
www.allitebooks.com

http://www.allitebooks.org

WiX 3.6: A Developer's Guide
to Windows Installer XML

An in-and-out, to-the-point introduction to Windows
Installer XML

Nick Ramirez

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WiX 3.6: A Developer's Guide to Windows Installer XML

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Second edition: December 2012

Production Reference: 1051212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-042-7

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nick Ramirez

Reviewers
Neil Sleightholm

Martin Oberhammer

Paul Michniewicz

Roel van Bueren

ENG. Nir Bar

Acquisition Editor
Usha Iyer

Lead Technical Editor
Dayan Hyames

Technical Editor
Jalasha D'costa

Project Coordinator
Arshad Sopariwala

Proofreader
Maria Gould

Indexer
Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nick Ramirez is a software developer living in Columbus, Ohio. As a believer that
deployment shouldn't be a moment of terror, he has become a big fan of technologies
such as WiX. Other related interests include build automation, software architecture,
and playing Portal 2. Nick lives with his wife and two cats.

I would like to thank the hard-working folks at Packt Publishing.
Their organization and planning make all the difference! I would
also like to thank the dedicated people of the WiX community, who
tirelessly volunteer their time to answer questions. Finally, I would
like to thank the developers who contribute source code to the WiX
project. Their expertise and commitment have gone towards making
the best Windows deployment tool on the market.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Neil Sleightholm is an IT consultant working in the UK. He has an engineering
background with experience in software development, application architecture,
electronics development, and mechanical engineering.

His current focus is on configuration management, build automation, installation
development, and deployment.

Neil has worked with most of the Microsoft platform technologies and has
programmed in C, C++, C#, Visual Basic, .NET, SQL, ASP.NET, and ASP. In the
build and source control field he has experience with NAnt, MSBuild, TeamBuild,
Subversion (SVN), TFS, VSS, Mercurial, and CVS. He has written installation systems
using Windows Installer, Windows Installer XML (WiX), Windows Installer Custom
Actions (using DTF), dotNetInstaller, InnoSetup, and Wise Installation System.

Neil has worked with open source projects and has been a contributor to
Windows Installer XML (WiX), dotNetInstaller, and the AlienBBC plugin
for Logitech Squeezebox.

In his spare time he is a petrol head and keen motorcyclist.

If you want to know more about him, you can check out his LinkedIn profile at:
http://www.linkedin.com/in/neilsleightholm.

Martin Oberhammer currently works as a Software Engineer at Sophos in
Vancouver, BC.

He studied computer science at the Johannes Kepler University in Linz, Austria,
where he graduated in 2002. His first job in software deployment was at Utimaco
Safeguard AG. In 2008, he moved to the USA and then to Canada, where he now
resides. Nick and Martin where at one point colleagues and created a software
installer using WiX technology.

www.allitebooks.com

http://www.allitebooks.org

Paul Michniewicz is a software developer and educational consultant with
diverse experiences in academia, government, and industry.

As a developer, Paul has spent more than 12 years in software development and
testing. Much of that time was spent in configuration management where he has
managed source control systems, developed build and test automation strategies,
and authored several installers in the enterprise space for companies such as
JetForm and Adobe.

As an educational consultant, Paul has developed and delivered introductory
Java courses to professionals and students. He currently runs a tutoring business
where he teaches mathematics, physical sciences, and software development to
students of all ages. Paul has a special interest in working with students who have
developmental needs.

Paul lives in Ottawa, Canada with his wife Anne and two children Zygmunt
and Moira. He is currently a stay-at-home dad and homeschools his son. To know
more about Paul, you can check out his LinkedIn profile at ca.linkedin.com/in/
pmichnie.

Roel van Bueren works as senior consultant, trainer, and developer for
ROVABU NetWorks BV and ROVABU Software BV. Roel is specialized in Software
Packaging using Windows Installer and Flexera AdminStudio, Application and
Desktop Management by using Microsoft System Center Configuration Manager and
Novell ZENworks Configuration Management, Desktop Deployment of Microsoft
Windows XP, Windows 7, and Windows 8 by using Microsoft SCCM/MDT, Novell
ZENworks Configuration Management, ENGL Imaging Toolkit, and also Microsoft
.NET/C# development and application virtualization.

His latest projects involve "Bundle Commander" for Novell ZENworks
Configuration Management and "Setup Commander" for Microsoft System Center
Configuration Manager 2012, Microsoft Deployment Toolkit, and other deployment
solutions such as Dell KACE and RES Automation Manager, for which customized
transform files are needed to deploy MSI packages or silent switches to deploy
legacy setups.

www.allitebooks.com

http://www.allitebooks.org

ENG. Nir Bar is a computer engineer, and graduate of Technion – Israel Institute
of Technology.

Nir Bar has over 13 years experience in software and hardware development.
He has worked with RAFAEL – Advanced Defense Systems, Marvell Technology
Group, Agilent Technologies, Applied Materials, McKesson, and other leading high
tech companies. He has worked in the Microsoft platform technologies and has
programmed in C, C++, C# .NET, and SQL Server.

In the Linux platform, Nir Bar has programmed in C, C++, and PERL.

He is also experienced in pre-Silicon verification methodologies and tools.
Currently, Nir is an independent software consultant, developer, and tutor.
He consults and develops software products from the idea stage through
analysis, design, development stages, and to ready-to-market products.

Nir Bar tutors Windows Installer technology to Israeli software companies.

To contact Nir Bar you can drop an e-mail to: nir.bar@panel-sw.co.il.

To my wife Sarit and to my sons Itay and Yehonathan for their love,
support, and encouragement.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my wife, Heidi, for her patience while I disappeared into research and writing.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Introducing Windows Installer XML 8
What is WiX? 8
Is WiX for you? 9
Where can I get it? 10
Visual Studio package (Votive) 13
A word about GUIDs 16

Your first WiX project 16
XML declaration and Wix element 17
The Product element 18
The Package element 20
The MediaTemplate element 21
The Media element 22
The Directory element 23
The Component element 27
The File element 29
The Feature element 30
Start menu shortcuts 33
Putting it all together 37

Adding a user interface 40
Viewing the MSI database 41

Orca.exe 41
Turning logging on during installation 42
Other resources 43
Summary 43

Table of Contents

[ii]

Chapter 2: Creating Files and Directories 45
The File element 45
The DirectoryRef element 48
The ComponentGroup element 49
The Fragment element 51
Harvesting files with heat.exe 55
Copying and moving files 61

Copying files you install 61
Copying existing files 63
Moving existing files 64

Installing special-case files 64
Adding assembly files to the GAC 65
Installing a TrueType font 66

Installing 64-bit files 67
Creating an empty folder 69
Setting file permissions 70
Speeding up file installations 74
Summary 75

Chapter 3: Putting Properties and AppSearch to Work 77
Custom properties 77

Declaring and setting properties 78
Referencing properties 79
Property visibility and scope 80
Secure properties 82
Property data types 84

Predefined Windows Installer properties 86
Implied properties 87
Cited properties 88

AppSearch 90
DirectorySearch 91
FileSearch 94
ComponentSearch 95
RegistrySearch 97
IniFileSearch 100

Summary 103
Chapter 4: Improving Control with Launch
Conditions and Installed States 105

The syntax of conditions 105
Condition syntax 106
Launch conditions 107

Table of Contents

[iii]

Feature conditions 113
Component conditions 116

Action state 119
Installed state 121
Summary 122

Chapter 5: Understanding the Installation Sequence 123
InstallUISequence 123

UI standard actions 125
FindRelatedProducts 125
AppSearch 125
LaunchConditions 125
ValidateProductID 125
CostInitialize 125
FileCost 126
CostFinalize 126
MigrateFeatureStates 126
ExecuteAction 126

InstallExecuteSequence 126
Execute standard actions 128

InstallValidate 128
InstallInitialize 128
ProcessComponents 128
UnpublishFeatures 128
RemoveRegistryValues 128
RemoveShortcuts 129
RemoveFiles 129
InstallFiles 129
CreateShortcuts 129
WriteRegistryValues 129
RegisterUser 129
RegisterProduct 129
PublishFeatures 130
PublishProduct 130
InstallFinalize 130

Immediate versus deferred 130
Custom actions 131

Setting a Windows Installer property 133
Setting the location of an installed directory 134
Running embedded VBScript or JScript 135
Calling an external VBScript or JScript file 137
Calling a function from a dynamic-link library 138
Triggering an executable 140
Sending an error that stops the installation 142

Rollback custom actions 143
Accessing properties in a deferred action 144

Table of Contents

[iv]

Adding conditions to custom actions 146
Deployment Tools Foundation 147

The session object 147
Getting and setting properties 148
Logging 148
Showing a message box 149
Accessing feature and component states 150
Querying the MSI database 151
Inserting rows into the MSI database 151

Summary 153
Chapter 6: Adding a User Interface 155

WiX standard dialog sets 155
WixUI_Advanced 156
WixUI_FeatureTree 158
WixUI_InstallDir 159
WixUI_Mondo 160
Customizing a standard dialog set 161

Creating your own dialogs 163
ICE20 errors 163
Adding dialog files 164
The Dialog element 165
Scheduling dialogs 166
Adding TextStyle elements 167
Adding a tabbable control 169
Adding a progress dialog 172

Modal windows 175
ICE20 revisited 177

FilesInUse 177
Error 179
FatalError 181
UserExit 182
Exit 183

Summary 185
Chapter 7: Using UI Controls 187

Attributes common to all controls 187
Specific control syntax 189

PushButton 189
Text 192
ScrollableText 193
Line 194

Table of Contents

[v]

GroupBox 195
Bitmap 195
Icon 197
Edit 197
MaskedEdit 199
PathEdit 201
CheckBox 202
RadioButtonGroup 203
ComboBox 205
ListBox 206
ListView 207
DirectoryList 208
DirectoryCombo 211
SelectionTree 212
VolumeCostList 215
VolumeSelectCombo 216
Billboard 218
ProgressBar 222

Summary 226
Chapter 8: Tapping into Control Events 227

Publishing control events 227
Subscribing to control events 231
Publish events 232

DoAction 233
EndDialog 234
NewDialog 235
AddLocal 236
Publishing a property 239

Subscribe events 239
ScriptInProgress 240
SelectionAction 242
TimeRemaining 243

Summary 246
Chapter 9: Working from the Command Line 247

Candle.exe 247
Response files 249
.wixobj files 250
Command-line arguments (compiling) 250

-arch 251
-d 251
-ext 251

Table of Contents

[vi]

-fips 251
-I 251
-nologo 252
-o 252
-p 252
-pedantic 252
-sfdvital 252
-ss 252
-sw 253
-trace 253
-v 253
-wx 253

Compile-time variables 253
Custom compiler variables 253
Environment variables 254
System variables 255

Conditional statements and iterations 255
if...elseif...else 255
ifdef 256
ifndef 256
Iterations 257
Errors and warnings 258

Preprocessor extensions 258
Light.exe 264

Command-line arguments (linking) 265
-b 265
-bf 265
-binder 265
-cultures 266
-d 266
-dut 266
-ext 266
-loc 266
-nologo 266
-notidy 267
-o[ut] 267
-pedantic 267
-sadmin 267
-sadv 267
-sloc 267
-sma 267
-ss 268
-sts 268
-sui 268
-sv 268
-sw[N] 268
-usf <output.xml> 269

Table of Contents

[vii]

-v 269
-wx[N] 269
-xo 269

Command-line arguments (binding) 269
-bcgg 269
-cc <path> 270
-ct <N> 270
-cub <file.cub> 270
-dcl:level 270
-eav 270
-fv 270
-ice <ICE> 271
-pdbout <output.wixpdb> 271
-reusecab 271
-sa 271
-sacl 271
-sf 272
-sh 272
-sice: <ICE> 272
-sl 272
-spdb 272
-sval 272

Link-time variables 273
Localization variables 273
Binder variables 273
Custom linker variables 275

Building an installer without Visual Studio 276
Summary 278

Chapter 10: Accessing the Windows Registry 279
Reading from the registry 280
Writing to the registry 282

Writing a single value 283
Writing multiple values 284
Setting NeverOverwrite 287

Removing registry values 287
Remove all keys recursively 287
Removing a single value 288

Copying registry values 289
Registry permissions 290
Summary 292

Chapter 11: Controlling Windows Services 293
Creating a simple Windows service 293
Using sc.exe 296
Using WiX to install a service 298

Table of Contents

[viii]

Starting, stopping, and uninstalling a service 300
Setting the service's user account 303
Adding service dependencies 307
Service recovery with Util:ServiceConfig 310
Summary 313

Chapter 12: Localizing Your Installer 315
WiX localization files 315
The role of Light.exe 319
Setting language and code page attributes 321

The Package element 322
The Product element 325

Localizing the UI 326
Error messages 326
Progress bar messages 329
EULA 332
Resizing controls 334

Creating a multi-language MSI 336
Summary 339

Chapter 13: Upgrading and Patching 341
Planning for updates 341

Choosing an update type 342
Per-user or per-machine 343

Preparing a major upgrade 343
The minor upgrade 350

Authoring a .wixmsp file 350
Creating a patch from .wixpdb files 353
Creating a patch from .wixout files 356

The small update 358
Summary 358

Chapter 14: Extending WiX 359
Building a custom WiX extension 359

Setting the stage 360
Extending the CompilerExtension class 360
Adding an XML schema 362
Parsing custom elements 365
Creating a new MSI table 370
Extending the WixExtension class 372

Using the extension in a WiX project 374
Tying a custom action to the custom element 376
Summary 383

Table of Contents

[ix]

Chapter 15: Bootstrapping Prerequisites with Burn 385
Using the Bootstrapper Project template 386
Describing the Bundle element 387
Restricting the install by the operating system 389
UpgradeCode and detecting related bundles 391

Updating existing bundles 391
Finding other related bundles 396
Where the packages are cached 397

Chaining packages 398
The Chain element 398
The MsiPackage element 400
The ExePackage element 402
The MspPackage element 405
The MsuPackage element 406

Downloading packages 407
Counting package references 410
Rollback boundaries 412
PackageGroups 413
The Standard Bootstrapper UI 415

The RtfLicense user interface 415
The HyperlinkLicense user interface 416

Summary 418
Chapter 16: Customizing the Burn UI 419

Burn extension points 419
Creating the class library 420
Extending the BootstrapperApplication class 422
Defining the model 425
Implementing the viewmodel 427

Declaring the properties and fields 432
Defining the constructor 434
Setting up the event handlers 435
Helper methods 438

Marking up the view 439
Referencing the UI in a Burn bundle 441
Passing user input to a bundled MSI 442
Displaying progress 444
Downloading packages 446
Collecting command-line arguments 447
Summary 448

Index 449

Preface
Since Rob Mensching offered up the WiX toolset as the first open source project
from Microsoft in 2004, it has been quietly gaining momentum and followers.
Today, thousands use it to build Window Installer packages from simple XML
elements. Gone are the days when you would have had to pay for software to
build an installer for you. Now, you can do it yourself for cheap.

Not only that, but WiX has matured into a fairly slick product that's sufficiently easy
to use. Best of all, it has the bells and whistles you want, including functionality to
add user interface wizards, Start menu shortcuts, control Windows services, and
read and write to the registry.

This new edition, WiX 3.6: A Developer's Guide to Windows Installer XML, brings
you up-to-date on the latest changes to the toolset. Whether you're new to WiX or
an established pro, you're likely to find new insights. Each chapter gets straight to
the point, giving you hands-on experience, so you'll master the technology quickly.

What this book covers
Chapter 1, Getting Started, explains how after downloading and installing the WiX
toolset, you'll start using it right away to create a simple installer. Then, you'll see
how to add a basic user interface to it, install it with logging turned on, and view its
internal database.

Chapter 2, Creating Files and Directories, gives you a deeper understanding of how files
are installed and the best way to organize them in your project. You'll then use the
tool Heat.exe to generate WiX markup. Last, you'll learn about copying and moving
files, and installing special-case files.

Preface

[2]

Chapter 3, Putting Properties and AppSearch to Work, introduces you to Windows
Installer properties, including those that are defined automatically and those that are
invented by you. Afterwards, you'll check the end user's computer for specific files,
directories, registry keys, and INI file settings using AppSearch.

Chapter 4, Improving Control with Launch Conditions and Installed States, teaches you to
leverage conditional statements to set prerequisites for running your installer or to
exclude particular features or components from the install. You'll also discover how
to check the action state and installed state of your features and components.

Chapter 5, Understanding the Installation Sequence, gives you a clear picture of how the
whole installation process works as you examine the order and meaning of installer
actions. You will then create custom actions and add them to this built-in sequence.
Then, you'll learn the basics of using the Deployment Tools Foundation library for
writing custom action code in C#.

Chapter 6, Adding a User Interface, after giving you a quick introduction to the
standard dialogue wizards that come with the WiX toolset, shows how to build
your own from scratch. You'll learn all of the required elements for displaying
dialogs and linking them together. You'll also see how to display common messages
such as errors and cancellation confirmations.

Chapter 7, Using UI Controls, gives you hands-on experience with each type of
UI control including buttons, textboxes, and progress bars.

Chapter 8, Tapping into Control Events, breathes life into your UI controls by having
them publish and subscribe to events. We'll get details on what each event does and
take a closer look at those you'll use on a routine basis.

Chapter 9, Working from the Command Line, emphasizes the fact that we don't
particularly need Visual Studio to compile our projects. We'll cover the commands
necessary to build an installer from the command line using Candle.exe, our
compiler, and Light.exe, our linker/binder. We will also explore how to use
preprocessor statements and how to create a custom preprocessor extension.

Chapter 10, Accessing the Windows Registry, illustrates how our installer may read
and write to the Windows Registry. We'll add and remove keys, copy values, and
set permissions.

Chapter 11, Controlling Windows Services, provides some solid examples for installing
and interacting with Windows services. You'll see how to set the service's user
account, add service dependencies, and set failure recovery.

Chapter 12, Localizing Your Installer, tackles how to render your UI for different
languages and how Light.exe, the WiX linker, plays a role. You'll then get involved
in making a single multi-language installer.

Preface

[3]

Chapter 13, Upgrading and Patching, covers the all-so-important topic of upgrading
and patching. You'll get the low down on major upgrades, minor upgrades, and
small updates.

Chapter 14, Extending WiX, jumps into adding new, custom XML elements for
extending the core functionality of WiX. We'll write a library, using C#, that takes
our installer to places it's never been.

Chapter 15, Bootstrapping Prerequisites with Burn, discusses the new bootstrapping
functionality called Burn. We'll create a single executable that installs all necessary
prerequisites for our software.

Chapter 16, Customizing the Burn UI, solves the problem of customizing our Burn user
interface by crafting a new one using C# and WPF. We'll discover the places where
we can hook into the bootstrapper engine and how best to pass information from the
user to our installation packages.

What you need for this book
In order to both write and run the code demonstrated in this book, you will need
the following:

• Visual Studio 2005 or newer (Standard Edition or higher)
• The WiX toolset, which can be downloaded from http://wixtoolset.org/

Who this book is for
If you are a developer and want to create installers for software targeting the
Windows platform, then this book is for you. Those new to WiX and Windows
Installer should feel right at home as we start with the basics and gradually work
up to more complex subjects. Others with more experience will benefit as we
catalog the new features in WiX 3.6. If you're coming from an earlier version of WiX,
you'll be happy to know that for the most part, things that used to work will still
work. However, several tasks, such as implementing a major upgrade, have been
simplified. We'll highlight the big changes, but keep an eye on familiar elements as
some subtle changes have been made.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If you would like conditions to be
re-evaluated during a re-install, you should set the Transitive attribute on
the parent component to yes."

A block of code is set as follows:

<Feature Id="MainFeature"
 Title="Main Feature"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />

 <Condition Level="0">
 <![CDATA[NOT REMOVE = "ALL" AND MyProperty = "some value"]]>
 </Condition>
</Feature>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<Property Id="MyProperty"
 Value="1" />
<Component Id="CMP_InstallMeTXT"
 Guid="7AB5216B-2DB5-4A8A-9293-F6711FFAAA83">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 <Condition>MyProperty = 1</Condition>
</Component>

Any command-line input or output is written as follows:

msiexec /i myInstaller.msi /l*v install.log

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "using the
Add Reference option in Solution Explorer".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
Windows Installer XML (WiX) is a free, open source XML markup that's used to
author installation packages for Windows-based software. The underlying technology
is called Windows Installer, which is the established standard for installing to any
Windows operating system. Until recently, WiX was a Microsoft offering, but is
now supported by the non-profit Outercurve Foundation. It is used by countless
companies around the world. Microsoft uses it to deploy its own software including
Microsoft Office and Visual Studio. In fact, Microsoft uses WiX for these products.

Windows Installer has many features, but how do you leverage them? How do you
even know what they are? This book will help you by making you more familiar
with the wide range of capabilities that are available. The good news is that WiX
makes many of the arcane and difficult-to-understand aspects of the Windows
Installer technology simple to use. This book will teach you the WiX syntax so that
you can create a professional-grade installer that's right for you.

In this chapter, we will cover the following topics:

• Getting WiX and using it with Visual Studio
• Creating your first WiX installer
• Examining an installer database with Orca
• Logging an installation process
• Adding a simple user interface

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[8]

Introducing Windows Installer XML
In this section, we'll dive right in and talk about what WiX is, where to get it, and
why you'd want to use it when building an installation package for your software.
We'll follow up with a quick description of the WiX tools and the new project types
made available in Visual Studio.

What is WiX?
Creating a Windows Installer, or MSI package, has always been a challenging task. The
package is actually a relational database that describes how the various components of
an application should be unpacked and copied to the end user's computer.

In the past you had two options:

• You could try to author the database yourself—a path that requires a
thorough knowledge of the Windows Installer API.

• You could buy a commercial product such as InstallShield to do it for you.
These software products will take care of the details, but you'll forever be
dependent on them. There will always be parts of the process that are
hidden from you.

WiX offers a route that exists somewhere in the middle. Abstracting away the
low-level function calls while still allowing you to write much of the code by hand,
WiX is a framework for building an installer in ways that mere mortals can grasp.
Best of all, it's free. As an open source product, it has quickly garnered a wide user
base and a dedicated community of developers. Much of this has to do not only with
its price tag but also with its simplicity. It can be authored in a simple text editor
(such as Notepad) and compiled with the tools provided by WiX. As it's a flavor of
XML, it can be read by humans, edited without expensive software, and lends itself
to being stored in source control where it can be easily merged and compared.

The examples in this first chapter will show how to create a simple installer with
WiX using Visual Studio. However, later chapters will show how you can build your
project from the command line using the compiler and linker from the WiX toolset.
The WiX source code is available for download, so you can be assured that nothing
about the process will be hidden if you truly need to know more about it.

Chapter 1

[9]

Is WiX for you?
It's fairly simple to copy files to an end user's computer. If that's all your product
needs, then the Windows Installer technology might be overkill. However, there are
many benefits to creating an installable package for your customers, some of which
might be overlooked. The following is a list of features that you get when you author
a Windows Installer package with WiX:

• All of your executable files can be packaged into one convenient bundle,
simplifying deployment

• Your software is automatically registered with Programs and Features
• Windows takes care of uninstalling all of the components that make up your

product when the user chooses to do so
• If files for your software are accidently removed, they can be replaced by

right-clicking on the MSI file and selecting Repair
• You can create different versions of your installer and detect which version

has been installed
• You can create patches to update only specific areas of your application
• If something goes wrong while installing your software, the end user's

computer can be rolled back to a previous state
• You can create Wizard-style dialogs to guide the user through the installation

Many people today simply expect that your installer will have these features. Not
having them could be seen as a real deficit. For example, what is a user supposed to
do when they want to uninstall your product but can't find it in the Programs and
Features list and there isn't an uninstall shortcut? They're likely to remove files in a
haphazard manner and wonder why you didn't make things easy for them.

Maybe you've already figured that Windows Installer is the way to go, but why WiX?
One of my favorite reasons is that it gives you greater control over how things work.
You get a much finer level of control over the development process. Commercial
software that does this for you also produces an MSI file but hides the details about
how it was done. It's analogous to crafting a website. You get much more control when
you write the HTML yourself as opposed to using a WYSIWYG software.

Even though WiX gives you more control, it doesn't make things overly complex.
You'll find that making a simple installer is very straightforward. For more
complicated projects, the parts can be split up into multiple XML source files to
make it easier to work with. Going further, if your product is made up of multiple
applications that will be installed together as a suite, you can compile the different
chunks into libraries that can be merged together into a single MSI file. This allows
each team to isolate and manage its part of the installation package.

Getting Started

[10]

WiX is a stable technology, having been first released to the public in 2004, so you
don't have to worry about it disappearing. It's also had a steady progression of version
releases. These are just some of the reasons why you might choose to use WiX.

Where can I get it?
You can find the latest version of WiX at http://wixtoolset.org/, which has
both stable releases and weekly builds. The current release is Version 3.6. Once
you've downloaded the WiX installer package, double-click on it to launch it.
It relies on having an Internet connection to download the .NET 4.0 platform,
if it's not already installed.

If you want to install on a computer that isn't connected to the Internet, first download
the installer on a computer that is and then open a command prompt and run the WiX
executable with the following command wix36.exe /layout LayoutDirectory.
The layout option takes the name of a target directory where the WiX files will be
downloaded to. You can then take these files (which include a new installer) to the
computer that doesn't have an Internet connection and use them there.

Chapter 1

[11]

This installs all of the necessary files needed to build WiX projects. You'll also get the
WiX SDK documentation and the settings for Visual Studio IntelliSense and project
templates. Version 3.6 supports Visual Studio versions 2005 through 2012, although
not the Express editions.

WiX comes with the tools outlined in the following table:

Tool What it does
Candle.exe Compiles WiX source files (.wxs) into intermediate object

files (.wixobj)
Light.exe Links and binds .wixobj files to create a final .msi file.

Also creates cabinet files and embeds streams in an MSI
database

Lit.exe Creates WiX libraries (.wixlib) that can be linked together
by Light

Dark.exe Decompiles an MSI file into WiX code
Heat.exe Creates a WiX source file that specifies components from

various inputs
Insignia.exe Inscribes an MSI with the digital signatures that its external

CAB files are signed with
Melt.exe Converts a merge module (.msm) into a component group in

a WiX source file
Torch.exe Generates a transform file used to apply changes to an

in-progress installation or to create a patch file
Shine Creates a DGML diagram from an MSI
Smoke.exe Runs validation checks on an MSI or MSM file
Pyro.exe Creates a patch file (.msp) from .wixmsp and .wixmst files
WixCop.exe Converts Version 2 WiX files to Version 3
WixUnit.exe Validates WiX source files
Lux.exe and Nit.exe Authors and runs unit tests on custom actions

Getting Started

[12]

In order to use some of the functionality in WiX, you may need to download a
more recent version of Windows Installer. You can check your current version
by viewing the help file for msiexec.exe, which is the Windows Installer service.
Open a Windows command prompt and then type msiexec /? to bring up a
window, as shown in the following screenshot:

If you'd like to install a newer version of Windows Installer, you can get it from the
Microsoft Download Center website. Go to:

http://www.microsoft.com/downloads/en/default.aspx

Search for Windows Installer. The current version for Windows XP, Vista, Server
2003, and Server 2008 is 4.5. Windows 7, Windows Server 2008 R2, and Windows 8
can support Version 5.0. Each new version is backwards compatible and includes the
features from earlier editions.

Chapter 1

[13]

Visual Studio package (Votive)
The WiX toolset provides files that update Visual Studio to provide new WiX
IntelliSense and project templates. Together these features, which are installed for
you along with the other WiX tools, are called Votive. You must have Visual Studio
2005 or newer. Votive won't work on the Express versions. Refer to the WiX site for
more information:

http://wix.sourceforge.net/votive.html

After you've installed WiX, you should see a new category of project types in
Visual Studio labeled under the title Windows Installer XML, as shown in the
following screenshot:

There are seven new project templates:

• Setup Project: Creates a Windows Installer package from one or more
WiX source files

• Merge Module Project: Creates a merge module (MSM) file
• Setup Library Project: Creates a .wixlib library
• Bootstrapper Project: Creates a prerequisite bootstrapper
• C# Custom Action Project: Creates a .NET custom action in C#
• C++ Custom Action Project: Creates an unmanaged C++ custom action
• VB Custom Action Project: Creates a VB.NET custom action

Getting Started

[14]

Using these templates is certainly easier than creating the files on your own with
a text editor. To start creating your own MSI installer, select the template Setup
Project. This will create a new .wxs (WiX source file) for you to add XML markup
to. Once we've added the necessary markup, you'll be able to build the solution by
selecting Build Solution from the Build menu or by right-clicking on the project
in the Solution Explorer and selecting Build. Visual Studio will take care of calling
candle.exe and light.exe to compile and link your project files.

If you right-click on your WiX project in Solution Explorer and select Properties,
you'll see several screens where you can tweak the build process. One thing you'll
want to do is set the amount of information that you'd like to see when compiling
and linking the project, and how non-critical messages are treated. Refer to the
following screenshot:

Here we're selecting the level of messages that we'd like to see. To see all warnings
and messages, set Warning Level to Pedantic. You can also check the Verbose
output checkbox to get even more information. Checking Treat warnings as errors
will cause warning messages that normally would not stop the build to be treated as
fatal errors.

Chapter 1

[15]

You can also choose to suppress certain warnings. You'll need to know the specific
warning message number though. If you get a build-time warning, you'll see the
warning message, but not the number. One way to get it is to open the WiX source
code (available at http://wix.codeplex.com/releases/view/93929) and view the
messages.xml file in the src\wix\Data folder. Search the file for the warning and
from there you'll see its number. Note that you can suppress warnings but not errors.

Another feature of WiX is its ability to run validity checks on the MSI package.
Windows Installer uses a suite of tests called Internal Consistency Evaluators (ICEs)
for this. These checks ensure that the database as a whole makes sense and that
the keys on each table join correctly. Through Votive, you can choose to suppress
specific ICE tests. Use the Tools Setting page of the project's properties as shown in
the following screenshot:

In this example, ICE test 102 is being suppressed. You can specify more than one test
by separating them with semicolons. To find a full list of ICE tests, go to MSDN's ICE
Reference web page at:

http://msdn.microsoft.com/en-us/library/aa369206%28VS.85%29.aspx

Getting Started

[16]

The Tool Settings screen also gives you the ability to add compiler or linker
command-line flags. Simply add them to the textboxes at the bottom of the screen.
We will discuss command-line arguments for Candle and Light later in the book.

A word about GUIDs
In various places throughout WiX, you'll be asked to provide a GUID, which is a
Globally Unique Identifier. This is so that when your product is installed on the end
user's computer, references to it can be stored in the Windows Registry without the
chance of having name conflicts. By using GUIDs, Windows Installer can be sure that
every software application, and even every component of that software, has a unique
identity on the system.

Each GUID that you create on your computer is guaranteed to be different from a
GUID that someone else would make. Using this, even if two pieces of software, both
called "Amazing Software", are installed on the same computer, Windows will be
able to tell them apart.

Visual Studio 2010 provides a way to create a GUID. Go to Tools | Create GUID
and copy a new GUID using Registry Format. WiX can accept a GUID with or
without curly brackets around it, as 01234567-89AB-CDEF-0123-456789ABCDEF or
{01234567-89AB-CDEF-0123-456789ABCDEF}. In this book, I'll display real GUIDs,
but you should not re-use them as then your components will not be guaranteed to
be unique.

Your first WiX project
To get started, download the WiX toolset. It can be found at:

http://wixtoolset.org/

Once you've downloaded and installed it, open Visual Studio and select New
Project | Windows Installer XML | Setup Project. This will create a project with a
single .wxs (WiX source) file. Visual Studio will usually call this file Product.wxs,
but the name could be anything as long as it ends with .wxs.

Even the most minimal installer must have the following XML elements:

• An XML declaration
• A Wix element that serves as the root element in your XML document
• A Product element that is a child to the Wix element, but all other elements

are children to it
• A Package element

Chapter 1

[17]

• A Media or MediaTemplate element
• At least one Directory element with at least one child Component element
• A Feature element

XML declaration and Wix element
Every WiX project begins with an XML declaration and a Wix element:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

</Wix>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The xmlns, or XML namespace, just brings the core WiX elements into the local scope
of your document. At the bottom of the file you'll have to close the Wix element, of
course. Otherwise, it's not valid XML. The Wix element is the root element of the
document. It comes first and last. All other elements will be nested inside of it.

For the most part, knowing only the basic rules of writing a
well-formed XML document will be enough to get you up
and running using WiX. The major points are as follows,
as recommended by the W3C:

• The document must begin and end with the same root
element

• All elements must have a matching closing tag or be
closed themselves

• XML tags are case sensitive
• Elements must be properly nested, with inner elements

not overlapping outer elements
• XML attributes should be quoted

At this point, you could also add the RequiredVersion attribute to the Wix
element. Given a WiX toolset version number, such as "3.6.3303.0", it won't let
anyone compile the .wxs file unless they have that version or higher installed.
If, on the other hand, you're the only one compiling your project, then it's no
big deal.

Getting Started

[18]

The Product element
Next, add a Product element.

<Wix ... >
 <Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 </Product>
</Wix>

This is where you define the characteristics of the software you're installing: its
name, language, version, and manufacturer. The end user will be able to see these
properties by right-clicking on your MSI file, selecting Properties, and viewing the
Summary tab. Most of the time, these values will stay the same from one build of
your project to the next. The exception is when you want to increment the software's
version to indicate that it's an upgrade of a previous installation. In that case, you
need to only change the Version attribute, and sometimes the Id attribute. We'll talk
more about upgrading previous installations later on in the book.

The Product element's Id attribute represents the so-called ProductCode of your
software. It's always a unique number—a GUID—that Windows will use to uniquely
identify your software (and tell if it's already installed on the computer). You can
either hardcode it, like here, or just put an asterisk. That way, WiX will pick a new
GUID for you each time you compile the project.

<Wix ... >
 <Product Id="*"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 </Product>
</Wix>

The Name attribute defines the name of the software. In addition to being displayed
in the MSI file's Properties page, it will also be shown in various places throughout
the user interface of your installer—that is, once you've added a user interface, which
we'll touch on at the end of this chapter.

Chapter 1

[19]

The Language attribute is used to display error messages and progress information
in the specified language to the user. It's a decimal language ID (LCID). A full list can
be found on Microsoft's LCID page at:

http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

The previous example used "1033", which stands for "English-United States". If your
installer uses characters not found in the ASCII character set, you'll also need to add
a Codepage attribute set to the code page that contains those characters. Don't worry
too much about this now. We'll cover languages and code pages later in the book
when we talk about localization.

The Version attribute is used to set the version number of your software. It can
accept up to four numbers separated by periods. Typically, when you make a big
enough change to the existing software, you'll increment the number. Companies
often use the [MajorVersion].[MinorVersion].[Build].[Revision] format, but
you're free to use any numbering system you like.

During upgrade scenarios, the fourth digit in the Version
attribute is ignored and won't make a difference when detecting
previously installed software.

The Manufacturer attribute tells the user who this software is from and usually
contains the name of your company. This is another bit of information that's
available via the MSI file's Properties page.

The final attribute to consider is UpgradeCode. This should be set to a GUID and will
identify your product across releases. It remains constant for a product line, even
among different product versions. Think: Microsoft Office 2007 and Office 2010. Both
would have the same UpgradeCode. Therefore, it should stay the same even when
the ProductCode and Version change.

Windows will use this number in its efforts to keep track of all the software installed
on the machine. WiX has the ability to search for previously installed versions of not
only your own software, but also those created by others and it uses UpgradeCode to
do it. Although, technically, this is an optional attribute, you should always supply it.

Getting Started

[20]

The Package element
Once you've defined your Product element, the next step is to nest a Package
element inside. An example is shown as follows:

<Wix ... >
 <Product ... >
 <Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Keywords="Practice,Installer,MSI"
 Comments="(c) 2012 Awesome Company" />
 </Product>
</Wix>

Of the attributes shown in this example, only Compressed is really required. By
setting Compressed to yes, you're telling the installer to package all of the MSI's
resources into CAB files. Later, you'll define these CAB files with Media elements
or a MediaTemplate element.

Technically, an Id attribute is also required, but by omitting it you're letting WiX
create one for you. You'd have to create a new one anyway since every time you
change your software or the installer in any way, the package (the MSI file) has
changed and so the package's ID must change. This really, in itself, emphasizes what
the Package element is. Unlike the Product element, which describes the software
that's in the installer, the Package element describes the installer itself. Once you've
built it, you'll be able to right-click on the MSI and select Properties to see the
attributes you've set here.

The InstallerVersion attribute can be set to require a specific version of msiexec.
exe (the Windows Installer service that installs the MSI when you double-click on it)
to be installed on the end user's computer. If they have an older version, Windows
Installer will display a dialog telling them that they need to upgrade. It will also
prevent you from compiling the project unless you also have this version installed
on your own computer. The value can be found by multiplying the major version
by 100 and adding the minor version. So, for Version 4.5 of msiexec.exe, you'd set
InstallerVersion to 405.

Chapter 1

[21]

The InstallScope attribute can be set to either perMachine or perUser. The former
means that your software will be installed in the "All Users" context, meaning that
all users will be able to access your application. As such, the person performing the
install will need elevated privileges on a UAC enabled system such as Windows 7 to
continue the installation. The latter means that it will be installed only for the current
user. Behind the scenes this is setting a WiX property called ALLUSERS that we'll
cover in more detail later when we discuss properties.

The rest of the attributes shown provide additional information for the MSI
file's Properties window. Manufacturer is displayed in the Author text field,
Description is shown as Subject, Keywords show up as Keywords, and Comments
show as Comments. It's usually a good idea to provide at least some of this
information, if just to help you distinguish one MSI package from another.

The MediaTemplate element
The files that you intend to install are compressed into CAB files and shipped along
with the installer. You decide whether to embed them inside the MSI or provide
them visibly alongside it. In WiX 3.6, a single MediaTemplate element handles all the
details for you, intelligently splitting your files into the prescribed number of CAB
files. Add it after the Package element, as shown in the following code snippet:

<Wix …>
 <Product … >
 <Package … />
 <MediaTemplate EmbedCab="yes" />
 </Product>
</Wix>

The EmbedCab attribute is optional and sets whether the CAB files will be embedded
inside the MSI, the default being to not embed them. Either way, WiX will create up
to 999 CAB files, each holding a maximum of 200 MB of data. You can change that
limit with the MaximumUncompressedMediaSize attribute, set to a size in megabytes.
If a single file is bigger than the maximum, it will be placed into its own CAB file
with enough space to accommodate it.

If you want to split your installation up into several physical disks—conjure up
images of "Please insert disk 2"—you want to use the Media element instead.

Getting Started

[22]

The Media element
The Media element is an older element that was replaced by MediaTemplate and if
you use one you can't use the other. However, in some cases, the Media element is
the only thing for the job. For each Media element that you add to your WiX markup,
a new CAB file will be created.

<Wix ... >
 <Product ... >
 <Package ... />
 <Media Id="1"
 Cabinet="media1.cab"
 EmbedCab="yes" />
 </Product>
</Wix>

Each Media element gets a unique Id attribute to distinguish it in the MSI Media
table. It must be a positive integer. If the files that you add to your installation
package don't explicitly state which CAB file they wish to be packaged into, they'll
default to using a Media element with an Id value of 1. Therefore, your first Media
element should always use an Id value of 1.

The Cabinet attribute sets the name of the CAB file. You won't actually see this unless
you set EmbedCab to no, in which case the file will be shipped alongside the MSI. This
is atypical, but might be done to split the installation files onto several disks.

If you do choose to split the installation up into several physical disks (or even
virtual ISO images), you'll want to add the DiskPrompt and VolumeLabel attributes.
In the following example, I've added two Media elements instead of one. I've also
added a Property element above them, which defines a variable called DiskPrompt
with a value of Amazing Software - [1].

<Property Id="DiskPrompt"
 Value="Amazing Software - [1]" />

<Media Id="1"
 Cabinet="media1.cab"
 EmbedCab="no"
 DiskPrompt="Disk 1"
 VolumeLabel="Disk1" />

<Media Id="2"
 Cabinet="media2.cab"
 EmbedCab="no"
 DiskPrompt="Disk 2"
 VolumeLabel="Disk2" />

Chapter 1

[23]

The Property element will be used as the text in the message box the end user
sees, prompting them to insert the next disk. The text in the DiskPrompt attribute
is combined with the text in the property's value, switched with [1], to change the
message for each subsequent disk. Make sure you give this property an Id value
of DiskPrompt.

So that Windows will know when the correct disk is inserted, the VolumeLabel
attribute must match the "Volume Label" of the actual disk, which you'll set with
whichever CD or DVD burning program you use. Once you've built your project,
include the MSI file and the first CAB file on the first disk. The second CAB file
should then be written to a second disk.

Although we haven't described the File element yet, it's used to add a file to the
installation package. To include one in a specific CAB file, add the DiskId attribute,
set to the Id attribute of the corresponding Media element. The following example
includes a text file called myFile.txt in the media2.cab file:

<File Id="fileTXT"
 Name="myFile.txt"
 Source="myFile.txt"
 KeyPath="yes"
 DiskId="2" />

We'll discuss the File element in more detail later on in the chapter. If you're only
using one Media element, you won't need to specify the DiskId attribute on your
File elements.

The Directory element
So, now we've defined the identity of the product, set up its package properties, and
told the installer to create a CAB file to package up the things that we'll eventually
install. Then, how do you decide where your product will get installed to on the end
user's computer? How do we set the default install path, for example, to some folder
under Program Files?

Getting Started

[24]

When you want to install to C:\Program Files, you can use a sort of shorthand.
There are several directory properties provided by Windows Installer that will be
translated to their true paths at install time. For example, ProgramFilesFolder
usually translates to C:\Program Files. The following is a list of these built-in
directory properties:

Directory property Actual path
AdminToolsFolder Full path to directory containing administrative tools
AppDataFolder Full path to roaming folder for current user
CommonAppDataFolder Full path to application data for all users
CommonFiles64Folder Full path to the 64-bit Common Files folder
CommonFilesFolder Full path to the Common Files folder for current user
DesktopFolder Full path to the Desktop folder
FavoritesFolder Full path to the Favorites folder for current user
FontsFolder Full path to the Fonts folder
LocalAppDataFolder Full path to folder containing local (non-roaming)

applications
MyPicturesFolder Full path to the Pictures folder
NetHoodFolder Full path to the NetHood folder
PersonalFolder Full path to the Documents folder for current user
PrintHoodFolder Full path to the PrintHood folder
ProgramFiles64Folder Full path to the 64-bit Program Files folder
ProgramFilesFolder Full path to 32-bit Program Files folder
ProgramMenuFolder Full path to Program Menu folder
RecentFolder Full path to Recent folder
SendToFolder Full path to the SendTo folder for current user
StartMenuFolder Full path to the Start Menu folder

StartupFolder Full path to the Startup folder
System16Folder Full path to the 16-bit system DLLs folder
System64Folder Full path to the System64 folder
SystemFolder Full path to the System folder for current user
TempFolder Full path to the Temp folder
TemplateFolder Full path to the Template folder for current user
WindowsFolder Full path to the Windows folder

Chapter 1

[25]

This list can also be found at:
http://msdn.microsoft.com/en-us/library/windows/
desktop/aa370905(v=vs.85).aspx

The easiest way to add your own directories is to nest them inside one of the
predefined ones. For example, to create a new directory called Install Practice
inside the Program Files folder, you could add it as a child to ProgramFilesFolder.
To define your directory structure in WiX, use Directory elements:

<Wix ... >
 <Product ... >
 <Package ... />
 <MediaTemplate ... />

 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice" />
 </Directory>
 </Directory>

 </Product>
</Wix>

One thing to know is that you must start your Directory elements hierarchy
with a Directory element with an Id attribute of TARGETDIR and a Name value of
SourceDir. This sets up the "root" directory of your installation. Therefore, be sure
to always create it first and nest all other Directory elements inside.

By default, Windows Installer sets TARGETDIR to the local hard drive with the
most free space—in most cases, the C: drive. However, you can set TARGETDIR
to another drive letter during installation. You might, for example, set it with a
VolumeSelectCombo user interface control. We'll talk about setting properties
and UI controls later in the book.

A Directory element always has an Id attribute that will serve as a primary key on
the Directory table. If you're using a predefined name, such as ProgramFilesFolder,
use that for Id. Otherwise, you can make one up yourself. The previous example
creates a new directory called Install Practice, inside the Program Files folder. Id,
MyProgramDir, is an arbitrary value.

Getting Started

[26]

When creating your own directory, you must provide the Name attribute. This sets
the name of the new folder. Without it, the directory won't be created and any files
that were meant to go inside it will instead be placed in the parent directory—in
this case, Program Files. Note that you do not need to provide a Name attribute for
predefined directories.

You can nest more subdirectories inside your folders by adding more Directory
elements. The following is an example:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice">
 <Directory Id="MyFirstSubDir"
 Name="Subdirectory 1">
 <Directory Id="MySecondSubDir"
 Name="Subdirectory 2" />
 </Directory>
 </Directory>
 </Directory>
</Directory>

Here, a subdirectory called Subdirectory 1 is placed inside the Install Practice
folder. A second subdirectory, called Subdirectory 2, is then placed inside
Subdirectory 1, giving us two levels of nested directories under Install Practice.

If you've been following along using the Visual Studio Setup
Project template, you'll notice that it places its boilerplate
Directory elements inside of a Fragment element. We
will discuss Fragment in the next chapter.

Before jumping into how to add files to your new directories, we should cover the
elements that define the files themselves. The next section covers how to create
components, which are the containers for the files you want to install.

Chapter 1

[27]

The Component element
Once you've mapped out the directories that you want to target or create during the
installation, the next step is to copy files into them. To really explain things, we'll
need something to install. So let's create a simple text file and add it to our project's
directory. We'll call it InstallMe.txt. For our purposes, it doesn't really matter
what's in the text file. We just need something for testing.

Windows Installer expects every file to be wrapped up in a component before
it's installed. It doesn't matter what type of file it is either. Each gets its own
Component element.

Components, which always have a unique GUID, allow Windows to track every
file that gets installed on the end user's computer. During an installation, this
information is stored away in the registry. This lets Windows find every piece of
your product during an uninstall so that your software can be completely removed.
It also uses it to replace missing files during a repair, which you can trigger by
right-clicking on an MSI file and selecting Repair.

Each Component element gets a unique GUID via its Guid attribute. To create a GUID
in Visual Studio, go to Tools | Create GUID and copy a new GUID using the registry
format. The component's Id attribute is up to you. It will serve as the primary key for
the component in the MSI database, so each one must also be unique:

<Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">

 <File Id="FILE_MyProgramDir_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
</Component>

In the preceding code snippet, I've created a new component called
CMP_InstallMeTXT. I've started it with CMP_ to label it as a component, which
is just a convention that I like to use. Although it isn't required, it helps to prefix
components in this way so that it's always clear what sort of element it refers to.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[28]

The File element inside the component references the file that's going to be
installed. Here, it's the InstallMe.txt file located in the current directory (which
is the same directory as your WiX source file). You can specify a relative or absolute
path with the Source attribute.

You should always mark a File element as the KeyPath file and you should only
ever include one File inside a component. A KeyPath file will be replaced if it's
missing when the user triggers a repair (Windows Installer documentation calls this
resiliency). Placing more than one File element inside a single Component element,
at least in most cases, is not recommended. This is because only one file can be the
KeyPath file, so the other files wouldn't be covered by a repair. You would really
only ever place more than one File in a component if you didn't want the extra files
to be resilient.

To add a component to a directory, you have several options. The first, which is the
simplest, is to add your Component elements directly inside the target Directory
element, as given in the following code snippet:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice">

 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">

 <File Id="FILE_MyProgramDir_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </Directory>
 </Directory>
</Directory>

In the previous code snippet, I've instructed the installer to copy the InstallMe.txt
file to the %ProgramFiles%\Install Practice folder that we're creating on the end
user's computer. Although this is the simplest solution, it isn't the cleanest. For one
thing, if you're installing more than a handful of files, the XML file can begin to
look tangled.

Chapter 1

[29]

Another approach is to use a DirectoryRef element to reference your directories.
This has the benefit of keeping the markup that defines your directories independent
from the markup that adds files to those directories. The following is an example:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice" />
 </Directory>
</Directory>

<DirectoryRef Id="MyProgramDir">
 <Component ...>
 <File ... />
 </Component>
</DirectoryRef>

A third option is to group your components inside of a ComponentGroup and use
its Directory attribute to set the target directory. We will cover component groups
in more detail in the next chapter, but the following snippet will give you an idea:

<ComponentGroup Id="ProductComponents"
 Directory="MyProgramDir">
 <Component ...>
 <File ... />
 </Component>
</ComponentGroup>

The File element
As you've seen, the actual files inside components are declared with File elements.
The File elements can represent everything from simple text files to complex DLLs
and executables. Remember, you should only place one file into each component.
The following example would add a file called SomeAssembly.dll to the
installation package:

<Component ... >
 <File Id="FILE_MyProgramDir_SomeAssemblyDLL"
 Name="Some Assembly.dll"
 Source="SomeAssembly.dll"
 KeyPath="yes" />
</Component>

Getting Started

[30]

A File element should always get the Source attribute. Source defines the path to
the file during compilation. I've listed a relative path here, but you could also specify
an absolute path.

Id, Name, and KeyPath are optional. The Id attribute becomes the primary key for
a row in the MSI database. It should be something unique, but you might consider
starting it with FILE to make it clear that it refers to a File element. If not set, the Id
value will match the filename. Name gives you a chance to change the name of the file
once it's been copied to the end user's computer. By default, it will use the name in
the Source attribute.

To mark a file as important (and that it should be replaced if it goes missing), set it as
the KeyPath file for the component. Since you should only ever place one file inside a
component, in almost all cases that file should be the KeyPath file. If not set, the first
file in the component will be the KeyPath file automatically.

A few other optional but useful attributes for the File element include:

• Hidden: Set to yes to have the file's Hidden flag set. The file won't be visible
unless the user sets the directory's options to show hidden files.

• ReadOnly: Set to yes to have the file's Read-only flag set. The user will be
able to read the file, but not modify it unless they change the file's properties.

• Vital: Set to no to continue even if this file isn't installed successfully.

The Feature element
After you've defined your components and the directories that they'll be copied into,
the next step is to define features. A feature is a group of components that the user
can decide to install all at once. You'll often see these in an installation dialog as a
list of modules, called a feature tree, where each is included or excluded from the
installation. The following is an example of such a tree that has two features – Main
Product and Optional Tools:

Chapter 1

[31]

Every component must be included in a feature. Generally, you should group
together components that rely on one another or that form a complete, self-sufficient
unit. That way, if a feature is disabled, you won't have orphaned files (files that aren't
being used) installed onto the computer. In many instances, if your product doesn't
have any optional parts, you'll only want to create one feature.

If you've included a feature tree dialog (which we'll explain later in the book),
such as the one shown, the user can simply click a feature to exclude it. However,
even without this, they can select features from the command line. The following
command only installs a feature called MainProduct:

msiexec /i myInstaller.msi ADDLOCAL=MainProduct

Here, we're using the msiexec program to launch an installer. The /i flag targets
the MSI file to install. The ADDLOCAL property is set to the names of the features we
want to include. If more than one, use commas to separate the names. To install all
available features set ADDLOCAL=ALL, as shown:

msiexec /i myInstaller.msi ADDLOCAL=ALL

Getting Started

[32]

To create a new feature in your WiX file, add a Feature element inside the
Product element. The following example installs three components under the
feature MainProduct. Another feature called OptionalTools installs another
component. Components are included in a feature with the ComponentRef element.
The Id attribute of ComponentRef targets the Id attribute from the corresponding
Component element:

<Feature Id="MainProduct"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_MyAppEXE" />
 <ComponentRef Id="CMP_ReadMeTXT" />
 <ComponentRef Id="CMP_StartMenuShortcuts" />
</Feature>

<Feature Id="OptionalTools"
 Title="Optional Tools"
 Level="1">
 <ComponentRef Id="CMP_ToolsEXE" />
</Feature>

The Feature element's Id attribute uniquely identifies the feature and is what you'll
reference when using the ADDLOCAL property on the command line. The Title
attribute is used to set a user-friendly name that can be displayed on dialogs. Setting
the Feature element's Level attribute to 1 means that that feature will be included
in the installation by default. The end user will still be able to remove it through the
user interface or via the command line. If, on the other hand, Level is set to 0, that
feature will be removed from the feature tree and the user won't be able to install it.

If you wanted to, you could create a more complex tree with features nested inside
features. You could use this to create more categories for the elements in your product
and give the user more options concerning what gets installed. You would want
to make sure that all possible configurations function correctly. Windows Installer
makes this somewhat manageable in that if a parent feature is excluded, its child
features will be too. The following is an example of a more complex feature setup:

<Feature Id="MainProduct"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_MyAppEXE" />
 <ComponentRef Id="CMP_StartMenuShortcuts" />

 <Feature Id="SubFeature1"
 Title="Documentation"
 Level="1">

Chapter 1

[33]

 <ComponentRef Id="CMP_ReadMeTXT" />
 </Feature>
</Feature>

<Feature Id="OptionalTools"
 Title="Optional Tools"
 Level="1">
 <ComponentRef Id="CMP_ToolsEXE" />
</Feature>

In the preceding code snippet, I've moved the ReadMe.txt file used in the previous
examples into its own feature called Documentation that's nested inside the
MainProduct feature. Disabling its parent feature (MainProduct) will also disable it.
However, you could enable MainProduct and disable Documentation.

You have the ability to prevent the user from excluding a particular feature. Just
set the Absent attribute to disallow. You might do this for the main part of your
product where excluding it wouldn't make sense.

You might also consider adding the Description attribute, which can be set to a
string that describes the feature. This could be displayed in your dialog alongside
the feature tree, if you decide to use one. We'll cover feature trees and adding a user
interface later in the book.

Start menu shortcuts
Having a working installer is good, but wouldn't it be nice to add some shortcuts to
the Windows Start menu? First, add another Directory element that references the
Start menu via the built-in ProgramMenuFolder property:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software" />
 </Directory>
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyShortcutsDir"
 Name="Awesome Software" />
 </Directory>
</Directory>

Getting Started

[34]

In the previous code snippet we're adding a new folder to the Start menu called
Awesome Software. Now, we can use a DirectoryRef element to reference our new
shortcuts folder, as in the following code snippet:

<DirectoryRef Id="MyShortcutsDir">
 <Component Id="CMP_DocumentationShortcut"
 Guid="33741C82-30BF-41AF-8246-44A5DCFCF953">

 <Shortcut Id="DocumentationStartMenuShortcut"
 Name="Awesome Software Documentation"
 Description="Read Awesome Software Documentation"
 Target="[MyProgramDir]InstallMe.txt" />
 </Component>
</DirectoryRef>

Each Shortcut element has a unique identifier set with the Id attribute. The Name
attribute defines the user-friendly name that gets displayed. Description is set to a
string that describes the shortcut and will appear when the user moves their mouse
over the shortcut link.

The Target attribute defines the path on the end user's machine to the actual file
being linked to. For that reason, you'll often want to use properties that update as
they're changed, instead of hardcoded values. In the previous example, the main
installation directory is referenced by placing the Id attribute of its corresponding
Directory element in square brackets, which is then followed by the name of the
file. Even if the path of MyProgramDir changes, it will still lead us to the InstallMe.
txt file.

Two things that should accompany a shortcut are a RemoveFolder element
and a RegistryValue element. RemoveFolder ensures that the new Start menu
subdirectory will be removed during an uninstall. It uses an Id attribute to uniquely
identify a row in the MSI RemoveFile table and an On attribute to specify when to
remove the folder. You can set On to install, uninstall, or both. You can specify
a Directory attribute as well to set to the Id attribute of a Directory element to
remove. Without one, though, the element will remove the directory defined by the
parent DirectoryRef or ComponentGroup element.

Chapter 1

[35]

The RegistryValue element is needed simply because every component must
have a KeyPath item. Shortcuts aren't allowed to be KeyPath items as they aren't
technically files. By adding a RegistryValue, a new item is added to the registry
and this is marked as KeyPath. The actual value itself serves no other purpose. We
will cover writing to the registry in more detail later.

<DirectoryRef Id="MyShortcutsDir">
 <Component Id="CMP_DocumentationShortcut"
 Guid="33741C82-30BF-41AF-8246-44A5DCFCF953">

 <Shortcut Id="DocumentationStartMenuShortcut"
 Name="Awesome Software Documentation"
 Description="Read Awesome Software Documentation"
 Target="[MyProgramDir]InstallMe.txt" />

 <RemoveFolder Id="RemoveMyShortcutsDir"
 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\Microsoft\AwesomeSoftware"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

There's actually another reason for using a RegistryValue element as KeyPath. The
shortcut we're creating is being installed to a directory specific to the current user.
Windows Installer requires that you always use a registry value as the KeyPath item
when doing this in order to simplify uninstalling the product when multiple users
have installed it.

Another type of shortcut to add is one that uninstalls the product. For this, add a
second Shortcut element to the same component. This shortcut will be different
in that it will have its Target set to the msiexec.exe program, which is located in
the System folder. The following example uses the predefined System64Folder
directory name because it will automatically map to either the 64-bit or 32-bit System
folder, depending on the end user's operating system.

Getting Started

[36]

By setting Target to the path of an executable, you're telling Windows to launch
that program when the user clicks the shortcut. The msiexec program can remove
software by using the /x argument followed by the ProductCode attribute of
the product you want to uninstall. The ProductCode attribute is the Id attribute
specified in the Product element.

<DirectoryRef Id="ProgramMenuFolder">
 <Component Id="CMP_DocumentationShortcut"
 Guid="33741C82-30BF-41AF-8246-44A5DCFCF953">

 <Shortcut Id="DocumentationStartMenuShortcut"
 Name="Awesome Software Documentation"
 Description="Read Awesome Software Documentation"
 Target="[MyProgramDir]InstallMe.txt" />

 <Shortcut Id="UninstallShortcut"
 Name="Uninstall Awesome Software"
 Description=
 "Uninstalls Awesome Software and all of its components"
 Target="[System64Folder]msiexec.exe"
 Arguments="/x [ProductCode]" />

 <RemoveFolder Id="RemoveMyShortcutsDir"
 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\Microsoft\AwesomeSoftware"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

Notice that we don't have to use the GUID from the Product element to get
the ProductCode value. We can reference it using the built-in property called
ProductCode surrounded by square brackets. If you'd like to add an icon to your
shortcut, first add an Icon element as another child to the Product element. Then,
reference that icon with the Icon attribute on the Shortcut element, as shown in the
following code snippet:

<Icon Id="icon.ico" SourceFile="myIcon.ico"/>
<DirectoryRef ... >
 <Component ... >
 <Shortcut Id="DocumentationStartMenuShortcut"

Chapter 1

[37]

 Name="Awesome Software Documentation"
 Description="Read Awesome Software Documentation"
 Target="[MyProgramDir]InstallMe.txt"
 Icon="icon.ico" />

 <RemoveFolder ... />
 <RegistryValue ... />
 </Component>
</DirectoryRef>

Be sure to add the new component that contains the shortcuts to one of your features:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id=" CMP_InstallMeTXT" />
 <ComponentRef Id="CMP_DocumentationShortcut" />
</Feature>

Putting it all together
Now that you've seen the different elements used to author an MSI package, the
following is the entire .wxs file:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

 <Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

 <Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Keywords="Practice,Installer,MSI"
 Comments="(c) 2012 Awesome Company" />

 <MediaTemplate EmbedCab="yes" />

 <!--Directory structure-->

Getting Started

[38]

 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software" />
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyShortcutsDir"
 Name="Awesome Software" />
 </Directory>
 </Directory>
 </Directory>

 <!--Components-->
 <DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </DirectoryRef>

 <!--Start Menu Shortcuts-->
 <DirectoryRef Id="MyShortcutsDir">
 <Component Id="CMP_DocumentationShortcut"
 Guid="33741C82-30BF-41AF-8246-44A5DCFCF953">

 <Shortcut Id="DocumentationStartMenuShortcut"
 Name="Awesome Software Documentation"
 Description="Read Awesome Software Documentation"
 Target="[MyProgramDir]InstallMe.txt" />

 <Shortcut Id="UninstallShortcut"
 Name="Uninstall Awesome Software"
 Description="Uninstalls Awesome Software"
 Target="[System64Folder]msiexec.exe"
 Arguments="/x [ProductCode]" />

 <RemoveFolder Id="RemoveMyShortcutsDir"
 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\Microsoft\AwesomeSoftware"
 Name="installed"

Chapter 1

[39]

 Type="integer"
 Value="1"
 KeyPath="yes" />
 </Component>
 </DirectoryRef>

 <!--Features-->
 <Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 <ComponentRef Id="CMP_DocumentationShortcut" />
 </Feature>
 </Product>
</Wix>

Compile the project in Visual Studio and you should get a new MSI file:

Getting Started

[40]

You can double-click on it or right-click and select Install to install the software.
Doing so should create a subfolder for your program in the Start menu, as shown
in the following screenshot:

You should also find a new folder under Program Files:

To uninstall the software, you have several options:

• Use the uninstall shortcut from the Start menu
• Right-click on the MSI file and select Uninstall
• Uninstall it from Programs and Features
• From a command prompt, navigate to the directory where the MSI file is and

use the following command:
msiexec /x AwesomeSoftware.msi

Adding a user interface
Although you'll eventually want to add your own dialogs to gather information from
the user that's important for your own application, you may want to use one of WiX's
built-in dialog sequences in the meantime. All of them are stored in an assembly called
WixUIExtension.dll. You can add a reference to this file with Visual Studio's Add
a Reference screen. The file exists in WiX's Program Files folder. You may have to
navigate to C:\Program Files (x86)\WiX Toolset v3.6\bin.

Chapter 1

[41]

Once you've added the new reference, add the following line to your WiX source file.
It doesn't matter exactly where, as long as it's a child to the Product element:

<UIRef Id="WixUI_Minimal" />

This will insert the Minimal dialog set into your installation sequence. It shows a
single dialog screen containing a license agreement and an Install button. Feel free
to try any of the other dialog sets. Just replace WixUI_Minimal, with one of the other
names in the UIRef element. WixUI_Advanced and WixUI_InstallDir require some
further setup to really work properly. You can try out the following attributes:

• WixUI_Advanced

• WixUI_FeatureTree

• WixUI_InstallDir

• WixUI_Mondo

We will explore these standard dialogs in more detail later and also explain how to
create your own.

Viewing the MSI database
I mentioned before that an MSI file is really a sort of relational database. WiX does
all the work of creating tables, inserting rows, and matching up keys in this database.
However, as we progress through the rest of the book, I encourage you to explore
how it looks behind the scenes. For example, we discussed the File and Component
elements. Sure enough, there are two tables called File and Component in the MSI
package that contain the definitions you've set with your XML markup. To get inside
the installer, you'll need a tool called Orca.

Orca.exe
Once you've compiled your project in Visual Studio, you'll have a working MSI
package that can be installed by double-clicking on it. If you'd like to see the
database inside, install the MSI viewer, Orca.exe. Orca is provided as part of
the Windows SDK and despite the icon of a whale on the shortcut, it stands for
One Really Cool App. You can find versions of the SDK at Microsoft's Windows
Development Center website:

http://msdn.microsoft.com/en-us/windows/bb980924.aspx

Getting Started

[42]

After you've installed the SDK (specifically, the .NET tools that are included), you
can find the installer for Orca—Orca.msi—in the Microsoft SDKs folder in Program
Files. On my machine, it can be found in C:\Program Files\Microsoft SDKs\
Windows\v7.0\Bin.

Install Orca and then right-click on your MSI file and select Edit with Orca, as shown
in the following screenshot:

Orca lets you view the database structure of your installer. This can be a big help in
troubleshooting problems or just to get a better idea about how different elements
work together. The following is a screenshot of the Component database:

If you wanted to, you could edit your MSI package directly with Orca. This is helpful
when learning or trying out different concepts. You'll need to know exactly which
tables and rows to modify. Sometimes, though, you'll be able to just change a single
value and check its effect.

Turning logging on during installation
If you get into trouble with your installer, it may help to run it with logging turned
on. To do so, install your package from a command prompt using msiexec with the
arguments /l*v, and the name of a file to write the log to. For example, if you had an
installer called myInstaller.msi, you could use this command to write a log during
the installation to a file called myLog.txt:

msiexec /i myInstaller.msi /l*v myLog.txt

Chapter 1

[43]

Every event that occurs during installation will be recorded here. It works for
uninstalls too. Simply use the /x argument instead of /i. The log can be pretty
helpful, but also very verbose. If your installer fails midway through, you might try
searching the log for the text return value 3. This indicates that an action returned
a status of failure. Often, you'll also see a specific MSI error code. You can find its
meaning by searching for that number in the MSI SDK Documentation help file
that comes with WiX.

You can also turn on logging for all MSI packages by editing the
HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\
Windows\Installer key in the Windows Registry. This should
be used with care though so as not to use too much disk space.
See http://support.microsoft.com/kb/223300 for more
information.

Other resources
If you have specific questions about WiX, you'll find additional resources at the
following websites:

• WiX users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum_name=wix-
users

• Microsoft Windows Installer documentation:
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

Summary
In this chapter, we discussed downloading the WiX toolset and its various features.
Creating a simple MSI package is relatively easy. There are only a handful of XML
elements needed to get started. As we explore more complex setups, you'll be
introduced to elements that are more specialized.

Throughout the rest of this book, I'll make references to the structure of the MSI
database. Orca is an excellent tool for seeing this structure yourself. Although this
book focuses on WiX and not the underlying Windows Installer technology, it helps
sometimes to see how the mechanics of it work. You may find it useful to consult
Microsoft's MSI documentation too, which can be found online or in a help file
provided by WiX, to get a deeper understanding of the properties and constructs
we will discuss.

http://support.microsoft.com/kb/223300
http://support.microsoft.com/kb/223300

Creating Files and Directories
In the previous chapter, we saw that creating a WiX installer isn't so tough. Less
than seventy lines of code and you've got a professional-looking deployment solution.
One of the things we covered was how to copy files and create directories on the end
user's computer. We've covered the basics, but now it's time to dig deeper.

In this chapter you will learn how to:

• Organize your File and Directory elements using the DirectoryRef and
ComponentGroup elements

• Split your WiX markup using Fragment elements to keep it manageable
• Use heat.exe to create the Component markup
• Install special case files such as installing to the GAC

The File element
The File element, as you've seen, is used to designate each file that you plan to copy
to the end user's computer. At a minimum, it should contain a Source attribute that
identifies the path to the file on your development machine, as shown:

<Component Id="CMP_MyProgramEXE"
 Guid="2C34F22F-1F48-4949-B68B-939F852F8B35">
 <File Source="MyProgram.exe" />
</Component>

Creating Files and Directories

[46]

There are a number of optional attributes available. The Name attribute tells the
installer what the file will be called after it's installed. If omitted, the file will retain
its original name as specified in the Source attribute. The KeyPath attribute explicitly
marks the file as the keypath for the component, although if there is only one File
element in Component it will, by default, be the keypath. The Id attribute uniquely
identifies the file in the MSI database's File table. The following is an example that
demonstrates these attributes:

<Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_MyProgramEXE"
 Source="MyProgram.exe"
 Name="NewName.exe"
 KeyPath="yes" />
</Component>

<Component Id="CMP_AnotherFileDLL"
 Guid="E9D74961-DF9B-4130-8FBC-1669A6DD288E">
 <File Id="FILE_AnotherFileDLL"
 Source="..\..\AnotherFile.dll"
 KeyPath="yes" />
</Component>

This example includes two files, MyProgram.exe and AnotherFile.dll, in the
installation package. Both use relative paths for their Source attributes. The first file
is located in the current directory while the second is two directories up. Another
option is to use a preprocessor variable to store the location of your files.

Chapter 2

[47]

Preprocessor variables are evaluated at compile time and are replaced in the final
MSI file with the strings that they've been set to. Here, I've added a variable called
FilesPath on the Build page of my WiX project's Properties page, and set it to
..\..\myProgram\Output\. In this case, the Output directory is where the files I
plan to install are located on my computer. We can insert this variable in the markup
by using $(var.FilesPath), as in the following snippet:

<Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_MyProgramEXE"
 Source="$(var.FilesPath)MyProgram.exe"
 KeyPath="yes" />
</Component>

At compile time, the variable will be replaced with the path that we've defined. You
can define more than one preprocessor variable on the Build page by separating
them with semicolons.

You can also refer to other projects in your Visual Studio solution using preprocessor
variables. For example, let's say you had a class library project in the same solution
as your WiX setup. If you were to add that class library as a reference in the WiX
project, you could then refer to its output directory using $(var.ProjectName.
TargetDir), as in the following example:

<Component Id="CMP_MyAssembly"
 Guid="{F53BAFE0-9BB1-44E6-BC93-D3BD0514BE14}">
 <File Source="$(var.MyAssembly.TargetDir)MyAssembly.dll" />
</Component>

Here, after we've added a project reference to the MyAssembly project, we are able to
reference its output directory via the $(var.MyAssembly.TargetDir) variable. You
can see other variables that are made available when adding a project reference in
this way at:

http://wix.sourceforge.net/manual-wix3/votive_project_references.htm

A File element is always wrapped in its own Component element. Doing so will
allow you to mark every file that you're installing as a KeyPath file. This allows
them to be replaced if they're accidentally deleted. The process of replacing missing
files is known as a repair. Repairs are triggered by right-clicking on an MSI file and
selecting Repair. A component can have only one keypath file, but every component
should have one. Although it's possible to put more than one file in the same
component, it's considered bad practice.

Creating Files and Directories

[48]

Before moving on, two other helpful attributes on the File element are Hidden and
ReadOnly. Setting the first to yes causes the installed file to be hidden from view.
The second turns on the file's read-only flag.

The DirectoryRef element
In the previous chapter, you saw that to define which directories to copy your files
into, you use Directory elements. These take an Id value and, if it's a new directory
that you're creating, a Name attribute. You can use any of the built-in IDs to reference
one of the common Windows directories. For example, suppose we wanted to add
an XML configuration file for our software to the %PROGRAMDATA% folder. We'd add a
reference to it using the built-in CommonAppDataFolder property as Directory Id:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="CommonAppDataFolder">
 <Directory Id="MyCommonAppDataFolder"
 Name="Awesome Software" />
 </Directory>
</Directory>

Here we are placing a new folder called Awesome Software inside the %PROGRAMDATA%
folder. The new folder gets a Name attribute to label it. The Id attribute is up to us and
uniquely identifies the directory in the MSI database. To add a file to our directory we
add a new DirectoryRef, as shown in the following code snippet:

<DirectoryRef Id="MyCommonAppDataFolder">
 <Component Id="CMP_SettingsXML"
 Guid="{F8901638-9E76-44F6-B755-155CBE135CF5}">
 <File Source="Settings.xml" />
 </Component>
</DirectoryRef>

The DirectoryRef element matches the Directory element that we used before.
If you wanted to, you could use a new DirectoryRef element for each file.
However, it's easier to use one DirectoryRef and place multiple Component
elements inside of it:

<DirectoryRef Id="MyCommonAppDataFolder">
 <Component Id="CMP_GeneralSettingsXML"
 Guid="{971674AC-D9EB-4344-BA43-B685BA82EE56}">
 <File Source="GeneralSettings.xml" />
 </Component>

 <Component Id="CMP_DatabaseSettingsXML"
 Guid="{72D97E16-FA5E-4EAA-99DC-415BCBEED907}">

Chapter 2

[49]

 <File Source="DatabaseSettings.xml" />
 </Component>
</DirectoryRef>

You could, for example, place hundreds of files inside the MyCommonAppDataFolder
directory using only one DirectoryRef element.

The ComponentGroup element
The ComponentGroup element is used to group Component elements, which is
helpful as it offers a way to reference all of your components with a single element.
For example, when adding components to Feature (which you must always do),
you could use ComponentRef elements directly. This is the technique we used in the
previous chapter:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_MyProgramEXE" />
 <ComponentRef Id="CMP_AnotherFileDLL" />
</Feature>

However, by creating ComponentGroup, you can reference multiple components with
a single ComponentGroupRef element. This is shown in the following snippet:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentGroupRef Id="MyComponentGroup" />
</Feature>

Try it out by adding a new CompontGroup element to your .wxs file. It can go
anywhere inside the Product element. Then, you have a choice. You can either nest
Component elements inside it or use ComponentRefs to reference your components
indirectly. For example, here we use Component elements inside ComponentGroup:

<ComponentGroup Id="MyComponentGroup">
 <Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D"
 Directory="INSTALLLOCATION">
 <File Id="FILE_MyProgramEXE"
 Source="MyProgram.exe"
 KeyPath="yes" />

Creating Files and Directories

[50]

 </Component>

 <Component Id="CMP_AnotherFileDLL"
 Guid="E9D74961-DF9B-4130-8FBC-1669A6DD288E"
 Directory="INSTALLLOCATION">
 <File Id="FILE_AnotherFileDLL"
 Source="AnotherFile.dll"
 KeyPath="yes" />
 </Component>
</ComponentGroup>

Since the components aren't wrapped in a DirectoryRef element anymore, we're
adding Directory attributes to the Component elements to set the target directory.
This has the same effect though. It will tell the installer where to copy these files
to. You can also put a Directory attribute on the ComponentGroup element itself,
setting the target directory for all child components:

<ComponentGroup Id="MyComponentGroup"
 Directory="INSTALLLOCATION">
 <Component ... />
 <Component ... />
</ComponentGroup>

The other option is to continue to nest Component elements inside the DirectoryRef
elements and then use the ComponentRef elements to include them in a group:

<DirectoryRef Id="INSTALLLOCATION">
 <Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_MyProgramEXE"
 Source="MyProgram.exe"
 KeyPath="yes" />
 </Component>

 <Component Id="CMP_AnotherFileDLL"
 Guid="E9D74961-DF9B-4130-8FBC-1669A6DD288E">
 <File Id="FILE_AnotherFileDLL"
 Source="AnotherFile.dll"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

<ComponentGroup Id="MyComponentGroup">
 <ComponentRef Id="CMP_MyProgramEXE" />
 <ComponentRef Id="CMP_AnotherFileDLL" />
</ComponentGroup>

Chapter 2

[51]

The usefulness of ComponentGroup becomes more obvious when your program
needs to copy more than a few files to the end user's machine. You'll be able to
include, remove, or move entire sets of components from a feature simply by
moving the ComponentGroupRef element.

The Fragment element
Up to this point, we've been adding all of our WiX elements to the Product.wxs
file. When your installer packages hundreds of files, you'll find that having all of
your code in one place makes reading it difficult. You can split your elements up
into multiple .wxs files for better organization and readability. Whereas your main
source file, Product.wxs, nests everything inside a Product element, your additional
.wxs files will use Fragment elements as their roots.

The Fragment element doesn't need any attributes. It's simply a container. You can
place just about anything inside of it, such as all of your Directory elements or all
of your Component elements. For the next example, add a new WiX source file to
your project and place the following markup inside it. Here, we're using the same
ComponentGroup that we discussed earlier. You can call the file Components.wxs,
and it should look something like the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <ComponentGroup Id="MyComponentGroup"
 Directory="INSTALLLOCATION">
 <Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_MyProgramEXE"
 Source="MyProgram.exe"
 KeyPath="yes" />
 </Component>

 <Component Id="CMP_AnotherFileDLL"
 Guid="E9D74961-DF9B-4130-8FBC-1669A6DD288E">
 <File Id="FILE_AnotherFileDLL"
 Source="AnotherFile.dll"
 KeyPath="yes" />
 </Component>
 </ComponentGroup>
 </Fragment>
</Wix>

Creating Files and Directories

[52]

Now, the markup for the components is contained within a separate file. We've used
ComponentGroup to group them, but of course, that's optional. To include this group
in Product.wxs, reference it with a ComponentGroupRef element in one of your
Feature elements, as shown:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentGroupRef Id="MyComponentGroup" />
</Feature>

Although the ComponentGroup element is optional, it allows us to reference our
fragment back in our main source file. Referencing any single element from a
fragment like this will pull all of the elements in the fragment into the scope of your
project. For components, this doesn't make much difference since you still have
to reference all of them—or at least a ComponentGroup element of them—inside a
Feature element. However, it makes more of a difference for other elements.

For example, properties, which are variables that you can use to store data, are
represented by Property elements and could be stored in a separate file within
a Fragment element. Then, by referencing just one of them in your main source
file with a PropertyRef element, you'd pull all of them into your project. With
fragments, it's all or nothing. Referencing one element in the fragment references
them all.

Other elements that don't have a corresponding Ref counterpart need a little more
help. For example, there's no reference element for the Media element. There's no
such thing as a "MediaRef". However, if you included a Property element in the
same fragment as your Media elements, you could pull them in too by referencing
that property with PropertyRef. The Media.wxs file would look like the following
code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <Property Id="MediaProperty"
 Value="1" />
 <Media Id="1" Cabinet="media1.cab" EmbedCab="yes" />
 <Media Id="2" Cabinet="media2.cab" EmbedCab="yes" />
 <Media Id="3" Cabinet="media3.cab" EmbedCab="yes" />
 </Fragment>
</Wix>

Chapter 2

[53]

To reference the Media elements in your project, reference the property that's with
them. This is done by adding the following code to Product.wxs:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 <Package InstallerVersion="301"
 Compressed="yes" />

 <PropertyRef Id="MediaProperty" />

 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software" />
 </Directory>
 </Directory>

 <DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </DirectoryRef>

 <Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 </Feature>
 </Product>
</Wix>

Creating Files and Directories

[54]

Fragments are a great way of splitting up your code to make it more manageable.
As we've seen, it's easy to pull them into the scope of your project. You could even
pull one fragment into another and then pull that one into your main source file.
WiX will take care of running the validity checks to make sure that everything links
together properly.

Note that it's possible to have more than one Fragment element in the same source
file. In that case, you must use a reference element for each one. They're sort of like
islands. They're isolated from one another. However, it's often simpler to stick to one
fragment per file. The following file defines two fragments:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <Property Id="MediaProperty"
 Value="1" />
 <Media Id="1"
 Cabinet="media1.cab"
 EmbedCab="yes" />
 </Fragment>

 <Fragment>
 <Property Id="MediaProperty2"
 Value="1" />
 <Media Id="2"
 Cabinet="media2.cab"
 EmbedCab="yes" />
 </Fragment>
</Wix>

Referencing the MediaProperty property with PropertyRef will only pull in the
elements in the first fragment. To get those in the second fragment, you'd have to
also reference the MediaProperty2 property.

The Fragment element is so helpful that the WiX team has employed its use for an
even bigger type of project organization: .wixlib files. These are separate projects
that by default contain a single fragment and compile into a WiX library (.wixlib)
that can be added as a reference in your main WiX project. This allows other teams to
handle their own WiX code and send it to you already compiled. To try it out, create
a new project in your solution using the Setup Library Project template.

Chapter 2

[55]

The contents of this type of project aren't anything you haven't seen before. It's
simply a fragment. You'll start off with the following markup:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <!-- TODO: Put your code here. -->
 </Fragment>
</Wix>

You can add properties, components, and anything else you'd ordinarily be able to
add to a fragment. When it's compiled, you'll have a .wixlib file that can be added as
a reference in your main WiX project. Use the Add Reference option in your Solution
Explorer window. Like other fragments, you'll be able to reference the .wixlib file's
contents by using a reference element such as PropertyRef. This is a great tool that
allows multiple teams to work on the installer without stepping on one another's toes.

In the past, installation developers often used merge modules (.msm) to separate
installation code. Merge modules, much like WiX libraries, contain compiled installer
code and offer a way of splitting up large projects. WiX libraries, which are easier to
author, can serve as a replacement for merge modules.

WiX does provide an XML element called Merge for importing a merge module
into your project. You'd probably only need to use this to install a third-party
component. However, even for dependencies such as Microsoft's Visual C++
Runtime, you may be able to avoid using a merge module and use an executable
installer instead. An installer for the Visual C++ Runtime is available and by using
WiX's new bootstrapper technology, Burn, it can be installed as a prerequisite before
your own software is installed. We'll cover Burn later in the book.

Harvesting files with heat.exe
When your project contains many files to install, it can be a chore to create File and
Component elements for all of them. Instead, WiX can do it for you. One of the tools
that ships with the toolset is called heat.exe. You can find it in the bin directory of
the WiX program files. Navigate to WiX's bin directory from a command prompt
and type heat.exe -? to see information about its usage.

Creating Files and Directories

[56]

To make things easy, consider adding the path to the WiX bin directory to your
computer's PATH environment variable so that you won't have to reference the
full path to the executable each time you use it. You can do this on Windows 7 by
right-clicking on My Computer in your Start Menu and then going to Properties |
Advanced system settings | Environment Variables. From there, you can add the
WiX bin path, C:\Program Files (x86)\WiX Toolset v3.6\bin, to PATH by
finding PATH in the list of system variables and clicking on Edit.

Note that WiX, during its installation, adds an environment
variable called WIX, but this references the bin folder's
parent directory. You could add %WIX%bin to PATH.

The following is the general syntax for Heat:

heat.exe harvestType harvestSource <harvester arguments>
 -o[ut] sourceFile.wxs

Heat can look at a directory, evaluate all of the files in it, and create a .wxs file
defining the components you'd need to install all of those files. First, let's create a
new directory and then add some empty text files in it. You can create it anywhere
you like.

Open a command prompt and navigate to this directory. I'll assume that the WiX bin
directory has been added to your PATH environment variable and won't reference
the full path to heat.exe. The first argument that you have to give to Heat is a
harvestType, which can be one of the following:

• dir: This type harvests a directory
• file: This type harvests a file
• payload: This type harvests a bundle payload as RemotePayload
• perf: This type harvests performance counters

Chapter 2

[57]

• project: This type harvests output of a VS project
• reg: This type harvest a .reg file
• website: This type harvests an IIS website

We'll be harvesting all the files from the directory we've created, so we'll use dir.
The second argument is the path to the directory. It can be a relative or absolute
path and should not end in a backslash. I'll truncate it in this example for the sake
of clarity. The last argument, which is preceded by the -out flag, is the name of a
source file that Heat will create. So, our Heat command looks like this so far:

heat.exe dir "C:\Testing_Heat" -out ".\HeatFile.wxs"

We've asked it to create a file called HeatFile.wxs in the current directory. The
following is what it would contain:

<?xml version="1.0" encoding="utf-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <DirectoryRef Id="TARGETDIR">
 <Directory Id="dirB81CE037F36D241058F8A43AAFDFE612"
 Name="Testing_Heat" />
 </DirectoryRef>
 </Fragment>

 <Fragment>
 <DirectoryRef Id="dirB81CE037F36D241058F8A43AAFDFE612">
 <Component Id="cmp154B5D55534D51EA6679BF67168C1D72"
 Guid="PUT-GUID-HERE">
 <File Id="filB2F0330A7280060ACCD0CFAF56B40DA8"
 KeyPath="yes"
 Source="SourceDir\Test1.txt" />
 </Component>
 </DirectoryRef>
 </Fragment>

 <Fragment>
 <DirectoryRef Id="dirB81CE037F36D241058F8A43AAFDFE612">
 <Component Id="cmp735C6BDA70156318193CB4A6C649FC6A"
 Guid="PUT-GUID-HERE">
 <File Id="fil0719BEF9518EFD5FC8C9C75E5A670F00"
 KeyPath="yes"
 Source="SourceDir\Test2.txt" />
 </Component>
 </DirectoryRef>

Creating Files and Directories

[58]

 </Fragment>

 <Fragment>
 <DirectoryRef Id="dirB81CE037F36D241058F8A43AAFDFE612">
 <Component Id="cmpC9439409E8A1642355A4FDF410CC7EFD"
 Guid="PUT-GUID-HERE">
 <File Id="filE46FE85CD981AEB0AD645246FCB018B3"
 KeyPath="yes"
 Source="SourceDir\Test3.txt" />
 </Component>
 </DirectoryRef>
 </Fragment>
</Wix>

It created WiX markup for us. However, things aren't quite as good as they could
be. For one thing, it has created a Directory element with a Name attribute of
Testing_Heat, the same as my impromptu folder. This will create a directory
called Testing_Heat on the end user's computer. That's not what I wanted. Also,
it has set the Guid attribute on each Component to PUT-GUID-HERE. Although this
could be useful in some circumstances, I'd much rather it created the GUIDs for me.

It has also set the Source attribute on each File element to SourceDir\FILENAME.
This means that when we build the project, the compiler will expect to find the text
files in the same directory where the HeatFile.wxs file is. Finally, it hasn't made it
easy for us to reference the components that it created. It would have been nice to see
all of these components grouped into a ComponentGroup element.

To fix these problems, we'll just add some more arguments to our call to Heat,
as outlined in the following table:

Argument What it does
-cg <ComponentGroup> Add the -cg flag with a name to use for a new

ComponentGroup element. Heat will then group the
components.

-dr <DirectoryName> Use the -dr flag with the name of one of the directories you
actually wanted to create. That way, the components will be
copied into that directory during the installation.

-gg To have Heat create GUIDs for us, add the -gg flag.
-g1 To have the GUIDs not have curly brackets, use the -g1 flag.

This is just a preference.
-sfrag By default, Heat puts each component and your directory

structure in separate Fragment elements. Adding -sfrag
puts these elements into the same Fragment element.

Chapter 2

[59]

Argument What it does
-srd There's not really any reason to harvest the folder where the

files are, so add the -srd flag.
-var <VarName> We can use the -var flag with the name of a preprocessor

variable (preceded by var) to insert in place of SourceDir.
Later on, we can set the variable from within the project's
Properties settings or on the command line.

Now, our call to Heat will look something like the following command:

heat.exe dir "C:\New Folder" -dr MyProgramDir -cg NewFilesGroup

 -gg -g1 -sf -srd -var "var.MyDir" -out ".\HeatFile.wxs"

The new HeatFile.wxs looks like the following code snippet:

<?xml version="1.0" encoding="utf-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <DirectoryRef Id="MyProgramDir" />
 </Fragment>
 <Fragment>
 <ComponentGroup Id="NewFilesGroup">
 <Component Id="cmp6E6E0088162FB06CBCEA9A4AA7CBC603"
 Directory="MyProgramDir"
 Guid="94CB90AB-C291-4D2D-B9B1-DED3FA5DB93A">
 <File Id="filCA67D5B125E878518FEA8F7FB62EF550"
 KeyPath="yes"
 Source="$(var.MyDir)\Test1.txt" />
 </Component>
 <Component Id="cmpC3D97EF2ADF77EB61AEF04285A25C2D2"
 Directory="MyProgramDir"
 Guid="9D73E105-CF60-4665-9CA4-7682859E6034">
 <File Id="filA2FD0B78B439D62B0C28A829A9508C01"
 KeyPath="yes"
 Source="$(var.MyDir)\Test2.txt" />
 </Component>
 <Component Id="cmp5B1A530DE50F4D3437F2171E2CAB91A6"
 Directory="MyProgramDir"
 Guid="1949BEDC-8B91-424A-8977-A5C8F85FAE92">
 <File Id="fil3C980C5A1D26D4B12D481104B14E98D2"
 KeyPath="yes"
 Source="$(var.MyDir)\Test3.txt" />
 </Component>
 </ComponentGroup>
 </Fragment>
</Wix>

Creating Files and Directories

[60]

This looks a lot better. Now, the components are grouped, each Component has a
GUID and is being installed into the MyProgramDir folder that I'm creating, and the
File elements are using the $(var.MyDir) variable in their Source attributes. To
include these new components in Product.wxs, add a reference to ComponentGroup
with a ComponentGroupRef element inside one of the features:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 <ComponentGroupRef Id="NewFilesGroup" />
</Feature>

Also, be sure to add a value for the MyDir variable. Here, we set it to a folder named
SomeFolder in our project's directory (assuming we move our text files there before
compiling the project):

After you've compiled the project, you can use Orca to look at the MSI data that this
produces. The Component table will show the new components and the File table
will show the new files:

Remember that every time you run Heat on a directory, and you've set the -gg flag,
it will create new GUIDs for your components. If you've already shipped a version
of your software to customers, then these GUIDs should not be changed. To do so
would prevent Windows from accurately keeping track of them. Heat will also create
new Id attributes for File and Component elements each time you use it. This is just
something to keep in mind, especially if other parts of your installer expect the Id
attribute to stay the same from one day to the next.

Chapter 2

[61]

Copying and moving files
File and Component elements allow you to add new files to the end user's computer.
However, WiX also provides ways to copy and move files. For these tasks, you'll use
the CopyFile element. We'll discuss how to use it in the following sections.

Copying files you install
The CopyFile element can copy a file that you're installing and place it in another
directory. You'll nest it inside the File element of the file you want to duplicate.
First, we'll add a subdirectory to the MyProgramDir folder that we're already creating
under Program Files. The new directory will be called Copied Files.

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software">
 <Directory Id="CopiedFiles"
 Name="Copied Files" />
 </Directory>
 </Directory>
</Directory>

Now, we can nest a CopyFile element inside the File element of the file we want to
copy. Here, we're copying the InstallMe.txt file to the Copied Files folder and
renaming it to InstallMeCOPY.txt. Notice that we use the DestinationDirectory
attribute to specify the Id attribute of the Copied Files directory. We use the
DestinationName attribute to specify the new filename. Every CopyFile element
has to have a unique ID, so we set that too:

<!--Components-->
<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes">
 <CopyFile Id="Copy_InstallMeTXT"
 DestinationDirectory="CopiedFiles"
 DestinationName="InstallMeCOPY.txt" />
 </File>
 </Component>
</DirectoryRef>

Creating Files and Directories

[62]

That's all you need. During installation, the InstallMe.txt file will be copied to the
Copied Files folder and named InstallMeCOPY.txt. If you wanted to, you could
nest multiple CopyFile elements under the same File element and copy that file to
several places. Just be sure to give each CopyFile element a unique ID.

If you don't want to hardcode the destination directory, you can use the
DestinationProperty attribute instead of DestinationDirectory to reference a
directory at install time. DestinationProperty accepts the name of a property that's
set to a directory path. The following is an example:

<Property Id="CopiedFilesFolder"
 Value="C:\CopiedFiles" />
<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes">
 <CopyFile Id="Copy_InstallMeTXT"
 DestinationProperty="CopiedFilesFolder"
 DestinationName="InstallMeCOPY.txt" />
 </File>
 </Component>
</DirectoryRef>

So here we've hardcoded the path again. It's just that this time we used a property to
do it instead of a Directory element. The DestinationProperty attribute is most
useful when you can set the property dynamically. There are various ways that you
can do this:

• Ask the user for it on a UI dialog and then set the property with the result.
We'll talk about setting properties from dialogs later in the book.

• Set the property from a custom action. This is something else we'll
cover later. The action that you create must be executed before the
DuplicateFiles action in InstallExecuteSequence.

• Set the property from the command line. We'll cover this in the next chapter.
• Use AppSearch, which we'll cover, to find the directory you want and set the

property with it.

Chapter 2

[63]

Copying existing files
In addition to being able to copy files that you're installing, you can also copy files
that already exist on the end user's computer. For this, you'll nest the CopyFile
element inside its own Component element and not inside a File element. The
following is an example that copies a file called TEST.txt that's on the desktop
to a folder called Copied Files:

<!--Directory structure-->
<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software">
 <Directory Id="CopiedFiles"
 Name="Copied Files" />
 </Directory>
 </Directory>
 <Directory Id="DesktopFolder" />
</Directory>

<!--Components-->
<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_CopyTestTXT"
 Guid="E25E8584-D009-43bE-99E9-A46D58105DD0"
 KeyPath="yes">
 <CopyFile Id="CopyTest"
 DestinationDirectory="CopiedFiles"
 DestinationName="TESTCopy.txt"
 SourceDirectory="DesktopFolder"
 SourceName="TEST.txt" />
 </Component>
</DirectoryRef>

We've added a Directory element to reference the Desktop folder so that we
can reference it later in the CopyFile element. The Component element that holds
the CopyFile has its KeyPath attribute set to yes. We did this because we're not
installing anything with this component and something has to be the keypath. In
cases such as this, when there's nothing else to serve the purpose, it's fine to mark the
component itself as the KeyPath file.

Creating Files and Directories

[64]

The CopyFile element here has the DestinationDirectory and DestinationName
attributes like before, but it also has the SourceDirectory and SourceName
attributes. SourceDirectory is set to the Id attribute of a Directory element where
the file you want to copy is. SourceName is the name of the file you want to copy.
If you wanted to, you could use the DestinationProperty attribute instead of
DestinationDirectory, and SourceProperty instead of SourceDirectory. These
are used to set the directory paths at installation time, as discussed before.

Moving existing files
Suppose you didn't want to copy a file that already existed, but rather move it to
some other folder. All you need to do is add the Delete attribute to your CopyFile
element. This will delete the file from its current location and copy it to the new
location. So, that's another way of saying "move". The following is an example:

<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_MoveTestTXT"
 Guid="E25E8584-D009-43bE-99E9-A46D58105DD0"
 KeyPath="yes">
 <CopyFile Id="MoveTest"
 DestinationDirectory="CopiedFiles"
 DestinationName="TESTCopy.txt"
 SourceDirectory="DesktopFolder"
 SourceName="TEST.txt"
 Delete="yes" />
 </Component>
</DirectoryRef>

Unfortunately, when you uninstall the software, it doesn't move the file back. It just
removes it completely from its current location.

Installing special-case files
In the following sections, we'll take a look at installing files that are different from
other types that we've talked about so far. Specifically, we'll cover how to install an
assembly file (.dll) to the Global Assembly Cache and how to install a TrueType
font file.

Chapter 2

[65]

Adding assembly files to the GAC
The Global Assembly Cache (GAC) is a central repository in Windows where you
can store .NET assembly files so that they can be shared by multiple applications.
You can add a .NET assembly to it with WiX by setting the File element's Assembly
attribute to .net. The following example installs an assembly file to the GAC:

<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_MyAssembly"
 Guid="4D98D593-F4E0-479B-A7DA-80BBB78B54CB">
 <File Id="File_MyAssembly"
 Assembly=".net"
 Source="MyAssembly.dll"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

Even though we've placed this component inside a DirectoryRef element, that
references the MyProgramDir directory, it won't really be copied there since we're
installing it to the GAC. Another approach is to create a dummy folder called GAC
that's used solely for this purpose. In that case, you wouldn't give that Directory a
Name attribute, which would prevent it from truly being created.

I'm using an assembly called MyAssembly.dll in this example, that I created with a
separate Visual Studio project. Any DLL that you want to install to the GAC must
be strongly signed. You can do this by opening the Properties page for that project
in Visual Studio, viewing the Signing page, checking the box that says Sign the
assembly, and creating a new .snk file, as shown in the following screenshot:

Creating Files and Directories

[66]

Once you've installed the package that now contains the strongly-signed assembly,
you'll be able to check if the DLL file actually made it into the GAC. Navigate to the
GAC assembly folder to see a list of installed assemblies:

Assemblies that target the .NET 4 Framework will use the
new GAC folders under C:\Windows\Microsoft.NET\
assembly. Assemblies targeting an earlier framework will be
placed in C:\Windows\assembly.

The nice thing is that when the user uninstalls the software the assembly will be
removed from the GAC—that is, unless another software product is still using it.
Windows keeps a count of products using each assembly and deletes your .dll only
when the count reaches zero.

Installing a TrueType font
To install a TrueType font onto the system, set the File element's Source attribute
to the location of a TTF file on your build machine and the TrueType attribute to
yes. The File element is nested inside a Component element that targets the built-in
FontsFolder directory. In the following example, we add a Directory element with
an Id value of FontsFolder and reference it with DirectoryRef:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software" />
 </Directory>
 <Directory Id="FontsFolder" />

Chapter 2

[67]

</Directory>

<DirectoryRef Id="FontsFolder">
 <Component Id="CMP_MyFont"
 Guid="CFF27814-D7A8-4054-B3B1-F5DB44CD5AB9">
 <File Id="myFontFile"
 Source="myFont.TTF"
 TrueType="yes"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

In the preceding code snippet, the File element is using the TrueType attribute to
signify that this file is a font file. It will include myFont.TTF from the current build
directory, in the install package and copy it to the end user's C:\WINDOWS\Fonts
folder.

Installing 64-bit files
Let's say that you have a .NET assembly that's targeting the x64 platform and
you want the installer for it to place that file into the 64-bit Program Files folder
(available on 64-bit Windows operating systems). For the uninitiated: you can set the
platform for the assembly using Visual Studio's Configuration Manager, as shown in
the following screenshot:

Creating Files and Directories

[68]

The first thing to do is to open Properties for the WiX project and, on the Tools
Settings tab, add –arch x64 to the Compiler parameters, as shown in the
following screenshot:

Next, change the Directory element that is referencing ProgramFilesFolder to
instead reference ProgramFiles64Folder, given as follows:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFiles64Folder">
 <Directory Id="INSTALLFOLDER" Name="My Software" />
 </Directory>
</Directory>

Now your 64-bit assembly can be put into this directory. WiX detects the architecture
of the .NET assemblies for you. You'll get a compile-time error if you try to put a 64-
bit file into a 32-bit folder, or vice versa.

Chapter 2

[69]

Creating an empty folder
Ordinarily, Windows Installer won't let you create empty folders. However, there
is a way: Use the CreateFolder element inside an otherwise empty Component
element. First, you'll define the name of your empty directory with a Directory
element. Follow this example:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software">
 <Directory Id="MyEmptyDir"
 Name="Empty Directory" />
 </Directory>
 </Directory>
</Directory>

In the example, we've added a new Directory element named Empty Directory
inside our main application folder. The next step is to add a component to this
directory by using a DirectoryRef element. Notice that we've set the KeyPath
attribute on the component to yes, as there will be no file to serve this purpose:

<DirectoryRef Id="MyEmptyDir">
 <Component Id="CMP_MyEmptyDir"
 Guid="85DAD4AE-6404-4A40-B713-43538091B9D3"
 KeyPath="yes">
 <CreateFolder />
 </Component>
</DirectoryRef>

The only thing inside the component is a CreateFolder element. This tells Windows
Installer that the folder will be empty, but that it should still create it during the
install. As always, be sure to add this new component to a feature, as given in the
following code snippet:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 <ComponentRef Id="CMP_MyEmptyDir" />
</Feature>

Creating Files and Directories

[70]

Setting file permissions
WiX allows you to set the permissions that Windows users and groups have to the
files that you install. You can see these permissions by right-clicking on a file and
selecting the Security tab. On Windows XP, you may have to configure your system
so that this tab is visible. In Windows Explorer, open the folder that you want to
configure and go to Tools | Folder Options | View. Then, uncheck the box that says
Use simple file sharing. The following is an example of the Security tab on a file:

Chapter 2

[71]

To set the permissions for a file that you're installing, nest a PermissionEx element
inside the corresponding File element. This element, which is available from
WixUtilExtension, has various attributes that can be used to define file permissions.
Before you can use it, you'll need to add a reference to WixUtilExtension.dll in your
project. Go to Add Reference in Solution Explorer and select the WiXUtilExtension
assembly. Next, add the following namespace to your Wix element:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

The following attributes are available to the PermissionEx element. Each can be set
to either yes or no:

Attribute What it does
GenericAll Gives the user all permissions.
GenericRead Must have at least one other permission specified. Grants all

Read privileges: "Read Data", "Read Attributes", "Read Extended
Attributes", and "Read Permissions".

GenericWrite Grants "Write Data, "Append Data", "Write Attributes", and "Read
Permissions".

GenericExecute Grants "Execute File", "Read Attributes", and "Read Permissions".
Read Grants "Read Data".
Write Grants "Write Data".
Execute Grants "Execute File" permission.
Append Grants "Append Data".
Delete Grants "Delete".
ChangePermission Grants "Change Permissions".
ReadPermission Grants "Read Permissions".
TakeOwnership Grants "Take Ownership".
Synchronize If "yes", then threads must wait their turn before accessing the file.

The following example references the util namespace from the Wix element and uses
its PermissionEx element to set file permissions on the InstallMe.txt file. Notice
that I'm also using another element from WixUtilExtension called User. This can
be used to create a new Windows user on the target computer. The Product.wxs file
would look something like the following code content:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

 <Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"

Creating Files and Directories

[72]

 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

 <Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine" />

 <MediaTemplate EmbedCab="yes" />

 <!--Directory structure-->
 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Awesome Software" />
 </Directory>
 </Directory>

 <!--Components-->
 <DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">

 <!--Creates new user-->
 <util:User Id="MyNewUser"
 CreateUser="yes"
 Name="nickramirez"
 Password="password"
 PasswordNeverExpires="yes"
 RemoveOnUninstall="yes"
 UpdateIfExists="yes" />
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt" KeyPath="yes">

 <!--Sets file permissions for user-->
 <util:PermissionEx User="nickramirez"
 GenericAll="yes" />
 </File>
 </Component>

Chapter 2

[73]

 </DirectoryRef>

 <!--Features-->
 <Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 </Feature>
 </Product>
</Wix>

In this example, we've given all privileges to the user we just created, nickramirez.
You can see all of the users for a computer by going to your Start Menu, right-clicking
on Computer, selecting Manage, and viewing the Local Users and Groups node. The
PermissionEx element's GenericAll attribute gives the user all possible privileges.
Just so you know, any users that you create during an installation will be removed
during an uninstallation if you set the User element's RemoveOnUninstall attribute
to yes.

Creating Files and Directories

[74]

Speeding up file installations
We haven't talked too much about how the files and directories that you author in your
WiX source files are stored in the MSI database's tables. The files are stored in a table
called File, the directories in a table called Directory, and the components in a table
called Component. You can see this by opening the MSI package with Orca.exe.

In the following example, I have four files that are being installed. I've used the
convention of prefixing my file IDs with FILE_, giving me FILE_InstallMeTXT,
for example:

Each file in the File table is sorted alphabetically by the Id value you gave to it via
the File element. This is the order in which the files are copied to the end user's
computer. So, how can you make things faster? You can give your files IDs that will
cause WiX to sort them more efficiently.

The file copy process takes longer when Windows has to write to one directory and
then switch to another and then another and so on. If it could copy all of the files that
belong to a certain directory at the same time and then move to another location, the
process would be more efficient. As it is, Windows may leave and return to the same
directory several times as it goes through the alphabetical list.

To speed things up, we should add the name of the directory where the file is set to go
to the Id attribute of the file. To be effective, this should come at the beginning of Id.
That way, files going to the same place will appear next to each other in the list. So, in
addition to prefixing our file IDs with FILE_, we could also indicate the directory that
each is being copied to. For example, FILE_MyProgramDir_InstallMeTXT signifies
that this file is being copied to the MyProgramDir directory. Any other files being
copied to the same place should also get MyProgramDir in their IDs.

Chapter 2

[75]

The following example displays a list that is better organized. It uses the name of
the destination directory as part of the files' IDs. Files going to the same place will be
grouped together in the alphabetical list, as shown in the following screenshot:

I've used underscores to separate the prefixes, but it's also common to use periods.
So, I could have named the first file FILE.MyProgramDir.InstallMe.Txt instead of
FILE_MyProgramDir_InstallMeTXT. It's really just a matter of preference.

Summary
In this chapter, we discussed the elements used to install files and create directories.
The File, Directory, and Component elements play vital roles here, but you may also
benefit from using ComponentGroup to group your components. This allows you to
better organize your markup and even to separate it into multiple WiX source files.

The heat.exe tool can create Component elements for you. You simply need to
point it at a certain directory. However, it's best to fine-tune its arguments so that
the output that you get is optimal. We discussed a few other topics such as how to
copy a file, how to set file permissions, and how to organize your File element Id
attributes for maximum installation speed.

In the next chapter, we'll move on to discuss WiX properties and the various ways of
searching the end user's system for files, directories, and settings.

Putting Properties and
AppSearch to Work

When using WiX, properties are the variables that store any temporary data during
an install. As such, they provide definitions for various predefined and custom-made
installer settings, store input from the user, and provide a means of transferring
information from one task to another. Additionally, they can store the results of
searching the user's computer for files, directories, registry keys, and settings.

In this chapter, you will learn:

• The syntax for declaring and setting properties
• How to reference properties in other parts of your markup
• The built-in properties that Windows Installer sets for you
• What AppSearch is and how to use it to search the end user's computer for

installed components, registry keys, and so on

Custom properties
You'll often need to define and set custom properties to hold your install time data.
In the following sections, we will explore the meaning of WiX properties and how
best to use them. I should say that properties are not just a feature of WiX, but are
innate to Windows Installer itself. So, additional information about them can be
found in the Windows Installer documentation.

www.allitebooks.com

http://www.allitebooks.org

Putting Properties and AppSearch to Work

[78]

Declaring and setting properties
To declare a property, add a Property element to your WiX markup. A Property
element only needs two attributes: Id and Value. The Id attribute sets the name of
the property, and the Value attribute sets the data contained inside. The following
example creates a new property called myProperty and sets its value to the string
my value. Note that this can go anywhere inside the Product element.

<Property Id="myProperty"
 Value="my value" />

Id should begin with either a letter or underscore and consist of only lower and
uppercase letters, numbers, underscores, and periods. When referencing it, it's case
sensitive. So, MyPropertyId is not the same as MyPropertyID.

The data in Value can be almost any string. If you need to use double quotes in the
value, you can either surround it with single quotes, as in the following example:

<Property Id="myProperty"
 Value='Do you see the "quotes"?' />

Or you can use the XML entity " in place of the double quotes:

<Property Id="myProperty"
 Value="Do you see the "quotes"?" />

If you omit the Value attribute, the property will be set to null. During compilation,
properties with null values are left out of the MSI package. It will be as if you hadn't
declared them at all.

You can also set the value of a Property element by adding inner text to it, as in the
following example:

<Property Id="myProperty">my value</Property>

Properties can also be set from the command line. If you do, you're not required to
declare the property in your WiX markup first. Declaring them on the command line
creates them dynamically. When defining properties on the command line, their IDs
must be uppercase. This is to make them "public", which we'll discuss later in the
chapter. To add a property in this way, add the name and value of your property,
separated by an equals sign, after the msiexec command.

msiexec /i myInstaller.msi PROPERTY1=100 PROPERTY2="my value"

Chapter 3

[79]

Here we're declaring two properties at install time, PROPERTY1 and PROPERTY2, and
setting their respective values. You can add more than one property by separating
them with spaces, as we've done here. Literal string values that have spaces in them
should be surrounded by double quotes. If the value itself has double quotes in it,
you can escape them by using two double quotes instead of one:

msiexec /i myInstaller.msi PROPERTY1="Game title: ""Starcraft""."

You can clear a property by setting its value to an empty string, such as:

msiexec /i myInstaller.msi PROPERTY1=""

Properties declared on the command line override those set in your WiX markup.
So, you could declare a WiX Property element in your XML to give it a default
value, and then override that value from the command line.

Referencing properties
One of the common uses of properties is to reference them in another WiX element.
There is a limited list of elements that can reference a property, including the following:

• Control: This references a Text attribute
• ListItem: This references a Text attribute
• Dialog: This references a Title attribute
• Shortcut: This references Target, Arguments, and Description attributes
• Condition: This references Message attribute
• RegistryValue: This references Name and Value attributes

Generally, any attribute on an element that becomes something the end user will see
in the UI (text on dialogs, labels on buttons, items in lists, and so on) or the names
of shortcuts and registry keys will have the ability to interpret it. In the element's
attribute, add the Id attribute of the property with square brackets around it. For
example, to refer to a property called USERNAME, you'd use [USERNAME]. You'll run
across more elements like this throughout the rest of the book.

In the next example, we'll create a property called myProperty that has a value of
0. A Condition element that follows checks the value to see if it's equal to 1. Notice
that I'm using the square bracket notation in the Message attribute to reference
myProperty:

<Property Id="myProperty"
 Value="0" />

<Condition Message=

Putting Properties and AppSearch to Work

[80]

 "Value of myProperty is [myProperty]. Should be 1">

 <![CDATA[Installed OR myProperty = "1"]]>
</Condition>

The Message attribute is used to show a modal window to the user. In this case,
they'll see Value of myProperty is 0. Should be 1.

Conversely, when you use a property in the inner text of an element, you don't
need the square brackets. Conditional statements, such as those found inside the
Condition element, are a good example. Look back at the previous example to see
that myProperty is referenced in the inner text of the Condition element without
using square brackets.

<![CDATA[Installed OR myProperty = "1"]]>

The Installed keyword is a built-in property set by WiX that
signifies that the product is already installed. By checking it, we
ensure that the second half of our condition will only be evaluated if
the product is not currently installed.

Declaring properties in your main .wxs file is fine if you only have a few. Once
you've got a good number it's easier to move them into their own source file and
nest them inside a Fragment element. To access these in your main .wxs file, add a
PropertyRef element with the Id attribute of one of the properties. A PropertyRef
element brings that property, and all others defined in the fragment, into the scope of
your project.

<Product ... >
 ...
 <PropertyRef Id="myProperty" />
</Product>

<Fragment>
 <Property Id="myProperty" Value="my value" />
</Fragment>

Property visibility and scope
Two things to consider when working with properties are visibility and scope.
With regards to visibility, consider that when you install an MSI package it's simple
to get a log of the process. You can see this log by installing from the command line
with logging turned on.

Chapter 3

[81]

You can also turn on logging by changing keys in the registry or
through Group Policy. Refer to the following web page for more
information: http://support.microsoft.com/kb/223300.

The following command installs a package called myInstaller.msi and writes a
verbose log using the /l*v flag:

msiexec /i myInstaller.msi /l*v log.log

When you submit this command, it will log every event that happens during the
install to a text file called log.log. At the end of the log, all properties with their
values will be listed in plain text. This isn't a good thing if one of your properties
contains a password or other sensitive data. To prevent a specific property from
showing in the install log, mark it as Hidden:

<Property Id="MY_PASSWORD"
 Value="some value"
 Hidden="yes" />

Set the Hidden attribute to yes if you don't want to show the property as an entry in
the log. Marking a property as hidden does not, however, prevent it from displaying
its value in the MSI database's Property table. Therefore, you probably shouldn't
set the literal value of a password directly in a property, as in the previous example.
Instead, set the value from the command line or collect it from the user via the UI.
That way, it is defined dynamically and the user cannot see it by opening the MSI
package with Orca.exe.

Scope is another consideration. By default, properties are not public, meaning that
they are not available when the installer runs through its execution phase (when
changes are made to the end user's system). We'll talk more about this phase later
on. For now, just know that if you plan on using your properties when writing to the
registry, laying down files, or during any other act that changes the user's computer,
then those properties must be made public.

Making a property public is just a matter of making its Id value all uppercase. The
property MY_PASSWORD is public, while my_Password is not. One example of when to
do this is when you collect information from the user with a dialog and then want to
take some action on it during the execution phase, such as store it in the registry.

The following property, because it's uppercase, will persist throughout the entire
installation.

<Property Id="MY_PROPERTY"
 Value="my string" />

http://support.microsoft.com/kb/223300

Putting Properties and AppSearch to Work

[82]

However, this will not:

<Property Id="My_Property"
 Value="my string" />

You could consider this a private property. It will only last during the current
session. We will discuss the install phases in detail in Chapter 5, Understanding the
Installation Sequence.

Secure properties
Ordinarily, an installer will prompt a non-admin user to elevate their privileges, or in
other words enter the password of an administrator account, before performing tasks
that change directories and registry keys outside their permissions zone. However,
administrators can, through various means discussed shortly, allow non-admin users
to install approved software without being asked to elevate their privileges.

This has the benefit of simplifying distribution of software on a company network,
for example, but comes at a price. Windows Installer may mark the installation as
restricted. This means that the properties you set could be ignored. The following
scenarios may set this in motion:

• The user performing the install is not an administrator
• The install is marked as per-machine instead of per-user, meaning the

ALLUSERS property is set to 1 in your markup or the Package element's
InstallScope attribute is set to perMachine

• Through various means, discussed shortly, the user does not need to enter
an administrator's password to elevate their permissions like they normally
would to complete the install

There are several ways to allow a non-administrator to continue an installation without
elevating. The first is when an administrator publishes the MSI to all computers in an
Active Directory domain using Group Policy. This allows non-admin users to go to
Programs and Features and install the MSI from the network without the need to enter
an administrator's password. More information can be found at http://support.
microsoft.com/kb/816102. The user would see packages available for install, as in
the following example:

http://support.microsoft.com/kb/816102
http://support.microsoft.com/kb/816102

Chapter 3

[83]

Another scenario is when an administrator has advertised the MSI for non-admin
users to install on that same computer. This is done by using the /jm command-line
option to advertise the package for all users. An admin calls:

msiexec /jm \\PCName\MyShare\AwesomeInstaller.msi

This advertises the installer. A user can then install the MSI without needing to
elevate their privileges.

A third scenario is when the AlwaysInstallElevated value has been set to 1 in the
following registry keys:

• HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer

• HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\
Installer

This lets non-admin users install any MSI without using an administrator's password.

When one of these scenarios happens, the installer, marking that actions are being
done by a non-administrator, labels the whole process as restricted. In that case, only
a small list of approved properties is allowed to be passed to the Execute sequence,
which is the phase during which changes are made to the computer. To add more
properties to that list, you'll need to mark them as Secure, as shown in the following
code snippet:

<Property Id="MY_PROPERTY"
 Value="my string"
 Secure="yes" />

You can find a list of the default secure properties at
http://msdn.microsoft.com/en-us/library/
windows/desktop/aa371243(v=vs.85).aspx.

Putting Properties and AppSearch to Work

[84]

You can tell when you need to use the Secure attribute if, in the install log, you see
that the RestrictedUserControl property has been set automatically. You'll also
see some of your properties, if they're used in the execute sequence, being ignored.
The following is a sample log of that happening:

MSI (s) (C8:BC) [23:49:58:906]:
 Machine policy value 'EnableUserControl' is 0
MSI (s) (C8:BC) [23:49:58:906]: PROPERTY CHANGE:
 Adding RestrictedUserControl property. Its value is '1'.
MSI (s) (C8:BC) [23:49:58:906]:
 Ignoring disallowed property MYPROPERTY

Notice that there's another property called EnableUserControl. If you set it to 1 in
your markup, all properties will be marked as Secure.

Property data types
The properties in WiX are not strongly typed, meaning that you don't need to specify
whether a property is an integer or a string. Most of the time, you'll be setting
properties by using the WiX Property element. The alternative is to set them from
the command line or set them dynamically with a UI control or custom action. Using
a Property element always implicitly casts the property as a string. Therefore, you
can always treat these properties as string values. However, depending on how you
reference it, it's possible for WiX to interpret your property as an integer.

If, in a conditional statement, you compare your property to an integer (a whole
number without quotes around it), WiX will assume that your property is an integer
too. For example, here I compare a property to the number 3 without quotes around
it. WiX will cast my property to an integer and then perform the comparison:

<Property Id="MyProperty"
 Value="5" />

<Condition Message="Some message if condition is false." >
 <![CDATA[MyProperty > 3]]>
</Condition>

The same is true when comparing a property to a string. WiX will assume your
property is a string and perform the comparison:

<Property Id="MyProperty"
 Value="5" />

<Condition Message="Some message if condition is false.">
 <![CDATA[MyProperty = "5"]]>
</Condition>

Chapter 3

[85]

The following table shows the comparison operators and examples for integers and
strings that evaluate to true:

Operator Meaning Integer example String example
< Less than 1 < 2 "abc" < "def"

> Greater than 2 > 1 "b" > "a"

<= Less than or equal to 2 <= 3 "a" <= "b"

>= Greater than or equal to 3 >= 2 "b" >= "a"

= Equal to 2 = 2 "a" = "a"

<> Not equal to 2 <> 1 "a" <> "b"

>< Left string contains right string
(strings only)

n/a "abc" >< "b"

<< Left string starts with right string
(strings only)

n/a "abcde" << "ab"

>> Left string ends with right string
(strings only)

n/a "abcde" >> "de"

With the "greater than" and "less than" signs, a string is considered less than another
if, from left to right, one of its characters comes before the character in the other
string. For example, the string "abc" is less than "abd" because "c" comes before "d".

Note that if the property is a decimal, such as 2.0, then you can't compare it to a
numeric value unless you put quotes around that value. This is because WiX has no
concept of decimals and so must evaluate them as strings. For example, the following
statement, unexpectedly, evaluates to false:

<Property Id="myNum"
 Value="2.0" />

<Condition Message="myNum must be > 1.">
 <![CDATA[myNum > 1]]>
</Condition>

However, by putting quotes around 1, it evaluates to true as it should:

<Property Id="myNum"
 Value="2.0" />

<Condition Message="myNum must be > 1.">
 <![CDATA[myNum > "1"]]>
</Condition>

Putting Properties and AppSearch to Work

[86]

Normally, when you compare two string values, the case counts. However, if
you prefix the comparison operator with a tilde (~), the case will be ignored. The
following condition evaluates to true:

<Property Id="MyProperty"
 Value="sample string" />

<Condition Message="Some message if condition is false.">
 <![CDATA[MyProperty ~= "SAMPLE STRING"]]>
</Condition>

Something else you can do is check if a property is defined at all. Evaluating a
property by itself checks that it has been set, as in the following example:

<Condition Message="Some message if condition is false">
 <![CDATA[MY_PROPERTY]]>
</Condition>

Placing the NOT keyword in front of the property checks that the property is not set:

<Condition Message="Some message if condition is false">
 <![CDATA[NOT MY_PROPERTY]]>
</Condition>

WiX data types are very simplistic. After all, if you were to look at the MSI's
Property table, you'd see only two columns: property and value. There's no extra
column to tell what type of data it is. Take this into account when planning the
conditional statements that you write.

Predefined Windows Installer properties
You've seen that you can define your own properties, but there are also a number
that come predefined for you. Quite a few are created automatically as part of the
install process. For example, there's the property called Installed that's set if the
product is already installed locally. Looking through the install log will uncover
many more.

In this section, you'll be introduced to some of these automatic properties. You'll also
see that some properties, although their Id attributes are defined for you, only come
to life when you instantiate them with Property elements.

Chapter 3

[87]

Implied properties
There are certain properties that don't need to be set with a Property element.
They're implied. They're set for you. First, there are those that are created when you
set attributes on the Product element. So, for example, the following code snippet:

<Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

This creates the following properties:

• ProductCode

• ProductName

• ProductLanguage

• ProductVersion

• Manufacturer

• UpgradeCode

You can use these properties just as you would those you create yourself. They're
available to you in all phases of the install. They can be accessed in the attributes and
inner text of other elements just like normal.

Another set of implied properties are directories. We discussed the built-in
directory properties in Chapter 1, Getting Started. They're given names such as
ProgramFilesFolder. In addition to using them in your Directory elements, you
can use these names anywhere that other properties are used. Also, any directories
that you create with Directory elements are also available as properties. The
directory's Id attribute becomes the ID of the property.

Another set of implied properties are those that guide how Windows Installer does
its job. For example, there's the Installed property, which tells you that the product
is already installed. You'll usually see it during an uninstall or if the product is in
maintenance mode. Another is the Privileged property, which is set when the
install is performed by an administrator. Another example is the REMOVE property,
which is only set during an uninstall. Taking a look at the install log will reveal many
of these.

Putting Properties and AppSearch to Work

[88]

Cited properties
Most of the properties that are built into Windows Installer aren't implied. You have
to set them explicitly with a Property element. They're different from the properties
that you'll create yourself, in that the Id attribute must match the predefined name
and they're generally used to toggle various Windows Installer settings. There is a
fairly long list of these available. Check the Property Reference in the MSI SDK help
file that comes with WiX by searching in it for the phrase "Property Reference". You
can also find them at:

http://msdn.microsoft.com/en-us/library/aa370905%28v=VS.85%29.aspx

I won't list them all here, but to give you an idea, here are properties that affect what
gets shown in Programs and Features once your product has been installed. Your
product will automatically show up in the list without the use of properties, but
these provide extra information or disable the default functionality:

Property Description
ARPAUTHORIZEDCDPREFIX URL of the update channel for the application
ARPCOMMENTS Provides comments for Add/Remove Programs
ARPCONTACT Provides the contact for Add/Remove Programs
ARPINSTALLLOCATION Fully qualified path to the application's primary folder
ARPHELPLINK URL for technical support
ARPHELPTELEPHONE Technical support phone numbers
ARPNOMODIFY Prevents displaying a Change button for the product

in Add/Remove Programs
ARPNOREMOVE Prevents displaying a Remove button for the product

in Add/Remove Programs
ARPNOREPAIR Disables the Repair button in Add/Remove Programs
ARPPRODUCTICON Identifies the icon to display for the product in Add/

Remove Programs
ARPREADME Provides the ReadMe for Add/Remove Programs
ARPSIZE Estimated size of the application in kilobytes
ARPSYSTEMCOMPONENT Prevents the application from displaying at all in Add/

Remove Programs
ARPURLINFOABOUT URL for the application's home page
ARPURLUPDATEINFO URL for the application's update information

Chapter 3

[89]

The following are a few examples of how these properties would be set:

<Icon Id="myIcon"
 SourceFile="..\myIcon.ico" />

<Property Id="ARPPRODUCTICON"
 Value="myIcon" />
<Property Id="ARPCOMMENTS"
 Value="(c) Amazing Software" />
<Property Id="ARPNOREPAIR"
 Value="1" />
<Property Id="ARPCONTACT"
 Value="Nick Ramirez" />
<Property Id="ARPHELPLINK" Value="http://www.MYURL.com/
AmazingSoftware/support.html"/>
<Property Id="ARPREADME" Value="http://www.MYURL.com/
AmazingSoftware/readme.html" />

As you can see, setting a built-in property is just like setting your own custom
properties except that the Id value must use the predefined name.

One other built-in property that you should know about is ALLUSERS. You can set
it to a 1, 2, or an empty string (""). A 1 means that the install will be performed in
the per-machine context. This means that its components will be installed to folders
accessible to anyone that uses the system. Setting ALLUSERS to an empty string tells
the installer to use the per-user context, meaning that its components will be installed
only for the current user. A value of 2 means that the installer will sometimes be in
the user context and sometimes in the machine context, depending on whether or
not the user who initiated it has administrator rights. However, even this rule varies
based upon the operating system.

In general, you should set ALLUSERS to 1, the per-machine context. Setting it to
the per-user context can only be done if you're certain that no registry keys or files
will be installed to machine-level locations. This is rarely the case. A value of 2
usually causes scenarios that are too complex to plan for. So, it's best to avoid it. The
following example sets the ALLUSERS property to 1:

<Property Id="ALLUSERS"
 Value="1" />

The reason that this property is important is that during an upgrade, you'll want
to find out if a previous version of the software is already installed. For that, the
ALLUSERS property must be set to the same value as it was originally. Otherwise, the
installer may look in the wrong place and fail to detect the software, even if it's there.
So, keep it consistent. Always set it to the same value, preferably 1.

Putting Properties and AppSearch to Work

[90]

One thing to note is that you can also set the InstallScope attribute on the Package
element to either perMachine or perUser. This will have the same effect as setting
the ALLUSERS property directly. If you do, you should remove any Property element
that sets it.

AppSearch
Windows Installer lets you search the computer during an install for specific files,
directories, and settings. Collectively, these fall under the category of AppSearch,
which is the name of the MSI database table where search tasks are stored.

There are five types of searches:

• DirectorySearch: This searches for the existence or path of a directory
• FileSearch: This searches for a specific file
• ComponentSearch: This searches for a file by its component GUID
• RegistrySearch: This searches the Windows Registry for a key
• IniFileSearch: This searches inside INI files for configuration settings

Each of these types refers to the WiX element that you'd use to perform the search.
Each is the child element of a Property element. So, you'll start off with a Property
element whose value will be set to the result of the search.

There's an attribute of the Property element, ComplianceCheck, that can be used
when doing an AppSearch. When set to yes, an error dialog will be shown if the
search isn't successful. It will then end the installation.

The error message you get is very generic though. You're better off detecting whether
or not a certain file exists, setting a property based on the result, and crafting a
targeted message if it isn't found (using a launch condition, discussed later). That
way, users will know what wasn't found. Although there's nothing stopping you
from creating a custom launch condition and setting ComplianceCheck to yes, it isn't
necessary since the install will end if the launch condition fails and launch conditions
always come before the compliance check is performed.

Chapter 3

[91]

DirectorySearch
You may want to check if a directory exists on a computer and, if it does, get its path.
You can do this by using a DirectorySearch element. A DirectorySearch element
is nested inside of a Property element, as shown in the following code snippet:

<Property Id="NPP_PATH">
 <DirectorySearch Path=" C:\Program Files (x86)\Notepad++"
 Depth="0"
 AssignToProperty="yes"
 Id="NppFolderSearch"/>
</Property>

In this example, we're seeing if the popular text editor Notepad++ has been installed
by checking for a directory called Notepad++ in the Program Files folder. We start
by declaring a Property and giving it an Id attribute of our choosing. If the search
finds a directory that matches, based on the Path attribute, it will set this property's
value to the path. Otherwise, the property will be null.

The AssignToProperty attribute tells the installer to use this DirectorySearch
element to set the property. This becomes more valuable when you've got
DirectorySearch elements nested inside other DirectorySearch elements, as
you'll see.

Notice that this search is pretty specific about where this directory should be: we've
given an absolute path to the directory we're looking for. The Depth attribute is set to
zero to signify that there's no need to drill down into any subfolders.

What if I didn't know exactly where this directory was, though? For example,
suppose we didn't want to assume that the user has a C:? We could be more generic
with the search criteria. We could, for example, just give the name of the folder we're
looking for:

<Property Id="NPP_PATH">
 <DirectorySearch Path="Notepad++"
 Depth="5"
 AssignToProperty="yes"
 Id="NppFolderSearch" />
</Property>

Here we've set the Path attribute to just Notepad++ and the Depth attribute to 5.
Now we're telling the installer to search for a folder called Notepad++ and that we're
willing to go five directories deep to find it. Because we haven't explicitly told it
where to start the search from it will search all attached drives starting at their root
directories (such as C:\, D:\, and others).

Putting Properties and AppSearch to Work

[92]

Because our search is so generic, you might be in for a wait. Worse, on Vista or
Windows 7, you'll probably get an error as the installer tries to search through the
hidden, restricted junction point C:\Documents and Settings.

In cases such as this, you should tell Windows Installer where to start searching by
nesting the DirectorySearch elements inside one another. Then, the outer-most
DirectorySearch becomes the starting point and the child becomes the directory
you're searching for. As in the following example:

<Property Id="NPP_PATH">
 <DirectorySearch Path="[ProgramFilesFolder]"
 Depth="0"
 AssignToProperty="no"
 Id="ProgramFilesFolderSearch">
 <DirectorySearch Path="Notepad++"
 Depth="0"
 AssignToProperty="yes"
 Id="NppFolderSearch"/>
 </DirectorySearch>
 </Property>

Now we're searching inside the Program Files folder for the Notepad++ folder.
Note that the first DirectorySearch element has its AssignToProperty attribute
set to no. We want the inner DirectorySearch element to be the only one to set
the property. Also note that we could have set the Depth attribute of the inner
DirectorySearch element to a number greater than zero. It would then search that
many folders deep inside Program Files until it either found what it was looking
for or ran out of folders to look through.

The following is another example that uses three DirectorySearch elements to find
the Notepad++ plugins folder:

<Property Id="NPP_PATH">
 <DirectorySearch Path="[ProgramFilesFolder]"
 Depth="0"
 AssignToProperty="no"
 Id="ProgramFilesFolderSearch">
 <DirectorySearch Path="Notepad++"
 Depth="0"
 AssignToProperty="no"
 Id="NppFolderSearch">
 <DirectorySearch Path="plugins"
 Depth="0"
 AssignToProperty="yes"
 Id="pluginsSearch" />

Chapter 3

[93]

 </DirectorySearch>
 </DirectorySearch>
 </Property>

The Path attribute actually gives you quite a few options. It can accept any of
the following:

• A WiX property
• A Windows share, such as \\myshare\myFolder
• A path relative to the top-level directory for any attached drives,

such as \temp
• An absolute path, such as C:\temp
• The name of a folder, such as temp
• An environment variable (using WiX preprocessor syntax), such as

$(env.ALLUSERSPROFILE)

You should know that if the installer can't find the path you set in the parent
element, it will skip it and use its default—every attached drive's root directory.

Although it seems superfluous, each DirectorySearch element must get its own ID.
Windows Installer uses these Id attributes to tie all of the elements together into one
cohesive search. It's interesting to look inside the MSI package and see how all of this
is stored. Directory searches are found in the DrLocator table. The following is what
you'd find for the previous search:

Signature Parent Path Depth
pluginsSearch NppFolderSearch plugins 0
NppFolderSearch ProgramFiles

FolderSearch
Notepad++ 0

ProgramFiles
FolderSearch

[ProgramFilesFolder] 0

The table structure mirrors the parent-child relationship seen in WiX. In the
AppSearch table, you'd see a row with the property NPP_PATH mapped to the
signature pluginsSearch.

Putting Properties and AppSearch to Work

[94]

FileSearch
There may be times when you want to find a specific file instead of just a directory.
For this, you'll still use a DirectorySearch element, but you'll nest a FileSearch
element inside it. This tells the installer that you're looking for a file inside
that directory:

<Property Id="README_FILE">
 <DirectorySearch Path="C:\Program Files (x86)\Notepad++"
 Depth="0"
 AssignToProperty="no"
 Id="NppSearch">

 <FileSearch Name="readme.txt"
 Id="readmeFileSearch" />
 </DirectorySearch>
</Property>

The FileSearch element names the file you're looking for with its Name attribute. If
it's found, the property will be populated with the absolute path to the file. In this
case, it will be set to C:\Program Files (x86)\Notepad++\readme.txt. You can
use any of the various definitions for the DirectorySearch element's Path attribute
discussed in the last section as well as nesting DirectorySearch elements. Or if you
omit the Path attribute altogether, you'll be telling the installer to look at all attached
drives for the file you specify. Set the AssignToProperty attribute to no on the
DirectorySearch elements.

Be wary of accidentally putting a space in front of the value in
Path, such as Path=" C:\". The search will fail and you'll be
hard pressed to find out why.

The FileSearch element can't do recursive searches through subfolders. So, its
parent DirectorySearch element must name the exact folder where the file is
supposed to be, if it specifies a path with the Path attribute.

You can add other attributes to the FileSearch element to refine your search, such
as the MinSize and MaxSize attributes for a range of file sizes (in bytes), MinDate
and MaxDate for range of modification dates, and MinVersion and MaxVersion for a
range of file versions. This is shown in the following snippet:

<FileSearch Name="readme.txt"
 Id="readmeFileSearch"
 MinSize="100"
 MaxSize="200"
 MinVersion="1.5.0.0"

Chapter 3

[95]

 MaxVersion="2.0.0.0"
 MinDate="2009-12-20T12:30:00"
 MaxDate="2009-12-25T12:30:00" />

Note that MinDate and MaxDate must use the format, "YYYY-MM-DDTHH:mm:ss",
where "YYYY" is the year, "MM" the month, "DD" the day, "HH" the hour, "mm"
the minute, and "ss" the second. "T" is actually the letter "T". You can also add
a Language attribute to limit the search to files with a specific language ID. For
example, "1033" is "English, United States". To specify more than one language,
separate them by commas.

You can see the searches you've set up in the MSI database under the Signature
table. There, the filename, version, size, date, and language are listed. An Id value on
that table is joined to the DrLocator table where the directory structure is defined.
The entire search is referenced on the AppSearch table, where it is linked with a
property. You can probably see how defining the structure and data of the MSI is
greatly simplified by using WiX's declarative markup.

ComponentSearch
A second way to search for files installed on the end user's computer is to use a
ComponentSearch element. Like other search elements, ComponentSearch is nested
inside a Property element. If the file you're looking for is found, the path of its
folder will be saved to the property. Note that it won't be the full path to the file
itself, but close enough.

To understand ComponentSearch, you have to remember that Windows Installer
uses components with unique GUIDs as containers for the files that get copied to
a computer. ComponentSearch looks for the GUID that was set on a component or
more specifically, the file that was marked as the keypath in that component. So, as
long as you know the GUID, you can find the file. In fact, you can even look for files
installed by other programs, as long as you know the GUID.

Use Orca.exe to open an MSI installer and check the Component table for a file's
GUID. It's marked as ComponentId. The actual filename is available on the File table
and is mapped to the Component table via the Component column. To set the GUID in
the ComponentSearch element, use the Guid attribute. The following is an example
that, as a very simple case, searches for the path to the Orca.exe tool itself:

<Property Id="ORCA_PATH">
 <ComponentSearch Id="orcaSearch"
 Guid="{BE928E10-272A-11D2-B2E4-006097C99860}" />
</Property>

Putting Properties and AppSearch to Work

[96]

Here, we are looking for the orca.exe file. The MSI for it can be found after
installing the Windows SDK. If you've installed Orca, this search should return a
path to the executable, something like C:\Program Files (x86)\Orca\.

ComponentSearch has several uses. You might use it to find out where the user
installed your software, as it returns the absolute path to the directory where the
specified file is. You could also use it to check if someone else's software is installed.
To make such a check reliable, be sure to look for a file that's definitely going to
be there. The downside to ComponentSearch is that you're relying on the GUIDs
staying the same. This is pretty safe when it's your own software, but can be risky
with anyone else's.

There's one other optional attribute of the ComponentSearch element: Type. The
Type attribute can be set to either file, its default, or directory. Setting it to file
causes it to do what it normally does—look for the KeyPath file of the component
and return its parent directory. You would set Type to directory only when your
search involves a component that did not specify a file as its KeyPath. Take the
following example:

<DirectoryRef Id="INSTALLLOCATION">
 <Directory Id="newDir" Name="New Directory">
 <Component Id="newDirComp"
 Guid="EA8062E0-E9C2-49E7-B76D-32161923F9F9"
 KeyPath="yes">

 <CreateFolder />
 </Component>
 </Directory>
</DirectoryRef>

Here, we've created a component that is tasked with creating an empty folder called
New Directory in the install directory. There are no files in the component to make a
keypath out of. So, we've set the KeyPath attribute to yes on the Component element
itself. If we don't specify a KeyPath value at all, the component will be assumed to be
the keypath by default.

Chapter 3

[97]

When there's no file specified as the keypath, you can set the ComponentSearch
element's Type attribute to directory and it will return the path to the component's
parent directory—just like normal. Otherwise, we get the strange behavior of
ComponentSearch returning the directory above the parent directory. For example, if
we set the Type to file (or leave it out), we get the install directory, INSTALLLOCATION,
back. If we set Type to directory, we get the component's parent directory, newDir.
So, it's basically something you have to do just to get the expected behavior.

<!--Returns INSTALLLOCATION: C:\Program Files\mySoftware\-->
<Property Id="MY_DIRECTORY_PATH ">
 <ComponentSearch Id="myCompSearch"
 Guid="{EA8062E0-E9C2-49E7-B76D-32161923F9F9}"
 Type="file" />
</Property>

<!--Returns newDir: C:\Program Files\mySoftware\New Directory-->
<Property Id="MY_DIRECTORY_PATH ">
 <ComponentSearch Id="myCompSearch"
 Guid="{EA8062E0-E9C2-49E7-B76D-32161923F9F9}"
 Type="directory" />
</Property>

Of course, if there is a KeyPath file, setting the ComponentSearch element's
Type attribute to directory will cause the search to return null. In general, the
applications for this confusing logic are so few that you'll rarely have to worry
about using the Type attribute.

RegistrySearch
WiX lets you read values from the Windows Registry with its RegistrySearch
element. Like the previous search types, RegistrySearch has a Property element as
its parent. If the registry value you're looking for is found, its value will be saved to
the property. The following is an example:

<Property Id="DIRECTX_VERSION">
 <RegistrySearch Id="DirectX_Version"
 Root="HKLM"
 Key="SOFTWARE\Microsoft\DirectX"
 Name="Version"
 Type="raw" />
</Property>

Putting Properties and AppSearch to Work

[98]

This searches for the version of DirectX installed on the user's computer. The version
number is located in the registry as a value called Version in the HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\DirectX key. If the search finds it, it saves the value
to the property DIRECTX_VERSION, which is an arbitrary name.

To get there with RegistrySearch, set the Root attribute to the abbreviated version
of HKEY_LOCAL_MACHINE, which is HKLM. Your possible values for Root are:

• HKLM: For HKEY_LOCAL_MACHINE
• HKCR: For HKEY_CLASSES_ROOT
• HKCU: For HKEY_CURRENT_USER
• HKU: For HKEY_USERS

The Key attribute is the registry path beneath Root to the item you're looking for.
In this example, it's set to SOFTWARE\Microsoft\DirectX. This path is not case
sensitive. The Name attribute is the value in the key that you want to read. This is also
not case sensitive.

The Type attribute tells the installer what sort of data it can expect to find in
this registry item. You have three options here: directory, file, or raw. Using
directory or file lets you combine RegistrySearch with either FileSearch or
DirectorySearch. It's used as a way to search the computer's directory structure for
a file or directory after it gets the location of it from the registry.

Suppose you want to read a value from the registry and that value is the path to a
file. You then want to check that the file is truly where it says it is on the filesystem.
As an example, assume that there's a registry item HKLM\SOFTWARE\WIXTEST\
PathToFile that's set to the value C:\Program Files\mySoftware\myFile.txt.
You can get this value from the registry by using the RegistrySearch element, as in
the following example:

<Property Id="MY_PROPERTY">
 <RegistrySearch Id="myRegSearch"
 Root="HKLM"
 Key="SOFTWARE\WIXTEST"
 Name="PathToFile"
 Type="file">

 <FileSearch Id="myFileSearch" Name="[MY_PROPERTY]" />
 </RegistrySearch>
</Property>

Chapter 3

[99]

Here, the RegistrySearch element finds the item in the registry and sets the
value of MY_PROPERTY. Next, the nested FileSearch element can now read that
property and use it to find the file on the computer. If it finds it, it replaces the value
of MY_PROPERTY with the location of the file—which should be the same. If it doesn't
find it, it sets the value to null.

In order for this to work, you have to set the RegistrySearch element's Type
attribute to file. This tells the installer that it should expect to find the path to a
file in the registry and that you intend to nest a FileSearch element inside the
RegistrySearch element.

You can do something similar with DirectorySearch. Take this example, assuming
there is another registry item called PathToDirectory where the value is the path to
the directory C:\Program Files\mySoftware\myDirectory\:

<Property Id="MY_PROPERTY">
 <RegistrySearch Id="myRegSearch"
 Root="HKLM"
 Key="SOFTWARE\WIXTEST"
 Name="PathToDirectory"
 Type="directory">

 <DirectorySearch Id="myDirSearch"
 Path="[MY_PROPERTY]" />
 </RegistrySearch>
</Property>

Here, Type is set to directory allowing you to nest a DirectorySearch element
inside RegistrySearch. This type also tells the installer that it should expect the
registry value to hold the path to a directory. Like the FileSearch example, this
one uses the RegistrySearch result to set a property and then uses that property to
search the filesystem. This time, it's looking for a directory instead of a file. If it finds
it, it will set the property to the path. If not, the property will be set to null.

Setting Type to raw lets you read the registry value and set a property, but nothing
more. In many cases, this will be all you want. Be aware that Windows Installer will
add special characters to the value to distinguish different data types. The following
table explains what it will add to different kinds of values. This only applies when
Type is set to raw:

Type of data Characters added
DWORD Starts with "#" optionally followed by "+" or "-"
REG_BINARY Starts with "#x" and the installer converts and saves each

hexadecimal digit as an ASCII character prefixed by "#x"

Putting Properties and AppSearch to Work

[100]

Type of data Characters added
REG_EXPAND_SZ Starts with "#%"
REG_MULTI_SZ Starts with "[~]" and ends with "[~]"
REG_SZ No prefix, but if the first character of the registry value is "#", the

installer escapes the character by prefixing it with another "#"

All of the attributes mentioned so far—Id, Key, Root, Name, and Type—are required.
There is one optional attribute though called Win64. When set to yes, it will search
the 64-bit portion of the registry instead of the 32-bit one. Of course, this only applies
to 64-bit operating systems. The following is an example:

<Property Id="MY_PROPERTY">
 <RegistrySearch Id="myRegSearch"
 Root="HKLM"
 Key="SOFTWARE\WIXTEST"
 Name="myRegistryItem"
 Type="raw"
 Win64="yes" />
</Property>

Registry searches are represented in the MSI database on the RegLocator table.
There you'll find a column for the Root, Key, Name, and Type attributes. The Id
attribute is listed under the Signature column and is referenced by various
other tables including AppSearch, DrLocator, and Signature. For complex
searches where FileSearch or DirectorySearch elements are nested inside
RegistrySearch, these tables are joined together by this Id.

IniFileSearch
The last type of search in the WiX arsenal is IniFileSearch, which lets you search
INI configuration files for settings. An INI file is a text file with an .ini extension
that uses a simple syntax to list configuration settings. The following is a sample
INI file:

; Test INI file
[section1]
name=Nick Ramirez
occupation=software developer

[section2]
car=Mazda3
miles=70000

[section3]
breakfast=yogurt

Chapter 3

[101]

WiX always searches the %windir% directory, which is usually C:\Windows for INI
files. So, save this code as myConfigFile.ini in that directory.

In an INI file, you can comment out text by putting a semicolon at the beginning
of the line. Mark different sections by putting brackets around the name. In each
section, create key-value pairs separated by equal signs. And there you have it,
pretty simple stuff.

An IniFileSearch uses four attributes: Id, Name, Section, and Key. Let's look
at an example:

<Property Id="MY_PROPERTY">
 <IniFileSearch Id="myIniSearch"
 Name="myConfigFile.ini"
 Section="section1"
 Key="name"
 Type="raw" />
</Property>

The Id attribute specifies the primary key of the item in the MSI database
IniLocator table. It's also referenced on the AppSearch table where it's tied to
the MY_PROPERTY property. The Name attribute is the name of the INI file. Section
refers to the bracketed section name and Key is the left-hand side of one of the
key-value pairs under that section. This particular search will set the property
to "Nick Ramirez". That's the value of the name key in the section1 section.

The Type attribute can be file, directory, or raw. Raw is the simplest as it just
returns the literal value of the key. Unlike RegistrySearch, there won't be any
special characters added to it. This is what you'll use in most cases.

If you set Type to file, Windows Installer will expect the INI value to be the path
to a file. Once it finds this value, it will use it to set the parent property. After that,
you're free to use that property in a nested FileSearch element to confirm that the
file exists. If it doesn't, the property will be set to null.

[section1]
filePath=C:\Program Files\mySoftware\myFile.txt

Product.wxs

<Property Id="MY_PROPERTY">
 <IniFileSearch Id="myIniSearch"
 Name="myConfigFile.ini"
 Section="section1"
 Key="filePath"

Putting Properties and AppSearch to Work

[102]

 Type="file">

 <FileSearch Id="myFileSearch"
 Name="[MY_PROPERTY]" />
 </IniFileSearch>
</Property>

Here, the installer searches for the INI file, finds it, and uses the specified key to set
the value of the property. It then uses that property in the FileSearch element's
Name attribute to check if the file is where MY_PROPERTY says it is.

Setting the Type attribute to directory works the same way except that you nest
a DirectorySearch element instead. In this case, the DirectorySearch element
checks that the directory in the property exists.

myConfigFile.ini

[section1]
directoryPath=C:\Program Files\mySoftware\

Product.wxs

<Property Id="MY_PROPERTY">
 <IniFileSearch Id="myIniSearch"
 Name="myConfigFile.ini"
 Section="section1"
 Key="dirPath"
 Type="directory">

 <DirectorySearch Id="myDirSearch"
 Path="[MY_PROPERTY]" />
 </IniFileSearch>
</Property>

In this example, the directoryPath key in the INI file is set to C:\Program Files\
mySoftware\. The DirectorySearch element checks that this directory really exists
once it has been set as the property value. If it does, the property will keep the path
as its value. Otherwise, it will be set to null.

Chapter 3

[103]

Summary
In this chapter, we discussed Windows Installer properties and the AppSearch
feature. Properties allow you to store information during the course of the
installation. Properties are referenced with square brackets when used in the
attribute of another element. Be sure to look up whether or not a particular element
attribute can interpret the square bracket notation. When used in the inner text of
another element, the square brackets aren't needed.

We talked about some of the built-in Windows Installer properties. There are
actually quite a few of these and we'll probably cover many more as we continue
on. You've seen some that affect things such as the Add/Remove Programs list, but
there are also less flashy ones that Windows Installer uses just to do its job. However,
knowing about them can be to your advantage when it comes to debugging or even
creating conditional statements based upon them.

Windows Installer can do a variety of searches with its AppSearch feature: file,
directory, registry, component, and INI file searches. These go hand-in-hand with
properties as the result of the searches are saved to properties. Probably one of the
handiest uses for AppSearch is to find out if a particular bit of software is installed.
You can use this as part of a prerequisite check before installing your own software.
You can also use them to find if directories or files exist, and if so, where they are. In
the next chapter, we'll cover conditional statements and how to read the install state
of features and components.

Improving Control with
Launch Conditions and

Installed States
We've covered how to store data in properties and how to search the target computer
for files, directories, and settings using AppSearch. All by itself that makes WiX an
attractive solution for deploying software. However, things are about to get more
interesting. We're going to discuss how to use the information you've collected to
control what gets installed and if the installer will continue past its initial startup.

WiX gives you a powerful tool that allows you to make these decisions—conditions.
In this chapter, you will learn to:

• Set launch conditions to require prerequisites for your install
• Utilize feature and component conditions to prevent a portion of your

software from being installed
• Read the action state and installed state of your features and components

The syntax of conditions
There are several types of conditions examined in this chapter and all use the
Condition element to house their logic. The meaning of this element changes
depending on where it's placed relative to other elements and which attributes
it uses. We'll discuss three types: launch conditions, feature conditions, and
component conditions.

Improving Control with Launch Conditions and Installed States

[106]

Launch conditions check for prerequisites at the beginning of the installation and
prevent it from continuing if their requirements aren't met. They're placed anywhere
inside either the Product element in your main.wxs file, or a Fragment element in
a separate file.Feature conditions and component conditions are child elements to
Feature and Component elements, respectively. Both prevent a specific feature or
component from being installed if a condition isn't satisfied.

First, we'll take a look at the generic syntax of conditional statements and then move
on to discussing each of the three types.

Condition syntax
Conditions contain statements that evaluate to either true or false. In most cases
you'll be comparing a property to some value. We discussed the logical operators
that you can use for comparisons in the previous chapter. The following is a table
that summarizes each one:

Operator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= Equal to
<> Not equal to
>< Left string contains right string (strings only)
<< Left string starts with right string (strings only)
>> Left string ends with right string (strings only)
OR Combines two conditions; if either is true, the condition passes

You can use a single property as a condition to check that that property has been
defined. Use the NOT keyword before it to check that it has not been defined. Or,
getting more complex, you can use the AND and OR operators to string several
conditional statements together. The following examples should give you an idea
about the different statements you can make:

• PropertyA: This returns true if PropertyA has been set to any value
including 0 or false

• NOT PropertyA: This returns true if PropertyA has not been set
• PropertyA < PropertyB: This returns true if PropertyA is less than

PropertyB

Chapter 4

[107]

• PropertyA <> "1": This returns true if PropertyA is not equal to 1, which
is also the case if PropertyA is not set

• PropertyA = "1" AND PropertyB = "2": This returns true if PropertyA
equals 1 and PropertyB equals 2

• PropertyA = "1" OR PropertyB = "2": This returns true if PropertyA
equals 1 or PropertyB equals 2

These statements are the inner text of the Condition element. It's a good idea to
always place them inside CDATA tags so that the XML parser won't mistake them for
XML elements. The following is an example that uses CDATA tags:

<Condition ... >
<![CDATA[PropertyA < PropertyB]]>
</Condition>

As you can see, the conditional statement is placed inside a Condition element.
As we cover different types of conditions, we'll look at the attributes that are used
in each case.

Launch conditions
The MSI database for an installer has a table called LaunchCondition that lists
rules that the end user must comply with in order to install the software. Each
rule is called a launch condition. To add one, place a Condition element inside
your Product element. You'll find that this table is evaluated early on, right after
AppSearch is performed. This makes it the second thing to happen during the
installation process. This is good in two ways. It lets you inform the user that they're
missing something before they get too far along and it allows you to use the results
from AppSearch in your conditions.

Examples of launch conditions include requiring that a version of .NET is installed,
that the computer has a certain operating system, or that the user is an administrator.
You should know that although WiX allows you to create a long list of conditions,
you cannot control the order in which they're evaluated. Therefore, you should try
to think of each one as having equal weight. If any one of them fails, the installation
will abort. The order should be thought of as inconsequential. You can add more
conditions by adding more Condition elements.

Improving Control with Launch Conditions and Installed States

[108]

The following example shows a launch condition that checks the value of a property.
In a real-world scenario this property would contain something useful such as the
result of a component or file search. It shows the basic structure though:

<?xml version="1.0" encoding="UTF-8"?>
<Wix ... >
 <Product ... >
 <Package ... />
 <MediaTemplate ... />
 <Property Id="MyProperty"
 Value="3" />

 <Condition Message="MyProperty must be set to 2">
 <![CDATA[Installed OR MyProperty = 2]]>
 </Condition>

 </Product>
</Wix>

In the preceding example, we're setting a property called MyProperty to a value
of 3. The condition checks that the variable is set to 2. When it evaluates to false,
a message box will pop up and display the text we've set in the Condition element's
Message attribute.

Notice that we've used the predefined Installed property to say that we only want to
evaluate this condition if the software has not already been installed. Otherwise, it will
be evaluated during both install and uninstall. The last thing you want is to prevent
the user from uninstalling the software because they're missing a prerequisite. The
following screenshot is what the user will see when the condition fails:

Chapter 4

[109]

In real-world conditional statements, you'll use properties that were set during the
course of the installation, such as during AppSearch or by a custom action. We'll talk
about using custom actions in the next chapter.

A great thing about WiX is that there are already a lot of properties defined for you
that you could use in your launch conditions. Some of these, as you've seen, are
available from the get-go. Others become available after you've added a reference to
one of the WiX extensions, such as WixNetFxExtension.

Throughout the book we'll make use of the extensions that come with
the WiX toolset. These add various bits of functionality that aren't
found in the core XML elements or, as with WixNetFxExtension,
define additional properties. Extensions are packaged as .NET class
libraries (.dll) and can be added as references in your Setup project.
Once added, you'll be able to immediately use the new functionality.
In some cases, you'll need to add a new namespace to the root Wix
element first, but I'll mention it if that's the case. Later in the book,
you'll see how to create your own extension.

The next example checks that .NET 4.0 has been installed by using the
NETFRAMEWORK40FULL property from WixNetFxExtension. Begin by adding a
reference in your project to WixNetFxExtension.dll, found in the WiX bin
directory. The Votive plugin has gotten pretty slick in that, by default, the Add
Reference window starts off in the WiX bin directory. Then add the following
markup to check that the NETFRAMEWORK40FULL property has been set:

<PropertyRef Id="NETFRAMEWORK40FULL"/>

<Condition Message=
"You must install Microsoft .NET Framework 4.0 or higher.">

<![CDATA[Installed OR NETFRAMEWORK40FULL]]>
</Condition>

Improving Control with Launch Conditions and Installed States

[110]

Since the property is only set when that version of the .NET Framework is
installed, we only need to check for its existence. Notice that we pull the property
into the scope of our project by using a PropertyRef element. This is because
in WixNetFxExtension, the property is defined within a Fragment element.
WixNetFxExtension defines other properties for checking other versions of .NET,
as shown in the following table:

Property name Meaning
NETFRAMEWORK10 .NET Framework 1.0 is installed
NETFRAMEWORK20 .NET Framework 2.0 is installed
NETFRAMEWORK20INSTALLROOTDIR Location of the .NET 2.0 install root

directory
NETFRAMEWORK20INSTALLROOTDIR64 Location of the x64 .NET 2.0 install root

directory
NETFRAMEWORK30 .NET Framework 3.0 is installed
NETFRAMEWORK35 .NET Framework 3.5 is installed
NETFRAMEWORK40FULL .NET Framework 4.0 is installed
NETFRAMEWORK40CLIENT .NET Framework 4.0 client profile is

installed
NETFRAMEWORK40FULLINSTALLROOTDIR Location of the .NET 4.0 Full install root

directory
NETFRAMEWORK40FULLINSTALLROOTDIR64 Location of the x64 .NET 4.0 Full install

root directory
NETFRAMEWORK45 .NET Framework 4.5 is installed
WINDOWSSDKCURRENTVERSION The Windows SDK current active

version

There's also WixPSExtension that defines the POWERSHELLVERSION property. You
can use it to check the version of Windows PowerShell that's installed. Add a
reference in your project to WixPSExtension and then use the following snippet:

<PropertyRef Id="POWERSHELLVERSION" />

<Condition Message="You must have PowerShell 1.0 or higher.">
<![CDATA[Installed OR POWERSHELLVERSION >= "1.0"]]>
</Condition>

Notice here that I had to put quotes around 1.0 in the condition because
POWERSHELLVERSION returns a decimal number. In that case, you must quote
the value you compare it to.

Chapter 4

[111]

In addition to the WiX extension files, such as WixNetFxExtension and
WixPSExtension, Windows Installer also provides many built-in properties.
For these, you don't have to reference any additional files or use PropertyRefs
to gain access to them. A useful one is VersionNT, which can be used to check the
operating system. Its value is an integer that corresponds to a particular OS. Refer to
the following table:

Operating system VersionNT value
Windows 2000 500
Windows XP 501
Windows Server 2003 502
Windows Vista 600
Windows Server 2008 600
Windows Server 2008 R2 601
Windows 7 601
Windows 8 602

With VersionNT, the numbers get higher with each new OS, so you can use "greater
than or equal to" comparisons to make sure that an OS is greater than or equal to
a certain product. The following is an example that checks if the system is running
Windows Vista or newer:

<Condition Message=
"OS must be Windows Vista, Server 2008, or higher.">
<![CDATA[Installed OR VersionNT >= 600]]>
</Condition>

You might also use the VersionNT64 property to check if the OS is 64-bit and if so,
get its version number. There's also the ServicePackLevel property for detecting
which service pack for that OS is installed. The next example checks that the
operating system is Windows XP with Service Pack 2:

<Condition Message=
 "This install requires Windows XP Service Pack 2.">
<![CDATA[
 Installed OR
 VersionNT = 501 AND
 ServicePackLevel >= 2
]]>
</Condition>

Improving Control with Launch Conditions and Installed States

[112]

Two more useful ones are MsiNTProductType and Privileged, as shown in
this table:

Property name Meaning
MsiNTProductType Tells you if the end user's computer is a workstation (value of 1),

domain controller (2), or server that isn't a domain controller (3)
Privileged If set, installation is being performed with elevated privileges, such

as by an administrator

Other Windows Installer properties can be seen at the MSDN site:

http://msdn.microsoft.com/en-us/library/aa370905(VS.85).aspx

You can also use environment variables in conditional statements. Prefix the variable
with a percent sign (%) to reference it. The following example shows this:

<Condition Message=
"You need at least two processors. You have [%NUMBER_OF_PROCESSORS]">
<![CDATA[Installed OR %NUMBER_OF_PROCESSORS >= 2]]>
</Condition>

This condition checks that at least two processors exist on the computer. Notice
how the greater-than-or-equal-to operator is used. This may be counterintuitive
since we're trying to find out if the computer has less than two, not more than. With
launch conditions, though, you only want to show the error message when the
condition evaluates to false. Sometimes, this means thinking backwards.

Ordinarily, you place Condition elements for launch conditions inside the Product
element in your main .wxs file. However, if you'd rather be more modular you can
separate your launch conditions into their own .wxs file. There you can nest the
Condition elements inside a Fragment element; the LaunchConditions.wxs file
would look like the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <Property Id="LaunchConditionsFile"
 Value="1" />

 <Condition Message=
 "OS must be Windows Vista, Server 2008, or higher.">
 <![CDATA[Installed OR VersionNT >= 600]]>
 </Condition>
 </Fragment>
</Wix>

Chapter 4

[113]

Before these launch conditions can be included in the MSI database they have to
be referenced in your main WiX file. You can add a property, as in the previous
example, that can be referenced in the main file with a PropertyRef element.
The LaunchConditionsFile property we have here can be referenced with a
PropertyRef element to pull in the Condition statement; the Product.wxs file
would include the following line:

<PropertyRef Id="LaunchConditionsFile" />

This one line will bring all of the launch conditions in the separate Fragment element
into the scope of your project. It's not a bad idea to use different source files to better
organize your code, especially for large projects.

Feature conditions
A feature condition is where a Condition element is placed inside a Feature
element. There, it can change whether or not that feature gets installed depending on
if the statement evaluates to true.

Recall that features contain ComponentRef or ComponentGroupRef elements and are
used to group a set of related files that the end user may install independently. For
example, you may have a feature called "Documentation" that installs documentation
files for your product. The user can choose to turn this feature off and not copy those
files to their computer through the user interface or from the command line.

Feature conditions take this decision somewhat out of the end user's hands, allowing
you as the developer to have the final say in whether it is appropriate to install a
particular feature. In most cases, you'll evaluate properties in these statements,
maybe those set from AppSearch or from a custom action.

Feature conditions work by changing the Level attribute of the parent Feature
element. Every feature has a level. It's a number that tells the installer whether or not
this feature should be "on". In a simple setup, having a level of 1 would include the
feature in the install, a 0 would exclude it. So, if our condition sets the level to 0, the
feature will not be installed. The following is an example:

<Feature Id="MainFeature"
 Title="Main Feature"
 Level="1">
<ComponentRef Id="CMP_InstallMeTXT" />

<Condition Level="0">
<![CDATA[NOT REMOVE = "ALL" AND MyProperty = "some value"]]>
</Condition>
</Feature>

Improving Control with Launch Conditions and Installed States

[114]

This feature starts off with a level set to 1, meaning that by default the components
that it contains will be copied to the computer. However, our condition checks that
the property MyProperty equals some value. If it does, meaning the condition
evaluates to true, the feature's level will be changed to 0. This is specified by the
Condition element's Level attribute. Notice that we also check the REMOVE
property so that our feature will be enabled during an uninstall so that it can be
properly removed no matter what.

When you change a feature's level with a feature condition, it doesn't just disable
that feature. It removes it completely from the list shown in the user interface. To
see this in action, add the WixUI_FeatureTree dialog set from WixUIExtension. It
has a dialog with a feature tree, showing which features are available. You'll need to
add a project reference to WixUIExtension.dll using the Add Reference option in
Solution Explorer.

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="B55596A8-93E3-47EB-84C4-D7FE07D0CAF4"
 Name="Awesome Software"
 Language="1033"
 Version="2.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 <Package InstallerVersion="301" Compressed="yes" />
 <Media Id="1" Cabinet="media1.cab" EmbedCab="yes" />
 <!--Directory structure-->
 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLLOCATION"
 Name="Awesome Software" />
 </Directory>
 </Directory>

 <!--Components-->
 <DirectoryRef Id="INSTALLLOCATION">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>

Chapter 4

[115]

 </DirectoryRef>

 <Property Id="MyProperty" Value="some value" />
 <Feature Id="MainFeature"
 Title="Main Feature"
 Level="1">
 <ComponentRef Id="CMP_InstallMeTXT" />
 <Condition Level="0">
 <![CDATA[NOT REMOVE = "ALL" AND MyProperty = "some value"]]>
 </Condition>
 </Feature>

 <!--UI-->
 <UIRef Id="WixUI_FeatureTree" />
 </Product>
</Wix>

Here, the condition is checking the MyProperty property for a specific value. You
can change this property's value in your markup to see different results in the UI. If
the condition evaluates to true, then the MainFeature feature will disappear from
the feature tree.

The reason for this is that the installer evaluates feature conditions early in the
installation process, before any dialogs are shown. Specifically, they're evaluated
during the FileCost action, during which the installer checks how much disk space
is going to be needed to copy your files to the system. It only makes sense for it to
factor in features that won't be installed at this time. So, by the time the user sees
your feature tree in a dialog, the excluded features have been removed from the list.

If you only want to show the feature as disabled but still visible, set the ADDLOCAL
property to a comma-delimited list of the Feature element ID's to enable, as shown:

<Property Id="ADDLOCAL"
 Value="MainFeature,SecondFeature" />

Here, two features are enabled by default: MainFeature and SecondFeature. Any
others will still be visible in the feature tree, but disabled. The user will be able to
turn them back on if they want to. Be warned that setting ADDLOCAL will give you a
compile-time warning due to the ICE87 validation check that prefers ADDLOCAL to
only be set from the command line.

Improving Control with Launch Conditions and Installed States

[116]

An alternative way to deactivate a feature is to set its Level value to a number
higher than the built-in INSTALLLEVEL property—whose default value is 1. This will
deactivate the feature but not remove it. The following is an example that deactivates
the feature without using ADDLOCAL by using a Condition element to set the
feature's level to 2 (1 higher than INSTALLLEVEL):

<Property Id="MyProperty" Value="some value" />

<Feature Id="MainFeature"
 Title="Main Feature"
 Level="1">
<ComponentRef Id="CMP_InstallMeTXT" />

<Condition Level="2">
<![CDATA[MyProperty = "some value"]]>
</Condition>
</Feature>

The INSTALLLEVEL property serves an important function. Every feature's level
is compared to this number. We've said that you can change a Feature element's
Level attribute, but be aware that it can accept an integer value anywhere between
0 and 32767. If the level is less than or equal to INSTALLLEVEL, but greater than zero,
it will be enabled. If it's enabled, it gets installed. You can change INSTALLLEVEL
yourself with a Property element to give it a different default value or change it
dynamically with a custom action or from the command line.

You could use this to create a dialog with a button that says Typical Install and
another one that says Full Install. "Full" might set INSTALLLEVEL to 100 when
clicked on and consequently install all of the features with a level of 100 or less.
"Typical", on the other hand, might set INSTALLLEVEL to 50 and only install some of
the features. This assumes you're not showing a feature tree where the user could
reactivate each individual feature themselves. That is, unless you provide a Custom
Install button that allows the user to do just that.

Component conditions
Component conditions are a lot like feature conditions except that they affect
whether or not a single component gets installed. In this case, you add a Condition
element inside a Component element. You don't need to specify a Level attribute. In
fact, these conditions don't expect any attributes. The following example only installs
the CMP_InstallMeTXT component if the property MyProperty equals 1:

<Property Id="MyProperty"
 Value="1" />

Chapter 4

[117]

<Component Id="CMP_InstallMeTXT"
 Guid="7AB5216B-2DB5-4A8A-9293-F6711FFAAA83">
<File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
<Condition>MyProperty = 1</Condition>
</Component>

Again, I've hardcoded the property's value but in practice you'd set it dynamically.
The benefit of component conditions is that they are much more granular than
feature conditions. You're able to target a single file, folder, or registry key. For
example, if the user does not have Windows PowerShell installed you could disable
a component that installs a PowerShell script and instead enable one that installs a
CMD shell script. The following code is how it would look:

<PropertyRef Id="POWERSHELLVERSION" />
<DirectoryRef Id="INSTALLLOCATION">
 <Component Id="CMP_psShellScript"
 Guid="7E348141-0005-4203-A1FE-D9264EBA7E50">
 <File Id="psScript" Source="script.ps1" KeyPath="yes" />
 <Condition>POWERSHELLVERSION</Condition>
 </Component>

 <Component Id="CMP_cmdShellScript"
 Guid="C1CE3886-2081-4F62-9E58-0B1E8080143D">
 <File Id="cmdScript"
 Source="script.cmd"
 KeyPath="yes" />
 <Condition>NOT POWERSHELLVERSION</Condition>
 </Component>
</DirectoryRef>

The first thing we have to do to use this example is add a reference in our
project to the WiX extension WixPSExtension. We're then able to pull in the
POWERSHELLVERSION property with PropertyRef. This contains the version number
of PowerShell that's installed. In the CMP_psShellScript component,the Condition
element checks simply if POWERSHELLVERSION exists. If it does then the PowerShell
component is installed. Otherwise, CMP_cmdShellScript is chosen. Notice that I've
used the opposite condition there, so there's no ambiguity about which should be
used. It's always either one or the other.

Improving Control with Launch Conditions and Installed States

[118]

Ordinarily, component conditions are only evaluated during an installation and not
during a re-install. To re-install an MSI package, completely replacing all features,
install from the command line and set the REINSTALL property to ALL.

msiexec /i myInstaller.msi REINSTALL=ALL

If you would like conditions to be re-evaluated during a re-install, you should set
the Transitive attribute on the parent component to yes. In the following example,
the Component elements are marked as transitive, causing their conditions to be
re-evaluated during a re-install:

<Component Id="CMP_vistaDLL"
 Guid="7E348141-0005-4203-A1FE-D9264EBA7E50"
 Transitive="true">
 <File Id="vistaDll"
 Source="library_vista.dll"
 Name="library.dll"
 KeyPath="yes" />
 <Condition>VersionNT = 600</Condition>
</Component>

<Component Id="CMP_win7DLL"
 Guid="C1CE3886-2081-4F62-9E58-0B1E8080143D"
 Transitive="true">
 <File Id="win7Dll"
 Source="library_win7.dll"
 Name="library.dll"
 KeyPath="yes" />
 <Condition>VersionNT = 601</Condition>
</Component>

Here there are two components. The first has a condition to only install itself if
the operating system is Windows Vista (VersionNT=600) and the other only if it's
Windows 7 (VersionNT=601). Only one of the components will be true and be
allowed to copy its file to the system. However, since we've added the Transitive
attribute, these conditions will be checked again during a re-install. So, if the Vista
file had originally been installed and the end user has since upgraded to Windows 7,
the CMP_Win7DLL component will replace the CMP_VistaDLL one.

Chapter 4

[119]

Action state
We talked about the Level attribute on Feature elements and how it's used to
enable or disable features. Behind the scenes, what you're doing is setting the action
state of the feature. The action state is the thing that stores whether or not the end
user has requested that the feature be installed. The same exists for components since
we can enable and disable them too. It can have any of the following values:

• Unknown: This indicates that the state is not known, usually because costing
has not taken place. No action will be taken on the component or feature.

• Advertised: This indicates that the feature will be installed as advertised,
meaning install on demand. This doesn't exist for components.

• Absent: This indicates that the feature or component will not be installed.
• Local: This indicates that the feature or component will be installed to the

local hard disk.
• Source: This indicates that the feature or component will be run from source,

such as from a network share.

Action state is initially unknown until costing has taken place. Costing is the process
of finding out how much space for your software will be required on the hard drive.
Action state is set during costing, specifically during a step called CostFinalize. We'll
talk about many of the install steps in detail in the next chapter.

Once it's available after costing, you can get the action state for your features and
components by using a special syntax. To get the action state of a feature, place
an ampersand (&) in front of its name. For components, use a dollar sign ($).
For example, the following statement checks if the feature that has an ID of
MainFeature is set to be installed locally:

&MainFeature = 3

To check a component's action state, use a dollar sign:

$ComponentA = 3

You might be tempted to use this in your feature and component conditions. It
won't work though. The reason is that component and feature conditions are
evaluated during the FileCost action but action state isn't available until after the
CostFinalize action has run. If you attempt to access it in one of these conditions,
you'll always get a value of "Unknown".

Improving Control with Launch Conditions and Installed States

[120]

So where can you use it? You can use it anywhere after CostFinalize, such as, in
custom actions that you schedule later in the installation process. You can also use
them in conditional statements that affect UI controls, which we'll cover later in the
book. You can pair these statements with "NOT Installed" to have Windows Installer
evaluate them only during installation.

Earlier, I checked the action state against the number three. The five possible action
states each correspond to a number, as listed in the following table:

Action state Meaning
-1 Unknown
1 Advertised
2 Absent
3 Local
4 Source

Note that you don't have to use the equals sign. You can use any of the conditional
operators that can be used with launch conditions. For example, you might use the
"greater than" operator, as in:

&MainFeature > 2

This checks if a feature is set to be installed locally or to source. During an install,
you can see the action state being written to the install log. Use the l*v flag to record
to a logfile, as shown:

msiexec /i myInstaller.msi /l*v install.log

The following snippet from the log shows a feature called ProductFeature with a
Request:Local. That's its action state. The component, similarly, has Request:Local.
The Action is what ultimately happened during the install such as Action:Local.

Action ended 0:25:17: CostFinalize. Return value 1.
MSI (s) (C0:F0) [00:25:17:452]: Doing action: InstallValidate
MSI (s) (C0:F0) [00:25:17:452]: Note: 1: 2205 2: 3: ActionText
Action 0:25:17: InstallValidate. Validating install
Action start 0:25:17: InstallValidate.
MSI (s) (C0:F0) [00:25:17:452]: Feature: ProductFeature;
Installed: Absent; Request: Local; Action: Local
MSI (s) (C0:F0) [00:25:17:452]: Component: CMP_InstallMeTXT;
Installed: Absent; Request: Local; Action: Local

Checking the log can help out when it's unclear why a certain feature or component
isn't getting installed.

Chapter 4

[121]

Installed state
While Windows Installer uses action state to determine if a feature or component
should be installed, it uses the installed state to see if a feature or component has
already been installed by a previous installation. In other words, does it currently
exist on the computer?

Unlike the action state, the value of installed state can be used in feature and
component conditions. For features, you'll prefix the feature's Id attribute with
an exclamation mark (!), as shown:

!MainFeature = 3

For components, you'll use a question mark (?):

?ComponentA = 3

This allows you to include features and components based on whether they
were installed before. You can also use them in custom actions and UI control
conditions, such as to change which dialogs are displayed. Windows Installer
uses this functionality itself, at least in regards to features, when you use the
feature tree control. During a re-install, it will show the features as enabled that
have been selected before and disables those that haven't. This makes for a better
user experience.

The same values apply for installed state as for action state. For example, 3 refers to
a component or feature that was installed to the local hard disk. The following table
gives you the installed state and its corresponding meaning:

Installed state Meaning
-1 Unknown
1 Feature was installed as Advertised
2 Feature or component was Absent (not installed)
3 Feature or component was installed Local, to the hard disk
4 Feature or component was installed to Source

Often, you will pair the action state with the installed state in a condition. Although
we haven't discussed custom actions yet, you should know that you can place a
conditional statement inside of the Custom element to control whether a custom
action gets executed. You might check that a component has been installed to the
local hard disk, but is now being uninstalled, as a condition of running the action:

<Custom Action="MyCustomAction" ...>
<![CDATA[$ComponentA = 2 AND ?ComponentA = 3]]>
</Custom>

Improving Control with Launch Conditions and Installed States

[122]

Summary
In this chapter, we talked about the meaning of launch conditions and how they
can be used to prevent an install on a system that doesn't meet the minimum
requirements you've set. When paired with AppSearch or the built-in Windows
Installer properties, launch conditions are able to detect the operating system,
.NET version, and whether or not required software is installed.

We touched on feature and component conditions and how they allow you to
exclude a specific feature or component from the install. These conditions take the
decision out of the hands of the end user and lets you have the final say. You saw
that using feature conditions to set Level to 0 will completely remove a feature from
a feature tree list. You may prefer to use the ADDLOCAL property instead or change
the feature's level to a number higher than INSTALLLEVEL to disable it without
hiding it.

Towards the end, we discussed what action and installed state is. An action state
can't be used in feature and component conditions like installed state can, but it can
still come in handy in other types of conditions such as those used in custom actions.
In the next chapter, we'll discuss custom actions and learn how they allow you to
extend the behavior of WiX.

Understanding the
Installation Sequence

In order to coordinate the use of the WiX elements that we've seen and the jobs
that they do, there are two tables in the MSI database, InstallUISequence and
InstallExecuteSequence, that contain the order in which installation events should
occur. For example, AppSearch always happens before launch conditions.

In this chapter, we'll talk about how these tables work. Specifically, we'll cover:

• The events that happen during the UI sequence and how to access them
• The events that happened during the Execute sequence and how to

access them
• How to author and schedule your own custom actions
• Some tips on writing C# custom actions via the Deployment Tools

Foundation (DTF) library

InstallUISequence
The InstallUISequence is both the name of a database table in the MSI package and
a way of referring to the first half of the installation. During this time, we can show a
graphical user interface and execute tasks that don't alter the user's computer, such
as using AppSearch and evaluating launch conditions.

Understanding the Installation Sequence

[124]

If you use Orca to look inside your MSI package, as described in Chapter 1, Getting
Started, you'll find a table called InstallUISequence. This is where the actions that
happen during the first half of the installation are defined. The following screenshot
shows what it will look like:

The table contains three columns: Action, Condition, and Sequence. For now, we're
just interested in Action and Sequence. Action is the name of the standard action
to run. A standard action is a task that's already defined by Windows Installer.
Sequence is the order in which it happens in relation to other actions. You can sort
the Sequence column from lowest to highest by clicking on the column header. This
is the order as it happens.

You're likely to see the following standard actions in your list:

• FindRelatedProducts
• AppSearch
• LaunchConditions
• ValidateProductID
• CostInitialize
• FileCost
• CostFinalize
• MigrateFeatureStates
• ExecuteAction

You've already seen some of these, but we'll go over each in the next section.

Chapter 5

[125]

UI standard actions
We'll take a moment here to describe each of the standard actions we've listed in the
order in which they'd be executed.

FindRelatedProducts
The FindRelatedProducts action looks through a table in the MSI called Upgrade.
This table lists upgrade codes, version numbers, and languages that the installer uses
as criteria when searching for prior versions of your software. If it finds a match,
Windows Installer properties specified in that table are set to the product codes of
the found software. These properties can then be checked to discover whether the
current install is an upgrade or a downgrade.

AppSearch
The AppSearch action reads the AppSearch table, which holds the signatures of the
searches you've authored in your WiX markup. During this phase, you could look for
files and directories on the end user's system, read registry values, or peek inside INI
configuration files. The AppSearch table utilizes various other tables for this including
(and in this order) CompLocator, RegLocator, IniLocator, and DrLocator.

LaunchConditions
The LaunchConditions action references the table called LaunchCondition that lists
conditional statements that must be true before the installer can continue. This is
how prerequisites are defined, such as requiring the .NET Framework.

ValidateProductID
You can collect a software registration key from the end user and store it in a
property called PIDKEY. During the ValidateProductID action, this property is
compared to another property you've set called PIDTemplate, that defines a pattern
PIDKEY must match. If everything checks out, a third property called ProductID is
set for you. After ValidateProductID has run, you may check for the existence of
ProductID to see if the key that was entered is in the valid format.

CostInitialize
The CostInitialize action starts the "costing" process wherein the disk space
needed for your product is calculated. At this point, the Component and Feature
tables are loaded into memory, which sets the stage for the installer to check which
components and features will be installed.

Understanding the Installation Sequence

[126]

FileCost
During the FileCost action, the installer starts the cost calculation. The rows in the
File table are examined to see how much hard drive space they require. If one of the
files already exists on the end user's system due to a prior installation of the same
parent Component, it will only be replaced if the file's version is newer. In that case,
the size of the file will be added to the disk space needed.

CostFinalize
During the CostFinalize action, the costing calculation takes into consideration
the components and features that shouldn't be installed because of a component or
feature-level condition. It then verifies that all target directories are writable. This
phase ends the costing process.

MigrateFeatureStates
If a previous version of your software was installed, the MigrateFeatureStates
action checks which features were installed last time and then sets the action state of
those features to the same state in the current installer. That way, the new installer
will show a feature tree with the corresponding features enabled or disabled.

ExecuteAction
The last standard action in the UI sequence is called ExecuteAction. It looks at a
property called EXECUTEACTION to see which table to pass control to. As this is a
normal installation that started off by reading InstallUISequence, the property will
be set to INSTALL and this action will pass control to the InstallExecuteSequence
table. For other scenarios, EXECUTEACTION may be set to ADMIN or ADVERTISE.

InstallExecuteSequence
After ExecuteAction has fired in InstallUISequence, the installation continues
into InstallExecuteSequence. During this phase, changes are made to the
computer such as laying down files, updating the registry, and adding a new
entry in Programs and Features. This part of the installation is called the "server
side" and the InstallUISequence table is called the "client side", which is a way
of conceptualizing that the two are run in different sessions and with different
privileges. The client side runs as the user who launched the MSI while the server
side is run as the LocalSystem user.

Chapter 5

[127]

If you install with logging turned on you can see the split between the client
and server. Actions that occur during the first half start with MSI (c), as shown
in the following example:

MSI (c) (64:80) [13:41:32:203]: Switching to server:

That's the last entry from the client before switching to the server. Then you'll see log
entries begin with MSI (s).

MSI (s) (D0:4C) [13:41:32:218]: Grabbed execution mutex.

By taking ownership of the execution mutex, the server side is saying that no other
MSI package can be run while the execution phase is in progress. The following
actions are scheduled here:

• AppSearch

• LaunchConditions

• ValidateProductId

• CostInitialize

• FileCost

• CostFinalize

• InstallValidate

• InstallInitialize

• ProcessComponents

• UnpublishFeatures

• RemoveRegistryValues

• RemoveShortcuts

• RemoveFiles

• InstallFiles

• CreateShortcuts

• WriteRegistryValues

• RegisterUser

• RegisterProduct

• PublishFeatures

• PublishProduct

• InstallFinalize

Understanding the Installation Sequence

[128]

The first six are repeats from the UI phase and will be skipped if they've already run.
Note that you can skip the UI portion and go straight to execute by setting the quiet
flag on the command line. People sometimes do this for unattended installs.

msiexec /i myInstaller.msi /quiet

In the next section, we'll discuss the standard actions that are new.

Execute standard actions
Now, let's look at each of the standard actions that are unique to the Execute sequence.

InstallValidate
The InstallValidate action uses the total calculated by the costing phase to verify
that there's enough disk space available, and whether any running processes have a
lock on files needed by the MSI.

InstallInitialize
The InstallInitialize action marks the beginning of the "deferred" stage of the
Execute sequence. Any actions between it and InstallFinalize are included in a
transaction, and can be rolled back if an error occurs. This prevents leaving the user's
computer in a half-finished state.

ProcessComponents
The ProcessComponents action makes note of the components that are in your
installer and stores their GUIDs in the registry. It tracks which file is the keypath
for each component.

UnpublishFeatures
During uninstallation, UnpublishFeatures removes component-to-feature mappings
in the registry and discards information about which features were selected.

RemoveRegistryValues
The RemoveRegistryValues action looks at the MSI's Registry and
RemoveRegistry tables to find registry items to remove during an uninstall.

Chapter 5

[129]

RemoveShortcuts
The RemoveShortcuts action removes any shortcuts during uninstallation that your
installer created.

RemoveFiles
During uninstallation, the RemoveFiles action deletes files and folders that were
copied to the system. You can add files and folders for it to remove by using the
RemoveFolder and RemoveFile elements. These elements may also delete files
during install by setting their On attributes to install or both.

InstallFiles
The InstallFiles action uses information from the Directory and File tables to
copy files and folders into their appropriate locations. It's smart enough to know that
if a file already exists from a previous install and its component GUID and version
haven't changed to leave the file as is.

CreateShortcuts
During installation, CreateShortcuts adds shortcuts as specified in the Shortcut
table. Refer back to Chapter 1, Getting Started, for a discussion on how to author
shortcuts into the Windows Start menu.

WriteRegistryValues
You can use the WiX elements RegistryKey and RegistryValue to write to the
registry. The WriteRegistryValues action does the work.

RegisterUser
The RegisterUser action records to the registry who the user was who initiated
the installation.

RegisterProduct
The RegisterProduct action registers your product with Programs and Features
and stores a copy of the MSI package in the Windows Installer Cache, found at
%WINDIR%\Installer.

Understanding the Installation Sequence

[130]

PublishFeatures
During the PublishFeatures action, the installed state (installed, advertised, or
absent) is written to the registry and components are mapped to features.

PublishProduct
Used only by an advertised installation, the PublishProduct action "publishes"
the product to a computer, or in other words makes it available to be installed
on-demand by non-administrator users.

InstallFinalize
The InstallFinalize action marks the end of the rollback-protected stage called
the deferred phase. If your installation gets this far it means that it was successful.

Immediate versus deferred
There are reasons for separating the installation into two parts. The biggest is to
have an obvious time during which the end user should expect changes to be made
to the system. During the UI phase, they can safely fill information into the UI's
dialogs without the fear that their computer will be altered. Typically, it isn't until
they click a button labeled Install that changes begin to take effect. Therefore, the
standard actions only make system changes during the second half, during the
Execute sequence.

By keeping all system changes in one area, Windows Installer is able to offer
something else: rollback protection if an error occurs. It works in the following
way: no changes to the system are made when the Execute phase starts. At first, the
installer reads what actions are in the InstallExecuteSequence table and prepares
itself by storing a script of what's to be done. All actions between InstallInitialize
and InstallFinalize are included. This initial phase, when the script is prepared
but the rollback protection hasn't started yet, is called the Execute sequence's
immediate phase.

Once things actually start happening, it's called the deferred stage. If an error occurs,
the installer will use the script it created to roll back the actions that had taken place
up to that point. Only the deferred stage has rollback protection. The UI sequence
does not have this feature and so actions that alter the system should never take
place there.

Chapter 5

[131]

In the next section, you'll learn about creating custom actions that you can add
to either the UI or the Execute phase. Take special care to mark those actions that
make system changes as "deferred" and schedule them to run somewhere after the
InstallInitialize action and before InstallFinalize in the Execute phase.
As you'll see, you'll need to create your own rollback actions to complement your
deferred custom actions.

Custom actions
Knowing what the standard actions do and when prepares you for what's next:
making your own actions, called custom actions, and scheduling them appropriately.

Any custom action that changes the system, whether it involves changing files,
setting up databases, or adjusting user rights, should happen during the deferred
stage of the Execute sequence. Otherwise, you're free to place them where you like
during either the UI or the Execute sequence.

Custom actions are declared with the CustomAction element. Use its Execute
attribute to define how it should run, and its Return attribute to tell how its
return status should be treated. For example, this would declare a custom action
called MyAction that runs during the deferred stage and is checked for success
upon completion:

<CustomAction Id="MyAction" Execute="deferred"
 Return="check" ... />

That's the basics, although there are seven specific types of custom actions that add
their own necessary attributes. We'll cover each of the following types:

• Setting a Windows Installer property
• Setting the location of a directory
• Running embedded VBScript or JScript code
• Calling an external VBScript or JScript file
• Calling a method from a dynamic-link library
• Running an executable
• Sending an error that stops the installation

To add our custom action to the Execute sequence, we'll use the
InstallExecuteSequence element and the Custom element.

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product ... >

Understanding the Installation Sequence

[132]

 <Package ... />
 <Media ... />

 <CustomAction Id="MyAction" Execute="deferred"
 Return="check" ... />

 <InstallExecuteSequence>
 <Custom Action="MyAction" After="InstallInitialize" />
 </InstallExecuteSequence>
 </Product>
</Wix>

The Custom element's Action attribute refers to the Id attribute of the CustomAction
element we want to run. We can use its After attribute to schedule the action to
run after InstallInitialize in the Execute sequence. You can also use the Before
attribute to schedule it before some action, or the Sequence attribute, which sets a
specific number to use in the InstallExecuteSequence table's Sequence column.
You can even schedule your custom actions based on other custom actions, as in the
next example:

<InstallExecuteSequence>
 <Custom Action="MyAction" After="InstallInitialize" />
 <Custom Action="Action2" After="MyAction" />
</InstallExecuteSequence>

To schedule actions during the UI sequence use the InstallUISequence element
instead. It works in the same way:

<CustomAction Id="MyUIAction" Execute="immediate" Return="ignore" ...
/>

<InstallUISequence>
 <Custom Action="MyUIAction" After="CostFinalize" />
</InstallUISequence>

The CustomAction element gives you control over when it is executed through its
Execute attribute, which you'll usually set to "immediate", "deferred", "rollback",
or "commit". The last three only apply to the Execute sequence. Setting Execute to
"commit" schedules the action to be run once the installation has completed. We'll
cover rollback actions in detail later in the chapter.

Note that you can run the same custom action in both sequences if needed. You
might do that to accommodate silent installs, in which the UI sequence is skipped.
If you set the Execute attribute to firstSequence, the action will only be run once—
the first time it's encountered. Setting it to secondSequence will cause it to be run
during the Execute sequence only if it has already been run in the UI sequence.

Chapter 5

[133]

The Return attribute tells the installer whether it should wait for the custom action
to complete its processing before continuing, and whether the return code should be
evaluated. These values are available for the Return attribute:

Return value Meaning
asyncNoWait The custom action will run asynchronously and execution may continue

after the installer terminates.
asyncWait The custom action will run asynchronously but the installer will wait for

the return code at sequence end.
check The custom action will run synchronously and the return code will be

checked for success. This is the default.
ignore The custom action will run synchronously and the return code will not be

checked.

During the deferred stage, if a custom action returns failure and the Return attribute
is check or asyncWait, a rollback will occur, reverting any changes made up to that
point. During the immediate phase, failure will end the installation on the spot.

For the rest of this section, we'll look at the different types of custom actions.

Setting a Windows Installer property
You aren't limited to setting a property with a Property element or from the
command line. You can, through the use of a Type 51 custom action, set one at any
point during the installation. These "Type" numbers come from the Type column
in the CustomAction table. To set a property, use the CustomAction element's
Property and Value attributes.

<CustomAction
 Id="rememberInstallDir"
 Property="ARPINSTALLLOCATION"
 Value="[INSTALLLOCATION]" />

This is a useful example that uses the built-in ARPINSTALLLOCATION property to
save the install directory. Any directory property you save to it will be stored for
you in the registry and can be recalled later during uninstallation or repair. By using
square brackets around the ID of my install directory, here called INSTALLLOCATION,
I'm referencing that directory's path. That's a special case using a built-in property,
but you can set the value of any of your custom properties using the same type of
custom action.

Understanding the Installation Sequence

[134]

Next, schedule the custom action so that it happens after InstallValidate in the
Execute sequence—that's when directories are checked for write access and truly set.

<InstallExecuteSequence>
 <Custom Action="rememberInstallDir"
 After="InstallValidate" />
</InstallExecuteSequence>

You can, during uninstallation for example, access this property using another type
of custom action—one in a C# assembly, which we'll discuss later—by using the
ProductInstallation class in your C# code, as shown in the following code snippet:

ProductInstallation install =
 new ProductInstallation(session["ProductCode"]);
string installDir = install.InstallLocation;

When it comes to writing C# that can interact with your installer, there's a lot to
cover. We'll hit some of the major points when we talk about the Deployment
Tools Foundation library at the end of this chapter. It's what provides access to the
underlying installer functionality.

There's a second, short-hand way of declaring a Type 51 custom action: use
the SetProperty element. In the following example, we will set a property
called MyProperty to the value 123 after the InstallInitialize action in
the Execute sequence:

<SetProperty Id="MyProperty"
 Value="123"
 After="InstallInitialize"
 Sequence="execute" />

Behind the scenes, a custom action will be created called SetMyProperty. You can
use a different name by adding the Action attribute set to the name you want the
custom action to have.

Setting the location of an installed directory
A Type 35 custom action sets the path of a Directory element. Use the
CustomAction element's Directory and Value attributes, as shown in the following
code snippet:

<CustomAction Id="SetAppDataDir"
 Directory="DataDir"
 Value="[CommonAppDataFolder]MyProduct" />

Chapter 5

[135]

Assuming we've already defined a Directory element with an Id of DataDir, this
action will change its location to a folder called MyProduct in the C:\Documents
and Settings\All Users\Application Data folder on Windows XP or C:\
ProgramData on Windows 7. To test this out, you'll need to add a Directory
element with an Id of DataDir and place at least one component inside it.

You should schedule this type of custom action to run during the Execute sequence
before InstallFiles or, if you're installing empty folders using the CreateFolder
element, before the CreateFolders action.

<InstallExecuteSequence>
 <Custom Action="SetAppDataDir" Before="InstallFiles" />
</InstallExecuteSequence>

You may also change a directory by using the SetDirectory element as shown in the
following code snippet:

<SetDirectory Id="DataDir"
 Value="[CommonAppDataFolder]MyProduct"
 Sequence="execute" />

Its Id attribute points to the Id attribute of a Directory element. Value sets the path
to the new folder and Sequence controls whether the action will be run during the
Execute or UI sequence. It can be set to one of the following values: execute, ui,
both, or first. Using both will run the action in both sequences and first will
execute it during the UI sequence ordinarily, but during the Execute sequence if the
UI sequence is skipped.

Running embedded VBScript or JScript
A Type 37 (JScript) or Type 38 (VBScript) custom action executes embedded script.
You'll define the script as the inner text of the CustomAction element and declare its
type with the Script attribute set to either vbscript or jscript. The following is an
example that displays two message boxes and returns success:

<CustomAction Id="testVBScript" Script="vbscript"
Execute="immediate" >
 <![CDATA[
 msgbox "this is embedded code..."
 msgbox "MyProperty: " & Session.Property("MyProperty")
]]>
</CustomAction>

Understanding the Installation Sequence

[136]

Note that you can access existing WiX properties using Session.Property. Then,
we just need to schedule it to run. For this example, we'll display the message boxes
during the UI sequence after LaunchConditions:

<InstallUISequence>
 <Custom Action="testVBScript" After="LaunchConditions" />
</InstallUISequence>

Accessing installer data always starts with the Session object. You can learn more at:

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa371675(v=vs.85).aspx

The following are a few example usages:

<CustomAction Id="testVBScript" Script="vbscript"
Execute="immediate" >
 <![CDATA[
 ' Write a message to the install log
 Dim rec
 Set rec = Session.Installer.CreateRecord(0)
 rec.StringData(0) = "My log message"
 Session.Message &H04000000, rec

 ' Change the install level
 Session.SetInstallLevel(1000)

 ' Get properties set by the Product element
 Dim productName
 productName = Session.ProductProperty("ProductName")

 ' Get the target path of a Directory element
 Dim installFolder
 installFolder = Session.TargetPath("INSTALLFOLDER")
]]>
</CustomAction>

There have been a number of voices in the Windows Installer community, including
Rob Mensching the project lead of the WiX toolset, warning against the use of
VBScript and JScript custom actions. Reasons for this include the lack of debugging
support and better tooling for other languages such as C++ and C#.

Chapter 5

[137]

Calling an external VBScript or JScript file
A Type 5 (JScript) or Type 6 (VBScript) custom action calls a subroutine or function
from an external script file. Let's say we have a file called myScript.vbs that
contains a function called myFunction:

Function myFunction()
 If Session.Property("MY_PROPERTY") = "1" Then
 msgbox "Property is 1. Returning success!"
 myFunction = 1
 Exit Function
 End If

 msgbox "Property not 1. Returning failure."
 myFunction = 3
 Exit Function
End Function

Note that returning 1 from the function indicates success, while returning 3 indicates
failure, and will abort the install. In our WiX markup, we must reference this file
with a Binary element. This will store the file inside the MSI.

<Binary Id="myScriptVBS" SourceFile=".\myScript.vbs" />

Then, our CustomAction element uses the BinaryKey and VBScriptCall, or
JScriptCall if this had been a JScript file, attributes to access the function:

<CustomAction
 Id="myScript_CA"
 BinaryKey="myScriptVBS"
 VBScriptCall="myFunction"
 Execute="immediate"
 Return="check" />

Be sure to schedule it during one of the sequences. Remember, any code that alters
the system should be marked with an Execute attribute of deferred, and scheduled
during InstallExecuteSequence.

If you are creating your JScript or VBScript files in Visual Studio, beware
that by default it encodes text files as UTF-8. However, Windows
Installer won't be able to interpret this encoding. An easy way to correct
this is to open the file with Notepad, choose Save As, and then change
Encoding to ANSI. Otherwise, you may get an error at install time
regarding unexpected characters found at the beginning of the file.

Understanding the Installation Sequence

[138]

Calling a function from a dynamic-link library
A Type 1 custom action calls a method from a dynamic-link library (.dll). The
Votive plugin for Visual Studio provides a template you can use.

We will be writing our custom action using .NET code in C#. Technically, a Type
1 custom action means authoring an unmanaged C/C++ DLL. Windows Installer
cannot natively support a .NET custom action. The template we're using allows us to
write a managed code that will build the C/C++ DLL for us when we compile. This
unmanaged library will wrap our .NET code. In the end, that is what our installer
will reference. Be aware that the end user will need to have the targeted version of
the .NET Framework installed. If that's not an option for you, WiX also provides a
template for a C++ custom action.

Create a new C# Custom Action Project and you'll get a source file that references
the Microsoft.Deployment.WindowsInstaller namespace. This contains
helpful classes like Session that allow you to access the properties, features, and
components of your installer.

myCustomActions.cs

using System;
using Microsoft.Deployment.WindowsInstaller;

namespace myLibrary
{
 public class CustomActions
 {
 [CustomAction]

Chapter 5

[139]

 public static ActionResult MyFunction(Session session)
 {
 string myProperty = session["myProperty"];
 return ActionResult.Success;
 }
 }
}

The signature for the method has a return value of type ActionResult. Use this
to notify the installer that the custom action succeeded or failed. The method
is decorated with the CustomAction attribute and has a Session object as its
parameter. You're free to name the method, class, and namespace whatever you like.

There's a cap on the number of custom actions you can define in a single .NET
assembly. It used to be 16, as defined by the WiX source code in the src\DTF\Tools\
SfxCA\EntryPoints.h file, but in WiX 3.6 it has been raised to 128. If you do exceed
the limit, you can add another custom action project and keep on going.

All of this comes from a framework called the Deployment Tools Foundation
(DTF). DTF is a library that allows you to write .NET code that can interact with
the lower-level Windows Installer technology. It provides a number of useful
classes under the Microsoft.Deployment.WindowsInstaller namespace.
We'll cover some basics at the end of the chapter.

When you compile this project you'll end up with two files: one that ends in .dll
and one that ends .CA.dll. It's the second that you'll reference in your WiX project
as it has the unmanaged code that can be understood by the MSI.

There are two ways to reference this DLL. The first is to not use the Add a Reference
screen, but simply copy the file to your WiX project and reference it with a Binary
element. Use a relative path to the .CA.dll file. Back in our WiX markup, we'd add
the following to Product.wxs:

<Binary Id="myCustomActionsDLL"
 SourceFile=".\myCustomActions.CA.dll" />

As you can see, once the DLL has been copied to our WiX project's folder, it can be
referenced with a relative path.

A second way is to use the Add a Reference screen to reference the C# project in
your WiX project and then use the $(var.ProjectName.TargetDir) preprocessor
variable to point to the referenced project's output directory:

<Binary Id="myCustomActionsDLL"
 SourceFile=
"$(var.myCustomActions.TargetDir)myCustomActions.CA.dll" />

Understanding the Installation Sequence

[140]

You'll then use the CustomAction element's BinaryKey and DllEntry attributes to
specify the C# method to call.

<CustomAction
 Id="CA_myCustomAction"
 BinaryKey="myCustomActionsDLL"
 DllEntry="MyFunction"
 Execute="immediate"
 Return="check" />

Then, schedule it to run:

<InstallUISequence>
 <Custom Action="CA_myCustomAction" After="CostFinalize" />
</InstallUISequence>

Any of these script files, DLLs, or executables that we're using to define custom
actions will not be installed to the end user's computer. They perform their action
during the install, but stay packaged inside the MSI.

Triggering an executable
There are three ways to run an executable file (.exe) from a custom action. The first,
a Type 2, uses the Binary element to store the file inside the MSI and calls it from
there. That way, it doesn't need to be copied to the end user's computer.

Here we're referencing a file called MyProgram.exe. $(sys.SOURCEFILEDIR)
is a system variable defined by WiX that points to your project's directory. For
a change, we'll be running this custom action during the deferred phase of
InstallExecuteSequence:

<Binary
 Id="myProgramEXE"
 SourceFile="$(sys.SOURCEFILEDIR)myProgram.exe" />

<CustomAction
 Id="myProgramEXE_CA"
 BinaryKey="myProgramEXE"
 Impersonate="yes"
 Execute="deferred"
 ExeCommand=""
 Return="check" />

Chapter 5

[141]

The CustomAction element's Impersonate attribute tells the installer whether to
impersonate the user who launched the installer. The default is no, meaning that
the custom action, when launched during the Execute sequence, should run as the
LocalSystem user—an all-powerful, built-in account that has the privileges needed
to make changes to the user's computer. If you don't need that, set it to yes to run
the custom action in the context of the current user. You'll only ever use this flag for
a deferred custom action. Immediate custom actions don't run as LocalSystem and
you'll get an ICE68 warning if you set Impersonate to no on one.

The ExeCommand attribute takes any command-line arguments you'd want to pass to
the executable. You should always specify this, even if it's set to an empty string. It's
a required attribute.

We can schedule this to run during the Execute sequence:

<InstallExecuteSequence>
 <Custom Action="myProgramEXE_CA"
 Before="InstallFinalize" />
</InstallExecuteSequence>

The second way of calling an executable, called a Type 18 custom action, is by
copying it to the end user's computer first. Let's say that we're going to copy a file
called MainApp.exe to the INSTALLLOCATION folder, as shown here:

<DirectoryRef Id="INSTALLLOCATION">
 <Component Id="CMP_MainAppEXE"
 Guid="7AB5216B-2DB5-4A8A-9293-F6711FFAAA83">

 <File Id="mainAppEXE"
 Source="MainApp.exe"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

Our CustomAction element can then use the FileKey attribute to specify the ID of
our File element, thereby executing it.

<CustomAction
 Id="RunMainApp"
 FileKey="mainAppEXE"
 ExeCommand=""
 Execute="commit"
 Return="ignore" />

Understanding the Installation Sequence

[142]

For illustration purposes, I've decided not to run this during the deferred stage. By
marking it as commit, it will only run if the install is successful. Also, by setting the
Return attribute to ignore we're saying that we don't care if the job succeeds or fails.

If you want to run an executable, but prevent it from displaying,
such as for a command window, consider using the QtExec action
from WixUtilExtension. More information can be found at
http://wix.sourceforge.net/manual-wix3/qtexec.htm.

The last way, called a Type 34 custom action, is to use the Directory attribute,
targeting the directory where the executable is on the end user's computer. The
ExeCommand attribute should also reference this directory and the name of the .exe
file including any command-line arguments.

<CustomAction
 Id="RunMainApp"
 Directory="INSTALLLOCATION"
 ExeCommand="[INSTALLLOCATION]Main_App.exe –myArg 123"
 Execute="commit"
 Return="ignore" />

Sending an error that stops the installation
A Type 19 custom action sends an error to the installer and ends it. It uses the Error
attribute and looks like the following code snippet:

<Property Id="myProperty" Value="0" />

<CustomAction Id="ErrorCA" Error="Ends the installation!" />

<InstallUISequence>
 <Custom Action="ErrorCA" Before="ExecuteAction">
 <![CDATA[
 myProperty <> 1
]]>
 </Custom>
 </InstallUISequence>

I've placed a conditional statement inside the Custom element so that this error
will only be triggered if myProperty is not equal to 1. Note that these types of
custom actions can only be run during the immediate phase. So, the Execute
attribute is unnecessary.

Chapter 5

[143]

You can add a conditional statement inside any of your Custom
elements. For example, you might check the Installed property to
only run your action when the product hasn't been installed yet.

Rollback custom actions
Custom actions that are scheduled as "deferred" execute during the Execute
sequence's rollback-protected phase. To give those actions rollback capabilities, you'll
need to author separate custom actions that undo the work. These are scheduled as
"rollback". Rollback custom actions are scheduled before the action they're meant to
revert to in case of an error. The following is an example:

<CustomAction Id="systemChangingCA" Execute="deferred"
Script="vbscript">
 msgbox "Imagine this changes the system in some way"
</CustomAction>

<CustomAction Id="myRollbackCA" Execute="rollback"
Script="vbscript">
 msgbox "Imagine this undoes the changes"
</CustomAction>

<CustomAction Id="causeError" Execute="deferred"
 Script="vbscript">
 Err.Raise 507
</CustomAction>

We'll schedule these during the Execute sequence:

<InstallExecuteSequence>
 <Custom Action="myRollbackCA" Before="systemChangingCA" />
 <Custom Action="systemChangingCA" After="InstallInitialize" />
 <Custom Action="causeError" After="systemChangingCA" />
</InstallExecuteSequence>

Now, systemChangingCA will run during the deferred phase of
InstallExecuteSequence. When the causeError action runs afterwards it
causes an exception to be thrown, which triggers a rollback. Then, myRollbackCA
runs. Deferred and rollback actions are always scheduled somewhere between
InstallInitalize and InstallFinalize.

Understanding the Installation Sequence

[144]

The WiX toolset provides its own custom action for stimulating a rollback called
WixFailWhenDeferred. It's available as part of the WixUtilExtension and you
can find more information at http://wix.sourceforge.net/manual-wix3/
wixfailwhendeferred.htm. You could use it to test your rollback methods.

Having a rollback action for every deferred one that alters the user's system is a good
idea. It covers you in case of an error. Of course, you'll need to author the code of
your rollback action so that it really does revert what you've done.

Accessing properties in a deferred action
If you try to access a property from a custom action during the Execute sequence's
deferred stage, you'll find that you get an error. This is because only a finite number
of properties are available here. As a workaround, you can store the values of
your properties in another property called CustomActionData and pass that to the
deferred custom action.

There are two ways to do this: from your WiX code, or from inside another C#
custom action. For the first, use a Type 51 custom action to set the value of the
CustomActionData property.

In the next example, we want to pass a property called MYPROPERTY to a custom
action called myDeferredCA. So, we create another action called SetProperty
that sets a property also called myDeferredCA to the value of MYPROPERTY. It's
important that the name of the property you're setting matches the name of
the deferred custom action.

<Property Id="MYPROPERTY" Value="my value" />

<CustomAction Id="SetProperty"
 Property="myDeferredCA"
 Value="[MYPROPERTY]" />

<InstallExecuteSequence>
 <Custom Action="SetProperty" Before="myDeferredCA" />
 <Custom Action="myDeferredCA" After="InstallInitialize" />
</InstallExecuteSequence>

Chapter 5

[145]

Now, myDeferredCA will have access to our MYPROPERTY property, indirectly,
through the Session object's CustomActionData.

[CustomAction]
public static ActionResult myDeferredCA(Session session)
{
 string myProperty = session.CustomActionData;
 return ActionResult.Success;
}

You can also store several properties in CustomActionData by separating them with
semi-colons.

<Property Id="PROP1" Value="abc123" />
<Property Id="PROP2" Value="def567" />
<Property Id="PROP3" Value="ghi890" />

<CustomAction
 Id="SetProperty"
 Property="myDeferredCA"
 Value="Prop1=[PROP1];Prop2=[PROP2];Prop3=[PROP3]" />

We have changed our SetProperty custom action so that its Value is set to a list
of key-value pairs separated by semi-colons. You can then access each value in
CustomActionData in the following way:

[CustomAction]
public static ActionResult myDeferredCA(Session session)
{
 ICollection<string> values =
 session.CustomActionData.Values;

 foreach (string value in values)
 {
 // shows 3 message boxes:
 // abc123, def567 and ghi890
 MessageBox.Show(value);
 }

 return ActionResult.Success;
}

Understanding the Installation Sequence

[146]

Notice that we are accessing the Values property on CustomActionData. You could
also access the key-value pairs we've set using hash table syntax:

MessageBox.Show(session.CustomActionData["Prop1"]);
MessageBox.Show(session.CustomActionData["Prop2"]);
MessageBox.Show(session.CustomActionData["Prop3"]);

It's also possible to set the data directly in an immediate C# custom action. So,
instead of setting a property using a CustomAction element, you could set the
CustomActionData value from code:

[CustomAction]
public static ActionResult myImmediateCA(Session session)
{
 CustomActionData data = new CustomActionData();
 data["property1"] = "abc";
 data["property2"] = "def";
 data["property3"] = "ghi";

 session["myDeferredCA"] = data.ToString();

 return ActionResult.Success;
}

You can then access the data from within your deferred custom action as follows:

[CustomAction]
public static ActionResult myDeferredCA(Session session)
{
 CustomActionData data = session.CustomActionData;
 string property1 = data["property1"];

 return ActionResult.Success;
}

Adding conditions to custom actions
After you've defined your custom actions and scheduled them into either
InstallUISequence or InstallExecuteSequence, you have the option of adding
conditions to them. These are added as the inner text of the Custom element and
prevent the action from running if the condition is false. A common use for this is to
only run the action during installation by using the NOT Installed condition.

<InstallExecuteSequence>
 <Custom Action="myCustomAction" After="InstallInitialize">

Chapter 5

[147]

 NOT Installed
 </Custom>
</InstallExecuteSequence>

Other common conditions are Installed, which is true if the software is already
installed, and REMOVE="ALL", which is true if the product is being uninstalled.

You can also use the action state and installed state of features and components or
check the values of your custom properties. Look back to Chapter 4, Improving Control
with Launch Conditions and Installed States, to review the discussion about these types of
conditional statements. It's a good idea to try out an installation and uninstallation of
your product just to make sure your custom actions are running only when you expect
them to. You can see this in the install log by looking for the words "Doing action".

Deployment Tools Foundation
Writing custom actions with .NET code means making use of the Deployment Tools
Foundation (DTF). Here, we'll touch on some of the more common parts of the DTF
library. However, you should also take a look at the DTF documentation that comes
with WiX if you'd like to explore some of its other features. For example, although
we won't cover it here, DTF has support for LINQ and CAB file compression.
The examples in this section draw from DTF's Microsoft.Deployment.
WindowsInstaller namespace.

The session object
When the InstallUISequence and InstallExecuteSequence tables run through
their lists of actions, they're doing so in their own memory space—called a session.
You've seen how this requires you to mark WiX properties as public (uppercase) to
get them from one session to the other. In DTF, the Session object is your pipeline
into each sequence's running state. Every .NET custom action method receives
session in its parameter list. If you recall, the generic signature of one of these
custom actions is this:

[CustomAction]
public static ActionResult CustomAction1(Session session)

You'll use Session as the starting place for almost everything you do when working
with the WindowsInstaller namespace. Its methods and properties return the
various other objects that DTF provides. The following sections each use this object
in some way to accomplish a task.

Understanding the Installation Sequence

[148]

Getting and setting properties
To access a WiX property, such as those set with the Property element, use the
Session object's indexer. The following is an example:

[CustomAction]
public static ActionResult CustomAction1(Session session)
{
 string myProperty = session["MY_PROPERTY"];
 return ActionResult.Success;
}

Setting properties is just as easy. You'll set the value by referencing the key with the
name of your property. Here's an example:

[CustomAction]
public static ActionResult CustomAction1(Session session)
{
 session["MY_PROPERTY"] = "abc";
 return ActionResult.Success;
}

If the property doesn't exist when you set it, it will be created. Similarly, you can
clear a property by settings its value to null. Creating or changing property values
from a custom action doesn't stop the installer from displaying those properties in
the install log. So, if a property holds information that has to be hidden, you're better
off declaring it in your WiX markup first and setting its Hidden attribute to yes:

<Property Id="MY_PROPERTY" Hidden="yes" />

Logging
You can add your own messages to the install log by using the Session object's
Log method. The simplest way is to just pass it a string, as shown in the following
code snippet:

session.Log("This will show up in the log.");

You can also pass it a formatted string, as in the next example:

string currentTime =
 System.DateTime.Now.ToString("HH:mm:ss",
 CultureInfo.CurrentCulture);
string functionName = "CustomAction1";
string message = "This will show up in the log.";

 session.Log("{0} : Method = {1}: {2}", currentTime,
 functionName, message);

Chapter 5

[149]

This will produce the following message in the log:

18:05:19 : Method = CustomAction1: This will show up in the log.

You can also use the Message method for the same effect. You'll need to create a
Record object that contains your text and pass it, along with InstallMessage.Info,
to the method. Here's an example:

Record record = new Record(0);
record[0] = "This will show up in the log";
session.Message(InstallMessage.Info, record);

Be aware that the Log and Message methods don't work when the custom action is
called from a UI control such as a button click. You'll learn about calling custom actions
from UI controls using the DoAction event in Chapter 8, Tapping into Control Events.

Showing a message box
The Message method can also be used to display a message box to the user. All
you need to do is change the first parameter to InstallMessage.Warning or
InstallMessage.Error. Either will show a message box, although the icon used
may differ, depending on the operating system.

The following example displays a warning message to the user:

[CustomAction]
public static ActionResult CustomAction1(Session session)
{
 Record record = new Record(0);
 record[0] = "This is a warning!";
 session.Message(InstallMessage.Warning, record);

 return ActionResult.Success;
}

The following is the result:

Understanding the Installation Sequence

[150]

To show an error message box, use InstallMessage.Error instead:

[CustomAction]
public static ActionResult CustomAction1(Session session)
{
 Record record = new Record(0);
 record[0] = "This is an error!";
 session.Message(InstallMessage.Error, record);

 return ActionResult.Success;
}

Note that these only provide an OK button. If you need more than that, you'll need
to use something like a Windows Forms dialog, which you can do by adding the
appropriate .NET assembly reference. Something else to consider is that, as we did
when logging, we're using the Message method here. So, it will not work if called
from a UI control.

Accessing feature and component states
To access a feature's action or installed state, use the Features collection. You can
look up a feature by name.

FeatureInfo productFeature =
 session.Features["ProductFeature"];

//will return "Absent" during an installation
InstallState installedState = productFeature.CurrentState;

//will return "Local" during an installation
InstallState actionState = productFeature.RequestState;

Here, we're using the FeatureInfo object's CurrentState for installed state and
RequestState for action state. You can do the same thing for components by using
the Components collection, as shown in the following code snippet:

ComponentInfo cmpInfo = session.Components["cmp_myFile"];
InstallState cmpCurrentState = cmpInfo.CurrentState;
InstallState cmpRequestState = cmpInfo.RequestState;

Chapter 5

[151]

Querying the MSI database
You can read any of the data that's in the MSI database. First, get a reference to
the MSI database with the Session object's Database property. Be aware that you
cannot access the Database property during a deferred custom action. In that case,
you may set up CustomActionData, as described earlier, during an immediate
custom action and pass the information to the deferred phase that way. In the
following example, we access the Session object's Database property:

Database db = session.Database;

Next, if you just want to get one value from a table, use the ExecuteScalar method.
This will return the value from the column in your SQL query. Here's an example:

string property = "ProductName";

string value = (string)db.ExecuteScalar(
 "SELECT `Value` FROM `Property` WHERE `Property` = '{0}'",
 property);

db.Close();

Notice that I cast the result to a string. This works in this example because the Value
column on the Property table contains strings. If, on the other hand, the column had
contained integers I would have had to cast the result to an integer.

If you'd like to get multiple rows back from your query, use the ExecuteQuery
method. It returns a collection of type System.Collections.IList.

string query =
 "SELECT `Property` FROM `Property` ORDER BY `Property`";
System.Collections.IList result = db.ExecuteQuery(query);
db.Close();

Inserting rows into the MSI database
You can't insert new data into the MSI database while it's installing and
unfortunately, that's often exactly when you want to! To get around this, you can
make temporary inserts using the View object's InsertTemporary method. You can
get a View by calling the OpenView method on the Database object, passing in a
SELECT statement of the data you want to work with. Here's an example that adds a
new property, called NEW_PROPERTY, to the Property table:

Database db = session.Database;
View view = db.OpenView("SELECT * FROM `Property`");
Record rec = new Record("NEW_PROPERTY", "new_value");
view.InsertTemporary(rec);
db.Close();

Understanding the Installation Sequence

[152]

The first thing we did here was use the Database object's OpenView method to get a
View. We selected all of the existing rows from the Property table and then inserted
a new row with InsertTemporary. It's perfectly acceptable to get a smaller view by
adding a WHERE clause to the SQL query.

You'll need to know the number and order of the columns in the table you're
working with before you start inserting new rows. When you create your Record
object, you have to place the values in the same order as the columns. You can omit
columns you don't use as long as they come at the end.

Another example is to add a new control to a dialog during the course of the install.
Just be sure to add it before CostInitialize in the UI phase or your change will go
unnoticed. In the following example, we'll add a Text control to the ProgressDlg
dialog. This is assuming you're using one of WiX's built-in dialog sets and that
ProgressDlg exists.

[CustomAction]
public static ActionResult AddControl(Session session)
{
 Database db = null;

 try
 {
 db = session.Database;

 //create control on ProgressDlg:
 View view = db.OpenView("SELECT * FROM `Control`");

 Record record = new Record(
 "ProgressDlg",
 "MyText",
 "Text",
 "20",
 "150",
 "150",
 "15",
 "1");

 view.InsertTemporary(record);

 //subscribe that control to the ActionData event:
 View view2 =
 db.OpenView("SELECT * FROM `EventMapping`");

 Record record2 = new Record("ProgressDlg",

Chapter 5

[153]

 "MyText", "ActionData", "Text");

 view2.InsertTemporary(record2);
 }
 catch (Exception err)
 {
 session.Log(err.Message + ": " + err.StackTrace);
 return ActionResult.Failure;
 }
 finally
 {
 if (db != null)
 {
 db.Close();
 }
 }

 return ActionResult.Success;
}

First, we get a handle to the MSI database by using session.Database. Next, we
insert a new temporary record into the Control table. That will be our Text control.
To make things interesting, we've also added a record to the EventMapping table,
subscribing our Text control to the ActionData event. We'll discuss control events in
more detail later. For now, know that this will cause the Text control to automatically
update itself with any status messages of actions that occur during the installation.

It's a good idea to catch any exceptions that might happen and return
ActionResult.Failure after we've logged the error. This is better than allowing
uncaught exceptions to bubble up and kill the installation. This also allows us to
log exactly what went wrong.

Summary
In this chapter, we began by discussing standard actions, which are actions that are
built into Windows Installer. Knowing the order and function of these events can be
a big help in understanding and debugging the installer. We saw that there are two
sequences, InstallUISequence and InstallExecuteSequence, and how we can
access them from our WiX markup. We explored how to create custom actions and
schedule them into a sequence. We also covered the major points of the Deployment
Tools Foundation library.

In the next chapter, we will cover the fundamentals of adding a user interface to help
guide users through the install process. We will start by using the dialogs that come
with WiX and then branch out to creating our own.

Adding a User Interface
The WiX toolset ships with several user interface wizards that are ready to use
out of the box. You can drop one into your installer by first adding a reference
to WixUIExtension.dll and then adding a UIRef element with the name of the
wizard. We'll briefly discuss each of the available dialog sets and then move on to
learning how to create your own from scratch. In this chapter, you'll learn about:

• Adding dialogs into InstallUISequence
• Linking one dialog to another to form a complete wizard
• Getting basic text and window styling working
• Including necessary dialogs such as those needed to display errors

WiX standard dialog sets
The wizards that come prebuilt with WiX won't fit every need, but they're a good
place to get your feet wet. To begin with, use the Add a Reference screen in Visual
Studio to add a reference to WixUIExtension.dll. It can be found in the bin
directory of the WiX program files.

Adding this reference is like adding a new WiX source file. This one contains dialogs.
To use one you'll need to use a UIRef element to pull the dialog into the scope of
your project. For example, this line, anywhere inside the Product element, will add
the "Minimal" wizard to your installer:

<UIRef Id="WixUI_Minimal" />

Adding a User Interface

[156]

It's definitely minimal, containing just one screen.

It gives you a license agreement, which you can change by adding a WixVariable
element with an Id value of WixUILicenseRtf and a Value attribute that points to a
Rich Text Format (.rtf) file containing your new license agreement:

<WixVariable Id="WixUILicenseRtf"
 Value="newLicense.rtf" />

You can also override the background image (red CD on the left, white box on the
right) by setting another WixVariable called WixUIDialogBmp to a new image. The
dimensions used are 493 x 312. The other available wizards offer more and we'll
cover them in the following sections.

WixUI_Advanced
The "Advanced" wizard adds a few more dialogs to the mix, in addition to the
EULA. The user can choose to install right away or to configure the advanced
options. You'll need to change your UIRef element to use WixUI_Advanced, as
shown here:

<UIRef Id="WixUI_Advanced" />

You'll also have to make sure that your install directory has an Id attribute of
APPLICATIONFOLDER, as in this example:

<Directory Id="TARGETDIR"
 Name="SourceDir">

Chapter 6

[157]

 <Directory Id="ProgramFilesFolder">
 <Directory Id="APPLICATIONFOLDER"
 Name="My Program" />
 </Directory>
</Directory>

Next, set two properties: ApplicationFolderName and WixAppFolder. The first sets
the name of the install directory as it will be displayed in the UI. The second sets
whether this install should default to being per user or per machine. It can be set to
either WixPerMachineFolder or WixPerUserFolder.

<Property Id="ApplicationFolderName"
 Value="My Program" />
<Property Id="WixAppFolder"
 Value="WixPerMachineFolder" />

The new screens include the Installation Scope screen, where the user can choose
to install for all users or just for him or herself. The default will be set by the
WixPerMachineFolder property, as shown in the following screenshot:

Adding a User Interface

[158]

There's also a screen for changing the install directory's path and another for
changing which features will get installed. You'll notice that many of these screens
have a banner at the top (white background with the familiar red CD to the right).

You can replace it with your own image by setting the WixUIBannerBmp variable. Its
dimensions are 493 x 58. You can set it in the following way:

<WixVariable Id="WixUIBannerBmp"
 Value="myBanner.bmp" />

WixUI_FeatureTree
The WixUI_FeatureTree wizard shows a feature tree same as the Advanced wizard,
but it doesn't have the Install Scope or Install Path dialogs. To use it, you only need
to set the UIRef to WixUI_FeatureTree, like so:

<UIRef Id="WixUI_FeatureTree" />

Here's what the feature tree dialog looks like:

Chapter 6

[159]

Notice that in the image, the Browse button is disabled. If any of your Feature
elements have the ConfigurableDirectory attribute set to the ID of a Directory
element then this button will allow you to change where that particular feature gets
installed to. The Directory element's Id attribute must be all uppercase.

WixUI_InstallDir
WixUI_InstallDir shows a dialog where the user can change the installation path.
Change the UIRef to WixUI_InstallDir, like so:

<UIRef Id="WixUI_InstallDir" />

Here, the user can choose the installation path. This is seen in the following screenshot:

You'll have to set a property called WIXUI_INSTALLDIR to the Id attribute you gave
your install directory. So, if your directory structure used INSTALLLDIR for the Id
attribute of the main install folder, use that as the value of the property, as given in
the following code snippet:

<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLDIR"

Adding a User Interface

[160]

 Name="My Program" />
 </Directory>
</Directory>

<Property Id="WIXUI_INSTALLDIR"
 Value="INSTALLDIR" />

WixUI_Mondo
The WixUI_Mondo wizard gives the user the option of installing a Typical, Complete,
or Custom install. Typical sets the INSTALLLEVEL property to 3 while Complete sets
it to 1000. You can set the Level attribute of your Feature elements accordingly
to include them in one group or the other. Selecting a Custom install will display a
feature tree dialog where the user can choose exactly what they want. To use this
wizard, change your UIRef element to WixUI_Mondo:

<UIRef Id="WixUI_Mondo" />

This would result in a window like the following screenshot:

Recall that features that have a Level value less than or equal to INSTALLLEVEL will
be installed.

Chapter 6

[161]

Customizing a standard dialog set
Each of the dialog sets shown can be customized by adding screens, removing some,
or changing the look and text. Usually, this means downloading the WiX source code
from wix.codeplex.com and changing the markup in the dialogs. You can find them
under the src\ext\UIExtension\wixlib folder of the source code.

The general procedure is to copy the .wxs file that has the name of the wizard, such
as WixUI_Minimal.wxs, to your project with a different name such as Custom_
Minimal.wxs. Then, add or remove DialogRef elements from that file to add or
remove dialogs. DialogRefs are the references to the dialogs in the other files. Files
such as WixUI_Minimal.wxs just tie them all together into a wizard. For example,
here's part of what you'd find in the Minimal wizard's main source file:

<DialogRef Id="ErrorDlg" />
<DialogRef Id="FatalError" />
<DialogRef Id="FilesInUse" />
<DialogRef Id="MsiRMFilesInUse" />
<DialogRef Id="PrepareDlg" />
<DialogRef Id="ProgressDlg" />
<DialogRef Id="ResumeDlg" />
<DialogRef Id="UserExit" />
<DialogRef Id="WelcomeEulaDlg" />

Here, you could remove the welcome dialog from the wizard by removing the
WelcomeEulaDlg line. The Minimal wizard is pretty small to begin with so you're
probably better off customizing a set such as Mondo.

Scanning through the rest of the file, you'll find that it uses the Publish elements to
define where the Next button on each dialog takes you to. You can, in your custom
file, change that. Here's what you'd find in WixUI_Mondo.wxs:

<Publish Dialog="WelcomeDlg"
 Control="Next"
 Event="NewDialog"
 Value="LicenseAgreementDlg">1</Publish>

<Publish Dialog="LicenseAgreementDlg"
 Control="Back"
 Event="NewDialog"
 Value="WelcomeDlg">1</Publish>

<Publish Dialog="LicenseAgreementDlg"

Adding a User Interface

[162]

 Control="Next"
 Event="NewDialog"
 Value="SetupTypeDlg"
 Order="2">LicenseAccepted = "1"</Publish>

This is all unfamiliar still and we'll go over the Publish element in more detail
when we talk about creating our own dialogs. For now, notice that we pair Dialog
and Control attributes to find a particular UI control, such as a button, on a specific
dialog. The first Publish element, for example, finds the Next button on the
WelcomeDlg dialog. Use the Event attribute to add an event such as NewDialog to
the button.

Here, we're saying we want the Next button to fire the NewDialog event with Value
of LicenseAgreementDlg. This means that when the button is clicked, WelcomeDlg
will be replaced with LicenseAgreementDlg. You can customize any control on any
dialog from here, usually to change where the Next and Back buttons take you. This
allows you to insert new dialogs or skip one you don't want.

Here's an example that inserts a custom dialog called MyDialog between WelcomeDlg
and LicenseAgreementDlg. Add this to your Custom_Mondo.wxs file:

<Publish Dialog="WelcomeDlg"
 Control="Next"
 Event="NewDialog"
 Value="MyDialog">1</Publish>

<Publish Dialog="MyDialog"
 Control="Back"
 Event="NewDialog"
 Value="WelcomeDlg">1</Publish>

<Publish Dialog="MyDialog"
 Control="Next"
 Event="NewDialog"
 Value="LicenseAgreementDlg">1</Publish>

<Publish Dialog="LicenseAgreementDlg"
 Control="Back"
 Event="NewDialog"
 Value="MyDialog">1</Publish>

Chapter 6

[163]

Remember, you'd need to get the original WixUI_Mondo.wxs file from the WiX source
and rename it to something like Custom_Mondo.wxs before adding it to your project.
You'll then reference the custom file with UIRef.

<UIRef Id="Custom_Mondo" />

Be sure to change the UI element in the Custom_Mondo.wxs file to match.

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI Id="Custom_Mondo">

We'll explain more about referencing dialog sets when we discuss creating dialogs
from scratch.

Creating your own dialogs
In this section, we'll discard the premade dialogs and create our own. This should
give you a much deeper understanding of how things work.

ICE20 errors
For these first exercises, you'll have to ignore some of WiX's warnings. Go to the
Properties page for the project, select Tools Settings and add a rule to ignore the
validation test ICE20. This test checks that you've added the FilesInUse, Error,
FatalError, UserExit, and Exit dialogs. That's a lot to start out with, so for now
just ignore those rules.

What are these dialogs? They are all windows that show an error message or indicate
that the install has been completed successfully. They show up automatically when
they're needed. Later in the chapter, I'll show how you can create these dialogs to
meet the requirements of ICE20.

Adding a User Interface

[164]

Adding dialog files
Let's remove the reference to WixUIExtension.dll and UIRef that points to a
standard dialog. We'll be creating everything ourselves now to get the best working
knowledge. Each dialog window that you create should be placed into its own WiX
source file (.wxs). In Visual Studio, you can right-click on your project and select
Add | New Item | WiX File.

This will create an XML file containing a Wix root element and a Fragment element.
Fragments can be used to split your code into separate files and as such can be used
for many different purposes. To create a dialog out of one, you'll need to add two
more elements: UI and Dialog. In this example, I've added a UI element and given it
an Id value of CustomWizard. Inside that, I've nested a Dialog element, which I've
called InstallDlg. You could name this file InstallDlg.wxs and it should now
look like the following snippet:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI Id="CustomWizard">
 <Dialog Id="InstallDlg">
 <!--Controls like buttons and text go here-->
 </Dialog>
 </UI>
 </Fragment>
</Wix>

This is the basic structure that you'll use for each new dialog. The first dialog that
you create can serve as the entry point for the others. If, for example, we created a
second dialog called SecondDlg, we could set it up in the same way. On additional
dialogs, you can omit the UI element's Id attribute, but be sure to change the Dialog
element's Id attribute to something new. Use the following snippet to build your
SecondDlg.wxs file:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id="SecondDlg">
 <!--Controls like buttons and text go here-->
 </Dialog>
 </UI>
 </Fragment>
</Wix>

Chapter 6

[165]

Then, to reference SecondDlg in our first dialog, add a DialogRef element to our
InstallDlg.wxs file:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI Id="CustomWizard">
 <DialogRef Id="SecondDlg"/>

 <Dialog Id="InstallDlg">
 </Dialog>
 </UI>
 </Fragment>
</Wix>

To add both dialogs to our project, use a UIRef element in your main source file.
Its Id attribute should match the Id attribute value you gave to your UI element in
InstallDlg. Add the following line to Product.wxs:

<UIRef Id="CustomWizard"/>

The Dialog element
Our InstallDlg won't work properly yet. We still need to add more attributes to the
Dialog element to set its size, title, and whether or not it can be minimized:

<Dialog Id="InstallDlg"
 Width="370"
 Height="270"
 Title="Amazing Software"
 NoMinimize="no">

You can set Width and Height larger or smaller, but 370 and 270 are the dimensions
used by the WiX dialog sets. Together, these define the size of the window. The
Title attribute sets the text that will be displayed at the top of the window. Setting
NoMinimize to no means that the user will be able to minimize the dialog. This is the
default so specifying it isn't strictly necessary. There's one other attribute that you're
likely to use early on and that's Modeless, which can be set to yes. This will make
the dialog not wait for user input and is often used for progress bar dialogs. We'll
cover it later in the chapter.

Adding a User Interface

[166]

Scheduling dialogs
For now, we only need to schedule one of our dialogs in the UI sequence. To do that,
place a Show element inside an InstallUISequence element with a Dialog attribute
set to the Id attribute of the InstallDlg file's Dialog element. Then add a Before
attribute and schedule it before ExecuteAction. The following snippet shows this,
which we can place inside the InstallDlg.wxs file, inside the Fragment element:

<InstallUISequence>
 <Show Dialog="InstallDlg"
 Before="ExecuteAction" />
</InstallUISequence>

Now, when the installer is launched our first dialog will be shown. To get from our
first dialog to our second one, we'll add a Next button that takes us there. We'll cover
buttons in detail in the next chapter, but basically, you'll add a Control element of
Type = "PushButton" inside the InstallDlg file's Dialog element. It will, in turn,
contain another element called Publish that closes the current dialog and opens the
second. The InstallDlg.wxs file will contain this code:

<Dialog ...>
 <Control Id="Next"
 Type="PushButton"
 X="245"
 Y="243"
 Width="100"
 Height="17"
 Text="Next">
 <Publish Event="NewDialog"
 Value="SecondDlg" />
 </Control>
</Dialog>

This technique can be used to navigate from one dialog to another, or even to go
back via Back buttons. You only need to change the value of the Publish element's
Value attribute to the Id attribute of a different Dialog element. We could add a
Back button on our SecondDlg file that takes us back to InstallDlg:

<Dialog ...>
 <Control Id="Back"
 Type="PushButton"
 X="180"
 Y="243"
 Width="100"
 Height="17"
 Text="Back">

Chapter 6

[167]

 <Publish Event="NewDialog"
 Value="InstallDlg" />
 </Control>
</Dialog>

If you add more than one button to the same dialog, you'll also need to change the
Id attribute of the Control element and change its X and Y attributes. Otherwise,
all of your buttons would sit on top of one another and have the same key in MSI's
Control table. The following is a screenshot of a dialog that has both Back and
Next buttons:

Adding TextStyle elements
Our dialog isn't useable yet. It needs at least one TextStyle element to set the
default font for the text on the window. You'll only need to do this for the first
dialog you create. The other dialogs can re-use the styles you set there. A TextStyle
element uses the FaceName, Size, Bold, Italic, and Underline attributes to set
a font. The following example creates a vanilla 8pt Tahoma font to be used as our
default:

<TextStyle Id="Tahoma_Regular"
 FaceName="Tahoma"
 Size="8" />
<Property Id="DefaultUIFont"
 Value="Tahoma_Regular" />

Since this will be our default font, we have to add a Property element with an Id
attribute set to DefaultUIFont and a Value attribute set to the ID of our TextStyle
element. These will go inside our UI element as siblings to our Dialog element. You
can add more TextStyle elements for titles, fine print, and so on.

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI Id=»InstallDlg_UI»>
 <TextStyle Id="Tahoma_Regular"
 FaceName="Tahoma"
 Size="8" />
 <Property Id="DefaultUIFont"

Adding a User Interface

[168]

 Value="Tahoma_Regular" />

 <TextStyle Id="Tahoma_Bold"
 FaceName="Tahoma"
 Size="8"
 Bold="yes" />
 <TextStyle Id="Tahoma_Italic"
 FaceName="Tahoma"
 Size="8"
 Italic="yes" />
 <TextStyle Id="Tahoma_Title"
 FaceName="Tahoma"
 Size="12"
 Underline="yes" />

 <Dialog Id="InstallDlg"
 Width="370"
 Height="270"
 Title="Amazing Software"
 NoMinimize=»no»>
 </Dialog>
 </UI>
 </Fragment>
</Wix>

You can use these styles on, for example, a Control element of Type = "Text", which
displays a label, by adding the TextStyle element's Id attribute in curly brackets to
the Control element's Text attribute. Prefix it with a backslash as shown:

<Control Id="myText"
 Type="Text"
 X="10" Y="10"
 Width="200"
 Height="17"
 Text="{\Tahoma_Bold}Here is some text" />

The following table lists the possible attributes for your TextStyle elements:

Attribute Meaning
Blue Set to a number between 0 and 255 of how blue the text should be.
Green Set to a number between 0 and 255 of how green the text should be.
Red Set to a number between 0 and 255 of how red the text should be.
Italic If yes, the text will be italic.

Chapter 6

[169]

Attribute Meaning
Bold If yes, the text will be bold.
Size Sets the numeric size of the text.
Strike If yes, the text will have a line through it.
Underline If yes, the text will be underlined.
FaceName The font face of the text.

Here is an example that uses several TextStyle elements in Text controls:

Adding a tabbable control
Our InstallDlg still isn't ready. We need to add at least one control that can be
tabbed to inside our Dialog element. For a simple, one screen wizard, we can just
add a button that, when clicked, continues the installation. It could say Install on
it. For that, we'll create a button that publishes the EndDialog event with a Value
attribute of Return. This is illustrated in the following code snippet:

<Control Id="InstallButton"
 Type="PushButton"
 Text="Install"
 Height="17"
 Width="56"
 X="245"
 Y="243">
 <Publish Event="EndDialog"
 Value="Return" />
</Control>

Adding a User Interface

[170]

We can also add a button that says Cancel. It will also publish the EndDialog event,
but with a Value attribute of Exit. If we add the Cancel attribute to it, this button
will be triggered if the user clicks the X button on the window or presses Esc.

<Control Id="CancelButton"
 Type="PushButton"
 Text="Cancel"
 Height="17"
 Width="56"
 X="180"
 Y="243"
 Cancel="yes">
 <Publish Event="EndDialog"
 Value="Exit" />
</Control>

Here's our InstallDlg now, ready for use:

The following is the entire markup:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI Id="CustomWizard">
 <TextStyle Id="Tahoma_Regular"
 FaceName="Tahoma"
 Size="8" />
 <Property Id="DefaultUIFont"
 Value="Tahoma_Regular" />

 <Dialog Id="InstallDlg"
 Width="370"

Chapter 6

[171]

 Height="270"
 Title="Amazing Software"
 NoMinimize="no">

 <Control Id="InstallButton"
 Type="PushButton"
 Text="Install"
 Height="17"
 Width="56"
 X="245"
 Y="243">
 <Publish Event="EndDialog"
 Value="Return" />
 </Control>

 <Control Id="CancelButton"
 Type="PushButton"
 Text="Cancel"
 Height="17"
 Width="56"
 X="180"
 Y="243"
 Cancel="yes">
 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>
 </Dialog>

 <InstallUISequence>
 <Show Dialog="InstallDlg"
 Before="ExecuteAction" />
 </InstallUISequence>
 </UI>
 </Fragment>
</Wix>

Don't forget to add a UIRef element to your Product.wxs file to reference
your wizard:

<Product ...>
 <Package ... />
 <MediaTemplate ... />
 ...
 <UIRef Id="CustomWizard" />
</Product>

Adding a User Interface

[172]

When adding controls it's important to know that the order in which they appear in
your XML markup (from top to bottom) will be their tab order on the window. So,
you should place the button you'd want to receive the focus first at the top of your
markup, followed by the control that you'd want to receive the focus next, down
the line. In our example, the Install button would be focused when the window first
loads and pressing Tab would take you to the Cancel button.

You can prevent a control from being the default focused control by setting its
TabSkip attribute to yes. In that case, the next control in line will be focused when
the screen is first displayed.

Note that TabSkip only prevents a control from having
the focus when the dialog is first shown. The user will
still be able to tab to that control.

Adding a progress dialog
So what happens when we click the Install button? It installs but there's no
indication that anything has happened. We need a dialog that shows a progress
bar to inform the user that the install is happening. Add a new WiX source file to
your project and call it ProgressDlg.wxs. Add a UI element, like before, and then a
Dialog element with the Id attribute set to "ProgressDlg" to differentiate it in the
MSI database. The ProgressDlg.wxs file will look like the following code:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id="ProgressDlg"></Dialog>
 </UI>
 </Fragment>
</Wix>

Back in InstallDlg.wxs, add a DialogRef element inside the UI element to
reference this new file:

<Fragment>
 <UI Id="CustomWizard">
 <DialogRef Id="ProgressDlg" />

Chapter 6

[173]

The Dialog element in ProgressDlg.wxs will use the Modeless attribute to signify
that it shouldn't wait for user interaction. The installation process will continue, but
it will allow this dialog to remain up for the remainder of the installation. This allows
the dialog to respond to events that fire during the Execute sequence, which will
enable the dialog's progress bar to increment itself.

<Dialog Id="ProgressDlg"
 Width="370"
 Height="270"
 Title="Amazing Software"
 Modeless="yes">

If you like, you can add a Cancel button to this dialog, just in case the user decides
to cancel at this point. Refer back to InstallDlg for the markup. We'll also add a
Control element of type ProgressBar that uses the Subscribe element to receive
progress updates:

<Control Id="MyProgressBar"
 Type="ProgressBar"
 X="70"
 Y="150"
 Width="200"
 Height="20"
 ProgressBlocks="yes">

 <Subscribe Event="SetProgress"
 Attribute="Progress" />
</Control>

By subscribing to the SetProgress event, the progress bar is able to increment itself
as actions occur. The following screenshot is what it will look like:

Adding a User Interface

[174]

Before, when we talked about adding a Next button to take us to a second dialog,
there would have been no need to explicitly add that dialog to the UI sequence.
The button takes us to it. It would have been up to that second dialog to then have
an Install button that ended the dialog wizard and allowed the rest of the install
to continue. In other words, we must always end with a button that publishes the
EndDialog event with a Value of Return. Usually, that button is marked Install.

Our ProgressDlg, however, will remain up as the rest of the install continues. It's
"modeless". Therefore, we should schedule it to run after InstallDlg and before
ExecuteAction. This is shown in the following code:

<InstallUISequence>
 <Show Dialog="ProgressDlg"
 After="InstallDlg" />
</InstallUISequence>

If you look at the InstallUISequence table in Orca, you can see how things look:

Even if we'd had a second, third, and fourth dialog, each arrived at by clicking
a Next button on the dialog before, we wouldn't see any of them in this table.
The InstallDlg is our entry point. When it closes, via the EndDialog event,
ProgressDlg pops up. Since ProgressDlg is Modeless, ExecuteAction fires
immediately and takes us into the Execute sequence. The following is a complete
sample for the progress dialog:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI>
 <Dialog Id="ProgressDlg"
 Width="370"
 Height="270"

Chapter 6

[175]

 Title="Amazing Software"
 Modeless="yes">

 <Control Id="CancelButton"
 Type="PushButton"
 TabSkip="no"
 Text="Cancel"
 Height="17"
 Width="56"
 X="180"
 Y="243"
 Cancel="yes">
 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>

 <Control Id="MyProgressBar"
 Type="ProgressBar"
 X="70"
 Y="150"
 Width="200"
 Height="20"
 ProgressBlocks="yes">
 <Subscribe Event="SetProgress"
 Attribute=»Progress» />
 </Control>
 </Dialog>

 <InstallUISequence>
 <Show Dialog="ProgressDlg"
 After="InstallDlg" />
 </InstallUISequence>
 </UI>
 </Fragment>
</Wix>

Modal windows
Up to this point, closing one dialog opened another in its place. You can also create
"modal" windows that pop up on top of the current window. Instead of publishing
the NewDialog event inside a button, such as with our Next button, we can publish
the SpawnDialog event.

Adding a User Interface

[176]

Modal windows are usually a little bit smaller in size than normal windows so that
the parent window can be seen in the background. Suppose we had a dialog called
PopupDlg, such as in the following snippet:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI>
 <Dialog Id="PopupDlg"
 Width="300"
 Height="200"
 Title="Amazing Software">

 <Control Id="OkButton"
 Type="PushButton"
 Text="OK"
 Height="17"
 Width="56"
 X="200"
 Y="175">
 <Publish Event="EndDialog"
 Value="Return" />
 </Control>
 </Dialog>
 </UI>
 </Fragment>
</Wix>

We could use the SpawnDialog event to open it modally. Typically, modal windows
have an OK button that publishes the EndDialog event with a Value attribute of
Return. This allows them to be closed and have focus return to the parent window.

The following is what a button on InstallDlg would look like if it were set to open
PopupDlg modally:

<Control Id="PopupButton"
 Type="PushButton"
 Text="Show Popup"
 Height="17"
 Width="56"
 X="100"
 Y="243"
 Default="yes">
 <Publish Event="SpawnDialog"
 Value="PopupDlg" />
</Control>

Chapter 6

[177]

Here's what the result looks like:

ICE20 revisited
ICE20 is the validation check that makes sure you have the necessary dialogs
defined to handle things such as showing a friendly message when the user cancels
the install. We initially suppressed this check in the project's properties. Now, let's
remove that suppression and add these dialogs. Note that all are defined in the WiX
source files and you may find it easier to simply copy them to your project.

We need to define five dialogs: FilesInUse, Error, FatalError, UserExit,
and Exit.

FilesInUse
The FilesInUse dialog allows the user to shut down applications that are accessing
files the installer needs to update or delete. The MSI finds this dialog by looking
in the MSI Dialog table for a dialog with an Id attribute of FilesInUse. So, in our
new WiX source file, the Dialog element's Id attribute must match this name. The
FilesInUseDlg.wxs file will look like the following snippet:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>

Adding a User Interface

[178]

 <Fragment>
 <UI>
 <Dialog Id="FilesInUse"
 Width="370"
 Height="270"
 Title="Amazing Software">
 </Dialog>
 </UI>
 </Fragment>
</Wix>

To show which applications are using the files, we need to add a ListBox control
that uses a property called FilesInUseProcess.

<Control Id="InUseFiles"
 Type="ListBox"
 Width="300"
 Height="150"
 X="30"
 Y="60"
 Property="FileInUseProcess"
 Sorted="yes" />

We also need to add three buttons, Ignore, Retry, and Exit. Set the EndDialog event
to these values:

<Control Id="Retry"
 Type="PushButton"
 X="304"
 Y="243"
 Width="56"
 Height="17"
 Default="yes"
 Cancel="yes"
 Text="Retry">
 <Publish Event="EndDialog"
 Value="Retry">1</Publish>
</Control>

<Control Id="Ignore"
 Type="PushButton"
 X="235"
 Y="243"
 Width="56"
 Height="17"

Chapter 6

[179]

 Text="Ignore">
 <Publish Event="EndDialog"
 Value="Ignore">1</Publish>
</Control>

<Control Id="Exit"
 Type="PushButton"
 X="166"
 Y="243"
 Width="56"
 Height="17"
 Text="Cancel">
 <Publish Event="EndDialog"
 Value="Exit">1</Publish>
</Control>

Remember to add a DialogRef element to this dialog in your InstallDlg.wxs file:

<DialogRef Id="FilesInUseDlg" />

Error
An installer uses the Error dialog to display error messages. Create a new source
file and call it ErrorDlg.wxs. This file should set a property called ErrorDialog to
the value you've set the Dialog element's Id attribute to. In addition, the Dialog
element should set the ErrorDialog attribute to yes. The file should contain the
following snippet:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Property Id="ErrorDialog"
 Value="ErrorDlg" />

 <Dialog Id="ErrorDlg"
 Width="370"
 Height="270"
 Title="Amazing Software"
 ErrorDialog="yes">
 </Dialog>
 </UI>
 </Fragment>
</Wix>

Adding a User Interface

[180]

You'll also need to add a Text control inside the Dialog element and set its Id
attribute to ErrorText. This will be used to display the error message:

<Control Id="ErrorText"
 Type="Text"
 X="50"
 Y="15"
 Width="200"
 Height="60" />

Next, add seven new buttons. Each will publish the EndDialog event with one of the
following values:

• ErrorAbort

• ErrorCancel

• ErrorIgnore

• ErrorNo

• ErrorOk

• ErrorRetry

• ErrorYes

For example, here's the first that sets the ErrorAbort button:

<Control Id="A"
 Type="PushButton"
 X="100"
 Y="80"
 Width="56"
 Height="17"
 TabSkip="yes"
 Text="Cancel">
 <Publish Event="EndDialog"
 Value="ErrorAbort">1</Publish>
</Control>

You can change the Text attribute of each button so that it matches the type, such
as Yes for ErrorYes and No for ErrorNo. The X and Y attributes can remain the
same. Remember to reference this new dialog with a DialogRef element in your
InstallDlg file.

Chapter 6

[181]

FatalError
The FatalError dialog is shown when an unrecoverable error is encountered
during the install, causing a premature end. Add a new WiX source file and call it
FatalErrorDlg.wxs. The message will always be the same so you can add a Text
control that displays a static message, as in the following example:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI>
 <Dialog Id="FatalErrorDlg"
 Width="370"
 Height="270"
 Title="Amazing Software">

 <Control Id="Description"
 Type="Text"
 X="50"
 Y="70"
 Width="220"
 Height="80"
 Text="[ProductName] Setup Wizard ended prematurely
because of an error. Your system has not been modified. To install
this program at a later time, run Setup Wizard again." />
 <Control Id="Finish"
 Type="PushButton"
 X="180"
 Y="243"
 Width="56"
 Height="17"
 Default="yes"
 Cancel="yes"
 Text="Finish">
 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>
 </Dialog>
 </UI>

 <InstallUISequence>
 <Show Dialog="FatalErrorDlg"
 OnExit="error" />

Adding a User Interface

[182]

 </InstallUISequence>

 <AdminUISequence>
 <Show Dialog="FatalErrorDlg"
 OnExit="error" />
 </AdminUISequence>
 </Fragment>
</Wix>

The Text control uses the Text attribute to set the message to display. You may
notice that I'm using [ProductName] to reference a WiX property. The syntax, when
referencing a property in an attribute, is to surround the property's name with
square brackets. You should also add a button that publishes the EndDialog event
with a Value attribute of Exit to allow the user to quit the install.

We've added this dialog into two sequences: InstallUISequence and
AdminUISequence. This is required even if you aren't supporting administrative
installs. In both cases, set the Show element's OnExit attribute to error. This will
schedule the dialog in the appropriate place in those sequences.

UserExit
The UserExit dialog appears when the user cancels the install. Typically, it
contains some text and a Finish button that publishes the EndDialog event with
a Value attribute of Exit. Like the FatalError dialog, it must appear in both
InstallUISequence and AdminUISequence. This time, we'll set the Show element's
OnExit attribute to cancel.

The following is an example:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI>
 <Dialog Id="UserExitDlg"
 Width="370"
 Height="270"
 Title="Amazing Software">

 <Control Id="Description"
 Type="Text"
 X="50"
 Y="70"
 Width="220"
 Height="80"

Chapter 6

[183]

 Text="[ProductName] setup was interrupted. Your
system has not been modified. To install this program at a later time,
please run the installation again." />

 <Control Id="Finish"
 Type="PushButton"
 X="180"
 Y="243"
 Width="56"
 Height="17"
 Default="yes"
 Cancel="yes"
 Text="Finish">
 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>
 </Dialog>
 </UI>

 <InstallUISequence>
 <Show Dialog="UserExitDlg"
 OnExit="cancel" />
 </InstallUISequence>

 <AdminUISequence>
 <Show Dialog="UserExitDlg"
 OnExit="cancel" />
 </AdminUISequence>
 </Fragment>
</Wix>

Exit
The Exit dialog is shown at the end of a successful installation. Typically, it contains
some text and a Finish button. It must also be added to both InstallUISequence
and AdminUISequence. Here, set the Show element's OnExit attribute to success as
in the following example:

<?xml version=»1.0» encoding=»UTF-8»?>
<Wix xmlns=»http://schemas.microsoft.com/wix/2006/wi»>
 <Fragment>
 <UI>
 <Dialog Id="ExitDlg"
 Width="370"

Adding a User Interface

[184]

 Height="270"
 Title="Amazing Software">

 <Control Id="Description"
 Type="Text"
 X="50"
 Y="70"
 Width="220"
 Height="80"
 Text="[ProductName] setup has completed
 successfully. Click 'Finish' to exit the
 Setup Wizard." />

 <Control Id="Finish"
 Type="PushButton"
 X="180"
 Y="243"
 Width="56"
 Height="17"
 Default="yes"
 Cancel="yes"
 Text="Finish">
 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>
 </Dialog>
 </UI>

 <InstallUISequence>
 <Show Dialog="ExitDlg"
 OnExit="success" />
 </InstallUISequence>

 <AdminUISequence>
 <Show Dialog="ExitDlg" OnExit="success" />
 </AdminUISequence>
 </Fragment>
</Wix>

Chapter 6

[185]

Summary
In this chapter, we covered the basics of making simple dialogs. There are a few
required dialogs, as enforced by the ICE20 validation check, but for the most part
you're free to create as many of your own customized dialogs as you want.

In the next chapter, we'll explore UI controls such as buttons, text, and lists. This
should give you plenty of options when designing your install wizard.

Using UI Controls
Now that you've seen how to create windows for your user interface, it's time to
explore the controls you can use on them. Controls are the buttons, textboxes, lists,
and images that we've all interacted with before and that make up any graphical UI.
In this chapter, we'll discuss the following topics:

• The Control element and its basic attributes
• The various types of controls and their unique features

Attributes common to all controls
Placing a Control element inside a Dialog element adds a new control to
that window. You'll use its Type attribute to specify which kind of control it
is: PushButton, Text, and so on. Beware that these names are case sensitive.
"Pushbutton" isn't the same as "PushButton" and will give you an install time error.

Positioning and sizing are always the same: Use the X and Y attributes to place your
control at a specific coordinate on the window and the Width and Height attributes
to size it. You must also always give it an Id attribute that uniquely identifies it on
that dialog. So, you can have two buttons with the same ID if they're on two different
dialogs, but not if they're on the same dialog.

Disabling or hiding a control is straightforward. Set the Disabled attribute to yes
to prevent the user from interacting with it. Similarly, set Hidden to yes to hide the
control. You can also toggle these values at install time. Place a Condition element
inside the Control element. This uses an Action attribute to enable/disable or
hide/show your control, depending upon the state of some property.

Using UI Controls

[188]

To give you an idea, the following example disables a button if a property called
MyProperty is set to abc. Otherwise, it's enabled. To set this property at install time,
we'll add a checkbox that when checked, sets MyProperty to abc. When unchecked,
the property's value is cleared. That way, by checking and unchecking the box, you'll
see the button enabled and disabled.

<!--Checkbox that enables the button-->
<Control Id="myCheckbox"
 Type="CheckBox"
 Property="MyProperty"
 CheckBoxValue="abc"
 Text="Enable the button!"
 X="50"
 Y="25"
 Height="10"
 Width="150" />

<!--The button that is enabled/disabled-->
<Control Id="myButton"
 Type="PushButton"
 Text="A buton to enable"
 Height="17"
 Width="100"
 X="50"
 Y="50">

 <Condition Action="enable">
 <![CDATA[MyProperty = "abc"]]>
 </Condition>

 <Condition Action="disable">
 <![CDATA[MyProperty <> "abc"]]>
 </Condition>

 <Publish Event="EndDialog" Value="Exit" />
</Control>

The following screenshot displays the result:

Chapter 7

[189]

The interesting parts are where we set MyProperty with the checkbox, using its
Property attribute. Then, within the second control, which is our button, we nest
two Condition elements. The first checks whether MyProperty is equal to "abc". If it
is, its Action tells the control to enable itself. The other condition does the opposite.

I could also set Action attributes to hide and show to toggle the button's visibility.
This sort of thing is used in the WiX dialog sets to enable the Next button when the
end user license agreement is accepted.

Specific control syntax
In the following sections, we will explore each type of control. We'll begin with the
simpler types such as PushButton and Text, and then move on to complex controls
such as SelectionTree and ProgressBar.

PushButton
A button is one of the most basic types of controls and the one you'll probably
use the most. In WiX, it's created by setting the Control element's Type attribute
to PushButton. Use the Text attribute to set its label:

<Control
 Id="MyButton"
 Type="PushButton"
 Text="Click Me!"
 X="50"
 Y="50"
 Height="17"
 Width="75">

 <Publish Event="EndDialog" Value="Exit" />
</Control>

The following screenshot is what it looks like:

Using UI Controls

[190]

You always need to add a Publish element inside it or else the button won't do
anything. The Publish element executes an action, called a control event, when the
button is clicked. In the last example, I'm calling the EndDialog event with a value
of Exit to quit the install. A value of Return would have continued the install. There
are many control events available and we will explore them in the next chapter.

As far as styling your buttons, reference a text style in the Text attribute to use a
particular font:

<Control
 Id="MyButton"
 Type="PushButton"
 Text="{\Tahoma_Bold}Click me!"
 ... >

You can also use an icon instead of text. In that case, set the Text attribute to the ID
of a Binary element that uses its SourceFile attribute to point to an .ico file. Also,
set the Control element's Icon attribute to yes and its IconSize to the size of your
icon: 16, 32, or 48:

<Binary Id="myIcon" SourceFile="iconFile.ico" />

<Dialog ...>
 <Control
 Id="myButton"
 Type="PushButton"
 Text="myIcon"
 Icon="yes"
 IconSize="48"
 Height="50"
 Width="50"
 X="50"
 Y="50">

 <Publish Event="EndDialog"
 Value="Exit" />
 </Control>
</Dialog>

Here's the result:

Chapter 7

[191]

Something else to consider is whether to add a keyboard shortcut for your button.
To do so, add an ampersand (&) in front of one of the letters in the Text attribute.
Then, pressing Alt and that letter will trigger the button. You'll want to use the Text
element inside your control instead of the Text attribute, so that you can surround
the text with CDATA tags.

<Control
 Id="InstallButton"
 Type="PushButton"
 ... >

 <Text><![CDATA[&Install]]></Text>
 <Publish Event="EndDialog" Value="Return" />
</Control>

One last attribute for the PushButton control is called ElevationShield:

<Control Id="Install"
 ElevationShield="yes"
 Type="PushButton"
 Text="Install"
 Height="20"
 Width="70"
 ... >

If you set ElevationShield to yes then on systems that have UAC, such as
Windows Vista and newer, if the user doesn't have elevated privileges a shield
icon will be added to the button, as shown in the following screenshot:

The shield will not be shown if the user has elevated privileges, such as from being
an administrator.

Using UI Controls

[192]

Text
A Text control places a block of text on the dialog. The following code snippet is
an example:

<Control
 Id="SampleText"
 Type="Text"
 Text="This text comes from a Text control"
 Height="17"
 Width="200"
 X="50"
 Y="50" />

This is what it will look like:

Be sure to make it wide enough so that the text isn't clipped. Another option is to
make the height bigger and then set the NoWrap attribute to no so that the text wraps
to a new line when it runs out of width space. If the text runs out of height space it
gets clipped and will be replaced with an ellipsis (...).

Recall from the last chapter that you can use the TextStyle elements to format the
text. The following example creates a new style and applies it to the control:

<TextStyle Id="TahomaBold"
 FaceName="Tahoma"
 Size="12"
 Bold="yes"/>

 <Dialog ... >
 <Control Id="SampleText"
 Type="Text"
 Text="{\TahomaBold}Isn't this bold?"
 Height="17"
 Width="200"
 X="50"
 Y="50" />

Chapter 7

[193]

This produces the following stylized result:

Two other useful attributes are Transparent and RightAligned. The Transparent
attribute allows any background behind the control, such as a bitmap image, to show
through. RightAligned right justifies the text.

ScrollableText
The ScrollableText control is used to display large amounts of text that wouldn't
fit on the dialog window otherwise. It creates a read-only textbox with a scroll bar
and is often used to show a license agreement. To set the text, you can use a Text
element that points to a Rich Text Format (.rtf) file:

<Control
 Id="myScrollableText"
 Type="ScrollableText"
 Height="150"
 Width="300"
 X="50"
 Y="50"
 Sunken="yes">

 <Text SourceFile="Document.rtf" />
</Control>

Or you can add the RTF text directly inside the Text element:

<Control
 Id="myScrollableText"
 Type="ScrollableText"
 Height="150"
 Width="300"
 X="50"
 Y="50"
 Sunken="yes">

<Text><![CDATA[{\rtf1\ansi\ansicpg1252\deff0\deflang1033{\fonttbl{\f0\
fswiss\fcharset0 Arial;}}
{*\generator Msftedit5.41.21.2500;}\viewkind4\uc1\pard\f0\fs20 This
is a bunch of text...\par
}]]>
</Text>
</Control>

Using UI Controls

[194]

The RTF text created by Microsoft's WordPad tends to work better than that created
by Microsoft Word. The following screenshot is what it might look like:

If you'd rather see the scroll bar on the left, set the LeftScroll attribute to yes.

Line
A Line control is definitely the simplest of all. It creates a visible horizontal line
starting at the point specified by X and Y, and stretching the length specified by
Width. You can set Height to 0, as the attribute is ignored.

<Control Id="sampleLine" Type="Line" Height="0" Width="370"
 X="2" Y="50" />

It looks like this:

You might use this to separate bold title text on your dialogs from other content such
as text fields and buttons.

Chapter 7

[195]

GroupBox
A close relative to the Line control is the GroupBox control. It creates a rectangle that
you can use to visually group other controls. You have the option of displaying a
caption at the top by setting the Text attribute. The following is an example:

<Control
 Id="myGroupBox"
 Type="GroupBox"
 Text="My GroupBox"
 X="10"
 Y="10"
 Height="100"
 Width="200" />

To have controls appear inside the box, you'll have to position them there manually
using the X and Y attributes of each one. The GroupBox control doesn't offer any true
functionality. You can, however, stylize its caption by referencing a text style in its
Text attribute. The following is what a basic GroupBox looks like:

Bitmap
Bitmap controls show images on your dialog. You could use this to show a
picture on only a portion of the window or to skin the entire area. First, you must
use a Binary element to point to an image file. Then, reference that element's ID in
your control's Text attribute. Note that the image must be a raster graphics image,
so BMP and JPEG files will work but not vector graphics images such as PNGs.

<UI>
 <Binary Id="myPic" SourceFile="gradientBackground.jpg" />

 <Dialog ... >
 <Control
 Id="myBitmap"

Using UI Controls

[196]

 Type="Bitmap"
 Text="myPic"
 Height="270"
 Width="370"
 X="0"
 Y="0"
 TabSkip="no" />

Here, we're using an image that will cover the entire window. So, we set X and Y to
0 so that it will line up with the top-left corner. The image that you use will scale up
or down to the size you've set with Width and Height. Content that overflows the
window's bounds will be clipped.

If you add Text controls positioned over an image, set their Transparent attributes
to yes so that the background can be seen behind them. Things also tend to work
out better when you place the Bitmap control first in the markup and set its TabSkip
attribute to no. The following screenshot is what it might look like, with several other
elements on top:

Chapter 7

[197]

Icon
The Icon control is used to display an .ico image on your dialog. Like the Bitmap
control, you'll need to first reference the .ico file with a Binary element as shown:

<Binary Id="myIcon" SourceFile="myIcon.ico" />

Then, add a Control element of type Icon and reference the Binary element's ID in
the Text attribute. Use the IconSize attribute to specify the size of the icon: 16, 32,
or 48:

<Control
 Id="myIcon"
 Type="Icon"
 Text="myIcon"
 X="50"
 Y="50"
 Height="48"
 Width="48"
 IconSize="48" />

The following screenshot is what it might look like:

Edit
An Edit control creates a textbox that the user can type into. You'll use its Property
attribute to set the value of a property to what the user types. It isn't necessary to
declare this property beforehand, as it will be created on the fly. The following is an
example that sets a property called USER_NAME. Make the property public, so that it
will be available during the Execute sequence, by using uppercase letters:

<Control
 Id="myEdit"
 Type="Edit"
 Property="USER_NAME"

Using UI Controls

[198]

 Height="17"
 Width="100"
 X="50"
 Y="50" />

It looks like the following screenshot:

You can see this property being created by keeping a log of the install and then
searching it for the name of the property. Here's the entry:

MSI (c) (54:98) [13:33:25:734]: PROPERTY CHANGE: Adding USER_NAME
property. Its value is 'Nick'.

If you're collecting a password or other sensitive data, you can hide the user's input
by setting the Control element's Password attribute to yes. This will only show
asterisks (*) as the user types. To be even more secure, you can declare the property
before and set its Hidden attribute to yes. That way, the value won't be visible in the
install log either:

<Control
 Id="myPassword"
 Type="Edit"
 Property="USER_PASSWORD"
 Password="yes"
 Height="17"
 Width="100"
 X="50"
 Y="50" />

You can also limit the number of characters that the user can enter by adding
the maximum number in curly brackets to the Text attribute. This could even be
combined with a text style, as in the next example:

<Control
 Id="myEdit"
 Type="Edit"
 Text="{\Tahoma_Bold}{50}"
 Height="17"
 Width="100"
 X="50"
 Y="50"
 Property="MY_PROPERTY" />

Chapter 7

[199]

The Edit control has another attribute called Multiline that when set to yes should,
according to the Windows Installer documentation, create a multi-line edit control
with a vertical scroll bar. It's best avoided, however, because of its unconventional
operation. What you'll actually get is a textbox that adds a new line if you press
Ctrl + Enter, and adds a scroll bar if you run out of vertical space. It won't be what
users are expecting.

MaskedEdit
The MaskedEdit control is used with the ValidateProductID standard action to
validate a product serial number. To use it you'll first need to define a mask, which
is the pattern that the user's input must match. You'll define this with a property
named PIDTemplate. Be sure to mark it as Hidden so that the user can't see the mask
in the install log.

The following is a mask that says the user must enter three numbers; a dash, three
numbers, another dash, and then four numbers. The pound signs (#) stand for
numbers and the dashes are literal characters.

<Property Id="PIDTemplate" Hidden="yes">
<![CDATA[<###-###-####>]]>
</Property>

The following table explains the characters that have special meaning in a mask:

Symbol Meaning
It can be any number.
& It can be any letter.
? It can be a number or letter.
^ It can be any letter, but it will always be converted to uppercase.
@ It creates a random number. This is only used in the "hidden" part of the mask.
< It marks the beginning of the visible textbox (visible part of the mask).
> It marks the end of the visible textbox.

In the previous example, our mask began with the less-than sign (<) and ended with
the greater-than sign (>). These mark the beginning and end of the part of the mask
that the user must match. You can also add characters before and after this part, and
these extra characters will be added to what the user enters. For example, the next
mask prepends "12345" to the beginning of the user's input and five random numbers
to the end.

12345<###-###-####>@@@@@

Using UI Controls

[200]

To use this in a MaskedEdit control, set the Control element's Text attribute to the
ID of the property. Surround it with square brackets as shown:

<Control
 Id="myMaskedEdit"
 Type="MaskedEdit"
 Text="[PIDTemplate]"
 Property="PIDKEY"
 Height="17"
 Width="150"
 X="50"
 Y="50" />

Here's what it looks like:

As we're using a property called PIDKEY and a mask called PIDTemplate, the
ValidateProductID action will run and check the value. If it's a match, a new
property called ProductID will be set that combines the user's input with the hidden
characters in the mask. If not, that property won't be set. Either way, you'll know if
the user's input was valid. You would expect to see this in the log:

Property(C): PIDKEY = 123-456-7890
Property(C): ProductID = 12345-123-456-7890-64010

From here, you could execute a custom action that truly checks the serial number.
For example, you could write a C# method that calls a web service, passing it the
serial number, to evaluate its validity. You'd likely add a conditional statement
to this custom action so that it only runs if ProductID has been set. Be aware
that because you're collecting the number during the UI, ValidateProductID
won't have a chance to validate it until it runs in the Execute sequence. So, your
custom action should run after that. That's not to say that you couldn't forgo the
ValidateProductID action altogether and roll your own validation to be run during
the UI sequence.

Chapter 7

[201]

PathEdit
A PathEdit control is used to change the path that one of your Directory elements
points to. To use it, the Directory element must have an ID that's a public property,
meaning it must be uppercase. Suppose that this was our directory structure:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLLOCATION"
 Name="Amazing Software" />
 </Directory>
</Directory>

Here, our main install directory has an ID of INSTALLLOCATION. Now, we can
reference this directory in the Property attribute of our control:

<Control
 Id="myPathEdit"
 Type="PathEdit"
 Property="INSTALLLOCATION"
 Height="17"
 Width="200"
 X="50"
 Y="50" />

Here's what it looks like:

The user can edit this and when they do the installation path will be changed.
There's just one thing: The installer won't know that it's changed. To alert it, we need
to fire the SetTargetPath event and pass it our new path. This is best called by a
PushButton control so let's add one:

<Control Id="OKButton"
 Type="PushButton"
 Height="17"
 Width="56"
 X="50"
 Y="70"

Using UI Controls

[202]

 Text="OK">

 <Publish Event="SetTargetPath"
 Value="INSTALLLOCATION"
 Order="1">1</Publish>

 <!--Other Publish element to go to next dialog-->

</Control>

The PushButton control publishes the SetTargetPath event with Value set to the
ID of our directory. When the user clicks it, the new path will be set. This event does
some basic validation on the path such as checking that the drive letter exists or, if
it's a UNC path, the remote location can be reached.

CheckBox
A CheckBox control is a checkbox that the user can click to set a property. You'll
specify which property to set with the Property attribute and what to set it to with
the CheckBoxValue attribute. If you want to stress that this value is meant to be a
number, set the Integer attribute to yes. Here's an example:

<Control
 Id="myCheckbox"
 Type="CheckBox"
 Property="myCheckboxResult"
 CheckBoxValue="my value"
 Text="Check the box please."
 X="50"
 Y="50"
 Height="10"
 Width="150" />

The Text attribute is the text that appears to the right of the checkbox and explains
what the box is for. Be sure to make the control wide enough to fit all of this text in.
Here's what it looks like:

Chapter 7

[203]

When the user checks the box, the property myCheckboxResult will be set to my
value. Deselecting the box will delete the property. If you declare the property
beforehand with a Property element, the box will be checked by default:

<Property Id="myCheckboxResult" Value="my value" />

RadioButtonGroup
A RadioButtonGroup control creates a list of radio buttons, only one of which can
be selected at a time. As one of the buttons has to be selected by default, you must
create a Property element first and reference it on the control. In the following, a
Property element is created with a value of 1. The radio button with that value will
be selected as the default.

<Property Id="buttonGroup" Value="1" />

To reference this property, set the Control element's Property attribute to its ID:

<Control
 Id="myRadioGroup"
 Type="RadioButtonGroup"
 Property="buttonGroup"
 Height="100"
 Width="100"
 X="50"
 Y="50">
</Control>

Now to add our radio buttons. Although you can define them outside of the Control
element—placing them inside the UI element instead—it's more common to add
them as children to the control. Each button is created by a RadioButton element
whose Text attribute sets its label. The property will be changed by each button's
Value attribute. All of the radio buttons are held inside a RadioButtonGroup
element that, such as the Control element, references our property.

Here's our control with three radio buttons nested inside:

<Control
 Id="myRadioGroup"
 Type="RadioButtonGroup"
 Property="buttonGroup"
 Width="100"
 Height="100"
 X="50"

Using UI Controls

[204]

 Y="50">

 <RadioButtonGroup Property="buttonGroup">
 <RadioButton Value="1"
 Text="One"
 Height="17"
 Width="50"
 X="0"
 Y="0" />

 <RadioButton Value="2"
 Text="Two"
 Height="17"
 Width="50"
 X="0"
 Y="20" />

 <RadioButton Value="3"
 Text="Three"
 Height="17"
 Width="50"
 X="0"
 Y="40" />
 </RadioButtonGroup>
</Control>

The following is what it looks like:

Selecting a different radio button will set the buttonGroup property to that
button's value.

You can change the look of the buttons with the Control element's HasBorder,
Sunken, and RightAligned attributes. HasBorder will put a GroupBox control
around the buttons, although you should then change the X and Y attributes of the
RadioButton elements so that they have some padding. Sunken will place a sunken
border edge around the buttons. RightAligned will place the labels (One, Two,
Three) on the left-hand side of the buttons.

Chapter 7

[205]

You also have the option of displaying icons next to your radio buttons instead of
text. For that, replace the Text attribute on the RadioButton control with an Icon
attribute set to the ID of a Binary element pointing to an .ico file.

ComboBox
A ComboBox control creates a drop-down list of selectable items. First, create a
Control element of type ComboBox and set its Property attribute to the name of a
property that will store the item the user selects from the list. If you want your items
to be sorted alphabetically, set the Sorted attribute to yes. Also, be sure to always
set the ComboList attribute to yes. Here's an example where the option the user
selects will be stored in a property called selectedItem:

<Control
 Id="myComboBox"
 Type="ComboBox"
 Width="100"
 Height="50"
 X="50"
 Y="50"
 Property="selectedItem"
 ComboList="yes"
 Sorted="yes">

</Control>

The items in your list are defined with the ListItem elements nested inside a
ComboBox element. Although you can place this outside of the Control element, it's
clearer to place it directly inside. The ComboBox element uses its Property attribute
to tie it to the control. Each ListItem sets a Text attribute, which is what gets
displayed, and a Value attribute that sets the value of the item. Let's add three items
to our list:

<Control ... >

 <ComboBox Property="selectedItem">
 <ListItem Text="One" Value="1" />
 <ListItem Text="Two" Value="2" />
 <ListItem Text="Three" Value="3" />
 </ComboBox>

</Control>

Using UI Controls

[206]

If you want to set one of the items as the default, set a Property element with an
ID that matches the property name we're using in our control and a Value attribute
that matches the value of ListItem. This, for example, would set the default item
selected to ListItem that has a Value attribute of 2:

<Property Id="selectedItem" Value="2" />

This is what it will look like:

ListBox
A ListBox control is similar to a ComboBox control except that the options are all
displayed at once. Create a Control element and set its Type attribute to ListBox.
This control also uses the Property and Sorted attributes such as a ComboBox. You
can add list items in the same way as before, using ListItem elements, except that
this time they'll be contained inside a ListBox element:

<Control
 Id="myListBox"
 Type="ListBox"
 Width="100"
 Height="45"
 X="50"
 Y="50"
 Property="selectedItem"
 Sorted="yes">

 <ListBox Property="selectedItem">
 <ListItem Text="One" Value="1" />
 <ListItem Text="Two" Value="2" />
 <ListItem Text="Three" Value="3" />
 </ListBox>
</Control>

Chapter 7

[207]

If you want to set a default selected item, create a Property element with an ID that
matches your ListBox element's property and a Value attribute that's the same as
the value of a ListItem.

<Property Id="SelectedItem" Value="2" />

It looks like the following screenshot:

You can also add the Sunken attribute, set to yes, to give your list box a sunken border.

ListView
A ListView control is like a ListBox control except that it displays an icon and text
for each selectable option. For each item, you'll need to define a Binary element that
points to an icon file.

<Fragment>
 <UI>
 <Binary Id="face1" SourceFile="icons/alien1.ico" />
 <Binary Id="face2" SourceFile="icons/alien2.ico" />
 <Binary Id="face3" SourceFile="icons/alien3.ico" />

The next step is to create a Control element of type ListView and set the IconSize
attribute to the size of your icons: 16, 32, or 48. Also, set its Property attribute to
store the option the user selects:

<Control
 Id="myComboBox"
 Type="ListView"
 Width="200"
 Height="150"
 X="10"
 Y="10"
 Property="selectedItem"
 IconSize="32">

 <ListView Property="selectedItem">
 <ListItem Text="Alien 1" Icon="face1" Value="1" />

Using UI Controls

[208]

 <ListItem Text="Alien 2" Icon="face2" Value="2" />
 <ListItem Text="Alien 3" Icon="face3" Value="3" />
 </ListView>
</Control>

Here, we've added a ListView element inside the control with ListItem for each
option. Each one gets a Text attribute for the label, an Icon attribute that references
one of the Binary elements, and a Value attribute to hold the value of the item. The
following is what it looks like:

To set a default selected item, set a Property element with an ID that matches your
control's Property attribute to the value of one of your ListItems. As you can see
from this example, the image quality is usually poor, even if your .ico files are good.

DirectoryList
A DirectoryList control displays a directory and the folders that are in it. It can
be used to set the path of one of your Directory elements. Here's one that sets a
Directory element with an ID of INSTALLLOCATION:

<Control
 Id="myDirectoryList"
 Type="DirectoryList"
 Property="INSTALLLOCATION"
 Height="150"
 Width="320"
 X="10"
 Y="30" />

Chapter 7

[209]

If you add this to one of your dialogs, you won't be very impressed with the
result. All you'll see is a blank box. That's because you're looking inside the
INSTALLLOCATION directory—a directory that hasn't been installed yet and no folders
exist inside it.

To get some benefit from this, we need to add some more controls around it to alert
the user to where they are in the folder hierarchy. At the very least, you should add
a PathEdit control that displays the current directory. For example, this could be
something like the following code snippet:

<Control
 Id="myPath"
 Type="PathEdit"
 Height="17"
 Width="320"
 X="10"
 Y="10"
 Property="INSTALLLOCATION" />

The following screenshot shows a dialog with even more bells and whistles:

Using UI Controls

[210]

Here, the giant directory list in the middle of the dialog is showing the Program Files
folder after we navigated out of INSTALLLOCATION (whose friendly name is Amazing
Software). Creating a button that navigates up one directory is done by adding a
PushButton control to the same dialog as your directory list and having it publish
the DirectoryListUp event with a value of 0. In this example, it uses an icon that
looks like an arrow pointing up:

<Control
 Id="DirUpButton"
 Type="PushButton"
 Height="17"
 Width="20"
 X="340"
 Y="30"
 Icon="yes"
 Text="upIcon"
 IconSize="16">

 <Publish Event="DirectoryListUp" Value="0" />
</Control>

There's also a button for creating new directories (labeled with a plus sign). It
publishes the DirectoryListNew event:

<Control
 Id="NewDirButton"
 Type="PushButton"
 Height="17"
 Width="20"
 X="340"
 Y="50"
 Icon="yes"
 Text="addIcon"
 IconSize="16">

 <Publish Event="DirectoryListNew" Value="0" />
</Control>

Once the user has highlighted the directory that they want to set the path to, you'll
need to save it. To do that, add a Publish element inside a Next button with a
SetTargetPath event and a value set to the ID of the target Directory element.
Here, I add such a button and also have it open the next dialog as shown in the
following code snippet:

<Control Id="NextButton"

Chapter 7

[211]

 Type="PushButton"
 Text="Next"
 Height="17"
 Width="56"
 X="245"
 Y="243">

 <Publish Event="SetTargetPath"
 Value="INSTALLLOCATION"
 Order="1">1</Publish>

 <Publish Event="NewDialog"
 Value="SecondDlg"
 Order="2">1</Publish>
</Control>

DirectoryCombo
A DirectoryCombo control displays a drop-down list of directories and drives. You
can use it to show the install directory and other drives it can be changed to. The next
example shows the INSTALLLOCATION directory and any remote and fixed drives that
are accessible:

<Control
 Id="myDirectoryCombo"
 Type="DirectoryCombo"
 Property="INSTALLLOCATION"
 Fixed="yes"
 Remote="yes"
 X="10"
 Y="10"
 Width="200"
 Height="100" />

Here's the result:

Using UI Controls

[212]

This example displays the available fixed (otherwise known as internal) and remote
drives. The following table explains all of your options:

Attribute Description
Fixed Lists the fixed internal hard drives.
Remote Lists the remote volumes.
Removable Lists the removable drives.
CDROM Lists the CD-ROM volumes.
Floppy Lists the floppy drives.
RAMDisk Lists the RAM disks.

A DirectoryCombo control by itself cannot drill down into drives and their
directories. Therefore, it works best when paired with another control that
can, such as a DirectoryList.

SelectionTree
A SelectionTree displays a tree of the features defined in your installer. The user
can use this to include or exclude certain features at install time. Be sure to add the
Property attribute to the Control element, specifying your main install directory.

<Control
 Id="MySelectionTree"
 Type="SelectionTree"
 Property="INSTALLLOCATION"
 X="10"
 Y="30"
 Width="200"
 Height="120" />

Here is what it looks like:

Chapter 7

[213]

When you click on one of the features you're given the option to install it locally,
install it as an advertised feature, or to not install it. The text for these options has
to be defined by the UIText elements inside the UI element. Define the following
elements: MenuLocal, MenuAllLocal, MenuAdvertise, and MenuAbsent:

<UIText Id="MenuLocal">The feature will be installed locally.</UIText>

<UIText Id="MenuAllLocal">The feature and all of its subfeatures will
be installed locally.</UIText>

<UIText Id="MenuAdvertise">The feature will be installed when
needed.</UIText>

<UIText Id="MenuAbsent">The feature will not be installed.</UIText>

When you click on a feature you'll see these options, as shown in the
following screenshot:

Your Feature elements, defined in your main .wxs file, can use the Description
attribute to show information about what they contain, as in this example:

<Feature Id="ProductFeature"
 Title="Main Product"
 Level="1"
 Description="The main feature for the product">

 <ComponentRef Id="cmp_myFile" />
</Feature>

Using UI Controls

[214]

To show this on the dialog that has your SelectionTree, add a Text control
that subscribes to the SelectionDescription event. The Subscribe element's
Attribute must be set to Text. You can also show the size of the feature by
subscribing another Text control to the SelectionSize event.

<Control Id="MySelectionDescription"
 Type="Text"
 X="220"
 Y="30"
 Width="100"
 Height="30">
 <Subscribe Event="SelectionDescription" Attribute="Text" />
</Control>

<Control Id="MySelectionSize"
 Type="Text"
 X="220"
 Y="70"
 Width="100"
 Height="50">
 <Subscribe Event="SelectionSize" Attribute="Text" />
</Control>

When you use SelectionSize, you have to define a few more UIText elements:

<UIText Id="Bytes">Bytes</UIText>
<UIText Id="KB">KB</UIText>
<UIText Id="MB">MB</UIText>
<UIText Id="GB">GB</UIText>

<UIText Id="SelChildCostPos">Feature will use [1] on your hard
 drive.</UIText>

<UIText Id="SelChildCostNeg">Feature will free [1] on your
 hard drive.</UIText>

<UIText Id="SelChildCostPending">Figuring space needed for
 this feature...</UIText>

Chapter 7

[215]

The format for these messages is defined by Windows Installer, which will insert the
applicable value where you've placed [1]. Here's the final result:

VolumeCostList
A VolumeCostList control displays available hard drives and the amount of disk
space your installation will require on them.

<Control
 Id="myVolumeCostList"
 Type="VolumeCostList"
 Fixed="yes"
 Text="{50}{50}{70}{50}{50}"
 X="10"
 Y="10"
 Width="300"
 Height="100" />

In this example, we're only showing the space required on the fixed drives.
Any of the attributes available to the DirectoryCombo control are also available
to VolumeCostList. The Text attribute sets the widths of each column in
VolumeCostList. Here's what it looks like:

Using UI Controls

[216]

You'll need to define the following UIText elements inside the UI element, some of
which are repeats from the SelectionTree control:

<UIText Id="Bytes">Bytes</UIText>
<UIText Id="KB">KB</UIText>
<UIText Id="MB">MB</UIText>
<UIText Id="GB">GB</UIText>

<UIText Id="VolumeCostAvailable">Free Space</UIText>
<UIText Id="VolumeCostDifference">Difference</UIText>
<UIText Id="VolumeCostRequired">Required</UIText>
<UIText Id="VolumeCostSize">Total Size</UIText>
<UIText Id="VolumeCostVolume">Name</UIText>

Typically, this control is shown on a modal window during the installation. The
user may click a button that says something like "Disk Cost" on the main window
and the modal window will be displayed over the top. There's a practical reason for
doing this. If you try to show VolumeCostList too soon, such as on the very first
dialog, the numbers won't be calculated yet. You'd likely see a column of zeroes in
the Required column. This is because these numbers aren't available until several
properties, including CostingComplete, have been set. This happens during the
costing phase at the beginning of the install.

VolumeSelectCombo
A VolumeSelectCombo control is a drop-down list that shows available drives. Using
the TARGETDIR property, you might use this to change the drive that your files are
installed to. In the following example, I display all fixed drives in the list:

Chapter 7

[217]

You might pair it with a PathEdit control that shows the user what the install path
is currently set to. If you don't want to let the user edit the PathEdit control, set its
Disabled attribute to yes:

When the user selects a new option, the install path will be changed to use that drive
as shown:

Notice that if they select D:\ or J:\ in this example, we don't target the Program
Files folder as that only exists on the C:\. Instead, we just install to the root folder
of that drive. Here's the control's markup:

<Control
 Id="myVolumeSelectCombo"
 Type="VolumeSelectCombo"
 Property="TARGETDIR"
 Fixed="yes"
 Remote="yes"
 X="10"
 Y="10"
 Width="100"
 Height="17">

<Publish
 Property="INSTALLLOCATION"
 Value="[ProgramFilesFolder]Amazing Software\"
 Order="1">

Using UI Controls

[218]

 <![CDATA[TARGETDIR << %SYSTEMDRIVE]]>
</Publish>

<Publish
 Property="INSTALLLOCATION"
 Value="[TARGETDIR]Amazing Software\"
 Order="2">
 <![CDATA[NOT (TARGETDIR << %SYSTEMDRIVE)]]>
</Publish>

<Publish Event="SetTargetPath"
 Value="INSTALLLOCATION"
 Order="3">1</Publish>
</Control>

In the Control element we've set the Type attribute to VolumeSelectCombo, and the
Property to TARGETDIR. By using the Fixed attribute, we're saying we only want to
see that type of drive in the list.

So that we aren't hardcoding C:\ in our conditions, we use the << operator to check
that the left side of the condition starts with the string on the right side. So, we'll be
checking if TARGETDIR starts with %SYSTEMDRIVE, which is the drive letter where the
Program Files folder is stored—usually the C: drive.

The first Publish element sets the property INSTALLLOCATION to the path
[ProgramFilesFolder]Amazing Software\, but only if the user has selected the
%SYSTEMDRIVE, a.k.a. C:\. The second Publish element is only used if the user has
not chosen the C:\. In that case, we set INSTALLLOCATION to [TARGETDIR]Amazing
Software\, which would be J:\Amazing Software, for example.

The last Publish element calls the SetTargetPath event to save the new install
path to the installation session. Without that, the change wouldn't really be noticed
by the installer.

Billboard
A Billboard control displays a slideshow to entertain the user while the installation
is in progress. Unlike the other controls we've seen, which are shown during the UI
sequence, a Billboard control can only be used during the deferred stage of the
Execute sequence. Therefore, you'll need to place it on a "Modeless" dialog shown at
the end of your wizard, just like the progress dialog we saw in the last chapter.

Chapter 7

[219]

Remember, to create this type of dialog, set the Dialog element's Modeless attribute
to yes:

<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id="BillboardDlg"
 Width="370"
 Height="270"
 Title="Amazing Software"
 NoMinimize="no"
 Modeless="yes">

<!--Our Billboard will go here-->

 </Dialog>

 <InstallUISequence>
 <Show Dialog="BillboardDlg" After="InstallDlg" />
 </InstallUISequence>
 </UI>
 </Fragment>
</Wix>

We've set up a new dialog called BillboardDlg and set it to be shown after
InstallDlg. This will allow it to stay up as the installer enters the Execute phase.
Remember to add a DialogRef element to this dialog in InstallDlg:

<DialogRef Id="BillboardDlg" />

Now to add our Billboard control: Add a Control element of Type set to
Billboard inside your new dialog and have it subscribe to the SetProgress event.
This allows it to change its picture as the install progresses. Make sure that the
Control element's Width and Height attributes are big enough for your images to fit
into. In this example, the image will fill the entire space of the dialog:

<Dialog Id="BillboardDlg"...>

 <Control Id="MyBillboard"
 Type="Billboard"
 X="0"
 Y="0"
 Height="270"
 Width="370">
 <Subscribe Event="SetProgress" Attribute="Progress" />
 </Control>
</Dialog>

Using UI Controls

[220]

To set the images to display on the billboard, add Binary elements that point to your
image files:

<Binary Id="Billboard1" SourceFile="BillboardImage1.jpg" />
<Binary Id="Billboard2" SourceFile="BillboardImage2.jpg" />
<Binary Id="Billboard3" SourceFile="BillboardImage3.jpg" />

Next, add a BillboardAction element inside the UI element. Its Id attribute
will determine during which Execute standard action the billboards will be shown.
For example, BillboardAction will be displayed during the InstallFiles action.
Here, we've scheduled two billboards to be displayed while InstallFiles is
happening. However, we can add more within that same BillboardAction and
they will be shown in sequence:

<BillboardAction Id="InstallFiles">
 <Billboard Id="BB1" Feature="ProductFeature">
 <Control Id="InstallFilesBillboard1"
 Type="Bitmap"
 X="0"
 Y="0"
 Height="270"
 Width="370"
 Text="Billboard1" />
 </Billboard>

 <Billboard Id="BB2" Feature="ProductFeature">
 <Control Id="InstallFilesBillboard2"
 Type="Bitmap"
 X="0"
 Y="0"
 Height="270"
 Width="370"
 Text="Billboard2" />
 </Billboard>
</BillboardAction>

The Billboard element inside BillboardAction contains a Bitmap control
that points to the image to display. You can think of this as being one slide in the
slideshow. By adding more Billboard elements, we get more slides—but only during
the InstallFiles action in this case. To cover other actions, you'll need to add more
BillboardAction elements. The result is shown in the following screenshot:

Chapter 7

[221]

The Billboard element's Feature attribute tells the installer to only show this set
of slides if that feature is being installed. The Bitmap control inside sets its X and
Y attributes to 0 to line it up with the top-left corner of the Billboard control. It's
possible to have one Billboard element contain multiple controls, such as Text
controls positioned over Bitmap controls. This would give you a layered effect of text
and images.

Often, it takes a moment for anything in your billboard to be displayed because the
Execute sequence first runs through its immediate phase, gathering information
before proceeding to the deferred stage. During this immediate phase, your billboard
won't be displayed. For that reason, you may decide to add a Bitmap control or some
text that is displayed from the very start. This will be replaced by the billboard when
it's ready. The Bitmap control can be positioned in the same spot as where your
Billboard will go:

<Dialog Id="BillboardDlg" ...>

 <Control Id="StartingBillboard"
 Type="Bitmap"
 X="0"
 Y="0"
 Height="200"
 Width="300"
 Text="Billboard1" />

Using UI Controls

[222]

ProgressBar
A ProgressBar control is a bar that incrementally fills with tick marks to illustrate
the installation's progress. Like the Billboard control, a ProgressBar control
should appear on a modeless dialog that's sequenced as the last dialog during the
UI phase. That way, it can remain up during the Execute sequence and show the
progress of the deferred stage. The markup looks like the following code snippet:

<Control Id="MyProgressBar"
 Type="ProgressBar"
 X="50"
 Y="150"
 Width="250"
 Height="20">
 <Subscribe Event="SetProgress" Attribute="Progress" />
</Control>

This control should subscribe to the SetProgress event so that it can update itself as
the install continues. It looks like the following screenshot:

If you set the ProgressBlocks attribute to yes the look changes, as shown in the
following screenshot:

Chapter 7

[223]

It's possible to reset and increment a ProgressBar control from a C# custom
action. This is done by using the Session object's Message method. This method can
accept a variety of message types, including a progress message. We'll use a Record
object, which is a type of collection, to set our message. You can find documentation
about setting Record objects at http://msdn.microsoft.com/en-us/library/
aa370354%28VS.85%29.aspx. The following code, where the first value in the record
is 0, resets the ProgressBar control:

private static void ResetProgress(Session session)
{
 Record record = new Record(4);
 record[1] = "0"; // "Reset" message
 record[2] = "1000"; // total ticks
 record[3] = "0"; // forward motion
 record[4] = "0"; // execution is in progress

 session.Message(InstallMessage.Progress, record);
}

The Message method sets its type through the InstallMessage enumeration,
which we've set to Progress. To increment the bar a certain number of ticks, set the
record's first value to 2, and its second to the number of ticks to add:

private static void IncrementProgress(
 Session session, int ticks)
{
 Record record = new Record(2);
 record[1] = "2"; // "Increment" message
 record[2] = ticks.ToString(); // ticks to increment

 session.Message(InstallMessage.Progress, record);
}

You could then call these methods in your custom action:

[CustomAction]
public static ActionResultMyCustomAction(Session session)
{
 // reset bar
 ResetProgress(session);

 //do some stuff for the custom action...

 //add 100 tick marks

Using UI Controls

[224]

 IncrementProgress(session, 100);

 returnActionResult.Success;
}

If you'd rather have things happen more or less on their own without you having
to specify each time how many tick marks to add, then we'll need to do things
differently. This other way goes hand-in-hand with displaying info about what's
happening in a Text control above the ProgressBar control.

First, add a Text control to your dialog that subscribes to the ActionData event:

<Control Id="InfoText"
 Type="Text"
 X="50"
 Y="130"
 Width="250"
 Height="17">
 <Subscribe Event="ActionData" Attribute="Text" />
</Control>

<Control Id="MyProgressBar"
 Type="ProgressBar"
 X="50"
 Y="50"
 Width="250"
 Height="20">
 <Subscribe Event="SetProgress" Attribute="Progress" />
</Control>

This new control will display messages about what's going on at any point
during the install. To get a message about your custom actions to show up, add a
ProgressText element to your dialog, inside the UI element:

<ProgressText Action="MyCustomAction"
 Template="Doing Stuff: [1]" />

Its Action attribute tells the installer when to show this message (during which
action) and Template is what to display. The [1] in the template is where your
messages will fill in as your custom action executes.

Now, at the beginning of your custom action, set up how many tick marks to add for
each update you send. The following is a method that does that:

private static void NumberOfTicksPerActionData(
 Session session, int ticks)

Chapter 7

[225]

{
 Record record = new Record(3);
 record[1] = "1"; // Bind progress bar to progress messages
 record[2] = ticks.ToString(); // ticks to add each time
 record[3] = "1"; // enable

 session.Message(InstallMessage.Progress, record);
}

The next method we create will do two things: display a message in the Text control
and increment the ProgressBar control:

private static void DisplayActionData(
 Session session, string message)
{
 Record record = new Record(1);
 record[1] = message;

 session.Message(InstallMessage.ActionData, record);
}

Here's a custom action that illustrates how they're used. So that you have time to
see the messages get displayed, we'll have the code sleep for two seconds between
each update:

[CustomAction]
public static ActionResultMyCustomAction(Session session)
{
 ResetProgress(session);
 NumberOfTicksPerActionData(session, 100);

 DisplayActionData(session, "Sleeping for two seconds...");
 System.Threading.Thread.Sleep(2000);

 DisplayActionData(session, "Sleeping two more seconds...");
 System.Threading.Thread.Sleep(2000);

 DisplayActionData(session, "This is my third message");
 System.Threading.Thread.Sleep(2000);

 returnActionResult.Success;
}

Using UI Controls

[226]

Here's the result:

Summary
In this chapter, we discussed all of the available controls that you can use on your WiX
dialogs. They range from simple lines and buttons to progress bars and billboards.
With this knowledge, you can either create your own dialogs from scratch or add new
controls to the dialogs that come with the WiX toolset's WixUIExtension library.

In the next chapter, we'll dig into the meaning of control events. These are used
to subscribe a control to a particular Windows Installer event or to have a control
publish one itself.

Tapping into Control Events
Windows Installer defines a limited number of events that your UI controls can
listen out for or trigger. For example, a progress bar can listen for actions that say
progress has taken place, and then react by showing more ticks. Or, a button can
trigger an action that closes the current window. Listening for an event is known as
subscribing and triggering one is known as publishing.

Because these events happen within the Control elements they're known as Control
Events. We've covered several examples of control events already in Chapter 7, Using
UI Controls, but we'll cover others that you haven't seen and show how the whole
process works. In this chapter, we will:

• Use the Publish and Subscribe elements to connect to events
• Get some hands-on experience with both types

Publishing control events
To trigger an event, nests a Publish element inside a Control element. The Event
attribute identifies the action that you want to publish and the Value attribute sets
the required argument for that action. For example, to cause a PushButton control
to open a new modal window, add a Publish element inside it that specifies the
SpawnDialog event with Value set to the name of the dialog to open, as in the
following snippet:

<Control Id="ShowPopupButton"
 Type="PushButton"
 Text="Show Popup"
 Height="17"
 Width="56"
 X="245"
 Y="243"

Tapping into Control Events

[228]

 Default="yes">
<Publish Event="SpawnDialog"
 Value="PopupDlg" />
</Control>

You'll find that different events require different arguments in the Value attribute.
Here, Value takes the ID of the Dialog element you want to open. Also, only certain
events can be published by certain controls. The following table lists the events that
can be published and which controls can use them:

Event Used by What it does
AddLocal PushButton

CheckBox

SelectionTree

Sets which features to install
locally.

AddSource PushButton

CheckBox

SelectionTree

Sets which features to install
and run from source.

CheckExistingTargetPath PushButton

SelectionTree

Checks if an existing path,
given in Value, can be written
to.

CheckTargetPath PushButton

SelectionTree

Given a file path via the Value
attribute, checks if it's a valid
path.

DirectoryListNew PushButton Creates a new folder in a
DirectoryList control.
Value set to 0.

DirectoryListOpen PushButton Selects a folder in a
DirectoryList control.
Value set to 0.

DirectoryListUp PushButton Moves up one directory in
a DirectoryList control.
Value set to 0.

DoAction PushButton

CheckBox

SelectionTree

Executes the custom action
specified by Value.

EnableRollback PushButton

SelectionTree

Turns rollback on or off,
depending on if Value is True
or False.

EndDialog PushButton

SelectionTree

Closes the current dialog
window. Value can be exit,
retry, ignore, or return.

Chapter 8

[229]

Event Used by What it does
NewDialog PushButton

SelectionTree

Closes current dialog and
shows dialog specified by
Value.

Reinstall PushButton

SelectionTree

Sets which features to
re-install.

ReinstallMode PushButton

SelectionTree

Specifies a string defining the
type of re-install to do.

Remove PushButton

CheckBox

SelectionTree

Sets which features to remove.

Reset PushButton

SelectionTree

Undoes any changes on
controls on the current
window. Value set to 0.

SelectionBrowse PushButton Spawns a Browse dialog.
SetInstallLevel PushButton

SelectionTree

Sets an integer that defines the
install level for features.

SetTargetPath PushButton

SelectionTree

Sets the selected path.
Value set to the Directory
element's Id attribute.

SpawnDialog PushButton

SelectionTree

Displays the modal dialog
window specified by Value.

SpawnWaitDialog PushButton

SelectionTree

Displays a dialog while a
condition is false.

ValidateProductID PushButton

SelectionTree

Validates the ProductID
property.

It's possible to stack several Publish elements inside a single control. This, of course,
will cause several events to fire. As a contrived example, let's say that when we
clicked a button we wanted to fire a custom action before moving to the next dialog.
We could publish the DoAction event to execute the custom action and then publish
NewDialog to navigate to the next dialog. Use the Order attribute to set which event
occurs first.

Tapping into Control Events

[230]

Something else to watch out for: if you have more than one Publish event, they
must have conditional statements as their inner text. Otherwise, all of the events
simply won't be published. In the next example, our condition is simply 1, which will
always be true. The inner text is the place to perform real conditional rules though,
such as checking that a property has been set. If the rule evaluates to false, the event
won't be published:

<Control Id="Next"
 Type="PushButton"
 Text="Next"
 Height="17"
 Width="56"
 X="245"
 Y="243"
 Default="yes">

<Publish Event="DoAction"
 Value="MyCustomAction"
 Order="1">1</Publish>

<Publish Event="NewDialog"
 Value="AnotherDlg"
 Order="2">1</Publish>
</Control>

If the MyCustomAction custom action had set a property, we could have evaluated it
in the inner text of the NewDialog event. If the conditional statement then evaluated
to false, the NewDialog event wouldn't be called.

<Control Id="Next"
 Type="PushButton"
 Text="Next"
 Height="17"
 Width="56"
 X="245"
 Y="243"
 Default="yes">

 <!--Assume MyCustomAction sets SomeProperty-->
 <Publish Event="DoAction"
 Value="MyCustomAction"
 Order="1">1</Publish>

 <!--Go to next dialog if SomeProperty equals "abc"-->

Chapter 8

[231]

 <Publish Event="NewDialog"
 Value="AnotherDlg"
 Order="2">SomeProperty = "abc"</Publish>
</Control>

Notice that both Publish elements in this example use an Order attribute, causing
the DoAction event to be called first.

Subscribing to control events
Some events can't be published, only listened for. In that case, you'll use a Subscribe
element inside a Control element. Like we did when publishing an event, use its
Event attribute to specify the event to listen for, but this time use Attribute to set
the required argument.

The next example shows a ProgressBar control that subscribes to the SetProgress
event. Whenever a standard or custom action notifies the installer that progress has
been made, the ProgressBar control will know about it and add more ticks:

<Control Id="MyProgressBar"
 Type="ProgressBar"
 X="50"
 Y="50"
 Width="200"
 Height="20"
 ProgressBlocks="yes">
<Subscribe Event="SetProgress"
 Attribute="Progress" />
</Control>

Unlike the Publish element, the Subscribe element can't have a conditional
statement as its inner text. A single control can, however, subscribe to more than one
event. One example is to subscribe a Text control to both the ScriptInProgress and
TimeRemaining events. The first will display a message while the Execute sequence
is being loaded and the second will show the time left until completion.

The following table lists the events that can be subscribed to and their
required arguments:

Event Used by Attribute argument
ActionData The Text control to show info about

latest action.
Text

ActionText The Text control to show name of
latest action.

Text

Tapping into Control Events

[232]

Event Used by Attribute argument
IgnoreChange DirectoryCombo to not update

itself if folder is highlighted but
not opened in the neighboring
DirectoryList.

IgnoreChange

ScriptInProgress The Text control to show a message
while the Execute sequence loads up.

Visible

SelectionAction The Text control to describe the
highlighted item in a neighboring
SelectionTree.

Text

SelectionDescription The Text control to display the
description of a highlighted feature in
a neighboring SelectionTree.

Text

SelectionNoItems PushButton to disable itself if no
items are present in a neighboring
SelectionTree (Personally, I've
found that this event has no effect).

Enabled

SelectionPath The Text control to display the
path of the highlighted item in a
neighboring SelectionTree.
Works if the item is set to be run from
source.

Text

SelectionPathOn The Text control to display
whether or not there's a path for the
highlighted item in a neighboring
SelectionTree.

Visible

SelectionSize The Text control to display the
size of the highlighted item in a
neighboring SelectionTree.

Text

SetProgress ProgressBar to increment ticks. Progress

TimeRemaining The Text control to display time
remaining for installation.

TimeRemaining

Publish events
In the following sections, we'll take a look at several events that you can publish.
This should give you a good idea about how the Publish element works.

Chapter 8

[233]

DoAction
The DoAction event calls a custom action that you've declared elsewhere in your
markup. For example, suppose we'd defined a custom action called CA_ShowMessage
that simply displays a message box with the text You clicked?:

<CustomAction Id="CA_ShowMessage"
 Script="vbscript"
 Execute="immediate">
 <![CDATA[msgbox "You clicked?"]]>
</CustomAction>

We could then trigger this action with a PushButton by publishing the DoAction
event with a value of CA_ShowMessage.

<Control Id="DoActionButton"
 Type="PushButton"
 X="120"
 Y="100"
 Width="56"
 Height="17"
 Text="Click Me!">
 <Publish Event="DoAction"
 Value="CA_ShowMessage" />
</Control>

Clicking on the button will show the following message:

Often, you'll use this technique to validate a property or set one before other events
are triggered. Recall that if you use more than one Publish element inside of a control,
you must add an Order attribute and nest a condition statement inside each one.

Tapping into Control Events

[234]

EndDialog
The EndDialog event, which is used on a PushButton control, is used to close
the current dialog window and can accept one of four values: Exit, Retry, Ignore,
or Return.

In practice, you'll only ever use Exit or Return. The other two are used by the
FilesInUse dialog and don't have much application elsewhere. Exit closes the
current dialog and ends the installation. It's usually used on a Cancel button, as in
this example:

<Control Id="CancelButton"
 Type="PushButton"
 Text="Exit"
 Height="17"
 Width="56"
 X="180"
 Y="243"
 Cancel="yes">
 <Publish Event="EndDialog"
 Value="Exit" />
</Control>

A Value of Return closes the current window, but continues the installation. It's
usually used on an Install button on the last dialog in your UI. You'll also use it to
close modal dialog windows and return control to the parent window. Here's an
example Install button:

<Control Id="InstallButton"
 Type="PushButton"
 Text="Install"
 Height="17"
 Width="56"
 X="245"
 Y="243"
 Default="yes">
 <Publish Event="EndDialog"
 Value="Return" />
</Control>

Chapter 8

[235]

NewDialog
The NewDialog event closes the current window and opens the one specified by the
Value attribute. Typically, you'll use this for Next and Back buttons that move you
from one dialog to another. For example, the following PushButton control opens a
dialog called NextDlg:

<Control Id="NextButton"
 Type="PushButton"
 Text="Next"
 Height="17"
 Width="56"
 X="180"
 Y="243">
 <Publish Event="NewDialog"
 Value="NextDlg" />
</Control>

This is the perfect place to add a conditional statement so that the user may
see one dialog instead of another depending on the state of some property.
In the next example, if the property USE_SQLSERVER is set, then the dialog
SetSqlCredentialsDlg is shown; otherwise, we show the NoSqlDlg dialog:

<Control Id="NextButton"
 Type="PushButton"
 Text="Next"
 Height="17"
 Width="56"
 X="180"
 Y="243">

 <Publish Event="NewDialog"
 Value="SetSqlCredentialsDlg"
 Order="1">
 USE_SQLSERVER
 </Publish>

 <Publish Event="NewDialog"
 Value="NoSqlDlg"
 Order="2">
 NOT USE_SQLSERVER
 </Publish>
</Control>

Tapping into Control Events

[236]

Here, I use a different conditional statement for each Publish element. The first
evaluates to true only if the USE_SQLSERVER property has been set and the second
only if it hasn't.

AddLocal
The SelectionTree control can be used to show the available features in your install
package, and give the user the ability to select which ones they want. Windows
Installer keeps track of which features to install through the ADDLOCAL property,
which is a comma-delimited list of features to install locally. When it comes to the
SelectionTree control, all of the logic of setting the ADDLOCAL property is handled
for you behind the scenes. However, if you wanted to, you could do away with
SelectionTree and create your own device for including features. For that, you'd
publish the AddLocal control event.

AddLocal, like the property by the same name, can be used to set which features get
installed. You'll set the Publish element's Value attribute to either the Id attribute of
a single Feature element, or the string ALL, which will include all features. You can
publish the event more than once to include additional features.

The next example puts this into action. Two CheckBox controls set properties
indicating a certain feature to be installed. Later, we'll evaluate whether or not these
checkboxes were checked via these properties, and set the value of the AddLocal
event accordingly:

<Control Id="Feat1Box"
 Type="CheckBox"
 X="20"
 Y="120"
 Width="75"
 Height="10"
 Text="Main Product"
 Property="MainProductFeatureChecked"
 CheckBoxValue="on" />

<Control Id="Feat2Box"
 Type="CheckBox"
 X="20"
 Y="140"
 Width="75"

Chapter 8

[237]

 Height="10"
 Text="Optional Tools"
 Property="OptionalToolsFeatureChecked"
 CheckBoxValue="on" />

Now, use a PushButton control to trigger the AddLocal event to include only the
features in the install for which a box was checked. We use conditional statements
inside the Publish elements for this:

<Control Id="OKButton"
 Type="PushButton"
 Text="OK"
 Height="17"
 Width="56"
 X="220"
 Y="173">

 <Publish Event="Remove"
 Value="ALL"
 Order="1">1</Publish>

 <Publish Event="AddLocal"
 Value="ProductFeature"
 Order="2">
 MainProductFeatureChecked
 </Publish>

 <Publish Event="AddLocal"
 Value="OptionalTools"
 Order="3">
 OptionalToolsFeatureChecked
 </Publish>

 <Publish Event="EndDialog"
 Value="Return"
 Order="4">1</Publish>
</Control>

Tapping into Control Events

[238]

If we add these controls to a modal dialog window, with a SelectionTree control so
that we can see the changes, it would look like the following screenshot:

When you click on the OK button, the checkboxes will be evaluated, the AddLocal
event called, features set, and the window will close. You must re-open the modal
window to see the changes in the SelectionTree control since dialog windows
aren't smart enough to redraw themselves dynamically.

So, what happened? Here's the process in detail:

• The first Publish element triggers an event called Remove to remove all
features from the install. This gets us to a clean state:
<Publish Event="Remove"
 Value="ALL"
 Order="1">1</Publish>

• The second Publish element checks if the MainProductFeatureChecked
property has been set and if it has, calls the AddLocal event for the
ProductFeature feature. This adds that feature to the list to install:
<Publish Event="AddLocal"
 Value="ProductFeature"
 Order="2">
 MainProductFeatureChecked
</Publish>

Chapter 8

[239]

• The third Publish element does the same for the OptionalTools feature:
<Publish Event="AddLocal"
 Value="OptionalTools"
 Order="3">
 OptionalToolsFeatureChecked
</Publish>

• The last Publish element calls the EndDialog event with a value of Return,
which closes the modal window:
<Publish Event="EndDialog"
 Value="Return"
 Order="4">1</Publish>

Publishing a property
There's another event that you can publish, called SetProperty, that's used to
assign a property's value. However, in WiX you won't set it in the normal way, but
rather use the Publish element's Property and Value attributes. For example, the
following is a button that sets the value of a property called MYPROPERTY to 123:

<Control Id="MyButton"
 Type="PushButton"
 Text="Click me!"
 Height="17"
 Width="56"
 X="50"
 Y="50">
 <Publish Property="MYPROPERTY"
 Value="123">1</Publish>
</Control>

Many of the controls such as Edit, PathEdit, CheckBox, and RadioButton already
have a mechanism for setting a property. However, if you need to set more than one
or set a property with a button, the Publish element provides that capability.

Subscribe events
In the following sections, we'll look at the Subscribe element. We covered
several subscribable control events in the last chapter, including those used by the
SelectionTree and ProgressBar. We'll take a look at some others that we missed.

Tapping into Control Events

[240]

ScriptInProgress
You can subscribe a Text control to the ScriptInProgress event so that its text
is only shown during the "immediate" phase of InstallExecuteSequence. This
is when that sequence prepares itself for its "deferred" stage by creating a rollback
script containing all of the actions it will need to perform.

You'd use this technique on a progress bar dialog. As you can see in the following
example, all it does is show some text telling the user that things are gearing up:

Here, we have a dialog called ProgressDlg that is shown during
InstallExecuteSequence. It contains the following markup:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id=»ProgressDlg»
 Width="370"
 Height="270"
 Title="Awesome Software"
 Modeless="yes">
 <Control Id="CancelButton"
 Type="PushButton"
 TabSkip="no"
 Text="Cancel"
 Height="17"
 Width="56"
 X="180"
 Y="243"
 Cancel="yes">
 <Publish Event="EndDialog" Value="Exit" />

Chapter 8

[241]

 </Control>

 <Control Id="MyProgressBar"
 Type="ProgressBar"
 X="70"
 Y="150"
 Width="200"
 Height="20"
 ProgressBlocks="yes">
 <Subscribe Event="SetProgress"
 Attribute="Progress" />
 </Control>

 <Control Id="InfoText"
 Type="Text"
 X="70"
 Y="130"
 Width="200"
 Height="17"
 Text="Script is loading">
 <Subscribe Event="ScriptInProgress"
 Attribute="Visible" />
 </Control>
 </Dialog>

 <InstallUISequence>
 <Show Dialog="ProgressDlg"
 Before="ExecuteAction" />
 </InstallUISequence>
 </UI>
 </Fragment>
</Wix>

The control named InfoText on ProgressDlg subscribes to the ScriptInProgress
event. Attribute is set to Visible. Even though we're using a Text control to
subscribe to this event, it only works if there's a ProgressBar control nearby. This is
often the case with the Subscribe element. There must be a neighboring control that
gives the event its meaning.

Tapping into Control Events

[242]

SelectionAction
The SelectionAction event is used by a Text control to display the current action
state of the highlighted feature in a neighboring SelectionTree. In the following
example, a feature called Main Product has been set to be installed locally. A Text
control to the right displays the message Feature will be installed locally. It subscribes
to SelectionAction:

The first thing to do is add three new UIText elements inside the UI element on your
dialog. These should have the following Id values:

• SelAbsentLocal

• SelAbsentAdvertise

• SelAbsentAbsent

These will contain the generic text to display as the user changes the action state of a
feature. We can set them as follows:

<UIText Id="SelAbsentLocal">
 Feature will be installed locally
</UIText>

<UIText Id="SelAbsentAdvertise">
 Feature will be installed as advertised
</UIText>

<UIText Id="SelAbsentAbsent">
 Feature will not be installed
</UIText>

Our Text control, which must be on the same dialog as SelectionTree, subscribes
to SelectionAction, and sets the Subscribe element's Attribute to Text, as in the
following code:

<Control Id="SelectionAction"
 Type="Text"

Chapter 8

[243]

 X="210"
 Y="40"
 Height="50"
 Width="150">
<Subscribe Event="SelectionAction"
 Attribute="Text" />
</Control>

As the user changes a feature's inclusion in the SelectionTree control, the text will
change to reflect the new status.

TimeRemaining
The TimeRemaining event allows you to display the time left before the installation
is complete. It looks like the following screenshot:

You'll need to add a UIText element with an Id attribute of TimeRemaining and
inner text defining the text to show. It should follow this format:

<UIText Id="TimeRemaining">
 <![CDATA[Time remaining: {[1] minutes }{[2] seconds}]]>
</UIText>

The inner text defines a template in which the minutes and seconds of the remaining
time are shown. As you can see, if there is less than a minute of time left, only the
seconds will be shown. Next, add a Text control that subscribes to the TimeRemaining
event. Its Publish element should set Attribute to TimeRemaining too:

<Control Id="TimeRemaining"
 Type="Text"
 X="70"
 Y="130"
 Width="200"
 Height="17">
 <Subscribe Event="TimeRemaining"
 Attribute="TimeRemaining" />
</Control>

Tapping into Control Events

[244]

The standard actions in InstallExecuteSequence don't publish any TimeRemaining
data. So, to see the effect, you'll have to publish it yourself from a custom action. Add a
new C# custom action project to your solution and add the following code to it:

namespace CustomAction1
{
 usingMicrosoft.Deployment.WindowsInstaller;

 public class CustomActions
 {
 [CustomAction]
 public static ActionResult ShowTime(Session session)
 {
 ResetProgress(session);
 NumberOfTicksPerActionData(session, 100);
 DisplayActionData(session, "Message 1");
 System.Threading.Thread.Sleep(2000);

 DisplayActionData(session, "Message 2");
 System.Threading.Thread.Sleep(2000);

 DisplayActionData(session, "Message 3");
 System.Threading.Thread.Sleep(2000);

 returnActionResult.Success;
 }

 private static void ResetProgress(Session session)
 {
 Record record = new Record(4);
 record[1] = "0";
 record[2] = "1000";
 record[3] = "0";
 record[4] = "0";
 session.Message(InstallMessage.Progress, record);
 }

 private static void NumberOfTicksPerActionData(
 Session session, int ticks)
 {
 Record record = new Record(3);
 record[1] = "1";
 record[2] = ticks.ToString();
 record[3] = "1";

Chapter 8

[245]

 session.Message(InstallMessage.Progress, record);
 }

 private static void DisplayActionData(
 Session session, string message)
 {
 Record record = new Record(1);
 record[1] = message;
 session.Message(InstallMessage.ActionData, record);
 }
 }
}

This sets up a custom action called ShowTime and three methods to support
it. The first, ResetProgressBar, resets the ticks in the ProgressBar control to
zero and sets up how many tick marks there should be in total. The second,
NumberOfTicksPerActionData, sets up how many ticks to add for each action
performed. The third, DisplayActionData, shows a message that any controls
subscribing to the ActionData event will pick up. The TimeRemaining event uses all
of this information to gauge how much time it should allot for this custom action.

When you add this custom action to the deferred stage of InstallExecuteSequence,
you'll see that our Text control that's monitoring the TimeRemaining event will
update itself with the approximate time left. Here's the markup to add to your
main .wxs file to include this new custom action, assuming the C# project is named
CustomAction1:

<Binary Id="CA_DLL"
 SourceFile="CustomAction1.CA.dll" />

<CustomAction Id="CA_ShowTime"
 BinaryKey="CA_DLL"
 DllEntry="ShowTime"
 Execute="deferred"
 Return="check" />

<InstallExecuteSequence>
 <Custom Action="CA_ShowTime"
 After="InstallInitialize">NOT Installed</Custom>
</InstallExecuteSequence>

Tapping into Control Events

[246]

Summary
In this chapter, we looked at the Publish and Subscribe elements that are used to
trigger and listen for control events. Knowing the exact arguments to use for each
event can be tricky, so be sure to consult the Windows Installer SDK to get specifics.
Probably one of the most powerful events is DoAction, which lets you publish your
own custom action. Pairing this with the ability to stack several events inside one
control and to set the order in which they're called gives you quite a bit of power.

In the next chapter, we will explore the WiX command line. This will give you the
knowledge to compile and link your project even without Visual Studio.

Working from the
Command Line

Creating an MSI file with WiX takes two steps: compiling your source files and then
linking and binding them into a single package. A tool called Candle handles the
compiling, transforming your .wxs files into .wixobj files. The linking and binding
phases are handled by a tool called Light.

In this chapter, we'll discuss the following topics:

• The arguments to use when calling Candle and Light from the command line
• Compile-time and link-time variables
• How to build an MSI without using Visual Studio

Candle.exe
Candle, the WiX compiler, can be run from the command line to build your WiX
source files (.wxs). Behind the scenes, Visual Studio is really just calling this tool for
you. Compiling a WiX source file creates a WiX object file (.wixobj). These are later
processed by Light, the WiX linker/binder, to create the final MSI. A simple example
of using Candle would be where we simply pass it the path to a .wxs file:

"%WIX%bin\candle" Product.wxs

This will compile the Product.wxs file that's in the current directory and create
an object file called Product.wixobj. I've used the %WIX% environment variable
that expands to C:\Program Files (x86)\WiX Toolset v3.6\. This variable is
available after you've installed WiX. The candle.exe file is located in the WiX bin
directory, though, so we need to include that folder in the path.

Working from the Command Line

[248]

To make accessing the WiX command-line tools easy, you should
consider adding %WIX%bin to your PATH environment variable.
Right-click on Computer in your Start menu, select Properties, and
then the Advanced system settings link. Click on Environment
Variables and from there, you can edit the Path variable and append
%WIX%bin. From then on, you will be able to use Candle, Light, or any
of the other WiX tools without specifying the path to the bin directory.

You can see more information about Candle by opening a command prompt and
typing candle -?. From here on out, I won't specify the path to Candle, but will
assume that you're either including the path or have added %WIX%bin to the PATH
environment variable. Using the -? argument brings up the documentation and
you'll see that the general syntax is as follows:

candle.exe [-?] [-nologo] [-out outputFile] sourceFile [sourceFile ...]
[@responseFile]

As indicated, you could specify an output file, via the -out flag, to give a name to the
.wixobj file that's created. By default, the .wixobj file will have the same name as
the .wxs. Yet if we wanted to change the name of the output file, we could do so, in
the following manner:

candle Product.wxs -out AnotherName.wixobj

The sourceFile argument refers to the name of the .wxs file that we're compiling.
You may give more than one, separated by spaces:

candle Product.wxs Directories.wxs Components.wxs

You could also use a wildcard (*) to compile all .wxs files in a directory and then
output the .wixobj files to another directory. Here's an example that sends the
compiled output to a directory called "wixobj":

candle *.wxs -out wixobj\

Notice that we must end the "wixobj" directory with a trailing backslash or Candle will
think we're using the -out argument to rename a file rather than name a directory.

Chapter 9

[249]

You could also provide the -arch flag, set to x64 or x86, to set the target
architecture of your software, although it defaults to x86. This is essential if
you're installing files to the 64-bit Program Files folder, for example. Also, if
you've used any WiX extensions, such as the WixUIExtension, you should add
them with the -ext flag. Here's a simple example that includes an extension and
explicitly sets the target architecture:

candle Product.wxs -arch x86 -out wixobj\ -ext WixUIExtension

If you are using more than one extension, pass an -ext flag for each one.

Response files
Sometimes, your calls to Candle will be simple and it won't be much trouble entering
them on the command line. However, as you start adding more optional arguments
you could easily see them span several rows of the console window. In that case, you
may find it easier to store your arguments in a response file, which can be a simple
text file. The following is an example called MyCommands.txt that contains several
compiler arguments:

-out wixobj\
-dConfig=Release
-trace
-arch x86
-ext WixUtilExtension
-ext WixUIExtension

You reference a response file by prefixing its name with the @ symbol.
Here's an example:

candle.exe Product.wxs @MyCommands.txt

It is permissible to override the arguments in the response file by passing them on
the command line:

candle.exe Product.wxs @MyCommands.txt -dConfig=Debug

We will explore the meaning of the arguments we haven't discussed yet later in
the chapter.

Working from the Command Line

[250]

.wixobj files
The compilation process ultimately produces a .wixobj file for every .wxs file. The
linking phase will later combine all of the .wixobj files into a single MSI package.
A .wixobj file consists of XML code with mainly table, row, and field elements.
Together, these elements describe the rows in each table of the MSI database. The
top-level element of a .wixobj file is wixObject.

<?xml version="1.0" encoding="utf-8"?>
<wixObject version="3.0.2002.0"
 xmlns="http://schemas.microsoft.com/wix/2006/objects">

Nested inside of the wixObject element are references to various MSI tables. The
following is a section describing the File table with a single row for a text file
called ReadMe.txt. The sourceLineNumber attribute of the row element has been
truncated for space:

<table name="File">
<row sourceLineNumber="C:\InstallPractice\Product.wxs*21">
<field>file_readmeTXT</field>
<field>cmp_readmeTXT</field>
<field>ReadMe.txt</field>
<field>0</field>
<field />
<field />
<field>512</field>
<field />
</row>
</table>

You should never need to alter these files directly, but knowing how they work
should help you to understand what the compiling stage does.

Command-line arguments (compiling)
In this section, we'll cover all of the optional arguments that you're likely to use with
Candle. In addition to setting them on the command line, you may also set them
within Visual Studio via your project's Properties page via the Tool Settings tab.
There you'll find a textbox for Candle arguments, labeled Compiler, and another for
Light, labeled Linker.

The following are quick descriptions of Candle's arguments:

Chapter 9

[251]

-arch
The -arch flag sets the architecture for the build. This is important because certain
elements in the MSI package, such as components, need to be marked as 64-bit if
they are to be installed in a computer's 64-bit directories. This flag, if set to x64, also
causes the compiler to check that you've specified an installer version of 2.0.0 or
higher, as this is the minimum version needed for a 64-bit package.

-d
This -d flag, which stands for "define", allows you to set compile-time variables.
These are replaced with the values that they've been set to when Candle creates the
.wixobj file. We'll discuss this in more detail later in the chapter. The basic syntax is,
with no space between the -d flag and the name of the variable:

-dVariableName=VariableValue

-ext
This flag is used to include a WiX extension, such as WixUIExtension or
WixUtilExtension. Include it when your source file depends on a WiX extension.

-fips
Enabling the FIPS compliant algorithms with the -fips flag causes the installer to
switch its hashing algorithm from MD5 to SHA1. FIPS, which stands for Federal
Information Processing Standards Publications, is a governmental standard for
ensuring security and interoperability when hashing data.

-I
A WiX include file (.wxi) contains preprocessor variables and conditional
statements. There's a Visual Studio template for creating one. Although you can add
each include file explicitly to your WiX project, a more dynamic way is to add the
-I flag on the command line, set to the path of a directory that contains .wxi files.
Candle will search that directory during compilation.

Let's say that one of your WiX source files references an include file via the
include tags:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <?include SomeIncludeFile.wxi ?>
...

Working from the Command Line

[252]

We'll get to what goes into an include file in the next section. If SomeIncludeFile.
wxi was in C:\Includes, we could reference it by referencing that folder, as follows:

candle Product.wxs -IC:\Includes -trace

I have also given the -trace flag, which instructs Candle to display any errors
during compilation, such as failure to find the Includes directory. The included
directory may be an absolute or relative path.

-nologo
Candle prints its version number and copyright at the top of its output. However, if
you supply the -nologo flag this will be suppressed.

-o
The -o or -out argument tells Candle where to place the new .wixobj file after
compiling the WiX source code and, if compiling a single source file, what the name
of that file will be.

-p
An intermediate step performed by Candle is to process your .wxs file into a
well-formed XML document. You can see this intermediate XML document by
adding the -p flag.

-pedantic
The -pedantic flag tells the compiler to show messages that you wouldn't normally
see. The examples include, not explicitly setting a keypath for a component.

-sfdvital
Ordinarily, all File elements in WiX are marked as "Vital". This means that if, during
an installation, a file cannot be copied to the end user's system, the installer won't be
able to proceed. Setting the -sfdvital flag switches this default behavior off.

-ss
As Candle compiles your project, it validates it against the WiX schema found in
wix.xsd. You can turn this validation off by adding the -ss flag.

Chapter 9

[253]

-sw
If you don't care much about compiler warnings (maybe you only care about errors),
you can suppress them with the -sw flag. Without any argument, all warnings will
be suppressed. To exclude only a specific warning, reference its ID, such as -sw1009.
You can find a full list of errors and their message IDs by downloading the WiX
source files, and then opening the Wix solution and looking at messages.xml.

-trace
If you get a compile-time error, such as when an include file cannot be found, you
may consider turning on trace logging.

-v
The -v flag, which stands for "verbose", tells the compiler to display the Information
level messages during processing.

-wx
To treat all compile-time warnings as errors, add the -wx flag. You can also supply a
specific message ID (from messages.xml in the WiX source files) to elevate only that
particular warning to error status.

Compile-time variables
WiX lets you specify variables that are evaluated at compile time. You might use this
to get environmental variables from the build machine, get the directory where your
source files are, or access custom variables you've set up in a separate WiX include
file (.wxi).

WiX has three classifications for compile-time (otherwise known as preprocessor)
variables: Custom, Environment, and System. We'll discuss each in the
following sections.

Custom compiler variables
To set your own compile-time variables, also known as preprocessor variables, use
the <?define ?> directive in your WiX markup:

<?define myVar = "myvalue" ?>

Working from the Command Line

[254]

Although you can do this in any of your .wxs files, it's common to do it in a separate
include file (.wxi) file, for which there is a Visual Studio template. The include
files allow you to gather your preprocessor statements into a single place. At
compile time, your variables will be inserted into your source files wherever you've
referenced them. Here's an example .wxi file called MyVariables.wxi:

<?xml version="1.0" encoding="utf-8"?>
<Include>
<?define Config = "Debug" ?>
<?define ProductId = "{89CC4C03-1059-4523-8670-50DEA04B9892}" ?>
<?define UpgradeCode = "{49D09A05-12D9-461E-8DEE-9DD5615AF9FE}" ?>
<?define Version = "1.0.0.0" ?>
</Include>

As I mentioned, we define compile-time variables with the <?define ?> directive.
Begin and end the file with an Include element. This file can then be referenced in
your .wxs files using an <?include ?> directive. Variables are inserted using the
$(var.VariableName) syntax, such as:

<?include MyVariables.wxi ?>

<Product Id="$(var.ProductId)"
 Name="Amazing Software"
 Language="1033"
 Version="$(var.Version)"
 Manufacturer="Amazing Software Inc."
 UpgradeCode="$(var.UpgradeCode)">

You can also define variables from the command line by using the -d flag. They will
be referenced in the same way:

candle.exe Product.wxs –dVersion="1.0.0.0"

There are other preprocessor statements at your disposal, such as if and foreach.
We'll cover those soon, but for now let's discuss the two other types of compile-time
variables: Environment and System.

Environment variables
Environment variables are set in the environment where the build process is
running, usually from the command prompt. The following statement sets an
environment variable called myVar to the value myvalue. This uses the basic
Windows command, set.

set myVar=myvalue

Chapter 9

[255]

To pass this to your WiX project, build your .wxs files from the same command
window using Candle. Now access the environment variable in your markup by
using a dollar sign and parentheses, prefixing the variable name with env. The
following is an example:

<Property Id="property1" Value="$(env.myVar)" />

System variables
System variables are a lot like environment variables. They have a similar syntax
(in this case you'll prefix the variable name with sys), but there are a finite number
of them, and they're defined for you. The following system variables, which are
always uppercase, are available:

• CURRENTDIR: The current directory where the build process is running
• SOURCEFILEDIR: The directory containing the file being processed
• SOURCEFILEPATH: The full path to the file being processed
• PLATFORM: The platform (Intel, x64, Intel64) this package is compiled for

(set by the –arch flag)

The first two, which contain directory paths, always end in a backslash. So, you can
use them in the following way:

$(sys.SOURCEFILEDIR)myFile.wxs

Conditional statements and iterations
In this section, we'll take a look at the conditional and looping statements that are
available at compile time.

if...elseif...else
The if statement checks whether a preprocessor variable is set to a certain value. If
it is, the markup between the opening if statement and the closing endif will be
compiled. Optionally, it can be followed by an elseif or else statement, allowing
you to compile other code if the initial condition is false. The entire block must end
with endif. The following snippet is an example that only compiles a Property
element if the preprocessor variable myVar is equal to 10:

<?if $(var.myVar) = 10 ?>
<Property Id="newProperty" Value="5" />
<?endif?>

Working from the Command Line

[256]

Here's a more complex example that utilizes the elseif and else statements:

<?if $(var.myVar) = 10 ?>
<Property Id="newProperty" Value="5" />
<?elseif $(var.myVar) > 10?>
<Property Id="newProperty" Value="6" />
<?else?>
<Property Id="newProperty" Value="7" />
<?endif?>

Other conditional operators are available, including not equal to (!=), greater
than (>), greater than or equal to (>=), less than (<), and less than or equal to (<=).
In addition, you can use the Or and And keywords to combine conditions. Use the
Not keyword to negate a conditional statement:

<?if Not $(var.myVar) = 10 And Not $(var.myVar) = 11 ?>
<Property Id="newProperty" Value="5" />
<?endif?>

ifdef
The ifdef statement is used to check whether a preprocessor variable is defined. If
it is, the WiX markup that follows will be compiled. The variable should be the name
only, not the $(var.myVariable) syntax. Here is an example that checks if myVar is
defined:

<?ifdef myVar ?>
<Property Id="newProperty" Value="1" />
<?endif?>

ifndef
The ifndef statement is similar to the ifdef statement, except that it checks if a
variable is not defined. Here's an example:

<?ifndef myVar ?>
<Property Id="newProperty" Value="1" />
<?endif?>

Chapter 9

[257]

Iterations
WiX has a preprocessor statement, foreach, that you can use to repeat a block of code
a number of times. For example, you might loop through a list of directory names
and create a new Directory element for each one; maybe to create a directory for
each language your software supports.

First, you'll need to define a list to iterate through in the form of a string containing
several values, each separated by a semicolon. To keep things clear, you could define
a preprocessor variable to hold it, as in the following example:

<?define myLanguages=en_us;de_de;it_it?>

Next, define a top-level folder to hold all of your new directories. Here, we'll call it
languages and place it inside our INSTALLLOCATION directory:

<DirectoryRef Id="INSTALLLOCATION">
 <Directory Id="languagesFolder" Name="languages" />
</DirectoryRef>

Now you can use a foreach statement to loop through each value in the
myLanguages string. For each iteration, the current value is stored in a temporary
variable called tempVar.

<?foreach tempVar in $(var.myLanguages)?>

<DirectoryRef Id="languagesFolder">
 <Directory Id="$(var.tempVar)" Name="$(var.tempVar)">
 <Component Id="MyComponent.$(var.tempVar)" Guid="*">
 <File Id="$(var.tempVar)File"
 Source="..\$(var.tempVar).xml"
 KeyPath="yes" />
 </Component>
 </Directory>
</DirectoryRef>

<?endforeach?>

For each language, a new Directory element is created under the languagesFolder
directory. We set the directory's Id and Name attributes to the tempVar variable's
value. We also use it to set the ID of the Component element. By using an asterisk
(*) as Guid, WiX will auto-generate a new one for each component. Then, we use
the temporary variable again for the Id and Source attributes of the language-
specific XML file. Be sure that the files en_us.xml, de_de.xml, and it_it.xml really
exist! Otherwise, you'll get a compile-time error. The entire structure ends with an
endforeach statement.

Working from the Command Line

[258]

The last thing to do is to add all of our new components to a feature. Here, we can
use another foreach:

<Feature Id="MainFeature" Title="Main Feature" Level="1">
 <?foreach tempVar in $(var.myLanguages)?>
 <ComponentRef Id="MyComponent.$(var.tempVar)"/>
 <?endforeach?>
</Feature>

If you were to install this MSI package, you'd get a languages folder containing an
en_us, de_de, and it_it folder. Each would hold a single XML file corresponding to
that locality.

Errors and warnings
Another thing that WiX gives you is the ability to trigger compile-time errors and
warnings. For this, use the <?error error-message ?> and <?warning warning-
message?> syntax. An error stops the compilation and shows the error in the build
log. A warning, on the other hand, will show up in the log, but won't stop the build.
Here's an example that triggers an error if the preprocessor variable myVariable isn't
defined:

<?ifndef myVariable ?>
 <?error myVariable must be defined ?>
<?endif?>

Adding warnings and errors like this allows you to keep a closer eye on things,
making sure that critical variables are defined like they should be. The example
that we just saw used an error, which stops the build if hit. A warning works the
same way, but won't stop the build. Here's an example:

<?ifndef myVariable ?>
 <?warning myVariable should be defined ?>
<?endif?>

Preprocessor extensions
You can create your own variable prefixes (remember var, env, and sys?) and even
call C# methods at compile time by writing a preprocessor extension. You'll need
to make a new C# class library. We'll walk through each step and then look at the
complete code afterwards.

Chapter 9

[259]

Understand that a preprocessor extension is only executed during compilation to
insert data into your WiX markup. So, the end user of your installer will never see it.
Also, a preprocessor extension is different than extensions such as WixUIExtension,
which are technically compiler extensions. We'll get to make a compiler extension later
in the book.

First, in your new class library, add a reference to Wix.dll from the WiX bin
directory, and add a using statement for Microsoft.Tools.WindowsInstallerXml.
Next, add a class that extends the WixExtension class. Here, we've called it
MyWixExtension:

using Microsoft.Tools.WindowsInstallerXml;

namespace MyPreprocessorExtension
{
 public class MyWixExtension : WixExtension
 {
 //our extension code will go here
 }
}

The purpose of this class is to override the PreprocessorExtension property from
the WixExtension class so that instead of returning null, it returns an instance of
the next class we'll be creating—which we'll call MyPreprocessorExtension. We'll
define that class in a moment. Add this property to the MyWixExtension class:

private PreprocessorExtension preprocessorExtension;

public override PreprocessorExtension PreprocessorExtension
{
 get
 {
 if (this.preprocessorExtension == null)
 {
 this.preprocessorExtension = new
 MyPreprocessorExtension();
 }

 return this.preprocessorExtension;
 }
}

Working from the Command Line

[260]

The next step is to define the MyPreprocessorExtension class. It must extend the
PreprocessorExtension base class and set up the prefixes you want to use for your
new compile-time variables. Here's where we do that:

public class MyPreprocessorExtension : PreprocessorExtension
{
 private static string[] prefixes = { "AmazingCo" };

 public override string[] Prefixes
 {
 get { return prefixes; }
 }

This sets our prefix to be AmazingCo, although you'll likely use the actual name
of your company or something else more inspired. As you can see, the prefixes
variable is an array of strings so if you wanted to, you could create multiple new
prefixes here.

The next step is to override the GetVariableValue method, which sets up a switch
statement that returns a value for the preprocessor variable you'll have passed in
from your WiX markup. In other words, we can't set the values of these variables
dynamically, they are all hardcoded here.

public override string GetVariableValue(
 string prefix, string name)
{
 string result = null;

 switch (prefix)
 {
 case "AmazingCo":
 switch (name)
 {
 // define all the variables under
 // this prefix here...
 case "myvar":
 result = "myvalue";
 break;
 }
 break;
 }

 return result;
}

Chapter 9

[261]

For this example, there's only one variable defined under the AmazingCo prefix:
myVar, which has a value of myvalue. In your WiX markup, you could access this
using the dollar sign and parentheses syntax:

<Property Id="myVar" Value="$(AmazingCo.myvar)" />

If you want to get fancy, you can add code that calls a preprocessor method. For this,
you must override EvaluateFunction:

public override string EvaluateFunction(
 string prefix, string function, string[] args)
{
 string result = null;

 switch (prefix)
 {
 case "AmazingCo":
 switch (function)
 {
 // add any functions that you can
 // call with your prefix...
 case "sayHelloWorld":
 result = "Hello, World!";
 break;
 }
 break;
 }

 return result;
}

In this example, we've added a function called sayHelloWorld to our AmazingCo
prefix. When called in WiX, it will return the string "Hello, World!". In real-world
scenarios, it might return a version number of some other string that you'd like to
perform some calculation to get.

In WiX, we can now call this function as follows:

<Property Id="checkVar"
 Value="$(AmazingCo.sayHelloWorld())" />

Working from the Command Line

[262]

If you'd like to pass arguments to this method, alter EvaluateFunction so that it
uses its args parameter. Here's a simple example that turns the first parameter that
was passed in to uppercase and then returns it:

case "sayHelloWorld":
 if(args.Length > 0)
 {
 result = args[0].ToUpper();
 }
 else
 {
 result = String.Empty;
 }
 break;
}
return result;

Before your new extension will work, you'll need to do one more thing: add
the following using statement and attribute to the AssemblyInfo.cs file of
the class library:

using Microsoft.Tools.WindowsInstallerXml;

[assembly: AssemblyDefaultWixExtension(typeof(
 MyPreprocessorExtension.MyWixExtension))]

Of course, you'll want to replace MyPreprocessorExtension.MyWixExtension with
whatever names you gave to your class and its namespace. Then, compile the project
to create a new .dll file. The final step is to add a reference to it in your WiX project.
Be careful not to include the project, if it's in the same solution as your WiX project.
You must reference the built .dll file.

This is the complete code for the preprocessor extension:

using Microsoft.Tools.WindowsInstallerXml;

namespace MyPreprocessorExtension
{
 public class MyWixExtension : WixExtension
 {
 private MyPreprocessorExtension preprocessorExtension;

 public override PreprocessorExtension
 PreprocessorExtension
 {
 get

Chapter 9

[263]

 {
 if (this.preprocessorExtension == null)
 {
 this.preprocessorExtension =
 new MyPreprocessorExtension();
 }

 return this.preprocessorExtension;
 }
 }
 }

 public class MyPreprocessorExtension :
 PreprocessorExtension
 {
 private static string[] prefixes = { "AmazingCo" };

 public override string[] Prefixes
 {
 get
 {
 return prefixes;
 }
 }

 public override string GetVariableValue(
 string prefix, string name)
 {
 string result = null;

 switch (prefix)
 {
 case "AmazingCo":
 switch (name)
 {
 // define all the variables under
 // this prefix here...
 case "myvar":
 result = "myvalue";
 break;
 }
 break;
 }

Working from the Command Line

[264]

 return result;
 }

 public override string EvaluateFunction(
 string prefix, string function, string[] args)
 {
 string result = null;

 switch (prefix)
 {
 case "AmazingCo":
 switch (function)
 {
 // add any functions that you can
 // call with your prefix...
 case "sayHelloWorld":
 result = "Hello, World!";
 break;
 }
 break;
 }
 return result;
 }
 }
}

Light.exe
Light is the WiX linker and binder. Its job is to first resolve all of the references to
files, directories, and so on that are stored in the .wixobj files (the linking phase)
and then to stream all of that data into the MSI file, compressing it along the way (the
binding phase). To see information about its usage type light -? at the command
prompt; the following is what you should see:

light.exe [-?] [-b bindPath] [-nologo]

[-out outputFile] objectFile [objectFile ...] [@responseFile]

You'll use the -out flag to give a name to the resulting MSI package. You must
then reference all of the .wixobj files, either individually or with an asterisk (*).
For example, this creates an MSI file out of three .wixobj files that are in the
current directory:

light.exe -out myInstaller.msi Product.wixobj Fragment1.wixobj Fragment2.
wixobj

Chapter 9

[265]

We can also use an asterisk:

light.exe -out myInstaller.msi *.wixobj

If you've created any .wixlib files, you can reference them in the same way:

light.exe -out myInstaller.msi *.wixobj LibraryOne.wixlib LibraryTwo.
wixlib

If you're using any WiX extensions, reference them using the –ext flag:

light.exe -out myInstaller.msi *.wixobj -ext WixUIExtension

In the following sections, we'll cover the rest of the arguments that you can pass to
Light. Although some affect linking and others binding, you'll specify both during
the same call to Light.

Command-line arguments (linking)
In this section, we will explore the arguments that you can pass to Light that affect
linking. Linking is the process whereby the symbols in the .wixobj files created
by Candle are validated to make sure that they will resolve correctly. At this point,
elements such as components and features are hooked together and if an undefined
symbol is found, an exception will be thrown.

-b
The -b flag, which can be set to a directory path, tells Light where to look for the
.wixobj files. You can add more than one directory by adding more -b flags.

-bf
The -bf flag is always used with the -xo flag, which tells Light to output a
.wixout file instead of an MSI file. The .wixout format is XML as opposed to
binary. However, by adding the -bf flag, the binary data that would be stored
in the MSI file is included with the XML.

-binder
You can define a custom binder in a WiX extension DLL. Use the -binder flag to
identify the class that represents your custom binder that will be used to replace
the default Microsoft.Tools.WindowsInstallerXml.Binder class. This is an
advanced topic and won't be covered in this book.

Working from the Command Line

[266]

-cultures
The -cultures flag tells WiX which .wxl files to load for localization. It accepts a
culture string, such as en-us. Only one culture, and in turn one language, can be
specified here. This is because an MSI file can only be localized for a single language.

-d
Use the -d flag to define a linker variable. Linker variables can be referenced with the
!(wix.VariableName) syntax. Unlike compile-time preprocessor variables, linker
variables are evaluated and resolved at link time. They're often used to reference files
late in the build process. We'll discuss these in detail later in the chapter.

-dut
The WiX compiler and linker use extra tables, peculiar to WiX, to store metadata
about how elements get grouped together. These extra tables don't exist in the MSI
specification, and they're not used in the final MSI file. So, they're called unreal
tables. You can drop these tables from the .wixout or .wixpdb files by adding the
-dut flag.

-ext
Use the -ext flag to link in WiX extensions, such as the WixUIExtension.dll file.
This loads all of the C# code and .wxs files found in that extension.

-ext "%WIX%bin\WixUIExtension.dll"

-loc
When you've created .wxl files that contain localized strings for your MSI file, you'll
link them in (specify their paths and filenames) with -loc flags. Those with a culture
that matches the -cultures flag will be used.

-nologo
Light prints a message at the top of the console window when you use it showing its
version and copyright information. You can stop this by adding the -nologo flag.

Chapter 9

[267]

-notidy
Light produces some temporary files during the course of its processing. It ordinarily
cleans up after itself, deleting these files once it's finished. However, by adding the
-notidy flag, these files will not be deleted. You'll need to add the -v flag to see
where the temporary files are being stored. Look for an entry in the verbose log that
says something like temporary directory located at....

-o[ut]
Use the -o or -out flag to tell Light the name of the resulting MSI or .wixout file.

-pedantic
To see extra linking information, usually of low importance, add the -pedantic flag.

-sadmin
Often, you won't use the AdminExecuteSequence or AdminUISequence tables during
your install. To prevent those tables from being created in the MSI database, add the
-sadmin flag.

-sadv
The AdvtExecuteSequence table is used for advertised installations. If you don't
need it, you can suppress its creation by adding the -sadv flag.

-sloc
To prevent Light from processing localized variables in your .wxs files, add the
-sloc flag. Then, output a file with the .wixout extension via the -o flag. It will
contain the variables, such as !(loc.myVariable), instead of the literal value that it
would have been expanded to. However, if you specify the -loc or -cultures flag,
-sloc will be ignored. You must also specify the -xo flag when you want the output
with the .wixout format.

-sma
You can tell your installer to load a file into the Global Assembly Cache by setting
the Assembly attribute on that file's File element. This will add two new tables
to your MSI: MsiAssembly and MsiAssemblyName. It will also add a new action to
InstallExecuteSequence called MsiPublishAssemblies. To suppress this action
and these tables from being processed, add the -sma flag.

Working from the Command Line

[268]

-ss
Light performs schema validation, using the XML schema found in outputs.xsd, to
check that the syntax of the .wixout or .wxipdb file is correct. You can suppress this
validation by adding the -ss flag.

-sts
Light uses GUIDs to identify row elements in .wixout and .wixpdb files. You can
stop Light from showing these GUIDs in these files by adding the -sts flag.

-sui
You can choose to suppress the UI phase of the install by adding the -sui flag. This
will remove the InstallUISequence and AdminUISequence tables from the MSI
database. You might do this to simplify an MSI database that has no user interface.

-sv
The output from Light can be represented in the XML format in either a .wixout or
.wixpdb file. These files represent an intermediate state of the data before it's turned
into an MSI file by Light's binding process. They always contain an element called
wixOutput that has a version attribute. When Light reads these intermediate XML
files and transforms them into a finished MSI file, it checks that the version attribute
in the file matches the version of Light that's installed. That way, it can be sure that
the data can be processed correctly.

Imagine, however, that you've stored .wixout files that you plan on creating an
MSI out of sometime in the future. After all, it's possible to build an MSI file from a
.wixout file at a later time and your version of Light may have changed. You can
suppress this validation by adding the -sv flag.

-sw[N]
Light produces several warnings and errors if files can't be found or things can't
be linked properly. To turn off all warnings, add the -sw flag. You can also specify
a particular warning to suppress by setting -sw to that warning's number. These
numbers can be found in messages.xml in the WiX source code.

Chapter 9

[269]

-usf <output.xml>
Use the -usf flag with the name of an XML file, such as -usf unrefSymbols.xml
to log the symbols from Light's output that were not referenced. For example, adding
the WixUIExtension but not using any of its dialogs will cause some
symbols to be orphaned.

-v
In order to see what's going on behind the scenes with Light, you'll need to add the
-v flag. This displays Light's logging messages such as ICE validation, file copying,
and CAB file creation.

-wx[N]
Ordinarily, warnings from Light don't stop the linking process. However, by
adding the -wx flag, warnings will be treated as errors, which do stop the process.
You can also specify a specific warning message to treat as an error by adding its
message number.

-xo
When you add the -xo flag to Light, it outputs XML in the .wixout format. So, you'll
need to also specify a .wixout filename with the -out flag. You may also want to
add the -bf flag to append binary data for the installer to the .wixout file.

Command-line arguments (binding)
In this section, we will explore the arguments that affect Light's binding phase.
Binding is the process whereby the binary data from your source files that were
resolved during the linking phase are compressed into CAB files that are potentially
stored in the MSI.

-bcgg
When creating a Component element in WiX, you'll usually specify a GUID to
uniquely identify it. However, you can specify an asterisk (*) instead, in which case
Light will choose the GUID for you. The default algorithm Light uses to create a
GUID involves the SHA1 hash. However, by adding the -bcgg flag, you're telling it
to use the older MD5 hash. This is a more backwards compatible algorithm, but is
rarely needed.

Working from the Command Line

[270]

-cc <path>
The binding process creates a .cab file, a type of file that holds compressed data,
to store the files that the MSI will install. If you plan on calling Light several times,
you can save some time by caching the .cab file and reusing it. To cache it, specify
the -cc flag and the path to cache it to. Later on, you can add the -reusecab flag
to tell Light to look for the .cab file in the path you've specified. For example, you
could specify that the .cab file be cached to a directory called cabcache like this:
-cc ".\cabcache".

-ct <N>
You can change the number of threads Light uses when creating .cab files. The
default is to use the number stored in the %NUMBER_OF_PROCESSORS% environment
variable. You can change it by setting the -ct flag to a number.

-cub <file.cub>
Windows Installer uses files with the .cub extension to store ICE validation checks.
There are two files it uses routinely: darice.cub (for MSIs) and mergemod.cub (for
MSMs). To add your own .cub file with new ICE tests, specify the path to it with the
-cub flag. We won't cover how to create custom ICE checks in this book.

-dcl:level
By default, Light uses MSZIP to compress .cab files. You can change the
compression by adding the -dcl flag and setting it to one of the following: low,
medium, high, none, or mszip.

-eav
Light uses a workaround to prevent Windows Installer from complaining if
the version stored in the MsiAssemblyName table doesn't fit the fileVersion
column created by the -fv flag. By specifying -eav, you're telling Light to not
use this workaround.

-fv
If you add the -fv flag, Light will add a column called fileVersion to the
MsiAssemblyName table. This is a table used to install assemblies to the GAC.
The recommended way to update an assembly in the GAC is to install the new
version with a new strong name. You'd use -fv when you want to ignore this
recommendation and update an assembly in the GAC without changing its
strong name.

Chapter 9

[271]

-ice <ICE>
If you've created your own ICE checks and referenced their containing file with the
-cub flag, you'll need to specify which to use with the -ice flag. For example, to add
a test called ICE9999, and add the following: -ice:ICE9999. Specify the number of
the test after a semicolon. Refer to the MSDN documentation for more information
about creating your own ICE checks: http://msdn.microsoft.com/en-us/
library/aa372423%28VS.85%29.aspx.

-pdbout <output.wixpdb>
Light ordinarily creates a .wixpdb file that has the same name as the MSI that you're
creating. However, you can change the name of the .wixpdb file by specifying it with
the -pdbout flag.

-reusecab
If you've used the -cc flag to cache the .cab files that Light creates, you can tell Light
to re-use those cabinets by adding the -reusecab flag. You'll need to specify the -cc
flag again, which tells Light where the .cab files have been cached. If Light can't find
the .cab files there, it will resort to creating them again.

-sa
When storing an assembly in the GAC, Light finds the file information on the .dll
file for you (culture, name, architecture, public key token, and version) and stores it
in a table called MsiAssemblyName. You can suppress this by adding the -sa flag.

Light can't use reflection on .NET assemblies that use a newer version of the
Common Language Runtime (CLR) than was available when Light was built. You
can see the supported runtimes by opening light.exe.config, found in the WiX
bin folder, in a text editor and searching for the supportedRuntime element.

In such a situation, you may be better off using -sa and adding the assembly
information to the MsiAssemblyName table yourself. That is, unless there's a newer
version of Light available for download.

-sacl
During Light's binding phase, it copies the finished MSI file to your output folder.
If the file can't be copied because its permissions (its ACLs) are too restrictive
(adopted from the permissions of the source directory), then Light changes the file's
permissions to be Full Control for the current user.

Working from the Command Line

[272]

Once it has copied the file to the output folder, it sets things right again by giving the
MSI file the permissions of the output folder. If you add the -sacl flag, Light will skip
this step and the MSI file will be left with the unrestricted permissions. You might
do this if the permissions of the output folder are also too restrictive. For example, if
you're sending the output to a network share, but you don't want the MSI file to adopt
the permissions of that share.

-sf
The -sf flag has the same behavior as the -sa and -sh flags added together.

-sh
If you add the -sh flag, Light will not add the MsiFileHash table to the final MSI.
This table is used to eliminate the unnecessary copying of a file if the end user's
computer already has a file that's scheduled to be installed.

-sice: <ICE>
You can suppress a specific ICE validation check by adding its number after the
-sice flag. You should specify a new -sice flag for each check that you want to
suppress. For example, to suppress ICE20, add the following: -sice:ICE20.

-sl
By adding the -sl flag, you're telling Light to not embed the CAB file in the
MSI package. Once the MSI is built, you can check the Media table and see that
the Cabinet column's value does not start with a pound sign (#), showing that
the CAB file is not embedded.

-spdb
The -spdb flag tells WiX to not create a .wixpdb file.

-sval
To prevent Light from running any of the ICE validation checks, add the -sval flag.

Chapter 9

[273]

Link-time variables
Like Candle, Light allows you to specify variables that will be interpreted when your
project is built. Here, however, the variables are processed at link time. There are
three types of link-time variables: localization, binder, and custom. We will take a
look at each in the following sections.

Localization variables
WiX gives you something unique in the MSI-building world—a way to re-use one
set of .wxs files for many different languages. The way to do it is to use a variable
anywhere that you'd normally place text, such as on dialog controls, feature labels,
directory names, and so on. At link time, these localization variables will be swapped
with the text specific to the language you're building.

Use the !(loc.VariableName) syntax in your WiX markup, as follows:

<Directory Id="TARGETDIR" Name="SourceDir">
<Directory Id="ProgramFilesFolder">
<Directory Id="INSTALLLOCATION"
 Name="!(loc.InstallDirName)" />
</Directory>
</Directory>

Here, we're not setting the name of our install directory in stone. We're using a
variable instead and will swap it out with real text at link time. You can then create a
.wxl file to store the language-specific value of your variable. One .wxl file for each
language. We'll talk more about this later in the book when we discuss localization.
For now, it's enough to know that these variables are expanded at link time.

Binder variables
There are a number of binder variables that are predefined for you and that
become available just before Light creates the final output. You'll use the !(bind.
VariableName.FileID) syntax to access them.

Working from the Command Line

[274]

The following list shows the variables that are available. You'll replace FileID
with the ID of the File element you're trying to get information about. The first
two are available to all of the files that you add with the File element. The remainder
is only available to those that specified the Assembly attribute and set it to either
.net or win32.

Variable name Example
bind.fileLanguage.FileID !(bind.fileLanguage.MyFile)

bind.fileVersion.FileID !(bind.fileVersion.MyFile)

bind.assemblyCulture.FileID !(bind.assemblyCulture.MyAssembly)

bind.assemblyFileVersion.
FileID

!(bind.assemblyFileVersion.
MyAssembly)

bind.assemblyFullName.FileID !(bind.assemblyFullName.
MyAssembly)

bind.assemblyName.FileID !(bind.assemblyName.MyAssembly)

bind.
assemblyProcessorArchitecture.
FileID

!(bind.
assemblyProcessorArchitecture.
MyAssembly)

bind.assemblyPublicKeyToken.
FileID

! (bind.assemblyPublicKeyToken.
MyAssembly)

bind.assemblyType.FileID !(bind.assemblyType.MyAssembly)

bind.assemblyVersion.FileID !(bind.assemblyVersion.MyAssembly)

Grabbing information off of incoming files as they're bound into the MSI could be
valuable in a number of ways. One potential use is to reference the file version of
your software's EXE to set the version of the MSI. So, assuming you have defined a
File element with an Id attribute of MyApplicationEXE, given as follows:

<Component Id="CMP_MyApplicationEXE"
 Guid="28FC0A8D-3E8A-4414-9413-E12B98DE668E">
 <File Id="MyApplicationEXE" Source="MyApplication.exe" />
</Component>

Chapter 9

[275]

You could use that file's version in the Product element's Version attribute:

<Product Id="*"
 Name="PracticeWix"
 Language="1033"
 Version="!(bind.fileVersion.MyApplicationEXE)"
 Manufacturer="Awesome Company"
 UpgradeCode="3c1789e3-5b3d-4cb5-9c73-a03f2cc09c26">

Now the version of the MSI is tied to the version of your software.

Custom linker variables
If you were to look back to Chapter 6, Adding a User Interface, where we covered
the standard WiX user interfaces, you'd see that we set linker variables to pull in a
custom RTF license agreement or to change the images that are shown. These link-
time variables are perfect for pulling in a file dynamically, rather than setting it in
stone. It is possible to set your own linker variables as well.

There are two ways to define a custom variable: via the command line with the -d
flag or in your WiX markup with the WixVariable element. When using the -d flag,
you can specify the variable name and its value, separated by an equals sign:

-dmyVariable="some value"

When using the WixVariable element, you'll use its Id attribute to define its name
and its Value attribute to define its value:

<WixVariable Id="myVariable" Value="my value" />

Either way, the variable can be referenced elsewhere in your markup by using the
!(wix.VariableName) syntax. The following example inserts the value of a variable
as the name of a file that's scheduled to be installed.

<Component Id="cmp_myFile"
 Guid="8E74ECD6-782F-45e7-9432-6F4FB4E08CED">
 <File Id="file_myFile"
 Source="!(wix.myVariable)"
 KeyPath="yes" />
</Component>

You can only set a custom variable in one place. So, you can't set it with both a
WixVariable element and on the command line. Doing so will cause a link-time error.

Working from the Command Line

[276]

Building an installer without Visual
Studio
Now that you've been shown Candle and Light, it may help to see a complete
example of compiling and linking a WiX project to get an MSI. First off, create a new
directory for your project and call it PracticeWix. Next, add a text file to it called
InstallMe.txt. This will give us something to install. Then, create a file with the
.wxs extension and call it PracticeWix.wxs, as shown in the following screenshot:

Open PracticeWix.wxs with a text editor such as Notepad and add the following
markup. It will install the text file to a directory called PracticeWix. We'll add one
of the built-in WiX dialogs too.

<?xml version="1.0"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product
 Id="*"
 Name="PracticeWix"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B9B82C37-34EC-4F50-9D0E-0DF8F06F1F64">

 <Package Compressed="yes" InstallScope="perMachine" />
 <MediaTemplate EmbedCab="yes" />

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="PracticeWix" />
 </Directory>

Chapter 9

[277]

 </Directory>

 <ComponentGroup Id="MainComponents"
 Directory="INSTALLFOLDER">
 <Component
 Id="CMP_InstallMeTXT"
 Guid="825F0C9A-AACC-4E37-B8A2-30A452EB58F9">

 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </ComponentGroup>

 <Feature Id="PracticeWix" Title="PracticeWix" Level="1">
 <ComponentGroupRef Id="MainComponents" />
 </Feature>

 <UIRef Id="WixUI_Minimal" />
 </Product>
</Wix>

Now, to compile it, open a command prompt window and navigate to the
PracticeWix folder. Assuming you've added the WiX bin directory to your
PATH environment variable, the following command will call Candle to build
our one .wxs file:

candle.exe -v -ext WixUIExtension -out PracticeWix.wixobj PracticeWix.wxs

This will create a new file in the PracticeWix folder called PracticeWix.wixobj.
Next, use Light to turn that into an MSI:

light.exe -v -ext WixUIExtension -out PracticeWix.msi PracticeWix.wixobj

You should see a fairly long output of the linking process, including the ICE
validation checks. In the end, this should create the MSI file. Go ahead and double-
click on it to launch the installer.

Working from the Command Line

[278]

Summary
In this chapter, we discussed the command line tools Candle, the WiX compiler, and
Light, the linker/binder. Although Visual Studio uses them for you, you can call
them from the command prompt without using Visual Studio at all.

In the next chapter, we'll switch gears and cover something completely different:
how to read and write to the Windows Registry at install time.

Accessing the
Windows Registry

Where to store software configuration settings in Windows has been a moving target
for a long time. Although using the registry for this purpose has fallen out of favor,
developers lean more towards using XML configuration files in the application's
directory or storing them in %APPDATA%, %PROGRAMDATA%, or in Isolated Storage,
it's still useful to know the ins and outs of reading and writing to the registry.

Several of the WiX extensions query the registry for an array of data, such as finding
the installed version of .NET, and you're bound to run into Windows settings
that can only be found in the registry. You might also find it useful to store small
amounts of installer-specific data, such as the application's install path.

In this chapter, we'll discuss the following topics:

• Reading data stored in the registry
• Writing to the registry
• Performing miscellaneous tasks in the registry such as setting user

permissions for registry keys

Accessing the Windows Registry

[280]

Reading from the registry
To read data stored in the registry, you'll use the RegistrySearch element. If the
value you're looking for exists, it will be saved into a property you'll have placed as
a parent element to RegistrySearch. Here's an example that looks for the myValue
value stored in HKEY_CURRENT_USER\Software\MyCompany and stores it in a
property called REGISTRY_RESULT. Whichever property you decide to use, make sure
that it is public (uppercase). An example is as follows:

<Property Id="REGISTRY_RESULT">
 <RegistrySearch Id="MyRegistrySearch"
 Root="HKCU"
 Key="Software\MyCompany"
 Name="myValue"
 Type="raw" />
</Property>

By placing the RegistrySearch element inside of a Property element we're saying
that we want the registry value to be stored in that property. The attributes on the
RegistrySearch element mostly tell Windows Installer where to look for the value.
The Id attribute gives the search a unique identity in the MSI database and can be set
to whatever you like.

The Root attribute sets which top-level node, or hive, in the registry to look under.
Your options are described in the following table:

Set Root to Stands for Description
HKLM HKEY_LOCAL_MACHINE Contains data used to support the

operating system and settings for
installed software that is accessible by all
users

HKCR HKEY_CLASSES_ROOT Provides information regarding
registered COM objects, mostly for
backwards compatibility with 16-bit
systems

HCKU HKEY_CURRENT_USER Gives a view of the currently logged-on
user's profile settings as well as software
configuration specific to that user

HKU HKEY_USERS Stores profile and software settings for
all active users

Chapter 10

[281]

The Key attribute sets what registry key to look for and Name sets the value to read
inside that key. So, in the last example, we want to read the myValue value in the
MyCompany key. The Type attribute tells the installer what sort of data is stored in
myValue. Most of the time, you'll set this to raw.

Setting Type to raw, as opposed to file or directory, which we'll discuss next,
means that the data you get back will contain extra characters to help you distinguish
what kind of data it is. If you've worked with the registry before, you know that
there are several types of data you can store: DWORD, REG_BINARY, REG_SZ, and so
on. The following is a table that explains the special characters that are added to the
value once you've retrieved it:

Type of data Characters added to value
DWORD A # sign is added to the beginning, which may be followed by a +

or -.
REG_BINARY A #x is added to the beginning and each hexadecimal digit is shown

as an ASCII character prefixed with another #x.
REG_EXPAND_SZ A #% is added to the beginning.
REG_MULTI_SZ A [~] is added to the beginning.
REG_SZ No extra characters are added. Any # signs in the value, however,

will be escaped by turning them into two # signs.

Setting Type to either file or directory is used when what is stored in the value is
the path to a file or directory on the local machine. Use this when you want to check
if that file or directory actually exists. For example, this would check if the file path
stored in pathToFile really exists:

<Property Id="MY_PROPERTY">
 <RegistrySearch Id="myRegSearch"
 Root="HKLM"
 Key="Software\WIXTEST"
 Name="PathToFile"
 Type="file">

 <FileSearch Id="myFileSearch" Name="[MY_PROPERTY]" />
 </RegistrySearch>
</Property>

Accessing the Windows Registry

[282]

If the path doesn't exist, the property won't be set. Notice that we have to add
a FileSearch element to do the checking. Simply set its Name attribute to the
Id attribute of your property surrounded by brackets. You can also check if a
directory exists, as in the next example, by setting Type to directory and adding a
DirectorySearch element:

<Property Id="MY_PROPERTY">
 <RegistrySearch Id="myRegSearch"
 Root="HKLM"
 Key="Software\WIXTEST"
 Name="PathToDirectory"
 Type="directory">

 <DirectorySearch Id="myDirSearch"
 Path="[MY_PROPERTY]" />
 </RegistrySearch>
</Property>

Here, if the directory can't be found the property MY_PROPERTY won't be set.

Another attribute that you can add to the RegistrySearch element is Win64.
When set to yes, your installer will read from the 64-bit portion of the registry
on a 64-bit system. Most of the time, WiX handles this for you, setting this flag if
you've built your project to target a 64-bit platform. Setting it manually allows you
to explicitly choose where to search. For example, you may set it to no to search the
32-bit portion on a 64-bit system. The 32-bit registry is located in the Wow6432Node
found at HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node and HKEY_
CURRENT_USER\Software\Wow6432Node.

Writing to the registry
To write to the registry, you'll use the RegistryValue element by itself or paired
with a RegistryKey element. By itself, RegistryValue can perform simple writes.
Writing multiple things to the same place is easier when you use RegistryKey. We'll
discuss both of these in the next sections. Writing occurs during the deferred stage of
the Execute sequence during an action called WriteRegistryValues.

Chapter 10

[283]

Writing a single value
Writing to the registry is sort of like installing something on the end user's computer.
So, you'll have to place your RegistryValue element inside a Component element.
This is actually a good thing as it gives you the opportunity to set component-level
conditions to enable or disable the writing. You could use this to only record to the
registry if a certain condition is met. Refer back to Chapter 4, Improving Control with
Launch Conditions and Installed States, for a discussion on component-level conditions.

Just like when you're installing a file, you must mark something inside the
component as the KeyPath item. In this case, we can mark RegistryValue itself.
Here's an example that writes to a value called myValue in the HKLM\Software\
WixTest\Test key:

<ComponentGroup Id="RegistryComponents"
 Directory="INSTALLLOCATION">

 <Component Id="CMP_WriteToRegistry"
 Guid="DA01C245-8633-4147-92F0-C063003DB493">

 <RegistryValue Id="myRegistryValue"
 KeyPath="yes"
 Action="write"
 Root="HKLM"
 Key="Software\WixTest\Test"
 Name="myValue"
 Value="my value"
 Type="string" />
 </Component>
</ComponentGroup>

Because the element is packaged inside a Component element, it will be removed
for us during an uninstall, freeing us from that responsibility. The RegistryValue
element's Id attribute simply serves to uniquely identify it in the MSI database. We
use the KeyPath attribute to mark it as the keypath for the component.

The Action attribute can take one of three values: append, prepend, or write. You'd
use append or prepend when the type of data you're storing is REG_MULTI_SZ and
you aren't creating a new value, but rather updating an existing one. REG_MULTI_SZ
is a type that contains multiple items of data in a single value. If you use either of
these and there isn't an existing value, one will be created. Setting Action to write
tells the installer to overwrite any existing value or to otherwise create a new one.

Accessing the Windows Registry

[284]

The Root, Key, and Name attributes set the path in the registry to write to. Root can
be set to any of the values available to RegistrySearch with one addition—HKMU.
This is a registry hive that's only related to installs. It means that if this is a per-user
install, the value will be written under HKEY_CURRENT_USER. If it's a per-machine
install it will be written under HKEY_LOCAL_MACHINE.

Set the Value attribute to the data to store in the specified registry value.
You'll establish what type of data it is with the Type attribute, which can be
one of the following:

• string: This means a REG_SZ type
• integer: This means a REG_DWORD type
• binary: This means a REG_BINARY type
• expandable: This means a REG_EXPAND_SZ type
• multiString: This means a REG_MULTI_SZ type

When writing more than one value to the same registry key, it's easier to use the
RegistryKey element, which we'll cover in the next section.

Writing multiple values
With the RegistryKey element, you can set the key you want to write to once, and
then nest several RegistryValue elements inside. Use its Root and Key attributes to
set the key, as in this example:

<Component ...>
 <RegistryKey Root="HKCU"
 Key="Software\MyCompany">
 <RegistryValue Name="myValue"
 Action="write"
 Value="myValue"
 Type="string"
 KeyPath="yes" />

 <!--Other RegistryValues under the same key-->
 </RegistryKey>
</Component>

Chapter 10

[285]

Here, we've set the RegistryKey element to write to the HKCU\Software\MyCompany
key. The child RegistryValue element specifies what to set the myValue value to.
Now, to write to more values in the same key simply add more RegistryValue
elements. Notice that we've set the RegistryValue element in the previous example
as the KeyPath item. If you add more values, you should set their KeyPath attributes
to no. Also notice that neither element requires an Id attribute.

The RegistryKey element has two other optional attributes:
ForceDeleteOnUninstall and ForceCreateOnInstall. By setting
ForceDeleteOnUninstall to yes, during an uninstall not only will the values you've
written during the install be removed—which is the behavior you get just for having
your RegistryKey inside a Component element—but also all other sub keys that are
children to that key. This is probably not the desired behavior in most cases, but might
come in handy under special circumstances, such as when your software has added
keys that you'd like to remove at uninstall time. The following is an example:

<Component ...>
 <RegistryKey Root="HKCU"
 Key="Software\MyCompany"
 ForceDeleteOnUninstall="yes">
 <RegistryValue Name="myValue"
 Action="write"
 Value="myValue"
 Type="string"
 KeyPath="yes" />
 </RegistryKey>
</Component>

The ForceCreateOnInstall attribute allows you to create an empty key without
any values. Without it, the installer won't create the key. It can be a little tricky
getting this to work if you're targeting the HKCU hive. This is because of the ICE38
validation test that checks that you've marked a registry value as the keypath. In
our case, we don't want to create any values. One solution is to nest the key under
another key that does have a RegistryValue marked as the keypath, as in the
following example:

<ComponentGroup Id="RegistryComponents"
 Directory="PersonalFolder">

 <Component Id="CMP_RegistryWrite"
 Guid="3BF28DC8-4AFC-43E8-B605-AA6456B06921">
 <RegistryKey Root="HKCU"
 Key="Software\MyCompany">
 <RegistryValue Type="string"
 Action="write"

Accessing the Windows Registry

[286]

 Name="myValue"
 Value="123"
 KeyPath="yes" />

 <RegistryKey Key="Subkey1"
 ForceCreateOnInstall="yes" />
 </RegistryKey>

 </Component>
</ComponentGroup>

Another use for RegistryKey is to set a REG_MULTI_SZ value. Remember that this
type of value can hold multiple items of data. This technique looks just like the last
example except that the Name attribute of each RegistryValue element stays the
same to signify that they're writing data to the same place. Here's an example that
writes two values to myValue:

<Component ... >
 <RegistryKey Root="HKLM"
 Key="SOFTWARE\MyCompany">

 <RegistryValue Id="myRegistryValue"
 Name="myValue"
 Value="first value"
 Type="multiString"
 KeyPath="yes" />

 <RegistryValue Id="myRegistryValue2"
 Name="myValue"
 Action="append"
 Value="second value"
 Type="multiString"
 KeyPath="no" />
 </RegistryKey>
</Component>

In this example, both RegistryValue elements have their Type attributes set to
multiString to show that they are writing to a REG_MULTI_SZ value. Notice that
the second one has an Action attribute of append. You could set this on both the
elements, but for the first it isn't necessary. You can also use prepend to add a string
to the beginning of the value.

Chapter 10

[287]

Setting NeverOverwrite
When writing to the registry, you have the option of specifying that you only
want to create the key or value if it doesn't already exist. For this, you'll add the
NeverOverwrite attribute to the parent Component element. The next example only
adds the registry value myValue if it doesn't exist:

<Component Id="CMP_regvalue"
 Guid="7088AC98-898E-4FB4-98A6-6549AD3495E8"
 NeverOverwrite="yes">

 <RegistryValue Root="HKLM"
 Key="Software\MyCompany"
 Name="myValue"
 Value="a new value"
 Type="string"
 Action="write"
 KeyPath="yes"/>
</Component>

Removing registry values
When it comes to uninstalling your product, you don't need to worry too much
about the registry keys you've created. Windows Installer will make sure that all
components, including registry keys, are cleaned up. However, in case you want to
remove items from the registry that you didn't create—perhaps they were created by
one of your other products—WiX provides a way to do it.

Two elements are used to remove data from the registry: RemoveRegistryKey and
RemoveRegistryValue. We'll cover both in the following sections.

Remove all keys recursively
You'll use the RemoveRegistryKey element when you want to remove a key from
the registry and all of its sub keys. It must be placed inside a Component element, as
in this example:

<ComponentGroup Id="RegistryComponents"
 Directory="INSTALLLOCATION">

 <Component Id="CMP_RemoveRegistryKey"
 Guid="3B0C6FD9-D73A-4CE9-8053-BBBB2BE8716B"
 KeyPath="yes">
 <RemoveRegistryKey Id="MyRemoveRegistryKey"

Accessing the Windows Registry

[288]

 Root="HKLM"
 Key="Software\WixTest\myKey"
 Action="removeOnInstall" />
 </Component>
</ComponentGroup>

Here, the Component element is marked as the keypath since you cannot do this with
the RemoveRegistryKey element. The RemoveRegistryKey element's Id attribute
sets the unique key for this entry in the MSI database. Root specifies the hive where
the key we're removing is located and Key lists the path to it. You can, via the Action
attribute, specify when to remove this key. It can be set to either removeOnInstall
or removeOnUninstall.

Removing a single value
Whereas RemoveRegistryKey removes a key and all of its sub keys, the
RemoveRegistryValue element is more targeted. It allows you to remove a specific
value inside a particular key. It should be placed inside a Component element, as in
the following code snippet:

<ComponentGroup Id="RegistryComponents"
 Directory="INSTALLLOCATION">

 <Component Id="CMP_RemoveRegistryValue"
 Guid="A07AEF74-C9A9-4D61-8852-A4EC3F9E13F9"
 KeyPath="yes">
 <RemoveRegistryValue Id="MyRemoveRegistryValue"
 Root="HKLM"
 Key="Software\WixTest\MyKey"
 Name="myValue" />
 </Component>
</ComponentGroup>

The syntax of RemoveRegistryValue is very similar to RemoveRegistryKey except
that it adds a Name attribute to specify the value to remove from the key. Notice that
there's no Action attribute because you don't have the option of removing a value
during an uninstall.

Chapter 10

[289]

Copying registry values
WiX doesn't provide a specific element for copying data from one registry value
to another. However, you can accomplish this task by pairing a RegistrySearch
element with RegistryValue. First, you'll store the value in a property by using a
RegistrySearch element. Then, you'll reference that property in the Value attribute
of the RegistryValue element. Here's an example:

<Property Id="MY_REG_VALUE">
 <RegistrySearch Id="MyRegistrySearch"
 Root="HKLM"
 Key="Software\MyCompany\MyKey"
 Name="MyDWORDValue"
 Type="raw" />
</Property>

<ComponentGroup Id="RegistryComponents"
 Directory="INSTALLLOCATION">

 <Component Id="CMP_CopyRegValue"
 Guid="747965AA-90F4-4262-BE55-3C1F4F7F65B4">
 <RegistryValue Id="MyRegistryValue"
 KeyPath="yes"
 Root="HKLM"
 Key="Software\MyCompany\MyKey"
 Name="MyCopiedValue"
 Value="[MY_REG_VALUE]"
 Action="write"
 Type="string" />
 </Component>
</ComponentGroup>

The first thing we did was use a RegistrySearch element to look up MyDWORDValue
stored in the HKLM\Software\MyCompany\MyKey key. Its value is then stored in a
property called MY_REG_VALUE.

Next, we create a new component and add a RegistryValue element to it. It
specifies that it will create a new registry value under the same key as the original,
but called MyCopiedValue. We set its value with the Value attribute, which
references the MY_REG_VALUE property in square brackets.

Accessing the Windows Registry

[290]

Notice that we can set the Type to string here even though the value we're copying
is actually of type DWORD. Because the value stored in the property is retrieved using
the raw type, it will contain special characters to denote its data type. When we
copy it to our new value, Windows will infer the data type by this. So, in essence,
it doesn't matter what you put for the RegistryValue element's Type attribute.
Windows can figure out on its own what type it should be.

Registry permissions
Every key in the registry has a set of permissions saved to it that affects which
users can read or write to it. You can see this in the Registry Editor by going to Run
| regedit, right-clicking on a key, and selecting Permissions. WiX allows you to
change these permissions with its PermissionEx element.

PermissionEx isn't in the default WiX namespace, but rather in WixUtilExtension.
So, you'll need to add a reference in your project to WixUtilExtension, found in the
WiX bin directory, and add the UtilExtension namespace to your Wix element.
Here's the updated Wix element:

<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

We've assigned the UtilExtension namespace to the prefix util. Now, when
we create a registry key with a RegistryKey element, we'll nest a PermissionEx
element inside it to set its permissions. The next example sets the permissions of a
key called MyKey so that a user named nickramirez has all permissions to it:

<DirectoryRef Id="INSTALLLOCATION">
 <Component Id="CMP_WriteToRegistry"
 Guid="DA01C245-8633-4147-92F0-C063003DB493">

 <RegistryKey Id="MyRegistryKey"
 Root="HKLM"
 Key="Software\MyCompany\MyKey">

 <RegistryValue ... />

 <util:PermissionEx User="nickramirez"
 GenericAll="yes" />
 </RegistryKey>
 </Component>
</DirectoryRef>

Chapter 10

[291]

Use the User attribute to set the name of the Windows user account to apply
permissions to the account. We've given them the GenericAll permission. The
following table lists all of your options:

Attribute As seen on the key What it does
GenericAll Full Control Gives user all permissions.
GenericRead Read Grants QueryValue,

EnumerateSubkeys, Notify, and
ReadControl. Must have at least one
other permission specified.

GenericExecute n/a Same privileges as GenericRead, but
it can be specified alone.

GenericWrite n/a Grants SetValue, CreateSubkey,
and ReadControl.

ChangePermission Write DAC Allows the user to read the
discretionary access control list for the
key.

CreateLink Create Link Allows the user to create symbolic links
to the key.

CreateSubkeys Create Sub key Allows the user to create new sub keys
inside the key.

Delete Delete Allows the user to delete the key.
EnumerateSubkeys Enumerate Sub keys Allows the user to identify all of the sub

keys in the key.
Notify Notify Allows the user to receive an audit

message about the key.
Read Query Value Allows the user to read the values in the

registry key.
ReadPermission Read Control Allows the user to read the information

in the key's access control list (ACL).
Synchronize n/a Sets whether to wait to access the

key until another thread has finished
accessing it.

TakeOwnership Write Owner Makes the user the owner of the key.
Write Set Value Allows the user to set the values of the

registry key.

Accessing the Windows Registry

[292]

You can nest several PermissionEx elements inside a single RegistryKey element
to set access levels for various users. Be sure not to be so restrictive that no user has
enough rights to remove the key. That would cause problems during an uninstall.
You can also nest a PermissionEx element inside a RegistryValue element to apply
rights to that value's parent key.

Summary
In this chapter, we discussed how to read from and write to the Windows Registry
at install time. Reading stores a value from the registry in a Windows Installer
property that you can then use elsewhere in your markup. Writing is done with the
RegistryKey and RegistryValue elements. The former is used for writing multiple
values and the latter for writing a single value. You have the option of setting
permissions on these values and specifying whether or not to remove existing keys
that weren't included in your MSI.

In the next chapter, we'll cover how to interact with Windows services. WiX gives
you the capability to create, start, stop, and remove services. We'll also see how to
configure a service's user account and recovery options.

Controlling Windows Services
A Windows service is an application that runs continuously in the background
and doesn't interact with the user of the computer. They typically start up when
the computer is booted. You can see a list of installed services in Windows 7 by
navigating in your Start menu to Control Panel | Administrative Tools | Services,
or by selecting Run from your Start menu and entering services.msc.

During an installation, your MSI package may need to interact with services that
already exist on the end user's computer or even install and configure its own. In this
chapter, we'll cover the WiX elements that allow you to do this. Specifically, we'll
cover the following topics:

• Creating a simple Windows service
• Registering and configuring services with the sc.exe utility
• Installing a service with the ServiceInstall element
• Using ServiceControl to start, stop, and remove a service
• Setting a user account, dependencies, and recovery options

Creating a simple Windows service
A Windows service always maps back to an executable file that's stored on the local
hard drive. Although that executable could host a sophisticated program such as
a Windows Communication Foundation service, here we'll create one that's much
simpler. Our service will simply write to a log file periodically.

Controlling Windows Services

[294]

Visual Studio provides a project template for creating a Windows service. Go to File
| New | Project | Windows | Windows Service.

Once you've created this new project, right-click on the Service1.cs file in the
SolutionExplorer and select ViewCode. The C# code that you'll see displays a class,
here named Service1, that is derived from System.ServiceProcess.ServiceBase.
It overrides the OnStart and OnStop methods.

These are the methods that every Windows service must implement so that they
can be started and stopped by the Service Control Manager (SCM). The SCM is
a process that tracks which services are installed and monitors their individual
status. Later on, we'll cover how to issue some basic commands to the SCM from
the command line.

The following code in Service1.cs adds the functionality necessary to write to a log
file every five seconds:

namespace WindowsService1
{
 using System;
 using System.IO;
 using System.ServiceProcess;

Chapter 11

[295]

 using System.Threading;

 public partial class Service1 : ServiceBase
 {
 private Thread thread;
 private bool threadActive;

 public Service1()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 this.threadActive = true;
 ThreadStart job = new ThreadStart(this.WriteToLog);
 this.thread = new Thread(job);
 this.thread.Start();
 }

 protected override void OnStop()
 {
 this.threadActive = false;
 this.thread.Join();
 }

 protected void WriteToLog()
 {
 string appDataDir = Environment.GetFolderPath(
 Environment.SpecialFolder.CommonApplicationData);

 string logDir = Path.Combine(appDataDir,
 "TestInstallerLogs");

 string logFile = Path.Combine(logDir,
 "serviceLog.txt");

 while (this.threadActive)
 {
 if (!Directory.Exists(logDir))
 {
 Directory.CreateDirectory(logDir);

Controlling Windows Services

[296]

 }

 using (var sw = new StreamWriter(logFile, true))
 {
 sw.WriteLine("Log entry at {0}", DateTime.Now);
 }

 Thread.Sleep(5000);
 }
 }
 }
}

As you can see, we spin up a new thread in the OnStart method. This begins
the writing to a file called serviceLog.txt under the C:\ProgramData\
TestInstallerLogs directory. An easy way to get to that directory in the Windows
file explorer is to enter the %PROGRAMDATA% environment variable into the explorer's
address bar. The OnStop method sets a Boolean value to wind down the worker
thread, and then joins it to the main thread. A private method called WriteToLog
handles the actual logic. We separate the job into its own thread so that the service
can start in a timely manner without getting hung up.

Compile the project to get the executable file for our service. Next, we'll see how to
use the SCM to register and configure it.

Using sc.exe
To communicate with the Service Control Manager, you can use a command-line tool
called sc.exe. Note that you ought to be logged in as an administrator before running
this utility. To register our executable as a service, we'll use its create command.
Every service gets a behind-the-scenes short name such as testsvc. Specify the new
name as the first parameter to create. The binPath parameter sets the path to the
executable. Be sure that the equal sign has no spaces before it and one after it. Follow
this convention with all sc.exe parameters that use an equal sign.

sc create testsvc binPath= "C:\WindowsService1.exe"

On Windows 8, this requirement of having a space after the
equals sign has been removed.

Chapter 11

[297]

After running this command, you'll see the new service in the services management
console (services.msc) among the other installed services. Yours will show up
as testsvc. It won't be started yet for you. You'll have to start it manually, either
through the services management console or with the sc.exe tool's start command.

sc start testsvc

You'll always have to start your service the first time. However, you can change
how it starts from then on. For example, you could have it start up each time the
computer is turned on. To do that, add the start argument to the create command,
as shown in the following code snippet:

sc create testsvc binPath= "C:\WindowsService1.exe" start= auto

The following table lists the possible values for the start argument:

Start value Meaning
demand This is the default argument. Service must be started manually.
auto Starts the service each time the computer is restarted.
boot Mostly used for device drivers. Starts the service at boot time.
system Mostly used for device drivers. Starts the service at kernel

initialization.
disabled The service cannot be started.

Something more that the create command can do is set a more user-friendly name
to be displayed in the services management console. So, if you'd rather have users
see "Test Service" instead of testsvc, you can add the DisplayName argument to
the create command.

sc create testsvc binPath= "C:\WindowsService1.exe" start= auto
DisplayName= "Test Service"

If you need to stop the service, you can use the stop command. Here is an example:

sc stop testsvc

To delete the service, use the delete command:

sc delete testsvc

Controlling Windows Services

[298]

Notice that even if you've assigned the service a display name, you still have to
reference the testsvc name when issuing commands. You can find the service name
of any installed service by right-clicking on it in the services management console
and selecting Properties. You can also find it with sc.exe's GetKeyName command
which takes the DisplayName as a value and returns the service name, among other
information. The following example looks up the service name for the Test Service
service, returning the result testsvc.

sc GetKeyName "Test Service"

Something else to look at is how to set dependencies for your services. You'd use
this if your service required other services to be running before it could be started.
As an example, suppose testsvc couldn't start unless dependencySvc was already
running. You could specify that by adding the depend argument:

sc create testsvc binPath= "C:\WindowsService1.exe" depend= dependencySvc

You can specify more than one dependency by separating each name with a forward
slash (/). Windows will make sure that each service is started up in the correct order
if it depends upon another.

One final thing to look at is setting the error logging level of your service. By default,
this is set to normal, meaning that when the computer is powered on, if there is an
error while trying to start the service, it will be logged and a message box will be
displayed to the user. You may decide to change this to either ignore, in which case
the error is logged but the user doesn't see a message box, or critical, meaning
that if the service can't be started, the computer will try to restart with the last known
good configuration. This is set with the create command's error argument.

sc create testsvc binPath= "C:\WindowsService1.exe" error= ignore

Using WiX to install a service
Now that you know how to install a service from the command line, let's look at how
to do it with an installer. WiX has an element called ServiceInstall that you can use
to add a new service to the services management console. This assumes that you've
already created the executable file that will become the end point for your service, as
discussed earlier.

Chapter 11

[299]

First of all, we'll use the familiar Component and File elements to install the .exe to
the install directory on the target machine. Add the following code to your WiX
project:

<DirectoryRef Id="INSTALLFOLDER">
 <Component
 Id="CMP_WindowsService1"
 Guid="3D3DE5C1-7154-4c61-9816-248A85F6DEBF">

 <File
 Id="WindowsService1.exe"
 Name="WindowsService1.exe"
 KeyPath="yes"
 Source=".\WindowsService1.exe" />
 </Component>
</DirectoryRef>

Next, add a ServiceInstall element to the same component to register the
WindowsService1.exe file as a service. Notice that a lot of the functionality from
sc.exe is present here, such as setting DisplayName, the startup type, and error
logging level. Each of the attributes shown is required except for DisplayName:

<DirectoryRef Id="INSTALLFOLDER">
 <Component
 Id="CMP_WindowsService1"
 Guid="3D3DE5C1-7154-4c61-9816-248A85F6DEBF">

 <File
 Id="WindowsService1.exe"
 Name="WindowsService1.exe"
 KeyPath="yes"
 Source=".\WindowsService1.exe" />

 <ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess" />
</Component>
</DirectoryRef>

Controlling Windows Services

[300]

When Type is set to ownProcess, it means that the service will execute in its
own Windows process. When set to shareProcess, it can be grouped into the
same process as other services running in the same executable. If you choose
shareProcess, then if even one of the services in the process fails, all of the services
in that process will fail. It is safer to separate services into their own processes, if
possible. Of course, that may be up to the team writing the service.

There are several other optional attributes available, some of which we'll discuss in
more detail later in the chapter. They are as follows:

Attribute name Description
Arguments Specify any command-line arguments required to run the service.
Account The account under which to start the service, valid only when

ServiceType is ownProcess.
Password The password for the account, valid only when the account has a

password.
Description The text that will be under the Description label for your

service in the services management console.
Vital Either yes or no, the overall installation should fail if this service

can't be installed.
LoadOrderGroup A group of services that your service can join (or create) to be

started when the computer starts up.

Be aware that the ServiceInstall element behaves a bit differently than other WiX
elements in that it won't automatically remove your Windows service during an
uninstall. That task, along with sending start and stop messages, is handled by the
ServiceControl element, which we'll discuss in the following section.

Starting, stopping, and uninstalling a
service
The ServiceInstall element works well for installing a service, but doesn't provide
a way to start, stop, or uninstall one. For that, you'll use the ServiceControl element.
It can be added to the same component as the ServiceInstall element thereby
sending signals to the testsvc test service you're installing.

Chapter 11

[301]

The following example starts the service during install and stops and removes
it during uninstall. These actions happen during the deferred stage of the
Execute sequence:

<DirectoryRef Id="INSTALLFOLDER">
 <Component ... >

 <File ... />

 <ServiceInstall ... />

 <ServiceControl
 Id="sc_WindowsService1"
 Name="testsvc"
 Start="install"
 Stop="both"
 Remove="uninstall"
 Wait="yes" />
 </Component>
</DirectoryRef>

The Name attribute specifies the service that you want to control. Start, Stop, and
Remove can each be set to one of the following values: install, uninstall, or both.
In this example, we've set Stop to both so that if our service is already installed
(from a previous install), we'll stop it before installing the new version and starting it
up again. It is essential that you set the Remove attribute or else the service won't be
removed during an uninstall.

WiX schedules these actions during the Execute sequence in the following order:

• StopServices

• DeleteServices

• RemoveFiles

• InstallFiles

• InstallServices

• StartServices

Notice that other actions that deal with installing and removing files are performed
after services have been stopped and deleted, and before services are installed and
started. That way, those processes are freed up before the underlying executable files
are modified.

Controlling Windows Services

[302]

Getting back to the previous example, the Wait attribute tells the installer whether
it should pause and wait for each action to complete before moving on. If the rest
of your install depends on your service being in a certain state, then you should set
Wait to yes. Setting Wait to yes will also cause the installer to show a message box
to the user asking whether they'd like or retry to cancel if the service can't be started:

The ServiceControl element isn't limited to sending signals to services you're
installing. It can do the same for any service that's installed on the end user's
computer. All you have to do is change the Name attribute. For example, if we wanted
to stop the DHCP Client service (named Dhcp) before installing files and start it up
again afterwards, we could do so by adding a ServiceControl element with a Name
attribute of Dhcp:

<Directory ... >
 <Component ... >
 <File ... />

 <ServiceControl
 Id="startAndStopDhcp"
 Name="Dhcp"
 Start="both"
 Stop="both"
 Wait="yes" />
 </Component>
</Directory>

Notice that we don't have to include a ServiceInstall element to use
ServiceControl. Also, ServiceControl here doesn't use the Remove
attribute, which tells the installer when to uninstall the service. We should
leave the DHCP Client service after our application has been uninstalled.

Chapter 11

[303]

Setting the service's user account
Ordinarily, when you install a service, it runs under the LocalSystem account. You
can see this by opening the services management console, right-clicking on a service,
selecting Properties, and choosing Log On tab. LocalSystem is a special account
used by the SCM that gives wide-ranging privileges to interact with the computer.
If you'd like to give your service more limited access, you can assign it to another
user account.

Two accounts that you might consider are LocalService and NetworkService.
These accounts have fewer privileges than LocalSystem, but are still built-in and
ready to use. To set a new user account for your service, add the Account and
Password attributes to ServiceInstall. If the account doesn't have a password,
which is the case with LocalService and NetworkService, you can omit the
Password attribute. Here's an example:

<DirectoryRef Id="INSTALLFOLDER">
 <Component
 Id="CMP_WindowsService1"
 Guid="3D3DE5C1-7154-4c61-9816-248A85F6DEBF">

 <File
 Id="WindowsService1.exe"
 Name="WindowsService1.exe"
 KeyPath="yes"
 Source=".\WindowsService1.exe" />

 <ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Description="Test service for WiX"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess"
 Account="NT AUTHORITY\LocalService" />

 <ServiceControl
 Id="sc_WindowsService1"
 Name="testsvc"
 Start="install"
 Stop="both"
 Remove="uninstall"
 Wait="yes" />
</Component>
</DirectoryRef>

Controlling Windows Services

[304]

We've added the Account attribute to the ServiceInstall element and set it
to NT AUTHORITY\LocalService. You'll be able to see this after installing the
MSI by opening the services management console, right-clicking on the new
service, selecting Properties, and clicking on the Log On tab, as shown in the
following screenshot:

Hardcoding NT AUTHORITY\LocalService or NT AUTHORITY\NetworkService
won't work on non-English operating systems, as the names won't translate.
So, you should instead use WiX properties that will be translated into the proper
user account names at install time. WixUtilExtension offers these properties.
You can find a list at http://wix.sourceforge.net/manual-wix3/osinfo.htm.

Here's an example that uses the WIX_ACCOUNT_LOCALSERVICE property in place of NT
AUTHORITY\LocalService. You must first add a PropertyRef element to reference
the property in your project:

<PropertyRef Id="WIX_ACCOUNT_LOCALSERVICE"/>

<DirectoryRef Id="INSTALLFOLDER">
 <Component ...>
 <File ... />

 <ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Description="Test service for WiX"

Chapter 11

[305]

 Start="auto"
 ErrorControl="normal"
 Type="ownProcess"
 Account="[WIX_ACCOUNT_LOCALSERVICE]" />

 <ServiceControl ... />
 </Component>
</DirectoryRef>

You can also set the account to a local user or domain user. Be sure to always include
the domain name or computer name, such as DomainName\UserName. For the next
example, we'll create a new user during the course of the install and then assign that
account to the service.

To create a new local user, use the User element from WixUtilExtension. After
adding a reference in your project to WixUtilExtension.dll, add the following
namespace to your Wix element:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension"
 >

Now, you can use the User element in your markup. This new component will add
JoeUser as a local user account:

<Property Id="MY_PASSWORD" Hidden="yes" Value="password" />

<DirectoryRef Id="INSTALLFOLDER">
 <Component
 Id="CMP_NewUser"
 Guid="29019429-AA87-401C-AF87-5BA4798EE6F1"
 KeyPath="yes">

 <util:User
 Id="addNewUser"
 LogonAsService="yes"
 CreateUser="yes"
 Name="JoeUser"
 UpdateIfExists="yes"
 Password="[MY_PASSWORD]"
 PasswordNeverExpires="yes"
 RemoveOnUninstall="yes" />
 </Component>
</DirectoryRef>

Controlling Windows Services

[306]

In order to create a Windows service that starts automatically, the assigned
user account must have the Logon as a Service right from the computer's local
security policy. You can give the new account this by setting the User element's
LogonAsService attribute to yes. Without this, the system won't be able to log in as
the account and an error will occur. You can check permission-related errors in the
Windows event log.

The CreateUser attribute tells the installer to create this user account if it doesn't
exist. Name sets the account's name. UpdateIfExists tells the installer to only update
the account's settings if it does already exist. For example, if the account exists but does
not have the Logon as a Service permission, it will be updated to have it. Password sets
the password for the account. Here, we're using a hardcoded property, but in practice
you'd probably gets its value from the user. The PasswordNeverExpires attribute
prevents the password from ever expiring and RemoveOnUninstall ensures that the
account will be deleted when the product is uninstalled.

Now, we can use this account in the ServiceInstall element:

<DirectoryRef Id="INSTALLFOLDER">
 <Component
 Id="CMP_WindowsService1"
 Guid="3D3DE5C1-7154-4c61-9816-248A85F6DEBF">

 <File
 Id="WindowsService1.exe"
 Name="WindowsService1.exe"
 KeyPath="yes"
 Source=".\WindowsService1.exe" />

 <ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Description="Test service for WiX"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess"
 Account=".\JoeUser"
 Password=[MY_PASSWORD] />

 <ServiceControl
 Id="sc_WindowsService1"
 Name="testsvc"
 Start="install"

Chapter 11

[307]

 Stop="both"
 Remove="uninstall"
 Wait="yes" />
 </Component>
</DirectoryRef>

You can use .\ before the account name to reference the local computer name, if you
don't know it. You can also specify a domain account here by prefixing the name
with the domain name. You should also know that a local user account can only start
a service if the ServiceInstall element has an Interactive attribute set to no,
which is the default, and a Type set to ownProcess.

Adding service dependencies
If your service requires that other services be started before it can function properly,
you can use the ServiceDependency element to add those services as dependencies.
You'll place it inside the ServiceInstall element. Here's an example that states
that the DNS Client service, named Dnscache, must be started before starting our
Test Service:

<ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Description="Test service for WiX"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess">

 <ServiceDependency Id="Dnscache" />
</ServiceInstall>

The ServiceDependency element's Id attribute sets the name of the service to
depend on. Now, Windows will make sure that the DNS Client service is started
before the Test Service. You can add more ServiceDependency elements for
additional dependencies.

Controlling Windows Services

[308]

You can also set Id to the Name attribute of another ServiceInstall element. That
way, if you're installing two services, you can specify that one should be started
before the other. Here's an example:

<DirectoryRef Id="INSTALLFOLDER">
 <Component ... >
 <File ... />

 <ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc1"
 DisplayName="Test Service 1"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess" />

 <ServiceControl ... />
 </Component>

 <Component ... >
 <File ... />

 <ServiceInstall
 Id="InstallWindowsService2"
 Name="testsvc2"
 DisplayName="Test Service 2"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess">

 <ServiceDependency Id="testsvc1" />
 </ServiceInstall>

 <ServiceControl ... />
 </Component>
</DirectoryRef>

Here, the service called TestService2 will be started after TestService1 has
been started.

Chapter 11

[309]

Another thing you can do is add one of your services to a load order group and
then start that entire group before starting one of your other services. A load order
group is simply a category under which several services are grouped. You can use
the ServiceInstall element's LoadOrderGroup attribute to join an existing group.
If that group name doesn't exist, it will be created for you. The next example joins the
TestService1 service to the TestGroup group:

<ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc1"
 DisplayName="Test Service 1"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess"
 LoadOrderGroup="TestGroup" />

If we then had another service, we could specify, via the ServiceDependency
element, that all services in TestGroup should be started first. You'd add the Group
attribute, set to yes, to signify that the Id attribute in the ServiceDependency
element refers to a group name:

<ServiceInstall
 Id="InstallWindowsService2"
 Name="testsvc2"
 DisplayName="Test Service 2"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess">

 <ServiceDependency Id="TestGroup" Group="yes" />
</ServiceInstall>

When you set a dependency for a service, be aware that if the dependency can't
be started, an error will occur. If this happens during the install, then the user will
be given the option to retry or cancel. In the next section, we'll tackle what should
happen if the service fails during the normal course of its life. You can tell Windows
what to do when this happens with the ServiceConfig element.

Controlling Windows Services

[310]

Service recovery with Util:ServiceConfig
Windows allows you to set actions to be taken if your service fails at some point
while it's running. Note that at this point, we're handling errors that crash the service
during its lifetime and not errors during the installation. Your three options are: try
to restart the service, run an executable file or script, or reboot the machine. You can
see these settings in the services management console by viewing Properties of your
service and clicking on the Recovery tab.

First, let's alter the original Windows service that we created by changing the
WriteToLog function so that it throws an error the third time it prints a message.
As this error is uncaught, it will cause the service to stop running. This will give
the failure recovery actions a chance to kick in. The following is the new code for
WriteToLog:

protected void WriteToLog()
{
 int count = 0;

 string appDataDir = Environment.GetFolderPath(

Chapter 11

[311]

 Environment.SpecialFolder.CommonApplicationData);

 string logDir = Path.Combine(appDataDir,
 "TestInstallerLogs");

 string logFile = Path.Combine(logDir, "serviceLog.txt");

 while (this.threadActive)
 {
 count++;

 if (count >= 3)
 {
 throw new Exception("Service failed.");
 }

 if (!Directory.Exists(logDir))
 {
 Directory.CreateDirectory(logDir);
 }

 using (var sw = new StreamWriter(logFile, true))
 {
 sw.WriteLine("Log entry at {0}", DateTime.Now);
 }

 Thread.Sleep(5000);
 }
}

Now the service will fail after writing to the log twice. Going back to our WiX
project, let's add a project reference to WixUtilExtension, if it's not already there. Be
sure to add the util namespace:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension"
 >

Controlling Windows Services

[312]

This allows us to use the ServiceConfig element through which we can set the
failure recovery options. If you want to set the options for a service that's already
installed, place the ServiceConfig element inside its own Component element.
If, however, you want to set the options of a new service you're installing, place it
inside that ServiceInstall element, as in the following example:

<ServiceInstall
 Id="InstallWindowsService1"
 Name="testsvc"
 DisplayName="Test Service"
 Description="Test service for WiX"
 Start="auto"
 ErrorControl="normal"
 Type="ownProcess">

 <util:ServiceConfig
 ServiceName="testsvc"
 FirstFailureActionType="restart"
 SecondFailureActionType="restart"
 ThirdFailureActionType="runCommand"
 RestartServiceDelayInSeconds="5"
 ProgramCommandLine=
 "C:\Program Files\Test Product\logger.exe"
 ResetPeriodInDays="1" />
</ServiceInstall>

Here, we've set recovery actions for the testsvc service. The first time it fails, the
action specified by the FirstFailureActionType attribute will be performed.
The second time, it will be the action in SecondFailureActionType and then
ThirdFailureActionType the third time. Each should be set to one of three values:
restart, runCommand, or reboot.

Specifying restart means that Windows will attempt to restart the service after a
delay time of seconds specified by the RestartServiceDelayInSeconds attribute.
Here, we've set it up so that the service will restart five seconds after it fails.

Notice that we've set both the first and second action types to restart, meaning that
the service will try to restart itself twice before running the command specified by
the ProgramCommandLine attribute. You may also use a property to set the path to
the program to execute:

<util:ServiceConfig
 ServiceName="testsvc"
 FirstFailureActionType="restart"
 SecondFailureActionType="restart"

Chapter 11

[313]

 ThirdFailureActionType="runCommand"
 RestartServiceDelayInSeconds="5"
 ProgramCommandLine=
 ""[INSTALLFOLDER]logger.exe""
 ResetPeriodInDays="1" />

Notice that we must place the XML entity " around the value so that the spaces
in the path are preserved. Another option is to set a property with a custom action,
perhaps with the SetProperty element, and then reference that property in the
ProgramCommandLine attribute. The following is an example where we create the
property with a custom action:

<SetProperty Id="SERVICE_RECOVERY_CMD"
 Value=""[INSTALLFOLDER]logger.exe""
 After="InstallInitialize"
 Sequence="execute" />

You can also set an action to reboot in which case the computer will reboot. You can
add the RebootMessage attribute, set to a string, to show a custom message to the
user telling them that the system will restart. Or, you can omit it to keep the default.
Often, however, this message isn't shown. It's all up to the operating system.

We've set the ResetPeriodInDays attribute to 1, meaning that it will be one full
day before the error count is reset to zero. This, unfortunately, doesn't give you the
fine-grained control that you get with sc.exe, which lets you specify the value in
seconds. If the error count goes higher than three, it just keeps executing the action
specified by the ThirdFailureActionType attribute. Resetting the count brings you
back to the FirstFailureActionType attribute.

Summary
In this chapter, we discussed Windows Services both from the standpoint of working
with them via the command line with the sc.exe utility and with WiX. WiX lets
you add a new service to the services management console and configure its startup,
error logging level, and user account. Services can also be configured so that they
depend on other services and have failure recovery. Having all of this functionality
built-in can really simplify things.

In the next chapter, we will discuss how to localize an install package for different
languages. WiX simplifies this process by allowing you to use variables in place of
text that can be swapped out for each language and culture. With the arrival of WiX
3.6, this experience has even been improved with the new ability to tailor the sizing
and positioning of user interface elements.

Localizing Your Installer
Localization is the process of making a piece of software, or in this case an installer,
suitable for the culture and region where it will be used. This can include changing
the language of displayed text, making sure that images and colors are culturally
appropriate, and resizing UI elements to fit longer or shorter words.

In this chapter, we'll cover the following aspects of localization:

• Setting the language and code page attributes of your Product
and Package elements

• Adding WiX localization files
• How to use Light.exe to localize an MSI
• Translating built-in error messages and the end-user license agreement
• Creating a single multi-language installer

WiX localization files
Suppose, to create an MSI for each language, you had to maintain a separate Visual
Studio project for each one. That would become a hassle pretty quickly. With WiX
localization files (.wxl), you can re-use the same WiX markup, but swap out the text
for each language you build. Light, the WiX linker, lets you specify a .wxl file to use.

A .wxl file contains strings for a particular language. These can be swapped
with placeholders (localization variables) when Light runs, creating an MSI
with language-specific text. To create a new .wxl file, right-click on your WiX
project in Visual Studio's Solution Explorer and select Add | New Item | WiX
Localization File.

Localizing Your Installer

[316]

The convention is to name each .wxl file using an IETF language tag—such as
en-us.wxl—corresponding to the language it contains. Allow me to give a little
more background on this naming scheme. The first half is a two-letter abbreviation of
the language such as "en" for English, "fr" for French, or "es" for Spanish. The second
half is a region such as "us" for United States to specify a regional dialect of the
language. You can also have a neutral-language tag by omitting the region portion,
such as simply en.wxl to mean English spoken anywhere.

The following is an example .wxl file that contains several strings localized for
English; the file will be named as en-us.wxl:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization
 Culture="en-us"
 Codepage="1252"
 xmlns= «http://schemas.microsoft.com/wix/2006/localization»>

 <String Id=»ProductName»>Awesome Software</String>
 <String Id=»Comments»>(c) All rights reserved</String>
 <String Id=»InstallButtonText»>Install</String>
</WixLocalization>

The root element is called WixLocalization and references a specialized namespace:
http://schemas.microsoft.com/wix/2006/localization. This element's
Culture attribute accepts a language tag, such as "en-us", to label the strings within
the file. If your strings contain characters that aren't included in the ASCII character
set, add the Codepage attribute to specify a numeric code page that includes them.
It overrides the code page on the Product element if you've set one. We'll cover that
later on.

Inside the WixLocalization element are String elements that define the text
you want to localize. Each will become a variable that you can then use in your
WiX markup. For example, the first String element, which has an Id attribute of
ProductName and a value of Awesome Software, can be used to give localized names
to our targeted install folder:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="!(loc.ProductName)" />
 </Directory>
</Directory>

Chapter 12

[317]

Of course, you could use this variable in multiple places in your markup. The syntax
for using a localization variable is !(loc.PropertyName). Everywhere that you
would use normal text you can use a localization variable: labels on UI controls,
feature titles and feature descriptions, directory names, and so on. Then, simply by
switching the .wxl file you reference, the values of those variables change.

The String element has two optional attributes: Localizable and Overridable.
Localizable is purely for documentation purposes. It tells the person translating
the text into another language that this string doesn't need to be localized. You might
set it to no on String elements that don't contain actual words, but rather non-words
such as code page numbers that you're storing in the .wxl file. For example, you may
store a different code page for each version of the installer, as follows:

<String Id="Codepage" Localizable="no">1252</String>

You could then set the Package element's SummaryCodepage attribute like so:

<Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine"
 SummaryCodepage="!(loc.Codepage)" />

Setting Overridable to yes lets you set two String elements with the same Id
attribute. Ordinarily, doing so would cause an error. However, if one of the String
elements is Overridable, then it will be overwritten by the other. For example,
suppose you have two .wxl files that specify the same culture and each defines
a String element with an Id attribute of MyString. If one has the Overridable
attribute set to yes and the other doesn't, the element that doesn't will be used. The
UI dialogs that come with the WiX toolset define .wxl files for many languages, and
they set the Overridable attribute on all of their strings. This allows you to replace
the default strings with your own by adding your own .wxl files.

The standard dialogs from WixUIExtension use localization variables extensively.
Here's some of the markup they use for the WelcomeDlog dialog. You can see several
localization variables at work:

<Dialog Id="WelcomeDlg"
 Width="370"
 Height="270"
 Title="!(loc.WelcomeDlg_Title)">

 <Control Id="Next"
 Type="PushButton"
 X="236"
 Y="243"
 Width="56"

Localizing Your Installer

[318]

 Height="17"
 Default="yes"
 Text="!(loc.WixUINext)" />

 <Control Id="Cancel"
 Type="PushButton"
 X="304"
 Y="243"
 Width="56"
 Height="17"
 Cancel="yes"
 Text="!(loc.WixUICancel)">
 <Publish Event="SpawnDialog"
 Value="CancelDlg">1</Publish>
 </Control>

 <Control Id="Bitmap"
 Type="Bitmap"
 X="0"
 Y="0"
 Width="370"
 Height="234"
 TabSkip="no"
 Text="!(loc.WelcomeDlgBitmap)" />

The WiX source code that's compiled into WixUIExtension contains the .wxl files
that define these variables. Here's a sample from the Spanish version:

<String Id="WelcomeDlgTitle"
 Overridable="yes">
 {\WixUI_Font_Bigger}
 Le damos la bienvenida a la Instalación de
 [ProductName].
</String>

<String Id="WixUINext"
 Overridable="yes">&Siguiente</String>

<String Id="WixUICancel"
 Overridable="yes">Cancelar</String>

<String Id="WelcomeDlgBitmap"
 Overridable="yes">WixUI_Bmp_Dialog</String>

Chapter 12

[319]

I've added whitespace to make the file easier to read, but in practice you should
remove all beginning and trailing whitespace from your strings. Otherwise, it will
be included in the final value. WixUIExtension comes with .wxl files for more than
thirty languages including Spanish, German, French, Hungarian, Polish, Japanese,
and Russian. Remember, you can override these strings by creating your own .wxl
files and adding String elements with Id attributes that match those defined by
WiX. You can also make your own UI and localize it with completely new strings.

The role of Light.exe
If you've added a .wxl file to your WiX project in Visual Studio, or maybe several
.wxl files—perhaps en-us.wxl for English and es-es.wxl for Spanish—building
the project will create an installer for each one. They'll be stored in the bin folder
under separate subfolders. This is without declaring which languages you want to
build for. By default, Visual Studio detects all of the languages you've added and
creates an MSI for each one.

The commands used to build the MSIs are the same that you learned about in Chapter
9, Working from the Command Line. First, Visual Studio calls Candle to compile the
.wxs source code files into .wixobj object files. Then, it makes a distinct call to Light
for each .wxl file, passing the -loc and -cultures flags. The following is the build
process, truncated and formatted for readability:

Candle.exe -out obj\Debug\ -arch x86 Product.wxs

Light.exe -out "bin\Debug\en-us\MyInstaller.msi"

 -cultures:en-us

 -loc en-us.wxl

 -loc es-es.wxl

 obj\Debug\Product.wixobj

Light.exe -out "bin\Debug\es-es\MyInstaller.msi"

 -cultures:es-es

 -loc en-us.wxl

 -loc es-es.wxl

 obj\Debug\Product.wixobj

Localizing Your Installer

[320]

Each time that Light is called, all of the detected .wxl files are provided via the -loc
flags. However, recall that each .wxl contains a WixLocalization element. Only
those with a Culture attribute on their WixLocalization element that matches the
language tag set by the -cultures flag will be used. In this example, the first call to
Light builds an installer with the "en-us" strings. The second uses the "es-es" strings.

You can also limit the languages to build in the project's Properties. Visual Studio
has a Cultures to build text field on the Build page. You can set one or more
language tags here. Visual Studio will build a separate installer for each language
you specify. It does this by calling Light multiple times.

You can set more than one language by separating them with semicolons. If you
leave this field blank, Visual Studio will build an MSI for every .wxl file you have in
the project.

Now, let's inspect the syntax of the -loc and -cultures flags a little more. Candle
doesn't do any processing on .wxl files. It leaves that up to Light. So, any localization
variables that you've inserted into your markup will remain unresolved in the
.wixobj files until Light is called.

Light looks for -loc and -cultures flags given to it on the command line. You can
specify more than one -loc flag, each pointing to a .wxl file. The -cultures flag
tells WiX which .wxl file(s) to use. Any that have a matching Cultures attribute on
their WixLocalization element will be used. Here's an example that might be run
directly from the command line (formatted for readability):

Light.exe -out myInstaller.msi

 -cultures:en-us

 -loc en-us.wxl

 -loc en-us2.wxl

 -loc de-de.wxl

 "*.wixobj"

Chapter 12

[321]

Here we've specified that we want to build our MSI using the en-us culture.
Assuming that en-us.wxl and en-us2.wxl both have that culture, both will be
used. The de-de.wxl file will be ignored. You can specify more than one culture by
separating each with a semi-colon, as in the following example:

Light.exe -out myInstaller.msi

 -cultures:de-de;en-us

 -loc en-us.wxl

 -loc de-de.wxl

 "*.wixobj"

The effect is different than when setting multiple cultures in Visual Studio's Cultures
to build text field. In this context, it will set the first culture as the primary one to use
and those that follow it as the fallback in case a particular string isn't defined in the
first. The next example builds the installer using German strings ("de-de"), but falls
back to English strings if a localization variable isn't defined in German. If neither
defines it, then you'll get a build-time error.

Setting language and code page
attributes
When you localize your MSI package, you'll need to alter your Product and Package
elements to suit. To do so, you'll leverage code pages and locale identifiers (LCIDs).
So the first thing to do is define what we mean by these terms.

A locale identifier is an ID used to classify a particular language and the region
where it's spoken. It serves the same purpose as an IETF language tag, such as
"en-us", but is formatted as a number. For example, "1033" means English as spoken
in the United States. A full chart of LCIDs can be found at Microsoft's MSDN web site
by searching for locale ID. The URL is:

http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

Although that page also provides LCIDs in hexadecimal form, you should always
use the decimal form in WiX.

http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx
http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

Localizing Your Installer

[322]

A code page is an add-on of extra printable characters that aren't covered in the basic
set of 128 ASCII characters. I might as well break the news that WiX does not use
Unicode. It has to do with the fact that Windows Installer itself doesn't have strong
support for Unicode. For most tasks, this shouldn't present much of a problem.
ASCII covers all of the English alphabet and common punctuation marks. You can
see a chart displaying ASCII at:

http://msdn.microsoft.com/en-us/library/60ecse8t%28VS.80%29.aspx

However, it doesn't cover non-Latin characters (such as Chinese) or characters with
accents over them such as those found in French and Spanish. So, to print the accents
marks over Spanish letters, you'll need a code page. Without it, your installer won't
know how to render the characters you want. A full list of code pages can be found
at Microsoft's MSDN website:

http://msdn.microsoft.com/en-us/library/dd317756

As an example, you could specify a code page of "950" to make Traditional Chinese
characters available. In the following sections, we'll see how the Product and
Package elements make use of LCIDs and code pages.

The Package element
First, let's look at the Package element. Its job is to sum up details about the installer
such as who the author is and what platform it supports. Another important piece of
information it publishes is the language that's supported. An MSI package only lists
one supported language and it does so by setting the Package element's Languages
attribute. The attribute name is plural because the Package element is also used in
merge modules and they can list multiple supported languages. Here's an example
that sets the supported language to 1033 (English - United States):

<Package Compressed="yes"
 InstallerVersion="301"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Languages="1033" />

When the end user launches the installer, their computer looks to the Package
element to find out what the supported language is. If that language isn't installed
locally, an error will be displayed telling the user so.

Chapter 12

[323]

Here's a message I got when I tried to install an MSI package that specified an LCID
of 1085, Yiddish, as the supported language:

Also, if your own development computer doesn't have that language installed, an
exception will be thrown when you try to build the WiX project, as shown in the
following screenshot:

Windows Installer stores the supported language in something called the Template
Summary property. You can find more information about it at the following website:

http://msdn.microsoft.com/en-us/library/Aa372070

Open your MSI with Orca and select View | Summary Information to see it. It will
be listed as the Platform and Languages fields.

Getting back to the Languages attribute on the Package element, you have the
option of using a localization variable instead of a hardcoded value, as in the
following example:

<Package Compressed="yes"
 InstallerVersion="301"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Languages="!(loc.LocaleId)" />

Localizing Your Installer

[324]

Here, we've specified the variable !(loc.LocaleId) for the Languages attribute.
The value for this variable will be filled in by a WiX localization file (.wxl). Here's a
sample .wxl file that defines this variable for Spanish localization:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="es-es" Codepage="1252"
xmlns="http://schemas.microsoft.com/wix/2006/localization">
 <String Id="LocaleId">1034</String>

 <!--Other strings defined here-->
</WixLocalization>

The Package element has another attribute called SummaryCodepage that's used to
set the code page for the summary properties. Summary properties are the details
shown when you right-click on an MSI file and view its Properties. If any of these
use characters outside of the ASCII set, they'll need a code page to display them.

You could set a hardcoded value, as in this example:

<Package Compressed="yes"
 InstallerVersion="301"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Languages="!(loc.LocaleId)"
 SummaryCodepage="1252" />

Here we've specified that the code page to use is 1252, which is the code page
containing additional Latin character such as the copyright symbol and characters
with accents. If you don't specify the SummaryCodepage attribute it defaults to 1252.
You might explicitly set this attribute if you use extended characters such as those
for Chinese. If we had used Chinese characters in, for example, the Description
attribute, we would have had to specify a code page such as 950.

You can also use a localization variable like this:

<Package Compressed="yes"
 InstallerVersion="301"
 Platform="x86"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Languages="!(loc.LocaleId)"
 SummaryCodepage="!(loc.SummaryCodepage)" />

Chapter 12

[325]

The Product element
While the Package element publishes the summary properties that describe the MSI,
the Product element contains the MSI's actual content. As such, setting its language
and code page properties affects the characters stored in any of the tables in the
installer and any error messages shown to the end user.

The Product element has an attribute called Language that defines the language used
by the installer. Note the difference between it and the Languages attribute on the
Package element which defines the supported language for the installer. Unlike the
Package element's Languages attribute, which is optional, you must always set the
Product element's Language attribute. Here's an example that sets Language to 1033:

<Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

To make life easy when localizing your package for more than one language, use a
localization variable that can then be defined in .wxl files:

<Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="!(loc.LocaleId)"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

The Product element is also responsible for setting the code page for the
characters used throughout the MSI database. You can set its Codepage attribute,
as in this example:

<Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="!(loc.LocaleId)"
 Codepage="1252"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

Localizing Your Installer

[326]

This attribute cannot take a localization variable. However, setting the Codepage
attribute on the WixLocalization element in your .wxl file will override the value.
To see this for yourself, change the code page using the WixLocalization element's
Codepage attribute and then inspect your MSI with Orca. Navigate to Tools | Code
Page to verify that it has been set.

One last thing to note: There are a number of experts who agree that you should
change the Product element's Id attribute for each different language. Luckily, that
attribute can accept a localization variable. That's probably the best way to go if you
want to keep strict control over your product codes. However, you may also put an
asterisk (*) to request that WiX create a new GUID for you each time you build.

Localizing the UI
As you've seen, you can use localization files and variables to handle most of the
text in your installer, whether that be labels on controls, the names of directories, or
the titles and descriptions of your features. So what's left? In the next few sections
we'll expand our scope to include the error messages that are baked into Windows
Installer, the status messages that are shown over a progress bar, the end-user license
agreement, and the size of user interface controls.

Error messages
Windows Installer responds to certain errors by displaying a message box with text
about what went wrong. You can see a list of these errors at:

http://msdn.microsoft.com/en-us/library/aa372835(VS.85).aspx

Unfortunately, they're always in English. You can see an example of this by
triggering the Source not found error. Follow these steps:

1. Create a simple .wxs file, but set the EmbedCab attribute on the
MediaTemplate element to no. This means that the installer won't embed
the CAB file in the MSI. Windows Installer will expect to find it in the same
directory as the installer during installation. The MediaTemplate element
will look like this:
<MediaTemplate EmbedCab="no" />

2. Add a project reference to WixUIExtension and add one of the standard
dialog sets, such as WixUI_Minimal:
<UIRef Id="WixUI_Minimal" />

Chapter 12

[327]

3. On the Build page of the project's Properties, set Cultures to build to es-es.
WixUI_Minimal has a .wxl file for Spanish already baked in.

4. Compile the .wxs file into an MSI and then remove the CAB file from the
output directory.

5. Launch the installer, accept the license agreement, and click Instalar.

You'll see a message like in the following screenshot:

By setting Cultures to build to es-es, we've said that we want to use the Spanish
.wxl files from WixUIExtension. This means that most of the text in the UI will be
translated for us. However, the error message, which comes from the underlying
Windows Installer, isn't.

To correct this problem, we'll have to replace the default error message with a
localized one. Each message is identified by a number. For Source not found, it's
1311. To override the message, add an Error element inside a UI element in your
.wxs file. Set its Id attribute to the error number and the inner text to the localized
message. Here's an example:

<UI>
 <Error Id="1311">Archivo no encontrado: [2].Compruebe que el archivo
existe y que puedes acceder a él.</Error>
</UI>

Localizing Your Installer

[328]

Trusting that Google Translate knows its stuff (lean towards having a professional
translator if you can), this should be the Spanish translation of the original message.
Rebuild the MSI, delete the CAB file, and try to install. You should see the new
message, as shown in the following screenshot:

Notice that we used [2] as a placeholder for the missing file's path. Windows
Installer fills in the information for us. Refer to the MSDN site for the template to use
for each error.

There's one thing left to do. We've hardcoded the Spanish translation for the
message. What we should really do is place that into a Spanish .wxl file and use a
localization variable inside the Error element. That way, we can have translations
for all of the languages we support. Follow this example:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="es-es" xmlns="http://schemas.
microsoft.com/wix/2006/localization">

 <String Id="Error_1311">Archivo no encontrado: [2]. Compruebe que el
archivo existe y que puedes acceder a él.</String>
</WixLocalization>

Now we can use a localization variable:

<UI>
 <Error Id="1311">!(loc.Error_1311)</Error>
</UI>

This variable can be replaced for each different language.

Chapter 12

[329]

Now the good news is that WixUIExtension has translated these error
messages for you. By adding a reference to the extension and then adding a
UIRef to WixUI_ErrorProgressText, you'll let WiX do the heavy lifting for you.
Add the following markup to your main WiX source file:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product ...>
 <Package ... />

 <UIRef Id="WixUI_ErrorProgressText"/>
 <UIRef Id="WixUI_Minimal"/>

This technique will work when using one of the dialog sets that comes with WiX,
as we've done here, or when using a custom UI. You can also override these error
messages if you like. Add localized strings that match those set in WixUIExtension.
They look like the following code snippet:

<String Id="Error0" Overridable="yes">{{Error irrecuperable: }}</
String>
<String Id="Error1" Overridable="yes">{{Error [1]. }}</String>
<String Id="Error2" Overridable="yes">Advertencia [1]. </String>
<String Id="Error4" Overridable="yes">Información [1]. </String>

Progress bar messages
For the upcoming examples, create a WiX project and add a reference to
WixUIExtension. Then, add one of the dialog sets, such as WixUI_Minimal:

<UIRef Id="WixUI_Minimal"/>

Add a component to install, such as a text file:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpInstallMeTXT"
 Guid="9B29875D-7311-4E64-933F-A54D316777C0">
 <File Source="InstallMe.txt" />
 </Component>
</ComponentGroup>

Localizing Your Installer

[330]

Open the project's Properties page and specify that you want to build the es-es
culture using the Build tab's Cultures to build text field. Build the project and
launch the resulting Spanish installer. As you watch the progress bar, you may notice
that the text over it is in English, despite the rest of the window being in Spanish,
as shown in the following screenshot:

Custom progress messages are defined by a table in the MSI called ActionText.
However, by default this table isn't included. Without it, the messages, as you've
seen, are the stock English versions.

To add the ActionText table with strings for your progress messages, add a
ProgressText element inside a UI element for each standard action found in the
Execute sequence. For example, to add a localized message for the InstallFiles
action, add the following markup to one of your .wxs files:

<UI>
 <ProgressText Action="InstallFiles"
 Template="!(loc.InstallFilesTemplate)">
 !(loc.InstallFiles)
 </ProgressText>
</UI>

Chapter 12

[331]

The Action attribute identifies the action to associate the message with. The
Template attribute sets the format for the part of the message that Windows Installer
will fill in the blanks for. To see the format to use for each action, consult the MSI
SDK documentation that was installed with WiX. It's also available online at:

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa372023(v=vs.85).aspx

The inner text of the ProgressText element sets the so-called Description for the
action and will be displayed over the progress bar along with the Template message.
In the next snippet, we'll set the localization variables that we used in the last
example to display a custom message for the InstallFiles action.

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="en-us" xmlns="http://schemas.microsoft.com/
wix/2006/localization">

 <String Id="InstallFiles">Tractor beam files!</String>
 <String Id="InstallFilesTemplate">File: [1], Size: [6], Directory:
[9]</String>
</WixLocalization>

Here's the result:

Localizing Your Installer

[332]

Now that you understand the concept of the ProgressText element, you should
also know that WixUIExtension defines all of them for you, in many different
languages. Simply add a UIRef element to your Product.wxs file that points to
WixUI_ErrorProgressText:

<UIRef Id="WixUI_ErrorProgressText"/>

Rebuild the project, launch the Spanish installer, and you'll see that the progress
messages are now translated.

EULA
All of the dialogs sets from WixUIExtension display an end-user license agreement
(EULA). It's always in English, defaulting to an RTF file called License.rtf
that's embedded within the extension. You'll want to replace this with your own
agreement and at the same time localize it. Luckily, all you have to do is specify
a path to your own RTF file with the link-time variable WixUILicenseRtf. The
following line, which you can place in your main .wxs file, replaces the default
license agreement with a custom one:

<WixVariable Id="WixUILicenseRtf"
 Value="CustomAgreement.rtf" />

Chapter 12

[333]

You can also set this value from the command line when calling Light via the -d flag:

Light.exe -dWixUILicenseRtf=CustomAgreement.rtf -loc es_es.wxl

 -cultures:es-es -ext WixUIExtension.dll

 -out "es-es\AwesomeSoftware.msi" .*.wixobj

Another option is to set it from within Visual Studio. Right-click on the project, select
Properties, and add the variable in the text field labeled Define variables, as shown
in the following screenshot:

Once you've pointed this variable to the new file, you'll see your RTF text for the
license agreement, as shown in the following screenshot:

Localizing Your Installer

[334]

You can use this technique to create a language-specific EULA for each localized
MSI. Another way of localizing the EULA is to create a custom dialog that displays
the license agreement and then use a localization variable for the license content.
That way, you can store your RTF text in a .wxl file. This gives you more control
than using WixVariable. Here's an example of a ScrollableText control that uses a
localization variable to display a localized license agreement:

<Control Id="LicenseText"
 Type="ScrollableText"
 X="20"
 Y="60"
 Width="330"
 Height="140"
 Sunken="yes"
 TabSkip="no">
 <Text>!(loc.LicenseText)</Text>
</Control>

Now you can create a String element in your .wxl file that contains the RTF text,
as shown:

<String Id="LicenseText">
<![CDATA[
 {\rtf1\ansi\ansicpg1252\deff0\deflang1033
 {\fonttbl{\f0\fswiss\fcharset0 Arial;}}
 {*\generator Msftedit 5.41.21.2500;}
 \viewkind4\uc1\pard\f0\fs20 Custom License Agreement\par}]]>
</String>

Resizing controls
Something that we've gained in WiX 3.6 is the ability to resize user interface controls
with localization variables. This is a great addition because words in, say, German
can be much longer than those in English. Take the English word "Install". In German
we get "Installieren". If we were to use a one-size fits all button for both, we might be
left with a label that crowds or overflows the space available. Here's the markup that
sets a hardcoded value for a PushButton control's Width attribute:

<Control Id="Install"
 Type="PushButton"
 Text="Install"
 Height="17"
 Width="56"
 X="50"
 Y="50"

Chapter 12

[335]

 Default="yes">
 <Publish Event="EndDialog" Value="Return" />
</Control>

The English version MSI looks ok:

However, the German version looks a little cramped:

Let's replace the hardcoded Width with a localization variable, as follows:

<Control Id="Install"
 Type="PushButton"
 Text="!(loc.Install)"
 Height="17"
 Width="!(loc.InstallButtonWidth)"
 X="50"
 Y="50"
 Default="yes">
 <Publish Event="EndDialog" Value="Return" />
</Control>

We'll then add an en-us.wxl file with the following markup:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="en-us" xmlns="http://schemas.microsoft.com/
wix/2006/localization">
 <String Id="Install">Install</String>
 <String Id="InstallButtonWidth">56</String>
</WixLocalization>

Localizing Your Installer

[336]

Add a de-de.wxl file as well:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="de-de" Codepage="1252" xmlns="http://
schemas.microsoft.com/wix/2006/localization">
 <String Id="Install">Installieren</String>
 <String Id="InstallButtonWidth">66</String>
</WixLocalization>

Now the button in German is a little bit wider:

Width isn't the only attribute you can localize. You may also change a control's
Height attribute or move it with the X and Y attributes.

Creating a multi-language MSI
In addition to being able to create multiple separate MSIs for each language, it's also
possible to create a single MSI that shows a different language depending on the end
user's language settings. The process is automatic for the user. They don't need to
choose the language.

Note that the procedure you'll learn here isn't supported
by Microsoft, but is widely used.

To get started, build separate MSIs for each language. For a simple example, add a
project reference to WixUIExtension. Then add a UIRef element to your markup
to reference one of the standard dialog sets and set Cultures to Build in Visual
Studio to es-es;en-us;de-de. This will build Spanish, English, and German installers
using the .wxl files that are embedded in WixUIExtension. This is depicted in the
following screenshot:

Chapter 12

[337]

Build the project. Visual Studio, by default, sends the output of each localized MSI to
its own folder.

Each folder contains an MSI for a different language. To merge these installers into
one, you'll need to verify that your project's Product.wxs file has the following:

• The Product element has a Language attribute set to a localized variable. We
will call it !(loc.ProductLanguage).

• Add .wxl files to your project for each language: en-us.wxl, es-es.wxl, and
de-de.wxl. Next, add a String element to each one with an Id attribute of
ProductLanguage, setting it to the LCID that matches that language: 1033
for en-us, 1034 for es-es, and 1031 for de-de.

Rebuild if necessary. Now, we're ready to merge the various MSIs into one. We'll
embed each language-specific MSI inside a single installer. Basically, we're going to
create transform files that will enable us to alter the language of our installer at the
time the user runs it. A transform file (.mst) contains a comparison between two MSIs.
Often they're used when building patches. However, they work for our needs too.

We'll compare each language-specific MSI against the English version (our base) to
produce a transform file that contains the differences between the two languages.
We'll then bundle all of the transform files inside the English MSI and when the
end user launches it, it will dynamically choose which transform file to apply. The
transform will alter the MSI (sort of like a patch) then and there at install time so that
the language of the transform replaces all of the current strings.

To make the comparison between English and each other language and make our
transform files, we'll use a tool that ships with WiX called Torch. Torch takes an
input file, an updatedInput file to compare it to, and an output file as parameters.
Here is the general syntax:

torch.exe [-?] [options] targetInput updatedInput -out outputFile

[@responseFile]

Localizing Your Installer

[338]

Here's an example that compares the English and Spanish versions and creates a
transform file called es-es.mst:

torch.exe -t language "en-us\MyInstaller.msi"

"es-es\MyInstaller.msi" -out "transforms\es-es.mst"

It's a good idea to name your .mst files so that it's obvious which language they
contain. Include the -t flag, set to language. The -t stands for template and
without it you won't be able to compare MSIs that have different code pages. In this
example, we're storing the output in a folder called transforms. Make sure that this
folder exists before you call Torch.

The next step is to embed all of the transforms inside the English MSI. WiX doesn't
have a tool to do this, so we'll have to look elsewhere. The Windows SDK comes
with several VBScript files that perform various MSI-related tasks. You may need to
download the SDK from the MSDN website. The scripts are included in the Win32
samples. You can find more information at:

http://msdn.microsoft.com/en-us/library/aa372865%28VS.85%29.aspx

The VBScript file we're interested in is called WiSubStg.vbs and can usually be
found in the Samples directory of the Windows SDK. On my computer, it's located
at C:\Program Files\Microsoft SDKs\Windows\v7.0\Samples\sysmgmt\msi\
scripts. Once you've found it, copy it to your project's directory and execute the
following command:

WiSubStg.vbs "en-us\TestInstaller.msi" "transforms\es-es.mst" 1034

The first argument is the path to the English version MSI. The second is the path
to one of the transform files. You'll need to repeat this call for each one. The third
parameter gives a name to the transform for when it's embedded inside the MSI. The
convention is to name it the LCID of the language, such as 1034 for Spanish. This
process embeds each transform file inside the English MSI.

The next step is to set the value of the Languages attribute on the Package element
so that it publishes all of the languages that the MSI now supports. We don't have
to alter the MSI directly. We can use another tool from the Windows SDK called
WiLangId.vbs. Copy WiLangId.vbs to your project's directory. The following
command will set the Languages attribute to the three languages we've embedded
inside the MSI: 1033 (English), 1034 (Spanish), and 1031 (German).

WiLangId.vbs "en-us\TestInstaller.msi" Package 1033,1034,1031

Chapter 12

[339]

That's it. The MSI is now a multi-language MSI. To test it out, change the
language settings of your user profile to Spanish. Go to Control Panel | Region
and Language, select the Formats tab, and select Spanish (Spain) as your language,
as shown in the following screenshot:

Launch the MSI and it should be the Spanish version. If you change your language
back to English, the MSI should then display itself in English. If the user's preferred
language is not one of the languages supported by your MSI, it will default to
showing English since that was the base MSI without any transforms applied to it.
The downside, however, is that Summary Properties will always be in English since
the transform is applied when the MSI is launched. Right-clicking on the installer
and viewing its properties won't activate the transform.

Summary
In this chapter, we discussed how to localize a WiX installer. Localization files make
this task much simpler and faster, saving you from having to maintain a separate
project for each language. Localization may encompass many aspects including
changing the text shown in the user interface, altering the sizing and position of
controls, and publishing the language that the installer supports. WiX handles all of
these tasks with style.

In the next chapter, we'll cover how to plan for and perform software upgrades using
WiX markup. There are a number of different types of upgrades and it pays to get to
know your options early on. The good news is that WiX 3.6 has simplified the XML
element you need to get the job done.

Upgrading and Patching
In this chapter, we'll discuss planning for and authoring updates for your software.
Windows Installer offers an impressive set of functionality in this area and it pays to
learn your options early on, before the first version of your software is released into
the wild. As you'll learn, building your initial MSI with updates in mind will make
your job much easier when it finally comes to sending out changes.

We'll cover the following topics:

• Planning for updates, including choosing the type of update to perform
• Authoring a major upgrade
• Deploying a minor upgrade or small update with a patch

Planning for updates
In the Windows Installer world, people tend to categorize updates into three groups:
major upgrades, minor upgrades, and small updates. The primary distinction
between these groups is the size of the update, or in other words, the number of
changes that will take place. Speaking at a high level, a major upgrade completely
replaces the existing software with a new set of files, registry keys, and so on. By
contrast, minor upgrades and small updates only replace some of the files and leave
the rest as they are.

In this section, we'll discuss how to plan for an update. It's beneficial to do this from
the start before you actually need to author an update. In some cases, if you haven't
authored your original installer in a way that supports updates, you'll find the task
much harder later on.

Upgrading and Patching

[342]

Choosing an update type
A major upgrade is the simplest type of update to set up. It's really a complete MSI,
just like any other you've created previously, with all of the components of your
software included just like the original install. The difference is that if it detects an
older version, it removes it.

You should use a major upgrade if any of the following are true:

• Enough of the product has changed to warrant completely replacing it.
• You've removed a feature from the install or moved it in the feature

hierarchy—for example, made it a child to another feature.
• You've moved a component from one feature to another or deleted one.
• You simply want to keep things simple. Major upgrades are easier to

implement than any other option.

A major upgrade changes the installer's ProductCode property (the Product
element's ID) to indicate that this is a completely new product. However, as it's
still the same type of product—as in, you're replacing one calculator with another
calculator—you'll keep the installer's UpgradeCode attribute the same. For the
lifetime of a product, through all of its incarnations, the UpgradeCode attribute
should never change. You'll also increment the Product element's Version attribute.

A minor upgrade updates existing files without uninstalling the original product.
It can be used to fix bugs or add features and components. Instead of changing the
ProductCode property, you'll only increment the product's version number. That
way, you're saying that this is still the same product, but with changes. It can be
distributed as a patch file (.msp) or, like a major upgrade, as an MSI. Although
you can add new features and components with a minor upgrade, you should not
re-organize the feature-component tree.

A small update is distributed as a patch. It's smaller in scope than a minor upgrade,
typically only changing a few files. It has so few changes that you won't even need to
bother changing the version number.

The following table sums up when you'll need to change the Product element's
Version and Id attributes:

Update type Change product version? Change product ID?

Major upgrade Yes Yes
Minor upgrade Yes No

Small update No No

Chapter 13

[343]

Per-user or per-machine
When your update is going to remove a previous version of your software, such as
during a major upgrade, Windows searches the registry to find information about the
previous product such as its ProductCode property, and the location of its features
and components. If your original install was installed as per-machine, meaning not for
a specific user, then your update will have to do the same. Otherwise, the installer
may look in the wrong section of the registry, the part belonging to the current user,
and not find the product. To keep things consistent, you should always set this
scope, even in your original installer.

You can set the ALLUSERS property as follows:

<Property Id="ALLUSERS" Value="1" />

When set to 1, the install is per-machine. When set to an empty string, it uses
the per-user context. If set to a 2, the context will be per-machine if the user
has administrative rights, otherwise it will be per-user. However, this isn't a
hard-and-fast rule and changes depending on the operating system. View
the MSI documentation for more information.

You can also use the Package element's InstallScope attribute to the same effect.
Behind the scenes it will set the ALLUSERS property for you. You can set it to
perMachine or perUser. If you go this route, be sure to remove any markup that sets
ALLUSERS directly:

<Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine" />

Preparing a major upgrade
A major upgrade is a full installation package that removes any older versions of the
same product. To create one, you'll need to do the following:

• Change the Product element's Id attribute to a new GUID
• Increment the Product element's Version attribute
• Add and configure a MajorUpgrade element

We'll go over each step. Before we get to that, let's make an MSI that will install the
old software—the software to update. You can use the following markup in a new
WiX project called OldInstaller.

Upgrading and Patching

[344]

You may recall that you can use an asterisk (*) for Id in the Product element, and
WiX will choose a new GUID for you each time you compile the project. You can
do that here, if you choose to. However, we will use a hardcoded GUID to draw
attention to that we are definitely changing it during a major upgrade. As you'll see,
we will not be changing it when making a minor upgrade or small update:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

 <Product
 Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

 <Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine" />

 <MediaTemplate EmbedCab="yes" />

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="Awesome Software" />
 </Directory>
 </Directory>

 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component
 Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </ComponentGroup>

 <Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 </Feature>

 </Product>
</Wix>

Chapter 13

[345]

Notice that the Product element's Version attribute is 1.0.0.0. We'll be
incrementing that number in the upgrade. This MSI installs a text file called
InstallMe.txt, so be sure to add one to your project. To show that this is the old
version, you could write some text in InstallMe.txt such as This file comes
from the old version. During the upgrade, we'll replace this file with a new one.

Build this example and install it. Later on, when we have the upgraded version,
we'll have this older version to replace. Next, create a new WiX project and call it
NewInstaller. You can re-use the entire markup from the previous example except
for the Product element's Id and Version attributes which need to be changed.

<Product
 Id="B55596A8-93E3-47EB-84C4-D7FE07D0CAF4"
 Name="Awesome Software"
 Language="1033"
 Version="2.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

By changing the Id attribute, we're setting up a major upgrade. We'll be replacing the
old product with a new one. We've also changed the Version attribute to 2.0.0.0 to
show that this is the newer product. Windows Installer ignores the fourth digit when
detecting other versions of your software, so you should only rely on the first three.

Next, change the text inside the InstallMe.txt file to say something like This file
comes from the new version. The component's GUID should stay the same. If
you wanted to, you could add or remove components, but in this example we're
replacing an existing one.

At this point, if we installed both the old and the new package, the old would not be
removed. You'd be able to see both in Programs and Features.

Upgrading and Patching

[346]

We can remove the older version before installing the new one by adding a
MajorUpgrade element to the NewInstaller project as a child to the Product element.

It doesn't hurt to have a MajorUpgrade element in all of your
installers, even in our so-called OldInstaller.

Here's an example that shows adding a MajorUpgrade element to the NewInstaller
project's Product.wxs file:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

<Product
 Id="B55596A8-93E3-47EB-84C4-D7FE07D0CAF4"
 Name="Awesome Software"
 Language="1033"
 Version="2.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

 ...

<MajorUpgrade DowngradeErrorMessage="A newer version of [ProductName]
is already installed."/>

By adding the DowngradeErrorMessage attribute, we're dealing with the question,
"What happens if the user tries to install an older version than the one that they've
already got installed?" By default, the MajorUpgrade element prevents this from
happening and displays the text from the DowngradeErrorMessage attribute to them
instead. The following is what the user would see when trying to downgrade:

If you want to allow the user to downgrade their software to an older version,
remove this attribute and set the AllowDowngrades attribute to yes.

Chapter 13

[347]

The inverse of this scenario is prohibiting the user from upgrading to a newer
version. In the next example, we allow downgrades but not upgrades:

<MajorUpgrade
 AllowDowngrades="yes"
 Disallow="yes"
 DisallowUpgradeErrorMessage="You cannot upgrade this product." />

The Disallow attribute prevents upgrades and DisallowUpgradeErrorMessage is
the message to show to the user. The following screenshot is the result when trying
to run the NewInstaller MSI:

When allowing upgrades, you have several options of how the old package is
removed. The removal happens during a standard action in the Execute sequence
called RemoveExistingProducts. The following table explains how scheduling this
action to run at different times will give you different results, especially if an error
happens during the installation:

Scheduled when Effect
After
InstallInitialize

Installer removes the old version completely before installing
the new one. If the install fails, a rollback will cause the old
version to be brought back. This should not be used if you're
installing files to the GAC or the WinSxS folder, as there is a
bug: http://support.microsoft.com/kb/905238.

Before
InstallInitialize

Installer removes the old version completely before installing
the new one. If the install of the new version fails, the old
version will not be brought back.

Before
InstallFinalize

The new version is installed and then the old version is
removed. If the install fails, a rollback will bring the old
version back (it may not have even been removed at that
point). This is more efficient because files that haven't
changed don't need to be replaced. To use this sequence,
you must also schedule InstallExecute before
RemoveExistingProducts.

Upgrading and Patching

[348]

Scheduled when Effect
After InstallFinalize The new version is installed and then the old version is

removed. If the uninstall of the old version fails, the new
version remains and the old version is also kept. On the
other hand, if the install of the new version fails, only the old
version will remain.

By default, the MajorUpgrade element schedules the removal before
InstallInitialize (specifically by scheduling it after the InstallValidate
action). You can change this by setting the Schedule attribute to one of the
following values:

• afterInstallValidate (default): This schedules the removal before
InstallInitialize.

• afterInstallInitialize: This schedules the removal after
InstallInitialize.

• afterInstallExecute: This schedules the removal before
InstallFinalize. It handles scheduling InstallExecute for you.

• afterInstallFinalize: This schedules the removal after InstallFinalize.
• afterInstallExecuteAgain: This schedules the removal after

InstallExecuteAgain. It works the same as afterInstallExecute.

The following is an example that schedules the upgrade before InstallFinalize,
which is arguably the most efficient way to do it:

<MajorUpgrade
 ...
 Schedule="afterInstallExecute" />

If you'd like to ignore a failed attempt to remove the existing software then set the
IgnoreRemoveFailure attribute to yes. In other words, a rollback won't be triggered
if it otherwise would have been.

Two other interesting attributes are MigrateFeatures and RemoveFeatures. Setting
MigrateFeatures to yes, which is the default, enables only those features that were
installed last time. Setting it to no means that the currently installed features will
have no effect on what gets enabled this time around. The RemoveFeatures attribute
can be set to a comma-delimited list of features to remove before beginning the
upgrade. By omitting it, all features are removed. The benefit of utilizing this is that
if some features and their components have not changed, it could be more efficient to
leave them in place and only replace what needs replacing.

Chapter 13

[349]

Now you're ready to build the NewInstaller project and install it. It should remove
the older version. You'll notice that there are no dialogs that tell the user that the old
version is being removed. From their perspective, it's a seamless process.

The following is the full markup for our new installer:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

 <Product
 Id="B55596A8-93E3-47EB-84C4-D7FE07D0CAF4"
 Name="Awesome Software"
 Language="1033"
 Version="2.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">

 <Package InstallerVersion="301"
 Compressed="yes"
 InstallScope="perMachine" />

 <MediaTemplate EmbedCab="yes" />

 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="Awesome Software" />
 </Directory>
 </Directory>

 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component
 Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </ComponentGroup>

 <Feature Id="ProductFeature"
 Title="Main Product"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />

Upgrading and Patching

[350]

 </Feature>

 <MajorUpgrade Schedule="afterInstallExecute"
 DowngradeErrorMessage="A newer version of
[ProductName] is already installed." />

 </Product>
</Wix>

The minor upgrade
Although a minor upgrade, like a major upgrade, can be distributed as a full MSI, in
this chapter we'll focus on the more efficient methods of distributing it as a patch file
(.msp). In this case, a minor upgrade doesn't uninstall the previous version. It only
replaces some of the existing files or adds new ones. I'll show you two ways to make
a patch, the first using .wixpdb files and the second using .wixout files.

Before we get to that, let's discuss the WiX source file that defines your patch. A
.wixmsp defines the characteristics of your patch, setting fields such as Description
and Comments that will appear in the patch file's properties. This file also sets up the
sequencing of all of the patches for a particular product so that, say, patch 1.0.2.0
will be applied after 1.0.1.0. In this way, even if a user installs a patch out of order, it
won't overwrite a newer patch that's already been applied. This file also defines the
CAB files to embed in the patch and which product it applies to.

Authoring a .wixmsp file
To create a patch file, we need to make a new WiX source file that will define the
patch's characteristics. Create a new .wxs file and call it Patch.wxs. Don't add it to
your MSI project. It should exist on its own outside of your installer. The following is
the markup to add to it:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Patch
 AllowRemoval="yes"
 Classification="Update"
 Comments="Patch for Awesome Software v. 1.0.0.0"
 Description="Updates Awesome Software to v. 1.0.1.0"
 DisplayName="Awesome Software Patch 2012-09-01"
 Manufacturer="Awesome Company"
 MoreInfoURL="http://www.mysite.com/patchinfo.html"

Chapter 13

[351]

 TargetProductName="Awesome Software">

 <Media Id="1000" Cabinet="MyPatch.cab">
 <PatchBaseline Id="MyPatch" />
 </Media>

 <PatchFamily
 Id="MyPatchFamily"
 Version="1.0.1.0"
 ProductCode="44139BED-5F1A-4C1E-BE12-C7148BE11189"
 Supersede="yes" />
 </Patch>
</Wix>

The Patch element is the root element in this file. Its AllowRemoval attribute
configures the patch so that it can be removed after it's been applied without having
to uninstall the entire product. So you know, you can uninstall a patch file from the
command line by setting the MSIPATCHREMOVE property to the path of the patch file.
You use msiexec as follows:

msiexec /i MyInstaller.msi MSIPATCHREMOVE=C:\MyPatch.msp

You can also go to Programs and Features and click on the View Installed Updates
link to see a list of patch updates that have been installed. The resultant screenshot is
given as follows:

Classification contains the category for the patch. It's up to you what to set this to,
but your options are: Critical Update, Hotfix, Security Rollup, Security Update, Service
Pack, Update, and Update Rollup.

Upgrading and Patching

[352]

The Comments and Description attributes let you add additional information
about the patch and will be displayed in the file's Properties page. DisplayName
also appears in Properties and should be set to a user-friendly name for the file.
Manufacturer should be set to the name of your company.

You can use the MoreInfoURL attribute, which is also displayed in the file's
Properties page, to provide a website address where customers can get more
information about the patch. The TargetProductName attribute can be set to the
name of the software that this patch applies to. If this .wxs file contains characters
that rely on a code page, you can set the optional CodePage attribute.

Next, inside the Patch element, add a Media element with a child PatchBaseline
element.

<Media Id="1000" Cabinet="MyPatch.cab">
 <PatchBaseline Id="MyPatch" />
</Media>

The Media element's Id attribute should be higher than any Media record used in the
MSI package you want to update. So, it's safer to use a high number such as 1000.
You can give the CAB file any name you like using the Cabinet attribute.

The PatchBaseline element is used to define a name that we can reference later as
we're building the patch file. I've given it the same name as the CAB file.

The last thing to do in this file is add a PatchFamily element. This will define
the product that this patch applies to and whether or not earlier patches should
be overwritten.

<PatchFamily
 Id="MyPatchFamily"
 Version="1.0.1.0"
 ProductCode="44139BED-5F1A-4C1E-BE12-C7148BE11189"
 Supersede="yes" />

A PatchFamily contains the updates of your patch. The Id attribute gives your new
PatchFamily a name. The Version attribute is used to sequence your changes in
relation to other patches and could be set to the version number of your Product
element. However, the Version attribute here has no relation to the target product's
ProductVersion. So, you could come up with an unrelated numbering scheme, such
as 0.0.0.100, 0.0.0.200, 0.0.0.300, and so on. Behind the scenes, patches are ordered
first by the Product element's Version number and then by the PatchFamily
element's Version. This allows you, as you'll see, to provide an order for small
update patches that don't change the Product element's Version attribute at all.

Chapter 13

[353]

You can use the ProductCode attribute to target a specific product to patch. It should
match the Id attribute of the Product element in your MSI project. If you don't
set it, the patch can be applied to any targeted product, as identified by the Patch
element's TargetProductName attribute. Supersede, when set to yes, signals that
this patch should override other earlier patches.

You have the option of nesting ComponentRef elements inside the PatchFamily
element to pull in only specific files that you want to update. Otherwise, omit the
ComponentRefs as we've done here and the patch will find all of the files that have
changed. Note that, like when working with the Fragment elements in other areas,
pulling in one component will pull in all neighboring components from the same
Fragment or Product element.

We're now ready to build our patch, which we'll have to do from the command line.
We'll discuss this in the next section.

Creating a patch from .wixpdb files
When you compile your WiX source files with Candle and then link them together
with Light, you get an MSI file and a .wixpdb file. The .wixpdb file contains the
paths to your source files, but not the data that's in them. In other words, the files are
not bound into the .wixpdb file like they are into the MSI. So, when building a patch
with .wixpdb files, you must have the original source files.

For the next example, create a folder called MinorUpgrade and then create three
subfolders named Old, New, and Patch. Add a file called Product.wxs to the Old
directory and fill in the following markup:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product
 Id="44139BED-5F1A-4C1E-BE12-C7148BE11189"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="3de16078-12fd-472d-8b3d-eb857b75d467">

 <Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine" />

Upgrading and Patching

[354]

 <MajorUpgrade DowngradeErrorMessage="A newer version of
[ProductName] is already installed." />

 <MediaTemplate EmbedCab="yes" />

 <Feature Id="ProductFeature"
 Title="Main Product" Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 </Feature>
 </Product>

 <Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="OldInstaller" />
 </Directory>
 </Directory>
 </Fragment>

 <Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component
 Id="CMP_InstallMeTXT"
 Guid="5EE3620A-0C41-470D-9B48-434885EBA6AD">
 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
 </ComponentGroup>
 </Fragment>
</Wix>

This is a simple installer that will serve as the original package that we want to patch.
It installs a text file called InstallMe.txt. Next, add a text file to the same directory
and name it InstallMe.txt. Write something in it such as This comes from the
old installer.

Chapter 13

[355]

The next step is to create a second pair of MSI and .wixpdb files that we'll compare
the original against. Copy both files from the Old directory into the New directory but
change the Version attribute of the Product element to 1.0.1.0 and change the text
in the text file to This comes from the patch. The following is a snippet from the
new Product.wxs file:

<Product Id="44139BED-5F1A-4C1E-BE12-C7148BE11189"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.1.0"
 Manufacturer="Awesome Company"
 UpgradeCode="3de16078-12fd-472d-8b3d-eb857b75d467">

Next, add a Patch.wxs file like we discussed earlier to the Patch directory.
Your directory structure should look like this:

MinorUpgrade\
 Old\
 Product.wxs
 InstallMe.txt

 New\
 Product.wxs
 InstallMe.txt

 Patch\
 Patch.wxs

Now we're ready to open a command prompt, navigate to the MinorUpgrade
directory and start compiling our files. First, use Candle and Light against the Old
and New WiX source files to create MSI and .wixpdb files. We can send the output
to a folder called Output. This assumes that you've added %WIX%bin to your PATH
environment variable. See Chapter 9, Working from the Command Line, for details.

candle Old\Product.wxs -out Old\

light Old\Product.wixobj -out Output\Old.msi

candle New\Product.wxs -out New\

light New\Product.wixobj -out Output\New.msi

You can do the same for the Patch.wxs file to create a .wixmsp file:

candle Patch\Patch.wxs -out Patch\

light Patch\Patch.wixobj -out Output\Patch.wixmsp

Upgrading and Patching

[356]

The next step is to record the differences between the two .wixpdb files and store
them in a transform file. Our transform file here will be in XML format, a .wixmst
file. Use torch.exe, which comes with the WiX toolset:

torch -p -xi Output\Old.wixpdb Output\New.wixpdb

-out Output\Differences.wixmst

The last step is to join the transform file with the .wixmsp file to create a patch
(.msp). We'll use another tool from the WiX toolset called pyro.exe.

pyro Output\Patch.wixmsp -t MyPatch Output\Differences.wixmst

-out Output\Patch.msp

The -t argument accepts the Id attribute we gave to the PatchBaseline element
in our Patch.wxs file. This is followed by the name of the .wixmst file created by
Torch. The -out argument allows us to name the resulting .msp file.

In the end, our Output folder has quite a few files in it, but the important ones are
the Old.msi file, which is our original product, and Patch.msp, which is the patch
shown in the following screenshot:

Patch.msp is a file that looks like an MSI, can be read with Orca, and that the
end user can double-click to install. It's smaller than an MSI though. Running
the patch applies the changes. This is our minor upgrade. It can also be run from
the command line:

msiexec /p Patch.msp

Creating a patch from .wixout files
There's a downside to using .wixpdb files: the binary data from your software isn't
bundled up into them. These files only contain the paths to your files. That means
that you need to keep copies of your sources files (both old and new) when making
a patch. Also, it can be cumbersome to get Pyro to resolve the paths correctly if the
.wixmst and .wixmsp files aren't in the correct directory relative to the source files.

Chapter 13

[357]

An alternative is to use .wixout files. These do bundle up the binary data of your
software, allowing them to be moved around or backed up for later. They're just like
MSI files, but in an XML format that makes them easy to make a patch out of. Instead
of making an MSI out of your WiX source files, you output .wixout files.

When compiling your old and new Product.wxs files, you can use the markup from
our .wixpdb example, provide the -bf, -xo, and -out flags to Light. You can add
these flags to Light either in your Visual Studio project's Tool Settings properties or
directly on the command line.

candle Old\Product.wxs -out Old\

light Old\Product.wixobj -bf -xo -out Output\Old.wixout

candle New\Product.wxs -out New\

light New\Product.wixobj-bf-xo -out Output\New.wixout

Once you've created a .wixout file for your old and new software, run Torch on
them:

torch -p -xi Output\Old.wixout Output\New.wixout

-out Output\Differences.wixmst

Followed by Pyro, using the .wixmsp file created from the Patch.wxs file, like
before:

candle Patch\Patch.wxs -out Patch\

light Patch\Patch.wixobj -out Output\Patch.wixmsp

pyro Output\Patch.wixmsp -t MyPatch Output\Differences.wixmst

-out Output\Patch.msp

You'll end up with an .msp file, just like when using .wixpdb files. The difference is
that you can move the intermediate .wixout files around or back them up for later
without worrying that the paths to your software's files will fail to resolve when you
want to make a patch.

Upgrading and Patching

[358]

The small update
A small update is like a minor upgrade except that it's usually smaller in scope.
You might use it when only a few files have changed and you don't intend to change
the Product element's version number.

The steps to create it are the same as when creating a minor upgrade patch with the
exception of not changing the Product element's Version. They are as follows:

1. Using Candle and Light, compile and link your original installer into
a .wixout file.

2. Make changes to your software's files and then create a second .wixout file.
Do not change the Product element's Id or Version attribute.

3. Make a Patch.wxs file and, using Candle and Light, compile and link it to
create a .wixmsp file. Set the PatchFamily element's Version attribute so
that this patch will be sequenced correctly related to other patches.

4. Use Torch to create a .wixmst file that contains the differences between your
two .wixout files.

5. Use Pyro to combine the .wixmsp and .wixmst files into a final .msp
patch file.

This gives you a patch file that when used will update files, but won't change the
software's ProductCode or Version values.

Summary
In this chapter, we talked about the three types of updates. Major upgrades are the
easiest to do, but are the least efficient for small sets of changes. They perform a
complete uninstall of any older versions of your software. Minor upgrades and small
updates are typically delivered as patch files and are smaller in scope. They only
replace some of the existing files and add new features, but don't take any away.
These can be an ideal method for keeping customers up-to-date on bug fixes.

In the next chapter, we'll see how to add new functionality to WiX by building
our own WiX extension. It will be of the same variety as WixUIExtension or
WixUtilExtension. You'll see that once you've associated your custom WiX
elements with custom actions, the sky is the limit.

Extending WiX
WiX facilitates plenty of use cases out of the box. However, there are tasks that just
don't come built into Windows Installer by default. Thankfully, the WiX team and
others have extended WiX to cover a range of extra functionality such as installing
websites, creating users, and editing XML files. In this chapter, we will cover how
you can join in the fun by building your own extensions. This allows you to craft
custom WiX elements that bind to custom actions to perform complex tasks, but stay
consistent with the WiX declarative, XML style.

We will explore the following topics:

• Hooking into the WiX extension model using classes from the Microsoft.
Tools.WindowsInstallerXml namespace

• Defining an XML schema for new WiX elements
• Parsing those elements when they're used in a WiX project and storing the

result in the MSI database
• Associating the elements with custom actions to be run at install time

Building a custom WiX extension
You've been exposed to several of the WiX extensions already. WixUIExtension
adds a premade user interface. WixNetFxExtension gives you information about the
version of .NET that's installed. WixUtilExtension provides a number of elements
for jobs such as adding users, editing XML files, and setting Internet shortcuts.

Extending WiX

[360]

There are also other extensions that we haven't covered, including WixSqlExtension
that can set up an MSSQL database, WixIIsExtension for adding websites, app
pools and virtual directories to IIS, and WixDifxAppExtension for installing
Windows drivers. For more information about these extensions, check out the WiX
documentation at http://wix.sourceforge.net/manual-wix3/schema_index.
htm. In this chapter, you will learn to make your own extension and bend WiX to
your will for fortune and glory.

To get started, let's define what an extension is and what it would take to make one.

Setting the stage
A WiX extension is a .NET assembly that, when added to a WiX Setup project,
provides new XML elements for additional functionality. As such we will need
to create a new C# class library project and reference wix.dll from the WiX bin
directory. For the example in this chapter I will name the project AwesomeExtension.

Extending the CompilerExtension class
The first thing we'll do is add a new class to our project and call it AwesomeCompiler.
This class should extend the CompilerExtension class. Be sure to add a using
statement targeting the Microsoft.Tools.WindowsInstallerXml namespace.
We will immediately override a property called Schema that returns an instance
of XmlSchema:

namespace AwesomeExtension
{

Chapter 14

[361]

 using System.Reflection;
 using System.Xml;
 using System.Xml.Schema;
 using Microsoft.Tools.WindowsInstallerXml;

 public class AwesomeCompiler : CompilerExtension
 {
 private XmlSchema schema;

 public AwesomeCompiler()
 {
 this.schema =
 CompilerExtension.LoadXmlSchemaHelper(
 Assembly.GetExecutingAssembly(),
 "AwesomeExtension.AwesomeSchema.xsd");
 }

 public override XmlSchema Schema
 {
 get
 {
 return this.schema;
 }
 }
 }
}

The Schema property returns an object of type XmlSchema, which is an in-memory
representation of an XSD file. The XSD file, which we'll add to our project soon, will
define the syntax for our custom XML elements such as the names of the elements,
the attributes they can have, and where they can be placed in an XML document
relative to other elements.

We are setting this property in the class's constructor using a static method called
LoadXmlSchemaHelper from the base class. The first parameter to this method is the
currently executing assembly and the second is the name of the XSD file. We will
be embedding the XSD file in the class library so to reference it you should prefix
the file's name with the project's default namespace, such as AwesomeExtension.
AwesomeSchema.xsd. This is assuming you place the XSD in the root folder of the
project. If you decide to place it in a subfolder, include the name of that folder in the
string. For example, if you place it in a folder called Schemas, you would reference
AwesomeExtension.Schemas.AwesomeSchema.xsd. You can know for sure what to
use by compiling your project and opening the outputted assembly with ILDASM,
the .NET disassembler. There you can see the names of all embedded resources by
looking inside the manifest.

Extending WiX

[362]

In the next section, we'll see how to make an XML schema and embed it in
our assembly.

Adding an XML schema
Visual Studio comes with a template for adding an XSD file to your project.
Right-click on your project and select Add | New Item | Data | XML Schema.
In this example, I'll be adding it to the root folder of the project and calling it
AwesomeSchema.xsd.

Once you have it, right-click on the file in Solution Explorer and select Properties.
Change Build Action to Embedded Resource. Next, right click on the file again and
choose View Code. You should see a schema element with various XML namespaces
defined. I would modify it to use the XmlSchemaExtension namespace for defining
parent-child relationships of elements. Also, change the domain name to use
something other than tempuri.org.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
 elementFormDefault="qualified"
 targetNamespace="http://www.mydomain.com/AwesomeSchema"

Chapter 14

[363]

 xmlns="http://www.mydomain.com/AwesomeSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xse=
"http://schemas.microsoft.com/wix/2005/XmlSchemaExtension"
>
</xs:schema>

The next step is to define our custom WiX elements. These will go inside the schema
element. Add the following markup:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema ...>

 <xs:annotation>
 <xs:documentation>
 The schema for the Awesome WiX Extension
 </xs:documentation>
 </xs:annotation>

 <xs:element name="SuperElement">
 <xs:annotation>
 <xs:appinfo>
 <xse:parent namespace="http://schemas.microsoft.com/wix/2006/
wi" ref="Product" />
 <xse:parent namespace="http://schemas.microsoft.com/wix/2006/
wi" ref="Fragment" />
 </xs:appinfo>
 <xs:documentation>
 A custom element for declaring level of awesomeness.
 </xs:documentation>
 </xs:annotation>

 <xs:complexType>
 <xs:attribute name="Id"
 use="required"
 type="xs:string">
 <xs:annotation>
 <xs:documentation>The ID for the element.</xs:documentation>
 </xs:annotation>
 </xs:attribute>

 <xs:attribute name="Type" use="required">
 <xs:annotation>
 <xs:documentation>The type of awesomeness: Super,
TotallySuper or RockStar.</xs:documentation>

Extending WiX

[364]

 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Super" />
 <xs:enumeration value="TotallySuper" />
 <xs:enumeration value="RockStar" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

</xs:schema>

Use the annotation and documentation elements to give helpful descriptions
to your elements and attributes. We use them in various places in this example
including at the top of the document to convey the purpose of the schema.

<xs:annotation>
 <xs:documentation>
 The schema for the Awesome WiX Extension
 </xs:documentation>
 </xs:annotation>

Use the appinfo and parent elements to define the WiX elements yours should be
placed within. For example, a SuperElement should only be placed within a Product
or Fragment element, as shown:

<xs:appinfo>
 <xse:parent namespace="http://schemas.microsoft.com/wix/2006/wi"
ref="Product" />

 <xse:parent namespace="http://schemas.microsoft.com/wix/2006/wi"
ref="Fragment" />
</xs:appinfo>

When defining attributes for your elements you can stick to the simple data types
such as strings, shown here for the Id attribute:

<xs:attribute name="Id"
 use="required"
 type="xs:string"/>

Chapter 14

[365]

Alternatively, you can also build complex types such as enumerated values. In the
example shown, we are defining an attribute called Type that can be set to Super,
TotallySuper, or RockStar:

<xs:attribute name="Type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Super" />
 <xs:enumeration value="TotallySuper" />
 <xs:enumeration value="RockStar" />
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>

Now that we have our schema, let's jump back to our AwesomeCompiler class and
add a method for parsing our SuperElement element when someone uses it in a
WiX project.

Parsing custom elements
Next, we need to add logic to our AwesomeCompiler class to parse our new element
when it's used. Override the ParseElement method from the base class:

public override void ParseElement(
 SourceLineNumberCollection sourceLineNumbers,
 XmlElement parentElement,
 XmlElement element,
 params string[] contextValues)
 {
 switch (parentElement.LocalName)
 {
 case "Product":
 case "Fragment":
 switch (element.LocalName)
 {
 case "SuperElement":
 this.ParseSuperElement(element);
 break;
 default:
 this.Core.UnexpectedElement(
 parentElement,
 element);
 break;
 }
 break;

Extending WiX

[366]

 default:
 this.Core.UnexpectedElement(
 parentElement,
 element);
 break;
 }
}

When someone uses our extension in their WiX project and then compiles it, Candle
will call the ParseElement method. Our override parses only SuperElements that are
children to Product or Fragment elements. In your own extension, feel free to add
more case statements for all of the elements you've defined in your schema. We'll be
calling a method called ParseSuperElement to handle the specific parsing logic. You
should call the UnexpectedElement method if the element passed in isn't recognized
so that Candle will throw an error.

The ParseSuperElement method takes an XmlNode object—our SuperElement. The
following is the code to add:

private void ParseSuperElement(XmlNode node)
{
 SourceLineNumberCollection sourceLineNumber =
 Preprocessor.GetSourceLineNumbers(node);

 string superElementId = null;
 string superElementType = null;

 foreach (XmlAttribute attribute in node.Attributes)
 {
 if (attribute.NamespaceURI.Length == 0 ||
 attribute.NamespaceURI == this.schema.TargetNamespace)
 {
 switch (attribute.LocalName)
 {
 case "Id":
 superElementId = this.Core.GetAttributeIdentifierValue(
 sourceLineNumber,
 attribute);
 break;
 case "Type":
 superElementType =
 this.Core.GetAttributeValue(
 sourceLineNumber,
 attribute);

Chapter 14

[367]

 break;
 default:
 this.Core.UnexpectedAttribute(
 sourceLineNumber,
 attribute);
 break;
 }
 }
 else
 {
 this.Core.UnsupportedExtensionAttribute(
 sourceLineNumber,
 attribute);
 }
 }

 if (string.IsNullOrEmpty(superElementId))
 {
 this.Core.OnMessage(
 WixErrors.ExpectedAttribute(
 sourceLineNumber,
 node.Name,
 "Id"));
 }

 if (string.IsNullOrEmpty(superElementType))
 {
 this.Core.OnMessage(
 WixErrors.ExpectedAttribute(
 sourceLineNumber,
 node.Name,
 "Type"));
 }

 if (!this.Core.EncounteredError)
 {
 Row superElementRow =
 this.Core.CreateRow(
 sourceLineNumber,
 "SuperElementTable");

 superElementRow[0] = superElementId;
 superElementRow[1] = superElementType;
 }
}

Extending WiX

[368]

All parsing methods follow a similar structure. First, use the Preprocessor.
GetSourceLineNumbers method to get a SourceLineNumberCollection object.
This will be used in various places throughout the rest of the function.

private void ParseSuperElement(XmlNode node)
{
 SourceLineNumberCollection sourceLineNumber =
 Preprocessor.GetSourceLineNumbers(node);
}

Next, loop through each item in the node object's Attributes collection to get
each attribute that was set on our SuperElement. There are quite a few specialized
functions for retrieving the value of different types of attributes, but the simplest
is GetAttributeValue, which returns the value as a string. I'm also using
GetAttributeIdentifierValue, which does some additional validation checks to
make sure the Id attribute contains valid characters for an ID.

Call the UnexpectedAttribute method as a fallback in case an unrecognized
attribute is used on our SuperElement. You should also call the
UnsupportedExtensionAttribute method if an attribute is prefixed with a
namespace that isn't our schema's target namespace.

foreach (XmlAttribute attribute in node.Attributes)
{
 if (attribute.NamespaceURI.Length == 0 ||
 attribute.NamespaceURI == this.schema.TargetNamespace)
 {
 switch (attribute.LocalName)
 {
 case "Id":
 superElementId =
 this.Core.GetAttributeIdentifierValue(
 sourceLineNumber,
 attribute);
 break;
 case "Type":
 superElementType =
 this.Core.GetAttributeValue(
 sourceLineNumber,
 attribute);
 break;
 default:
 this.Core.UnexpectedAttribute(
 sourceLineNumber,
 attribute);

Chapter 14

[369]

 break;

 }
 }
 else
 {
 this.Core.UnsupportedExtensionAttribute(
 sourceLineNumber,
 attribute);
 }
}

After extracting each attribute's value, we will do some validation to make sure
all required attributes have been set. You can use the OnMessage method to have
Candle display an error if the mandatory attribute is missing, as shown in the
following code:

if (string.IsNullOrEmpty(superElementId))
{
 this.Core.OnMessage(
 WixErrors.ExpectedAttribute(
 sourceLineNumber,
 node.Name,
 "Id"));
}

if (string.IsNullOrEmpty(superElementType))
{
 this.Core.OnMessage(
 WixErrors.ExpectedAttribute(
 sourceLineNumber,
 node.Name,
 "Type"));
}

Finally, use the CreateRow method to add the data from the element to the MSI
database. Given the name of the table you want to create and the source line number
where the element was parsed, you'll get a Row object that you can treat as an array.
Each index in the array is associated with column in the row. In this example, we're
creating a row in a table called SuperElementTable and setting the first column to
the element's Id attribute and the second to its Type attribute, given as follows:

if (!this.Core.EncounteredError)
{
 Row superElementRow =

Extending WiX

[370]

 this.Core.CreateRow(
 sourceLineNumber,
 "SuperElementTable");

 superElementRow[0] = superElementId;
 superElementRow[1] = superElementType;
}

Next, let's dig into how to declare the structure of this table.

Creating a new MSI table
Assuming the WiX compiler can successfully parse our element, we need to define
how that data is going to be stored in the MSI. This part is actually pretty simple.
We just need to add an XML file that establishes the structure of a table in the MSI
called SuperElementTable. Each SuperElement that's used will be added as a row
in this table.

Add an XML file to your class library project and call it TableDefinitions.xml.
As we did for the XSD, set the Build Action option of this file to Embedded
Resource. The root element will be called tableDefinitions and should reference
the XML namespace http://schemas.microsoft.com/wix/2006/tables. Add the
following markup:

<?xml version="1.0" encoding="utf-8" ?>
<tableDefinitions
 xmlns="http://schemas.microsoft.com/wix/2006/tables">

 <tableDefinition
 name="SuperElementTable"
 createSymbols="yes">

 </tableDefinition>

</tableDefinitions>

Inside the tableDefinitions element, we've added a tableDefinition element
with a name attribute set to SuperElementTable. That's what we're calling the new
table in the MSI. The createSymbols attribute should be set to yes.

Chapter 14

[371]

Next, add a columnDefinition element for each attribute defined by SuperElement.
These will define the columns in the table. They are shown as follows:

<?xml version="1.0" encoding="utf-8" ?>
<tableDefinitions
 xmlns="http://schemas.microsoft.com/wix/2006/tables">

 <tableDefinition
 name="SuperElementTable"
 createSymbols="yes">

 <columnDefinition
 name="Id"
 type="string"
 length="72"
 primaryKey="yes"
 category="identifier"
 description="Primary key for this element" />

 <columnDefinition
 name="Type"
 length="72"
 type="string"
 category="formatted"
 nullable="no"
 description="Type of SuperElement" />

 </tableDefinition>

</tableDefinitions>

Here we are adding columns for the Id and Type attributes. Marking the Id attribute
as a primaryKey means that it can't be duplicated by another row and that it will
serve as the primary key on the table.

You can also mark a column as a foreign key by setting the keyTable attribute to
the name of another table and keyColumn attribute to the number, counting from
left to right, of the column on that table to reference. The WiX linker will do some
validation on the foreign keys including checking that the referenced column exists
and that the foreign key isn't also a primary key. If you run into an error about
modularization types, just make sure that your columnDefintion element sets an
attribute called modularize to the same as it is on the referenced column. The error
message will tell you what it has to be.

Extending WiX

[372]

The type attribute can be set to one of the values described in the following table:

Column Type Meaning
string Column is a string.
localized Column is a localizable string.
number Column is a number.
object Column is a binary stream.
preserved Column is a string that is preserved in transforms.

The category attribute can be set to a valid column data type. You can find a list in
the section titled Column Data Types (Windows) in the MSI SDK documentation that
came with WiX. A list can also be found at:

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa367869(v=vs.85).aspx

In our example, Id has a Category attribute of identifier, meaning that it can only
contain ASCII characters, underscores, and periods. Type has a Category attribute
of formatted, meaning that it can accept a WiX property value as well as a string.
One last useful attribute: if you want to allow nulls in a column, set the nullable
attribute to yes.

You can get a good idea about the syntax to use in your table definitions by looking
at those defined by WiX. Download the source code and check out the src\wix\
Data\tables.xml file.

Extending the WixExtension class
The next step is to add a class that extends the WixExtension class. The purpose
of this class is to return an instance of our AwesomeCompiler and also our table
definitions. Add a new class to your project and call it AwesomeWixExtension. It
should override the CompilerExtension property to return an instance of our
AwesomeCompiler class:

namespace AwesomeExtension
{
 Using System.Reflection;
 using Microsoft.Tools.WindowsInstallerXml;

 public class AwesomeWixExtension : WixExtension
 {

Chapter 14

[373]

 private CompilerExtension compilerExtension;

 public override CompilerExtension CompilerExtension
 {
 get
 {
 if (this.compilerExtension == null)
 {
 this.compilerExtension =
 new AwesomeCompiler();
 }

 return this.compilerExtension;
 }
 }

 }
}

Next, override the TableDefinitions property and use the
LoadTableDefinitionHelper method to get the table definitions from our XML file:

private TableDefinitionCollection tableDefinitions;

public override TableDefinitionCollection TableDefinitions
{
 get
 {
 if (this.tableDefinitions == null)
 {
 this.tableDefinitions =
 WixExtension.LoadTableDefinitionHelper(
 Assembly.GetExecutingAssembly(),
 "AwesomeExtension.TableDefinitions.xml");
 }

 return this.tableDefinitions;
 }
}

One last thing to do: open your project's AssemblyInfo.cs file and add the
following attribute:

[assembly: AssemblyDefaultWixExtension(typeof(
 AwesomeExtension.AwesomeWixExtension))]

Extending WiX

[374]

This will mark our new AwesomeWixExtension class as the default WiX extension in
the assembly.

Using the extension in a WiX project
At this point, you could use your extension in a WiX project to get a feel for what
it will do. So far, we've added code to parse SuperElement and store it in the MSI.
Later on we will tie a custom action to SuperElement so that when someone uses it
the action will be run during the installation. To use the extension, follow these steps:

1. Copy the extension assembly and its dependencies to a WiX project.
2. Add the extension as a project reference.
3. Use the custom XML namespace in the WiX project's Wix element.
4. Add SuperElement to the markup and compile.

Step 1 is to copy the output from our AwesomeExtension to a folder in a WiX project.
I'll assume you've created a simple WiX project. A common strategy is to add a lib
folder to the WiX project and copy the output files there:

Then, add AwesomeExtension.dll as a project reference:

Chapter 14

[375]

You can accomplish the same thing from the command line by passing the –ext flag
to Candle and Light, followed by the path to the assembly.

Now that we have a reference to the extension we can include our custom XML
namespace. Change the Wix element in your main WiX source file so that it contains
http://www.mydomain.com/AwesomeSchema.

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:awesome="http://www.mydomain.com/AwesomeSchema">

You're then able to use SuperElement, like so:

<awesome:SuperElement Id="super1" Type="Super" />

This element can be placed within the Product element or a Fragment element.
Compile the WiX project and use Orca.exe to see that the custom table has
been added:

Extending WiX

[376]

You should see a row in the table containing the data from SuperElement. If you'd
like to see Visual Studio IntelliSense when typing the custom element, copy the
AwesomeSchema.xsd file we created into Visual Studio's Xml/Schemas folder. If
using Visual Studio 2010, it can be found at C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Xml\Schemas. Close and re-open Visual Studio and you
should see the parameter information pop up as you type:

Tying a custom action to the custom
element
Having a table full of rows in the MSI gets us halfway. The other half is defining
a custom action that reads from that table and does something useful with the
data at install time. The extensions that come with WiX already do all sorts of
handy things, such as create SQL databases and tables, edit XML files, add users
and set permissions, add websites to IIS, and so on. Your extension will add
to this list, allowing an installer to do new, uncharted things! However, in this
example we'll keep it simple and only display a message box for each row in the
SuperElementTable table.

This is going to be a three-step process. First, we'll define the custom action in C#.
Then, we'll embed the custom action DLL inside a WiX library (.wixlib). Finally,
we'll embed that library inside our extension. In the same Visual Studio solution
where we defined our extension, add a new project using the C# Custom Action
Project template. Call it SuperElementActions.

Now, if we were going to perform our custom action during the immediate phase of
the UI or Execute sequence, things would be pretty simple. Let's assume, however,
that we are making an action that changes the end users' computer and so should
only be run during the deferred stage of the Execute sequence. This gives us an extra
challenge: we can't read the MSI database during the deferred stage.

Chapter 14

[377]

The trick is to read the database during the immediate phase, store the results in a
property, and then read that property during the deferred phase. In short, we need
two custom actions. The first will read the database and looks like the following
code snippet:

namespace SuperElementActions
{
 using System;
 using System.Collections.Generic;
 using Microsoft.Deployment.WindowsInstaller;

 public class CustomActions
 {
 [CustomAction]
 public static ActionResult ShowMessageImmediate(Session session)
 {
 Database db = session.Database;

 try
 {
 View view = db.OpenView("SELECT `Id`, `Type` FROM
`SuperElementTable`");
 view.Execute();

 CustomActionData data = new CustomActionData();

 foreach (Record row in view)
 {
 data[row["Id"].ToString()] = row["Type"].ToString();
 }

 session["ShowMessageDeferred"] = data.ToString();

 return ActionResult.Success;
 }
 catch (Exception ex)
 {
 session.Log(ex.Message);
 return ActionResult.Failure;
 }
 finally
 {
 db.Close();
 }
 }
 }
}

Extending WiX

[378]

In the ShowMessageImmediate method, we're reading from the currently executing
MSI database by accessing session.Database, calling OpenView on it to select the
rows from our custom table, and then Execute on the view that's returned. We then
iterate over each row in the table by using a foreach statement on the view.

The data is stored in a new CustomActionData object. This class can be used like a
hash table, so I'm using each SuperElement element's Id attribute as the key and
the Type attribute as the value. After we've set all of the key-value pairs in the hash
table, we serialize it out to a new session property called ShowMessageDeferred. By
naming the property that, a custom action with the same name can have access to the
data. It's a way of passing data from the immediate phase to the deferred phase.

The next step is to define the deferred custom action. Add a new method to the same
class and call it ShowMessageDeferred. The following is the code:

[CustomAction]
public static ActionResult ShowMessageDeferred(Session session)
{
 try
 {
 CustomActionData data = session.CustomActionData;

 foreach (KeyValuePair<string, string> datum in data)
 {
 DisplayWarningMessage(
 session,
 string.Format("{0} => {1}", datum.Key, datum.Value));
 }

 return ActionResult.Success;
 }
 catch (Exception ex)
 {
 session.Log(ex.Message);
 return ActionResult.Failure;
 }
}

private static void DisplayWarningMessage(Session session, string
message)
{
 Record record = new Record(0);
 record[0] = message;
 session.Message(InstallMessage.Warning, record);
}

Chapter 14

[379]

Here we're reading from the CustomActionData property on the Session object to
get the SuperElement data that was set by the other custom action. We use another
foreach statement to iterate over each item and display it in a message box, using a
small helper function called DisplayWarningMessage.

Now we can move on to storing these custom actions in a WiX library. The reason
is so that we can schedule the custom actions using WiX markup. Add a new Setup
Library Project template to your solution and call it AwesomeLibrary, as shown in
the following screenshot:

The setup library will contain a file called Library.wxs. We can modify it to point to
our C# custom actions:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <Binary Id="CA_DLL"
 SourceFile="SuperElementActions.CA.dll" />

 <CustomAction Id="ShowMessageImmediate"
 BinaryKey="CA_DLL"
 DllEntry="ShowMessageImmediate"
 Execute="immediate"
 Return="check" />

 <CustomAction Id="ShowMessageDeferred"
 BinaryKey="CA_DLL"
 DllEntry="ShowMessageDeferred"
 Execute="deferred"
 Return="check" />

 <InstallExecuteSequence>

Extending WiX

[380]

 <Custom Action="ShowMessageImmediate"
 Before="ShowMessageDeferred">
 NOT Installed</Custom>

 <Custom Action="ShowMessageDeferred"
 After="InstallInitialize">
 NOT Installed</Custom>
 </InstallExecuteSequence>
 </Fragment>
</Wix>

Note that the Binary element references a DLL called SuperElementActions.
CA.dll. The easiest way to make that true is to add the custom actions project as
a reference in the AwesomeLibrary project. Then, use preprocessor variables to
reference the DLL from that project's output folder. Update the Binary element in
the following manner:

<Binary Id="CA_DLL"
 SourceFile=
"$(var.SuperElementActions.TargetDir)SuperElementActions.CA.dll" />

The two custom actions are both scheduled to run during InstallExecuteSequence,
but the first will run during the immediate phase and the other during the deferred
phase. I've added a condition to each Custom element so that these actions will only
run during an install and not during an uninstall or repair.

Because we don't want to have to deploy our custom actions' DLL separately
from our extension, we should embed it inside the WIXLIB. To do so you can
add the -bf flag to the Librarian settings of the project's properties, as shown
in the following screenshot:

Chapter 14

[381]

Alternatively, check the box labelled Bind files into the library file on the properties'
Build page:

Copy the output from this .wixlib project to the AwesomeExtension project's folder.
You'll probably want to use a post-build step in Visual Studio to do this. Add the
AwesomeLibrary.wixlib file to the AwesomeExtension project using the Solution
Explorer window and change its Build Action value to Embedded Resource.
You should now have three projects: AwesomeExtension, AwesomeLibrary, and
SuperElementActions, as shown in the following screenshot:

Extending WiX

[382]

I'll summarize the steps we take to link them together:

• Use a project reference to SuperElementActions in the AwesomeLibrary
project and preprocessor variables to include SuperElementActions.CA.dll
in a Binary variable.

• Copy AwesomeLibrary.wixlib to the AwesomeExtension project's folder.
Consider using a post-build action to do this.

• Add the AwesomeLibrary.wixlib file to the AwesomeExtension project, and
change its Build Action value to Embedded Resource.

We'll need to add another method to the AwesomeWixExtension.cs file called
GetLibrary. This will retrieve the WiX library from the extension. The following is
the code to add:

private Library library;

public override Library GetLibrary(
 TableDefinitionCollection tableDefinitions)
{
 if (this.library == null)
 {
 this.library =
 WixExtension.LoadLibraryHelper(
 Assembly.GetExecutingAssembly(),
 "AwesomeExtension.AwesomeLibrary.wixlib",
 tableDefinitions);
 }

 return this.library;
}

The LoadLibraryHelper method takes the currently executing assembly, the name
of the embedded WIXLIB, and the table definitions collection that was passed into
the method and returns the library.

Next, add a call to CreateWixSimpleReferenceRow to the end of the
ParseSuperElement method. This will create a relationship between our WIXLIB
and the MSI, sort of like pulling a Fragment element into a project, by referencing
one of the elements in the library. I'm referencing the ShowMessageImmediate action
from the CustomAction table here to make this link:

this.Core.CreateWixSimpleReferenceRow(
 sourceLineNumber,
 "CustomAction",
 "ShowMessageImmediate");

Chapter 14

[383]

Now when you use SuperElement in a WiX project, the ShowMessageImmediate and
ShowMessageDeferred custom actions will be added to the CustomAction table in
the MSI. All other elements in the WIXLIB will also be pulled in.

When you install the MSI you will see a message displayed for each SuperElement,
as shown in the following screenshot:

Summary
In this chapter, we discussed how to extend WiX to perform custom operations at
install time. Our extension provided new WiX elements that tie to custom actions.
All of this is bundled up into a .NET assembly so that others can use it too. With this
knowledge, you've opened the door to advanced WiX functionality for yourself and
possibly the WiX community at large.

In the next chapter, we will have a look at the new Burn engine that was introduced
in WiX 3.6. Burn provides bootstrapping capabilities that allow us to bundle our
software and its dependencies into a single setup executable. The potential uses for
this are many and we'll dig into what you need to know to get started.

Bootstrapping Prerequisites
with Burn

If you're like most of us, your software relies on some framework, third-party
component, database, or process. Maybe it's the .NET Framework, the Java runtime,
or SQL Server. Up until now, we would use a launch condition to show the user
a friendly error message if the required prerequisite wasn't found, swiftly ending
our installation. What we needed is a bootstrapper—a mechanism for getting those
prerequisites installed prior to installing our own software. With the arrival of WiX
3.6, we have one.

Burn is a new tool in the WiX arsenal that fills the bootstrapper gap, but its feature
set extends well beyond that of a simple bootstrapper. In this chapter, we'll cover the
following topics:

• The ins and outs of getting your prerequisites installed using the new
Bootstrapper Project template available in Visual Studio

• Displaying a single progress bar while installing multiple installation
packages

• Downloading installers from the Internet at runtime
• Bundling patches together with your MSI to get your software up-to-date

from the start

Bootstrapping Prerequisites with Burn

[386]

Using the Bootstrapper Project template
Create a new project in Visual Studio using the Bootstrapper Project template
that's installed with the WiX toolset. Go to New Project | Windows Installer XML |
Bootstrapper Project.

It will contain a file called Bundle.wxs with the following markup:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
<Bundle Name="Awesome Software"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="c352f5c7-1dbe-416c-820d-685b058270d5">

 <BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense" />

 <Chain>
 <!--TODO: Define the list of chained packages.-->
 </Chain>
</Bundle>
</Wix>

Chapter 15

[387]

The root element is called Bundle. The name reflects a major aspect of Burn in
that it bundles your installer with its prerequisites into a single, tidy executable.
Double-clicking on that executable will install each installation package in turn.
The Chain element sets up which packages are embedded and the order in which
they're installed.

In the following sections we will discuss the Bundle and Chain elements in
more detail.

Describing the Bundle element
The Bundle element has several attributes at its disposal for describing what
eventually gets shown in Programs and Features. When the end user installs a
Burn bundle, it will be added as an entry in the programs list. This presents a single
point at which a piece of software and all of its dependencies can be uninstalled or
repaired. The advantage of this design is that it simplifies these tasks for the user.

The following snippet sets these attributes:

<Bundle Name="Awesome Software"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 HelpTelephone="123-456-7890"
 HelpUrl="http://www.mydomain.com/help"
 UpdateUrl="http://www.mydomain.com/update"
 AboutUrl="http://www.mydomain.com/about"
 ... >

You may also use localization variables. Localization works the same as it does for an
MSI. The following is an example:

<Bundle Name="!(loc.BundleName)"
 Version="1.0.0.0"
 Manufacturer="!(loc.Manufacturer)"
 HelpTelephone="!(loc.HelpPhone)"
 HelpUrl="!(loc.HelpUrl)"
 UpdateUrl="!(loc.UpdateUrl)"
 AboutUrl="!(loc.AboutUrl)"
 ... >

Bootstrapping Prerequisites with Burn

[388]

Then, add a .wxl file to your bootstrapper project:

<?xml version="1.0" encoding="utf-8"?>
<WixLocalization Culture="en-us"
 xmlns="http://schemas.microsoft.com/wix/2006/localization">

 <String Id="Manufacturer">Awesome Software Company</String>
 <String Id="BundleName">Awesome Software Bundle</String>
 <String Id="HelpPhone">123-456-7890</String>
 <String Id="HelpUrl">www.mysite.com/help</String>
 <String Id="UpdateUrl">www.mysite.com/update</String>
 <String Id="AboutUrl">www.mysite.com/about</String>
</WixLocalization>

A few of these attributes deserve more explanation. The Name attribute will be the
name of the software in the programs list.Version is comprised of four integers, each
between 0 and 65534, separated by dots. In addition to being displayed in Programs
and Features, it comes into play when detecting previously installed versions of
the same bundle. We'll touch on that more shortly. The rest of the attributes shown
give additional contact information or links to online resources. Different operating
systems show these attributes in their own particular way. You may see some or all
of them.

Ordinarily, Programs and Features gives you the option to uninstall, modify,
or repair your software. You can disable each with the DisableRemove,
DisableModify, and DisableRepair attributes. Each takes a yes value to remove
that particular option. Additionally, if you set DisableModify to button then you'll
get a single Uninstall/Change button instead of two separate buttons.

Other attributes are also available, not related to Programs and Features. The
Copyright attribute can be set to your copyright text to be displayed in the
executable file's properties. Setting Compressed to no will prevent the packages,
such as your MSI and its dependencies, from being compressed inside the bundle.
Instead, they will be copied to the output folder along with the executable. The
IconSourceFile attribute can be set to the path to an ICO file. The icon will be
displayed on the executable file itself and in Programs and Features.

Chapter 15

[389]

Restricting the install by the operating
system
A final attribute to consider is Condition. You'll set this to a conditional statement
that, should it evaluate to false, the system will display an error dialog and abort the
installation. The dialog's text is unchangeable and looks like the following screenshot:

Because the condition is evaluated early on, you can only use built-in variables listed
at the following URL:

http://wix.sourceforge.net/manual-wix3/bundle_built_in_variables.htm

However, because you can't change the error message, and the error message always
says that the program requires a newer version of Windows, you should really
only be checking the operating system version. A variable fit for this purpose is
VersionNT. Compare it to an OS version number, formatted as a decimal preceded
by v. For example, Windows 7 is Version 6.1. The following example checks that the
operating system is Windows 7:

<Bundle Name="Awesome Software"
 Condition="VersionNT = v6.1"
 ... >

Note that the format for the VersionNT Burn variable is different than the
VersionNT property used in a WiX setup project, where the values are whole
numbers that aren't preceded by v. You can view a list of operating system version
numbers at the following site:

http://msdn.microsoft.com/en-us/library/windows/desktop/
ms724832(v=vs.85).aspx

Bootstrapping Prerequisites with Burn

[390]

Although the Condition attribute's error message can't be changed, you may use
a child element called Condition that allows custom text. This element comes as
a part of BalExtension. The BalExtension element provides hooks into the Burn
engine for customizing the bootstrapper's UI and logic. First, add the BalExtension
namespace to the Wix element and then nest the new Condition element inside
Bundle, as shown in the following code snippet:

<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:bal="http://schemas.microsoft.com/wix/BalExtension">

 <Bundle Name="Awesome Software"
 Version="1.0.1.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

 <bal:Condition Message="This software can only be installed on
Windows Vista.">
 <![CDATA[VersionNT = v6.0]]>
 </bal:Condition>

In this case, if the operating system isn't Windows Vista, you'll get an error like the
one shown in the following screenshot:

As with the Condition attribute, you can only use the built-in Burn variables
mentioned before.

Chapter 15

[391]

UpgradeCode and detecting related
bundles
In this section we will find out how to detect and update older versions of your bundle.

Updating existing bundles
Each time that you compile your bootstrapper project in Visual Studio, it is assigned
a new identity—a GUID called BundleId that you cannot change. In this respect,
every bundle that you create is unique. The UpgradeCode attribute allows us to link
two bootstrappers, making them related bundles. This relationship allows one bundle
to detect and upgrade the installed packages of the other.

The UpgradeCode attribute is set on the Bundle element, as shown:

<Bundle Name="Awesome Software Bundle"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

Now, having two bundle executables with the same UpgradeCode attribute does not
mean that one will automatically replace the other. Their versions have a big part to
play. Two bundles with the same UpgradeCode attribute and the same version will
simply be installed side-by-side. You could try this out for yourself by installing a
bundle, recompiling the project, installing again, and then checking Programs and
Features. You'll see both bundles listed. For one to replace the other, its Bundle
element's Version attribute must be higher.

After you've incremented the bundle's Version, during installation the bootstrapper
will search for any previously installed bundles that have the same UpgradeCode
attribute. If it finds one, it will check if the MSI packages installed by that bundle
are older (by version) than the one it is installing. If they are older, it replaces them.
If not, it leaves them as they are. No need to replace a package that's already up-to-
date, after all.

Let's try this out. Create two new WiX setup projects. These will compile into two
MSIs that we'll install with our bootstrapper. This goes to show that Burn can install
more than just prerequisites. It can also install a group of software applications, as in
a suite. I will call my MSIs Awesome1 and Awesome2. The following is the markup for
Awesome1. Note that it is installing a single text file:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

Bootstrapping Prerequisites with Burn

[392]

 <Product
 Id="*"
 Name="Awesome1"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="9b380bd4-cb7c-40a2-9c15-fb38c862a7e7">

 <Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine" />

 <MajorUpgrade DowngradeErrorMessage="A newer version of
[ProductName] is already installed." />

 <MediaTemplate EmbedCab="yes" />

 <Feature Id="ProductFeature"
 Title="Awesome1"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 </Feature>
 </Product>

 <Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="Awesome1" />
 </Directory>
 </Directory>
 </Fragment>

 <Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component
 Id="CMP_InstallMeTXT"
 Guid="F643B5B5-59A8-428E-8E7A-FB4BDC024F83">

 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>

Chapter 15

[393]

 </ComponentGroup>
 </Fragment>
</Wix>

You can imagine that Awesome2 is the same except that it will have a different
UpgradeCode and ProductId. It should also install a different text file with a
different component GUID.

To the same Visual Studio solution, add Bootstrapper Project and call it
AwesomeBootstrapper. The Bundle element should make sense to you now.
The Chain element, which we'll discuss in more detail later on, adds the two
MSIs to our bootstrapper:

<?xml version="1.0" encoding="UTF-8"?>
<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:bal="http://schemas.microsoft.com/wix/BalExtension">

 <Bundle Name="Awesome Software"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

 <BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense" />

 <Chain>
 <MsiPackageSourceFile="Awesome1.msi" />
 <MsiPackageSourceFile="Awesome2.msi" />
 </Chain>
 </Bundle>
</Wix>

This markup assumes that the MSIs have been copied to the bootstrapper project's
folder. You could also add the setup projects as references in the bootstrapper
project. Then, use preprocessor variables to access their output:

<Chain>
 <MsiPackageSourceFile=
 "$(var.Awesome1.TargetDir)Awesome1.msi" />
 <MsiPackageSourceFile=
 "$(var.Awesome2.TargetDir)Awesome2.msi" />
</Chain>

Bootstrapping Prerequisites with Burn

[394]

In any case, your solution ought to look like the following screenshot:

When you build the solution, the bootstrapper project will compress the two MSIs
into its output executable, as shown in the following screenshot:

Launch this executable (I prefer to do this on a virtual machine, in case something
goes wrong and I'm not able to uninstall) and you'll see the default user interface, as
shown in the following screenshot:

Chapter 15

[395]

Complete the install and you'll find that the text files of the two MSI packages
were installed under Program Files. You'll also notice, if you look in Programs and
Features, that there is only a single entry. This is depicted in the following screenshot:

Now, let's create a second bootstrapper that upgrades our files. To make things
interesting, we'll only change the text file—perhaps alter its text to say Installed
by the new version!—and the version of our Awesome1 installer. The second MSI,
Awesome2, we'll keep the same. Here is the updated Product element for Awesome1
where we update the Version to 1.0.1.0:

<Product Id="*"
 Name="Awesome1"
 Language="1033"
 Version="1.0.1.0"
 Manufacturer="Awesome Company"
 UpgradeCode="9b380bd4-cb7c-40a2-9c15-fb38c862a7e7">

Update the bootstrapper bundle version too. If we don't, the new bundle will be
installed side-by-side with the existing one:

<Bundle Name="Awesome Software"
 Version="1.0.1.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

You may recall that Windows Installer ignores the fourth digit of the Product
element's Version attribute when detecting previously installed packages. However,
the Bundle element does not have this behavior. Its fourth digit is significant.

Build the solution again and install to the same machine where you installed the
last bundle. This time, the process is going to take a little longer. That's because the
bootstrapper is detecting and replacing the outdated Awesome1 MSI with the new
version. It will find that the version of Awesome2 hasn't changed and will skip it.

Bootstrapping Prerequisites with Burn

[396]

Installation logs for Burn can be found in the %TEMP% directory. Here's what you'll
find in the file that logged the new bundle being installed:

Detect 2 packages

Detected related bundle: {c1526489-bd4c-4732-835f-0b3819bfea17},
type: Upgrade, scope: PerMachine, version: 1.0.1.0, operation: None

Detected related package: {94625113-C05E-4FED-97BE-21B49F32CB48},
scope: PerMachine, version: 1.0.1.0, language: 0 operation: Downgrade

Detected package: Awesome1.msi, state: Obsolete, cached: Complete

Detected package: Awesome2.msi, state: Present, cached: Complete

Detect complete, result: 0x0

Plan 2 packages, action: Uninstall

Will not uninstall package: Awesome2.msi, found dependents: 1

Notice that it labels Awesome1.msi as obsolete, but Awesome2.msi is present and
up-to-date. It then decides that Awesome2 does not need to be uninstalled.

Burn stores logs in the %TEMP% folder, incorporating the name of
the bundle into the log file's name, such as Awesome_Software_
Bundle_20121105154610.log. You'll also find logs for
the MSIs that you're installing, such as Awesome Software
Bundle_20121105154610_0_Awesome1.msi.

Finding other related bundles
So you have now seen that having two bundles with the same UpgradeCode attribute
creates a relationship between the two. If one has a higher version than the other, it
can upgrade the previously installed files. You can also relate two bundles that have
different upgrade codes by using the RelatedBundle element. The following is an
example that forms a relationship with another bundle that has an UpgradeCode of
8A5496B3-0BFA-4C2B-8129-7C8A7E3F51D9:

<Bundle Name="Awesome Software"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

 <RelatedBundle Id="8A5496B3-0BFA-4C2B-8129-7C8A7E3F51D9"
 Action="Upgrade" />

Chapter 15

[397]

The RelatedBundle element's Id matches the UpgradeCode attribute of the other
bundle. The Action attribute, when set to Upgrade, informs the bootstrapper
that it should upgrade the previously installed bundle if it finds it. When you set
UpgradeCode on the Bundle element, behind the scenes Burn is really just creating a
RelatedBundle element on your behalf.

Where the packages are cached
Another interesting thing to watch is the so-called Package Cache. Look for the
Package Cache folder under the %ProgramData% or %AppData% directory, depending
on whether the installed MSI was perMachine or perUser. After we installed the
bundle the first time, Burn cached the two MSIs there. This allows for easier repair
of the software's files without having to prompt for source, or in other words
requesting the original installation media. The second time we installed the bundle,
it replaced the obsolete, cached MSI with the newer one.

If you tried out the last example, you should see that Awesome2, the MSI that did
not have its version changed, is still at Version 1.0.0.0. In other words, it was left as
it is. Awesome1 and the bootstrapper executable were replaced in the cache. This is
further proof that Burn optimizes the upgrade process to only replace what needs
to be replaced.

You can elect to turn off package caching on a per-package basis by setting the
Cache attribute to no. We'll cover the various types of packages in detail later
in the chapter.

Bootstrapping Prerequisites with Burn

[398]

Chaining packages
You briefly saw that we use the Chain element to identify the MSI packages we'd like
to install with our bootstrapper. However, MSIs aren't the only thing that can
be referenced. The list may also contain patch files (MSPs), executables, and
Microsoft updates (MSUs). Before getting to the specifics, let's take a look at the
Chain element itself.

The Chain element
The Chain element enumerates the packages that you want to install together. This
may include a suite of products that you'd like to install in one go, a single MSI with
its prerequisites, or a group of patches, just to name a few possibilities. The packages
are installed in the same order as they're listed in the markup. For example, here,
Awesome1 is installed before Awesome2:

<Bundle ... >

 <Chain>
 <MsiPackage SourceFile="Awesome1.msi" />
 <MsiPackage SourceFile="Awesome2.msi" />
 </Chain>

You can change that order either by changing which element comes before the other
or by adding the After attribute to the package. The following is an example where
we keep the same arrangement of elements but add an After attribute to control the
installation order:

<Chain>
 <MsiPackage Id="Awesome1"
 SourceFile="Awesome1.msi"
 After="Awesome2" />

 <MsiPackage Id="Awesome2"
 SourceFile="Awesome2.msi" />
</Chain>

The Chain element has three optional attributes: DisableRollback,
DisableSystemRestore, and ParallelCache. If you set DisableRollback to
yes, should a package fail to install properly only it will be rolled back. The other
packages that had been installed up to that point will remain installed. The default,
no, signals that if a package fails all previously installed packages should also be
rolled back.

Chapter 15

[399]

Setting DisableSystemRestore to yes prevents a system restore point from being
created when the end user installs, uninstalls, modifies, or repairs your bundle.
Ordinarily, each of these actions creates a restore point. You can see this by
navigating in your Windows Start menu to All Programs | Accessories | System
Tools | System Restore. When the utility opens, select the Choose a different
restore point option to see a list of restore points. The following is what it might
look like after a few actions have been performed on our bundle:

The DisableSystemRestore attribute stops these restoration points from
being created.

The last attribute, ParallelCache, offers a slight optimization to the installation
process. When set to yes, packages will start to install themselves without waiting
for all of the other packages to be added to the package cache. In the following
sections, we will explore the different types of packages that can be added to the
bootstrapper's chain.

Bootstrapping Prerequisites with Burn

[400]

The MsiPackage element
The MsiPackage element is used to add an MSI installer to a bundle. Here's an
example that includes Awesome.msi in the chain:

<Chain>
 <MsiPackageSourceFile="Awesome1.msi" />

There's a good number of optional attributes, common to all of the package elements,
that will fine-tune how Burn interacts with the installer. These attributes could be
used on any of the package elements we'll describe. The Cache attribute, when set
to no, will prevent the package from being stored in the Package Cache. Setting
Compressed to no will stop it from being compressed inside the bootstrapper
executable. Instead, it will be deployed alongside it. You will also set Compressed
to no when downloading packages from the Internet at install time. We'll cover that
later in the chapter.

Another attribute available to all package elements is called Vital and sets whether
the bootstrapper should abort and rollback if the package fails to install. The default
is yes. By setting it to no, the installation will continue on even if the package fails.

A final interesting attribute I'd like to mention is InstallCondition. It can be set to
a conditional statement that, should it evaluate to false, stops that particular package
from being installed. Additionally, if the bundle is being repaired or modified and
the condition is false the package will be uninstalled. That is, unless you've set the
MsiPackage element's Permanent attribute to yes. The Permanent attribute is used
to mark packages that should not be uninstalled. You may use Burn variables in the
condition, which can be set directly with the Variable element, like so:

<Variable Name="MyVar" Value="false"/>

<Chain>
 <MsiPackage SourceFile="Awesome1.msi"
 InstallCondition="MyVar = "true"" />
</Chain>

In this example, I've used the Variable element to declare a Burn variable called
MyVar and set it to false. The InstallCondition attribute checks this variable
against a value of true. I've used the XML entity " in place of double quotes
so that the XML parser doesn't get confused. Note that to reference myVar, we simply
state the name. No other special notation is required.

Chapter 15

[401]

The Visible attribute, which is unique to the MsiPackage element, sets whether
the MSI should be shown in Programs and Features. When set to yes, it will be
displayed in Programs and Features instead of only showing the Burn bundle.
Here's an example that sets the Visible attribute:

<MsiPackage SourceFile="Awesome1.msi" Visible="yes" />

The result is that both the bundle and the MSI are listed in Programs and Features,
as shown in the following screenshot:

This may come in handy if your requirements dictate that each package in the bundle
must be displayed, but for most situations showing a single entry in Programs and
Features is probably preferable.

If you need to set a Windows Installer property on the MSI package, use the
MsiProperty element. The following example demonstrates setting a property
called MY_PROPERTY on the Awesome1.msi package. To make things interesting,
we'll set the property to the value held in the MyVar Burn variable. Notice that we
must use the square bracket notation to reference the variable, as shown in the
following code snippet:

<Variable Name="MyVar" Value="abc" />

<Chain>
 <MsiPackage SourceFile="Awesome1.msi">
 <MsiProperty Name="MY_PROPERTY" Value="[MyVar]" />
 </MsiPackage>
</Chain>

Bootstrapping Prerequisites with Burn

[402]

The ExePackage element
The ExePackage element adds an executable package to the bootstrapper's install
chain. As an example, let's say we wanted to install the Java Runtime Environment
(JRE). It can be downloaded from Oracle's site as an executable file. The URL is
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

The following example installs the JRE:

<Chain>
 <ExePackage SourceFile="jre-7u7-windows-x64.exe" />
</Chain>

There are two version of the JRE installer—one for 64-bit systems and another for
32-bit systems. We can compress both installers into our bootstrapper but use install
conditions to install only the appropriate one, like so:

<ExePackage SourceFile="jre-7u7-windows-x64.exe"
 InstallCondition="VersionNT64" />

<ExePackage SourceFile="jre-7u7-windows-i586.exe"
 InstallCondition="NOT VersionNT64" />

Here we're checking for the VersionNT64 variable. Since it is only set on 64-bit
systems, we use it to prevent the 32-bit JRE from being installed on machines with
that architecture. The Burn UI is nice enough to display a progress bar for us:

Chapter 15

[403]

However, we did not pass any flags to the JRE installer and its default behavior is to
display its own UI over the top of our own:

We can suppress this by passing the appropriate flags to the executable via the
InstallCommand attribute. In this case, for a silent install, we would pass the /s flag,
as shown in the following snippet:

<ExePackage SourceFile="jre-7u7-windows-x64.exe"
 InstallCondition="VersionNT64"
 InstallCommand="/s" />

Our next step is to handle uninstallation. When the user decides to uninstall the
bundle we'll need to tell Burn how to detect if the JRE has been installed. We
can do this by searching the Windows Registry for keys installed by the JRE.
WixUtilExtension provides new search elements that can be used in your Burn
markup. We'll use the new RegistrySearch element to search for a key located at
HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment\1.7. If it
is found, we will know that JRE 1.7 is currently installed.

Start by adding a reference in your project to WixUtilExtension and adding the
util namespace to the Wix element, as shown in the following snippet:

<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

Bootstrapping Prerequisites with Burn

[404]

Next, add RegistrySearch elements to check if the JRE has been installed.
The results will be stored in Burn variables called JavaInstalled_x64 and
JavaInstalled_x86.

<Bundle ...>

 <util:RegistrySearch
 Root="HKLM"
 Key="SOFTWARE\JavaSoft\Java Runtime Environment\1.7"
 Result="exists"
 Variable="JavaInstalled_x64"
 Win64="yes"/>

 <util:RegistrySearch
 Root="HKLM"
 Key="SOFTWARE\JavaSoft\Java Runtime Environment\1.7"
 Result="exists"
 Variable="JavaInstalled_x86" />

Here we are using the Root and Key attributes to navigate within the Windows
Registry to the key that we want to find. You can also use the Value attribute to
check for a specific value within the key. The result will be stored in the variable
identified by the Variable attribute. I have set the Result attribute to exists to
indicate that I want the variable to be set to 1 or 0, depending on if the key exists.

Finally, by setting Win64 to yes, the search will check the 64-bit portion of the registry
for the keys set by the 64-bit installer. You may recall from our discussion about the
registry in Chapter 10, Accessing the Windows Registry, that Windows stores keys for
32-bit software under the HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node
and HKEY_CURRENT_USER\Software\Wow6432Node keys on a 64-bit system.

We could then set the DetectCondition attribute on the ExePackage elements
using these variables. Burn uses DetectCondition to determine if the EXE package
is installed. That way, it can make sensible decisions regarding whether the
package is eligible for install or uninstall. The following is an example that sets the
DetectCondition attribute using the two variables we defined earlier:

<ExePackage SourceFile="jre-7u7-windows-x64.exe"
 InstallCommand="/s"
 InstallCondition="VersionNT64"
 DetectCondition="JavaInstalled_x64" />

<ExePackage SourceFile="jre-7u7-windows-i586.exe"
 InstallCommand="/s"
 InstallCondition="NOT VersionNT64"
 DetectCondition="JavaInstalled_x86" />

Chapter 15

[405]

When I uninstall the bundle, the log file affirms that the JRE has been detected:

Setting numeric variable 'JavaInstalled_x64' to value 1

Condition 'JavaInstalled_x64' evaluates to true.

Detected package: jre_7u7_windows_x64.exe, state: Present, cached: Complete

The last step would ordinarily be to add the UninstallCommand attribute to be run
during uninstallation. Burn will pass any flags specified to the original executable,
which would have been cached on the user's machine. The JRE installer doesn't
provide any uninstall flags, so we're at a bit of a loss when it comes to uninstalling
it. An alternative might be to extract the MSI from the EXE package, and use
MsiPackage instead. Burn is able to uninstall MSIs without a problem. However,
let's imagine that the JRE did provide an /uninstall flag. The markup would have
looked like the following code:

<ExePackage SourceFile="jre-7u7-windows-x64.exe"
 InstallCommand="/s"
 UninstallCommand="/s /uninstall"
 InstallCondition="VersionNT64"
 DetectCondition="JavaInstalled_x64" />

As we've seen, the JRE does not support a command-line uninstall. However, you
might be thinking to yourself that you wouldn't want to uninstall the JRE anyway.
You would want to be able to uninstall your own software while leaving the JRE
intact. The good news is that Burn provides a way to do package ref counting so that if
another bundle has also installed the JRE, it won't be removed until all bundles that
rely on it have been removed. We will see how later in the chapter. Of course, if you
want to prevent your bundle from even attempting to uninstall the JRE, simply add
the Permanent attribute, set to yes, to the ExePackage element.

Before moving on, note that there is also a RepairCommand attribute for passing
command-line flags to the executable when a repair is triggered.

The MspPackage element
As you may recall, an MSP file is a patch file. Burn lets you deploy patches in a
streamlined way, grouping related patches for example, or deploying patches with
the original software they're meant to update. The latter scenario is known as patch
slipstreaming and comes with some specialized support in Burn. The idea is to
install your software and then immediately apply a patch or set of patches to it.

Bootstrapping Prerequisites with Burn

[406]

The next example adds an MSI package to the installation chain, followed by two
patch files that immediately update it:

<Chain>
 <MsiPackage SourceFile="OriginalProduct.msi" />
 <MspPackage SourceFile="Patch1.msp" Slipstream="yes" />
 <MspPackage SourceFile="Patch2.msp" Slipstream="yes"/>
</Chain>

The MspPackage element's SourceFile attribute points to the patch file to add to
the chain. The Slipstream attribute is needed or else the patch won't be applied to
the OriginalProduct.msi. The nice thing here is that we don't have to specify that
Patch1 and Patch2 apply to OriginalProduct. By using the Slipstream attribute,
Burn figures out that you want them to apply to an MSI that's in the same bundle.

An alternate syntax is to nest SlipstreamMsp elements inside the MsiPackage:

<Chain>
 <MsiPackage SourceFile="OriginalProduct.msi">
 <SlipstreamMsp Id="Patch1"/>
 <SlipstreamMsp Id="Patch2"/>
 </MsiPackage>

 <MspPackage Id="Patch1" SourceFile="Patch1.msp" />
 <MspPackage Id="Patch2" SourceFile="Patch2.msp" />
</Chain>

Patches in the chain are also allowed to update software that has already been
installed. In that case, you would not slipstream them. Also, because patches contain
the information they need to detect and update the software that they apply to, it is
not necessary to specify that information on the MspPackage element.

The MsuPackage element
An MSU file is a Microsoft Update standalone installer. These types of files can be
installed on Windows Vista or later, and typically contain some sort of update to
the Windows operating system or tools. Should you need to install one as a part of
your bootstrapper chain, you can use the MsuPackage element. The following is an
example that installs an MSU file:

<Chain>
 <MsuPackage SourceFile="Windows6.1-KB2656373-v2-x64.msu"
 KB="KB2656373" />
</Chain>

Chapter 15

[407]

The MSU file in this case is a security update for .NET 3.5 on Windows 7 SP1. We
specify the MSU with the SourceFile attribute. The KB attribute allows the file to be
uninstalled later and identifies the knowledge base article (KB) that documents the
problems that the update is meant to resolve.

Downloading packages
If you can find an installer, which could be any of the package types we've seen
(MSI, EXE, MSP, or MSU), that can be easily downloaded from the Internet or a
local network, you may choose to download it at the time of installation. That way,
the bootstrapper executable that you give to your users will be smaller in size. So,
instead of compressing the prerequisite into your bundle you'll provide a link to
where it can be downloaded and Burn will get it for you at install time.

You will still need to download the package locally while you do your development.
Burn needs to reference it during compilation. However, you'll set the Compressed
attribute to no, and provide a DownloadUrl value where the package can be found.
Here is an example that downloads and installs SQL Server 2012 Express:

<ExePackage Id="SQLSERVER"
 DownloadUrl="$(var.SqlDownloadUrl)"
 Name="SQLEXPR_x64_ENU.exe"
 Compressed="no"
 DetectCondition="SqlInstanceFound"
 InstallCommand="$(var.SqlInstallCommand)"
 UninstallCommand="$(var.SqlUninstallCommand)"
 RepairCommand="$(var.SqlRepairCommand)">

 <RemotePayload
 Description="Microsoft SQL Server 2012 Express Edition"
 ProductName="Microsoft SQL Server 2012 Express Edition"
 Version="11.0.2100.60"
 Size="138412032"
 Hash="e4561d5caa761a5d1daa0d305f4fecedc6a0d39c" />
</ExePackage>

Bootstrapping Prerequisites with Burn

[408]

Notice that instead of using a SourceFile parameter to point to the package, we're
using Name. It must also point to a local file, but when paired with DownloadUrl, just
acts as a placeholder for the file while in development. For readability, I am using
preprocessor variables for the attributes that can get pretty long. The following is
how I would define them for a basic install:

<?define SqlServerInstance=TEST ?>

<?define
SqlDownloadUrl=http://download.microsoft.com/download/8/D/D/8DD7BDBA-
CEF7-4D8E-8C16-D9F69527F909/ENU/x64/SQLEXPR_x64_ENU.exe ?>

<?define SqlInstallCommand=/ACTION=Install /Q /
IACCEPTSQLSERVERLICENSETERMS /FEATURES=SQLEngine /INSTANCENAME=$(var.
SqlServerInstance) /SQLSYSADMINACCOUNTS=BUILTIN\Administrators /
SECURITYMODE=SQL /SAPWD=password1 ?>

<?define SqlUninstallCommand=/ACTION=Uninstall /Q /FEATURES=SQLEngine
/INSTANCENAME=$(var.SqlServerInstance) ?>

<?define SqlRepairCommand=/ACTION=Repair /Q /FEATURES=SQLEngine /
INSTANCENAME=$(var.SqlServerInstance) /FEATURES=SQLENGINE ?>

These preprocessor directives can go at the top of your Burn file, above the Bundle
element. The ExePackage element is also using a DetectCondition attribute
to check if SQL Server has already been installed. I define the search with a
RegistrySearch element from WixUtilExtension, as shown in the following
code snippet:

<util:RegistrySearch
 Id="SqlInstanceFound"
 Root="HKLM"
 Key=
"SOFTWARE\Microsoft\Microsoft SQL Server\Instance Names\SQL"
 Value="$(var.SqlServerInstance)"
 Result="exists"
 Variable="SqlInstanceFound" />

If an instance is found, the SqlInstanceFound variable will be set to 1.

SQL Server 2012 Express requires Service Pack 1 and .NET 3.5
or later on a Windows 7 64-bit system. You may want to add
a Condition element to check that the target system has this
installed or include them as packages in your bootstrapper.

Chapter 15

[409]

Inside ExePackage, we've added a RemotePayload element:

<RemotePayload
 Description="Microsoft SQL Server 2012 Express Edition"
 ProductName="Microsoft SQL Server 2012 Express Edition"
 Version="11.0.2100.60"
 Size="138412032"
 Hash="e4561d5caa761a5d1daa0d305f4fecedc6a0d39c" />

This serves as a validation check on the package that is to be downloaded, as
specified by the ExePackage element's DownloadUrl attribute. Description,
ProductName, Version, and Size (in bytes) can often be found on the executable
itself. To get a hash of the file, you may want to use a tool such as Microsoft File
Checksum Integrity Verifier, which can be downloaded at:

http://www.microsoft.com/en-us/download/details.aspx?id=11533.

It's a command-line utility that can create a SHA1 hash for an executable file.

Downloading MsiPackage benefits from a simpler syntax because Burn can extract
more attributes on its own from an MSI package than it can from an EXE package.
The following is an example that downloads the Python installer and runs it:

<MsiPackage
 Id="PYTHON"
 SourceFile="python-2.7.3.msi"
 DownloadUrl=
 "http://www.python.org/ftp/python/2.7.3/python-2.7.3.msi"
 Compressed="no" />

The DownloadUrl attribute serves the same purpose as when used on ExePackage.
It sets the location where the package can be downloaded from. Otherwise, we only
need to specify the SourceFile and Compressed attributes. SourceFile will point
to a local copy of the MSI. Compressed should be set to no, so that the MSI is not
embedded inside the bootstrapper.

If you author your bootstrapper to download packages, what happens if the end
user doesn't have an Internet connection? One option is to pass the /layout flag to
your bundle when an Internet connection is available. Burn adds in this functionality
automatically. The /layout flag downloads the packages and copies them to a local
directory. The end user can then take these files to the computer that doesn't have an
Internet connection and install them. As an example, if this command were run when
a connection was available, it would create a new bootstrapper that could be run
without a connection:

AwesomeBootstrapper.exe /layout "Local Bootstrapper"

Bootstrapping Prerequisites with Burn

[410]

This will copy the bootstrapper to a folder called Local Bootstrapper along with
all packages downloaded and extracted. This is shown in the following screenshot:

Counting package references
Some of the dependencies you install, such as SQL Server, may be used by several
different software bundles. For example, you might have an application that stores
customer records in the database. Later on, another piece of software is installed
that stores log information in that same SQL Server instance. You may not want to
remove it until all interested parties have been uninstalled. For example, uninstalling
the logging piece shouldn't remove the SQL instance because the customer records
software is still using it.

To solve these sorts of dependency issues, Burn provides an element for package
reference counting as part of its DependencyExtension. To use it, first add a
reference in your Burn project to DependenyExtension. Then, update the Wix
element to contain the new namespace, as shown:

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi" xmlns:dep=
 "http://schemas.microsoft.com/wix/DependencyExtension">

Next, add a Provides element inside the ExePackage element—in this case a SQL
Server Express package—that your bundles will share a reference to.

Note that the MsiPackage element does not need to use this
functionality because it already has reference counting built-in.

<ExePackage Id="SQLSERVER"
 SourceFile="SQLEXPR_x64_ENU.exe"
 DetectCondition="SqlInstanceFound"
 InstallCommand="$(var.SqlInstallCommand)"

http://schemas.microsoft.com/wix/2006/wi
http://schemas.microsoft.com/wix/DependencyExtension

Chapter 15

[411]

 UninstallCommand="$(var.SqlUninstallCommand)"
 RepairCommand="$(var.SqlRepairCommand)">

 <dep:Provides Key="SqlServerExpress_TEST"
 Version="11.0.2100.60" />
</ExePackage>

When you install the bundle—let's say in addition to having the SQL Server package,
it also contains an MsiPackage element for the customer records software—a new
entry will be created in the Windows Registry. Look under the HKCR\Installer\
Dependencies key to see the SQL Server package and its dependencies.

Here you can see that we've added the bundle as a dependency to the SQL Server
instance. If you were then to install a different bootstrapper, containing different
Name and UpgradeCode elements—let's say this is our logging software—and add
the same SQL Server ExePackage with the Provides element, you would notice
(in the following screenshot) that the entry in the registry gets another dependency:

Now the SQL Server package has two bundles, the customer records software and
logging software, that are dependent upon it. We can see their bundle IDs listed
below the Dependents node within the SqlServerExpress_TEST key in the registry.

Bootstrapping Prerequisites with Burn

[412]

Uninstalling one of the bundles would not remove the SQL Server instance. It will
only be removed when all software that is dependent on it is uninstalled. Each time
that a dependent bundle is removed, the registry is updated.

It's likely that you will always want to nest a Provides element inside of an
ExePackage element. Otherwise, when you upgrade the bundle, and the old bundle
is removed, you may find that the dependency, such as the SQL Server instance,
is removed unexpectedly. Maintaining a reference count protects you against this
during bundle upgrades.

Rollback boundaries
Let's say you've included three MSIs in your install chain. The user launches the
bootstrapper, the first two MSIs install successfully but the third fails. You may
decide to keep the first two but roll back only the third. By default, all three will roll
back. Use RollbackBoundary elements to create checkpoints past which the install
won't roll back. The following is an example:

<Chain>
 <MsiPackage... />
 <MsiPackage ... />
 <RollbackBoundary />
 <MsiPackage... />
</Chain>

If the third MSI package fails, only it will be rolled back. The first two packages
will remain installed. Another scenario is to roll back a failed install and then skip
past it to the next rollback boundary. In the next example, if the second MSI fails,
it will skip forward to the next RollbackBoundary and continue. The key is to add
the Vital attribute on a RollbackBoundary element, set to no, that precedes the
MsiPackage element:

<Chain>
 <MsiPackage ... />
 <RollbackBoundary Vital="no" />
 <MsiPackage ... />
 <RollbackBoundary />
 <MsiPackage ... />
</Chain>

Chapter 15

[413]

Here, if the second MSI fails, it will roll back to the boundary that preceded it.
Because we've marked it as not vital, it will then skip forward to the next boundary
and continue installing. This is almost equivalent to marking the MsiPackage
element itself as not vital:

<Chain>
 <MsiPackage ... />
 <MsiPackage Vital="no" ... />
 <MsiPackage ... />
</Chain>

The difference is that marking the package as not vital means that if it fails, the
bootstrapper simply continues on. If the MSI rolls itself back that's all fine and good.
However, when a RollbackBoundary element is marked as not vital, Burn explicitly
tries to uninstall the failed packages before skipping ahead to the next boundary.

PackageGroups
To split your package definitions up for more modularity, place them within
PackageGroup elements. You can then reference the group within your Chain element
with PackageGroupRef. The following is an example where we separate the detection
(via RegistrySearch) and installation of SQL Server into its own fragment:

<Bundle Name="Awesome Software Bundle"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 Copyright="(c) All rights reserved."
 UpgradeCode="3601032C-A8C9-4323-88E0-1967A9C2145E">

 <BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense" />

 <Chain>
 <PackageGroupRef Id="SQL_SERVER_2012_EXPRESS"/>
 </Chain>
</Bundle>

<Fragment>
 <util:RegistrySearch
 Id="SqlInstanceFound"
 Root="HKLM"
 Key="SOFTWARE\Microsoft\Microsoft SQL Server\Instance Names\SQL"
 Value="$(var.SqlServerInstance)"
 Result="exists"

Bootstrapping Prerequisites with Burn

[414]

 Variable="SqlInstanceFound" />

 <PackageGroup Id="SQL_SERVER_2012_EXPRESS">
 <ExePackage
 Id="SQLSERVER"
 DownloadUrl="$(var.SqlDownloadUrl)"
 Name="SQLEXPR_x64_ENU.exe"
 Compressed="no"
 DetectCondition="SqlInstanceFound"
 InstallCommand="$(var.SqlInstallCommand)"
 UninstallCommand="$(var.SqlUninstallCommand)"
 RepairCommand="$(var.SqlRepairCommand)">

 <RemotePayload
 Description=
 "Microsoft SQL Server 2012 Express Edition"
 ProductName=
 "Microsoft SQL Server 2012 Express Edition"
 Version="11.0.2100.60"
 Size="138412032"
 Hash="e4561d5caa761a5d1daa0d305f4fecedc6a0d39c" />
 </ExePackage>
 </PackageGroup>
</Fragment>

The PackageGroup element, which I've included in a separate Fragment element,
contains the ExePackage element that installs SQL Server. We can then reference this
package group within our Chain element using the PackageGroupRef element. Its Id
attribute should match the Id attribute on the PackageGroup element.

WixNetFxExtension contains several package groups for installing versions of the
.NET Framework. To include .NET 4, you could reference the NetFx40Web package
group, as shown in the following snippet:

<Chain>
 <PackageGroupRef Id="NetFx40Web"/>
</Chain>

You can also install the .NET Framework 4.5 using NetFx45WebPackageGroup.

Chapter 15

[415]

The Standard Bootstrapper UI
Burn comes with two built-in user interfaces. The main purpose is to display a single
progress bar while the packages within the Chain element are being installed.

If you'd rather show the UI from your MSI package, set the
DisplayInternalUI attribute on the MsiPackage element to "yes".

The first is called WixStandardBootstrapperApplication.RtfLicense and the other
WixStandardBootstrapperApplication.HyperlinkLicense. We will discuss each one
in the following sections.

The RtfLicense user interface
Start off by adding the BootstrapperApplicationRef element to your Burn
markup. The following snippet adds the RtfLicense UI to our bootstrapper:

<Bundle ... >
 <BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense" />

This provides you with a dialog containing an end-user license agreement
that can be customized with your own RTF text file. To customize the text,
reference the BalExtension namespace in your Wix element and then
add a WixStandardBootstrapperApplication element inside of your
BootstrapperApplicationRef. The license is specified with the LicenseFile
attribute:

<Wixxmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:bal="http://schemas.microsoft.com/wix/BalExtension">

<Bundle ... >
<BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense">

 <bal:WixStandardBootstrapperApplication
 LicenseFile="customEula.rtf" />
</BootstrapperApplicationRef>

Bootstrapping Prerequisites with Burn

[416]

While we're at it, we might as well change the logo that's shown on the dialog. The
default image is a PNG 63 x 63 pixels in size. Use the LogoFile attribute to point to a
new image, as shown in the following snippet:

<BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.RtfLicense">

 <bal:WixStandardBootstrapperApplication
 LicenseFile="customEula.rtf"
 LogoFile="customLogo.png" />
</BootstrapperApplicationRef>

Here is the result:

The Options button lets the end user change the targeted install directory.
You can hide this button by setting the SuppressOptionsUI attribute on the
WixStandardBootstrapperApplication element to yes.

The HyperlinkLicense user interface
The HyperlinkLicense UI is similar to RtfLicense except that instead of
referencing a local RTF file for the license agreement and displaying it in a textbox,
it provides a link to it. Set the LicenseUrl attribute to a URL where your license
agreement is hosted. The following is an example:

<BootstrapperApplicationRef
 Id="WixStandardBootstrapperApplication.HyperlinkLicense">

 <bal:WixStandardBootstrapperApplication

Chapter 15

[417]

 LicenseUrl="http://www.mydomain.com/CustomEula.rtf"
 LogoFile="customLogo.png" />
</BootstrapperApplicationRef>

This produces the following result:

It's possible to customize the look of these themes by adding a new THM file to
your project and referencing it with the WixStandardBootstrapperApplication
element's ThemeFile attribute. At the time of this writing there's no way to add, as
an example, a textbox to the UI and set a variable with its value. Burn does provide
a textbox control, called Editbox, but there isn't a way to set a variable with what
the user types into it. To do so, you'd need to alter and recompile BalExtension to
accept the new input. You can, however, make cosmetic changes to the theme.

If you'd like to go down this route, download the WiX source code and copy either
the RtfTheme.xml or HyperlinkTheme.xml from the src\ext\BalExtension\
wixstdba\Resources folder to your project. Set the ThemeFile attribute on the
WixStandardBootstrapperApplication element to point to this new file.

Theme files can have either the .thm or .xml extension. You could use
the ThmViewer utility found in the WiX bin folder to view theme files.
Beware that if there is an error in the theme file's markup or if one of its
dependencies cannot be found, such as a .wxl file, logo image, or RTF
file, then ThmViewer will not display the theme.

Bootstrapping Prerequisites with Burn

[418]

You may then change the attributes of the dialogs such as the size of the window,
background color, or fonts. Refer to the XML schema src\dutil\xsd\thmutil.xsd
for more information about the format of the elements found in the theme file. You'll
find that each window in the theme is defined by a Page element that contains the UI
controls displayed. The following is the markup for the initial Install window found
in RtfLicense:

<Page Name="Install">
<Richedit Name="EulaRichedit" X="11" Y="80" Width="-11" Height="-70"
TabStop="yes" FontId="0" HexStyle="0x800000" />

<Checkbox Name="EulaAcceptCheckbox" X="-11" Y="-41" Width="260"
Height="17" TabStop="yes" FontId="3" HideWhenDisabled="yes">#(loc.
InstallAcceptCheckbox)</Checkbox>

<Button Name="OptionsButton" X="-171" Y="-11" Width="75"
Height="23" TabStop="yes" FontId="0" HideWhenDisabled="yes">#(loc.
InstallOptionsButton)</Button>

<Button Name="InstallButton" X="-91" Y="-11" Width="75" Height="23"
TabStop="yes" FontId="0">#(loc.InstallInstallButton)</Button>

<Button Name="WelcomeCancelButton" X="-11" Y="-11" Width="75"
Height="23" TabStop="yes" FontId="0">#(loc.InstallCloseButton)</
Button>
</Page>

As you can see, a Richedit control is used to show the EULA and a Checkbox
control allows the user to accept the license terms. You might change the size of
these elements or their position on the dialog.

Summary
In this chapter, we discussed the structure of the bootstrapper bundle and how
to chain different types of installers into it. We touched on how to download
packages from the Internet, slipstream patches, and control rollback behavior
and command-line flags passed to the installers.

In the next chapter, we will discover how to fully customize the Burn install wizard
via a custom WPF user interface. This will allow you to collect new user input and
add dialogs.

Customizing the Burn UI
In the last chapter, we learned that for many bootstrapping tasks the standard
user interfaces, RtfLicense and HyperlinkLicense, will be more than adequate.
However, we are limited on how much we can customize the design and workflow
of these dialogs. We're also limited in that the standard UIs do not allow us to collect
information from the end user and store them in Burn variables.

In this chapter, we will build our own user interface using Windows Presentation
Foundation (WPF) and C#. We will cover the following topics:

• The extension points offered by Burn and how to hook into them
• How to organize our code using the MVVM pattern
• Events to handle when communicating with the Burn engine
• Collecting user input and storing it in Burn variables

Burn extension points
When you install the WiX toolset, you are given an assembly called
BootstrapperCore.dll. You'll find it in the WiX SDK directory, which, on my
computer, is located at C:\Program Files (x86)\WiX Toolset v3.6\SDK. This
library is all we need to plug a new user interface into the Burn engine. It contains
base classes for us to override in our own code, events to hook into, and methods
that allow us to control the bootstrapper.

Customizing the Burn UI

[420]

In this chapter, we will build a UI using WPF and C#. WPF uses an XML markup
called XAML for designing its interface. This allows designers to work on the layout
of the window while developers work on the C# business logic separately. WPF
has a number of other benefits including strong support for data binding, reusable
styles, and a variety of containers for organizing UI controls. That's not to say this is
our only option. We could use Windows Forms or unmanaged code if we chose to.
However, WiX's own installer is written with WPF and offers a good example for
how to proceed. If you want more examples, I highly recommend downloading the
WiX source code and looking at the WiX setup. It can be found in the src\Setup\
WixBA folder.

The UI we will build won't be fancy. Nor will it be as sophisticated as the WiX
installer. As a basic example, it will simply be able to install the packages that are
in our bundle's chain, uninstall those packages, and cancel either of those two
operations. In the end, here's what it will look like:

Creating the class library
So how do we begin to extend the Burn UI? In short, we will build a C# class library
(.dll) that references BootstrapperCore.dll. Our class library will then be
referenced within our bootstrapper markup. When the bootstrapper starts up, it will
have been configured to use this assembly. Our assembly will have WPF code inside
of it, ready to show a window as it simultaneously drives forward the Burn engine.
Clicking a button on our UI will call methods provided by BootstrapperCore.
Simple, right? Let's dive into it.

Create a new C# Class Library project in Visual Studio and name it CustomBA. Once
you have it, add a reference to BootstrapperCore.dll, which can be found in the WiX
SDK directory. To use WPF, we'll also need to reference the following .NET assemblies:

• PresentationCore

• PresentationFramework

Chapter 16

[421]

• System.Xaml

• WindowsBase

We'll be using the Model-View-ViewModel (MVVM) pattern to organize the code.
This will allow us to keep our UI and backend layers decoupled, and usually results in
cleaner markup and code. MVVM is a design pattern for decoupling the presentation
and business logic of a Windows application that has become popular with the WPF
crowd. In a large part, this has to do with WPF being so well-suited for it.

When it comes to implementing the MVVM pattern, there are several libraries
available that make it easy. I like to use Prism because it adds several convenient
classes such as DelegateCommand, a class that allows you to bind events such as
mouse clicks to handler functions that aren't in the code-behind class. You can either
download it from http://compositewpf.codeplex.com or, easier in my opinion,
install it via NuGet. NuGet is a package manager for Visual Studio. It comes built
into Visual Studio 2012, but can be downloaded from Codeplex, http://nuget.
codeplex.com, for Visual Studio 2010. Once you've got it, the NuGet command for
installing Prism is simply:

Install-Package Prism

The most important assembly you'll need from this library is Microsoft.
Practices.Prism. This contains the classes, such as DelegateCommand, that we will
use in this chapter. If you're using NuGet, all necessary references will be added to
your project.

Next, to pave the way for a well-organized project, create three subfolders: Models,
ViewModels, and Views. This folder structure will help keep us sane as we add
additional files. We also need to add the XML configuration file that will tell Burn
to use our new assembly. It must be called BootstrapperCore.config and you
can copy an existing version of it from the WiX SDK folder to your project. Be sure to
change its properties in Visual Studio so that the Copy to Output Directory setting is
set to Copy if newer. Open it and replace the host element's assemblyName attribute
with the name of our assembly, CustomBA. The following is what it should look like:

<configuration>
 <configSections>
 <sectionGroup name="wix.bootstrapper" type="Microsoft.
Tools.WindowsInstallerXml.Bootstrapper.BootstrapperSectionGroup,
BootstrapperCore">
 <section name="host" type="Microsoft.Tools.
WindowsInstallerXml.Bootstrapper.HostSection, BootstrapperCore" />
 </sectionGroup>
 </configSections>
 <startup useLegacyV2RuntimeActivationPolicy="true">

Customizing the Burn UI

[422]

 <supportedRuntime version="v4.0" />
 <supportedRuntime version="v2.0.50727" />
 </startup>
 <wix.bootstrapper>
 <host assemblyName="CustomBA" />
 </wix.bootstrapper>
</configuration>

Our CustomBA.dll, BootstrapperCore.config, and Microsoft.Practices.
Prism.dll class libraries will eventually need to be copied to our bootstrapper
project so that they can be referenced and embedded within the executable. We'll
cover that in more detail further on in the chapter.

The last part of our setup is to add an attribute called
BootstrapperApplicationAttribute to the Properties\AssemblyInfo.cs file:

using CustomBA;
using Microsoft.Tools.WindowsInstallerXml.Bootstrapper;

[assembly: BootstrapperApplication(
 typeof(CustomBootstrapperApplication))]

This identifies the class in our assembly that extends the BootstrapperApplication
class. Burn looks for this class and automatically calls its Run method. That will be
our jumping-on point into the Burn process. In the next section, we will define this
CustomBootstrapperApplication class.

Extending the BootstrapperApplication
class
The first class we'll add to our project will provide the bridge between
our code and the Burn engine. Add a new C# class file and name it
CustomBootstrapperApplication. It should extend the BootstrapperApplication
class from the Microsoft.Tools.WindowsInstallerXml.Bootstrapper
namespace. Add the following code:

using CustomBA.Models;
using CustomBA.ViewModels;
using CustomBA.Views;
using Microsoft.Tools.WindowsInstallerXml.Bootstrapper;
using System;
using System.Windows.Threading;

namespace CustomBA

Chapter 16

[423]

{
 public class CustomBootstrapperApplication :
 BootstrapperApplication
 {
 public static Dispatcher Dispatcher { get; set; }

 protected override void Run()
 {
 Dispatcher = Dispatcher.CurrentDispatcher;

 var model = new BootstrapperApplicationModel(this);
 var viewModel = new InstallViewModel(model);
 var view = new InstallView(viewModel);

 model.SetWindowHandle(view);

 this.Engine.Detect();

 view.Show();
 Dispatcher.Run();
 this.Engine.Quit(model.FinalResult);
 }
 }
}

We're using a few classes, such as InstallViewModel, which will
process commands triggered by the view and pass data to the model, and
BootstrapperApplicationModel, which will wrap the calls to the Burn engine, that
we haven't defined yet. Don't worry; we'll get to those soon.

The first thing we do is override the Run method. This is our UI's primary entry
point. It will be called by the Burn engine. Within this method, we instantiate a new
Dispatcher object and store it in a static property. A Dispatcher object provides
a means for sending messages between the UI thread and any backend threads.
It provides a handy Invoke method that we can use to update the state of our UI
controls. Without it, the UI thread would ignore our attempts to interact with it from
another thread.

Next we create model, viewmodel, and view objects. The purpose of the model is to
encapsulate some of the calls to the bootstrapper. It's essentially a wrapper, further
separating the UI logic from the bootstrapper logic. The viewmodel gets data from
and calls methods on the model while also responding to events triggered by the
view. It's the workhorse of the three, acting as the middleman. Up last is the view.
It is mostly written in XAML and contains the structure of the visible window
displayed to the user.

Customizing the Burn UI

[424]

The MVVM pattern provides mechanisms such as commands and data binding for
handling communication between the layers in a decoupled way. In this chapter,
the intended design is for the viewmodel to have knowledge of the model, but not
vice versa. Furthermore, the viewmodel should not have any direct knowledge to
the view object. Similarly, the view object's only tie to viewmodel will come through
data binding. You can see that we've reinforced this design by passing an instance of
the model object into the viewmodel object's constructor and then viewmodel into
the view object's constructor:

var model = new BootstrapperApplicationModel(this);
var viewModel = new InstallViewModel(model);
var view = new InstallView(viewModel);

An improved design would use interfaces or abstract classes to further decouple
the objects that are being passed around from their implementation. To keep things
simple I am using the objects directly.

The next thing we do is pass the view into a helper method we've yet to define
called SetWindowHandle. This goes against the grain of our MVVM design, but is
a necessary evil dictated by the BootstrapperCore library. This method will get a
handle to the WPF window, which is needed by the Burn engine when performing
the install or uninstall.

model.SetWindowHandle(view);

Next, we start the ball rolling by calling the Detect method:

this.Engine.Detect();

This gives Burn the go-ahead to check if our bundle is already installed. That way,
when our window is shown, we'll know whether we need to present an Install
button or an Uninstall button. Note that we are calling this after instantiating our
view, viewmodel, and model objects. That's because the viewmodel needs to set
up some event handlers and if we fire Detect too quickly, it will miss the boat.
Specifically, it will miss the event handler that fires when Detect is complete.

The last thing we do is call Show on the view to display the WPF window. Immediately
afterward we call Dispatcher.Run(), which halts execution of this method at that line
until the Dispatcher is shut down. In the meantime, the Dispatcher object will loop
in place, waiting for messages and providing methods for communicating with the UI
thread—which is the current thread. Calling Dispatcher.Run() prevents our own Run
method from exiting prematurely, which would terminate our process:

view.Show();
Dispatcher.Run();
this.Engine.Quit(model.FinalResult);

Chapter 16

[425]

When we decide to shut down the window, we'll call InvokeShutdown on the
Dispatcher object, causing our Run method to continue its execution. At that
point, Engine.Quit will be called with whatever status code we've collected at
that point (be it an error code or a success code) and gracefully wind down the
bootstrapping process.

Defining the model
Our model class is going to be fairly small. Its main purpose will be to encapsulate
calls to the bootstrapper so as to present a simplified API to the viewmodel. Add a
new C# class file to the Models folder and name it BootstrapperApplicationModel.
Update it with the following code:

using Microsoft.Tools.WindowsInstallerXml.Bootstrapper;
using System;
using System.Windows;
using System.Windows.Interop;

namespace CustomBA.Models
{
 public class BootstrapperApplicationModel
 {
 private IntPtr hwnd;

 public BootstrapperApplicationModel(
 BootstrapperApplication bootstrapperApplication)
 {
 this.BootstrapperApplication =
 bootstrapperApplication;
 this.hwnd = IntPtr.Zero;
 }

 public BootstrapperApplication BootstrapperApplication { get;
private set; }

 public int FinalResult { get; set; }

 public void SetWindowHandle(Window view)
 {
 this.hwnd = new WindowInteropHelper(view).Handle;
 }

 public void PlanAction(LaunchAction action)
 {

Customizing the Burn UI

[426]

 this.BootstrapperApplication.Engine.Plan(action);
 }

 public void ApplyAction()
 {
 this.BootstrapperApplication.Engine.Apply(this.hwnd);
 }

 public void LogMessage(string message)
 {
 this.BootstrapperApplication.Engine.Log(
 LogLevel.Standard,
 message);
 }
 }
}

The constructor of this class expects a parameter of type BootstrapperApplication.
As you saw earlier, we are passing our CustomBootstrapperApplication class in
here. Several of the methods in this model, such as PlanAction, ApplyAction, and
LogMessage only serve to wrap calls to this object:

public BootstrapperApplicationModel(
 BootstrapperApplication bootstrapperApplication)
{
 this.BootstrapperApplication = bootstrapperApplication;
 this.hwnd = IntPtr.Zero;
}

Also in the constructor, we are initializing the pointer to our WPF window,
which will be needed by the ApplyAction method. The true pointer is set when
SetWindowHandle is called by the CustomBootstrapperApplication class in its Run
method. For now, we only set it to zero.

Quick descriptions of PlanAction and ApplyAction are that the former is given a
task to prepare for, such as installation, uninstallation, repair, or modify, and the
latter executes that task.

public void PlanAction(LaunchAction action)
{
 this.BootstrapperApplication.Engine.Plan(action);
}

public void ApplyAction()
{
 this.BootstrapperApplication.Engine.Apply(this.hwnd);
}

Chapter 16

[427]

Therefore, the usual workflow is that when a button is clicked on the UI, we call
PlanAction, passing in the task that we want to execute. Once planning has
completed, we invoke ApplyAction. Plan and Apply, along with Detect, are among
the most important events you'll interact with.

Another method that we're defining is a helper for appending messages to the
bootstrapper's log, which can be found in the %TEMP% directory.

public void LogMessage(string message)
{
 this.BootstrapperApplication.Engine.Log(
 LogLevel.Standard,
 message);
}

A final point of interest is the FinalResult property. We will use this to store the
exit status code that the Burn engine returns after the bootstrapper has finished.

public int FinalResult { get; set; }

This status code will be passed to the Engine.Quit(model.FinalResult) method
at the end of the Run method in our CustomBootstrapperApplication class. As we
saw earlier, this will be used to finalize the installation and end the process.

Implementing the viewmodel
Now let's move on to viewmodel. Add a new C# class file to the ViewModels folder
and name it InstallViewModel. Add the following code:

using CustomBA.Models;
using Microsoft.Practices.Prism.Commands;
using Microsoft.Practices.Prism.ViewModel;
using Microsoft.Tools.WindowsInstallerXml.Bootstrapper;
using System;
using System.Windows.Input;

namespace CustomBA.ViewModels
{
 public class InstallViewModel : NotificationObject
 {
 public enum InstallState
 {
 Initializing,
 Present,
 NotPresent,

Customizing the Burn UI

[428]

 Applying,
 Cancelled
 }

 private InstallState state;
 private string message;

 private BootstrapperApplicationModel model;

 public ICommand InstallCommand { get; private set; }

 public ICommand UninstallCommand { get; private set; }

 public ICommand CancelCommand { get; private set; }

 public string Message
 {
 get
 {
 return this.message;
 }
 set
 {
 if (this.message != value)
 {
 this.message = value;
 this.RaisePropertyChanged(() => this.Message);
 }
 }
 }

 public InstallState State
 {
 get
 {
 return this.state;
 }
 set
 {
 if (this.state != value)
 {
 this.state = value;
 this.Message = this.state.ToString();
 this.RaisePropertyChanged(() => this.State);

Chapter 16

[429]

 this.Refresh();
 }
 }
 }

 public InstallViewModel(
 BootstrapperApplicationModel model)
 {
 this.model = model;
 this.State = InstallState.Initializing;

 this.WireUpEventHandlers();

 this.InstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Install),
 () => this.State == InstallState.NotPresent);

 this.UninstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Uninstall),
 () => this.State == InstallState.Present);

 this.CancelCommand = new DelegateCommand(() =>
 {
 this.model.LogMessage("Cancelling...");
 if (this.State == InstallState.Applying)
 {
 this.State = InstallState.Cancelled;
 }
 else
 {
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
 }
 }, () => this.State != InstallState.Cancelled);
 }

 protected void DetectPackageComplete(
 object sender,
 DetectPackageCompleteEventArgs e)
 {
 if (e.PackageId.Equals(
 "MyInstaller.msi", StringComparison.Ordinal))
 {
 this.State = e.State == PackageState.Present ?

Customizing the Burn UI

[430]

 InstallState.Present : InstallState.NotPresent;
 }
 }

 protected void PlanComplete(
 object sender, PlanCompleteEventArgs e)
 {
 if (this.State == InstallState.Cancelled)
 {
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
 return;
 }

 this.model.ApplyAction();
 }

 protected void ApplyBegin(
 object sender, ApplyBeginEventArgs e)
 {
 this.State = InstallState.Applying;
 }

 protected void ExecutePackageBegin(
 object sender, ExecutePackageBeginEventArgs e)
 {
 if (this.State == InstallState.Cancelled)
 {
 e.Result = Result.Cancel;
 }
 }

 protected void ExecutePackageComplete(
 object sender, ExecutePackageCompleteEventArgs e)
 {
 if (this.State == InstallState.Cancelled)
 {
 e.Result = Result.Cancel;
 }
 }

 protected void ApplyComplete(
 object sender, ApplyCompleteEventArgs e)
 {

Chapter 16

[431]

 this.model.FinalResult = e.Status;
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
 }

 private void Refresh()
 {
 CustomBootstrapperApplication.Dispatcher.Invoke(
 (Action)(() =>
 {
 ((DelegateCommand)this.InstallCommand)
 .RaiseCanExecuteChanged();
 ((DelegateCommand)this.UninstallCommand)
 .RaiseCanExecuteChanged();
 ((DelegateCommand)this.CancelCommand)
 .RaiseCanExecuteChanged();
 }));
 }

 private void WireUpEventHandlers()
 {
 this.model.BootstrapperApplication.DetectPackageComplete
+= this.DetectPackageComplete;
 this.model.BootstrapperApplication.PlanComplete += this.
PlanComplete;
 this.model.BootstrapperApplication.ApplyComplete += this.
ApplyComplete;

 this.model.BootstrapperApplication.ApplyBegin += this.
ApplyBegin;

 this.model.BootstrapperApplication.ExecutePackageBegin +=
this.ExecutePackageBegin;
 this.model.BootstrapperApplication.ExecutePackageComplete
+= this.ExecutePackageComplete;
 }
 }
}

There's quite a bit happening here so let's take it one piece at a time. Within the next
few sections we will dissect this class into logic parts.

Customizing the Burn UI

[432]

Declaring the properties and fields
The InstallViewModel class extends a base class called NotificationObject.
This is a helper class from the Prism library that facilitates notifying the view
when a property is updated in the viewmodel. Within the class we define an
enum named InstallState.

public class InstallViewModel : NotificationObject
{
 public enum InstallState
 {
 Initializing,
 Present,
 NotPresent,
 Applying,
 Cancelled
 }

This will track which phase of the bootstrapping process we are in so that we can
enable and disable buttons as appropriate. It will also allow us to track whether the
user has canceled the install. If they have, and we're already installing—otherwise
known as Applying—we will know to not immediately shut down the process, but
rather send a flag to the bootstrapper so that it can roll back any installed packages.
If, on the other hand, we have not begun the Apply phase, it is safe to shut down the
bootstrapper immediately.

We then define three private fields:

private InstallState state;
private string message;
private BootstrapperApplicationModel model;

The first, state, is used to hold the current status of the installation, utilizing the
enumeration that we just defined. The second is called message and stores text that
we want to display on the WPF window. The last one is a reference to our model
class and is simply called model.

Next we set up properties of type ICommand. The view will bind to these so that
when a button is clicked, one of these commands will be executed. We will define
them later on in this class' constructor.

public ICommand InstallCommand { get; private set; }

public ICommand UninstallCommand { get; private set; }

public ICommand CancelCommand { get; private set; }

Chapter 16

[433]

Next we set up two more properties: Message and State. These are the publicly
accessible versions of the message and state fields we defined before. We make
them public so that the view can bind to them as shown in the following snippet:

public string Message
{
 get
 {
 return this.message;
 }
 set
 {
 if (this.message != value)
 {
 this.message = value;
 this.RaisePropertyChanged(() => this.Message);
 }
 }
}

public InstallState State
{
 get
 {
 return this.state;
 }
 set
 {
 if (this.state != value)
 {
 this.state = value;
 this.Message = "Status: " +
 this.state.ToString();

 this.RaisePropertyChanged(() => this.State);
 this.Refresh();
 }
 }
}

Customizing the Burn UI

[434]

Each property checks that it's being set to something different than what it's already
set to before performing the update. That way, we save some processing power if the
change isn't needed. To notify the view that the property has been changed, we call
the RaisePropertyChanged method, passing in a lambda expression that identifies
the property.

The State property also calls a private method called Refresh that will enable
or disable our UI's buttons depending on InstalledState. We will describe that
method later in the chapter. Also note that the State property sets the Message
property to a stringified version of itself. I do this just to show something changing
on the view as we progress through the phases.

Defining the constructor
Our viewmodel's constructor looks like this:

public InstallViewModel(BootstrapperApplicationModel model)
{
 this.model = model;
 this.State = InstallState.Initializing;

 this.WireUpEventHandlers();

 this.InstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Install),
 () => this.State == InstallState.NotPresent);

 this.UninstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Uninstall),
 () => this.State == InstallState.Present);

 this.CancelCommand = new DelegateCommand(() =>
 {
 this.model.LogMessage("Cancelling...");
 if (this.State == InstallState.Applying)
 {
 this.State = InstallState.Cancelled;
 }
 else
 {
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
 }
 },
 () => this.State != InstallState.Cancelled);
}

Chapter 16

[435]

Our constructor accepts an instance of BootstrapperApplicationModel, our model
class, in its list of parameters. We store this in the instance variable model. We'll be
able to use it to call any of the model's methods.

Next, we set the initial value of the State property to Initializing and then call a
helper method called WireUpEventHandlers. As you'll see, this method associates
event handlers with the events that are fired by the bootstrapper.

We then move on to initializing our command objects. We are using the
DelegateCommand class, which comes from the Prism library. The first parameter
to DelegateCommand is an anonymous method to invoke when the command is
executed. The second parameter is another anonymous method that returns a
Boolean value that signifies whether the command, and all UI controls that are
bound to it, should be enabled. In each case, we are basing this check on the current
value of the State property.

Taking a closer look, InstallCommand and UninstallCommand call the model's
PlanAction method when they are executed. As you'll remember, by passing the
type of action we want to perform to PlanAction, we initiate the bootstrapper's
workflow, to be completed later when ApplyAction is called.

When CancelCommand is executed, we either shut the UI and bootstrapper down
immediately, via the Dispatcher.InvokeShutdown method or, if changes are
already being applied, we set State to Cancelled so that other event handlers
down the line can gracefully wind down the process.

Setting up the event handlers
Next, we'll examine the event handlers. First up is the DetectPackageComplete
method. You'll see later on that we wire up these events handlers in a helper method
called WireUpEventHandlers.

protected void DetectPackageComplete(
 object sender,
 DetectPackageCompleteEventArgs e)
{
 if (e.PackageId.Equals(
 "MyInstaller.msi",
 StringComparison.Ordinal))
 {
 this.State = e.State == PackageState.Present ?
 InstallState.Present : InstallState.NotPresent;
 }
}

Customizing the Burn UI

[436]

This method is called when the Detect method that we called in the
CustomBootstrapperApplication class' Run method completes. We begin by
checking the DetectPackageCompleteEventArgs object to see if the package that
was detected was an installer called MyInstaller.msi. You would substitute
this with the name of your own software's installer. If it finds a match, we then
check whether that package is currently installed on the end user's computer via
the PackageState enumeration. If it is Present, we set the State property to
InstallState.Present, otherwise it is set to InstallState.NotPresent.

The Present/NotPresent value will be used by the InstallCommand and
UninstallComand properties to enable or disable the UI controls that are bound
to them. If it isn't present, we enable the Install button. Otherwise, we enable the
Uninstall button. A quick glance back at those two commands shows this to be
the case:

this.InstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Install),
 () => this.State == InstallState.NotPresent);

this.UninstallCommand = new DelegateCommand(() =>
 this.model.PlanAction(LaunchAction.Uninstall),
 () => this.State == InstallState.Present);

Remember that after we've called PlanAction to kick off the installation or
uninstallation and planning has completed, we then want to trigger ApplyAction.
This hand off is performed in the PlanComplete event handler. Additionally, if the
user has canceled the install—and at this stage we haven't applied any changes to
the computer—we are free to simply call InvokeShutdown on the Dispatcher object,
essentially stopping before we've even begun:

protected void PlanComplete(
 object sender,
 PlanCompleteEventArgs e)
{
 if (this.State == InstallState.Cancelled)
 {
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
 return;
 }

 this.model.ApplyAction();
}

Chapter 16

[437]

The ApplyBegin method is very simple. It sets the State property to Applying once
the Apply phase has begun, as illustrated in the following snippet:

protected void ApplyBegin(
 object sender,
 ApplyBeginEventArgs e)
{
 this.State = InstallState.Applying;
}

The next two methods, ExecutePackageBegin and ExecutePackageComplete, are
triggered before and after each package in the chain is installed or uninstalled. They
provide excellent hooks for us to check for the Cancelled state:

protected void ExecutePackageBegin(
 object sender,
 ExecutePackageBeginEventArgs e)
{
 if (this.State == InstallState.Cancelled)
 {
 e.Result = Result.Cancel;
 }
}

protected void ExecutePackageComplete(
 object sender,
 ExecutePackageCompleteEventArgs e)
{
 if (this.State == InstallState.Cancelled)
 {
 e.Result = Result.Cancel;
 }
}

If we find that the bootstrapper has been canceled, we set the Result property
on EventArgs to Result.Cancel. This will inform Burn that it should roll back
any packages that have been installed up to that point. This is a graceful way of
handling a cancelation, rather than shutting down the process outright.

The last event hander is ApplyComplete. It's called, as you might have guessed,
when the installation is fully complete and the planned action has been applied. At
this point, we store the bootstrapper's final status code in the FinalResult property
and call InvokeShutdown on the Dispatcher object:

protected void ApplyComplete(
 object sender, ApplyCompleteEventArgs e)

Customizing the Burn UI

[438]

{
 this.model.FinalResult = e.Status;
 CustomBootstrapperApplication.Dispatcher
 .InvokeShutdown();
}

Helper methods
The remainder of the InstallViewModel class includes private helper methods:

private void Refresh()
{
 CustomBootstrapperApplication.Dispatcher.Invoke(
 (Action)(() =>
 {
 ((DelegateCommand)this.InstallCommand)
 .RaiseCanExecuteChanged();

 ((DelegateCommand)this.UninstallCommand)
 .RaiseCanExecuteChanged();

 ((DelegateCommand)this.CancelCommand)
 .RaiseCanExecuteChanged();
 }));
}

private void WireUpEventHandlers()
{
 this.model.BootstrapperApplication.DetectPackageComplete +=
 this.DetectPackageComplete;

 this.model.BootstrapperApplication.PlanComplete +=
 this.PlanComplete;

 this.model.BootstrapperApplication.ApplyComplete +=
 this.ApplyComplete;

 this.model.BootstrapperApplication.ApplyBegin +=
 this.ApplyBegin;

 this.model.BootstrapperApplication.ExecutePackageBegin +=
 this.ExecutePackageBegin;

 this.model.BootstrapperApplication.ExecutePackageComplete +=
 this.ExecutePackageComplete;
}

Chapter 16

[439]

The Refresh method calls RaiseCanExecuteChanged on each of the command
properties. This allows the UI to update the enabled/disabled status of buttons
that are bound to these commands. Notice that we've nested these calls inside
Dispatcher.Invoke. We must do this because it's likely that the Refresh method
will be called by a background thread that won't have access to the UI thread. The
Dispatcher ferries messages between the two.

The WireUpEventHandlers method wires our event handling methods to the events
fired by the Burn engine. There are actually quite a few other events that we could
respond to, but this bare-bones set will get us most of what we need.

Marking up the view
The last piece of the puzzle is the WPF window itself, which we are calling, in
MVVM parlance, the view. Add a WPF User Control file called InstallView to
the Views folder. We will need to change the file to use the Window element instead
of the UserControl element. Replace the markup in the InstallView.xaml file with
the following code:

<Window x:Class="CustomBA.Views.InstallView"
 xmlns=
"http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc=
"http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d=
"http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">

 <Window.Resources>
 <Style TargetType="{x:Type Button}">
 <Setter Property="Margin" Value="10" />
 <Setter Property="Height" Value="30" />
 </Style>
 </Window.Resources>

 <Grid>
 <StackPanel>
 <Label Content="{Binding Message}" />

 <Button Command="{Binding InstallCommand}">

Customizing the Burn UI

[440]

 Install</Button>

 <Button Command="{Binding UninstallCommand}">
 Uninstall</Button>

 <Button Command="{Binding CancelCommand}">
 Cancel</Button>
 </StackPanel>
 </Grid>
</Window>

In an attempt to keep things simple, we are only using some basic styles in our
XAML. This is just a bare-bones implementation, but it should give you a good
starting point.

We have added a Label element that is bound to Message. Later, when we set the
DataContext object for the view, this will match up with the Message property on
our InstallViewModel class. That way, when we update that property's text in the
viewmodel logic, it will be redrawn here.

The three buttons are similarly bound to our three command objects. Using Prism's
DelegateCommand class is an improvement over the built-in RoutedCommand, which
would have forced us to associate each command with an event handling method in
the XAML file's code-behind.

Now that we've set up our XAML, let's open the code-behind file, InstallView.
xaml.cs, and add the following code:

using CustomBA.ViewModels;
using System.Windows;

namespace CustomBA.Views
{
 public partial class InstallView : Window
 {
 public InstallView(InstallViewModel viewModel)
 {
 this.InitializeComponent();
 this.DataContext = viewModel;

 this.Closed += (sender, e) =>
 viewModel.CancelCommand.Execute(this);
 }
 }
}

Chapter 16

[441]

We've changed the class' constructor to inherit from the Window class instead of
the UserControl class. We've also added a parameter of type InstallViewModel.
We will use the viewmodel that's passed in as the DataContext object for our
window. That way, the buttons and label in the XAML are bound to a concrete
implementation. A refactoring of this code might have the viewmodel implement
an interface and then change the view to accept that interface for better decoupling
between view and viewmodel.

The last part of the method sets an anonymous method for the window's Closed
event. This will be called if the user closes the window instead of clicking on the
Cancel button. Our method guides the code to execute our CancelCommand. At this
point, we have everything we need to compile our custom user interface and try it
out in a Burn bundle. We'll discuss the steps for doing so in the next section.

Referencing the UI in a Burn bundle
When you compile the CustomBA project you should see the CustomBA.dll, the
Prism library assemblies, and the CoreBootstrapper.config file copied to the
output folder. You could either copy these files to a new bootstrapper project or add
CustomBA as a project reference. Then you'll be able to use preprocessor variables to
reference the files you need in Bundle.wxs.

Create a new project in Visual Studio using the Bootstrapper Project template and call
it MyBootstrapper. Add CustomBA as a project reference. Next, update the markup in
the Bundle.wxs file in the bootstrapper project to contain the following code:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Bundle Name="MyBootstrapper"
 Version="1.0.0.0"
 Manufacturer="WiX Tests"
 UpgradeCode="416b6bbf-2beb-4187-9f83-cdb764db2840">

 <BootstrapperApplicationRef
 Id="ManagedBootstrapperApplicationHost">
 <Payload
 SourceFile="$(var.CustomBA.TargetDir)CustomBA.dll" />
 <Payload SourceFile=
 "$(var.CustomBA.TargetDir)BootstrapperCore.config" />
 <Payload SourceFile=
 "$(var.CustomBA.TargetDir)Microsoft.Practices.Prism.dll" />
 </BootstrapperApplicationRef>

 <WixVariable Id="WixMbaPrereqLicenseUrl" Value=""/>

Customizing the Burn UI

[442]

 <WixVariable Id="WixMbaPrereqPackageId" Value=""/>

 <Chain>
 <MsiPackage SourceFile="Lib\MyInstaller.msi" />
 </Chain>
 </Bundle>
</Wix>

I've added an MsiPackage element inside the Chain element, simply to have
something to install. The important thing about it is that it is named MyInstaller.
msi. Recall that the DetectPackageComplete method in our viewmodel is watching
for a package with this name. So, if you change it here, be sure to change it there too.
The reason for having the viewmodel check for a specific package is that we need
a constant to focus our detection on. The WiX installer does the same thing for its
Wix package.

The bigger focus here is on the BootstrapperApplicationRef element. Setting its
Id attribute to ManagedBootstrapperApplicationHost will pull in prerequisites
such as the BootstrapperCore.dll library. Our own assemblies should be
referenced using Payload elements. The Payload element will embed assemblies
and other types of resources into the bundle. In this example, we are referencing
CustomBA.dll, BootstrapperCore.config, and Microsoft.Practices.Prism.dll.

We must also set two WixVariable elements: WixMbaPrereqLicenseUrl
and WixMbaPrereqPackageId. The reason we need to do this is that the
ManagedBootstrapperApplicationHost expects them. However, we aren't using
them in our WPF application so it's safe to set them to empty strings. Compile the
project and you'll get a bootstrapper executable that, when run, will display our new
user interface.

Passing user input to a bundled MSI
One reason for authoring a new user interface is to collect user information that the
standard Burn UI doesn't enable us to. For example, suppose we wanted to collect a
username? This is actually quite easy. We will use the StringVariables property on
the Engine class. This property is a collection of key-value pairs and can be used to
set a Burn variable.

Chapter 16

[443]

We could start off by adding a new method to our BootstrapperApplicationModel
class called SetBurnVariable. The following is the code:

public void SetBurnVariable(string variableName, string value)
{
 this.BootstrapperApplication.Engine
 .StringVariables[variableName] = value;
}

This method will now accept the name of the variable that we want to set and the
value to set it to. It passes this information to the StringVariables property, which
passes it to the bootstrapper.

To use this we might add a new TextBox control to our view to collect a username.
The following is the markup for a TextBox control:

<WrapPanel>
 <Label VerticalAlignment="Center">Username:</Label>
 <TextBox Text="{Binding Username}"
 Margin="10"
 MinWidth="150" />
</WrapPanel>

We will be binding the TextBox control to a property called Username, which we'll
define on the viewmodel in the following manner:

private string username;
public string Username
{
 get
 {
 return this.username;
 }
 set
 {
 this.username = value;
 this.model.SetBurnVariable("Username", this.username);
 }
}

Customizing the Burn UI

[444]

We see that when the Username property is set, we call SetBurnVariable. Back in
our Burn bundle, we can nest an MsiProperty element inside of an MsiPackage
element, using the Username variable to set a WiX property called USERNAME, shown
as follows:

<Chain>
 <MsiPackage SourceFile="Lib\MyInstaller.msi">
 <MsiProperty Name="USERNAME" Value="[Username]"/>
 </MsiPackage>
</Chain>

We do not need to declare the Username Burn variable in our markup. Setting it
through CustomBA will do the job.

Displaying progress
If you'd like to show a progress bar during the installation, you can handle two
events: CacheAcquireProgress and ExecuteProgress. The former will give you a
percentage completed for caching the packages. The latter will give you a percentage
for packages executed. To get a total progress percentage, we add them both together
and divide by two—if we didn't divide by two we'd end up with a final result of 200
since both events count up to 100.

First, let's add a Label control to our view that displays the percentage as text and
also a ProgressBar control to go with it. Here's the markup to add to our XAML file:

<WrapPanel Margin="10" >
 <Label VerticalAlignment="Center">Progress:</Label>

 <Label Content="{Binding Progress}" />

 <ProgressBar Width="200"
 Height="30"
 Value="{Binding Progress}"
 Minimum="0"
 Maximum="100" />
</WrapPanel>

Our Label and ProgressBar controls are bound to a property called Progress. We'll
define that on our viewmodel in the following manner:

private int progress;

public int Progress
{

Chapter 16

[445]

 get
 {
 return this.progress;
 }
 set
 {
 this.progress = value;
 this.RaisePropertyChanged(() => this.Progress);
 }
}

Next, we'll add event handlers for the CacheAcquireProgress and
ExecuteProgress events. Add fields for storing the two types of progress:

private int cacheProgress;
private int executeProgress;

Add the following code to the viewmodel's constructor:

this.model.BootstrapperApplication.CacheAcquireProgress +=
 (sender, args) =>
{
 this.cacheProgress = args.OverallPercentage;
 this.Progress =
 (this.cacheProgress + this.executeProgress) / 2;
};

this.model.BootstrapperApplication.ExecuteProgress +=
 (sender, args) =>
{
 this.executeProgress = args.OverallPercentage;
 this.Progress =
 (this.cacheProgress + this.executeProgress) / 2;
};

Our new controls will now update themselves during the installation, as shown in
the following screenshot:

Customizing the Burn UI

[446]

Downloading packages
As we saw in the previous chapter, we can download a package from the Internet or
a local network, as in the following example where we use the NetFx40Web package
from WixNetFxExtension to download the .NET Framework:

<Chain>
 <PackageGroupRef Id="NetFx40Web"/>
 <MsiPackage SourceFile="Lib\MyInstaller.msi" />
</Chain>

In order for our custom UI to allow this download to proceed, we must handle the
ResolveSource event. The following is an example that uses an anonymous method
in our viewmodel's constructor:

this.model.BootstrapperApplication.ResolveSource +=
 (sender, args) =>
{
 if (!string.IsNullOrEmpty(args.DownloadSource))
 {
 // Downloadable package found
 args.Result = Result.Download;
 }
 else
 {
 // Not downloadable
 args.Result = Result.Ok;
 }
};

We check if the package has a DownloadSource attribute and if it does, we set the
Result property to Result.Download. This will allow the download to continue.
Otherwise, we set Result to Result.Ok. The WiX Setup takes this a bit further by
trying to download a failed package up to three times before calling it a day and
moving on, setting Result to Result.Ok. It keeps track of which package has failed,
based on ResolveSourceEventArgs.PackageOrContainerId.

Chapter 16

[447]

Collecting command-line arguments
To accept command-line arguments passed to your UI, use the Command.
GetCommandLineArgs method, accessible via the BootstrapperApplication class.
For example, we could add a method to our model class called GetCommandLine,
like so:

public string[] GetCommandLine()
{
 return this.BootstrapperApplication.Command
 .GetCommandLineArgs();
}

Internally, this method will call the GetCommandLineArgs method, which returns
an array of strings. Each index in the array will contain one of the arguments passed
to the bootstrapper. If the user were then to pass an argument called "foo" to our
executable, such as:

MyBootstrapper.exe /foo

Then /foo would be stored in the string array. Note, however, that the Burn engine
intercepts some common command-line arguments and stores them in the Command
object's Action property. We would use the Action property to access these
arguments. For example, if the user passed /?, which is commonly known to be a
request for a help screen, we could discover it like so:

public bool HelpRequested()
{
 return this.BootstrapperApplication.Command.Action ==
 LaunchAction.Help;
}

Our viewmodel might call this method and show a message box if it returns true, as
shown in the following screenshot:

Customizing the Burn UI

[448]

Flags that are intercepted by Burn include the following—each is set to a
LaunchAction value:

Command-line argument LaunchAction value
/layout Layout
/help or /? Help
/uninstall Uninstall
/install or no argument sent Install
/modify Modify
/repair Repair

If you check the Action property, it's up to you to take the appropriate steps to make
the action work.

Summary
In this chapter, we explored how to create a customized user interface to plug into
the Burn engine. We went about it by using WPF and C#. We saw that there are a
number of events published by the bootstrapper that we can handle. There are also
a few methods that we must call, such as Detect, Plan and Apply, to drive the
process forward.

By no means have we covered all of the possibilities available when it comes to
customizing Burn. For more examples, I recommend downloading the WiX source
code and digging through the WiX Setup. Also, post your questions on the WiX Users
mailing list at http://wix.sourceforge.net/mailinglists.html. Hopefully
you've gained enough knowledge to start building your own unique dialogs.

Index
Symbols
^ 199
? 199
@ 199
/? 448
& 199
199
< 85, 106, 199
<< 85, 106
<= 85, 106
<> 85, 106
= 85, 106
> 85, 106, 199
>< 85, 106
>= 85, 106
>> 85, 106
64-bit files

installing 67, 68
-arch flag 251
-bcgg flag 269
-bf flag 265
-b flag 265
-binder flag 265
-cc <path> flag 270
-cg <ComponentGroup> argument 58
-ct <N> flag 270
-cub <file.cub> flag 270
-cultures flag 266
-dcl:level flag 270
-d flag 251, 266
-dr <DirectoryName> argument 58
-dut flag 266
-eav flag 270
-ext flag 251, 266
-fips flag 251

/foo 447
-fv flag 270
-g1 argument 58
-gg argument 58
/help 448
-ice<ICE> flag 271
-I flag 251
/install 448
/layout 448
-loc flag 266
/modify 448
.msp file 357
-nologo flag 252
-notidy flag 267
-o flag 252
-o[ut] flag 267
-pdbout <output.wixpdb> flag 271
-pedantic flag 252, 267
-p flag 252
 PushButton PushButton 189
/repair 448
-reusecab flag 271
-sacl flag 271
-sadmin flag 267
-sadv flag 267
-sa flag 271
-sfdvital flag 252
-sf flag 272
-sfrag argument 58
-sh flag 272
-sice

<ICE> flag 272
-sl flag 272
-sloc flag 267
-sma flag 267
-spdb flag 272

[450]

-srd argument 59
-ss flag 252, 268
-sts flag 268
-sval flag 272
-sw flag 253
-t 338
-trace flag 253
/uninstall 448
-var <VarName> argument 59
-v flag 253
-wx flag 253

A
Account attribute 300
Action attribute 224
ActionData event 231
action state

-1 120
1 120
2 120
3 120
4 120
about 119, 120
absent 119
advertised 119
local 119
numbers 120
source 119
unknown 119

ActionText event 231
AddLocal event 228, 236, 238
AddSource event 228
AdminToolsFolder property 24
AllowRemoval attribute 351
AppDataFolder property 24
Append attribute 71
ApplyBegin method 437
AppSearch

about 62, 90, 125
ComponentSearch 90, 95
DirectorySearch 90, 91
FileSearch 90, 94
IniFileSearch 90, 100
RegistrySearch 90, 97

Arguments attribute 300
ARPAUTHORIZEDCDPREFIX 88

ARPCOMMENTS 88
ARPCONTACT 88
ARPHELPLINK 88
ARPHELPTELEPHONE 88
ARPINSTALLLOCATION 88
ARPINSTALLLOCATION property 133
ARPNOMODIFY 88
ARPNOREMOVE 88
ARPNOREPAIR 88
ARPPRODUCTICON 88
ARPREADME 88
ARPSIZE 88
ARPSYSTEMCOMPONENT 88
ARPURLINFOABOUT 88
ARPURLUPDATEINFO 88
AssignToProperty attribute 91
asyncNoWait 133
asyncWait 133
attributes, File element

Hidden 30
ReadOnly 30
Vital 30

AwesomeCompiler class 365

B
Before attribute 132
Billboard 218-221
Bitmap 195, 196
Blue attribute 168
Bold attribute 169
bootstrapper 385
BootstrapperApplicationAttribute 422
BootstrapperApplication class

extending 422-424
BootstrapperCore.dll 419
Bootstrapper Project template 441

using 386, 387
Build page 47
bundled MSI

user input, passing 442, 443
Bundle element

about 387
describing 387, 388

bundles
Package Cache 397
related bundles, finding 396

[451]

updating 391-395
Burn 55, 385
Burn bundle

UI, referencing 441, 442

C
Cabinet attribute 22
CacheAcquireProgress event 445
Candle 247
Candle.exe

about 247, 248
-arch flag 251
command-line arguments 250
-d flag 251
-ext flag 251
-fips flag 251
-I flag 251
-nologo flag 252
-o flag 252
-pedantic flag 252
-p flag 252
Response files 249
-sfdvital flag 252
-ss flag 252
-sw flag 253
-trace flag 253
-v flag 253
.wixobj files 250
-wx flag 253

Category attribute 372
CDROM attribute 212
Chain element 387-399
ChangePermission attribute 71, 291
check 133
CheckBox 202, 203
CheckExistingTargetPath event 228
CheckTargetPath event 228
cited properties

about 88
ARPAUTHORIZEDCDPREFIX 88
ARPCOMMENTS 88
ARPCONTACT 88
ARPHELPLINK 88
ARPHELPTELEPHONE 88
ARPINSTALLLOCATION 88
ARPNOMODIFY 88

ARPNOREMOVE 88
ARPNOREPAIR 88
ARPPRODUCTICON 88
ARPREADME 88
ARPSIZE 88
ARPSYSTEMCOMPONENT 88
ARPURLINFOABOUT 88
ARPURLUPDATEINFO 88

Classification 351
class library (.dll)

creating 420-422
CLR 271
code page 322
ComboBox 205, 206
command-line arguments

/? 448
collecting 447, 448
/help 448
/install 448
/layout 448
/modify 448
/repair 448
/uninstall 448

command-line arguments(binding)
-bcgg flag 269
-cc <path> flag 270
-ct <N> flag 270
-cub <file.cub> flag 270
-dcl:level flag 270
-eav flag 270
-fv flag 270
-ice<ICE> flag 271
-pdbout <output.wixpdb> flag 271
-reusecab flag 271
-sacl flag 271
-sa flag 271
-sf flag 272
-sh flag 272
-sice

<ICE> flag 272
-sl flag 272
-spdb flag 272
-sval flag 272

command-line arguments(linking)
-bf flag 265
-b flag 265
-binder flag 265

[452]

-cultures flag 266
-d flag 266
-dut flag 266
-ext flag 266
-loc flag 266
-nologo 266
-notidy flag 267
-o[ut] flag 267
-pedantic flag 267
-sadmin flag 267
-sadv flag 267
-sloc flag 267
-sma flag 267
-ss flag 268
-sts flag 268
-sui flag 268
-sv flag 268
-sw[N] flag 268
-usf <output.xml> flag 269
v flag 269
-wx[N] flag 269
-xo flag 269

Comments attribute 352
CommonAppDataFolder property 24
CommonFiles64Folder property 24
CommonFilesFolder property 24
Common Language Runtime. See CLR
compile-time variables

about 253
custom compiler variables 253, 254
environment variables 254
system variables 255

component condition 116-118
Component database 42
ComponentGroup element 49, 51
components 26
ComponentSearch 95, 97
conditional statements

errors 258
ifdef 256
if...elseif...else 255
ifndef 256
Iterations 257, 258
warning 258

conditions
adding, to custom actions 146
component conditions 106

feature conditions 106
launch conditions 106
syntax 106
types 105

control attributes 187, 189
control event 190
control syntax

about 189
Billboard 218-221
Bitmap 195, 196
CheckBox 202, 203
ComboBox 205, 206
DirectoryCombo 211, 212
DirectoryList 208-210
Edit 197-199
GroupBox 195
Icon 197
Line 194
ListBox 206, 207
ListView 207, 208
MaskedEdit 199, 200
PathEdit 201, 202
ProgressBar 222-226
PushButton 189-191
RadioButtonGroup 203, 204
ScrollableText 193, 194
SelectionTree 212-214
Text 192, 193
VolumeCostList 215, 216
VolumeSelectCombo 216-218

CopyFile element 64
CostFinalize 119, 126
costing 119
CostInitialize 125
CreateFolder element 69
CreateLink attribute 291
CreateRow method 369
CreateShortcuts action 129
CreateSubkeys attribute 291
CustomActionData property 144
custom actions

about 131-133
conditions, adding 146
embedded VBScript or JScript, running

135, 136
Error attribute, using 142
executable file, triggering 140, 141

[453]

external VBScript or JScript file, calling 137
function calling, from dynamic-link library

138-140
installed directory location, setting 135
typing, to custom element 376-383
Windows Installer property, setting 133

CustomBootstrapperApplication class 426
custom properties

about 77
declaring 78, 79
property data types 84-86
referencing 79, 80
scope 80, 81
secure properties 82, 83
setting 78, 79
visibility 80, 81

custom WiX extension
building 359, 360
custom elements, parsing 365-369
extending 360-362
new MSI table, creating 370-372
stage, setting 360
WixExtension class, extending 372-374
XML schema, adding 362-365

D
deferred action

properties, accessing 144-146
deferred stage 130, 221
DelegateCommand class 421, 435
Delete attribute 71, 291
DependencyExtension 410
DeploymentToolsFoundation. See DTF
Description attribute 33, 300, 352
DesktopFolder property 24
DestinationProperty attribute 62
Detect method 436
DetectPackageComplete method 435
Dialog attribute 166
directories 87
DirectoryCombo 211, 212
Directory element 25
DirectoryList 208-210
DirectoryListNew event 228
DirectoryListOpen event 228

Directory property
AdminToolsFolder 24
AppDataFolder 24
CommonAppDataFolder 24
CommonFiles64Folder 24
CommonFilesFolder 24
DesktopFolder 24
FavoritesFolder 24
FontsFolder 24
LocalAppDataFolder 24
MyPicturesFolder 24
NetHoodFolder 24
PersonalFolder 24
PrintHoodFolder 24
ProgramFiles64Folder 24
ProgramFilesFolder 24
ProgramMenuFolder 24
RecentFolder 24
SendToFolder 24
StartMenuFolder 24
StartupFolder 24
System16Folder 24
System64Folder 24
SystemFolder 24
TempFolder 24
TemplateFolder 24
WindowsFolder 24

DirectoryRef element 48
DirectorySearch 91-94
DisableSystemRestore attribute 399
Dispatcher.InvokeShutdown method 435
Dispatcher.Run() 424
DisplayInternalUI attribute 415
DoAction event 228, 233
DownloadUrl attribute 409
DTF

about 139, 147
component states, accessing 150
feature, accessing 150
logging 148
message box, showing 149, 150
MSI database, querying 151
properties, getting 148
properties, setting 148
rows, inserting into MSI database 151, 153
session object 147

DWORD 281

[454]

E
Edit 197-199
EmbedCab attribute 21
empty folder

creating 69
EnableRollback event 228
EndDialog event 170, 174, 228, 234
end-user license agreement. See EULA
EnumerateSubkeys attribute 291
en-us.wxl file 335
eral Information Processing Standards

Publications. See FIPS
Error dialog 179
EULA 332
ExeCommand attribute 141
ExecuteAction 126
Execute attribute 71
ExecuteScalar method 151
ExePackage element 402-405
Exit dialog 183, 184
extension

about 109
using, in WiX project 374-376

F
FaceName attribute 169
FatalError 181
FavoritesFolder property 24
feature 30
feature condition 113-116
feature tree 30
FileCost 115, 126
File element 45, 47
file installations

speeding up 74, 75
FileKey attribute 141
file permissions

setting 70-73
files

copying, for installation 61, 62
existing files, copying 63
existing files, moving 64
harvesting, heat.exe used 55-60

FilesInUse dialog 177
FilesInUseDlg.wxs file 177

File table 74
FinalResult property 427, 437
FindRelatedProducts 125
FIPS 251
Fixed attribute 212
Floppy attribute 212
FontsFolder property 24
ForceCreateOnInstall attribute 285
Formats tab 339
Fragment element 51-55

G
GAC 65
GenericAll attribute 71, 291
GenericExecute attribute 71, 291
GenericRead attribute 71, 291
GenericWrite attribute 71, 291
GetCommandLineArgs method 447
GetVariableValue method 260
Global Assembly Cache. See GAC
Globally Unique Identifier. See GUID
green attribute 168
GroupBox 195
GUID 16

H
heat.exe

about 55
arguments, adding 58
files, harvesting 55-60

HyperlinkLicense user interface 416-418

I
ICE20

about 177
Error 179, 180
Exit 183
FatalError 181, 182
FilesInUse 177, 179
UserExit 182, 183

Icon 197
Icon attribute 36
Id attribute 101
if statement 255
ignore 133

[455]

IgnoreChange event 232
immediate phase 130, 221
include file (.wxi) 253
INI file 100
IniFileSearch 100-102
installation

logging, turn on 42
restricting, by operating system 389, 390

Installation Scope screen 157
Install button 174
InstallCommand attribute 403
Installed keyword 80
Installed property 108, 143
installed state

-1 121
1 121
2 121
3 121
4 121
about 121

installer
building, without Visual Studio 276, 277

InstallerVersion attribute 20
InstallExecuteSequence

about 123-128
deferred 130
Immediate 130
standard actions, executing 128
UI standard actions 125

InstallFiles action 129
InstallInitialize action 128
InstallScope attribute 21
InstallUISequence 123
InstallValidate action 128
InstallViewModel class 432
Italic attribute 168

J
Java Runtime Environment. See JRE
JRE 402

K
KB attribute 407
Key attribute 281
KeyPath file 28

L
Language 325
launch condition

about 107-112
examples 107, 108

LaunchConditions 125
Librarian settings 380
Light

about 247, 264
Command-line arguments 265

Light.exe
about 319
role 320, 321

Line 194
Linking 265
link-time variables

about 273
binder variables 273, 274
custom linker variables 275
localization variables 273

ListBox 206, 207
ListView 207, 208
LoadLibraryHelper method 382
load order group 309
LoadOrderGroup attribute 300
LocalAppDataFolder property 24
locale identifier 321
Localizable attributes 317
localization 315
LocalService 303
LocalSystem account 303
logical operators 106

M
major update

about 342
preparing 343-350
using, criteria 342

Manufacturer attribute 19
mask 199
MaskedEdit 199, 200
media element 22
MediaProperty property 54
MediaTemplate element 21
merge modules (.msm) 55

[456]

Message method 223
Message property 434, 440
Microsoft Download Center website 12
Microsoft.Practices.Prism 421
MigrateFeatureStates 126
minor update

about 342, 350
patch, creating from .without files 356, 357
patch, creating from .wixpdb files 353-356
.wixmsp file, authoring 350-353

modal windows 175, 177
model

about 423
defining 425-427

Modeless attribute 173
Model-View-ViewModel. See MVVM
MSDN website 322
MSI database

about 41
Orca 41
Orca.exe 41, 42

MsiNTProductType property 112
MsiPackage element 400, 401
MspPackage element 405, 406
MsuPackage element 406, 407
MVVM 421
MyPicturesFolder property 24

N
Name attribute 388
Name sets 281
NETFRAMEWORK10 property 110
NETFRAMEWORK20INSTALL

ROOTDIR64 property 110
NETFRAMEWORK20INSTALLROOTDIR

property 110
NETFRAMEWORK20 property 110
NETFRAMEWORK30 property 110
NETFRAMEWORK35 property 110
NETFRAMEWORK40CLIENT property 110
NETFRAMEWORK40FULLINST

ALLROOTDIR64 property 110
NETFRAMEWORK40FULLINST

ALLROOTDIR property 110
NETFRAMEWORK40FULL

property 109, 110

NETFRAMEWORK45 property 110
NetHoodFolder property 24
NetworkService 303
NewDialog event 229, 235
Notify attribute 291
NOTPropertyA 106
NoWrap attribute 192
NuGet 421

O
One Really Cool App 41
OnExit attribute 182
operating system 111
Options button 416
OR 106
Orca tool 41
Overridable attribute 317
own dialogs, creating

about 163
dialog element 165
dialog files, adding 164
dialogs, scheduling 166
ICE20 errors 163
progress dialog, adding 172-174
tabbable control, adding 169-172
TextStyle elements, adding 167, 168

P
Package Cache 397
package element 20, 322-324
PackageGroup elements 413, 414
package references

counting 410, 411
packages

downloading 407-409, 446
packages chaining

Chain element 398, 399
ExePackage element 402-405
MsiPackage element 400, 401
MspPackage element 405, 406
MsuPackage element 406, 407

ParseSuperElement method 366
Password attribute 300
Patch element 351
patch file 350

[457]

patch slipstreaming 405
PathEdit 201, 202
PermissionEx element

attributes 71
PersonalFolder property 24
PlanAction method 435
predefined properties, Windows Installer

cited properties 88, 89
implied properties 87

preprocessor extension 258-264
preprocessor variable 46
PrintHoodFolder property 24
Prism 421
private property 82
Privileged property 112
ProcessComponents action 128
ProductCode 18
ProductCode attribute 36
product element 18, 325
ProgramCommandLine attribute 312
ProgramFiles64Folder property 24
ProgramFilesFolder property 24
ProgramMenuFolder property 24
progress bar

displaying 444, 445
ProgressBar 222-226
progress dialog

adding 170, 172
ProgressDlg dialog 152
properties 52, 77
PropertyA 106
PropertyA <> "1" 107
PropertyA = "1" AND PropertyB = "2" 107
PropertyA<PropertyB 106
Property attribute 197
Property element 23
Publish element 190

about 227, 229
AddLocal event 228
AddSource event 228
CheckExistingTargetPath event 228
CheckTargetPath event 228
DirectoryListNew event 228
DirectoryListOpen event 228
DirectoryListUp event 228
DoAction event 228
EnableRollback event 228

EndDialog event 228
NewDialog event 229
ReinstallMode event 229
Remove event 229
Reset event 229
SelectionBrowse event 229
SetInstallLevel event 229
SetTargetPath event 229
SpawnDialog event 229
SpawnWaitDialog event 229
ValidateProductID event 229

Publish events
about 232
AddLocal 236-239
DoAction 233
EndDialog 234
NewDialog 235
property, publishing 239

PublishFeatures action 130
publishing 227
PublishProduct action 130
PushButton 190, 191
pyro.exe 356

R
RadioButtonGroup 203, 204
RaisePropertyChanged method 434
RAMDisk attribute 212
Raw 101
Read attribute 71, 291
ReadPermission attribute 71, 291
RecentFolder property 24
Red attribute 168
REG_BINARY 281
REG_EXPAND_SZ 281
RegisterProduct action 129
registry

multiple value, writing 284-286
NeverOverwrite, setting 287
permissions 290-292
reading from 280-282
single value, writing 283
writing to 282

RegistryKey element 284
RegistrySearch element 97-100, 280
RegistryValue element 35

[458]

registry values
all keys, removing 287, 288
copying 289, 290
removing 287
single value, removing 288

REG_MULTI_SZ 281
REG_SZ 281
ReinstallMode event 229
Remote attribute 212
Removable attribute 212
Remove event 229
RemoveFiles action 129
REMOVE property 114
RemoveRegistryKey element 287
RemoveShortcuts action 129
repair 27, 47
RequiredVersion attribute 17
Reset event 229
ResetPeriodInDays attribute 313
resiliency 28
ResolveSource event 446
resources, WiX 43
response file 249
Result property 437
Return attribute 133
RollbackBoundary elements 412, 413
rollback custom actions 143
Root attribute 280
RtfLicense user interface 415, 416
Run method 425

S
sc.exe

using 296-298
ScriptInProgress event 232, 240, 241
ScrollableText 193, 194
Security tab 70
SelectionAction event 232, 242, 243
SelectionBrowse event 229
SelectionDescription event 232
SelectionNoItems event 232
SelectionPath event 232
SelectionPathOn event 232
SelectionSize event 232
SelectionTree 212-214
SendToFolder property 24

service
starting 300-302
stopping 300-302
uninstalling 300-302
user account, setting 303-307

Service Control Manager (SCM) 294
service dependencies

adding 307-309
ServiceInstall 298
ServicePackLevel property 111
SetInstallLevel event 229
SetProgress event 173, 232
SetProperty element 134
ShowMessageImmediate method 378
simple Windows service

creating 293-296
size attribute 169
small update 342, 358
SomeAssembly.dll 29
Source attribute 58
SourceFile attribute 407
Source not found error 326
SpawnDialog event 176, 229
SpawnWaitDialog event 229
special-case files

assembly files, adding to GAC 65, 66
installing 64
TrueType font, installing 66

src\Setup\WixBA folder 420
standard actions, InstallExecuteSequence

CreateShortcuts 129
InstallFiles 129
InstallFinalize 130
InstallInitialize 128
InstallValidate 128
ProcessComponents 128
PublishFeatures 130
PublishProduct 130
RegisterProduct 129
RegisterUser 129
RemoveFiles 129
RemoveRegistryValues 128
RemoveShortcuts 129
UnpublishFeatures 128
WriteRegistryValues 129

Standard Bootstrapper UI
about 415

[459]

HyperlinkLicense user interface 416-418
RtfLicense user interface 415, 416

standard dialog sets, WiX
about 155, 156
customizing 161, 162
WixUI_Advanced 156, 158
WixUI_FeatureTree 158
WixUI_InstallDir 159
WixUI_Mondo 160

StartMenuFolder property 24
StartupFolder property 24
strike attribute 169
Subscribe element

about 231
ActionData event 231
ActionText event 231
events 232
IgnoreChange event 232
ScriptInProgress event 232
SelectionAction event 232
SelectionDescription event 232
SelectionNoItems event 232
SelectionPath event 232
SelectionPathOn event 232
SelectionSize event 232
SetProgress event 232
TimeRemaining event 232

Subscribe events
about 239
ScriptInProgress 240, 241
SelectionAction 242, 243
TimeRemaining 243-245

subscribing 227
Synchronize attribute 71, 291
System16Folder property 24
System64Folder property 24
SystemFolder property 24

T
TakeOwnership attribute 71, 291
Target attribute 34
TempFolder property 24
TemplateFolder property 24
Template Summary property 323
Text 192, 193
ThemeFile attribute 417

ThmViewer utility 417
TimeRemaining event 232-245
Tools Settings tab 68
tools, WiX

Candle.exe 11
Dark.exe 11
Heat.exe 11
Insignia.exe 11
Light.exe 11
Lit.exe 11
Lux.exe 11
Melt.exe 11
Nit.exe 11
Pyro.exe 11
Shine 11
Smoke.exe 11
Torch.exe 11
WixCop.exe 11
WixUnit.exe 11

Torch 337
transform files 337
Type 2 140
Type 5 (JScript) 137
Type 6 (VBScript) 137
Type 19 custom action 142
Type 34 custom action 142
Type 35 custom action 134
Type 37(VBScript) 135
Type 38 (JScript) 135
Type 51custom action 133
Type attribute

about 102, 281
data 284

U
UI

localizing 326
UI localization

about 326
controls, resizing 334-336
error messages 326-329
EULA 332-334
multi-language MSI, creating 336-339
progress bar messages 329-332

UI standard actions
about 125

[460]

AppSearch 125
CostFinalize 126
CostInitialize 125
ExecuteAction 126
FileCost 126
FindRelatedProducts 125
LaunchConditions 125
MigrateFeatureStates 126
ValidateProductID 125

Underline attribute 169
UnexpectedAttribute method 368
UnexpectedElement method 366
Uninstall button 424
UninstallCommand attribute 405
UnpublishFeatures action 128
unreal tables 266
UnsupportedExtensionAttribute

method 368
update

per-machine 343
per-user 343

update planning
about 341
major updates 341
minor updates 341
small updates 341
update type, choosing 342

UpgradeCode attribute 391
User 71
UserExit dialog 182
user interface

adding 40, 41
Util:ServiceConfig

service recovery 310-313
util namespace 71

V
ValidateProductID 125
ValidateProductID event 229
Value attribute 284
Version attribute 19, 388
view

about 423
marking up 439-441

viewmodel
about 423

implementing 427
viewmodel implementation

about 427-431
constructor, defining 434, 435
event handlers, setting up 435-437
fields, declaring 432, 434
helper methods 438, 439
properties, declaring 432, 434

Vital attribute 300, 400
VolumeCostList 215, 216
VolumeSelectCombo 216-218
Votive 13

W
Window class 441
WindowsFolder property 24
Windows Installer

about 12
predefined properties 86
Visual Studio package 13

Windows Installer XML. See WiX
Windows Presentation Foundation. See

WPF
WINDOWSSDKCURRENTVERSION

property 110
WireUpEventHandlers method 439
WiX

about 7, 8
features 7, 9
GUIDs 16
latest version 10
localization files 315
new version, installing 12
options 8
project 16
project templates 13
resources 43
standard dialog sets 155
tools 11
using, for service installation 298, 300
Visual Studio package 13-16

WiX extension 360
WixFailWhenDeferred 144
WiX library (.wixlib) 54
WiX localization files

about 315

[461]

example 316-318
WixNetFxExtension 109
WiX project

about 17
component element 27, 29
directory element 23-26
extension, using 374,-376
feature element 30-33
file element 29, 30
media element 22, 23
media template element 21
package element 20, 21
product element 18, 19
Start Menu shortcuts 33-36
summing up 37-40

Wix element 17
XML declaration 17

WiX toolset 155
WixUI_Advanced attribute 41, 156-158
WixUI_FeatureTree attribute 41, 158
WixUI_InstallDir attribute 41, 159
WixUI_Mondo attribute 41, 160
WPF 419
Write attribute 71, 291
WriteRegistryValues action 129

X
XAML 420
xmlns 17

Thank you for buying
WiX 3.6: A Developer's Guide to Windows

Installer XML
About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WiX: A Developer's Guide to
Windows Installer XML
ISBN: 978-1-84951-372-2 Paperback: 348 pages

Create a hassle-free installer for your Windows
software using WiX

1. Package your software into a single-file,
double-click MSI for easy installation

2. Read and write to the Windows Registry and
create, start, and stop Windows Services during
installation

3. Write .NET code that performs specific tasks
during installation via custom actions

4. Learn how the WiX command-line tools work
to build and link your project

XNA 4.0 Game Development by
Example: Beginner's Guide
ISBN: 978-1-84969-066-9 Paperback: 428 pages

Create exciting games with Microsoft XNA 4.0

1. Dive headfirst into game creation with XNA

2. Four different styles of games comprising a
puzzler, a space shooter, a multi-axis shoot 'em
up, and a jump-and-run platformer

3. Games that gradually increase in complexity
to cover a wide variety of game development
techniques

4. Focuses entirely on developing games with the
free version of XNA

Please check www.PacktPub.com for information on our titles

Microsoft Windows Azure
Development Cookbook
ISBN: 978-1-84968-222-0 Paperback: .392 pages

Over 80 advanced recipes for developing scalable
services with the Windows Azure platform

1. Packed with practical, hands-on cookbook
recipes for building advanced, scalable
cloud-based services on the Windows
Azure platform explained in detail to
maximize your learning

2. Extensive code samples showing how to use
advanced features of Windows Azure blobs,
tables and queues.

3. Understand remote management of Azure
services using the Windows Azure Service
Management REST API

Learning SQL Server 2008
Reporting Services
ISBN: 978-1-84719-618-7 Paperback: 512 pages

A step-by-step guide to getting the most of Microsoft
SQL Server Reporting Services 2008

1. Everything you need to create and deliver
data-rich reports with SQL Server 2008
Reporting Services as quickly as possible

2. Packed with hands-on-examples to learn and
improve your skills

3. Connect and report from databases,
spreadsheets, XML Data, and more

4. No experience of SQL Server Reporting
Services required

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Getting Started
	Introducing Windows Installer XML
	What is WiX?
	Is WiX for you?
	Where can I get it?
	Visual Studio package (Votive)
	A word about GUIDs

	Your first WiX project
	XML declaration and Wix element
	The Product element
	The Package element
	The MediaTemplate element
	The Media element
	The Directory element
	The Component element
	The File element
	The Feature element
	Start menu shortcuts
	Putting it all together

	Adding a user interface
	Viewing the MSI database
	Orca.exe

	Turning logging on during installation
	Other resources
	Summary

	Chapter 2:Creating Files and Directories
	The File element
	The DirectoryRef element
	The ComponentGroup element
	The Fragment element
	Harvesting files with heat.exe
	Copying and moving files
	Copying files you install
	Copying existing files
	Moving existing files

	Installing special-case files
	Adding assembly files to the GAC
	Installing a TrueType font

	Installing 64-bit files
	Creating an empty folder
	Setting file permissions
	Speeding up file installations
	Summary

	Chapter 3:Putting Properties and AppSearch to Work
	Custom properties
	Declaring and setting properties
	Referencing properties
	Property visibility and scope
	Secure properties
	Property data types

	Predefined Windows Installer properties
	Implied properties
	Cited properties

	AppSearch
	DirectorySearch
	FileSearch
	ComponentSearch
	RegistrySearch
	IniFileSearch

	Summary

	Chapter 4:Improving Control with Launch Conditions and Installed States
	The syntax of conditions
	Condition syntax
	Launch conditions
	Feature conditions
	Component conditions

	Action state
	Installed state
	Summary

	Chapter 5:Understanding the Installation Sequence
	InstallUISequence
	UI standard actions
	FindRelatedProducts
	AppSearch
	LaunchConditions
	ValidateProductID
	CostInitialize
	FileCost
	CostFinalize
	MigrateFeatureStates
	ExecuteAction

	InstallExecuteSequence
	Execute standard actions
	InstallValidate
	InstallInitialize
	ProcessComponents
	UnpublishFeatures
	RemoveRegistryValues
	RemoveShortcuts
	RemoveFiles
	InstallFiles
	CreateShortcuts
	WriteRegistryValues
	RegisterUser
	RegisterProduct
	PublishFeatures
	PublishProduct
	InstallFinalize

	Immediate versus deferred

	Custom actions
	Setting a Windows Installer property
	Setting the location of an installed directory
	Running embedded VBScript or JScript
	Calling an external VBScript or JScript file
	Calling a function from a dynamic-link library
	Triggering an executable
	Sending an error that stops the installation

	Rollback custom actions
	Accessing properties in a deferred action
	Adding conditions to custom actions
	Deployment Tools Foundation
	The session object
	Getting and setting properties
	Logging
	Showing a message box
	Accessing feature and component states
	Querying the MSI database
	Inserting rows into the MSI database

	Summary

	Chapter 6:Adding a User Interface
	WiX standard dialog sets
	WixUI_Advanced
	WixUI_FeatureTree
	WixUI_InstallDir
	WixUI_Mondo
	Customizing a standard dialog set

	Creating your own dialogs
	ICE20 errors
	Adding dialog files
	Dialog element
	Scheduling dialogs
	Adding TextStyle elements
	Adding a tabbable control
	Adding a progress dialog

	Modal windows
	ICE20 revisited
	FilesInUse
	Error
	FatalError
	UserExit
	Exit

	Summary

	Chapter 7:Using UI Controls
	Attributes common to all controls
	Specific control syntax
	PushButton
	Text
	ScrollableText
	Line
	GroupBox
	Bitmap
	Icon
	Edit
	MaskedEdit
	PathEdit
	CheckBox
	RadioButtonGroup
	ComboBox
	ListBox
	ListView
	DirectoryList
	DirectoryCombo
	SelectionTree
	VolumeCostList
	VolumeSelectCombo
	Billboard
	ProgressBar

	Summary

	Chapter 8:Tapping into Control Events
	Publishing control events
	Subscribing to control events
	Publish events
	DoAction
	EndDialog
	NewDialog
	AddLocal
	Publishing a property

	Subscribe events
	ScriptInProgress
	SelectionAction
	TimeRemaining

	Summary

	Chapter 9:Working from the Command Line
	Candle.exe
	Response files
	.wixobj files
	Command-line arguments (compiling)
	-arch
	-d
	-ext
	-fips
	-I
	-nologo
	-o
	-p
	-pedantic
	-sfdvital
	-ss
	-sw
	-trace
	-v
	-wx

	Compile-time variables
	Custom compiler variables
	Environment variables
	System variables

	Conditional statements and iterations
	if...elseif...else
	ifdef
	ifndef
	Iterations
	Errors and warnings

	Preprocessor extensions
	Light.exe
	Command-line arguments (linking)
	-b
	-bf
	-binder
	-cultures
	-d
	-dut
	-ext
	-loc
	-nologo
	-notidy
	-o[ut]
	-pedantic
	-sadmin
	-sadv
	-sloc
	-sma
	-ss
	-sts
	-sui
	-sv
	-sw[N]
	-usf <output.xml>
	-v
	-wx[N]
	-xo

	Command-line arguments (binding)
	-bcgg
	-cc <path>
	-ct <N>
	-cub <file.cub>
	-dcl:level
	-eav
	-fv
	-ice <ICE>
	-pdbout <output.wixpdb>
	-reusecab
	-sa
	-sacl
	-sf
	-sh
	-sice: <ICE>
	-sl
	-spdb
	-sval

	Link-time variables
	Localization variables
	Binder variables
	Custom linker variables

	Building an installer without Visual Studio
	Summary

	Chapter 10:Accessing the Windows Registry
	Reading from the registry
	Writing to the registry
	Writing a single value
	Writing multiple values
	Setting NeverOverwrite

	Removing registry values
	Remove all keys recursively
	Removing a single value

	Copying registry values
	Registry permissions
	Summary

	Chapter 11:Controlling Windows Services
	Creating a simple Windows service
	Using sc.exe
	Using WiX to install a service
	Starting, stopping, and uninstalling a service
	Setting the service's user account
	Adding service dependencies
	Service recovery with Util:ServiceConfig
	Summary

	Chapter 12:Localizing Your Installer
	WiX localization files
	The role of Light.exe
	Setting language and code page attributes
	The Package element
	The Product element

	Localizing the UI
	Error messages
	Progress bar messages
	EULA
	Resizing controls

	Creating a multi-language MSI
	Summary

	Chapter 13:Upgrading and Patching
	Planning for updates
	Choosing an update type
	Per-user or per-machine

	Preparing a major upgrade
	The minor upgrade
	Authoring a .wixmsp file
	Creating a patch from .wixpdb files
	Creating a patch from .wixout files

	The small update
	Summary

	Chapter 14:Extending WiX
	Building a custom WiX extension
	Setting the stage
	Extending the CompilerExtension class
	Adding an XML schema
	Parsing custom elements
	Creating a new MSI table
	Extending the WixExtension class

	Using the extension in a WiX project
	Tying a custom action to the custom element
	Summary

	Chapter 15:Bootstrapping Prerequisites with Burn
	Using the Bootstrapper Project template
	Describing the Bundle element
	Restricting the install by the operating system
	UpgradeCode and detecting related bundles
	Updating existing bundles
	Finding other related bundles
	Where the packages are cached

	Chaining packages
	The Chain element
	The MsiPackage element
	The ExePackage element
	The MspPackage element
	The MsuPackage element

	Downloading packages
	Counting package references
	Rollback boundaries
	PackageGroups
	The Standard Bootstrapper UI
	The RtfLicense user interface
	The HyperlinkLicense user interface

	Summary

	Chapter 16:Customizing the Burn UI
	Burn extension points
	Creating the class library
	Extending the BootstrapperApplication class
	Defining the model
	Implementing the viewmodel
	Declaring the properties and fields
	Defining the constructor
	Setting up the event handlers
	Helper methods

	Marking up the view
	Referencing the UI in a Burn bundle
	Passing user input to a bundled MSI
	Displaying progress
	Downloading packages
	Collecting command-line arguments
	Summary

	Index

