events
	Built-in events
	Events of \yii\base\Application
	Events of \yii\base\Controller
	Events of \yii\base\Module
	Events of \yii\base\View
	Events of \yii\web\View
	Events of \yii\base\Model
	Events of \yii\db\BaseActiveRecord
	Events of \yii\db\Connection
	Events of \yii\web\Response
	Events of \yii\web\User
	Events of \yii\mail\BaseMailer

	Summary

	Chapter 11: The Grid
	Dismissing of the domain layer
	Designing for the customers' index
	Making address, e-mail, and phone
active records
	Making the common base controller for submodels
	Making relations from customer to address, e-mail address, and phone

	FEATURE – widgets
	Creating the index page for customers
	Making a base GridView for customers
	Changing the format of the column content
	FEATURE – formatter
	Making the custom GridView column for the customer audit info
	Compressing submodels related to customers into single columns
	FEATURE – GridView columns
	Implementing filtering inside GridView of customers
	Implementing sorting inside GridView of customers

	Summary

	Chapter 12: Route Management
	Yii 2 routing 102
	FEATURE – routing using names of modules, controllers, and actions
	Fundamental rules of URL management in
Yii 2
	FEATURE – creating URLs in Yii

	Custom routes using a configuration
	FEATURE – URL rules

	Custom routes using custom URL
rule classes
	Summary

	Chapter 13: Collaborative Work
	Configuration construction
	Adding local overrides to the configuration

	Console application
	Custom console commands

	Database migrations
	Making custom templates for database migrations

	Summary

	Appendix A: Deployment Setup
with Vagrant
	Planning
	Initial setup
	Fine-tuning the virtual machine
	Preparing the guest OS
	Preparing the database and web server
	Preparing the application

	Using the virtual machine as a local deploy target

	Appendix B: The Active Form Primer
	Making the Edit form for customer
	Active query
	Customizing the autogenerated form
	Passing the customer ID to submodels
	Returning to the Update Customer form after updating the submodel
	Custom column value for the addresses table

	Index

