
www.allitebooks.com

http://www.allitebooks.org

Xcode 4 iOS Development
Beginner's Guide

Use the powerful Xcode 4 suite of tools to build applications
for the iPhone and iPad from scratch

Steven F. Daniel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Xcode 4 iOS Development
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Production Reference: 1160811

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849691-30-7

www.packtpub.com

Cover Image by Tom Glasspool (t.glasspool@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Steven F. Daniel

Reviewers

Cory Bohon

Mark Hazlett

Acquisition Editor

Steven Wilding

Development Editor

Chris Rodrigues

Technical Editor

Dayan Hyames

Indexer

Monica Ajmera Mehta

Project Coordinator

Leena Purkait

Proofreader

Mario Cecere

Graphics

Valentina D'silva

Geetanjali Sawant

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steven F. Daniel is originally from London, England, but lives in Australia. He is an
experienced software developer with more than 13 years of experience in developing
desktop and web-based applications for a number of companies, in sectors including
insurance, banking and finance, oil and gas, and local government. Xcode 4 iOS
Development Beginner's Guide is his first book.

Steven is always interested in emerging technologies, and is a member of the SQL Server
Special Interest Group (SQLSIG) and the Java Community. He is the owner and founder of
GenieSoft Studios (http://www.geniesoftstudios.com/), a software development
company based in Melbourne, Victoria, that currently develops games and business
applications for the iOS, Android, and Windows platforms.

Steven was the co-founder and Chief Technology Officer (CTO) of SoftMpire Pty Ltd., a
company that focused primarily on developing business applications for the iOS and Android
platforms. You can check out his blog at http://geniesoftstudios.com/blog/, or
follow him on Twitter at http://twitter.com/GenieSoftStudio.

This book is dedicated to:

Chan Ban Guan, for the patience, support, encouragement, and
understanding all of those times when I couldn't go out as I needed to
write in order to meet the deadlines.

My family for their continued love and support, and for always believing
in me.
Chan Jie Hou, may God watch over you and keep you safe.

This book would not have been possible without your love and
understanding.
Thank you from the bottom of my heart.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

No book is the product of just the author—he just happens to be the one with his name on
the cover.

A number of people contributed to the success of this book, and it would take more space
than I have to thank each one individually.

A special shout out goes to Steven Wilding, my Acquisition Editor, who is the reason that this
book exists. Thank you, Steven, for believing in me, and for being a wonderful guide through
this process. I would also like to thank Leena Purkait for ensuring that I stayed on track and
got my chapters in on time.

Thank you also to the entire Packt Publishing team for working so diligently to help bring out
a high quality product.

To the engineers at Apple for creating the iPhone, and providing developers with the tools to
create fun and sophisticated applications, you guys rock.

Finally, I'd like to thank all of my friends for their support, understanding, and
encouragement during the writing process. It is a privilege to know each one of you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Cory Bohon is a professional blogger and contributor to MacLife magazine, and a Mac and
iPhone developer, experienced in Java, C/C++, Objective-C, and PHP. He is currently attending
the University of South Carolina Upstate, where his current research interests include
accessible user interface design and mobile application development.

Mark Hazlett is a mobile and web applications developer located in Calgary, Alberta,
Canada. He has a true passion for mobile application development, especially on developing
for the iPhone. In his spare time, Mark likes to read about new technologies, learn new
languages, and start new projects.

He is constantly learning new technologies and applying them to as many personal projects
as he can find time for. All in all, he is extremely passionate about usability and user
interaction and tries to apply best practices to all of his projects.

I would like to thank my family: Tom, Jan, and Ryan for always being
extremely supportive in my many endeavors. I would also like to thank
Packt Publishing for giving me the opportunity to review this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.







www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1

Chapter 1: Introducing Xcode 4 Tools for iOS Development	 7
Development using the Xcode tools	 8

iPhone SDK core components	 8
Inside Xcode, Cocoa, and Objective-C	 9
The iPhone Simulator	 10
Layers of the iOS architecture	 11

The Core OS layer	 11
The Core Services layer	 13
The Media layer	 14
The Cocoa-Touch layer	 14

Understanding Cocoa, the language of the Mac	 16
What are Design Patterns?	 16
What is the difference between Cocoa and Cocoa-Touch?	 16

The Model-View-Controller	 16
What is Object-Oriented Programming?	 17

What is Data Hiding?	 17
What is Objective-C?	 20

Directives	 21
Objective-C classes	 21

The @interface directive	 21
The @implementation directive	 22
Class instantiation	 22
Class access privileges	 22

Introducing the Xcode Developer set of tools	 23
Introducing the core tools	 23
The Welcome to Xcode screen	 23
The Xcode Integrated Development Environment	 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Features of the iPhone Simulator	 25
Companion tools and features	 26
Instruments	 26
iPhone OS4 SDK new features	 28
Summary	 29

Chapter 2: Introducing the Xcode 4 Workspace	 31
Downloading and installing the iOS SDK	 32

Removing the Xcode Developer Tools	 35
Getting to know the Xcode Development Environment	 35

One environment to bind them all	 35
Working within a single-development environment	 36
Creating a new project	 37
Migrating older projects into the new environment	 37
Writing a simple iPhone application	 38

Time for action – creating your first iPhone application	 38
Working with the new Xcode Assistant	 46

Introducing the Xcode 4 Workspace Environment	 48
Application ToolBar	 48
Application Status Bar/Activity Window	 49
WorkSpace Settings	 49

Introducing the Unified Navigation UI	 50
Listing files in a project	 50
Sorted Symbols	 51
Central Search Interface	 52
Issues Tracking	 53
Using Static Analysis to find potential problems	 53
Debugging data with Compressionable Stack Traces	 54
Active/inactive breakpoints	 54
Collection of Logs	 55
Jump Bar	 55
Using Code Assistants	 55
Introducing the new and improved LLVM Compiler 2.0	 55
Version Editor	 56
File Templates Library	 56
Code Snippets Library	 57
Object Library	 58
Media Library	 59
Resetting Xcode's Development Environment Settings	 60

Xcode Workspace Preferences	 60
General	 61
Behaviors	 61

Table of Contents

[iii]

Fonts & Colors	 61
Text Editing	 62
Key Bindings	 62
Documentation	 62
Locations	 62
Source Trees	 63
Distributed Builds	 63

Summary	 64

Chapter 3: Working with the Interface Builder	 65
Getting to know the Interface Builder environment	 66

Adding Controls to your user interface	 67
Time for action – creating the HelloXcode4_GUI application	 67

Application structure of our HelloXcode4 example application	 70
The MainWindow.xib file	 72
The Core Application Architecture layer	 72
The application life cycle	 73

Time for action – adding object controls to our View	 74
Understanding Rotatable Interfaces	 79

Time for Action – enabling Interface Rotation	 79
Relocating controls within the view on Rotation	 80

Making our Components work together	 81
Time for action – binding Control Objects	 82
Time for action – repositioning the Controls	 84

Enhancing our iPhone application	 87
Time for action – hiding the keyboard	 87
Introducing Document-based applications	 89
Time for action – creating a Document-based application	 90

File saving and loading	 94
Time for action – implementing file saving and loading	 95
Summary	 98

Chapter 4: Working with the Xcode Frameworks	 99
Introducing the Frameworks	 100
Using Frameworks and APIs in iPhone development	 102

Core Data Frameworks	 103
Building a simple database application	 104

Time for action – creating the Core Data application	 104
AV Foundation Frameworks	 117

Playing an audio File	 118
Creating an application to play an audio file	 119

Table of Contents

[iv]

Time for action – creating the MusicPlayer application	 119
Playing a movie using Media Player	 125

Time for action – creating the MoviePlayer application	 125
Core Location Framework	 131

Time for action – making your application location aware	 131
Map Kit Framework—new and improved	 135

Time for action – creating a simple geographical application	 136
New Framework APIs	 140
Summary	 142

Chapter 5: Designing Application Interfaces using MVC	 143
Developing iOS applications using MVC design	 144

Reusing tested (or standard) solutions: Design patterns	 144
Understanding the Model-View-Controller design pattern	 144

Implementing MVC using Xcode and Interface Builder	 145
Time for action – building a Pizza order application	 145
Time for action – binding our Controls using Outlets and Actions	 147

Implementing views	 152
Implementing view controllers	 152

Time for action – declaring input field as a property of View Controller	 154
Creating a view-based application template 	 154
Time for Action – creating the FavoriteColor application	 155
Time for action – binding our Controls using Outlets and Actions	 156

Implementing Table Views	 159
Time for action – creating a Table view application	 159

Grouping row items into sections	 163

Time for action – grouping row items in our TableViewExample application	 163
Understanding Navigation-based applications	 168
Using Switches, Sliders, Segmented Controls, and Web Views	 169

Time for action – creating the SwitchesSlidersSegments project	 170
Time for action – binding our Controls using Outlets and Actions	 173

Creating an application to scroll through large content	 177
Time for action – creating the ScrollingViews project	 177
Time for action – binding our Controls using Outlets and Actions	 179

Understanding Pickers	 181
Date Pickers	 181

Time for action – creating the Date Picker project	 182
Time for action – binding our Controls using Outlets and Actions	 183

Custom Pickers	 186

Time for Action – creating the Custom Picker project	 186
Time for action – binding our Controls using Outlets and Actions	 188

Table of Contents

[�]

Handling basic user input and output	 192
Button Controls	 192
Text Fields	 192
Text Views	 192
Labels	 193

Using Text Fields, Text Views, and Buttons	 193
Time for action – creating application with Text fields, Text Views, and Buttons	 193
Time for action – binding our Controls using Outlets and Actions	 195
Summary	 199

Chapter 6: Displaying Notification Messages	 201
Exploring the notification methods	 201
Generating alerts	 202
Time for action – creating the GetUsersAttention application	 202
Time for action – adding the AudioToolbox Framework to our application	 203

Building our user interface	 205
Time for action – adding controls to our View	 205

Creating events	 207
Time for action – implementing the Show Activity Indicator method	 207
Time for action – implementing the Display Alert Dialog method	 210

Responding to Alert Dialog Button presses	 211
Using Action Sheets to associate with a view	 214
Time for action – implementing the Display Action Sheet method	 214

Responding to Action Sheet Button presses	 215
Customizing an Action Sheet	 217

Time for action – handling alerts via sounds and vibrations	 217
Summary	 221

Chapter 7: Exploring the MultiTouch Interface	 223
Introducing the MultiTouch architecture	 224

Detecting taps	 226
Time for action – creating the TapExample project	 226
Time for action – binding our Controls	 228

Detecting swipes	 231
Time for action – creating the SwipeExample project	 232

Detecting pinches	 236
Time for action – creating the PinchExample project	 236

Detecting shakes	 242
Time for action – creating the ShakeExample project	 243
Time for action – implementing the motionBegan, motionEnded,
and motionCancelled methods	 245

Table of Contents

[vi]

Exploring the Accelerometer/Gyroscope	 249
Understanding the Core Motion Framework	 249
Sensing orientation	 250

Time for action – creating the OrientationExample project	 250
Detecting device tilting	 254

Time for action – creating the AccelGyroExample project	 254
Summary	 260

Chapter 8: Debugging Xcode Projects	 261
Introducing the new and improved Debugger	 261

Debugger toolbar	 262
Stack trace panel	 263
Disassembly view	 263
Code Editor window	 264
Console output window	 265

Creating a new debugging project	 266
Time for action – creating the DebuggingExample project	 266
Running and debugging the project	 268

Handling errors	 268
Runtime errors	 269
Syntax errors	 269
Logic errors	 269

Using Fix-it to correct code as you type	 270
Time for action – setting up the LLVM compiler	 270

Debugging with breakpoints	 272
Using NSLog to track changing properties	 273

Exploring the new Debugger	 275
Debugging features in the Code Editor	 275
The Activity Viewer/Progress window	 276
Defining a scheme for project builds using the Scheme Editor	 276

Time for action – using the Scheme Editor to define a Scheme	 277
Viewing the Static Analysis results	 278

Time for action – running the Static Analyzer	 279
Time for action – configuring your project to perform automatic Static Analysis	 280
Time for action – Detecting a memory leak	 281
Time for action – detecting an instance of an uninitialized variable	 282

Viewing the Issues Navigator	 284
Viewing the Program Build log	 284
Understanding and using code completion	 286

Time for action – working with code completion	 286

Table of Contents

[vii]

Time for action – stopping Xcode from alerting you to problems	 288
Navigating through threads and stacks in the Debugger	 289

Summary	 292

Chapter 9: Source Code Management with the Version Editor	 293
Introducing the new Version Editor	 294

Introducing Subversion	 296
Installing a local Subversion server	 296
Creating a repository	 297

Time for action – setting up a local Subversion repository	 298
Configuring the repository in Xcode	 300

Time for action – configuring the Subversion repository	 300
Adding items to an existing repository	 303

Time for action – adding our TapExample project to the repository	 303
Getting a working copy of the project out of the repository	 305

Time for action – checking out the project from the repository	 305
Xcode source-control features and file statuses	 308
Comparing different versions of a file side-by-side	 311
Using Timeline to select and compare revisions	 312
Using Track Blame to check past check-ins	 313
Using Log Mode to list all revisions chronologically	 314
Using the Repository Organizer to keep track of your files	 315

Using Git to manage multiple projects	 317
Time for action – creating a new Xcode project using Git	 318
Time for action – assigning address book identities within the organizer	 319
Summary	 323

Chapter 10: Making your Applications Run Smoothly	 325
Introducing Instruments	 326

Tracking down and fixing memory leaks	 328
Time for action – creating the InstrumentsExample project	 329
Time for action – running and Profiling the project	 330
Adding and configuring Instruments	 335

Using the Instruments Library	 335
Locating an Instrument within the Library	 336
Adding and removing Instruments	 339
Configuring an Instrument	 340
Other components of the Instruments family explained	 342

New Instruments in Xcode 4	 343
Automated Testing	 343
Performance and Power Analysis	 343
Time Profiler	 344

Table of Contents

[viii]

Energy Diagnosis	 344
Tracking iPhone graphics performance using OpenGL ES Driver	 344

Summary	 346

Chapter 11: Distributing your Application	 347
Build configurations – debug to release	 348

The iPhone Developer Program	 348
Setting up your iPhone development team	 349

Time for action – setting up the team	 350
Getting an iOS development certificate	 354

Time for action – generating a Certificate Request	 354
Time for action – getting the certificate	 357

Registering devices for testing	 360
Time for action – registering devices	 360

Creating application IDs	 362
Time for action – creating the application ID	 362

Creating a Provisioning Profile	 365
Time for action – creating the profile	 365

Using the Provisional Profile to install an App on an iOS device	 368
Time for action – creating and deploying the app to an iOS device	 368

Getting a Distribution Certificate for your app	 373
Time for action – getting the Distribution Certificate	 373

Archiving and submitting Apps using Xcode 4	 375
iOS Human Interface Guidelines	 377
Testing your application	 377
Preparing your App for submission through iTunes Connect	 378
Avoiding rejection of your App	 381
Pricing your app	 382
Adding your App to iTunes Connect	 382

Time for action – uploading the application icon and screenshot images	 383
Using iTunes Connect to manage your Apps	 384
Marketing and promoting your app	 386
iOS Developer Documentation	 387

Summary	 389

Table of Contents

[ix]

Appendix: Pop Quiz Answers	 391
Chapter 3	 391
Chapter 4	 391
Chapter 5	 391
Chapter 6	 392
Chapter 7	 392
Chapter 8	 393
Chapter 9	 393
Chapter 10	 393
Chapter 11	 393

Index	 395

Preface
The iPhone is one of the hottest mobile devices on the planet. Whether you are just starting
out with iPhone Development or already have some knowledge in this area, you will benefit
from what this book covers. Using this book's straightforward, step-by-step approach, you
will go from Xcode 4 apprentice to Xcode 4 Jedi master in no time.

Xcode 4 iOS Development Beginner's Guide will help you learn to build simple, yet powerful
applications for the iPhone from the ground up. You will master the Xcode 4
tools and skills needed to create applications that are simple yet, like Yoda, punch far
above their weight.

In this book, I have tried my level best to keep the code simple and easy to understand. I
have provided step-by-step instructions with screenshots at each step to make it easier.
You will soon be mastering the technology and skills needed to create some stunning
applications. Feel free to contact me at geniesoftstudios@gmail.com for any queries.
Any suggestions for improving this book will be highly appreciated.

What this book covers
Chapter 1, Introducing Xcode 4 Tools for iOS Development, introduces the developer to the
Xcode developer set of tools, the new features of the iOS 4 SDK and the iOS Architecture
Layers and their components. It also includes a discussion of Cocoa, Cocoa-Touch, and the
basics of object-oriented programming using Objective-C.

Chapter 2, Introducing the Xcode 4 Workspace, discusses how to download and install
the Xcode 4 and iOS4 SDK and introduces you to the Xcode 4 development environment
and the different types of libraries that are part of the workspace to create a simple
iPhone application.

Chapter 3, Working with the Interface Builder, introduces the developer to the Interface
Builder application and explains the iOS application life cycle when an application is run.
It also covers how to implement file saving and loading of Document-based applications,
as well as how to reposition the controls within the view when the device is rotated.

Preface

[�]

Chapter 4, Working with the Xcode Frameworks, introduces the developer to the different
types of Xcode frameworks for audio and video playback, and Core Location services for
determining geographical locations. It also covers how to build a simple database application
using the Core Data Framework.

Chapter 5, Designing Application Interfaces using MVC, introduces the developer to the
various layers of MVC and design patterns and the importance of implementing these in iOS
applications. It also covers how to interact with the user, with lots of code examples.

Chapter 6, Displaying Notification Messages, explores the different notification methods
through which we can communicate with the user to grab their attention, by using alerts,
activity indicators, sounds, and vibrations, with lots of code examples.

Chapter 7, Exploring the MultiTouch Interface, shows you how easy it is to incorporate both
single-touch and multi-touch support into your applications and include support for tapping,
pinching, and swipes. You will also learn about the built-in shake gesture and how to go
about responding to the shake motions, before finally learning about the accelerometer
and the new gyroscope features, as well as how to control your application UI when the
orientation changes.

Chapter 8, Debugging Xcode Projects, shows us how to go about debugging our projects,
through the use of the various debugging tools that Xcode provides. We are also introduced
to the new debugging features of the editor, and how to use the Static Analyzer tool to
determine potential memory leaks, dead code, and unreachable code, as well as using the
new Fix-it! feature to correct syntax errors as we type.

Chapter 9, Source Code Management with the Version Editor, focuses on the new features
of the Xcode Version Editor that has been integrated directly within the Xcode 4 IDE and
provides you with an easy way to manage your source code. By using this tool, you are able
to travel back through your revisions to compare previous changes made throughout the life
cycle of the file.

Chapter 10, Making your Applications Run Smoothly, focuses on how we can effectively use
Instruments within our applications to track down memory leaks and bottlenecks within our
applications that could potentially cause our application to crash on the user's iOS device.
We take a look into each of the different types of built-in instruments, which come as part
of the Instruments application and how we can use the Leaks instrument to help track down
and determine where memory leaks are happening within our code. We also look at how we
can configure instruments to display data differently within the trace document that is
being reported.

Chapter 11, Distributing your Application, provides you with the necessary steps that are
required to submit your applications to the App Store. It explains how to register devices for
testing and how to create and obtain provisioning profiles for development and distribution.

Preface

[�]

What you need for this book
This book assumes that you have an Intel-based Macintosh running Snow Leopard (Mac
OS X 10.6.2 or later). You can use Leopard, but I would highly recommend upgrading to
Snow Leopard, as there are many new features in Xcode that are available only on Snow
Leopard. We will be using Xcode, an integrated development environment used for creating
applications for the iPad, iPhone, and other Mac applications. You can download the latest
version of Xcode at the following link: http://developer.apple.com/xcode/.

Who this book is for
If you ever wanted to learn how to build iOS applications and make your mark within the iOS
industry and have your applications compete with the rest, this book is for you. You should
have some basic programming experience with Objective-C, and a good understanding of
OOP, as well as some knowledge of database design.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

Preface

[�]

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " If you observe the content of the MyClass.h file,
you will notice that at the top of the file is a #import statement."

A block of code is set as follows:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.
 [window makeKeyAndVisible];
 return YES;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Override point for customization after application launch.
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

Any command-line input or output is written as follows:

defaults delete com.apple.Xcode

rm –rf ~/Library/Application\ Support/Xcode

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Next button to
proceed to the next step of the wizard."

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introducing Xcode 4 Tools for

iOS Development

Welcome to the exciting world of iPhone Programming using Xcode 4. Since the
release of the original iPhone back in 2007, it has taken the world by storm and
opened up a whole new world to developers. This unique device comprises
a multi-touch interface, video and audio playback capabilities, stunning
graphics and sound, map and localization services, always-on internet and
Wi-Fi services, and a whole range of built-in sensors which can be used to
create everything from stunning games to business applications.

You are probably eager to get stuck right in and start creating that next big
thing to hit the AppStore, and start to join those other tens of thousands of
developers. The goal of this chapter is to give you enough insight into Xcode
and its components, the framework layers of the iOS architecture, and some
basics of Objective-C.

By the end of this book, you will have a firm grasp of Cocoa-Touch, and
understand most of the design patterns used by the Objective-C frameworks
in order to go on and build some fantastic applications. These could be along
the lines of a real estate application that shows a listing of all properties within
the surrounding suburbs using an SQLite database to store its data, and core
location services to display the property on the map, with directions on how
to get there. You could even create an educational game using flash cards and
sounds. The possibilities are endless; all it takes is an idea and you.

Introducing Xcode 4 Tools for iOS Development

[�]

In this chapter, we will:

Learn about the features and components of the Xcode development tools

Learn about Xcode, Cocoa, Cocoa-Touch, and Objective-C

Take a look into each of the iOS technology layers and their components

Take a look into what comprises the Xcode developer set of tools

Take a look at the new features in the iOS4 SDK

There is a lot of fun stuff to cover, so let's get started.

Throughout this chapter and the rest of this book, I will be making
references to iOS. Apple is calling its new Operating System "iOS 4", and it
is the next generation of the world's most innovative operating system and
works for the iPhone, iPad, and iPod Touch.

Development using the Xcode tools
In order to develop for the iPhone or any other iOS device, you will need to download
and install the Xcode developer tools. You can find these development tools on the CDs
that come with your Mac. However, it is always best to download the latest version of the
developer tools from the Apple website at http://developer.apple.com/.

Before you proceed to download these tools, Apple requires you to register as an iOS
developer at http://developer.apple.com/programs/register/. The registration
is free and provides you with access to the iOS SDK (software development kit) and other
resources that are useful for getting started.

iPhone SDK core components
The iPhone SDK includes a suite of development tools to assist you with development of
your iPhone, and other iOS device applications. We describe these in the table below:

COMPONENT DESCRIPTION

Xcode This is the main Integrated Development Environment (IDE) that enables
you to manage, edit, and debug your projects.

DashCode This enables you to develop web-based iPhone and iPad applications, and
Dashboard widgets.

iPhone Simulator The iPhone Simulator is a Cocoa-based application that provides a
software simulator to simulate an iPhone or iPad on your Mac OS X.











Chapter 1

[�]

COMPONENT DESCRIPTION

Interface Builder This is the graphical visual editor for designing your user interfaces for
your iPhone and iPad applications. In previous releases of Xcode, this
was a separate standalone application. In Xcode 4, this has now been
integrated as part of the development IDE.

Instruments These are the Analysis tools that help you optimize your applications and
monitor for memory leaks in real-time.

The Xcode tools require an Intel-based Mac running Mac OS X version 10.6 or later in order
to function correctly.

Inside Xcode, Cocoa, and Objective-C
Xcode 4 is a complete toolset for building Mac OS X (Cocoa-Based) and iOS applications.
The new single-windowed development interface has been redesigned to be a lot easier
and even more helpful to use than it has been in previous releases. It can now also identify
mistakes in both syntax and logical errors, and will even fix your code for you.

It provides you with the tools to enable you to speed up your development process,
therefore becoming more productive. It also automates deployment of both your
Mac OS X and iOS applications.

The Integrated Development Environment (IDE) allows you to do the following:

Create and manage projects, including specifying platforms, target requirements,
dependencies, and build configurations

Supports syntax colouring and automatic indenting of code

Enables you to navigate and search through the components of a project, including
header files and documentation

Enables you to Build and Run your project

Enables you to debug your project locally, run within the iOS simulator, or remotely,
within a graphical source-level debugger

Xcode incorporates many new features and improvements, apart from the redesigned user
interface; it features a new and improved LLVM (Low Level Virtual Machine) compiler that
has been supercharged to run three times faster and 2.5 times more efficiently.

This new compiler is the next generation compiler technology designed for
high-performance projects and completely supports C, Objective-C, and now C++.
It is also incorporated into the Xcode IDE and compiles twice as fast and quickly as
GCC and your applications will run faster.











Introducing Xcode 4 Tools for iOS Development

[10]

The list below includes the many improvements made to this release:

The interface has been completely redesigned and features a single-window
integrated development interface.

Interface Builder has now been fully integrated within the Xcode development IDE.

Code Assistant opens in a second window that shows you the file that you are
working on, and can automatically find and open the corresponding header file(s).

Fix-it checks the syntax of your code and validates symbol names as you type. It will
even highlight any errors that it finds and will fix them for you.

The new Version Editor works with GIT (Open-Source) version control software
or Subversion. This will show you the file's entire SCM (software configuration
management) history and will even compare any two versions of the file.

The LLDB debugger has now been improved to be even faster and it uses less
memory than the GDB debugging engine.

The new Xcode 4 development IDE now lets you work on several interdependent
projects within the same window. It automatically determines its dependencies so
that it builds the projects in the right order.

Xcode allows you to create a number of build configurations to test your iOS applications,
for debugging using the Static Analyzer, or profiling using the Instruments application.
Xcode also allows you to archive your application in order to submit to the Apple App
Store for review.

It supports several source-code management tools, namely, CVS "Version control software
which is an important component of the Source Configuration Management (SCM)" and
Subversion that allows you to add files to a repository, commit changes, get updated
versions, and compare versions using the Version Editor tool.

The iPhone Simulator
The iPhone Simulator is a very useful tool that enables you to test your applications without
using your actual device, whether this is your iPhone or any other iOS device. You do not
need to launch this application manually, as this is done when you Build and Run your
application within the Xcode Integrated Development Environment (IDE). Xcode installs
your application on the iPhone Simulator for you automatically.















Chapter 1

[11]

The iPhone Simulator also has the capability of simulating different versions of the iPhone
OS, and this can become extremely useful if your application needs to be installed on
different iOS platforms, as well as testing and debugging errors reported in your application
when run under different versions of the iOS.

While the iPhone Simulator acts as a good test bed for your applications, it is
recommended to test your application on the actual device, rather than relying
on the iPhone Simulator for testing. This is because the speed of the iPhone
Simulator relies on the performance of your Mac instead of the actual device.
The iPhone Simulator can be found at the following location: /Developer/
Platforms/iPhoneSimulator.Platform/Developer/
Applications.

Layers of the iOS architecture
Apple describes the set of frameworks and technologies that are currently implemented
within the iOS operating system as a series of layers. Each of these layers is made up of a
variety of different frameworks that can be used and incorporated into your applications:

We will now go into detail and explain each of the different layers of the iOS Architecture;
this will give you a better understanding of what is covered within each of the Core layers.

The Core OS layer
This is the bottom layer of the hierarchy and is responsible for the foundation of the
operating system which the other layers sit on top of. This important layer is in charge of
managing memory—allocating and releasing memory once the application has finished with
it, taking care of file system tasks, handling networking, and other operating system tasks. It
also interacts directly with the hardware.

www.allitebooks.com

http://www.allitebooks.org

Introducing Xcode 4 Tools for iOS Development

[12]

The Core OS layer consists of the following components:

COMPONENT NAME DESCRIPTION

OS X Kernel Based on Mach 3.0, it is responsible for every aspect of the
operating system.

Mach 3.0 A subset of the OS X Kernel responsible for running applications within
a separate process.

BSD (Berkeley Standard
Distribution)

Based on the kernel environment within the Mac OS X it is responsible
for the drivers, and low-level UNIX interfaces of the operating system.

Sockets Part of the CFNetwork Framework for providing access to BSD sockets,
HTTP and FTP protocol requests.

Security The Security Framework provides functions for performing
cryptographic functions (encrypting/decrypting data). This includes
interacting with the iPhone keychain to add, delete, and modify items.

Power Management Conserves power by shutting down any hardware features that are
not currently being used.

Keychain Part of the Security Framework for handling and securing data.

Certificates Part of the Security Framework for handling and securing data.

File System The System Framework gives developers access to a subset of the
typical tools they would find in an unrestricted UNIX development
environment.

Bonjour Part of the CFNetwork Framework for providing access to BSD
sockets, HTTP and FTP protocol requests, and Bonjour discovery
over a local-area-network.

For more information on the iOS Core OS layer, please refer to the Apple
Developer Connection website at http://developer.apple.com/
library/ios/documentation/Miscellaneous/Conceptual/
iPhoneOSTechOverview/CoreOSLayer/CoreOSLayer.html#//
apple_ref/doc/uid/TP40007898-CH11-SW1

Chapter 1

[13]

The Core Services layer
The Core Services layer provides an abstraction over the services provided in the Core OS
layer. It provides fundamental access to the iPhone OS services. The Core Services Layer
consists of the following components:

COMPONENT NAME DESCRIPTION

Collections Part of the Core Foundation Framework which provides basic data
management and service features for iOS applications.

Address Book Provides access to the user's Address Book contacts on the
iOS device.

Networking This is part of the System Configuration Framework, which
determines network availability and state on an iOS device.

File Access Provides access to lower-level operating system services.

SQLite This lets you embed a lightweight SQL database into your application
without running a separate remote database server process.

Core Location Used for determining the location and orientation of an iOS device.

Net Services Part of the System Configuration to determine whether a Wi-Fi or
cellular connection is in use and whether a particular host server
can be accessed.

Threading Part of the Core Foundation Framework which provides basic data
management and service features for iOS applications.

Preferences Part of the Core Foundation Framework which provides basic data
management and service features for iOS applications.

URL Utilities Part of the Core Foundation Framework which provides basic data
management and service features for iOS applications.

For more information on the iOS Core Services layer, please refer to
the Apple Developer Connection website at http://developer.
apple.com/library/ios/documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/CoreServicesLayer/
CoreServicesLayer.html#//apple_ref/doc/uid/TP40007898-
CH10-SW5

Introducing Xcode 4 Tools for iOS Development

[14]

The Media layer
The Media layer provides multimedia services that you can use within your iPhone, and
other iOS devices. The Media layer is made up of the following components:

COMPONENT NAME DESCRIPTION

Core Audio Handles playback and recording of audio files and streams and also
provides access to the device's built-in audio processing units.

OpenGL Used for creating 2D and 3D animations

Audio Mixing Part of the Core Audio Framework, provides the possibility to mix
system announcements with background audio. For example, iOS
would announce callerID while fading in/out the background media.

Audio Recording Provides the ability to record sound on the iPhone using the
AVAudioRecorder class.

Video Playback Provides the ability to playback Video using the
MPMoviePlayerController class.

Image Formats: JPG, PNG,
and TIFF

Provides interfaces for reading and writing most image formats
– part of the Image I/O Framework.

PDF Provides a sophisticated text layout and rendering engine.

Quartz Framework for image and video processing, and animation using the
Core Animation technology.

Core Animations Provides advanced support for animating views and other content.
This is part of the Quartz Framework.

OpenGL ES This is a subset of the OpenGL Framework for creating 2D and 3D
animations.

For more information on the iOS Media layer, please refer to the Apple
Developer Connection website at http://developer.apple.com/
library/ios/documentation/Miscellaneous/Conceptual/
iPhoneOSTechOverview/MediaLayer/MediaLayer.html#//
apple_ref/doc/uid/TP40007898-CH9-SW4

The Cocoa-Touch layer
The Cocoa-Touch layer provides an abstraction layer to expose the various libraries for
programming the iPhone, and other IOS devices. �������������������������������� You probably can understand why
Cocoa-Touch is located at the top of the hierarchy due to its support for Multi-Touch
capabilities. The Cocoa-Touch layer is made up of the following components:

Chapter 1

[15]

COMPONENT NAME DESCRIPTION

Multi-Touch Events These are the events which are used to determine when a Tap,
Swipe, Pinch, double-tap has happened. That is, TouchesMoved,
TouchesBegan, TouchesEnded.

Multi-Touch Controls Based on the Multi-Touch model, this determines when a user
has placed one or more fingers touching the screen before
responding to the action accordingly.

View Hierarchy Deals with the Model-View-Controller and the objects within
the view.

Alerts Using the UIAlertView class, these are used to communicate to
the user when an error happens, or to request further input.

People Picker Based on the AddressBook Framework, which displays the
person's contact details.

Controllers Based on the Model-View-Controller for presenting standard
system interfaces and provides much of the logic needed to
manage basic application behaviors. For example, managing the
reorientation of views in response to device orientation changes.

Accelerometer/Gyroscope Responds to motion and measures the degree of acceleration,
and rate of rotation around a particular axis.

Localization/Geographical Adds maps and satellite images to location-based apps, similar to
the one provided by the Maps application.

Web Views Provides a view to embed web content and display rich HTML.

Image Picker Provides a potentially multi-dimensional user-interface element
consisting of rows and components.

For more information on the iOS Cocoa-Touch Layer, please refer to
the Apple Developer Connection website at http://developer.
apple.com/library/ios/documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/
iPhoneOSTechnologies.html#//apple_ref/doc/uid/
TP40007898-CH3-SW1

Introducing Xcode 4 Tools for iOS Development

[16]

Understanding Cocoa, the language of the Mac
Cocoa is defined as the development framework used for the development of most native
Mac OS X applications. A good example of a Cocoa-related application is Mail or Text Edit.

This framework consists of a collection of shared object code libraries known as the Cocoa
frameworks. It consists of a runtime system and a development environment. This set of
frameworks provides you with a consistent and optimized set of pre-built code modules
that will speed up your development process.

Cocoa provides you with a rich layer of functionality, as well as a comprehensive
object-oriented like structure and APIs on which you can build your applications.
Cocoa uses the Model-View-Controller (MVC) design pattern.

What are Design Patterns?
Design Patterns represent and handle specific solutions to problems that arise when
developing software within a particular context. These can be either a description or a
template, on how to solve a problem in a variety of different situations.

What is the difference between Cocoa and Cocoa-Touch?
Cocoa-Touch is the programming language framework that drives user interaction on iOS. It
consists of and uses technology derived from the Cocoa framework and was redesigned to
handle multi-touch capabilities. The power of the iPhone and its user interface are available
to developers throughout the Cocoa-Touch frameworks.

Cocoa-Touch is built upon the Model-View-Controller structure; it provides a solid stable
foundation for creating mind blowing applications. Using the Interface Builder developer
tool, developers will find it both very easy and fun to use the new drag-and-drop method
when designing their next great masterpiece application on iOS.

The Model-View-Controller
We will just touch on this subject briefly as this will be covered in Chapter 5, Designing
Application Interfaces using MVC. Basically, the Model-View-Controller (MVC) comprises
of a logical way of dividing up the code that makes up the GUI (Graphical User Interface)
of an application. Object-Oriented applications like Java and .Net have adopted the MVC
design pattern.

Chapter 1

[17]

The MVC model comprises of three distinctive categories:

Model: This part defines your application's underlying data engine. It is responsible
for maintaining the integrity of that data.

View: This part defines the user interface for your application and has no explicit
knowledge of the origin of data displayed in that interface. ����������������� It is made up of
Windows, controls, and other elements that the user can see and interact with.

Controller: This part acts as a bridge between the model and view and facilitates
updates between them. It��� binds the Model and View together and the application
logic decides how to handle the user's inputs.

What is Object-Oriented Programming?
Object-Oriented programming (OOP), ��� provides an abstraction layer of the data on which you
operate. It provides a concrete foundation between the data and the operations that you
perform with the data, in effect, giving the data behavior.

By using the power of Object-Oriented programming, we can create classes and later extend
its characteristics to incorporate additional functionality. Objects within a class can be
protected to prevent those elements from being exposed; this is called "Data Hiding".

What is Data Hiding?
Data Hiding is an aspect of Object-Oriented Programming (OOP) that allows developers to
protect private data and hide implementation details by encapsulating this within a class.

In the following Java code example, we take a look at how we implement hiding of variables,
and only exposing those methods to extract this information:

public class Dog {
// public - a violation of data hiding 'rules'
 public string name;

// private - not visible outside the class
 Private float age;
 .
 .
 .







Introducing Xcode 4 Tools for iOS Development

[18]

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

In the partial Dog class snippet above, we show how we are able to expose and hide
variables within a class. In the following example below, we look at how we go about using
the Getters and Setters to store and retrieve information, without directly assigning values to
the variables:

public class Dog {
 private String name;
 private String gender;
 private String breed;
 private float weight;
 private float height;
 private float age;

 // Here are 'get' and 'set' methods for the private variable
declared above.
 public void setName(String name){
 this.name = name;
 }
 public String getName() { return name;}
 public void setGender (String gender){
 this.gender = gender;
 }
 public String getGender() { return gender;}
 public void setBreed (String breed){
 this.breed = breed;
 }
 public String getBreed() { return breed;}
 public void setHeight(float height) {
 If (height >= 0) { this.height = height;}
 }
 public float getHeight() { return height;}
 public void setWeight(float weight){
 if (weight >= 0) { this.weight = weight;}
 }
 public float getWeight() { return weight;}
 public float getAge() { return age;}
 public void setAge(float age){
 if (age >= 0) { this.age = age;}
 }
}

Chapter 1

[19]

In the above code snippet, we have declared a number of different variable data types as
well as the getters and setters to retrieve and assign values to these variables. ����������Generally
speaking, all��� variables declared within a class should be made private; since these types are
not made visible outside the class. The only methods which should be made visible to a class
must be made public and therefore supplemented with the "get" and "set" methods. In the
following code snippet, we look at how we use the getters and setters to store and retrieve
the data:

public class Main {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Dog myDog = new Dog();

 // Use the 'set' method to assign each property.
 myDog.setName("Frodo");
 myDog.setGender("Male");
 myDog.setBreed("Pug");
 myDog.setWeight((float)9.0);
 myDog.setHeight((float)36.0)
 myDog.setAge((float)10.0);

 // Output each of the values using the Getters.
 System.out.println("Name = " + myDog.getName ());
 System.out.println("Gender = " + myDog.getGender());
 System.out.println("Breed = " + myDog.getBreed());
 System.out.println("Weight = " + myDog.getWeight());
 System.out.println("Height = " + myDog.getHeight());
 System.out.println("Age = " + myDog.getAge());
 }
}

In the above code snippet, we declare a new instance of our Dog class and then use
the Setters method to add values to each of our private method variables, before
finally displaying this information out to the screen via the Getters methods.

If you are interested in learning more about Object-Oriented Programming,
please consult the Apple Developer documentation or via the following
link: https://developer.apple.com/library/ios/
#documentation/Cocoa/Conceptual/OOP_ObjC/Articles/
ooOOP.html

Introducing Xcode 4 Tools for iOS Development

[20]

What is Objective-C?
When I first started to develop for the iPhone, I realised that I needed to learn Objective-C,
as this is the development language for Mac and iOS. I found it to be one of the strangest
looking languages I had ever come across. Today, I really enjoy developing and working with
it, so will you too.

Objective-C is an object-oriented programming language used by Apple primarily for
programming Mac OS X, iPhone, and other iOS applications. It is an extension of the C
Programming Language. If you have not done any OOP programming before, I would
seriously recommend that you read the OOP document from the Apple Developer website.

On the other hand, if you have used and are familiar with C++, .Net or Java, learning
Objective-C should be relatively easy for you to understand.

Objective-C consists of two types of files:

.h: These types of files are called 'Header' or 'Interface files'

.m: These types of files are those which contain your program code
logic and make use of the 'Header' files. These are also referred to as
'implementation' files.

Most Object-Oriented development environments consist of the following parts:

An Object-Oriented programming language

An extensive library consisting of objects

A development suite of developer tools

A runtime �����������environment

For example, here is a piece of code written in Objective-C:

-(int)method:(int)i {
 return [self square_root: i];
}

Now, let's examine the code line by line to understand what is happening.

We declare a function called method and a variable i, which is passed in as a parameter. We
then pass the value to a function called square_root to calculate
the value and the calculated result is returned.

If we were to compare this same code to how it would be written within C, it would look
like this:

int function(int i) {
 return square_root(i);
}













Chapter 1

[21]

Directives
In C/C++, we use directives to include any other header files that our application will need
to access. This is done by using #include. In Objective-C, we use the #import directive. If
you observe the content of the MyClass.h file, you will notice that at the top of the file
is a #import statement:

#import <UIKit/UIKit.h>
@Interface myClass : NSObject{
}
@end

The #import s��������tatement is known as a �"pre-processor directive." ��������������������������� As I mentioned previously,
in C/C++, you use the #include pre-processor directive to include a files content with the
current source file. In Objective-C, you use the #import statement to do the same, with the
exception that the compiler ensures that the file is only included once.

To import a header file from one of the framework libraries, you would specify the header
filename using the angle brackets (< >), within the #import statement. If you wanted to
import one of your own header files to be used within your project, you would specify and
make use of the double quote marks (" "), as you can see from our code file, MyClass.m:

#import "MyClass.h"
@implementation MyClass
@end

Objective-C classes
A Class can simply be defined as a representation of a type of object; think of it as a blueprint
that describes the object. Just as a single blueprint can be used to build multiple versions of
a car engine, a class can be used to create multiple copies of an object. In Objective-C, you
will spend most of your time dealing with classes and class objects. An example of a class
object is the NSObject class. NSObject is the root class of most of the Objective-C classes.
It defines the basic interface of a class and contains methods that are common to all classes
that inherit from it.

The @interface directive
To declare a class, you use the @interface compiler directive that is declared within
MyClass.h, as follows:

@interface MyClass : NSObject {
}

Introducing Xcode 4 Tools for iOS Development

[22]

The @implementation directive
To implement a class declared within a header file, you use the @implementation compiler
directive, as follows:

#import "MyClass.h"
@implementation MyClass
@end

Class instantiation
In Objective-C, in order for us to create an instance of a class, you would typically use the
alloc keyword to allocate memory for the object and then return the variable in a class type.
This is shown in the following example:

MyClass *myClass = [MyClass alloc];

If you are familiar with other languages such as Java or C#.Net, instantiating a class can be
done as follows:

MyClass myClass = new MyClass();

Class access privileges
In OOP, when you are defining your classes, bear in mind that by default, the access privilege
of all fields within a class are @protected. These fields can also be defined as @public,
or @private.

The following table below shows the various access privileges that a class can contain:

ACCESS PRIVILEGE DESCRIPTION

@private A class member is only visible to the class that declares it.

@public A class member is made visible to all classes that instantiate
this class.

@protected Class members are made visible to the class that declares it as well
as other classes which inherit from the base class.

We have only covered a small part of the Objective-C programming concepts.
If you are interested in reading a bit more about this area, please refer to the
following website: http://developer.apple.com/documentation/
Cocoa/Conceptual/ObjectiveC/ObjC.pdf

Chapter 1

[23]

Introducing the Xcode Developer set of tools
The Xcode developer set of tools comprise of the Xcode Integrated Development
Environment (IDE), Interface Builder, iPhone Simulator, and Instruments for Performance
Analysis. These tools have been designed to integrate and work harmoniously together.

Introducing the core tools
The Xcode IDE is a complete full-featured development environment, which has been
redesigned and built around to allow for a better smoother workflow development
environment. With the integration of the GUI designer (Interface Builder), it allows a
better way to integrate the editing of source code, building, compiling, and debugging.

The Interface Builder is an easy to use GUI designer which enables you to design every
aspect of your applications UI, for Mac OS X and iOS applications.

All of your form objects are stored within one or more resource files, these files contain
the associated relationships to each of the objects. Any changes that you make to the form
design are automatically synchronized back to your code.

The iPhone Simulator provides you with a means of testing your application out, and to see
how it will appear on the actual device. The Simulator makes it a perfect choice to ensure
that your user interface works and behaves the way you intended it to and makes it easier
for you to debug your application. The iPhone Simulator does contain some limitations,
which cannot be used to test certain features, so it is always better to deploy your app to
your iOS device.

The Welcome to Xcode screen
To launch Xcode, double-click on the Xcode icon located in the /Developer/
Applications folder. Alternatively, you can use Spotlight to search for this: simply
type Xcode into the search box and Xcode should be displayed in the list at the top.

When Xcode is launched, you should see the Welcome to Xcode screen as shown in the
screenshot below. From this screen, you are able to create new projects, check out existing
projects from the SCM, and modify those files within the Xcode integrated development
environment. It also contains some information about learning Xcode as well as Apple
Developer resources.

Introducing Xcode 4 Tools for iOS Development

[24]

The panel to the right-hand side of the screen will display any recent projects which you have
opened. These can be opened and loaded into the IDE by clicking on them:

The Xcode Integrated Development Environment
The Xcode Integrated Development Environment is what you will be using to start to code
your iPhone applications.

This consists of a single-window user interface, consisting of the Project Window, Jump and
Navigation Bars, and the newly integrated Interface Builder designer. We will talk more about
the Xcode 4 workspace environment in Chapter 2, Introducing the Xcode 4 Workspace:

Chapter 1

[25]

Features of the iPhone Simulator
The "iPhone Simulator"��� simulates various features of a real iOS device.

The screenshot below displays the iPhone 4 simulator:

Below we list some of the features which you are able to test using the
iPhone Simulator:

TYPE DESCRIPTION

Screen Rotation: Left, Top, and Right

Support for gestures: Tap

Touch and Hold

Double Tap

Swipe

Introducing Xcode 4 Tools for iOS Development

[26]

TYPE DESCRIPTION

Flick

Drag

Pinch

Low-Memory warning
simulations

Notifies all running applications
whenever the amount of free
memory falls below a safe
threshold. This can happen
when memory is allocated to
objects, but never released.

Although the iPhone simulator is just a simulator to simulate certain tasks, it does come with
the following limitations:

Making phone calls

Accessing the Accelerometer/Gyroscope

Sending and receiving SMS messages.

Installing applications from the App Store

Accessibility to the camera

Use of the microphone

Several core OpenGL ES features

Companion tools and features
These tools are classified as profiling tools which are the instruments that handle the following:

Performance and Power Analysis tools

Unit testing tools

Source Code Management (SCM)/Subversion

Version Comparison tool

Instruments
The Xcode instruments allow you to dynamically trace and profile the performance of your
Mac OS X, iPhone, and iPad applications. You can also c��������������������������������� reate your own Instruments using
DTrace and the Instruments custom builder.























Chapter 1

[27]

We do not cover DTrace in this book, if you are interested in reading a bit
more about this area; please consult the Apple Developer Documentation
at the following: http://developer.apple.com/library/
mac/#documentation/Darwin/Reference/ManPages/man1/
dtrace.1.html#//apple_ref/doc/man/1/dtrace. DTrace has
not been ported to iOS, so it is not possible to create a custom instrument for
devices running iOS.

Through the use of instruments, you can achieve the following:

Ability to perform stress-tests on your applications

Monitor your applications for memory leaks, which can cause
unexpected results

Gain a deeper understanding of the execution behaviour of your applications

Track down difficult-to-reproduce problems in your applications

In the screenshot displayed below, it shows you the current list of available
instrument templates which you can choose from, to perform a variety of different
traces on your iOS applications. We will be discussing and using these in greater
detail, when we come to Chapter 10, Making your Applications run smoothly.











Introducing Xcode 4 Tools for iOS Development

[28]

In the following screenshot, we display the Instruments environment where you
can start to create your robust test harness for your application to ensure that any
memory leaks and resource-intensive tasks are rectified to avoid problems later
when your users download your app and experience issues:

If you are interested in learning more about the other applications that are
included with Xcode and the iOS 4 SDK, please consult the Apple Developer
documentation at the following: http://developer.apple.com/

iPhone OS4 SDK new features
The iOS4 SDK comes with over 1,500 APIs that contain some high quality enhancements
and improvements which allow endless possibilities for developers to create some stunning
applications. The table below provides an overview of these features:

FEATURE DESCRIPTION

Multi-Tasking This is perhaps the most awaited feature. It is an assortment of seven different
services: Audio, VoIP, location, local and push notifications, task completions,
and fast app switching that will make it possible and simple enough to use
many applications at the same time. This will allow you to play the audio
continuously, receive calls while your device is locked or other apps are being
used. Location-based applications will continue to guide you, and receiving
alerts will be possible without the app running and the app will finish even
when the customer leaves in the middle of it.



Chapter 1

[29]

FEATURE DESCRIPTION

Apps Folder Another important feature in iOS4 is the Apps Folder. This feature allows you
to drag an icon on top of another one and a new folder will be automatically
created. It will be named according to the name of the category the particular
icon or application comes from.

Game Center Game Center provides social networking services, where you can take part in
leader boards and participate in other online activities with other players.

iAd iAd is a mobile advertising platform to allow developers to incorporate
advertisements into their application. It is currently supported on iPhone, iPod
Touch, and iPad.

The list above contains some of the important new features of iOS 4. If you are
interested in a more detailed listing of all of the features in each of the releases;
check out the following: http://en.wikipedia.org/wiki/iPhone_
OS_Version_History.

Summary
In this chapter, hopefully you have gained a good understanding of Xcode and the
development tools and the new and improved single-windowed development IDE.
We have also covered some of the basics relating to Object-Oriented Programming and
Objective-C. It will soon become apparent why Objective-C was chosen as the language
of choice for developing Mac OS X and iOS applications.

Now that we've learned about what comprises the Xcode developer tools, we
are now ready to get stuck into and learn about the new Xcode 4 workspace and
development environment.

In the next chapter, we will dive right in and take a closer look at the Xcode 4 workspace
environment as well as using some of the tools we have explained in this chapter. We will
also start to develop a simple application using Xcode and Interface Builder.

2
Introducing the Xcode 4 Workspace

In the previous chapter, we covered the Xcode development tools. We also took
a look into Xcode, the Cocoa Framework, and Cocoa-Touch layers and delved
into a crash-course on the features of Objective-C. Finally, we looked into the
new features of iOS 4.

In this chapter, we will learn how to download and install the Xcode developer
tools and Software Development Kit (SDK). We will familiarise ourselves with
the newly re-designed development environment, and introduce you to the
Xcode 4 workspace and preferences as well as working with the new Xcode
Assistant and Code Assistants.

We will finally create a simple iPhone application, that will incorporate the use
of Views and View Controllers.

In this chapter, we will:

Learn how to download and install the Xcode ������������������ Development������� Tools.

Introduce you to the new Xcode Development ������������Environment�.

Introduce you to the Xcode 4 Workspace and the Unified Navigator UI

Learn about the Xcode Workspace �����������Preferences

Create a simple "Hello World" iPhone application ���������������� using����������� Views and
View Controllers

Learn how to reset the Xcode development environment

We have got quite a bit to cover, so let's get started.













www.allitebooks.com

http://www.allitebooks.org

Introducing the Xcode 4 Workspace

[32]

Downloading and installing the iOS SDK
Before we can start to build our iOS applications, you must first sign up as a registered iOS
Developer at http://developer.apple.com/programs/ios/. The registration process
is free and provides you with access to the iOS SDK (Software Development Kit) and other
developer resources that are really useful for getting you started.

Once you have signed up, you can then download the iPhone SDK as shown in the
screenshot below. It is worthwhile making sure that your machine satisfies the following
system requirements prior to your downloading the iPhone SDK:

Only Intel Macs are supported, so if you ��� have������������������������������������� another processor type (such as the
older G4 or G5 Macs), you're out of luck.

You have updated your system with the latest Mac OS X release

If you want to develop applications for the iPad and iPod Touch, this uses the
same operating system (OS) as the iPhone, so you can still use the iPhone SDK.
This SDK allows you to create universal applications that will work with both the
iPhone and iPad running on iOS 4.2 and above.





Chapter 2

[33]

Once you have downloaded the SDK, you can proceed with installing it. You will be required
to accept a few licensing agreements. You will then be presented with a screen to specify the
destination folder in which to install the SDK:

If you select the default settings during the installation phase, the various tools will be
installed in the /Xcode4/Applications folder.

The installation process takes you through the custom installation option screens. You
probably would have seen similar screens to this if you have installed other Mac software.
The screenshot below shows what you will see here:

Introducing the Xcode 4 Workspace

[34]

These options give you a little more control over the installation process. For example, you
are able to specify the folder location to install Xcode as well as
setting a variety of other options.

By default, Xcode 4 will be installed on the root directory of your Hard Drive in
the following folder location: /Xcode4/Applications.

The iOS4 SDK comes as part of the "xcode_4.0.1_and_ios_sdk_4.3.dmg" download which
we installed in the previous section. You are also able to download this separately from the
download page. The SDK consists of the following components which are mentioned in the
list below and provides a reference to the relevant area to find out more information:

Xcode: Please refer to Chapter 1, iPhone SDK Core Components for more information
on this component.

DashCode: Please refer to Chapter 1, iPhone SDK Core Components for more
information on this component

iPhone Simulator: Please refer to Chapter 1, iPhone SDK Core Components for more
information on this component

Interface Builder: Please refer to Chapter 1, iPhone SDK Core Components for more
information on this component

Instruments: Please refer to Chapter 1, iPhone SDK Core Components for more
information on this component

The following image displays a list of the various tools that are installed as part
of the default settings during the installation phase. These are installed in the
/Xcode4/Applications folder:











Chapter 2

[35]

Removing the Xcode Developer Tools
Should you ever wish to uninstall Xcode (in the event that something went disastrously
wrong) it is a very straightforward process. Open the terminal window and run the
uninstall-devtools script:

sudo <Xcode>/Library/uninstall-devtools --mode=all

<Xcode> is the directory where the tools are installed. For typical installations, the full path
is /Xcode4/Library/uninstall-devtools

Before you proceed to do this, make sure that this is what you really intend to do
as once it's gone, it's permanently deleted. In any event, you can always choose
to reinstall the Xcode developer tools. It is also worth checking that the /Xcode4/
Library/ folder has also been removed. If not, just move it to the Trash.

Getting to know the Xcode Development Environment
I am hoping that up to this point, you would have successfully downloaded and installed
the Xcode 4 developer tools and iOS SDK. From this point on, we will start to familiarise
ourselves with the newly redesigned Xcode 4 development workspace and what is involved
in migrating older projects, as well as creating a new project from scratch.

One environment to bind them all
The first thing that you will notice when you fire up the Xcode 4 IDE is that the interface has
gone through some significant changes that provide better workflow to enable developers
to be more productive. The new interface features a LCD-like display, similar to that found in
iTunes. This is called the Activity Window and is used for displaying warnings and compiler
error messages during the build process of a project.

Introducing the Xcode 4 Workspace

[36]

Working within a single-development environment
The main area of Xcode (called the workspace) is dedicated to the document that is
currently being viewed, whether it is code, a data model, or the project's graphical interface.
This area can also be arranged to view multiple documents, to allow a comparison of their
differences (such as comparing two versions of the same code file). The content area also
has support for viewing of PDFs and other file types supported by the extendable Quick
Look feature:

One other new thing that you will notice is that, above the content area is what is called the
'Jump Bar' that presents a hierarchical "breadcrumb-like" listing, which was introduced in
iTunes and Finder; with its only difference being that it is fully interactive; users can click on
any path along the bar and select a popup that allows them to navigate at that level via a
dynamic popup window that is displayed.

It also contains a Project Navigator control. This contains icon tabs that present a variety
of different types of development-related information and are contained within the same
window, and these are as follows:

Provides a ��� means�� of listing all of your projects and files, that are contained within
your workspace

A Project Symbol �� listing��� which lists all classes and methods used by
your project





Chapter 2

[37]

A new and improved search feature, which can perform project-wide searching

Issues listing containing all of the build errors that your project contains

Helpful debugging �����������information

An area, that shows you all �� breakpoints����������������������������������� , which are flagged in your project

Contains a section, which lists all of the Build logs

Creating a new project
To create a new project in Xcode 4, launch the Xcode 4 development IDE and then click on
Create a new Xcode project in the Welcome to Xcode startup screen. This is shown in the
screenshot below. If you already have Xcode 4 opened, choose File | New | New Project:

Migrating older projects into the new environment
Xcode 4 provides you with a number of quick and easy ways to migrate your older Xcode
projects into the new development environment. You can choose to right-click on your
project and select to open the project in Xcode 4, or you can similarly drag your project
onto the Xcode 4 icon.











Introducing the Xcode 4 Workspace

[38]

You can also use the File | Open command within the Xcode 4 IDE. Xcode 4 can read and
build projects built in Xcode 3.2 through to 3.2.6. Opening your project(s) in Xcode 4 does
not upgrade or alter it in any way and any changes that you make to the project will remain
compatible with earlier versions of Xcode.

Writing a simple iPhone application
This is where the real fun starts, and I know that you are eager to get stuck in and start
creating a simple iPhone application. We will be creating a simple Hello to Xcode 4
application making use of View Controllers. We won't be using Xcode's Interface builder
in this chapter, as it will be covered in Chapter 3, Working with the Interface Builder.
So let's get started.

Time for action – creating your first iPhone application
In this section, we will look at building a simple iPhone application to display a welcome
message to our View.

Before we can proceed with creating our "HelloXcode4" application, we must first launch
the Xcode development environment. If you haven't already got this open, it can be located
within the /Xcode4/Applications folder, or you can use the spotlight feature to help you
search for this. What we now need to do is to create our project by following these simple
steps below:

1.	 Click on the Create a new Xcode project. This will bring up the project template
dialog as shown in the screenshot below.

2.	 Select the Window-based application. What this template is going to give
you is a Window and an application delegate. An application delegate
(UIApplicationDelegate) is an object that responds to messages from a
UIApplication object. It is worth mentioning here that there can only be one
UIApplication object, and the project template takes care of creating this for us

3.	 Click on the Next button and you will be prompted to enter a name for your project.

4.	 Enter HelloXcode4 for the Product Name. Don't worry about the Company Identifier
as this will be populated for you by default. This is used for submission of your App
to the AppStore.

5.	 Click on the Next button to proceed to the next step of the wizard.

6.	 You will then be asked to choose a location where you would like to save your
project. This can be any location that you desire.

Chapter 2

[39]

7.	 You will also notice that there is an option to automatically save your project to
Source Control, which will create a local repository on disk so you can check-in your
work. This option is not checked by default. It is advisable to have this checked, if
you are working in a team environment where you have multiple people working
on the same project.

Xcode 4 provides support for both Git and SVN for Version Control. We will cover this
in greater detail when we come to Chapter 9, Source Code Management with the
Version Editor.

Once your project has been created, you will be presented with the Xcode interface. All
files that the project template created for you will be displayed within the Project Navigator
window section:

The important files to take note of are the following: main.m, HelloXcode4AppDelegate.
h, and HelloXcode4AppDelegate.m.

Introducing the Xcode 4 Workspace

[40]

The main function is where the single UIApplication object is created and the function
called UIApplicationMain() takes care of that. You may be asking yourself, how does the
HelloXcode4AppDelegate get hooked up to the UIApplication object? Remember
when we created our project earlier on, the creation process created an Interface Builder
(.xib) file for us called MainWindow.xib; this is the file that takes care of forming this
relationship for us.

Now, we will check out the implementation of the delegate, HelloXcode4Delegate.m.
There are several messages that we can get from the UIApplication object.
However, the template has already created the one which we care about: —
applicationDidFinishLaunchingWithOptions:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 // Override point for customization after application launch.
 [window makeKeyAndVisible];
 return YES;
}

This function is where we will be creating our view controller, which will eventually hold our
label object for our text output. In order to create a view controller, we first need to add
another class to our project that subclasses UIViewController:

1.	 Select the Classes folder, located within your project and then choose
File | New | New File..., or Command + N:

Chapter 2

[41]

2.	 Next, select the Cocoa Touch Class in the left column under iOS and select the
UIViewController subclass template from the list of available templates.

3.	 Click on the Next button to proceed to the next step of the wizard.

4.	 Enter HelloXcode4ViewController as the name of the file to create, and then click
on the Save button.

You will notice when you look at the new implementation file
HelloXcode4ViewController.m that it contains some commented
out functions as shown in the following code snippet:

@implementation HelloXcode4ViewController

/*
 // The designated initializer. Override if you create the
 controller programmatically and want to perform customization that
 is not appropriate for viewDidLoad.
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle
 *)nibBundleOrNil {
 if ((self = [super initWithNibName:nibNameOrNil
 bundle:nibBundleOrNil])) {
 // Custom initialization
 }
 return self;
}
*/

/*
// Implement viewDidLoad to do additional setup after loading the
 view, typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/

/*
// Override to allow orientations other than the default portrait
 orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation
)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}
*/

Introducing the Xcode 4 Workspace

[42]

View controllers are meant to be used by overriding the base implementation of various
methods.�������������������������������������� In our case, we want to override the loadView method, which is used to manually
populate a view controller:

// Implement loadView to create a view hierarchy programmatically,
// without using a nib file.
- (void) loadView

We don't need to add controls directly to the view controller as these are added to a
UIView, that is a property of the view controller. We have not allocated the view yet, so we
are going to start to do this here.

First, we need to create a UIView object that is the size of our display and link this up to the
view controllers view property:

 // Create a frame that sets the bounds of the view
 CGRect frame = CGRectMake(0, 0, 960, 640);

 // Allocate our view
 self.view = [[UIView alloc] initWithFrame:frame];

 // Set the view's background color
 self.view.backgroundColor=[UIColor greenColor];

View Controllers have a view property that needs to be set to our new UIView object. Next,
we will be creating a label to store our text output:

 // set the position of our text label
 frame = CGRectMake(10, 170, 350, 50);

 // allocate memory for our label
 UILabel *label = [[UILabel alloc] initWithFrame:frame];

 // Assign some text to our label control
 label.text = @"iPhone Programming using Xcode 4";
 label.textColor = [UIColor redColor];

 // now, add the label to the view
 [self.view addSubview:label];

 // it is a good idea to release the memory allocated by our label
 [label release];
}

Chapter 2

[43]

Now that we have created our view controller, which contains a label that will display the
words iPhone Programming using Xcode 4, we need to create an instance of our view
controller and add it to our application. If you recall when we were discussing the function
applicationDidFinishLaunching, this is where we will be adding our view controller.

Before we can do this, we first need to add a #import statement at the top of our
HelloXcode4AppDelegate.m implementation file, in order for the compiler to find
the declaration of this object. This is shown below:

#import "HelloXcode4AppDelegate.h"
#import "HelloXcode4ViewController.h"

Now that you have done this, we are ready to start creating our View Controller code within
this file (HelloXcode4AppDelegate.m):

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // allocate the memory for our view controller
 self.viewController = [HelloXcode4ViewController alloc];

 // now, we need to add our view controller to the window
 [window addSubview:self.viewController.view];

 // Override point for customization after application launch.
 [window makeKeyAndVisible];
 return YES;
}

Just as we have done in the similar examples above, we needed to allocate a new
HelloXcode4ViewController and then add that to our window. We could just
create our view controller locally, but this is not a good idea as it can cause memory leaks.

A much better approach is to create a reference, which can be released once we have
finished using it. I have created a property called ViewController, which will be used
to store our view controller.

Introducing the Xcode 4 Workspace

[44]

This has been defined within the HelloXcode4AppDelegate.h file and is shown in the
following code snippet:

#import <UIKit/UIKit.h>

@class HelloXcode4ViewController;

@interface HelloXcode4AppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;

 HelloXcode4ViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) HelloXcode4ViewController
*viewController;

@end

We now need to tell the compiler to actually create the getter and setter functions
for our new property. We need to do this back in our HelloXcode4AppDelegate.m
implementation file by adding the @synthesize property. This is shown below:

@synthesize window;
@synthesize viewController;

You will see that one already exists for our window object, so just place this underneath.
Finally we need to release our reference to our view controller property when the dealloc
method is called. You should notice that a dealloc function already exists within the
HelloXcode4AppDelegate.m file; we just need to modify it to include removal of
our view controller object:

- (void)dealloc {
 [viewController release];
 [window release];
 [super dealloc];
}

So there you have it, we have added our view controller to our view and have released the
memory when the device is stopped. You are now ready to Build and Run your application.
You can do this in one of two ways, either click on the play button within the Xcode 4 IDE,
or click on Product | Run "HelloXcode4":

Chapter 2

[45]

When you run the application, you should see an image similar to the screenshot below:

Introducing the Xcode 4 Workspace

[46]

What just happened
We first created a CGRect object, which sets the bounds for our view. We then positioned
our view to start from top (0, 0) and set it to the size of the iPhone display of (960, 640)
as well as setting our view background to green.

Next, we needed to specify where we would like to position our label text. In order to do
this, we needed to create another CGRect object and then allocate memory for our label
object and then add the label to our view controller.

Finally, we released the memory used by our label object (this is good programming practice
and will prevent your application from having memory leaks).

In the HelloXcode4AppDelegate.h file, you will notice that we have declared an
@class declaration at the top of the interface (HelloXcode4AppDelegate.h) file. This
HelloXcode4ViewController class is a forward declaration and it tells the compiler that
a class name with this exists within our project. Without this declaration, the compiler would
report an error at the first reference to HelloXcode4ViewController. In the @interface
section of this file, we declare a member variable to hold our view controller. We then use
the @property method to wrap our member variable with implicit getters and setters.

Working with the new Xcode Assistant
A new improved feature, included within Xcode 4, is the Xcode Assistant. This assistant
comes with two modes of tracking: Automatic and Manual mode. Automatic tracking
mode comes with several criteria, which you can choose from. These are: Counterparts,
Superclasses, Subclasses, or Siblings. The Assistant selects the file/s that best meet the
selected criteria and opens those files in the Assistant Pane within the source editor. In
Manual Mode, you select the file to display in the Assistant Pane. You can also use the
Version Editor to compare any two versions of the file. To enable the Assistant, click
on the Assistant button in the workspace editor:

Chapter 2

[47]

When this button is selected, the Assistant opens a second editor pane in the main editor
area of the workspace window. For source files, the assistant displays the counterpart of
the file, which is displayed in the standard editor pane. For instance, if you have opened
an implementation file, the assistant will display the corresponding header interface file
and vice-versa. You also have the ability to choose from several other display criteria to be
used by the assistant. To do this, click on the Counterparts item in the navigation bar for the
assistant editor pane. This is shown in the following screenshot, and the choices, which are
offered to you, are dependent on the type of file that you are viewing:

Selecting a file in the project navigator will cause that file to be shown in the normal editor
pane and automatically track and show the associated file counterpart in the other pane.
If the assistant is set to use Manual mode, it will allow you to open any file in the assistant
editor pane, including the same file as the one you're working on in the other editor pane. If
you hold down the Option key and click or just hold down the Option key when selecting the
file in the project manager, it will display the chosen file in the Assistant pane, rather than
the standard pane and therefore switches the Assistant into manual mode.

Introducing the Xcode 4 Workspace

[48]

The Assistant editor pane can be displayed to the right of the standard editor or below it. If
you wanted to do this, you would Choose View | Editor | Change Split Orientation to switch
between a vertical and horizontal split for the two editor panes:

Introducing the Xcode 4 Workspace Environment
Xcode 4 uses one type of main window, called the workspace window, to hold most of the
data you need. You can have as many workspace windows open as you need. A second
window, called the Organizer window, is used for organizing your projects and reading
documentation. For iOS projects, the Organizer window is also used for managing devices.

Application ToolBar
The Xcode toolbar provides you with quick access shortcuts to various common functions,
that are used within the IDE environment. Some examples are code folding, version editor,
and code assistants.

Chapter 2

[49]

The following screenshot shows you the Xcode application toolbar which contains the types
of options that you have made available to you within the editor for Code Folding, Syntax
Coloring, and any issues your project contains:

One other neat feature that has been integrated into Xcode 4 is the ability to open other files
outside your project. This is done by right-clicking and selecting the project name located
above the Activity window as shown in the following screenshot:

Application Status Bar/Activity Window
This provides you with system messages about the progress of a range of activities including
compiler and syntax errors and information relating to project builds. In previous versions of
Xcode, this was known as the status bar:

WorkSpace Settings
If you have used previous versions of Xcode, you will notice that the many windows used to
perform the development tasks you work with on a daily basis, have now been combined
into a single window. The work area has had several unique UI elements applied that make it
much easier to work on many different tasks, even multiple projects, and best of all without
cluttering your work area.

Introducing the Xcode 4 Workspace

[50]

Introducing the Unified Navigation UI
The newly introduced Navigation UI contains a list of useful navigators that provide you
with an easy way to filter your project. This is located on the left-hand side within the Xcode
workspace and includes a List of files in your project, Sorted Symbols, a Central Search
Interface, Issues Tracking, Debugging data with Compressionable Stack traces, Active and
Inactive Breakpoints, and a persistent Collection of logs.

The Unified Navigator provides live filtering of content and search results so that you can
spend more time focusing on your current task:

Listing files in a project
The Project Navigator shows you a list of all of your projects, folders, and files that are
included within your project workspace:

Chapter 2

[51]

The Project navigator also contains badges, which are for SCM and pertain to subversion and
code repositories. We will be discussing these in Chapter 9, Source Code Management with
the Version Editor.

Status Description

M Specifies that the file(s) have been modified locally.

U Specifies that the file(s) have been updated in the repository.

A Specifies that the file(s) have been added locally.

D Specifies that the file(s) have been deleted locally.

I Specifies that the file(s) have been ignored.

R Specifies that the file (s) have been replaced within the repository.

* Specifies that the folder contents contain mixed statuses.

? Not yet added to the source control repository.

It is worth mentioning that these badges propagate up to the highest
container, so that you can see the source control status of the whole
workspace, regardless of the level disclosed. These are discussed in greater
detail in Chapter 9, Source Code Management with the Version Editor.

Sorted Symbols
The Symbol Navigator allows you to browse through the symbols within your project.
It is a good idea to wait until Xcode has finished indexing your project before you use
this feature:

Introducing the Xcode 4 Workspace

[52]

To specify exactly what you would like to have listed within this view, use the Search text
box which is located at the bottom of the navigator as well as the scope buttons located
at the top:

An explanation of each of these scope buttons is given below:

SCOPE BUTTON DESCRIPTION

All When this button is selected, the symbol navigator displays all types of symbols.
Alternatively, when this is not selected, it displays all the classes and protocols.

System When this option is selected, the navigator displays all the symbols that are
contained within the system frameworks as well as those that are contained
within your project. To see only the symbols in your project, deselect this button.

Members When this option is selected, the navigator displays the members of classes.

Flat When this option is selected, the navigator displays all of the classes arranged
alphabetically. When this option is deselected, the navigator displays the class
hierarchy.

Central Search Interface
The Central Search Interface allows you to search for a specific term throughout your entire
project, or projects that are contained within the Xcode workspace. The results found will be
displayed within this pane:

Chapter 2

[53]

Searches can be customized by clicking on the magnifying glass within the search field and
choosing Show Find Options to display the Find Options dialog as shown below. You will also
notice that the Find Options dialog allows you to search on Regular Expressions as well:

You are also able to filter the results returned to display what you would like to have listed in
this view at any given time. You can do this by using the Search text box, which is located at
the bottom of the navigator. An explanation of each of these symbols is given below:

TYPE DESCRIPTION

= When this is displayed, these contain any comment fields, which contain the matching
search term.

C When these types are displayed, they denote the classes used by the system
frameworks. In our HelloXcode4 example project above, our variable is making use of
the system framework UIViewController class.

V When these types are displayed, these relate to any variables, which contain
the search term. In our HelloXcode4 example project, we have declared
a pointer variable *viewcontroller which has been declared of type
HelloXcode4ViewController that inherits the UIViewController class.

Issues Tracking
During the building process of your application, the compiler analyzes your program code
for potential problems. If the compiler finds any problems while building your code, the
issues navigator is displayed. Selecting any of the errors or warnings in the list will display the
line at which the problem occurred in the source editor. The issues navigator allows you to
display problems by file or by type.

Using Static Analysis to find potential problems
Another neat new feature, which has been integrated into the Xcode 4 IDE, is the Static
Analyzer. This new addition allows you to examine the syntax of your code for bugs prior to
building. The analyzer displays the program logic-flow of your application, which can help
you track down potential bugs found within your application. Don't worry too much about
this, as we will be covering this in greater detail when we come to Chapter 8, Debugging
Xcode Projects.

Introducing the Xcode 4 Workspace

[54]

Debugging data with Compressionable Stack Traces
Whenever you pause execution of your program code, or run your code up to the point
where your breakpoint exists, Xcode will open up the debug navigator and display the
threads that were running when the execution was paused. Under each of these threads
listed, is the thread stack at the point up to which your program executed. If you select a
stack frame, you will see the corresponding source file or disassembled object code, that
will be displayed within the source editor window.

There is also a feature to allow you to display how much stack information you would like
the threads and stacks navigator to display and this can be done by using the slider which is
located at the bottom of the debug navigator window. We will be discussing this in greater
detail when we come to Chapter 8, Debugging Xcode Projects.

Active/inactive breakpoints
Setting breakpoints within your code can be useful when you want to stop at known points
within your code where you might know the problem exists, or you may just want to check
the values of variables within your source code.

In any event, these can be very useful. To set breakpoints within your code, you need to have
a source code file open and then click in the gutter area next to the spot where you would
like to stop execution. When you add a breakpoint within your code, Xcode automatically
enables breakpoints, as indicated by the breakpoint state button in the toolbar:

You can toggle between enabled and disabled states of breakpoints by clicking on the
breakpoint-state button. You can also disable an individual breakpoint by clicking on its icon.
To remove a breakpoint completely, drag it out of the gutter area. We will be discussing this
in greater detail when we come to Chapter 8, Debugging Xcode Projects.

Chapter 2

[55]

Collection of Logs
The log navigator in Xcode 4 replaces what was known as the build log window within Xcode
3. When you select one of the builds in the build log, the results are displayed within the
editor area. To proceed to see the error or warning listed within the build, double-click on it
to have it opened within the source editor pane. This view can also display a more verbose
listing of the error or warning, by clicking on the list icon at the end of the command line.
We will be discussing this in greater detail when we come to Chapter 8, Debugging
Xcode Projects.

Jump Bar
This is a new addition to Xcode 4, which I absolutely love. This neat feature, that looks like
more of a "BreadCrumb" Bar, provides you with a quick way of navigating from one folder to
another from within the Xcode IDE. It is displayed at the top of every editor pane and shows
the relative location of your current file. If you click on any location, it will jump to any other
folder at the same level:

Using Code Assistants
A new feature that has been introduced within Xcode 4 is the use of Code Assistants. This
includes a new Fixit feature that provides advanced code completion and flags common
bugs or typos. The Fix-it feature can suggest appropriate symbol spellings and supply correct
punctuation, assisting developers to write code faster, making fewer mistakes. Through
the use of Static analysis you can find and flag common bugs and errors such as a failure to
properly release memory that is no longer needed. We will be covering this in greater detail
when we come to Chapter 8, Debugging Xcode Projects.

Introducing the new and improved LLVM Compiler 2.0
This technology is an open source compiler technology, which is currently being led by
Apple's compiler team to be used in several high-end performance projects around the
globe. The LLVM 2.0 compiler has also been substantially updated and now compiles twice
as fast as the GCC compiler, producing applications which run faster. It has been rewritten
as a set of optimized code libraries, which have been designed around today's modern
chip architectures.

It has been fully integrated into the Xcode 4 development IDE and provides complete
support for the following languages: C, Objective-C, and C++.

Introducing the Xcode 4 Workspace

[56]

Version Editor
This new improved version makes your life a lot easier, compared to previous versions of
Xcode. This is now part of the Xcode 4 IDE, and makes it easy for you to see any two versions
of your source code side-by-side which you want to compare, in real time, all within your
Xcode 4 development workspace. You are also able to view this comparison view much like
Apple's Time Machine. With its timeline look and feel, you are able to drag the slider in the
middle that allows you to travel back in time through your project, allowing you to compare
any two versions of your file.

This slick editor interface can also show you a detailed log of post events and track blame
for post check-ins. It is even possible to manage multiple projects within a single Xcode 4
workspace. We will be covering this in greater detail when we come to Chapter 9, Source
Code Management with the Version Editor.

File Templates Library
The File Templates library ranges from a variety of templates for applications to subclasses of
commonly used Cocoa classes. To use a template, using your mouse, drag it from the library
to the folder in the Project navigator where you want to keep it.

File Templates have sub-categories, from which you can choose from the popup menu below
the line of buttons. You can also display the templates as icons, or icons with their associated
text as shown in the following screenshot:

Chapter 2

[57]

When you click on a template, an information window will open to the left and
contain a description about how to go about using the template. Refer to the
screenshot below, which explains this.

Code Snippets Library
The Code Snippets library contains fragments of reusable code that you can use within your
applications. In order to use one of these predefined code snippets, you need to select it
with your mouse and drag it into the code editor to the source code file you want to apply
this to:

Introducing the Xcode 4 Workspace

[58]

You also have the ability to create your own reusable code snippets to be used within the
other interesting projects that you create. To do this, first highlight the piece of code within
your source code and drag it into the code snippet library window panel.

A popup window will be displayed alongside your code snippet. Provide your code snippet
with a meaningful name as well as a completion shortcut (optional). Using a completion
shortcut, allows you to add it to your source code without having to grab it from the Code
snippet library. You just type in the name and your code will appear:

If you are adding any new code snippets or editing code snippets that are added
to the Code Snippet Library, these snippets will be flagged with the word "User"
to differentiate between what are user-defined and System code snippets.

Object Library
The Object Library contains various objects, that are organized with subcategories and
provide information in popup windows as we have seen with File Templates and Code
Templates. These objects are for use with Interface Builder (We will be talking more about
Interface Builder in the next chapter). The Screenshot below shows a sample list of the
different types of objects that the Object Library contains:

Chapter 2

[59]

Media Library
The Media Library includes graphics and icons that are located within the Resources
folder of your project or workspace. There is a Search field located at the bottom of the
libraries pane, which you can use to filter the library items that are displayed from within
the selected library:

Introducing the Xcode 4 Workspace

[60]

Resetting Xcode's Development Environment Settings
In the event that something goes horribly wrong by which you have made some changes
to your Xcode development environment settings and have caused your IDE to become
unstable, don't panic! There is a very easy way to reset your environment settings back to
their default settings. To do this, we first need to open up the Terminal utility application
using Shift | Command | U. At the command prompt, type in the following commands:

defaults delete com.apple.Xcode

rm –rf ~/Library/Application\ Support/Xcode

These commands will delete the plist file for Xcode and put everything back to their
default settings. Before you do this, take note of the following:

This will remove all of your Xcode preferences, which includes: layout choices,
file history, and toolbar settings.

Xcode Workspace Preferences
Xcode gives you the ability to change and customize the default installation settings to be
more to your liking. We will be focusing on what each of these buttons comprise of in the
sections below:

Chapter 2

[61]

General
This button allows you to control general environment settings such as your auto-save and
navigation preferences:

Auto-save: Xcode has the ability to automatically auto-save files that you have
changed before building, quitting Xcode, committing files to a repository, or closing
a workspace window.

Issues: Xcode can display runtime warnings and errors in place in the editors, and
also in the issue navigator. You can select one or both of these options. Select the
Continue building after errors checkbox if you want Xcode to continue building a
target when an error occurs.

Dialog Warnings: Xcode has several warning dialogs that you can disable by clicking
a Do not show this message again checkbox in the dialog. To re-enable all of these
warning dialogs, click on the Reset "Don't Ask Me" Warnings button.

Activation: To shift the focus to a new tab or window when it opens, select the
When a tab or window opens, make it active checkbox.

Navigation: You can use this to configure what happens when you navigate to and
select a file in the project navigator or jump bar.

Optional navigation: You can use the navigation chooser to set how you would like
the Xcode development environment to look. You can specify what you want to
do when you open a file. You can specify to have it open in any editor pane in any
window and tab, or to open the file in a new editor pane, window, or tab.

Behaviors
The Behaviors preference pane allows you to specify actions that occur when certain
operations are initiated or completed. You use this to tailor your workflow, for example,
to always show the latest Build Log when you start a build. Triggers include starting and
stopping building, testing, launching, searching, or restoring a device. Actions include
playing sounds, bouncing the dock icon, or executing a script.

Another example where this is useful is when you want Xcode to display the debug area
when your code pauses at a breakpoint or you can choose to display the Issues Navigator
when the build fails. You can even specify Xcode to go to a specific tab within your
workspace, all handled right within the Alerts pane.

Fonts & Colors
These preferences determine how you would like to configure the Xcode Integrated
Development Environment editor setup to suit your needs. From here, you are able
to choose from a variety of color schemes or customize one to your liking.













Introducing the Xcode 4 Workspace

[62]

Text Editing
These preferences allow you to configure the Xcode Integrated Development Environment
editor setup to suit your needs. You can specify to turn on/off line numbering, code folding,
code completion, as well as many other options relating to indentation of your code.

Key Bindings
Key binding refers to the shortcuts that you use to access operations within the Xcode
development IDE. These generally follow the norms for Mac OS X software, but the key
bindings specified within this section are specific to Xcode.

Documentation
This preference panel lets you define how to manage the Apple Developer documentation.
You may recall that this was an option during the installation of Xcode. Selecting the
checkbox ensures that you keep the documentation up-to-date; similarly you can use the
button to do this on demand. By default, you will have access to the Mac OS X Snow Leopard
core library and the Xcode 4 iOS developer libraries. You can also specify and choose from a
range of other libraries.

Locations
When you build your project within Xcode 4, the progress is shown in the Activity View
located on the toolbar. The build steps are recorded within the Build log of the log navigator.
This keeps a catalog of the build logs so you can see results from previous builds if required.

You can specify the location of where you would like to store these ������������������������ project-generated files
as necessary to suit your workflow. By default, Xcode stores project-generated files in
standard folders inside ~/Library/Developer/Xcode. ��������������������������� The following form options
are explained below:

Derived Data (index, logs, build) location:

Xcode 4 provides a new way for indexing files by creating an index for the entire
workspace. This resolves any issues that occurred in previous versions when
referencing across projects. The indexer uses the new LLVM compiler 2.0 to
parse its source files and this improves performance dramatically.



Chapter 2

[63]

Snapshots Location:

The Snapshots feature has been modified to be much faster and more reliable than
it has been in previous versions of Xcode. In order to be able to use Snapshots, you
need to ensure that you install the System Tools as part of your Xcode 4 installation.

Archives Location:

This location specifies where you would like to create distribution builds of your
product. These could be used to provide development milestones, or posting nightly
builds of your product, or for distributing the final release of your product.

Build Location:

Xcode 4 allocates a common directory for each project or workspace with each
project being placed within a separate folder under its project name. If the same
project is located within two separate workspaces, the same project is created in
two different locations so that its precompiled headers, indexes, and build products
do not conflict with one another. If you don't want to accept the default folder
location, you can change this to something more appropriate.

Source Trees
This preference is aimed at software development teams for which a particular source file/s
is required to be located in a different location other than the project folder. An example
of this might be where you want to share a custom class among other developers or team
of developers.

Distributed Builds
The Distributed Builds preferences pane is used to set up workgroup builds and to make your
computer available on the local area network to teammates for their workgroup builds. By
using this set up, you can reduce your build times by adding the processing power of your
teammates' computers to your own by converting your local builds to workgroup builds.

Workgroup builds are network-based builds that can use more than one computer to build
a product. Workgroup builds involve a build client and one or more build servers. The build
client is the computer that initiates the build and uses a set of build servers to complete
it. Build servers are computers that have been made available to assist build clients in
completing their builds. One computer can be both a client and a server.







Introducing the Xcode 4 Workspace

[64]

Summary
In this chapter, we covered a substantial amount of topics relating to the Xcode 4 workspace
environment. We saw how to go about downloading and installing Xcode 4 and the iOS4 SDK
as well as what comprises the Xcode 4 IDE and the different types of libraries that are part
of the Xcode 4 workspace (File Templates, Code Snippets, Object Library, and so on). We
also created a very simple iPhone application using View Controllers and using the system
frameworks to display a label to the view.

Now that we've learned about the main components of the Xcode 4 workspace environment
and how to go about building a simple iPhone application, we are ready to start focusing on
the GUI side of things with Interface Builder.

In the next chapter, we will dive right in and work with the Interface Builder (GUI)
application. We will also improve on our very simple iPhone application and start to add
controls from our Object library as well as learning how to connect these components
up to the program logic so that we end up with a fully functional iPhone application.

3
Working with the Interface Builder

In this chapter, we will learn about the interface builder application and how
we can use this visual tool to design our user interfaces for our iOS applications.
We will also look at how we can use objects from the Object library to create
the necessary outlets and actions so that we can programmatically use these
within our code, as well as learning how to reposition and bind objects so that
they work together.

In this chapter, we will:

Familiarise ourselves with the Interface Builder tool

Learn how to add controls to our view-based controller using MVC

Learn how to Position and Align controls to the User Interface

Understand what are Rotatable and Resizable Interfaces

Learn how to reposition controls within the view when the device is rotated

Learn how to bind UI control objects to code

Enhance our "Hello World" iPhone application, created in the previous chapter

Learn how to implement File Saving and Loading

We have got quite a bit to cover, so let's get started.

















Working with the Interface Builder

[66]

Getting to know the Interface Builder environment
Interface Builder (IB) is a visual tool that enables you to design the user interface for your
iPhone or iPad applications. By using Interface Builder, you are able to drag and drop views
onto your window and then connect the various views with outlets and actions so that they
can programmatically interact with your code.

In Xcode 4, Interface Builder (IB) appears in the editor area of the workspace window when
you select an xib file from the project navigator window. When you open an xib file, the
Interface Builder file inspectors appear in the utility area, and you are able to select Interface
Builder Objects from within the libraries' pane and drag them into your interface builder
canvas area.

An xib file is what gets created by Interface Builder, and contains the user
interface design and objects. In previous versions of Xcode, nib files were used
and were created by NeXTStep computers back in the mid-late 80s. More
information on the nib file format can be found at the following location:
http://en.wikipedia.org/wiki/Interface_Builder.

Chapter 3

[67]

Adding Controls to your user interface
Now, this is where the real fun starts. We will start by creating our iPhone application. Instead
of creating a typical "Hello World" application, we will be making this one a bit more flexible.

The program will present the user with a (UITextField) field for typing in their name, as
well as a (UIButton) button which will display the message "Welcome to iOS Programming
"followed by the name of the user. This will be outputted to our Output (UILabel)
label control.

We have some fun work ahead, so grab yourself a cup of your favorite beverage and let's
get started.

Time for action – creating the HelloXcode4_GUI application
Before we can proceed with creating our "HelloXcode4_GUI" application, we must first
launch the Xcode development environment. This can be located in the /Xcode4/
Applications folder. Alternatively, you can use the spotlight to search for Xcode by
typing xcode into the search box window.

When you launch Xcode, you will be presented with the Welcome to Xcode screen, as shown
in the following screenshot:

Working with the Interface Builder

[68]

It is very simple to create this in Xcode. Just follow the steps listed below:

1.	 Choose Create a new Xcode project, or File | New Project. This will bring up the
project template dialog, which is shown in the screenshot below.

2.	 We need to select the View-based application template to use. What this template
provides us with is a starting point for an application that uses a single view. It
provides a view controller to manage the view, and an xib file that contains the view.

3.	 Ensure that you have selected iPhone from under the Device Family dropdown, as
the type of view to create:

4.	 Click on the Next button. You will be prompted to enter in a name for your project.

5.	 Enter in HelloXcode4_GUI and then click on the Next button to proceed to the next
step of the wizard. You will then be asked to choose the location where you would
like to save your project.

You will also notice that there is an option to automatically save your project to Source
Control. If this option gets checked, this will create a local repository on disk so you can
check-in your work. This option is not checked by default.

Chapter 3

[69]

Source Control allows you to keep track of changes made to a file
and who applied those changes. If you have worked with Microsoft
Visual Source-Safe or Tortoise SVN, you will already be familiar with
Source Control and how it works. We will be covering this in Chapter
9, Source Code Management with the Version Editor.

What just happened?
In the above section, we looked at the steps involved in creating a View-based Application
for our HelloXcode4_GUI application. In the next section, we will take a look at the main
components of our application and the core application architecture, before taking a look
at the Application Life-Cycle for all iOS applications.

Working with the Interface Builder

[70]

Application structure of our HelloXcode4 example application
Once our project has been created, you will be presented with the Xcode workspace
interface. All files that the project template created for you will be displayed within the
Project Navigator window section. The important files to take note of are the following:

Main.m

HelloXcode4_GUIAppDelegate.h, and

HelloXcode4_GUIAppDelegate.m

Main.m
The main function is where the single UIApplication object is created and the function
called UIApplicationMain() takes care of that. This function takes four parameters, and uses
them to initialize the application. There is no reason to edit this main function as it is just
there to simply kick-start your application xibs and view controllers into running:

#import <UIKit/UIKit.h>

int main(int argc, char *argv[]) {

 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

Although you should never have to change the default values passed into this function,
it is worth explaining their purpose in terms of starting the application. In addition to the
argc and argv parameters passed into main, this function takes two string parameters that
identify the principal class (that is, the class of the application object) and the class of the
application delegate.

If the value of the principal class string is nil, UIKit uses the UIApplication class by
default. If the value of the application delegate's class is nil, UIKit assumes that the
application delegate is one of the objects loaded from your application's main nib file
(which is the case for applications built using the Xcode templates). Setting either of
these parameters to a non-nil value causes the UIApplicationMain function to
create an instance of the corresponding class during application startup and use it for
the indicated purpose. If your application uses a custom subclass of UIApplication (which
is not recommended, but certainly possible), you would specify your custom class name in
the third parameter.







Chapter 3

[71]

HelloXcode4_GUIAppDelegate.h
In the HelloXcode4_GUIAppDelegate.h interface file, we need to create a forward
@class declaration HelloXcode4_GUIViewController. This basically tells the compiler a class
with the name exists. In the @interface section, we declare a member variable to hold our
view controller. Lastly, we use the @property directive to wrap our member variables with
implicit get and set functions:

#import <UIKit/UIKit.h>

@class HelloXcode4_GUIViewController;

@interface HelloXcode4_GUIAppDelegate : NSObject
 <UIApplicationDelegate> {
 UIWindow *window;
 HelloXcode4_GUIViewController *viewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet HelloXcode4_GUIViewController
 *viewController;

@end

The HelloXcode4_GUIAppDelegate gets hooked up to the UIApplication object via
the Interface Builder (.xib) file called MainWindow.xib. This file contains a Window and
a View.

HelloXcode4_GUIAppDelegate.m
The associated implementation file of the delegate, HelloXcode4_GUIAppDelegate.m,
contains several messages that we can get from the UIApplication object and the template
has already created one for us—applicationDidFinishLaunchingWithOptions:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Override point for customization after application launch.
 [window addSubview:viewController.view];
 [window makeKeyAndVisible];
 return YES;
}

You will also notice that when the project was created, it added our view controller. This will
eventually hold our label object for our text output. You will notice when you look at the
new implementation file, HelloXcode4_GUIViewController.m that it contains some
commented out functions.

Working with the Interface Builder

[72]

The MainWindow.xib file
Another task that occurs at initialization time is the loading of the application's main nib file.
If the application's information property list (HelloXcode4_GUI-info.plist) file contains
the (NSMainNibFile) Main nib file base name key, the UIApplication object
loads the nib file specified by that key as part of its initialization process.

The main nib file is the only file that is loaded for you automatically. However, you can load
additional nib files later as needed.

Nib files are disk-based resource files that store a snapshot of one or more objects. The main
nib file of an iOS application typically contains a window object, the application delegate
object, and perhaps one or more other key objects for managing the window.

Loading a nib file reconstitutes the objects in the nib file, converting each object from
its on-disk representation to an actual in-memory version that can be manipulated by
your application.

Objects loaded from nib files are no different than the objects you create programmatically.
For user interfaces, however, it is often more convenient to create the objects associated
with your user interface graphically (using the Interface Builder application) and store them
in xib files rather than create them programmatically. It is worth mentioning at this point,
anything that can be done within the Interface Builder application can also be created
dynamically through code. As you can see from the code snippet below, we create a
button control and set its size and caption, before adding it to our view:

-(void)viewDidLoad

{
 UIButton * btn = [UIButton
 buttonWithType:UIButtonTypeRoundedRect];
 btn.frame = CGRectMake(0, 0, 100, 50);
 [btn setTitle:@"Hello, world!" forState:UIControlStateNormal];
 [self.view addSubview:btn];
}

The Core Application Architecture layer
Every iOS application that you develop is built using the UIKit framework. Games on the
other hand use the Core Graphics and OpenGL/ES frameworks. The UIKit framework
provides you with the key objects needed to run the application and to coordinate the
handling of user input and the display of content on the screen.

From the time your application is launched, to the time that it exits, the UIKit framework
manages the majority of the application's key infrastructure. An iPhone application receives
events continuously from the system and must respond to those events. Receiving the

Chapter 3

[73]

events is the job of the UIApplication object, but responding to the events is the
responsibility of your custom code. In order to understand where you need to respond to
events, it helps to understand a little bit about the overall life cycle and event cycles of an
iPhone application. We describe these cycles below.

The application life cycle
The application life cycle comprises the sequence of events that occur between the launch
and termination of your application. When a user launches your application by tapping the
icon on the Home screen, the system displays some transitional graphics and proceeds to
launch your application by calling its main function.

This function handles the bulk of the initialization work before being handed over to the
UIKit, that loads the application's user interface and enters its event loop. UIKit coordinates
the delivery of events to your custom objects and responds to commands issued by your
application. Whenever a user performs an action that would cause your application to quit,
UIKit notifies your application and begins the termination process.

In the screenshot below, it shows the simplified startup life cycle for a newly launched iOS
application. This diagram shows the sequence of events that occur between the time the
application starts up and the point at which another application is launched. At key points in
the application's life, UIKit sends messages to the application delegate object to let it know
what is happening. During the event loop, UIKit also dispatches events to your application's
custom event handlers, which are your views and view controllers:

Working with the Interface Builder

[74]

At initialization and termination, UIKit sends specific messages to the application delegate
object to let it know what is happening. During the event loop, UIKit dispatches events to
your application's custom event handlers.

The applicationDidFinishLaunching: method is created automatically and is used
to kick off your application. This event fires automatically on your delegate whenever your
application launches.

The applicationWillTerminate: method is called at termination time when your
application is running in the foreground or background to perform any required cleanup. You
can use this method to save user data or application-state information that you would use
to restore your application to its current state on a subsequent launch. This method is not
called if your application is currently suspended.

Time for action – adding object controls to our View
We will now start to design our user interface, using the controls from our Xcode Object
Library. Firstly, from the Project Navigator window, and under the Resources folder, select
the HelloXcode4_GUIViewController.xib file. A blank View canvas will be displayed
to which we will start to add our components:

Chapter 3

[75]

In the coming pages, we will be adding the following control items to our View Controller:

(UILabel)

(UITextField)

(UILabel)

(UIButton)

In the next section, we will start to build the user interface for our example application
by dragging some of the UI components to our canvas, and changing some of the
components' properties:

Next, to add an item to our canvas, follow these steps:

1.	 Simply drag the (UILabel) Label item from the Object Library to the view, as shown
in the screenshot above. You can use the search field located at the bottom of the
Object Library to locate any of the UI elements.

2.	 Once the label control has been added, select this control and click on the Object
Attributes button and enter the text Please Enter Your Name:









Working with the Interface Builder

[76]

You will notice that the Object Attributes properties pane is displayed and contains various
properties associated with this particular control. You are able to apply the Text Color and
Background Color for your label, as well as alignment:

The screenshot below shows our updated label control with the text which we added
previously. Next, we will start to add our remaining controls to our View Controller:

Chapter 3

[77]

What we now need to do is to add the remaining control objects to our View. We still need
to add our UITextField, UIButton, and UILabel objects. To achieve this, follow these steps:

1.	 From the Object Library, select and drag a (UITextField) TextBox control to the view
and place this control directly under our label control Please Enter Your Name.
Resize the control accordingly.

2.	 Next, select and drag a (UILabel) Label control and add this to our view. Resize this
accordingly as this will be used to display the output. Click on the Object Attributes
tab and enter the text Label for Output.

3.	 We are nearly there, so just hang in for a couple of minutes. We need to add a
(UIButton) Round Rect Button control to our view. Modify the Object Attributes of
the Round Rect Button control and set its Title to OK.

If you have followed the steps correctly, your view should look like something shown in the
screenshot below. If it doesn't look quite the same, feel free to adjust yours:

If you were to run this application, all you would see would be the controls as laid out on
your screen. The only interaction that will happen up to this point is that the keyboard will
be displayed if you clicked into the Text Field.

Clicking on any of the other controls will not do anything as we will need to hook these up.
This is done in the section Binding Control Objects later in this chapter where we will be
creating and making use of Outlets and Actions.

Working with the Interface Builder

[78]

Interface Builder provides some nice features for aligning and setting the properties of visual
elements within your View. These are called guidelines or crosshairs which enable you to
ensure that your controls align up correctly. In the screenshot below, we will look at how
we can use these guidelines to position our controls within the view:

when you change the size and position of a Label, Button, or Text Fields. These are
referred to as automatic guides. They provide you with a good way to optimally position
controls within your user interface and ensure that you conform to the Apple Human
Interface Guidelines to ensure a consistent visual and behavioral experience throughout
your application, by providing a professional look and feel, as well as ensuring that your
application looks and behaves the same way as existing iOS applications on the iPhone.

For more information on the Apple Human Interface Guidelines, please refer to the
following: http://developer.apple.com/library/mac/#documentation/
UserExperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.
html%23//apple_ref/doc/uid/TP30000894-TP6.

Interface Builder will also show dynamically updated guides and will even show
you the pixel distances between various points within the window. You can also
add your own custom guides via the Editor | Add Vertical Guide (or Horizontal
Guide) menu. These will remain visible while you are designing your user
information, but don't display when your application is running.

What just happened?
In the above section, we looked at the steps involved in adding a number of controls to
our view from the Xcode Object Library as well as setting their control properties using the
Object Attributes button. Finally, we look at how we can use the guidelines and crosshairs to
position and align visual elements within our view to ensure that they line up correctly.

Chapter 3

[79]

Understanding Rotatable Interfaces
Rotatable and Resizable interfaces allow you to look at your applications or web content in
various views. For instance, say you wanted to view a website or play a game in landscape
mode; the iPhone introduces a way and provides on-the-fly rotation which is fast, and
provides a natural feel.

When designing your iOS applications, think about how the user will be interacting with
your application. Will you be designing an app that will force portrait mode only, or will it
be flexible enough to allow for multiple views. The best part of all this is that the process to
enable rotation is a painless process.

Time for Action – enabling Interface Rotation
To allow your application's interface to rotate and resize, all that is required is a single
method. When the iPhone wants to check to see whether it should rotate your interface,
it sends the shouldAutorotateToInterfaceOrientation: message to your view
controller, along with a parameter that indicates which orientation it wants to check.

Your implementation of shouldAutorotateToInterfaceOrientation: should compare
the incoming parameter against the different orientation constants in the iOS, by either
returning TRUE (or YES) if you want to support that orientation.

The four basic screen orientation constants are described below:

ORIENTATION METHOD iOS ORIENTATION CONSTANT

Portrait UIInterfaceOrientationPortrait

Portrait upside-down UIInterfaceOrientationPortraitUpsideDown (This is rarely used on
the iPhone as this is mainly used and implemented on the iPad.)

Landscape Left UIInterfaceOrientationLandscapeLeft

Landscape Right UIInterfaceOrientationLandscapeRight

For example, to allow your iOS interface to rotate to either the portrait or landscape left
orientations, you would implement shouldAutorotateToInterfaceOrientation: in
your view controller as the following:

-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation {

Return (interfaceOrientation == UIInterfaceOrientationPortrait ||
 interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

Working with the Interface Builder

[80]

What just happened?
The Return statement handles everything and it returns the result of an expression
comparing the incoming orientation parameter (interfaceOrientation) to the
UIInterfaceOrientationPortrait and UIInterfaceOrientationLandscapeLeft.
If either of the comparisons is true, the function returns TRUE. Alternatively, if either one of
the possible orientations are checked, the function returns FALSE.

By adding this simple method to your view controller, your application will automatically
sense and rotate the view for portrait or landscape left orientations.

Relocating controls within the view on Rotation
When we rotate our iOS application, the screen dimensions shift. The only problem is
that we still end up with the same amount of free usable space, but our view is laid out
differently. In order to ensure that controls fully utilise and resize automatically for the new
orientation, we use the combination of rotatable and resizable screen rotation.

The Simulator supports changes in view orientation. To change the view to landscape mode,
press the Command + Right Arrow key combinations. The screenshot below shows how your
application looks in landscape mode. Press the Command + Left arrow key to change it back
to portrait mode:

You will notice that your application did not respond to the changes in view orientation. This
is because you need to modify your code so that when the view orientation changes, the
event that handles this fires.

Chapter 3

[81]

In Xcode, open the HelloXcode4_GUIViewController.m file and look for the following
code snippet:

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation {

 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
}

Modify the code above to return YES. This is shown below:

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
 interfaceOrientation {
 // Return YES for supported orientations
 return YES;

}

When you run the application again, you will notice that your application rotates as the view
orientation changes:

Making our Components work together
In this section, we will be discussing how to go about making our HelloXcode4_GUI
application and its components interact with each other. We want to ensure that when the
user enters in their name, and clicks on the OK button, the Output will display Welcome to
iOS Programming along with the user name.

www.allitebooks.com

http://www.allitebooks.org

Working with the Interface Builder

[82]

We will take a look at how to go about connecting our controls via the use of Outlets and
Actions. The controls that we will create are shown in the table below:

DATA TYPE OBJECT NAME

(UILabel) lblName

(UITextField) txtUsername

(UILabel) lblOutput

(UIButton) btnOK

Time for action – binding Control Objects
The way in which we achieve this is to connect our controls via the use of outlets and actions
which we will be discussing in this section:

1.	 Open the HelloXcode4_GUIViewController.xib file.

2.	 Select the Username textbox control and hold down the Ctrl key while using the
mouse to drag this into the HelloXcode4_GUIViewController.h interface file
and release the mouse button:

3.	 Next, once we have dragged the object to which we want to bind within our code,
we need to specify its connection type, and provide a name and type as shown in
the screenshot below:

An outlet (IBOutlet) is basically a variable by which an object can be referenced.
An example of this could be that you have created a field in Interface Builder used
to collect the user's name or e-mail address and you have created an outlet for this
in your code called userName. Using this outlet, you would be able to access or
change the contents of this field:

IBOutlet UILabel *Username;

Chapter 3

[83]

4.	 Next, we need to create an Action for our OK button which will be used to
display the greeting message on the screen when it is pressed. Open the
HelloXcode4_GUIViewController.m implementation file.

5.	 Select the OK button, hold down the Ctrl button while using the mouse to drag this
into our implementation file and release the mouse button. This is shown in the
screenshot below:

6.	 Next, once we have dragged the object to which we want to bind within our code,
we need to specify its connection type, and provide a name and type as shown in
the screenshot below. The Type, Event, and Arguments need not be filled in, as
these are the default values:

An Action (IBAction) on the other hand, is basically a method defined within your code
that is called when an event takes place. Objects such as Buttons and Switches can trigger
actions when a user performs a task such as touching objects on the screen.

-(IBAction)displayName:(id)sender;

7.	 Next, we need to enter in the following code snippet, which will be responsible for
displaying the greeting message on the screen when the user enters in their name
and the OK button is pressed:

- (IBAction)btnOK:(id)sender {
 NSString *WelcomeMsg=[[NSString alloc] initWithFormat:@"Welcome
 to iOS Programming %@",txtUsername.text];

 lblOutput.text=WelcomeMsg;
 lblOutput.textColor=[UIColor blueColor];
}

Working with the Interface Builder

[84]

What just happened?
We created an action button, btnOK which when clicked, displays the contents of the text
field entered by the user. It formats the output as a string output, sets the color to blue
and displays the text. As you can see, by adding this simple method to your view controller,
your application will automatically sense and rotate the view for portrait or landscape
left orientations.

Format specifiers allow you to manipulate how you would like to represent your data to
the screen. These types of specifiers use the standard C format specifiers. In the example
above where we are initializing our output message, we use the %@ specifier which tells the
initWithFormat function that we are expecting to format the text entered within our
txtUsername control as String.

In Standard C, this could be written as:

printf("%s",txtusername.text);

For more information on the format specifiers, please consult Apple's
String Programming Guide for Cocoa at the following location: http://
developer.apple.com/library/mac/#documentation/Cocoa/
Conceptual/Strings/Articles/formatSpecifiers.html.

Time for action – repositioning the Controls
In the previous section, we looked at how to change the orientation of our view using the
iPhone Simulator and also observed that the size and positioning of the controls remained.
This is not a desirable way to do things in the real-world, as this does not give the user a
good experience while using your application. Ideally, you should reposition your controls
on the screen so that they change according to the view orientation that the phone is
currently in.

In order to reposition the controls within our view, let's go back to our previous example in
Interface Builder and follow these steps:

1.	 Select the Label control; select View | Utilities | Size.

2.	 Modify the Autosizing attribute of the control as shown in the screenshot below.
This will cause the Label control to expand/contract as the view orientation changes.
At the same time, the control will anchor to the left, top, or right of the screen:

Chapter 3

[85]

3.	 Modify the AutoSizing attribute for the Text Field control as shown in the
screenshot below:

4.	 Modify the AutoSizing attribute for the Label Field control which will be used to
display our output, as shown in the screenshot below:

Working with the Interface Builder

[86]

5.	 Modify the Autosizing attribute for the Round Rect Button control which is shown
in the screenshot below. You will notice that we are not going to resize the control
when the view orientation changes. We just need to anchor this control to the top
of the screen:

6.	 Run the application, and rotate your screen so that the view changes, and you will
see that your changes have been applied. This is shown in the screenshot below:

What just happened?
In this section, we took a look at the steps involved in making our controls reposition
themselves within the view when the device has been rotated. We also looked at how we
are able to use the Autosizing Attribute feature of the object to allow our controls to expand
and contract as the view changes.

Chapter 3

[87]

Enhancing our iPhone application
Now that we have learned how to position controls within our view, we are going to apply
some enhancements to our HelloXcode4_GUI application. You will notice that when you
type into the name field, the keyboard appears, but when you click on the Done or Return
button(s), nothing happens and the keyboard still stays visible making other controls on your
view impossible to get to.

In this section, you will be learning about how to address this problem, by hiding the
keyboard when the Done or Return buttons are pressed.

When an object processes input, these are called responders. In the case of a text field or
text view, when it gains first responder status, the keyboard is displayed and will remain on
screen until the field gives up, or resigns its responder status.

Time for action – hiding the keyboard
In the case of our Username text field, we could resign its first responder status and
get rid of the keyboard by adding the following line of code to our HelloXcode4_
GUIViewController.m file:

[txtUsername resignFirstResponder];

Calling the resignFirstResponder method tells the input object to give up its claim to the
input control, hence the keyboard disappears.

There is a second common method for hiding the keyboard in iOS applications through the
Did End on Exit event of the field. This event occurs when the return or done keyboard
button is pressed.

To add keyboard hiding to our HelloXcode4_GUI application, follow these steps:

1.	 Switch back to our application in Xcode and create the action declaration for a
method hideKeyboard within the HelloXcode4_GUIViewController.h file.

-(IBAction)hideKeyboard:(id)sender;

2.	 Next, we need to implement the hideKeyboard method within the
HelloXcode4_GUIViewController.m file by adding the following code after the
@implementation directive:

-(IBAction)hideKeyboard:(id)sender {
[txtUsername resignFirstResponder];
}

Working with the Interface Builder

[88]

To connect fields to the hideKeyboard method manually, follow these steps:

1.	 Open the HelloXcode4_GUIViewController.xib file which should display
within Interface Builder.

2.	 Select the field, and drag its connector into the HelloXcode4_
GUIViewController.m file.

3.	 Create an IBAction for the Did End On Exit event as shown in the screenshot below:

What just happened?
In this section, we looked at the two different ways in which we can hide the keyboard
when the Done or Return buttons are pressed. We saw that in order to hide the keyboard
onscreen; we must send the resignFirstResponder message to the object that currently
controls the keyboard (such as a text field). If we don't do this, the keyboard is displayed and
will remain on screen until the field gives up, or resigns its responder status. We also looked
at how we can connect up to our text field an event Did End On Exit which points to our
hideKeyboard method.

Have a go hero – enhancing the HelloXcode4 example
Now that you have the basic example working, try improving the user experience a bit. The
application needs to be enhanced to allow the user to enter their age, gender, occupation,
and location. When the OK button is pressed; it should check the contents of each of these
fields to ensure that they have been filled in and display an error message in red text if any
of these have not been filled in, and update the background of the control that has not been
filled in:

Chapter 3

[89]

1.	 Modify the MainWindow.xib file to include the additional field objects. Refer to the
section Adding object controls to our View.

2.	 Create the necessary outlets. Refer to the section Making our Components work
together on how to do this.

3.	 Connect the method to each control to hide the keyboard when the Done or Return
buttons are pressed. Refer to the section Hiding the Keyboard.

4.	 Update the method call to create each of the conditions that performs the check
and updates the label.

5.	 Change the background color of the control that has not been filled in to be green.
You will need to make use of the UIColor class. Refer to the section Binding Control
Objects, or the Apple Developer Documentation located at the following: http://
developer.apple.com/library/ios/#documentation/uikit/reference/
UIColor_Class/Reference/Reference.html.

For more of a challenge, try using the || notation instead of separate if statements. This will
enable you to check each form field in one hit. Once you have that working, you will have
a more user-friendly application that provides more information to be entered along with
validation on those fields and that provides error trapping.

Introducing Document-based applications
Document-Based application applies to the Cocoa environment and can be thought of as
a mini-application. Creating these types of applications provides you with the ability to
have multiple document windows opened at the same time, allowing you to switch focus
between each of them. It provides a framework for generating identically contained, but
uniquely composed sets of data that can be stored in files. An example of a document-based
application is TextEdit.

Working with the Interface Builder

[90]

Time for action – creating a Document-based application
It is very simple to create this in Xcode; just follow the steps listed below:

1.	 Under the Mac OS X section header, select Application and then select the Cocoa
Application icon.

2.	 Under the options pane, ensure that you have checked Create Document-Based
Application; if this is not selected, Cocoa will create a single-windowed application:

3.	 Click the Next button to proceed to the next step, and enter a name for your project:

Chapter 3

[91]

4.	 When you have entered a name for your project, click on the Save button. Your
project will be saved in the folder specified and the Xcode workspace will then
be displayed.

Let's start to see what the project wizard has created for us; the important files to take note
of are the MyDocument.m, MyDocument.h, and MyDocument.xib. Start by double-clicking
on the MyDocument.xib file; you will notice that there is already a Text Field that was
created containing the text "Your document contents here". Just delete that, as we will be
creating a new one for us to use:

Working with the Interface Builder

[92]

From the Object Library pane, drag and drop a Text View control and use the automatic
guidelines to resize the control to fill most of the window by using the Autosizing settings,
and enabling all four of the I-Bars and both the horizontal and vertical arrows. This is shown
in the screenshot below:

Before we can use our Text View control, we need to create an Outlet for this, in order for
us to Load and Save documents. In the following section, we will look at how we go about
creating Outlets, as well as adding properties, variables, and methods.

In the following screenshot, we need to create a connection within our MyDocument.
h interface file, so that it points to our document Text View control. This is shown in the
following steps:

Chapter 3

[93]

1.	 Drag the connection of the Text View control into the interface header file
of MyDocument.h. A Connection dialog will be displayed as shown in the
screenshot below.

2.	 Next, provide a name for our Text View control as we will be referencing this control
when we come to load and save our files:

Working with the Interface Builder

[94]

What just happened?
In this section, we learned about Document-based applications and how we are able to bind
controls and create Outlets for them so that they can be referenced within the code.

Creating Document-based applications enables you to do the following:

They allow you to create new and open existing documents that are stored in files

Save documents under user-designated names and locations

Revert to saved documents

Close documents (usually after prompting the user to save edited documents)

Print documents and allow the page layout to be modified

Represent data of different types internally

Monitor and set the document's edited status and validate menu items

Manage document windows, including setting the window titles

Handle application and window delegation methods (such as when the
application terminates)

If you would like to read up a bit more about Document-Based applications, check
out the Apple Developer Connection website at the following website location:
http://developer.apple.com/library/mac/#documentation/
Cocoa/Conceptual/Documents/Documents.html.

File saving and loading
When you try to run your application, you will see that you have the capability of a
mini-word processor and you have the ability to type, copy, paste, apply formatting to
fonts and colors, as well as showing the ruler and setting tabs.

When you try to save your document, it appears that your application doesn't know how
to save your document. You receive the following error message which is shown in the
screenshot below:



















Chapter 3

[95]

Time for action – implementing file saving and loading
In order to make our application have the capability to Save and Load, follow these steps:

1.	 Modify the MyDocument.h header file to include the following piece of
highlighted code:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSDocument {

 IBOutlet NSTextView *rtfTextView;
 NSAttributedString *docString;
}

@property(retain) NSTextView *rtfTextView;
@property(retain) NSAttributedString *docString;

@end

2.	 The next stage is to implement the various methods in the MyDocument.m
implementation file. You will find that we already have the method stubs
defined within this file, so we just need to fill these in. The method called
windowControllerDidLoadNib is the method which gets run when the user
interface is loaded, and its purpose is to populate the Text View control. Add the
following highlighted code into this method:

 - (void)windowControllerDidLoadNib:(NSWindowController
 *)aController {
 [super windowControllerDidLoadNib:aController];

 // Add any code here that needs to be executed once the
 windowController has loaded the document's window.
 if (self.docString !=nil){
 [[rtfTextView textStorage]setAttributedString:self.docString];
 }
}

3.	 We are now going to add the code for the Reading and Writing. Locate the
dataOfType method and add the following highlighted code:

- (NSData *)dataOfType:(NSString *)typeName error:(NSError
 **)outError {
 NSData *rtfData;
 self.docString=rtfTextView.textStorage;
 rtfData=[NSArchiver archivedDataWithRootObject:self.docString];
 return rtfData;
}

Working with the Interface Builder

[96]

4.	 Next, we are now going to add the code for Reading the contents back into
the document. Locate the readFromData method and add the following
highlighted code:

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName
 error:(NSError **)outError {
 NSAttributedString *tempString=[NSUnarchiver
 unarchiveObjectWithData:data];
 self.docString=tempString;
 return YES;
}

5.	 Now that you have added all of the relevant code to the MyDocument.m
implementation file, you are ready to run your application. A screenshot of
the final output is displayed below:

What just happened?
In this section we declared outlets, variables, and methods that we implemented into our
MyDocument.m file. We then used the NSAttributedString class to help us manage the
string which we needed to get and set the string contents from the TextView Control. So that
is why we needed to create an Outlet for this.

Chapter 3

[97]

We then set the value of the textStorage property of the Text View control to be the
value of the attributed string property of the current window object. We also defined two
datatypes rtfData and docString, that will be used to store the document contents using
the NSArchiver class. We finally added code to our readFromData method to read the
contents of the file back into the document window by using the NSUnarchiver class.

Pop quiz – Actions and Rotatable Interfaces
1.	 Which iOS Orientation constant is used to set the device to Portrait?

a.	 UIInterfaceOrientationPortraitUpsideDown.

b.	 UIInterfaceOrientationLanscapeLeft.

c.	 UIInterfaceOrientationLandscapeRight.

d.	 UIInterfaceOrientationPortrait.

2.	 Which of the following statements is true about Document-based applications?

a.	 Saves documents under user-designated names and locations.

b.	 Prints documents and allow the page layout to be modified.

c.	 Represents data of different types internally.

d.	 Manages document windows, including setting window titles.

e.	 Represents data of different types internally.

f.	 Allows you to perform Hexadecimal calculations.

3.	 When creating an Action to a button, what Event do we use?

a.	 Touch Up Inside.

b.	 Touch Down.

c.	 Touch Cancel.

d.	 Touch Drag Enter.

Working with the Interface Builder

[98]

Summary
In this chapter, we covered the Interface Builder (IB) application, and how to go about
creating a very simple application which interacted with the user to display some text to the
screen using outlets and actions. We also got an insight into the iOS Application-Life-Cycle,
and what happens when an application is loaded by the user.

We also enhanced our iPhone application and added some rotation and resized the controls.
We also looked into the various ways of hiding the keyboard by resigning responders.

Now that we've learned about how to go about creating an application using Interface
Builder, we are ready to start to focus on the iOS 4 Xcode Frameworks.

In the next chapter, we will take a look at the iOS frameworks and where these are located.
We will create a simple Pop Quiz database application which will be making use of the Core
Data Frameworks, as well as creating an application to play video and audio. We will also get
acquainted with the Core Location and Map Kit Framework improvements, as well as the
new framework APIs.

4
Working with the Xcode Frameworks

In this chapter, we will take a look at the different Xcode (Cocoa) development
frameworks and where these are located. Frameworks provide you with a
hierarchical directory that encapsulates shared resources, such as a dynamic
shared library, xib files, image files, header files, and reference documentation
in a single package. Multiple applications are then able to use all of these
resources simultaneously. The system loads these into memory as needed and
shares one copy of the resource among all applications whenever possible.

In this chapter, we will:

Introduce the different sets of Xcode Frameworks and their locations

Take an insight into the Core Data Frameworks and build a simple database
application to save and retrieve data

Learn how to play an audio file using the AV Foundation Frameworks

Learn how to play a movie using the Media Player Frameworks

Understand what comprises the Core Location Framework

Learn about the Map Kit Framework and the improvements

Learn how to go about building a simple Geographical Application

We have got quite a bit to cover, so let's get started.















Working with the Xcode Frameworks

[100]

Introducing the Frameworks
You may be wondering, what exactly are frameworks? Well, to sum it up, frameworks are
basically a group of code libraries that provide specific functionalities that save you time in
building common features yourself.

In previous chapters, you have already been using Apple's frameworks; in fact, every time
you use your Mac you make use of these frameworks. Most software that you use on your
Mac uses these frameworks, including Apple's Mac OS X operating system.

Frameworks are an integral part of Cocoa, which is an object-oriented environment which
you use to build Mac OS X software—including Mac and iOS applications. Cocoa consists of
the following main components:

The Xcode Tools

The Core Frameworks: This includes the Foundation and Application Kit

Additional Frameworks: WebKit, Core Data, and Core Animation, and so on

The above frameworks are highly optimized code libraries which provide you with a
straightforward and consistent interface to the features within the Mac OS X operating
system. If you wanted to implement a list box, command button, or web browser window;
these would operate the same way as those used in such programs as Safari, iTunes,
or Mail.

The Core Foundation frameworks are the fundamental Cocoa frameworks that are used in all
Cocoa applications and inherit all features from the NSObject.

NSObject was covered in Chapter 1, Introducing Xcode 4 Tools for iPhone
Development under the section Objective-C Classes or refer to the Apple
Developer Documentation at: http://developer.apple.com/
library/mac/#documentation/Cocoa/Reference/Foundation/
Classes/NSObject_Class/Reference/Reference.html

The main core frameworks which are supplied by Apple are located within the /System/
Library/Frameworks folder. If you take a look within this folder, you will notice that it
contains folders for every framework.

The table below describes each of the �� frameworks which are available to iOS devices. If
you are interested in taking a look at these frameworks, you can find these located in the
<Xcode>/Platforms/iPhoneOS.platform/Developer/SDKs/<iOS_SDK>/System/
Library/Frameworks directory.







Chapter 4

[101]

<Xcode> : The path to where your Xcode installation directory is located.

<iOS_SDK> : The specific SDK version that your project is targeting.

FRAMEWORK NAME DESCRIPTION

AddressBook.Framework This framework provides access to the centralized
database for storing user contact information.

AddressBookUI.Framework This framework provides the User Interface to display
the contacts stored within the Address Book database.

AudioToolBox.Framework Provides low-level C APIs for audio recording and
playback as well as managing the audio hardware.

AudioUnit.Framework Provides the interface for iOS supplied audio processing
and plug-ins within your application.

AppKit.Framework Provides you with all the objects you need to implement
your graphical, event-driven user interface: windows,
panels, buttons, menus, scrolling views, and text fields.
This framework handles all the details for you as it
efficiently draws on the screen, communicates with
hardware devices and screen buffers, clears areas of the
screen before drawing, and clips views.

AVFoundation.Framework Provides low-level C APIs for audio recording and
playback as well as managing the audio hardware.

CFNetwork.Framework Provides access to the network features (services and
configurations) such as HTTP, FTP, and Bonjour services.

CoreAudio.Framework Declares data types and constants used by other Core
Audio Interfaces.

CoreData.Framework Provides a generalized solution for object graph
management from within your application.

CoreFoundation.Framework Provides abstraction for common data types, Unicode
Strings, XML, URL Resources, and so on.

CoreGraphics.Framework Provides C-based APIs for 2D rendering. This is based on
the Quartz drawing engine.

CoreLocation.Framework Provides location-based information using a
combination of GPS, Cell ID, and Wi-Fi networks.

ExternalAccessory.Framework Provides a way to communicate with accessories.

Foundation.Framework Provides the foundation classes for Objective-C, such as
the NSObject,�� basic data types, and operating system
services, and so on.

Working with the Xcode Frameworks

[102]

FRAMEWORK NAME DESCRIPTION

GameKit.Framework Provides networking capabilities for games, and is
used for peer-to-peer connectivity and in-game voice
features.

IOKit.Framework Provides capabilities for driver development.

MapKit.Framework Provides an embedded map interface for your
application.

MediaPlayer.Framework Provides facilities for playing movies and audio files.

MessageUI.Framework Provides a view-controller-based interface for
composing e-mail messages.

MobileCoreServices.
Framework

Provides access to standard types and constants.

OpenAL.Framework Provides an implementation of the OpenAL
specification.

OpenGLES.Framework Provides a compact and efficient subset of the OpenGL
API for 2D and 3D drawing.

QuartzCore.Framework Provides ability to configure animations and effects and
then renders those effects via hardware.

Security.Framework Provides the ability to secure your data and control
access to software.

StoreKit.Framework Provides support for your applications to handle in-app
purchases.

SystemConfiguration.
Framework

Provides the ability to determine network availability
and state on the device.

UIKit.Framework Provides the fundamental objects for managing an
application's UI.

Using Frameworks and APIs in iPhone development
For the rest of this chapter, we will be creating a variety of applications that will be using the
Cocoa Frameworks, to create very capable, rich-media applications, to handle playing movie
and audio files, and navigational applications.

Chapter 4

[103]

Core Data Frameworks
The Core Data framework is a framework which manages where data is stored, how this data
is stored, how it is cached, and how it handles memory management. This framework can be
described as a "Schema-driven object graph management and persistence framework"
and was�� first ported to the iPhone from Mac OS X, and came as part of the iPhone 3.0
SDK release.

So what exactly is the Core Data framework? If you are familiar with the Entity-Framework
which is available in Microsoft .NET, this is of a similar nature. The Core Data framework is an
abstraction layer which sits on top of an �� SQLite�� database, and enables developers to easily
implement data-centric applications by modelling your data storage around entities (classes)
that contain the relationships between them.

We are only going to scratch the surface on what is available with Core Data. Since this is
such a large topic, there are many books as well as online resources made available which go
into more depth than we will here. I hope to give you a general overview of what Core Data
is and how to implement it.

The following image shows the simplest and most common configuration of the stack.
Objects that you usually work directly with are located at the top of the stack, as well
as the managed object context and the managed objects that it contains:

Working with the Xcode Frameworks

[104]

Just to give you an insight of the three main management object models that the Core Data
Framework contains, I have described these below:

OBJECT MODELS DESCRIPTION

Managed Object Context This associates the in-memory objects with their associated in-storage
counterparts.

Managed Object This is the in-memory representation of a data-model object and is
saved to storage in a persistent store (table).

Managed Object Model This is the object-relational schema, which contains the entity
descriptions that are required to build the managed objects.

Building a simple database application
In this section, we will look at building a simple iPhone application using Core Data to allow
the user to enter their name, date of birth and gender, and save and retrieve this information
from the database.

Time for action – creating the Core Data application
Before we can proceed, we first need to create our "CoreDataExample" project. ����������� To refresh
your memory, you can refer to the section that we covered in Chapter 2, Introducing the
Xcode 4 Workspace under the section, Creating your first iPhone application.

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the Window-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family dropdown.

5.	 Ensure that you have checked Use Core Data from under the Options section:

Chapter 4

[105]

6.	 Click on the Next button to proceed to the next step in the wizard.

7.	 Enter in CoreDataExample and then click on the Next button to proceed to the next
step in the wizard:

Working with the Xcode Frameworks

[106]

8.	 Specify the location where you would like to save your project.

9.	 Click on the Save button to continue and display the Xcode workspace environment.

There is not a lot of setting up to do as the Use Core Data option which we checked when we
created our project, has automatically set up some important variables and has also created
the files for us in our project. We don't need to include the CoreData.Framework, as this
has been automatically added for us.

The CoreDataSample.xcdatamodel file is where we will be defining the database schema
for our SQLite database and this file is located under the Models section within our
project workspace:

Follow these steps to create a new entity and then to add attributes to it, which will be used
to represent the data that is going to be stored:

1.	 Click on the + Add Entity button, located in the bottom left-hand corner of the entity
panel and name this entity Person.

2.	 Click on the + Add Attribute button located in the bottom right of the entity panel,
or similarly from the Attributes pane and enter name for the attribute.

3.	 Change the attribute type to String from the type selection box.

4.	 Repeat steps 2 and 3 to add the remaining attributes for dob and gender.

5.	 Save your project using File | Save, as we are done defining our database
table schema.

Chapter 4

[107]

We are now ready to start writing the code to save and retrieve our data.

What we now need to do is to create our own view controller, that will be used to handle the
saving and loading of the data as well as containing our user interface:

1.	 From the Classes folder in your project, ctrl + click on the folder, and select New
File…. The following screen is displayed as shown below:

2.	 Select the UIViewController subclass template from the list of available templates.

3.	 Ensure that the With XIB for user interface option is selected from under the
Options section.

4.	 Click on the Next button to proceed to the next step of the wizard.

Working with the Xcode Frameworks

[108]

5.	 Enter coreDataViewController as the name of the file to create, and then click on
the Save button.

The Source Control: Create local git repository for this project is not checked
by default.

Now that we have added our view controller class to our application, our next task is to
modify our application delegate and to make this the main root view controller:

1.	 Open the CoreDataExampleAppDelegate.h interface file, located within the
Classes folder of your project and add the following highlighted code as shown in
the code snippet below:

	 @class coreDataViewController;

	 @interface coreDataExampleAppDelegate : NSObject 	
 <UIApplicationDelegate> {
	 coreDataViewController *viewController;

	 }

Chapter 4

[109]

	 @property (nonatomic, retain) IBOutlet coreDataViewController
	 *viewController;

	 @end

What we have done in the code above is that we have declared an instance to our view
controller so that we can reference this object. What we need to do now is to modify the
call to the method applicationDidFinishLaunching.

2.	 Open the CoreDataExampleAppDelegate.m interface file, located within the
Classes folder, then modify your code module to include the additional highlighted
references as shown in the code snippet below:

#import "coreDataExampleAppDelegate.h"
#import "coreDataViewController.h"

@implementation coreDataExampleAppDelegate

@synthesize window, viewController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Override point for customization after application launch.
 [window addSubview:viewController.view];

 [window makeKeyAndVisible];
 return YES;
}

What we have added into our coreDataExampleAppDelegate.m implementation
file is a reference to our view controller so that it can be added to our main
window when it has finished launching. We needed to include a reference to our
coreDataViewController.h interface so that we can synthesize our accessibility
objects for the viewController object.

Our next step is to add and associate a new view controller object with the MainWindow.
xib file and then connect it to our application window delegate class:

1.	 Select the MainWindow.xib file which is located under the Resource node.

2.	 Drag and drop a View Controller object from the Xcode Object Library onto the
MainWindow.xib window.

Working with the Xcode Frameworks

[110]

If you have done this correctly, you should see a new View Controller appear under the
existing objects as shown in the screenshot below:

What we now need to do is update the class value for our ViewController to point to our
coreDataViewController class which we created previously. This will contain our form
objects which we will be creating later on:

1.	 With the View Controller currently selected, navigate to View | Utilities
| Identity Inspector, and then change the Custom Class value to read
coreDataViewController:

Chapter 4

[111]

2.	 Next we need to update the NIB Name for our view controller. This can be achieved
by selecting the Attributes page in the inspector window, or View | Utilities |
Attributes Inspector and then assign coreDataViewController as the NIB file:

Our final task is to establish the connection between the application delegate and the
view controller.

1.	 Click on the coreData Example App Delegate item in the MainWindow.xib
window and drag this onto the core Data View Controller which will result in
a blue line appearing.

2.	 Upon releasing the mouse button, select the ViewController item from the menu.
This is shown in the screenshot below:

Now that we have associated and bound our View Controller to our application, we are
ready to add some actions and outlets to the class.

Working with the Xcode Frameworks

[112]

For this example, we will be building a Graphical User Interface to demonstrate the use of
the Core Data Framework. This will accept a Name, Date of birth, and Gender. We will need
to create events which will handle the saving and loading:

1.	 Open the coreDataViewController.h interface file located within the Classes
folder, then modify your code module to include the additional highlighted
references as shown in the code snippet below:

#import <UIKit/UIKit.h>
@interface coreDataViewController : UIViewController {
 IBOutlet UITextField *Name;

 IBOutlet UITextField *DOB;

 IBOutlet UITextField *Gender;

 IBOutlet UILabel *recordsFound;

}
@property (nonatomic, retain) IBOutlet UITextField *Name;

@property (nonatomic, retain) IBOutlet UITextField *DOB;

@property (nonatomic, retain) IBOutlet UITextField *Gender;

@property (nonatomic, retain) IBOutlet UILabel *recordsFound;

-(IBAction)saveData:(id)sender;

-(IBAction)searchData:(id)sender;

-(IBAction)clearData:(id)sender;

@end

What we have added into our coreDataViewController.h interface file, is that
we have set up what fields our form will contain, as well as setting up properties to
these objects so we can reference these when we come to Save and Load our data.
We have also declared the methods within our header file to avoid warnings at
compile time.

2.	 Next, open the coreDataViewController.m implementation file located within
the Classes folder, then modify your code module to include the additional
highlighted references as shown below:

#import "coreDataViewController.h"

#import "coreDataExampleAppDelegate.h"

@implementation coreDataViewController
@synthesize recordsFound, Name, DOB, Gender;

- (IBAction)saveData:(id)sender {

}

Chapter 4

[113]

- (IBAction)searchData:(id)sender {

}

- (IBAction)clearData:(id)sender {

}

As well as declaring our IBOutlets which we will be using on our form, we
need to add an @synthesize directive which will allow us to use them in our
coreDataViewController.m implementation file.

Our final part will be to create the user interface design, bind those objects to the outlets
which we created within our CoreDataViewController.h interface file, and then
create the necessary code for our events. We are now going to add our UITextField,
UIButton, and UILabel objects. To achieve this follow these simple steps:

1.	 Open the coreDataViewController.xib from within our CoreDataExample
project.

2.	 From the Object Library, select and drag a (UIToolBar) Toolbar control to the view
and place it to the top of our View Controller.

3.	 From the Object Library, select and drag a (UIButton) Button control and drag it
to the top left-hand position of our toolbar. From the Attributes Inspector window,
set the caption property of the control to Save and the Style of the button to be
Bordered, and set its identifier to be Refresh.

4.	 Repeat the same process as outlined in the previous step to add the Search and Save
buttons, and assign their styles accordingly as shown below:

Name: Search Style: Bordered Identifier: Search

Name: Save Style: Bordered Identifier: Save

5.	 Now, we need to select and drag a (UILabel) Label control and drag it to your form
and set its Title to display the text Name.

6.	 Select and drag a (UITextField) Textbox control and drag it to your form, and position
it next to your Name Label.

7.	 Repeat steps 5-6 to add the remaining two fields for the Date of Birth and Gender.

Working with the Xcode Frameworks

[114]

8.	 Finally, select a (UILabel) label control and drag this to your view, position it
somewhere underneath the Gender field. This is just for display purposes:

When the user clicks on the Save button, we call our saveData method. In order for this to
work, we must implement the code to obtain the managed object context and create and
store the managed objects containing the data that has been entered by the user.

In our CoreDataViewController.m implementation file, locate the saveData method
and add the following code as shown below:

- (IBAction)saveData:(id)sender {

 coreDataExampleAppDelegate *appDelegate = [[UIApplication
 sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate
 managedObjectContext];
 NSManagedObject *newPerson;

 newPerson = [NSEntityDescription
 insertNewObjectForEntityForName:@"Person"
 inManagedObjectContext:context];

 [newPerson setValue:Name.text forKey:@"name"];
 [newPerson setValue:DOB.text forKey:@"dob"];
 [newPerson setValue:Gender.text forKey:@"gender"];

 Name.text = @"";

Chapter 4

[115]

 DOB.text = @"";
 Gender.text = @"";

 NSError *error;
 [context save:&error];

 recordsFound.text = @"Details have been saved to the database.";
}

What we are doing in the above code is using our application delegate instance to identify
the managed object context. We then use this context object to create a new managed
object using the Person entity item, and then use the setValue method of the managed
object to store the name, date of birth, and gender fields. Finally, we call the contexts save
method to save this data.

In order to give the user the ability to search for a person's name, we need to implement the
code for searchData() method. We will need to do the same as we did in the saveData()
method, but with one exception, that being to ensure that only objects with the name
entered by the user are retrieved by the user.

In our CoreDataViewController.m implementation file, locate the searchData method
and add the following code as shown in the code snippet:

- (IBAction)searchData:(id)sender {

 coreDataExampleAppDelegate *appDelegate = [[UIApplication
 sharedApplication] delegate];
 NSManagedObjectContext *context = [appDelegate
 managedObjectContext];
 NSEntityDescription *entityDesc = [NSEntityDescription
 entityForName:@"Person" inManagedObjectContext:context];
 NSFetchRequest *request = [[NSFetchRequest alloc] init];

 [request setEntity:entityDesc];
 NSPredicate *pred = [NSPredicate predicateWithFormat:@"(name =
 %@)", Name.text];
 [request setPredicate:pred];

 NSManagedObject *matches = nil;
 NSError *error;
 NSArray *objects = [context executeFetchRequest:request
 error:&error];

 if ([objects count] == 0) {
 recordsFound.text = @"No matches were found matching your
 criteria";

Working with the Xcode Frameworks

[116]

 } else {
 matches = [objects objectAtIndex:0];
 DOB.text = [matches valueForKey:@"dob"];
 Gender.text = [matches valueForKey:@"gender"];
 recordsFound.text = [NSString stringWithFormat:@"%d Matches
 Found", [objects count]];
 }
 [request release];
}

What we are doing in the above code is using our application delegate instance to identify
the managed object context as we did for our saveData method. We then use this context
object to create a new managed object using the Person entity item, and then create a
predicate object to only return objects matching the name specified by the user. If a match
is found, those objects are placed in an array, and then the objects are displayed to the form
fields using the valueForKey method.

It is good programming practice to always release the memory used by your objects. This
will save you time investigating programming errors down the track. We will need to add
these form object outlet controls to our viewDidLoad() and dealloc() methods that are
contained within the coreDataViewController.m file:

- (void)viewDidUnload {
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
 self.Name = nil;
 self.DOB = nil;
 self.Gender = nil;
 self.recordsFound = nil;
}
- (void)dealloc {
 [Name release];
 [DOB release];
 [Gender release];
 [recordsFound release];
 [super dealloc];
}

The viewDidUnload method is called when our ViewController has been unloaded.
What we are doing in the above code snippet is freeing up the memory which we allocated
during program execution. The dealloc method is called as a final step when our
application has ended. In this code module, we are releasing each of our objects. To end this
tutorial, I have included a screenshot which shows the final Core Data Example application
with all visual components being populated with data from our Core Data database:

Chapter 4

[117]

What just happened?
In this section, we looked at how we can build a simple database application using Core
Data and SQLite. We looked at what are the differences between Entities and Attributes, and
how to go about creating these, and then finally looked at how we use the Managed Object
Context and Managed Object Model to save and retrieve data from our SQLite database.

AV Foundation Frameworks
The AV Foundation framework provides an Objective-C interface which handles the recording
and playing of audio and video content within your iOS application. This framework also
provides the AVAudioSession class which handles the configuring and managing of your
application's audio session.

The AVAudioSession class handles the following:

Playing an audio File

Playing a movie using Media Player





Working with the Xcode Frameworks

[118]

Whilst the Media Player Framework proves to be great with handling your entire general
media playback, the AV Foundation Framework offers audio recording features making it
possible to record new sound files directly within your application.

In order to make it possible for your application to handle playing of audio and recording
within your application, you will need to include two new classes:

FRAMEWORK NAME DESCRIPTION

AVAudioRecorder Records Audio in a variety of different formats to memory or to a local file
on the iPhone. The recording process is even clever enough to continue
while other functions are running in your application.

AVAudioPlayer Plays back audio files of any length. By using this class, you can
implement a backing game soundtrack or other complex audio
applications and you have complete control over the playback, including
the ability to layer multiple sounds on top of one another.

As you can see, the Media Player Framework and the AV Foundation Framework work hand
in hand in order to handle playing of audio files.

Playing an audio File
Playing an audio file is a simple process. Before we can do this, we need to first include the
AV Foundation Framework into our project. �� In the next section, we will be creating a simple
application which will play an audio file using the MediaPlayer Framework.

The Media Player Framework is used for playing back video and audio from either local or
remote resources and can be used to call up the iPod interface from your application from
which you are able to select songs to play back. The Framework integrates well with all
the built-in media features that your phone has to offer and we will be making use of the
following five classes in our sample application:

FRAMEWORK NAME DESCRIPTION

MPMoviePlayerController Allows playback of a piece of media, which is either located
on the iPhone file system or through a remote URL. The
player controller can provide a GUI for scrubbing through
video, pausing, fast forwarding, or rewinding.

MPMediaPickerController Presents the user with an interface for choosing media to
play. You can filter the files which are displayed by using
the media picker, or allow the selection of any file from the
media library.

MPMediaItem A single piece of media, such as a song.

Chapter 4

[119]

FRAMEWORK NAME DESCRIPTION

MPMediaItemCollection Represents a collection of media items that will be used
for playback. An instance of MPMediaPickerController
returns an instance of MPMediaItemCollection that can
be used directly within the next class—the music player
controller.

MPMusicPlayerController Handles the playback of media items and media item
collections. Unlike the movie player controller, the music
player allows playback from anywhere in your application.

The MediaPlayer Framework supports playback of the following file formats:

AAC (16 to 320Kpbs)

AIFF

AAC Protected (MP4 from iTunes Store)

MP3 (16 to 320Kbps)

MP3 VBR

Audible (formats 2-4)

Apple Lossless

WAV

MOV, M4V, MPV, or MP4 video codec formats

Creating an application to play an audio file
Playing audio files is one of the common tasks on the iPhone, apart from playing video
content. What we will be achieving in this section is to build a simple application which
will contain two buttons—Play Audio and Stop Audio.

Time for action – creating the MusicPlayer application
Before we can proceed, we first need to create the MusicPlayer project. ���������������� To refresh your
memory, you can refer to the section which we covered in Chapter 2, Introducing the Xcode 4
Workspace under the section,Creating your first iPhone application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family dropdown.



















Working with the Xcode Frameworks

[120]

5.	 Click on the Next button to proceed to the next step in the wizard.

6.	 Enter MusicPlayer as the name of the project, and then click on the Next button to
proceed to the next step of the wizard.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

The Source Control: Create local git repository for this project is not checked
by default.

Now that we have created our MusicPlayer project, we need to add an important
framework to our project to enable our application to have the ability to play audio files.

To add the AV Foundation Framework to your project, select the Project Navigator Group,
and then follow these simple steps as outlined below:

1.	 Select your Project.

2.	 Then select your project target from under the TARGETS group.

3.	 Select the 'Build Phases' tab.

4.	 Expand the 'Link binary with Libraries' disclosure triangle.

5.	 Finally, use the + to add the library you want. You can also search if you can't find
the framework you are after from within the list.

If you are still confused how to go about adding the frameworks, follow the screenshot
below which highlights the areas that you need to select (surrounded by a red rectangle):

Chapter 4

[121]

Now that you have added the AVFoundation.framework into your project, you need to start
building your user interface which will be responsible for playing the audio:

1.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
and add this to our view, resize accordingly and then modify the Object Attributes
section of the Round Rect Button and set its title to Play Audio.

2.	 From the Object Library, select and drag a second (UIButton) Round Rect Button
control and add this to our view, resize accordingly and then modify the Object
Attributes section of the Round Rect Button and set its title to Stop Audio.

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same as mine, feel free to adjust yours:

As you can see, our form doesn't do much at this stage and if you were to run this application
in the simulator, you would see the controls as laid out on your screen. Our next step is to
start to add some code into our MusicPlayerViewController.h interface file so that we
can utilise the methods that the AVAudioPlayer class has to offer:

1.	 Open the MusicPlayerViewController.h interface file, ������������������� located within the
Classes folder ��� and insert the following lines of code below the UIKit #import
statement:

#import <UIKit/UIKit.h>
#import <AVFoundation/AVAudioPlayer.h>

@interface MusicPlayerViewController : UIViewController {
 AVAudioPlayer *player;

Working with the Xcode Frameworks

[122]

}

@property(nonatomic,retain) AVAudioPlayer *player;

@end

What we have just declared in the code snippet above, is to make our View
Controller aware of what the AVAudioPlayer class header has to offer by exposing
all of its class methods.

2.	 Next, open the MusicPlayerViewController.m implementation file, ��������located
within the Classes folder, then �������������������������������� add the following lines of code:

	 #import "MusicPlayerViewController.h"
	 @implementation MusicPlayerViewController
	 @synthesize player;

We then need to declare an instance variable (player) to our AVAudioPlayer class, and
create a property which will enable us to reference the instance variable (player) from within
our MusicPlayerViewController.m implementation file; ������������������������������� this object provides us with a
simplified approach to interact with this variable and use it throughout our implementation
file. You can probably think of this as a pointer variable to our AVAudioPlayer class which
we defined in our associated interface file.

In order for our buttons to work, we need to create the associated actions for each of these,
as well as writing the necessary code to perform those tasks. This section will show you
how to go about connecting your buttons to action events, with each performing the
task of playing or stopping audio playback. So let's get started:

1.	 We need to create an action event, select the Play Audio button, and hold down
the Ctrl key while you drag this into the MusicPlayerViewController.m
implementation file class as shown below:

2.	 Specify a name for the action that you want to create. Enter playAudio as the name
of the action.

Chapter 4

[123]

3.	 Set the type of event to be Touch Up Inside:

4.	 Click on the Connect button to have Xcode create the event.

5.	 Repeat steps 3 – 4 to create the action event for the stopAudio button.

6.	 Add the following code snippet to our playAudio function which will handle
playing our sample audio file:

- (IBAction)playAudio:(id)sender {

 // Get the file path to the song
 NSString *filePath =[[NSBundle mainBundle] pathForResource:@"mus
ic"
 ofType:@"mp3"];

 // Convert the file path to a URL
 NSURL *fileUrl = [[NSURL alloc]initFileURLWithPath:filePath];

 //Initialize the AVAudioPlayer
 self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:
fileUrl
 error:nil];

 // Release the memory allocated to our objects
 [filePath release];
 [fileUrl release];

 // Play the audio file
 [self.player play];
}

Working with the Xcode Frameworks

[124]

What we have just added to our playAudio function is that we have declared a
variable (NSString) filePath which will contain the file path to our audio file. Next we
create a (NSURL) fileUrl, which converts our file path to an object which is what the
AVAudioPlayer needs when it is being initialized. Next, we set up and initialise the
AVAudioPlayer, and assign this to our player object. Finally, we release the memory
allocated to our filePath and fileUrl objects and then play the audio.

7.	 Add the following code snippet to our stopAudio function which will handle
stopping our audio file playback:

- (IBAction)stopAudio:(id)sender {
 [self.player stop];

}

In the above code snippet, we pass the stop method to our player object. By doing
this, it tells the AV Foundation framework and the AVAudioPlayer class to cease all
playback of audio.

The screenshot below shows our MusicPlayer application running on the iPhone Simulator:

Chapter 4

[125]

What just happened?
As you can see, by using the AV Foundation Framework and the AVAudioPlayer class, you
can incorporate audio and sounds within your iPhone applications. Feel free to experiment
further with the AV Foundation Framework. There is a wealth of documentation out there
which can help you understand this framework and many others in greater depth than we
have covered within this section.

In the next section, we will be looking at how we go about playing a movie file using the
Media Player Framework.

Playing a movie using Media Player
Playing videos is one of the most common tasks on the iPhone. On the iPhone, all videos
must be played full-screen. Before we can play any videos, we need to include the
MediaPlayer Framework in our application; you will notice that this is the same framework
that we used when we were playing our audio file. In the next section, we will be creating a
simple application to play a movie file, so let's get started.

Time for action – creating the MoviePlayer application
Before we can proceed, we first need to create our MoviePlayer project. ���������������� To refresh your
memory, you can refer to the section which we covered in Chapter 2, Introducing the Xcode 4
Workspace under the section Creating your first iPhone application.

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family dropdown.

5.	 Click on the Next button to proceed to the next step in the wizard.

6.	 Enter in MoviePlayer as the name for your project, and then click on the Next
button to proceed to the next step of the wizard.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Now that we have created our MoviePlayer project, we need to add an important
framework to our project to enable our application with the ability to play movie files.

Working with the Xcode Frameworks

[126]

To add the Media Player Framework to your project, select the Project Navigator Group, and
then follow these simple steps as outlined below:

1.	 Select your Project.

2.	 Then select your project target from under the TARGETS group.

3.	 Select the 'Build Phases' tab.

4.	 Expand the 'Link binary with Libraries' disclosure triangle.

5.	 Finally, use the + to add the library you want. You can also search if you can't find
the framework you are after from within the list.

If you are still confused how to go about adding the frameworks, follow the screenshot
below which highlights the areas that you need to select (surrounded by a red rectangle):

Now that you have added the MediaPlayer.framework into your project, we need to start
building our user interface which will be responsible for playing the movie:

1.	 From the Object Library, select and drag a (UIButton) Round Rect Button control and
add this to our view.

2.	 Resize accordingly and then modify the Object Attributes section of the Round Rect
Button and set its title to Play Movie.

We don't need to add a stop button, as we will be adding an event which will handle this for
us when the movie has finished playing.

Chapter 4

[127]

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same as mine, feel free to adjust yours:

As you can see, our form doesn't do much at this stage and if you were to run this application
in the simulator, you would see the controls as laid out on your screen

The following text will show you how to connect your buttons up to action events which will
each perform the task of playing the video. So let's get started:

1.	 We need to create an action event, select the Play Movie button, and hold down
the Ctrl key while you drag this into the MoviePlayerViewController.m
implementation file class as shown below:

2.	 Specify a name for the action that you want to create. Enter in playMovie as the
name of the action.

Working with the Xcode Frameworks

[128]

3.	 Set the type of event to be Touch Up Inside:

4.	 Click on the Connect button to have Xcode create the event.

We now need to add the code to our playMovie function which will handle playing our
sample movie file. Enter in the following code snippet to this function:

- (IBAction)playMovie:(id)sender {
 NSString *filepath = [[NSBundle mainBundle]
 pathForResource:@"sample-movie" ofType:@"mp4"];
 NSURL *fileURL = [NSURL fileURLWithPath:filepath];
 MPMoviePlayerController *moviePlayerController =
 [[MPMoviePlayerController alloc] initWithContentURL:fileURL];

 [[NSNotificationCenter defaultCenter]addObserver:self
 selector:@selector(moviePlaybackComplete:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayerController];

 [self.view addSubview:moviePlayerController.view];
 moviePlayerController.fullscreen=YES;
 [moviePlayerController play];
}

What we have just added to our playMovie function is that we have declared a
variable (NSString) filePath which will contain the file path to our movie file. Next we
create a (NSURL) fileUrl which converts our file path to an object, which is what the
MPMoviePlayerController needs when it is being initialized.

We then add the MPMoviePlayerController view to our custom view controller so that
it will appear on the screen. We specify that we want to display this fullscreen, and finally we
tell the moviePlayerController to commence playback.

Chapter 4

[129]

Since we have allocated memory to our moviePlayerController object, at this stage
we haven't released it yet, this being due to not knowing when the movie playback will
actually finish. Fortunately, the MPMoviePlayerController object comes prebuilt
with methods to handle this scenario and will dispatch a notification method called
MPMoviePlayerPlaybackDidFinishNotification to the NSNotificationCenter
when the movie playback completes. This is shown in the highlighted code in the
above snippet.

When we play back video content within our iPhone applications, you will sometimes need
to modify the scalingMode property of the MPMoviePlayerController object. By
sett﻿ing this property it will determine how the movie image adapts to fill the playback size
that you have defined. The following scaling modes currently exist and are displayed below:

MPMovieScalingModeNone

MPMovieScalingModeAspectFit

MPMovieScalingModeAspectFill

MPMovieScalingModeFill

The two main common scaling modes used are the MPMovieScalingModeAspectFill
and MPMovieScalingModeFill.

In order to implement this property in your application, insert the following line of code just
before the [moviePlayerController play] statement:

moviePlayerController.scalingMode = MPMovieScalingModeFill;

When you run your application, you will notice that the video fills the entire available space.

Next, we need to create the moviePlaybackComplete: method which will be
responsible for releasing our moviePlayerController object. This is shown in
the code snippet below:

- (void)moviePlaybackComplete:(NSNotification *)notification
{
 MPMoviePlayerController *moviePlayerController = [notification
 object];
 [[NSNotificationCenter defaultCenter]removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayerController];
 [moviePlayerController.view removeFromSuperview];
 [moviePlayerController release];
}









Working with the Xcode Frameworks

[130]

In the above code snippet, we pass the object to the notification method. This is whatever
we have passed in the previous code snippet, this being the moviePlayerController
object. We start by retrieving the object using the [notification object] statement and then
reference it with the new MPMoviePlayerController pointer.

We then send a message back to the NSNotificationCenter method which removes the
observer we previously registered within our playMovie function. We finally proceed with
cleaning up our custom view controller from our display, and then release the memory we
previously allocated to our moviePlayerController object.

The screenshot below shows our MoviePlayer application running on the iPhone Simulator
with movie playback in portrait mode; support is available to display this in landscape mode:

What just happened?
In this section, we learned about the MediaPlayer framework, and how we can use this
within our applications to give us the ability to play audio and video. We learned about
the various scaling modes for video playback and how to implement these.

Chapter 4

[131]

So there you have it. As you can see, by using the Media Player Framework and the
MPMoviePlayerController class, you can incorporate movie playback within your
iPhone applications.

Core Location Framework
Your iPhone comes built with the GPS (Global Positioning System) hardware as well as
some location and mapping software which shows you where you are at any given time
by using the built-in GPS receiver as well as information from cellular towers to derive
this information.

So, what is the Core Location Framework? It can be defined as a framework which adds
location awareness to your iPhone applications and makes use of the following events:

METHOD NAME DESCRIPTION

CLLocationManager A class which provides you with the mechanisms by which location
information gets delivered to your application. A single instance of
this class needs to be created, then optionally set some accuracy
properties, and then call the startUpdatingLocation method.

CLLocation Handles the events which are generated by the delegate methods
located within your CLLocationManager instance. The
CLLocatio�n object not only encapsulates the geographical
coordinates, but also captures the underlying information, such as
speed, altitude and direction, as well as various other propertie��s.

The Core Location Framework can use any of the following technologies: GPS,
Cellular network, or Wi-Fi. If GPS is present, it is used first by the framework.
However, if the device does not support GPS, or if an error occurred while
obtaining the current location via GPS, the framework will use your Cell phone's
network, and then use Wi-Fi.

Time for action – making your application location aware
Before we can proceed, we first need to create our CoreLocation project. ���������������� To refresh your
memory, you can refer to the section which we covered in Chapter 2, Introducing the Xcode 4
Workspace under the section Creating your first iPhone application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

Working with the Xcode Frameworks

[132]

4.	 Select iPhone from under the Device Family dropdown, as the type of view
to create.

5.	 Click on the Next button to proceed to the next step in the wizard.

6.	 Enter in CoreLocation and then click on the Next button to proceed to the next step
of the wizard.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Now that we have created our CoreLocation project, we need to add an important
framework to our project to give our application the ability to provide location information.

To add the CoreLocation Framework to your project, select the Project Navigator Group and
then follow these simple steps as outlined below:

1.	 Select your Project.

2.	 Then select your project target from under the TARGETS group.

3.	 Select the 'Build Phases' tab.

4.	 Expand the 'Link Library with Libraries' disclosure triangle.

5.	 Use the + to add the library that you want. You can also search if you can't find the
framework you are after from within the list.

If you are still confused about how to add the frameworks, follow the screenshot below
which highlights the areas that you need to select (surrounded by a red rectangle):

Chapter 4

[133]

Now that we have added the CoreLocation.framework into your project, we need to add the
code which will be responsible for displaying our location information.

In order to make our application location-aware, we need to import the <CoreLocation/
CoreLocation.h> interface file and implement the CLLocationManagerDelegate
protocol declaration and create an instance variable to point to our location manager object:

1.	 Open the CoreLocationViewController.h interface file, ������������������� located within the
Classes folder �� and �� then ��� add the following code as shown in the snippet below:

#import <CoreLocation/CoreLocation.h>
@interface CoreLocationViewController : UIViewController
 <CLLocationManagerDelegate> {

 CLLocationManager *locationManager;
}

In the above code snippet, we included a reference to the CoreLocation.h
interface library; we then created a delegate method of the CLLocationManager
method and then declared a variable which will hold the location to our
CLLocationManager object.

We haven't quite finished yet. What we now need to do is modify our
ViewDidLoad method located within our CoreLocationViewController.m
implementation file.

2.	 Open the CoreLocationViewController.m implementation file ��������������� located within
the Classes folder, then ������������������������� locate and uncomment the ViewDidLoad method, and
then add the following code as shown in the snippet below:

- (void)viewDidLoad {

 [super viewDidLoad];
 locationManager = [[CLLocationManager alloc] init];
 locationManager.delegate = self;
 [locationManager startUpdatingLocation];
}

In the above code snippet, what we have done is initialize and allocate
memory to our location manager object which we declared within our
CoreLocationViewController.h file. We then set up the delegate method to
be the current View Controller object, and then we tell the location manager to start
sending location event information.

Working with the Xcode Frameworks

[134]

What we have been doing so far is setting up our application to be location-aware,
but currently we still don't have any way of dealing with the information that the
location manager is sending back. Our next step is to implement two delegate methods
of the CLLocationManager object. The first one we will be implementing is the
locationManager:didUpdateToLocation method which is called whenever the
location manager updates to a new location. The location manager passes the previous
location and the new location, unless this is the first time, hence resulting in the
fromLocation being nil.

The second method which we will implement will be the didFailWithError. This method
captures any errors which have occurred within the location manager when trying to retrieve
a location value, in which case we will want to stop our location manager and make a call to
the stopUpdatingLocation method in order to conserve battery power on the device.

In order to determine the current location, we need to write the code for it. Follow these
steps to implement the didUpdateToLocation method:

1.	 Open the CoreLocationViewController.m implementation file ��������������� located within
the Classes folder.

2.	 Add the following code as shown in the code snippet directly under the
viewDidLoad method:

-(void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation

{
 NSLog(@"Location found at the following coordinates:
 %@",newLocation.description);
 [locationManager stopUpdatingLocation];
}

In the above code snippet: what this is doing is obtaining the current location
from the CLLocationManager delegate and updating the newLocation
and oldLocation values. We then use the description method of the
newLocation object to extract and display the coordinates to the debug window
using the NSLog function.

In this final section, we will implement the code to handle errors when the
CLLocationManager is unable to retrieve location information. We use the error property
which contains the information sent back from the CLLocationManager object and then
we call the stopUpdatingLocation method of our location manager object:

1.	 Open the CoreLocationViewController.m file, located within the
Classes folder.

Chapter 4

[135]

2.	 Add the following code snippet directly underneath the didUpdateToLocation
function:

-(void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error

{
 NSLog(@"An error has occurred, error details are: %@", error);
 [locationManager stopUpdatingLocation];
}

In the above code snippet, when an error occurs and the CLLocationManager fails
to bring back location information for whatever reason, we need to stop this event
by calling the stopUpdatingLocation method which ceases further updates.

What just happened?
In this section, we learned how we can use the Core Location Framework to incorporate
GPS-like functionality within our applications. We looked at how we can use the
CLLocationManager method to handle and provide updates to our current whereabouts,
as well as the didUpdateToLocation and didFailWithError method to determine
whether the location manager updated to a new location and what to do when we
experienced an error, such as connection lost or unable to retrieve the current location.

Map Kit Framework—new and improved
Mapping applications can now include overlays that can identify regions on a map and
also allow you to draw routes with annotations for customized directions and other
functionalities.

Before we proceed with the next section, it is worth giving you an understanding of what
the MapKit mapping framework is; this framework is based on the Google Maps engine and
gives you the ability to add interactive maps to your applications. By adding this functionality,
it gives you the flexibility of scrolling and zooming Maps to any region within the world. Place
Holders (or annotations) can be added to the map to display additional information.

In the next section, we will be creating a map-based application making use of the Core
Location and Map Kit Frameworks, so let's get started.

Working with the Xcode Frameworks

[136]

Time for action – creating a simple geographical application
Before we can proceed, we first need to create our MapKit project. ������������������������ To refresh your memory,
you can refer to the section which we covered in Chapter 2, Introducing the Xcode 4
Workspace under the section Creating your first iPhone application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family dropdown.

5.	 Click on the Next button to proceed to the next step in the wizard.

6.	 Enter in MapKitSample and then click on the Next button to proceed to the next
step of the wizard.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Now that we have created our MapKitSample project, we need to add an important
framework to our project to enable our application to have the ability to view map
information.

To add the MapKit Framework to your project, select the Project Navigator Group and then
follow these simple steps as outlined below:

1.	 Select your Project.

2.	 Then select your project target from under the TARGETS group.

3.	 Select the 'Build Phases' tab.

4.	 Expand the 'Link Library with Libraries' disclosure triangle.

5.	 Use the + to add the library that you want. You can also search if you can't find the
framework you are after from within the list.

Chapter 4

[137]

If you are still confused about how to add the frameworks, follow the screenshot below
which highlights the areas that you need to select (surrounded by a red rectangle):

Now that you have added the MapKit.framework into your project, we need to import
the code into the View Controller which will be responsible for displaying our map
location information.

In order to make our application display the map to our view, we will need to import the
<MapKit/MapKit.h> interface header file, so that we can utilise its methods:

1.	 Open the MapKitSampleViewController.h interface file, ������������������� located within the
Classes folder, then ��� add the following code as shown in the snippet below:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface MapKitSampleViewController : UIViewController {

 MKMapView *mapView;

}

In the above code snippet, we have included a reference to the Cocoa MapKit.h
header file which will expose its methods so that we can use these within our
MapKitSample implementation file. Then we have created an instance variable
(mapView) which is a pointer to our MKMapView object which is responsible for
holding our Map location information.

Working with the Xcode Frameworks

[138]

2.	 We haven't quite finished yet. What we now need to do is modify our ViewDidLoad
method located within our MapKitSampleViewController.m implementation
file. Open the MapKitSampleViewController.m implementation file.

Locate and uncomment the ViewDidLoad method. Add the following code as
shown in the snippet below:

- (void)viewDidLoad {

 [super viewDidLoad];
 mapView = [[MKMapView alloc] initWithFrame:[self.view bounds]];

 [self.view addSubview:mapView];
}

In the above code snippet, what we have actually done is initialize and
allocate memory for our mapView object which we declared within our
MapKitSampleViewController.h file, and then we add our mapView
object to our current view so that we can display on the screen.

If you were to Build and Run your application now, you will see a map displayed within the
iOS Simulator. You have the ability to navigate around the map and zoom in and out.

The mapKit framework has the ability to show you your current location within the map. It
also allows you to set a variety of mapTypes. We will be adding some additional code to our
ViewDidLoad method which is located within our MapKitSampleViewController.m
implementation file:

1.	 Open the MapKitSampleViewController.m implementation file,���������������� located within
the Classes folder.

2.	 Locate the ViewDidLoad method and then add the following highlighted code as
shown in the snippet below:

- (void)viewDidLoad {
 [super viewDidLoad];
 mapView = [[MKMapView alloc] initWithFrame:[self.view bounds]];
 mapView.mapType = MKMapTypeHybrid;

 mapView.showsUserLocation = YES;

 [self.view addSubview:mapView];
}

In the above code snippet, what we have added is the ability to display our map in
Hybrid view (combination of satellite view and road information) as well as telling
our map to display our current location which will be indicated by an animated
blue marker.

Chapter 4

[139]

The iOS native Maps application allows you to choose from these three possible Map Types
which are explained below:

MAP TYPE CONSTANT DESCRIPTION

MKMapTypeStandard This is the default type of map to display if none is specified and this
type will show a normal map containing street and road names.

MKMapTypeSatellite Setting this type of map will display Satellite view information.

MKMapTypeHybrid This type of map will show a combination of a Satellite view with
road and street information overlaid.

We have finally made it. If you Build and Run your application; you should now see a map
displayed with the animated blue marker flashing. I have zoomed in at a random location to
show the capabilities of the MapKit Framework which are shown in the screenshot below:

Working with the Xcode Frameworks

[140]

When running MapKit applications using the iPhone Simulator, it will always
default to Apple's Headquarters which is located at 1, Infinite Loop based out
at California. In order to get a better location, it is better to use your iOS device
because the iOS simulator on the Mac OS X Snow Leopard can geocode your IP
address and get the approximate location.

What just happened?
In this section, we looked at the two powerful frameworks, Core Location and MapKit. As we
saw in our example application, these two frameworks as often used together to deliver the
functionality of a location-aware iPhone application.

We use the location manager to receive updates on the user's location, and showed a
map using the satellite view. So as you can see, you can do some pretty neat stuff with
Core Location.

New Framework APIs
The iOS 4 SDK comes equipped with several new framework APIs. We will be describing what
each of these fantastic new additions to the iOS SDK consist of below:

Quick Look: Just like Mail can preview documents, Quick Look will allow developers
to present the same functionality in their apps.

Calendar Access: The new Calendar Access API includes a new way for your
application to create and edit events directly from within the calendar application,
by using the Event Kit Framework. This allows you to create recurring events, set up
start and end times, and then assign them to any calendar on the device.

In-App SMS: The in-App SMS API allows a way for developers to include the
functionality of sending SMS messages, directly from within their application.
Although this feature supports sending of messages to multiple numbers, it does not
include the ability to handle replying to SMS messages and does not include support
for sending MMS messages.

Photo Library Access: With the Photo Library Access API, your iOS applications
now have the ability to directly access user photos and videos by using the Media
Library APIs.









Chapter 4

[141]

Have a go hero – modifying the Core Data example
Now you have a good working knowledge of Core Data and how to go about adding
entities to a database application. The task will be to modify the database model, add
some form fields and create some entities to allow data to be written and retrieved from
a SQLite database:

1.	 Create two additional entities—Job Title and Country and set their type to String.
You can refer to the section Building a simple database application located in this
chapter. Remember to save your project after you have added these attributes.

2.	 Next, create two labels for the two entities above and modify their captions
appropriately.

3.	 Next, create the text fields and outlets for the two entities that you created in the
first step prior to creating the synthesize methods for each of them.

4.	 Next, modify the saveData method to save the data entered in the two fields.

5.	 Modify the searchData method to retrieve the data and display the contents to
those two new entities.

6.	 You will need to modify the viewDidUnload method to release the memory used
by those two entities and then release the memory to those objects within the
dealloc method.

7.	 Once you are satisfied that everything has been completed, you can Compile and
then Build and Run the application.

Once you have implemented the above, you will have a fully customized application which
will be able to save and retrieve data for the newly created fields.

Pop quiz – Core Data / Media Playback and Core Location
1.	 What option needs to be selected when creating a Core Data application?

a.	 iPhone

b.	 Window-based application

c.	 Use Core Data

2.	 When writing to an SQLite database field, what two methods need to be set?

a.	 getValue

b.	 setValue

c.	 getKey

d.	 forKey

Working with the Xcode Frameworks

[142]

3.	 What Framework allows you to play the following file formats: AIFF, AAC, MP3, MOV
and M4V?

a.	 AVFoundation.Framework

b.	 MediaPlayer.Framework

4.	 What method of the MPMoviePlayerController allows for scaling?

a.	 scaleMode

b.	 fullScreen

c.	 scalingMode

5.	 What method of the CLLocationManager object gets called when the
location changes?

a.	 startUpdatingLocation

b.	 didFailWithError

c.	 didUpdateToLocation

6.	 What method of the CLLocationManager class would you use to capture and
handle errors?

a.	 didUpdateToLocation

b.	 didFailWithError

c.	 didGetLocationFailed

d.	 didUnable...ToGetLocation

Summary
In this chapter, we covered the Xcode Frameworks, and how to go about creating a variety
of applications to play audio and video, creating a Map-based application using the Core
Location and MapKit frameworks, as well as taking a look into the Cocoa Core-Data
Framework to build a database application. We then took a look into each of the new
APIs and improvements that have been added to the iOS 4 SDK.

Now that we've learned about each of the frameworks that come as part of the iOS4 SDK,
and having used some of these frameworks to create sample projects to play audio and
movies and GPS location services, we are ready to start focussing on what comprises
the Model-View-Controller Application design pattern and its relation to Xcode and
Interface Builder.

In the next chapter, we will take a look into the MVC Frameworks and gain a better
understanding of the MVC design pattern structure, and how both Xcode and Interface
Builder are used to implement MVC when creating views.

5
Designing Application
Interfaces using MVC

In this chapter, we will learn about the Model-View-Controller (MVC) and how
we can use this technology to build applications using Interface Builder. We
will look at each of the components involved in MVC, and why this technology
is a better alternative to the way you program, by keeping your program logic
separate from your user interface.

In this chapter, we will:

Understand the Model-View-Controller (MVC) design �������������������������� pattern������������������� structure and how
Xcode and Interface Builder implement MVC. Learn how to use the View-Based
Application Template.

Understand what Table-Views are and how to go about creating a simple application.

Understand what Navigation-based ��� Applications����������������������������� and Rotatable and Resizable
Interfaces are and how to go about Repositioning controls within the View
on Rotation.

Learn how to use Switches, Sliders, Segmented �������������������������������������� Controls������������������������������ , Scrolling Views, Web Views,
Pickers, Date Pickers, and how to implement Custom Pickers.

Learn how to handle basic user Input/Output using TextFields, TextViews,
and Buttons.

We have got quite a bit to cover, so let's get started.











Designing Application Interfaces using MVC

[144]

Developing iOS applications using MVC design
To begin this chapter, we will start by explaining "what a Design Pattern" is. This will help
you understand how this interacts with MVC and then go into the various layers of what
makes up the Model-View-Controller and why this pattern was chosen when developing
iOS applications.

Reusing tested (or standard) solutions: Design patterns
So what is a Design Pattern? A Design Pattern is basically something that offers a solution
to a problem by providing a set of general, reusable, and tested solutions pertaining to
common programming scenarios. Some examples of design patterns are the MVC Controller,
and Delegates which you have no doubt used in previous chapters when creating View-Based
or Window-Based applications.

Design patterns are used extensively throughout the iOS Frameworks, so if you create an
iPhone application, there is no doubt you will be using these in some way.

Understanding the Model-View-Controller design pattern
Model-View-Controller (MVC) Pattern separates an applications data structure into three
separate parts, the Model, the View, and the Controller as shown in the following figure:

Chapter 5

[145]

The table below describes each of the components that make up and are part of the
MVC model:

MVC TYPE DESCRIPTION

Model The model provides the underlying data and methods that provide information to
the rest of the application.

View This view can consist of and is made up of one or more views, which contain different
types of objects, Buttons, Switches, Text Fields, and so on that a user can interact
with. This is basically defined as your user interface which the user will see.

Controller This part is the most important part which handles the interaction between different
types of objects. It handles receiving of user input and then determines how to
handle this accordingly. A Controller has the ability to access and update a view using
information from the model, that is, updating some text of a field.

So as you can see, by using the MVC design approach, you can break your application into
these three parts: the Model, the View, and the Controller. By using MVC, it forces you to
program in a more structured approach and allows you to even reuse code and the same
model design across multiple applications which use different views and controllers.

In the next section, we will take a look at how Xcode and Interface Builder (IB) implement
and use the Model-View-Controller.

Implementing MVC using Xcode and Interface Builder
In the previous chapters, you learned about Xcode and how to use Interface Builder. You
have also learned how to connect the objects in the XIB file to the code in an application via
the use of Outlets (IBOutlets) and Actions (IBActions) and what we were actually doing
was binding a view to a controller.

In the following section, we will take a look at what a View is and what a Controller is by
building a simple Pizza Ordering application that will allow the user to make a series of
choices from the menu and then calculate the total cost.

Time for action – building a Pizza order application
Before we can proceed and create our "�� PizzaOrders��������������������������������������� " project, ���������������������������� to refresh your memory, you
can refer to the section Creating your first iPhone application which we covered in Chapter 2,
Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

Designing Application Interfaces using MVC

[146]

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once your project has been created, you will be presented with the Xcode interface along
with all files that the project template created for you displayed within the Project Navigator
window pane.

In this section, we will start to add the components required to build our application user
interface. To refresh your memory, you can refer to the section Adding Controls to your User
Interface which we covered in Chapter 3, Working with the Interface Builder:

1.	 From the Object Library, select and drag a (UILabel) control to the view and
position the control at the top of our view. We will need to click on the Object
Attributes tab and label our control Choose your Pizza Toppings by setting the
text property under the Label section. Resize the control accordingly so that all
of the text is displayed.

2.	 From the Object Library, select and drag a (UILabel) control to the view and
position the control underneath the heading which we just created and added. We
will need to click on the Object Attributes tab and label our control Tomato by
setting the text property under the Label section. Resize the control accordingly
so that all of the text is displayed.

3.	 Next, we will need to add a (UISwitch) Switch control which will be used to
determine whether we want to add Tomatoes to our Pizza or not. From the Object
Library, select and drag a UISwitch control and place it directly beside the label
control which we created in the previous step.

4.	 Repeat steps 10 through 11 to add the remaining UILabel and UISwitch controls
for the following:

Onion, Capsicum, Olives, Salami, Mozzarella Cheese, Thin Crust, Thick Crust,
Cheese Filled.

5.	 Next, add a (UIButton) Round Rect Button control to our view. Modify the Object
Attributes of the Round Rect Button control and set its title to read Calculate.

6.	 Our final step is to add a (UITextField) control which will be used to display
the total price of your Pizza. From the Object Library, select and drag a
UITextField control and place it to the right of the Calculate button which
we created in the previous step.

Chapter 5

[147]

If you have followed the steps correctly, you view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

What just happened?
In this section, we created a simple Pizza Ordering application to handle pizza topping
selections provided by the user and then calculate the purchase price. We looked at how
to go about adding a number of UILabel controls which will be used to display each
of the available pizza toppings to choose from, and a UISwitch control to show which
toppings have been selected. We then added a UITextField control which will be used to
display the total cost of your pizza selections. Finally we added a UIButton control which
will handle the processing to display the total purchase price for your pizza, based on the
toppings selected.

Time for action – binding our Controls using Outlets and Actions
Our final step will be to bind our control objects to our View Controller and connecting
these via outlets and actions. We covered this in the section Making our Components work
together in Chapter 3, Introducing Interface Builder.

1.	 Once you have created your outlets within the PizzaOrdersViewController.h
interface file, it should look something like this. What we are doing here is basically
letting our View Controller know what controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface PizzaOrdersViewController : UIViewController {

Designing Application Interfaces using MVC

[148]

 IBOutlet UISwitch *toppingTomato;

 IBOutlet UISwitch *toppingOnion;

 IBOutlet UISwitch *toppingCapsicum;

 IBOutlet UISwitch *toppingOlives;

 IBOutlet UISwitch *toppingSalami;

 IBOutlet UISwitch *toppingMozarella;

 IBOutlet UISwitch *crustThin;

 IBOutlet UISwitch *crustThick;

 IBOutlet UISwitch *crustCheeseFilled;

 IBOutlet UITextField *TotalPayment;

 IBOutlet UIButton *Calculate;

}

@property (nonatomic, retain) IBOutlet UISwitch *toppingTomato;

@property (nonatomic, retain) IBOutlet UISwitch *toppingOnion;

@property (nonatomic, retain) IBOutlet UISwitch *toppingCapsicum;

@property (nonatomic, retain) IBOutlet UISwitch *toppingOlives;

@property (nonatomic, retain) IBOutlet UISwitch *toppingSalami;

@property (nonatomic, retain) IBOutlet UISwitch *toppingMozarella;

@property (nonatomic, retain) IBOutlet UISwitch *crustThin;

@property (nonatomic, retain) IBOutlet UISwitch *crustThick;

@property (nonatomic, retain) IBOutlet UISwitch
*crustCheeseFilled;

@property (nonatomic, retain) IBOutlet UITextField *TotalPayment;

@property (nonatomic, retain) IBOutlet UIButton *Calculate;

@end

2.	 Our next step is to create the action event in our PizzaOrdersViewController.
m implementation file. But we first need to synthesize our properties so that we can
use then within our view controller.

If we don't declare these, we will receive warning messages
which could result in unexpected results occurring in your
application. It is also good to declare these as we are able
to deallocate the memory used by these objects in our
dealloc method.

#import "PizzaOrdersViewController.h"

@implementation PizzaOrdersViewController

Chapter 5

[149]

@synthesize Calculate;

@synthesize TotalPayment;

@synthesize toppingTomato,toppingOnion,toppingCapsicum,toppingOliv
es,
 toppingSalami,toppingMozarella,crustThin,crustThick,
 crustCheeseFilled;

3.	 Next, we declare our (IBAction) calculatePurchase ��������������������� method which will be
responsible for displaying the total amount that the user needs to pay for their
customized Pizza selection:

- (IBAction)calculatePurchase:(id)sender {
// Declare and initialise each of our pizza toppings and base
types.
 float totalAmount = 0.00;
 float tomatoAmount = 0.00;
 float onionAmount = 0.00;
 float capsicumAmount = 0.00;
 float oliveAmount = 0.00;
 float salamiAmount = 0.00;
 float mozarellaAmount = 0.00;
 float thinCrustAmount = 0.00;
 float thickCrustAmount = 0.00;
 float cheeseCrustAmount = 0.00;

 // Handle each of our topping selections

 // Check to see if we have chosen to include Tomatoes on our
Pizza
 if ([toppingTomato isOn]){
 tomatoAmount = 0.50;
 }
 else { tomatoAmount = 0; }

 // Check to see if we have chosen to include Onions on our Pizza
 if ([toppingOnion isOn]){
 onionAmount = 0.80;
 }
 else { onionAmount = 0; }

 // Check to see if we have chosen to include Capsicum on our
Pizza
 if ([toppingCapsicum isOn]){
 capsicumAmount = 0.80;
 }
 else { capsicumAmount = 0; }
 // Check to see if we have chosen to include Olives on our Pizza
 if ([toppingOlives isOn]){

Designing Application Interfaces using MVC

[150]

 oliveAmount = 0.80;
 }
 else { oliveAmount = 0; }

 // Check to see if we have chosen to include Salami on our Pizza
 if ([toppingSalami isOn]){
 salamiAmount = 0.80;
 }
 else { salamiAmount = 0; }

 // Check to see if we have chosen to include Mozarella on our
Pizza
 if ([toppingMozarella isOn]){
 mozarellaAmount = 0.80;
 }
 else { mozarellaAmount = 0; }

 // Check to see if we have specified to have a Thin Crust Pizza.
 if ([crustThin isOn]){
 thinCrustAmount = 2.00;
 }
 else { thinCrustAmount = 0; }

 // Check to see if we have specified to have a Thick Crust
Pizza.
 if ([crustThick isOn]){
 thickCrustAmount = 2.50;
 }
 else { thickCrustAmount = 0; }

 // Check to see if we have specified to have a Cheese Filled
Crust
 Pizza.
 if ([crustCheeseFilled isOn]){
 cheeseCrustAmount = 3.00;
 }
 else { cheeseCrustAmount = 0; }

 // Calculate our total amount based on what has been chosen
 totalAmount = (tomatoAmount + onionAmount +
 capsicumAmount+oliveAmount +
 salamiAmount + mozarellaAmount + thinCrustAmount +
 thickCrustAmount + cheeseCrustAmount);

 // Output the total amount to the screen.
 TotalPayment.text = [[NSString alloc]
 initWithFormat:@"%5.2f",totalAmount];
}

Chapter 5

[151]

4.	� Our final step is to release the memory used by our view control objects which we
have declared. Xcode 4 creates these for you automatically when you declare the
outlets in your PizzaOrdersViewController.h interface file:

- (void)dealloc {
 [toppingTomato release];
 [toppingOnion release];
 [toppingCapsicum release];
 [toppingOlives release];
 [toppingSalami release];
 [toppingMozarella release];
 [crustThin release];
 [crustThick release];
 [crustCheeseFilled release];
 [TotalPayment release];
 [Calculate release];
 [super dealloc];
}�

The screenshot below shows our Pizza Orders application running within the iOS simulator
with the output displaying the user's chosen Pizza selections:

Designing Application Interfaces using MVC

[152]

What just happened?
In this section, we added the program logic to our Pizza Ordering application to calculate
and display the total cost of the pizza based on the selections made by the user. When the
Calculate button is pressed, a call is made to the calculatePurchase method which we
created within our PizzaOrdersViewController.m implementation file. This method
determines what options have been chosen, and then calculates the cost for each chosen
topping and crust size before finally displaying the total cost of your customized pizza out
to the UITextField control.

Implementing views
What are views comprised of? Views can be made up of one or more views, and these can
also be created programmatically to be added as a sub-view. They can also contain different
types of user interaction objects like Buttons, Switches, Text Fields, and so on. When views
are loaded at runtime, they can create any number of objects, and even implement a basic
level of interactivity on their own, for example, displaying a virtual keyboard when the user
clicks on a text area/field control. Views are entirely independent of any application logic.
By using this separation, it conforms to the core principles of the MVC design approach.

Implementing view controllers
View Controllers handle the interactions within a view and also establish the connection
points for outlets and actions by using the IBOutlet and IBAction directives. These
directives get added to your project's implementation file code. These directives will also
need to be added to the headers of your view controller.

An outlet (IBOutlet) is basically a variable by which an object can be referenced. An
example of this could be that you have created a field in your view to collect the user's name
or e-mail address and you have created an outlet for this in your code called userName.

By using this outlet, you are able to access or change the contents of this field. Before you
are able to use this field, a reference to this would need to be declared in the View Controller
header file as follows:

IBOutlet UITextField *userName;

By declaring this reference, it allows you to use Interface Builder to visually connect the
Views Text Field objects to the userName variable, so that your code can fully interact with
the TextField object by changing its properties, calling its methods, and so on.

Chapter 5

[153]

Before you can access the property of the username field, you will need to use the two
important Objective-C @Property and @Synthesize directives which we need to declare
in our code:

DIRECTIVE DESCRIPTION

@Property Declares elements in a class that should be exposed via the getters and setters.
Properties are defined with a series of attributes, these being the more frequent
nonatomic and retain methods.

@Synthesize Creates simplified getters and setters, making retrieving and setting values of an
object very simple.

Getters and Setters use a method called an accessor. An accessor is a method for getting or
setting the value of an instance variable. An accessor that gets the instance variable's value is
called a getter; an accessor that sets the instance variable's value is called a setter. A setter's
name should start with set and be followed by a capitalized version of the instance variable's
name. If the instance variable is named myVar, the setter should be named setMyVar. The
setter should take one parameter: the new value to be assigned to the instance variable.

A getter should have the same name as the instance variable. If the instance variable
is named myVar, the getter should be named myVar. (This will not cause you or the
compiler any confusion, because variable names and method names are used in
completely different contexts.)

An action (IBAction) on the other hand is basically a method defined within your code that
is called when an event takes place. Objects such as Buttons and Switches can trigger actions
when a user interacts with an event, such as touching objects on the screen:

-(IBAction)displayName:(id)sender {
 NSString *Welcome = [[NSString alloc] initWithFormat:@"Hello
 %@",userName.text];
 lblOutput.text = Welcome;
 lblOutput.textColor = [UIColor blueColor];
}

You will notice that our function declaration contains a sender parameter with the type
declared as id. We describe these in the table below:

DIRECTIVE DESCRIPTION

Sender This is basically a generic type of object that is used when we don't know the type of
object that we will be working with.

id This enables you to write code that does not tie itself to a specific type of class.

Designing Application Interfaces using MVC

[154]

Time for action – declaring input field as a property of View
Controller

If we wanted to declare the userName instance of the UITextField, we would do it as follows:

1.	 Declare it as a property in the header file of our View Controller as shown below:

	 @property (retain, nonatomic) NSString *userName;

2.	 We will then need to use the @synthesize directive in the implementation file of our
View Controller class, to create the getters and setters as shown below:

	 @synthesize userName;

3.	 Once we have added these lines, we are then able to retrieve the value from our
userName text property by using:

	 theUserName = userName.text;

4.	 If we wanted to assign something to this object, we can do so as follows:

	 userName.text = @"Joe Bloggs";

What just happened?
In this section, we looked at the steps required in declaring and using outlets to access or
change the contents of form fields within the view. We then looked at the two important
Objective-C directives: @property and @synthesize that need to be declared before
we are able to communicate with the form controls to retrieve or set their values.

In the next section, we will start to create a view-based application to ask the user for their
favourite color and then display this back to the user.

Creating a view-based application template
Whenever you create a View-based application project using Xcode, you will notice that it
contains and automatically creates a single view-controller for you.

In previous chapters, we have made use of this template many times, but you may not have
a clear understanding of the full inner workings under the hood. In the following section, we
will be diving into the details and take a look at how everything hangs together to make your
application work.

The project we will be creating will be a simple application that will present the user with a
(UITextField) textbox for typing in some text and a (UIButton) button which will handle
the processing. We will also be including a (UILabel) label control which will be updated
based on the information the user enters into the textbox control.

Chapter 5

[155]

Time for Action – creating the FavoriteColor application
Before we can proceed and create our FavoriteColor project, ������������������������ to refresh your memory,
you can refer to the section Creating your first iPhone application which we covered in
Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Click on the Next button to proceed to the next step in the wizard.

6.	 Enter in FavoriteColor and then click on the Next button to proceed to the next step
in the wizard.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface along
with all files that the project template created for you displayed within the Project Navigator
window pane.

In this section, we will start to add the components required to build our application user
interface that will ask the user for their favourite color. To refresh your memory, you can
refer to the section Adding Controls to your User Interface which we covered in Chapter 3,
Working with the Interface Builder:

1.	 From the Object Library, select and drag a (UILabel) control to the view and
position the control at the top within our view. We will need to click on the Object
Attributes tab and label our control What is your Favorite Color? by setting the
text property under the Label section. Resize the control accordingly so that all of
the text is displayed.

2.	 Next, we will need to add a (UITextField) control which will accept the
information entered by the user. From the Object Library, select and drag a
UITextField control and place it directly under our label control which we
created in the previous step.

Designing Application Interfaces using MVC

[156]

3.	 We now need to add another (UILabel) Label control which will be used to display
the user's favourite color when the button is pressed. From the Object Library, select
and drag a (UILabel) Label control and place this under the (UITextField)
control which you created earlier on. We will need to click on the Object
Attributes tab and label our control Your Favorite Color is: Your Color by setting
the text property under the Label section. Resize the control accordingly so that
all of the text is displayed.

4.	 Our final step is to add a (UIButton) Round Rect Button control to our view.
Modify the Object Attributes of the Round Rect Button control and set its
title to read Click to see your Color.

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

What just happened?
In this section, we looked at how to create a view-based application and add the controls
to our View Controller. We looked at how to go about adding a UILabel Control which will
be used to display our question, and a UITextField control which will accept the input.
We added another UILabel control which will display what the user entered, and finally a
UIButton control which will handle the processing to display a message back to the user,
Your Favorite Color is:, and their entered color.

Time for action – binding our Controls using Outlets and Actions
Our final step will be to bind our control objects to our View Controller and connect these via
outlets and actions. We covered this in the section Making our Components work together in
Chapter 3, Working with the Interface Builder:

Chapter 5

[157]

1.	 Once you have created your outlets within your
FavoriteColorViewController.h interface file, it should look something like
this. What we are doing here is basically letting our View Controller be aware of
what controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface FavoriteColorViewController : UIViewController {
 UITextField *txtColor;

 IBOutlet UILabel *lblColor;

}

@property (nonatomic, retain) IBOutlet UITextField *txtColor;

@end

2.	 Our next step is to create the action event in our
FavoriteColorViewController.m implementation file. But we first need to
synthesize our properties so that we can use them within our view controller.

If we don't declare these, we will receive warning
messages which could result in unexpected results
occurring in our application. It is also good to declare
these as we are able to deallocate the memory used by
these objects in our dealloc method.

#import "FavoriteColorViewController.h"

@implementation FavoriteColorViewController
@synthesize txtColor, lblColor;

3.	 Next, we declare our (IBAction) ChosenColor ��������������������������������� method which will be responsible
for displaying the user's chosen color. What we are doing here is declaring an
NSString object ChosenColor which contains a friendly message and the color
that was entered.

We then assign this to the text property of our (UILabel) lblColor control. The
code snippet below shows the ChosenColor action event which will do just that:

- (IBAction)ChosenColor:(id)sender {

 NSString *ChosenColor = [[NSString alloc] initWithFormat:@"Your
 Favorite Color is %@",txtColor.text];
 lblColor.text = ChosenColor;
}

Designing Application Interfaces using MVC

[158]

4.	 Our final step is to release the memory used by the view control objects which we
declared. Xcode 4 creates these for you automatically when you declare the outlets
in your FavoriteColorViewController.h interface file:

- (void)dealloc {
 [txtColor release];

 [lblColor release];

 [super dealloc];
}�

The screenshot below shows our Favorite color application running within the iOS simulator
with the output displaying the user's favorite color:

As you can see from the output shown above, we can create applications to communicate
with the user and respond to what has been entered.

What just happened?
In this section, we looked at how we are able to bind our control objects to our view
controller using outlets and actions. We also added some code to our interface and
implementation files to build the application, and then declared an action event
ChosenColor. This method is responsible for displaying the user's chosen color. In our
final steps, we released the memory used by our view-controller objects via our dealloc
method. In the next section, we will look at how we can implement Table views when space
is a restriction within the view.

Chapter 5

[159]

Implementing Table Views
Table Views make use of the UITableView class and are the main interface elements that
are used to display lists and hierarchical data on the iPhone. Some examples of where Table
Views are used on the iPhone are: the Settings, Clock, Contact, and Notes. These applications
all use Tables Views as their main interface element.

Table Views represent their data in rows and sections. A row is defined as an individual item
which is stored in the table view. Rows can be grouped into sections and each section can
contain both a header and footer.

Table view Controllers can be used to display data from a data source and can also be
configured to update the data when editing the table view.

Time for action – creating a Table view application
Before we can proceed and create our TableViewExample project, ���������������� to refresh your
memory, you can refer to the section Creating your first iPhone Application which we
covered in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the Navigation-based Application template from the list of available templates:

Designing Application Interfaces using MVC

[160]

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface
along with all files that the project template created for you displayed within the Project
Navigator window pane. You will notice that the Wizard created the following files which
are described below:

COMPONENT NAME DESCRIPTION

RootViewController.h Interface header file which inherits from the
UITableViewController object class and where
declaration of the variables is done.

RootViewContoller.m The implementation file which contains the methods
pertaining to how the Table View Control operates and
functions.

RootViewController.xib This is the user interface file which contains the Table-View
Control added by default.

The screenshot below displays the default table view control that Xcode creates for you
when you create a Navigation-based application. The data is represented in rows, much like a
spreadsheet and they can be grouped under section headings. They also can contain footers
for each section:

We are now ready to start creating our sample application to add elements into our Table
View Controller. We need to create an instance variable which will be used to store our
table contents:

Chapter 5

[161]

1.	 Open the RootViewController.h interface file, located within the Classes
folder of your project and add the following code declaration:

#import <UIKit/UIKit.h>
@interface RootViewController : UITableViewController {
 NSArray *arrVegetables;

}
@end

2.	 Now that we have declared our arrVegetables array, we can start to add the
elements to it. Open the RootViewController.m implementation file, located
within the Classes folder of your project and locate the viewDidLoad method
and add the following code:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.title = @"Vegetables";

 arrVegetables=[[NSArray
 alloc]initWithObjects:@"Celery",@"Capsicum",@"Potato",
 @"Peas",@"Brocolli",@"Carrots",@"Cabbage",nil];

}

3.	 We now need to edit the method tableView:numberOfRowsInSection to
inform the Table View, how many rows of data it will need to display. We do this
by returning the size of our vegetables array object, as shown in the code snippet
below:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [arrVegetables count];

}

4.	 Our next step is to update the tableView:cellForRowAtIndexPath method.
We only need to implement the writing of the cell contents as most of the code
is already done for us. All that we need to do is set the text for each cell using the
data from our array. We do this by looking at the current row within our Table View
and retrieve the array index location from our arrVegetables array by using the row
index of the cell:

// Customize the appearance of table view cells.
-(UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil){
 cell=[[[UITableViewCell

Designing Application Interfaces using MVC

[162]

 alloc]initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]autorelease];
 }
 // Configure our Table View Cell

 cell.textLabel.text=[arrVegetables objectAtIndex:indexPath.row];

 cell.textLabel.text = vegetables;

 return cell;

}

5.	 We are now ready to build and compile our TableViewExample application.

The screenshot below shows our TableViewExample displaying a list of Vegetables
populated from our array to our Table View running within the iOS simulator:

What just happened?
In this section, we created a table view navigation-based application to allow us to represent
our data in a list. We then created and initialized an array that was used to store the list of
vegetables that will be used as the datasource to populate the table view. Next, we used the
numberOfRowsInSection method of the tableView class to determine how many rows
would need to be displayed within the table by using the count property of the array. In our
last part, we called the cellForRowAtIndexPath method to update the table header and
then cycled through every item within our arrVegetables array and outputted this at
each row.

Chapter 5

[163]

Grouping row items into sections
Table Views also give us the ability to group rows into sections. So for our next example, we
will learn how this can be done. Grouping your rows into sections can be very useful when
displaying sets of information relating to a particular type. For example, if you want to group
country regions or breed of dogs, this can be very useful.

Time for action – grouping row items in our TableViewExample
application

In our example, we will be grouping our previous example of vegetables into two groups,
Organic and Non Organic:

1.	 Open our previously created TableViewExample application.

2.	 Open and modify the RootViewController.h interface file to include two
additional arrays which will be used to hold our Organic and Non Organic items.
Modify your RootViewController.h file as shown in the code snippet below:

#import <UIKit/UIKit.h>

@interface RootViewController : UITableViewController {
 NSArray *arrOrganic;
 NSArray *arrNonOrganic;
}
@end

3.	 Next, modify the RootViewController.m implementation file. We need to
update the viewDidLoad method to include the following code snippet as shown
below:

- (void)viewDidLoad {

 [super viewDidLoad];

 self.title = @"Vegetables";

 arrOrganic=[[NSArray
 alloc]initWithObjects:@"Celery",@"Capsicum",@"Brocolli",
 @"Cabbage",nil];

 arrNonOrganic=[[NSArray
 alloc]initWithObjects:@"Potato",@"Peas",@"Carrots",nil];

}

Designing Application Interfaces using MVC

[164]

4.	 Next, update the method tableView:numberOfRowsInSection to automatically
determine how many rows will be displayed within each section. We use the
switch statement and return the number of items in our array for each:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSect
ion:(NSInteger)section {
 switch (section)

 {

 case 0:

 return [arrOrganic count];

 break;

 case 1:

 return [arrNonOrganic count];

 break;

 default:

 return 0;

 break;

 }

}

5.	 We then need to update our cellForRowAtIndexPath method to use the
correct array when you are populating the table view cells. This is shown in the
code snippet below:

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRow
AtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 NSString *vegetables;

 switch (indexPath.section)

 {

 case 0:

 vegetables = [arrOrganic objectAtIndex:indexPath.row];

 break;

 case 1:

 vegetables = [arrNonOrganic objectAtIndex:indexPath.row];

Chapter 5

[165]

 break;

 }

 // Configure the cell.

 cell.textLabel.text=vegetables;

 return cell;
}

6.	 In order to ensure that all of our sections are displayed in our Table View, we
need to update our numberOfSectionsInTableView method to ensure that it
returns the correct number of sections. Modify this method as shown in the code
snippet below:

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{

 return 2; // the number of sections our view contains

}

7.	 We now need to implement the titleForHeaderInSection method which will
be used to display the title text above each section:

-(NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section
{
 switch (section)

 {

 case 0:

 return @"Organic";

 break;

 case 1:

 return @"Non Organic";

 break;

 default:

 return nil;

 break;

 }

}

Designing Application Interfaces using MVC

[166]

8.	 We are nearly there; we just need to update our style for our Table View control. We
can't modify this through code as this is a read-only property and prevents us from
doing so, so we need to modify this using Interface Builder. The screenshot below
shows how this can be done:

9.	 The above screenshot shows the Object Attributes screen. In order to set our style
so that it displays our sections as groups, we need to set the Style property under
the Table View section to show Grouped and change the Separator to display as
Single Line.

10.	We are now ready to Compile, Build and Run our modified TableViewExample
application.

The screenshot below shows our modified TableViewExample application running within
the iOS simulator and displaying a list of Vegetables populated from our array to our Table
View and broken down into the two separate sections of Organic and Non Organic using our
style which we applied to our Table View Control:

Chapter 5

[167]

What just happened?
In the above section, we created two simple projects to write details to our Table View
control, and break the items up into groups. We first created two arrays which will be used
to hold our list of Organic and Non Organic vegetables. We then created an array for each
of our sections which will be displayed to our Table View control. Next, we needed to check
to see which section is being requested and then return the total number of rows to be
displayed within the section. We use the break statement to prevent the section from falling
through to the other parts within our switch statement. If we had excluded our break
statement from the first part, we would have returned the Non Organic array count.

As you can see, by adding some minimal code to the RootViewController.m
implementation file, we can create sophisticated applications that look professional
and are easy to use.

Designing Application Interfaces using MVC

[168]

Understanding Navigation-based applications
Navigation-based applications (as you just saw in the previous section) are a great tool for
displaying information within lists and allowing the user to choose from the list. However,
you will find as you start creating your own applications that Tables are rarely used on their
own and are used in conjunction with a navigation controller to allow a user to drill down
through multiple views of data, with the ability to navigate back and forth.

You may have seen, or used some navigation applications on the iPhone. A good example
of where this is used is the Contacts application, where you can select from a group of
individuals, then drill down to a specific person, and then view personal information
about the person. There are also controllers which allow the user to navigate back to
the previous level:

The implementation of the Navigation controller is pretty simple as you saw when you created
the two TableViewExample applications. You are probably wondering What happens when
a new view is displayed? Well, the navigation controller does what is known as "push" its
view controller onto the stack. What this means is that a new instance of the controller is
instantiated and added to the stack, and then the previous controller gets pushed further
down the stack. A better visual representation which would help you understand this could
be to think of a stack as a set of plates being placed on top of each other.

Chapter 5

[169]

When the user decides it's time to return back to the previous screen, the navigation
controller "pops" the current view off the stack which results in this being unloaded. The
previous view controller then moves to the top of the stack and then this becomes active
again, hence allowing the user to navigate onto another item.

Using Switches, Sliders, Segmented Controls, and Web Views
In the next section, we will be making use of the different types of controls available on the
iPhone. We will be creating a simple application which will utilise each of these types and
hopefully give you an insight into the power of each of these controls. But, first let us learn
about them:

Switches: Switches are used in most desktop applications and are often displayed
as something being "active" or "inactive" either by checking or unchecking a check
box, or by choosing from a list of radio buttons. On the iPhone, Apple provides you
with similar controls, the Switches and Segmented controls Switches (UISwitch)
are represented as a simple ON/OFF UI element, and return a Boolean value of TRUE
or FALSE.

Sliders: Sliders (UISlider) are a convenient control used to visually display a
starting point within a range of values. You may have seen this control used within
the iPod player on the iPhone, where you can increase or decrease the audible
volume or move to a point within a song.

Segmented Controls: Segmented (UISegmentedControl) controls present a
linear line of buttons and are sometimes referred to as button bars, with a single
button being active within the bar. These types of controls are frequently used to
switch between different views within an application; these could be anything from
configuration to a page of results.

If you wanted to determine the currently selected button within a segmented
control, this is done via the selectedSegmentIndex, which returns the number
of the button chosen (starting at 0 up to X).

Web Views: Web Views (UIWebView) provide you with advanced features that allow
you to present HTML, load web pages, and also incorporate pinching and zooming
capabilities. Web Views offer support to display a wide range of file formats, as
listed below:

HTML and CSS Files

Microsoft Word Documents

Microsoft Excel Spreadsheets

Apple's Keynote Presentations

Apple's Numbers Spreadsheet



















Designing Application Interfaces using MVC

[170]

Apple's Pages Documents

PDF Files

PowerPoint Presentations

These files can be added as a resource file to your project and then displayed within the
web view.

Time for action – creating the SwitchesSlidersSegments project
Before you can proceed and create your SwitchesSlidersSegments project, to refresh
your memory, you can refer to the section Creating your first iPhone application which we
covered in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface along
with all the files that the project template created for you displayed within the Project
Navigator window pane.

In this section, we will start to add the components required to build our application
user interface that will show how we can use switches, slider, and web view controls to
display a web page within our view. To refresh your memory, you can refer to the section
Adding Controls to your User Interface which we covered in Chapter 3, Working with the
Interface Builder:

1.	 From the Object Library, select and drag a (UILabel) label control to the view
and position it at the top within our view. You will need to click on the Object
Attributes tab and label the control Choose your color below: by setting the
text property under the Label section. Resize the control accordingly so that
all of the text is displayed.







Chapter 5

[171]

2.	 Next, from the Object Library, select and drag a (UISegmentedControl) control
and drag it to the view. From the Object Attributes tab, ensure that under the
view section, the Mode has been set to read Scale to Fill.

3.	 Now we need to add another (UILabel) Label Control which will be used to
display the color chosen by our segmented control. From the Object Library, select
and drag a (UILabel) control and place this under our segmented control object.
Click on the Object Attributes tab and label the control You Chose: Color by
setting the text property under the Label section. Resize the control accordingly
so that all of the text is displayed.

4.	 We now need to add our (UISwitch) Switch component to our view. From the
Object Library, select and drag a (UISwitch) control and place this under our You
Chose: Color label control object.

5.	 Now we need to add another (UILabel) Label Control which will be used to
display the status of our switch object. From the Object Library, select and drag a
(UILabel) control and place this under our UISwitch control object. Click on
the Object Attributes tab and label our control Switch is: Status by setting the
text property under the Label section. Resize the control accordingly so that all of
the text is displayed.

6.	 Our next step is to add a (UISlider) slider control which will be responsible for
displaying the current value of our slider out to our label control. From the Object
Library, select and drag a (UISlider) control and place this directly under our
Switch is: Status label control object.

7.	 We now need to add a (UILabel) Label control which will be used to display the
value of where our slider object is up to. From the Object Library, select and drag a
(UILabel) control and place this under our UISlider control object. Click on the
Object Attributes tab and label our control Slider value: SliderValue by setting
the text property under the Label section. Resize the control accordingly so that
all of the text is displayed.

8.	 Our final part will be to add our Web View (UIWebView) control which will be used
to display our web page. From the Object Library, select and drag a (UIWebView)
control and place this under our (UILabel) control object. Resize the control
accordingly so that all of the text is displayed.

Designing Application Interfaces using MVC

[172]

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

The screenshot above shows you how you are able to increase and/or decrease the
number of segments that the control can have by using the Segments increment, and the
segment names can be changed by using the Segment drop-down from within the Objects
Inspector pane.

What just happened?
In this section, we looked at how to add and make use of each of the controls available
on the iPhone. We added a UISegmentedControl which allowed the user to make their
selection from a list of colors. We then added a (UILabel) control to display the color
chosen by the user. We then added a (UISwitch) control to determine if the switch is ON or
OFF. Next, we added a (UISlider) control to be used to update the label to show its current
slider value. Finally, we added a Web View control which was used to display the contents of
a web page.

Chapter 5

[173]

Time for action – binding our Controls using Outlets and Actions
Our final step will be to bind our control objects to our View Controller and connecting
these via outlets and actions. We covered this in the section Making our Components work
together in Chapter 3, Working with the Interface Builder:

1.	 Once you have created your outlets within your
SwitchesSlidersSegmentsViewController.h interface file, it should look
something like this. What we are doing here is basically letting our View Controller
know what controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface SwitchesSlidersSegmentsViewController :
UIViewController {

 IBOutlet UISegmentedControl *colorChoice;

 IBOutlet UISwitch *toggleSwitch;

 IBOutlet UIWebView *ourWebView;

 IBOutlet UILabel *toggleValue;

 IBOutlet UILabel *chosenColor;

 IBOutlet UILabel *sliderValue;

 IBOutlet UISlider *ourSlider;

}

@property (nonatomic, retain) IBOutlet UILabel *sliderValue;

@property (nonatomic, retain) IBOutlet UISlider *ourSlider;

@property (nonatomic, retain) IBOutlet UISegmentedControl
*colorChoice;

@property (nonatomic, retain) IBOutlet UISwitch *toggleSwitch;

@property (nonatomic, retain) IBOutlet UILabel *toggleValue;

@property (nonatomic, retain) IBOutlet UILabel *chosenColor;

@end

2.	 Our next step is to create the action event in our
SwitchesSlidersSegmentsViewController.m implementation file,
but we first need to synthesize our properties so we can use them within
our view controller.

Designing Application Interfaces using MVC

[174]

If we don't declare these, we will receive warning messages which could
result in unexpected results occurring in our application. It is also good
to declare these as we are able to deallocate the memory used by these
objects in our dealloc method.

#import "SwitchesSlidersSegmentsViewController.h"

@implementation SwitchesSlidersSegmentsViewController
@synthesize ourSlider,colorChoice,toggleSwitch,sliderValue,
 toggleValue,chosenColor;

- (IBAction)getSwitchValue:(id)sender {
// Determines the status of our switch
 if ([toggleSwitch isOn]){

 toggleValue.text=@"Switch is: ON";

 } else {

 toggleValue.text=@"Switch is: OFF";

 }

}
- (IBAction)getSliderValue:(id)sender {
// Gets the current value from our slider control and

// displays it to our label.

 sliderValue.text=[[NSString alloc]initWithFormat:@"Slider value:
 %1.2f",ourSlider.value];

}
// Determines what colour has been selected, then changes the
 background colour of our label.
- (IBAction)getColor:(id)sender {
// Get the currently selected item from our Segmented Control

 switch (colorChoice.selectedSegmentIndex)

 {

 case 0:

 chosenColor.backgroundColor=[UIColor redColor];

 break;

 case 1:

 chosenColor.backgroundColor=[UIColor greenColor];

 break;

 case 2:

 chosenColor.backgroundColor=[UIColor blueColor];

 break;

 case 3:

 chosenColor.backgroundColor=[UIColor yellowColor];

Chapter 5

[175]

 break;

 case 4:

 chosenColor.backgroundColor=[UIColor cyanColor];

 break;

 default:

 chosenColor.backgroundColor=[UIColor redColor];

 break;

 }

 chosenColor.text=[[NSString alloc]initWithFormat:@"You Chose:
 %@",[colorChoice
 titleForSegmentAtIndex:colorChoice.selectedSegmentIndex]];

}

3.	 Next, add the necessary code to our viewDidLoad method which will be
responsible for making our view work. We need to add the highlighted code
into our viewDidLoad event which will do just that:

- (void)viewDidLoad {
 NSURL *appleUrl;

 appleUrl=[[NSURL alloc]initWithString:@"http://www.apple.com/"];

 [ourWebView loadRequest:[NSURLRequest requestWithURL:
appleUrl]];

 [super viewDidLoad];
}

4.	 Our final step is to release the memory used by the view control objects which we
declared. Xcode 4 creates these for you automatically when you declare the outlets
in your SwitchesSlidersSegmentsViewController.h interface file:

- (void)dealloc {
 [toggleSwitch release];

 [colorChoice release];

 [ourWebView release];

 [sliderValue release];

 [toggleValue release];

 [chosenColor release];

 [ourSlider release];

 [super dealloc];
}

Designing Application Interfaces using MVC

[176]

The screenshot below displays our application running within the iOS simulator, with each of
the controls showing their output:

What just happened?
In this section, we added the program logic into our
SwitchesSlidersSegmentsViewController.m implementation file to determine the
current state of our switch object. We use the isOn property to determine the state our
switch is in. If it is ON, we return the text Switch is: ON, otherwise, if it is OFF, we return the
text Switch is: OFF. We then determine the current value of our slider control object. This is
defined as using the value method of ourSlider control. Once we have obtained this, we
output the text to our SliderValue label.

In our next step, we need to find out the index of our colorChoice segmented control.
If you remember, we mentioned that this control starts from 0 to Total_No. We use the
colorChoice.selectedSegmentIndex method to derive this. Once we have got this
information, we can set the background color of our chosenColor label control.

Chapter 5

[177]

In our final step, we create an instance of the NSURL class which will be used to store the
URL address for the Apple website. We then create an NSURLRequest object that we pass
to the web view control when the view is loaded. We finally pass our appleURL to the
requestWithURL method of our Web View control, which handles the displaying of the
web page.

Creating an application to scroll through large content
Scrolling views can become very handy when space is limited within the view which you
are working on. By using an instance of the UIScrollView class, you can add controls and
interface elements to allow these to fit within the physical boundaries of the iPhone.

We will create a very basic scrolling view application to show how to implement this control.
To enable scrolling within the view, we need to define a property called contentSize,
which will be used to set the area of the content that needs to be scrolled both horizontally
and vertically..

Time for action – creating the ScrollingViews project
Before we can proceed and create our ScrollingViews project, to refresh your memory,
you can refer to the section Creating your first iPhone application which we covered in
Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface along
with all files that the project template created for you displayed within the Project Navigator
window pane.

Designing Application Interfaces using MVC

[178]

Now we need to add the controls to our View Controller. We will be adding a
(UIScrollView) Scroll view Control which will be used as the container to handle the
scrolling. We will also be creating six (UILabel) label controls which will be placed within
the UIScrollView:

1.	 From the Object Library, select and drag a (UILabel) label control to the view
and position it at the top within our view. You will need to click on the Object
Attributes tab and label our control Our Scrolling View Example by setting the
text property under the Label section. Resize the control accordingly so that all
of the text is displayed.

2.	 Next, from the Object Library, select and drag a (UIScrollView) control and drag
it to the view. From the Object Attributes tab, ensure that from under the view
section, the Mode has been set to read Scale to Fill.

3.	 Now we need to add the (UILabel) Label Controls to our UIScrollView. From
the Object Library, select and drag a (UILabel) control to the UIScrollview
and position the control at the top within our Scroll view. Click on the Object
Attributes tab and label our control This is our Label 1 by setting the text
property under the Label section. Resize the control accordingly so that all of the
text is displayed.

4.	 Repeat the above step, to add the remaining five (UILabel) label controls,
positioning them apart from each other and setting each of their text properties
to read This is our Label No where No is the label number.

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

Chapter 5

[179]

What just happened?
In this section, we looked at how we can use scrolling views to handle our view when space
becomes very limited. We used the UIScrollview class and added some label controls to
show some of the basic features of scrolling within the view. In the next section, we will look
at how we can bind the control to enable scrolling within the view.

Time for action – binding our Controls using Outlets and Actions
Our final steps will be to bind our control objects to our View Controller and connecting
these via outlets and actions. We covered this in the section Making our Components work
together in Chapter 3, Introducing Interface Builder:

1.	 Once you have created your outlets within your
ScrollingViewsViewController.h interface file, it should look something
like this. What we are doing here is basically letting our View Controller know what
controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface ScrollingViewsViewController : UIViewController {
 IBOutlet UIScrollView *ourScroller;

}
@property (nonatomic, retain) IBOutlet UIScrollView *ourScroller;

@end

2.	 Our next step is to create the action event in our
ScrollingViewsViewController.m implementation file, but we first need
to synthesize our properties so we can use them within our view controller.

If we don't declare these, we will receive warning messages
which could result in unexpected results occurring in our
application. It is also good to declare these as we are able
to deallocate the memory used by these objects in our
dealloc method.

#import "ScrollingViewsViewController.h"

@implementation ScrollingViewsViewController
@synthesize ourScroller;

Designing Application Interfaces using MVC

[180]

3.	 Our next step is to add the necessary code to our viewDidLoad method which will
be responsible for making our view work. We need to add the highlighted code into
our viewDidLoad event which will do just that:

- (void)viewDidLoad {
 ourScroller.contentSize=CGSizeMake(200,500);

 [super viewDidLoad];
}

4.	 Our final step is to release the memory used by our view control objects which we
have declared. Xcode 4 creates these for you automatically when you declare the
outlets in your ScrollingViewsViewController.h interface file:

- (void)dealloc {
 [ourScroller release];

 [super dealloc];
}

The screenshot below shows our ScrollingViews application running within the iOS
simulator and displaying the scrollable content:

Chapter 5

[181]

What just happened?
In this section, we declared some code within our viewDidLoad method to set the size
of the content that will be scrolled up and down. Next, we set the region size to scroll
horizontally and vertically. The CGSizeMake(<width>,<height>) function contains a
width and a height property. We have told our scroll view (ourScroller) to scroll
up 200 pixels horizontally and 500 pixels vertically.

Understanding Pickers
These types of controls implement the (UIPickerView) classes and are a unique feature
on the iPhone and they present a series of multi-value options using a spinning interface—
more like a rotating slot machine. The control comprises of segments which are referred to
as components, and displays rows of values that the user can choose from. This control is
frequently used on the iPhone when you need to set the date and/or time.

Date Pickers
The Date Picker (UIDatePicker) control implements the UIDatePicker class, and allows
the user to specify a date. The control returns a date object of type NSDate.

In the example which will follow, we will get the user to select a date and then display
this chosen value to a (UILabel) control. The NSDateFormatter object allows you to
customize the output of how you would like your date to look. The table below shows you
the different types of format which are available to you:

DATE FORMAT DESCRIPTION

MMMM Displays the full name of the month.

d Displays the day of the month, with no leading zero.

YYYY Displays the full four-digit year.

hh Displays a two-digit hour (with leading zero if required).

mm Displays the minutes with two digits.

ss Displays the seconds with two digits.

a Displays a.m. or p.m.

Designing Application Interfaces using MVC

[182]

There may be times when you want to display your date picker in a mode other than default.
Fortunately, the Date Picker can be customized to work in four different modes which are
explained below:

MODE DESCRIPTION

Date and Time This option provides the ability to choose both a date and a time.

Time Displays only time values.

Date Displays only date Values.

Timer This option displays a clock-like interface for choosing duration period.

Time for action – creating the Date Picker project
Before we can proceed and create our DatePickersExample project, to refresh your
memory, you can refer to the section Creating your first iPhone application which we
covered in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface along
with all the files that the project template created for you displayed within the Project
Navigator window pane.

Now we need to add the controls to our View Controller. We will be adding a
(UIDatePicker) control which the user can select the date from, as well as
creating a (UILabel) label control which will be used to display the date selected:

1.	 From the Object Library, select and drag a (UIDatePicker) control to the view
and position the control at the top within our view.

2.	 We now need to add a (UILabel) Label control. From the Object Library, select
and drag a (UILabel) Label control and place this under the (UIDatePicker)
control. We will need to click on the Object Attributes tab and label our control Date
Chosen: theDate by setting the text property under the Label section. Resize the
control accordingly so that all of the text is displayed.

Chapter 5

[183]

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

What just happened?
In this section, we created a simple application that used the UIDatePicker control to
allow the user to select a date and then display the chosen date to our label control Date
Chosen: theDate. In the next section, we will look at how to bind the UIDatePicker
control to handle the displaying of the chosen date.

Time for action – binding our Controls using Outlets and Actions
Our final steps will be to bind our control objects to our View Controller and connecting
these via outlets and actions. We covered this in the section Making our Components work
together in Chapter 3, Introducing Interface Builder:

1.	 Once you have created your outlets within your
DatePickersExampleViewController.h interface file, it should look something
like this. What we are doing here is basically letting our View Controller know what
controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface DatePickersExampleViewController : UIViewController
{

Designing Application Interfaces using MVC

[184]

 UIDatePicker *theDate;

 UILabel *ourLabel;

}
@property (nonatomic, retain) IBOutlet UIDatePicker *theDate;

@property (nonatomic, retain) IBOutlet UILabel *ourLabel;

@end

2.	 Our next step is to create the action event in our
DatePickersExampleViewController.m implementation file, but we first
need to synthesize our properties so we can use then within our view controller.

If we don't declare these, we will receive warning messages which
could result in unexpected results occurring in our application.
It is also good to declare these as we are able to deallocate the
memory used by these objects in our dealloc method.

#import "DatePickersExampleViewController.h"

@implementation DatePickersExampleViewController
@synthesize theDate, ourLabel;

3.	 Next, we declare our (IBAction) getDate method which will be responsible for
displaying the selected date to our Label control object. The code snippet below
shows the getDate action event which will do just that:

- (IBAction)getDate:(id)sender {
 NSString *dateChosen;

 NSDateFormatter *dateFormat;

 dateFormat=[[NSDateFormatter alloc] init];

 [dateFormat setDateFormat:@"MMMM d, yyyy hh:mm:ssa"];

 dateChosen=[[NSString alloc] initWithFormat:@"Date Chosen:
 %@\n",[dateFormat stringFromDate:[sender date]]];

 ourLabel.text=dateChosen;

 ourLabel.textColor=[UIColor blueColor];

}

Chapter 5

[185]

4.	 Our final step is to release the memory used by our view control objects which we
declared. Xcode 4 creates these for you automatically when you declare the outlets
in your DatePickersExampleViewController.h interface file:

- (void)dealloc {
 [theDate release];

 [ourLabel release];

 [super dealloc];
}

The screenshot below shows our DatePickersExample application running within the iOS
simulator and displaying the UIDatePicker control with a date selected and displayed:

What just happened?
In this section, we created an action method getDate that will be responsible for displaying
the selected date from our UIDatePicker control. Within this function, we needed to
specify the date format to use by using the NSDateFormatter object and apply this to the
date returned by the sender object. We then finally output the date to our label control and
set the foreground color to be Blue using the UIColor object.

Designing Application Interfaces using MVC

[186]

Custom Pickers
As mentioned previously, we will be implementing a custom picker example later on in
this chapter and making use of the (UIPickerView) object. You will notice that when you
initially use this object, it starts off with a basic spinning view and all that we need to do
is provide it with the data to display and describe how it should be displayed by setting its
DataSource and delegate properties to point to our View Controller.

Time for Action – creating the Custom Picker project
Before we can proceed and create our CustomPickers project, to refresh your memory,
you can refer to the section Creating your first iPhone application which we covered in
Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Once our project has been created, you will be presented with the Xcode interface along
with all the files that the project template created for you displayed within the Project
Navigator window pane.

Now we need to add the controls to our View Controller. We will be adding a
(UIPickerView) control which the user can use to select the animal and associated sound,
as well as create a (UILabel) label control which will be used to display the date selected:

1.	 From the Object Library, select and drag a (UIPickerView) control to the view
and position the control at the top within our view.

2.	 We now need to add a (UILabel) Label control which will be used to display the
animal selected from our Picker View. From the Object Library, select and drag a
(UILabel) Label control and place this under the (UIPickerView) control.

Chapter 5

[187]

3.	 Next, click on the Object Attributes tab and label the control You Matched:
YouSelection by setting the text property under the Label section. Resize the
control accordingly so that all of the text is displayed.

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

4.	 Next, we need to connect our UIPickerView object control to the dataSource
and delegate Objects. This is to conform to the UIPickerViewDataSource
and UIPickerViewDelegate protocols and we will need to modify our
CustomPickersViewController.h interface class so that our picker
can use the methods of the UIPickerView class.

What just happened?
In this section, we created a simple application to use the UIPickerView control which
will be used to display a list of animals and the noises that they make. We also added a
UILabel control to our view which will be used to show the correct association between the
animal and the noise. Next, we looked at how to connect our UIPIckerView control to the
datasource that will be used to display our information. In the next section, we will look at
how to go about populating our control.

Designing Application Interfaces using MVC

[188]

Time for action – binding our Controls using Outlets and Actions
Our final steps will be to bind our control objects to our View Controller and connecting
these via outlets and actions. We covered this in the section Making our Components work
together in Chapter 3, Working with the Interface Builder:

1.	 Create the necessary outlets within your CustomPickersViewController.h
interface file. Once you have done this, it should look something like this. You will
notice that we have additional classes of our UIViewController class; this is why
we had to link our UIPickerView up to our Datasource and Delegate objects. We
are also creating two array objects which will hold our animal types and the noises
that they make:

#import <UIKit/UIKit.h>

@interface CustomPickersViewController : UIViewController
 <UIPickerViewDataSource, UIPickerViewDelegate> {

 NSArray *animalType;
 NSArray *animalNoise;
 UILabel *matchResult;
}
@property (nonatomic, retain) IBOutlet UILabel *matchResult;

@end

2.	 Next, create the action event in our CustomPickersViewController.m
implementation file, but we first need to synthesize our properties so that we
can use them within our view controller.

If we don't declare these, we will receive warning messages
which could result in unexpected results occurring in our
application. It is also good to declare these as we are able to
deallocate the memory used by these objects in our dealloc
method.

#import "CustomPickersViewController.h"

@implementation CustomPickersViewController
@synthesize matchResult;

3.	 Our next step is to add the necessary code to our viewDidLoad method which
will be responsible for making our custom picker control work. We need to add the
highlighted code to our viewDidLoad event which will do just that:

- (void)viewDidLoad {
 animalType=[[NSArray

Chapter 5

[189]

 alloc]initWithObjects:@"Dog",@"Cat",@"Pig",@"Mouse",
 @"Snake",nil];

 animalNoise=[[NSArray
 alloc]initWithObjects:@"Sssss",@"Squeak",@"Oink",@"Meow",
 @"Woof",nil];

[super viewDidLoad];
}

4.	 Our next step is to declare the following method calls to our (UIPickerView)
control object:

- (NSInteger)numberOfComponentsInPickerView:(
 UIPickerView *)pickerView {

 return 2; // determines how many sections our picker will
 be using.

}
- (NSInteger)pickerView:(UIPickerView *)pickerView numberOfRows

 InComponent:(NSInteger)component {
 if (component == 0) {
 return [animalType count];
 } else {
 return [animalNoise count];
 }
}
-(NSString *)pickerView:(UIPickerView *)pickerView titleForRow:

 (NSInteger)row forComponent:(NSInteger)component
{
 if (component == 0) {
 return [animalType objectAtIndex:row];
 } else {
 return [animalNoise objectAtIndex:row];
 }
}

5.	 Our next step is to declare our (void) pickerView method which will be
responsible for displaying the selected animal type and the noise that each makes
to our Label control object. The code snippet below shows the pickerView method
which will do just that:

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(
 NSInteger)row inComponent:(NSInteger)component {

 NSString *matchedType;

 int selectedType;
 int selectedNoise;
 int matchedNoise;

Designing Application Interfaces using MVC

[190]

 selectedType = [pickerView selectedRowInComponent:0];
 selectedNoise = [pickerView selectedRowInComponent:1];

 matchedNoise = ([animalNoise count]-1)-[pickerView

 selectedRowInComponent:1];

 if (selectedType == matchedNoise) {
 matchedType=[[NSString alloc] initWithFormat:@"You are

correct, a
 %@ does go '%@'!",

 [animalType objectAtIndex:selectedType],
 [animalNoise objectAtIndex:selectedNoise]];
 } else {
 matchType=[[NSString alloc] initWithFormat:@"You are

incorrect, a
 %@ does not go '%@'!",

 [animalType objectAtIndex:selectedType],
 [animalNoise objectAtIndex:selectedNoise]];
 }

 matchResult.text = matchType;
 matchResult.textColor=[UIColor redColor];

 [matchType release];
}

6.	 Our final step is to release the memory used by our view control objects which we
have declared. Xcode 4 creates these for you automatically when you declare the
outlets in your CustomPickersViewController.h interface file:

- (void)dealloc {
 [animalType release];

 [animalNoise release];

 [super dealloc];
}

Chapter 5

[191]

The screenshot below shows our CustomPickers example application running within the
iOS simulator and displaying the selected animal and the associated noise that it makes:

What just happened?
In this section, we set up two array objects that will be used to hold the animal types and
the sounds that they make. Next, we set up the number of sections that our custom picker
control will have, as well as the number of rows for each section based on the number of
items within each of the arrays. This information is then populated into each section.

Next, we defined three integers (selectedType, selectedNoise, and matchedNoise). These
will be used to hold what has been currently selected by the user, using the formula below:

matchedNoise = ([animalNoise count] - 1) - [pickerView
 selectedRowInComponent:1];

Designing Application Interfaces using MVC

[192]

What this formula does is determine how many animalNoise items we have in our array,
and then minuses one from it (as arrays are zero based). We then determine the element
position which the user has selected within the array. Next, we do a comparison and if the
animalType which has been selected matches the position in our animalNoise array, we
display the message You are correct; otherwise, we display You are incorrect along with the
chosen animal type and the associated sound that they make. We then write this out to our
(UILabel) control and set the foreground text color to Red. We then release the object
when we are done.

Handling basic user input and output
The iPhone provides us with many different ways in which we can display information to
the user, as well as the different ways in which we can collect this information. In the next
section, we will build a simple application, making use of the following controls. First, let
us learn about the basic controls available for collecting information and displaying this
information to the user.

Button Controls
One of the most common interactions you will have when developing your iOS applications,
is responding to a user request when they touch on the (UIButton) button control. You
have used buttons in previous chapter exercises, these are elements of a view that respond
to an event that the user triggers from within the user interface by usually using the "Touch
Up Inside" event which indicates that the user has pressed and released this button. This
then triggers action (IBAction) event which fires off the associated code attached to the
action.

Text Fields
Text Fields (UITextField) provide the ability to accept input from the user. This can be
information requesting their name or address information. Using the various different
keyboard layouts that the iOS SDK provides you enables you to constrain the type of input
allowable.

Text Fields are very similar to Buttons in the sense that they also have the ability to allow you
to respond to events while the user is entering in information, but are mainly used to read
information from these fields by using the controls text property.

Text Views
The Text View (UITextView) control is very similar to the Text Field, except that the Text
View control presents a scrollable and editable block of text and gives the user the ability to
either read or modify the contents. These types of controls are mainly used when more than
a few words of input are required.

Chapter 5

[193]

Text Views don't provide any support for automatically reducing the size of the font like you
can do with Text Fields. They also don't provide support for clearing the text, other than
through programmatically setting the text property. Also, if you try to apply a style to this
control, all text will contain the same style. Apple recommends that if you need to handle
your text differently, you should use the UIWebView control as an alternative.

Labels
Labels (UILabel) are very useful elements and are used to display strings within the view
by setting their text property. Label controls contain a wide range of additional properties
which control how the contents of the label will look, such as the Font and size of the text,
the alignment, and setting the background and foreground color.

Using Text Fields, Text Views, and Buttons
You have already made use of the Text Fields and Button controls in previous chapter
examples, but we have never touched upon the use of TextViews up until now. We will
start by creating a very simple application that will show how to use each of these controls.

Our application will contain three (UITextField) TextField input boxes, a (UIButton)
button control which will process the input fields, and a (UITextView) control which will
be used to output the contents.

Time for action – creating application with Text fields, Text
Views, and Buttons

Before we can proceed and create our TextViewsandButtons project, to refresh your
memory, you can refer to the section Creating your first iPhone application which we covered
in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Select iPhone from under the Device Family drop-down.

5.	 Specify the location where you would like to save your project.

6.	 Click on the Save button to continue and display the Xcode workspace environment.

7.	 Specify the location where you would like to save your project.

8.	 Click on the Save button to continue and display the Xcode workspace environment.

Designing Application Interfaces using MVC

[194]

Once our project has been created, you will be presented with the Xcode interface along
with all files that the project template created for you displayed within the Project Navigator
window pane.

Now we need to add the controls to our View Controller. We will be adding a series of
(UILabel) label controls which will be used display each of the labels as well as the
associated (UITextField) textboxes which will be used to gather the information.

We will also be adding a (UIButton) control which will handle the processing, and finally,
we will be adding a TextView control which will be used to display the output of the fields
entered by the user:

1.	 From the Object Library, select and drag a (UILabel) control to the view and
position the control at the top within our view. We will need to click on the Object
Attributes tab and label our control Enter your Name: by setting the text
property under the Label section. Resize the control accordingly so that all of the
text is displayed.

2.	 Next, we will need to add a (UITextField) control which will be accepting
the information entered by the user. From the Object Library, select and drag a
UITextField control and place it directly under the label control which we
created in the previous step.

3.	 Repeat the steps above and add the (UILabel) labels and (UITextFields) Text
Fields for adding the following: Enter Your Gender and Enter Your Job. Ensure that
you leave enough space between each object.

4.	 Our next step is to add a (UIButton) Round Rect Button control to our view.
Modify the Object Attributes of the Round Rect Button control and set its title to
read Generate the Text View. Don't forget to resize the control so that all of the
text can be read easily.

5.	 We now need to add another (UILabel) Label control which will be used as a
heading placeholder for the TextView control. From the Object Library, select and
drag a (UILabel) Label control and place this under the (UIButton) control
which you created earlier on. We will need to click on the Object Attributes
tab and label our control Data contents output below: by setting the text property
under the Label section. Resize the control accordingly so that all of the text is
displayed.

6.	 Our final step is to add a (UITextView) control to our view. Adjust the size to how
large or small you would like the control to be.

If you have followed the steps correctly, your view should look something like the screenshot
below. If it doesn't look quite the same, feel free to adjust yours:

Chapter 5

[195]

What just happened?
In this section, we looked at how to create a simple application to use a number of iPhone
controls to handle input and display this information into a TextView control. The
TextView control is a fantastic control as it supports text coloring and multiple lines, which
are great for displaying information about people. In the next section, we look at how to add
the program logic to make our application work.

Time for action – binding our Controls using Outlets and Actions
Our final steps will be to bind our control objects to our View Controller and connect these
via Outlets and Actions. We covered this in the section Making our Components work
together in Chapter 3, Working with the Interface Builder:

1.	 Once you have created your outlets within your
TextViewsandButtonsViewController.h interface file, it should look
something like this. What we are doing here is basically letting our View
Controller know what controls we will be dealing with:

#import <UIKit/UIKit.h>

@interface TextViewsandButtonsViewController : UIViewController
{

 IBOutlet UITextField *txtName;

 IBOutlet UITextField *txtGender;

 IBOutlet UITextField *txtJob;

Designing Application Interfaces using MVC

[196]

 IBOutlet UITextView *txtTextView;
}
@property (nonatomic, retain) IBOutlet UITextField *txtGender;
@property (nonatomic, retain) IBOutlet UITextField *txtName;
@property (nonatomic, retain) IBOutlet UITextField *txtJob;
@property (nonatomic, retain) IBOutlet UITextView *txtTextView;

@end

2.	 Our next step is to create the action event in our
TextViewsandButtonsViewController.m implementation file; but we first need
to synthesize our properties so that we can use them within our view controller.

If we don't declare these, we will receive warning messages which
could result in unexpected results occurring in our application. It is
also good to declare these as we are able to deallocate the memory
used by these objects in our dealloc method.

#import "TextViewsandButtonsViewController.h"

@implementation TextViewsandButtonsViewController
@synthesize txtGender, txtName, txtJob, txtTextView;

3.	 Next, we declare our (IBAction) generateTextView method which will be
responsible for displaying the contents of each of our text fields to the Text View
Control. The text view control is a great control as it supports the MultiLine feature
which allows text to be formatted nicely. The code snippet below shows the
generateTextView action event which will do just that:

- (IBAction)generateTextView:(id)sender {
 NSString *TextView = [[NSString alloc] initWithFormat:@"Name:

 %@\nGender: %@\nJob: %@\n",txtName.text,txtGender.text,
 txtJob.text];

 txtTextView.text=TextView;
 txtTextView.textColor=[UIColor redColor];
}

4.	 Our final step is to release the memory used by the view control objects which we
declared. Xcode 4 creates these for you automatically when you declare the outlets
in your TextViewsandButtonsViewController.h interface file:

- (void)dealloc {
 [txtName release];

 [txtGender release];

Chapter 5

[197]

 [txtJob release];

 [txtTextView release];

 [super dealloc];
}

The following screenshot shows our TextViewandButtons example application running
within the iOS simulator and displaying the entered information from each of the form
controls within the Textview control:

What just happened?
In this section, we looked at how to create the necessary outlets to our controls within our
TextViewsandButtonsViewController.h interface file to make our View Controller
aware of what controls we will be dealing with.

Next, we declared an action generateTextView method that is responsible for displaying
the contents of each of our text fields to the Text View Control. This control is a great
control as it supports the MultiLine feature which allows text to be formatted nicely.
Finally, we declared an NSString object TextView which contains each of our form fields
nicely separated by a new line and the data associated with each control. We then assign
this to the text property of our (UITextView) txtTextView control and then set the
foreground text color to be red.

Designing Application Interfaces using MVC

[198]

Have a go hero – modifying the Table View example
Now that you have a good working knowledge of Table Views and know how to go about
adding entries and sections, the task will be to modify our Table View example sections
project to include a list of Organic and Non-Organic fruits. These will also need to be
grouped into their appropriate sections:

1.	 Create two new objects that will be used to store each of our different types of
fruits. You can refer to the section Implementing Table Views located in this chapter.

2.	 Next, implement two new arrays that will be used to hold our Organic and
Non-Organic fruits. You can refer to the section Implementing Table Views
located in this chapter.

3.	 Next, locate the numberOfRowsInSection method and create two new case
statements that will be used to handle our new array objects. You can refer to
the section Implementing Table Views located in this chapter.

4.	 Next, locate the cellForRowAtIndexPath method and create two new case
statements for our two new array objects. You can refer to the section Grouping
our Row items into Sections located in this chapter.

5.	 Next, locate the numberOfSectionsInTableView method and update the number of
sections to handle the additional sections. You can refer to the section Grouping our
Row items into Sections located in this chapter.

6.	 Next, we need to locate the titleForHeaderInSection method and add the headers
for Organic and Non-Organic fruits. You can refer to the section Grouping our Row
items into Sections located in this chapter.

7.	 Once you are satisfied that everything has been completed, you can Compile, Build
and Run the application.

Once you have implemented the above, you will have a fully customized application that will
display Organic and Non-Organic Vegetables and Fruits.

Pop quiz – Table Views / repositioning Controls
1.	 What method of the tableView should you update to initialise how many rows a

section would contain?

a.	 cellForRowAtIndexPath

b.	 numberOfRowsInSection

Chapter 5

[199]

2.	 Which set of Xcode templates contains a default RootViewController.xib file?

a.	 Window-based Application

b.	 View-based Application

c.	 Navigation-based Application

d.	 All of the above

3.	 If you wanted to reposition each of the controls within the view, what section of the
Object Properties would you need to change?

a.	 Identity Inspector

b.	 Object Attributes Inspector

c.	 Size Inspector

4.	 What option would you need to set to make your table view appear as grouped?

a.	 Single Line

b.	 Grouped

c.	 All of the above

Summary
In this chapter, we had some insight into what design patterns are and their importance
when developing iPhone applications that use the Model-View-Controller (MVC) application
design, and how Xcode and Interface Builder implement MVC.

We also took a look at the different types of templates, the View-Based template and the
Navigation-based template and created some simple applications to highlight each of these.
We also used some of the different controls which we hadn't got round to using in previous
chapters. We looked at how to use Switches, Sliders, Segmented Controls, Scrolling View,
and Web Views. We also learned how to use the various Pickers, as well as creating our own
custom-built picker control using the UIPickerView control to handle multiple selections.

We finished up the chapter by looking into how to handle basic user input and output as well
as learning how to use the Text Field, Text View, and Button control objects.

We have learned about the various layers of MVC, the design patterns, and the importance
of using the Model-View-Controller when creating iPhone applications, through using Table
Views, Switches, Segmented Controls, and custom pickers. We are now ready to start focusing
on how to get the user's attention through the use of the different notification methods.

In the next chapter, we will be taking a look into interacting with the user through the
various notification methods of generating Alerts, and using Action Sheets. We will also
be looking into how to handle alerts using sound and vibrations.

6
Displaying Notification Messages

In this chapter, we will be focusing on the different methods in which we can
make our applications communicate and grab the user's attention. You may,
for instance, want to notify the user that an error has occurred, or that the user
will need to wait while information is being retrieved or saved.

The iPhone provides developers with many ways in which they can add
informative messages to their applications to alert the user. We will be looking
at the various types of notification methods, ranging from alerts, activity
indicators, audio sounds, and vibrations.

We will be taking a look at these in more detail through each of the examples,
which we will be building throughout this chapter.

In this chapter, we will:

Explore and use the different notification methods

Learn how to generate alerts to notify the user

Learn how to go about using action sheets to associate with views

Handle alerts via sounds and vibrations

We have got quite a bit to cover, so let's get started.

Exploring the notification methods
You will have noticed by now, that applications on the iPhone are user-centric, meaning that
they don't operate without a user interface and don't perform any background operations.









Displaying Notification Messages

[202]

These types of applications enable users to work with data, play games, or communicate
with other users. Despite these, at some point an application will need to communicate with
the user. This can be as simple as a warning message, or providing feedback or even asking
the user to provide some information.

The iPhone and Cocoa-Touch use three special methods to gain your attention and are
explained below:

CLASS DESCRIPTION

UIAlertView This class creates a simple modal alert window that presents the
user with a message and a few options.

Modal elements require the user to interact with them before
they can proceed. These types of elements are displayed (layered)
on top of other windows and block the underlying objects until
the user responds to one of the actions presented.

UIActionSheet These types of classes are similar to the UIAlertView class, except
that they can be associated with a given view, tab bar, or toolbar
and become animated when it appears on the screen. Action
Sheets do not have an associated message property; they contain
a single title property.

System Sound Services This enables playback and vibration and supports various
file ��� formats�� (CAF, AIF, and WAV Files) and makes use of the
AudioToolBox framework.

Generating alerts
There is no doubt that you will need to incorporate alerts into your applications. These can
be very useful to inform the user of when the application is running, and can be a simple
message such as memory running low, or that an application or internal error has occurred.
We can notify the user in a number of ways using the UIAlertView class, and it can be used
to display a simple modal message or gather information from the user.

Time for action – creating the GetUsersAttention application
Before we can proceed with creating our GetUsersAttention application, we must first
launch the ��� Xcode�� development environment. If you need to refresh your memory on how
to go about creating a new Xcode project, you can refer to the section Creating the Project in
Chapter 3, Introducing Interface Builder:

Chapter 6

[203]

1.	 Select the View-based application template from the project template dialog box.

2.	 Ensure that you have selected iPhone from under the Device Family dropdown, as
the type of view to create.

3.	 Next, you will need to provide a name for your project.

4.	 Enter GetUsersAttention and then choose a location where you would like to save
the project.

Once your project has been created, you will be presented with the Xcode interface, along
with the project files that the template created for you within the Project Navigator Window.

What just happened?
In this section, we looked at the steps involved in creating a View-based application for our
GetUsersAttention application. In the next section, we will take a look at how we can add
the AudioToolbox Framework into our project to incorporate sound�.

Time for action – adding the AudioToolbox Framework to our
application

Now that we have created our project, we need to add the AudioToolbox Framework to
our project. This is an important framework which will provide us the ability to play sound
and vibrate the phone. It is similar to the MediaPlayer Framework that we used in previous
chapters, but only supports a limited number of audio file formats.

To add the new frameworks or additional frameworks into your project, select the Project
Navigator Group, and then follow these simple steps as outlined below:

1.	 Select your Project within the Project Navigator Window.

2.	 Then select your project target from under the TARGETS group.

3.	 Select the Build Phases tab.

4.	 Expand the Link Library with Libraries disclosure triangle.

5.	 Then finally, use the + button to add the library that you want to add; if you want to
remove a framework, highlight it from the group and click on the - button. You can
also search for the framework if you can't find it in the list shown.

Displaying Notification Messages

[204]

If you are still confused on how to go about adding these frameworks, refer to the following
image, which highlights what parts you need to select (highlighted by a red rectangle):

What just happened?
In the above section, we looked at how we are able to add frameworks to our application.
We looked at the differences between the MediaPlayer and AudioToolbox frameworks, and
the limitations of the two.

Adding frameworks to your application allows you to extend your application and utilise
those features in your application to avoid reinventing the wheel. When you add frameworks
to your application, the system loads them into memory as needed and shares the one copy
of the resource among all applications whenever possible.

Now that we have added the AudioToolbox.framework to our project, our next step is to
start creating our user interface. �� In the next section, we will be taking a look at how we start
to build our user interface and create events.

Pop quiz – Frameworks
1.	 Which framework allows you to vibrate the phone and play sound?

a.	 MediaPlayer

b.	 AudioToolbox

c.	 CoreAudio

Chapter 6

[205]

2.	 Which framework allows for playing a limited number of file formats?

a.	 AVFoundation

b.	 CoreAudio

c.	 MediaPlayer

d.	 AudioToolbox

3.	 Under which tab is the Link Binary with Libraries section located�?

a.	 Build Settings

b.	 Build Rules

c.	 Summary

d.	 Build Phases

Building our user interface
User interfaces provide a great way to communicate with the user in order to either
obtain information or to display notifications. A good interface is one that provides a good
consistent flow throughout your application as you navigate from screen to screen. This
involves considering the screen size of your view. In the next section, we look at how to add
some controls to our view to build our interface.

To obtain further information about what constitutes a good user interface,
Apple provides these iOS Human Interface Guidelines which can be obtained
at the following location: http://developer.apple.com/library/
ios/documentation/userexperience/conceptual/mobilehig/
MobileHIG.pdf.

Time for action – adding controls to our View
We will be adding five button (UIButton) controls which will be handling our actions to
display alerts and Action Sheets, playing sounds, and vibrating the iPhone.

1.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
onto our view. Modify the Object Attributes of the Round Rect Button control and
set its title to read "Show Activity Indicator".

2.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
onto our view. Modify the Object Attributes of the Round Rect Button control and
set its title to read "Display Alert Dialog".

Displaying Notification Messages

[206]

3.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
onto our view. Modify the Object Attributes of the Round Rect Button control and
set its title to read "Display Action Sheet".

4.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
onto our view. Modify the Object Attributes of the Round Rect Button control and
set its title to read "Play Alert Sound".

5.	 From the Object Library, select and drag a (UIButton) Round Rect Button control
onto our view. Modify the Object Attributes of the Round Rect Button control and
set its title to read "Vibrate iPhone".

If you have followed everything correctly, your view should look something like the following
screenshot. If it doesn't look quite the same, feel free to adjust yours:

What just happened?
In the above section, we looked at how we are able to use the Object Library to add controls
to our view and customize their properties in order to build our user interface. In the next
section, we will take a look at how to create events to respond to button events.

Chapter 6

[207]

Creating events
Now that we have created our user interface, we need to create the events that will respond
when we click on each of the buttons. If you need to refresh your memory on how to go
about this, you can refer to the section Making our Components work together in Chapter 3,
Introducing Interface Builder.

We first need to create an instance of our UIAlertView class, called baseAlert, which will
be used by our Show Activity indicator event and will be used to dismiss the activity after a
period of time has lapsed.

Open the GetUsersAttentionViewController.h ���������������� interface file and add the following
highlighted code as shown in the code snippet below:

#import <UIKit/UIKit.h>

@interface GetUsersAttentionViewController : UIViewController
 <UIAlertViewDelegate, UIActionSheetDelegate>{

 UIAlertView *baseAlert;

}
@end

We could have declared this within our GetUsersAttentionViewController.m
implementation file, but I prefer to declare it in this class as it can be referenced throughout
your application.

You will notice from the code snippet above that we have made reference to two delegate
protocols within our GetUsersAttentionViewController.h interface file; this enables
us to capture and respond to the button event presses used by our Action Sheet and Alert
Views. This will become apparent when we start adding the code events for our Alert Views
and Action Sheets.

Time for action – implementing the Show Activity Indicator
method

When you are performing tasks which are taking a period of time, you will want to provide
the user with some form of notification. For tasks for which we are not sure how long it will
take, we can use the UIActivityIndicatorView class, which provides us with and is
represented as an animated spinner graphic.

Displaying Notification Messages

[208]

The default size of the Activity indicator is a 21-pixel square, but can be changed to 36-pixels
by using the UIActivityIndicatorViewStyleWhiteLarge style. In this section, we will
look at how to go about implementing this class, combined with the UIAlertView control:

1.	 Open the GetUsersAttentionViewController.m implementation file.

2.	 In the action event which you created for the Show Activity Indicator button, add
the following code:

// Displays our progress indicator with a message
- (IBAction)showProgress:(id)sender {

 // �� initialize�� our Alert View window without any buttons
 baseAlert=[[[UIAlertView alloc]initWithTitle:@"Please
 wait,\ndownloading updates….." message:nil delegate:self
 cancelButtonTitle:nil otherButtonTitles:nil] autorelease];

 // Display our Progress Activity view
 [baseAlert show];

 // create and add the UIActivity Indicator
 UIActivityIndicatorView
 *activityIndicator=[[UIActivityIndicatorView
 alloc]initWithActivityIndicatorStyle:UIActivityIndicatorViewStyl
eWhiteLarge];
 activityIndicator.center=CGPointMake(baseAlert.bounds.size.width
 / 2.0f,baseAlert.bounds.size.height-40.0f);

 // initialize to tell our activity to start animating.
 [activityIndicator startAnimating];
 [baseAlert addSubview:activityIndicator];
 [activityIndicator release];

 // automatically close our window after 3 seconds has passed.
 [self performSelector:@selector(showProgressDismiss)
 withObject:nil afterDelay:3.0f];
}

3.	 Next, we need to create an event to dismiss the progress indicator. Create the
following showProgressDismiss event and add the following code:

// Delegate to dismiss our Activity indicator after the number of
 seconds has passed.
- (void) showProgressDismiss
{
 [baseAlert dismissWithClickedButtonIndex:0 animated:NO];
}

Chapter 6

[209]

What just happened?
In the above section, we looked at how we can use the UIAlertView alert class and the
UIActivityIndicatorView classes to provide the ability to perform animation within
our view. We also took a look at using the startAnimating method to start animating our
activity indicator.

Next, we declared and instantiated an instance of our UIAlertView dialog and then
declared and instantiated an instance of the UIActivityIndicator class and positioned
this to be centred within our alert dialog.

We then made a call to the startAnimating method, which will display the activity indicator
and cause the activity indicator graphic to start animating within our alert window.

After we have added this to our alert window view, we then need to release our
activityindicator object once it has been added to the alert view, and then set up a delay
to dismiss our activity view after a period of three seconds has lapsed, by calling the
showProgressDismiss method.

You can call the stopAnimating method to stop the activity view from
animating, but you will need to remember to set the hideWhenStopped
property if you want to permanently hide the activity view.

Finally we created our showProgressDismiss method to dismiss the activity indicator after
a number of specified seconds lapsed by our showProgress event when the number of
specified seconds has lapsed within the afterDelay property.

When using alert dialogs that don't contain any buttons, these don't properly call back to the
delegate and therefore don't auto-dismiss correctly, as we have seen in our example, so we
need to manually call the dismissWithClickedButtonIndex:animated: method which
will close our alert dialog and stop our activity view from animating.

Have a go hero – adding a second activity indicator
Now that you have a good working knowledge of how to go about creating activity indicators
and using these within your application, the task will be to add a secondary activity indicator.
This will need to display a message after the downloading updates message stating that the
updates are being finalized:

1.	 You will need to create another instance of the activity indicator You can refer to the
section Implementing the Show Activity Indicator located in this chapter.

2.	 Next, you will need to add the activity indicator to the base class view. You can refer
to the section Implementing the Show Activity Indicator located in this chapter.

Displaying Notification Messages

[210]

3.	 Finally, set up a delay and create a new method to dismiss the activity indicator after
a delay of five seconds has passed. You can refer to the section Implementing the
Show Activity Indicator located in this chapter.

Once you have that working, you will have mastered how to create an application that
contains more than one form of notification to grab the user's attention. This lets the user
know that updates are being finalized�.

Pop quiz – Activity Indicators
1.	 What method of the activityIndicator allows you to cease animation permanently?

a.	 hideWhenStopped

b.	 startAnimating

c.	 stopAnimating

2.	 What method starts animation of the activityIndicator?

a.	 stopAnimating

b.	 startAnimating

3.	 When using the stopAnimating method of the activityIndicator, what method should
you use to permanently hide the activityview?

a.	 release

b.	 stopAnimating

c.	 hideWhenStopped

Time for action – implementing the Display Alert Dialog method
Our next step is to implement our displayAlertDialog method. This method will be
responsible for displaying an alert message to the user when the Display Alert Dialog is
pressed. The user will be able to respond to the buttons displayed, which will dismiss
the dialog:

1.	 Open the GetUsersAttentionViewController.m implementation file.

2.	 In the action event which you created for the Display Alert Dialog button, add the
following code:

// Handles of the setting up and displaying of our Alert View
 Dialog
- (IBAction)displayAlertDialog:(id)sender {

 // Declare an instance of our Alert View dialog

Chapter 6

[211]

 UIAlertView *dialog;

 // Initialise our Alert View Window with options
 dialog =[[UIAlertView alloc] initWithTitle:@"Alert Message"
 message:@"Have I got your attention" delegate:self
 cancelButtonTitle:@"Cancel" otherButtonTitles:@"OK",nil];

 // display our dialog and free the memory allocated by our
 dialog box
 [dialog show];
 [dialog release];
}

What just happened?
In the above section, we looked at how we can use the UIAlertView alert class to display
a series of buttons and display a message based on the button pressed. We started by
declaring and instantiating an instance of the UIAlertView class with a variable dialog.
We then initialise our alert view to display the required buttons which we would like to have
displayed and then display the dialog and release the memory used.

You will notice when we declared our UIAlertView class, it comprised of a number of
parameters that are associated with this control. These are explained below:

ALERT PARAMETERS DESCRIPTION

initWithTitle Initializes the view and sets the title that will be displayed at the top
of the alert dialog box.

message This property sets the string that will appear within the content area
of the alert dialog box.

delegate Contains the object that will serve as the delegate to the alert.

If this is set to nil, then no actions will be performed when the user
dismisses the alert.

cancelButtonTitle This sets the string shown in the default button for the alert.

OtherButtonTitles Adds additional buttons to the sheet that are delimited by commas
as shown:

otherButtonTitles:@"Out to Lunch",@"Back in 5 Minutes",@"Gone
Fishing".

Responding to Alert Dialog Button presses
In order for us to be able to capture the button that the user has pressed, we use the
clickedButtonIndex method of the alertView property. This provides the button index
of the pressed button and starts from 0. In the following code snippet, we look at how we
are able to capture and respond to the actions when the user presses each of the buttons.

Displaying Notification Messages

[212]

To get started, open the GetUsersAttentionViewController.m implementation file
and create the following delegate function underneath the displayAlertDialog method:

// Responds to the options within our Alert View Dialog
-(void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 // String will be used to hold the text chosen for the button
 pressed.
 NSString *buttonText;

 // Determine what button has been selected.
 switch (buttonIndex)
 {
 case 0: // User clicked on Cancel button
 buttonText=@"You clicked on the 'Cancel' button";
 break;
 case 1: // User clicked on the OK button
 buttonText=@"You clicked on the 'OK' button";
 break;
 default: // Handle invalid button presses.
 buttonText=@"Invalid button pressed.";
 }

 // Initialise our Alert Window
 UIAlertView *dialog=[[UIAlertView alloc] initWithTitle:@"Alert
 Message" message:buttonText delegate:nil cancelButtonTitle:@"OK"
 otherButtonTitles:nil,nil];

 // display our dialog and free the memory allocated by our dialog
 box
 [dialog show];
 [dialog release];
}

In the above code snippet, we declared a delegate method which handles the button presses
and retrieves the index of the button which was pressed. We declare an NSString variable
buttonText, which will be used to store the title text to be displayed by our UIAlertView.

In order to determine the index of the button which was pressed, we perform a switch
statement and then set up the buttonText variable with the associated text. Finally, we
declare and instantiate a UIAlertView object, which will be used to display the greeting
for the button which was pressed. We then display the dialog and then finally release the
memory used.

Chapter 6

[213]

If we wanted to retrieve the selected button using its text property, we would do so as
shown in the following code snippet:

NSString *buttonTitle=[actionSheet buttonTitleAtIndex:buttonIndex];
if ([buttonTitle isEqualToString:@"OK"])
{
 buttonText=@"You clicked on the 'OK' button";
}

Finally, we looked at another way in which we can derive what button has been pressed.
We declare an object NSString buttonTitle, which retrieves the text label for the button
pressed on the action sheet. We then use the isEqualToString method to perform
the comparison.

Have a go hero – adding additional buttons and creating the events
I will let you put into practice what you have just learnt.

Our application needs some additional buttons to be added to our Alert Dialog, and also
needs to have the necessary code created to display the associated messages based on the
button pressed. One way to do this would be as follows:

1.	 Locate the displayAlertDialog method

2.	 Add the necessary buttons to create within the otherButtonTitles property,
separated by commas

3.	 Locate the alertView:(UIAlertView *) method

4.	 Add the necessary buttonText messages within the switch statement based on
the buttonIndex of the button

Once you have that working, you will have extended your application to handle
multiple buttons.

Pop quiz – Alert Dialogs and Button Indexes
1.	 What property would you modify to allow for additional buttons?

a.	 InitWithTitle

b.	 cancelButtonTitles

c.	 otherButtonTitles

Displaying Notification Messages

[214]

2.	 What is the purpose of the destructive button?

a.	 Sets the string to be shown in the default button for the alert.

b.	 Initializes the sheet with the specified title string.

c.	 The title of the option that will result in the information being lost.

Using Action Sheets to associate with a view
Action sheets are very similar to alerts in how they are initialized, and how the user responds
to decisions. However, action sheets can be associated within a given view, tab bar, or
toolbar and are animated when they become associated with the view onscreen. Action
sheets also provide a separate button which is displayed as bright-red to alert the user to
potential deletion of information.

Time for action – implementing the Display Action Sheet method
Action sheets provide the user with a variety of options to choose from. For instance, if a
user was sending an SMS and there was a problem with it being sent, an action sheet will
pop up asking the user if they want to Try again or Dismiss:

1.	 Open the GetUsersAttentionViewController.m implementation file.

2.	 In the action event which you created for the Display Action Sheet button, add the
following code:

// Displays our Action Sheet
- (IBAction)displayActionSheet:(id)sender {

 // Define an instance of our Action Sheet
 UIActionSheet *actionSheet;

 // Initialise our Action Sheet with options
 actionSheet=[[UIActionSheet alloc]initWithTitle:@"Available
 Actions" delegate:self cancelButtonTitle:@"Cancel"
 destructiveButtonTitle:@"Close" otherButtonTitles:@"Open
 File",@"Print",@"Email", nil];

 // Set our Action Sheet Style and then display it to our view
 actionSheet.actionSheetStyle=UIBarStyleBlackTranslucent;
 [actionSheet showInView:self.view];
}

Chapter 6

[215]

What just happened?
In this section, we added some code that will be called when the button Display Action
Sheet is pressed. What this code is doing is declaring and instantiating an object actionSheet
based on the UIActionSheet class.

We then initialise our action sheet to display the required buttons which we would like to
have displayed and then apply the action sheet style, then display the action sheet into the
current view controllers view by using the showInView:self.view method.

You will notice when we declare our action sheet, that it comprises of a number of
parameters associated with this control, which are explained below:

ACTIONSHEET PARAMETERS DESCRIPTION

initWithTitle Initializes the sheet with the specified title string.

delegate Contains the object that will serve as the delegate to the sheet.

If this is set to nil, the sheet will be displayed, but pressing a
button will have no effect except dismissing the sheet.

cancelButtonTitle This sets the string shown in the default button for the alert.

destructiveButtonTitle The title of the option that will result in information being lost.
This button is represented in bright red. However, if this is set
to nil, then no destructive button will be displayed.

OtherButtonTitles Adds additional buttons to the sheet that are delimited by
commas as shown:
 otherButtonTitles:@"Item 1",@"Item 2",@"Item 3".

As of iPhone OS 3.0, action sheets can include up to seven buttons while
maintaining the standard layout. If you happen to exceed this, the display will
automatically change into a scrolling table view control, with the ability to add as
many options as you need.

Responding to Action Sheet Button presses
In order for us to be able to capture the button that the user has pressed we use the
clickedButtonIndex method of the actionSheet property. This provides the button
index of the pressed button and starts from 0. In the following code snippet, we look at
how we are able to capture and respond to the actions when the user presses each of
the buttons.

Displaying Notification Messages

[216]

Create the following delegate function located under the displayActionSheet method:

// Delegate which handles the processing of the option buttons selected
-(void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 // String will be used to hold the text chosen for the button
 pressed.
 NSString *buttonText;

 // Determine what button has been selected.
 switch (buttonIndex)
 {
 case 0: // We selected the Close button
 buttonText=@"You clicked on the 'Close' button";
 break;
 case 1: // We selected the Open File button
 buttonText=@"You clicked on the 'Open File' button";
 break;
 case 2: // We selected the Print button
 buttonText=@"You clicked on the 'Print' button";
 break;
 case 3: // We selected the Email button
 buttonText=@"You clicked on the 'Email' button";
 break;
 case 4: // We selected the Cancel button
 buttonText=@"You clicked on the 'Cancel' button";
 break;
 default: // Handle invalid button presses.
 buttonText=@"Invalid button pressed.";
 }
 // Initialise our Alert Window
 UIAlertView *dialog=[[UIAlertView alloc] initWithTitle:@"Alert
 Message" message:buttonText delegate:nil cancelButtonTitle:@"OK"
 otherButtonTitles:nil,nil];

 // display our dialog and free the memory allocated by our dialog
 box
 [dialog show];
 [dialog release];
}

In the above code snippet, we declare a delegate method which handles the button presses
and retrieves the index of the button which was pressed based on the order in which they
were added. We declare an NSString variable buttonText which will be used to store the
title text to display by our UIAlertView. In order to determine the index of the button
which was pressed, we perform a switch statement and then set up the buttonText variable
with the associated text. Finally, we declare and instantiate a UIAlertView object which
will be used to display the greeting for the button which was pressed. We then display the
dialog and then finally release the memory used.

Chapter 6

[217]

Just in the same way as we did for alerts, if you want to retrieve the selected button using its
text property, we would do so as shown in the following code snippet:

NSString *buttonTitle=[actionSheet buttonTitleAtIndex:buttonIndex];
if ([buttonTitle isEqualToString:@"Close"])
{
 buttonText=@"You clicked on the 'Close' button";
}

In the above code snippet, we looked at an alternative way by which we can derive what
button has been pressed. We declared an object NSString buttonTitle, which retrieves the
text label for the button pressed on the action sheet. We then used the isEqualToString
method to perform the comparison�.

Customizing an Action Sheet
Action sheets can take on numerous different user interface (UI) styles which are derived
from the UIBarStyle class and can be applied to the actionSheetStyle property as
demonstrated below:

actionSheet.actionSheetstyle=UIBarStyleBlackTranslucent;

This code renders the action sheet in a translucent black style. If you wanted to inherit the
style of the views toolbar provided to which you have applied a style, you could use the
UIActionSheetStyleAutomatic or if you preferred to go for a more solid-black classy
finish, you could use and apply the UIActionSheetStyleBlackOpaque style:

Time for action – handling alerts via sounds and vibrations
Before we can play any sound or perform vibrations on our iPhone, we must first import the
AudioToolBox library so that we can make use of its properties and methods:

1.	 Open the GetUsersAttentionViewController.m implementation file and add
the following highlighted code as shown in the code snippet below:

#import "GetUsersAttentionViewController.h"
#import "AudioToolBox/AudioToolBox.h"

@implementation GetUsersAttentionViewController

Displaying Notification Messages

[218]

2.	 Our next step is to implement our playAlertSound method. This method will be
responsible for playing a short 30 second sound when the Play Alert Sound button is
pressed. �� In the action event which you created for the Play Alert Sound button, add
the following code:

// Plays an Alert Sound
- (IBAction)playAlertSound:(id)sender {
 SystemSoundID soundID;
 NSString *soundFile = [[NSBundle
 mainBundle]pathForResource:@"Teleport" ofType:@"wav"];
 AudioServicesCreateSystemSoundID((CFURLRef)[NSURL
 fileURLWithPath:soundFile],&soundID);
 AudioServicesPlaySystemSound(soundID);

}

3.	 Our next step is to implement our vibratePhone method. This method will
be responsible for making our phone vibrate when the Vibrate iPhone button is
pressed. Enabling the ability to provide feedback via vibration is a very simple and
painless technique and all that is required is to pass a System Sound ID value to the
AudioServicesPlaySystemSound method as we will see in a minute.

4.	 In the action event which you created for the Vibrate iPhone button, add the
following highlighted code:

- (IBAction)vibratePhone:(id)sender {
 AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);

}

Now that we have finally created the necessary methods within our application to
enable us to play sounds and vibrations, our next step is to build our application, as
shown below.

5.	 We are now ready to build and compile our GetUsersAttention application.
The screenshot below shows the output from each of the buttons when they
are pressed:

Chapter 6

[219]

So there you have it. We have explored five different ways in which we can communicate
effectively with the user. By implementing these methods into your own applications, you
will not only make your application more user-friendly, but it will also look more professional.

What just happened?
In the above section, we looked at how to implement sounds and vibrations in our
application to grab the user's attention. In order for that to happen, we de��������� clared a
variable called SoundID which will be used to refer to the sound file. Next, we declared
an NSString soundFile variable which will contain the path to the sound file location by
using the NSBundle class method mainBundle which corresponds to the directory location
where the sound file Teleport.wav is located and use the ofType method to identify the
type of sound file we want to play.

Once we have defined our path, we use the AudioServicesCreateSystemSoundID
function to create a SystemSoundID that will be used to actually play the file.

This function takes the following two parameters: CFURLRef and fileURLWithPath. The
CFURLRef parameter points to the location where the file is kept. The second parameter is
a pointer to the SystemSoundID class that will be used to store the memory address of the
file. The fileURLWithPath method returns an NSURL object which is what our CFURLRef
is expecting.

Displaying Notification Messages

[220]

Once we have set up our SoundID properly, all that is required is to play the sound which
is achieved by passing the SoundID variable to the AudioServicesPlaySystemSound
method.

We finally passed the kSystemSoundID_Vibrate constant variable to our
AudioServicesPlaySystemSound method to allow our device to handle
vibrations which have been defined within the AudioToolBox.h header file.

Have a go hero – adding Action Sheet items / changing appearance
I will let you practice what you have just learnt in this chapter.

Our GetUsersAttention application needs to be enhanced. We need to add some
additional buttons and change the appearance of our action sheet. One way to do this
would be as follows:

1.	 Within our displayActionSheet method, modify the otherButtonTitles
property to include the additional button titles

2.	 Modify the actionSheet:(UIActionSheet *)actionSheet method, and add
the additional button indexes to the switch statement

3.	 Compile and execute the application and check to ensure that the relevant button
text appears when the buttons are pressed

Once you have made the relevant changes, you will experience how easy it is to modify
action sheets to change their appearance and to allow for additional items to be displayed.

Pop quiz – sounds and vibrations
1.	 When changing the appearance of an action sheet, which method do you use?

a.	 actionsheet

b.	 actionSheetRibbon

c.	 actionSheetStyle

2.	 When changing the appearance of an action sheet, what class does it derive from?

a.	 UIFont

b.	 UIAlertView

c.	 UIBarStyle

3.	 What method do you use to vibrate the iPhone?

a.	 AudioPlaySystemSound

b.	 PlaySystemSound

c.	 AudioServicesPlaySystemSound

Chapter 6

[221]

Summary
In this chapter, we learned about the different types of notification methods and modal
dialogs which we can use to communicate effectively with the user.

We also learned how to go about using alerts and Action sheets and how to set the UI
appearance of the Action Sheet using its various styles.

We finally looked at the two non-visual means by which we can communicate with the user
by using sounds and vibrations using the AudioToolBox framework. Simply by using this
framework, you make your applications more exciting and easily add short playing sounds
and vibrate the iPhone.

Now that we have learned about the various ways in which you can communicate with
the user, through alerts and action sheets, and sounds and vibration; we are ready to start
focusing on how to handle the iPhone MultiTouch Architecture and learn how we can
detect swipes, taps, pinches, and shaking. We will also be looking into the new iPhone 4
orientations by using the gyroscope feature. All of this will be covered in the next chapter.

7
Exploring the MultiTouch Interface

The Apple iOS device's primary interface with which you communicate is
its large Multi-Touch display. Since there is no physical keyboard attached,
everything is done via the screen to allow you to interact with your applications
in a more natural way. Any object can be moved around the screen, zoomed in
and out, and scrolled up and down using simple gestures.

In this chapter, we will see how easy it is to incorporate both single-touch
and multi-touch support into our applications, to handle device taps, swipes,
pinches, as well as responding to shake motions, before finally learning about
the accelerometer and the gyroscope, and how to handle the situation when
your iOS device orientation has changed.

In this chapter, we will be covering the following topics:

Explore the iOS MultiTouch Architecture

Learn how to detect taps, swipes, and pinches

Learn how to use the built-in shake gesture

Explore the new features of the Accelerometer and Gyroscope

Learn how to handle and sense device orientation

Learn how to detect when a device has been tilted

We will be taking a look at these in more detail through each of the examples which we will
be building throughout this chapter.

We have got quite a bit to cover, so let's get started.













Exploring the MultiTouch Interface

[224]

Introducing the MultiTouch architecture
The MultiTouch gesture architecture is based on the concept of a responder chain. When
the user performs an action, for instance, tapping or swiping the screen, the system will
proceed to generate instances of the UIEvent class to indicate that some user interaction
has occurred and then the chain responder objects are given a chance to respond.

In order for you to gain a better understanding of how the responder chain events are
handled, the screenshot below will explain what happens when each of the events are fired.

Each of the UIEvent events which get created represents a distinctive gesture which is
currently being processed with each of the UIEvents received containing the parts that
make up the gesture. Gestures such as a simple finger movement across the screen, a swipe,
or a tap are all instances of the UITouch class:

As you will see from the image above, each of the responder chains are made up of
a series of linked responder objects, each of these being an implementation of the
UIResponder class.

By looking at the diagram, you will notice that it sort of resembles the view hierarchy,
which means that it starts at the lowest subview before making its way all the way up
through the hierarchy.

The first link in the chain is known as the first responder and is executed first. If for some
reason, this cannot respond to the event, it gets bubbled up to the next responder in the
chain and then tries to process the event. This process continues until there are no more
responders to process and then proceeds to the applications UIWindow instance before
finally finishing up at the applications UIApplication instance which then gets a chance
to handle the event.

Chapter 7

[225]

It is not unusual for an event to pass all the way up through the chain without
getting any responses. This does not cause any problems and ensures that the
process starts and ends correctly.

Before you can start to use MultiTouch events within your application, you need to insert
the code into the responder chain by inserting and implementing any of the four UITouch
events which are part of the UIResponder class.

The UIView and UIViewController classes are all part of the UIResponder class as they
can respond to and handle events within the view. By implementing any of the methods
below, you are then able to override the methods used by your view or view controller:

MOTION EVENT METHODS

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

The screenshot below shows you each of the events that get executed when your view or
view controller receives a touch:

Exploring the MultiTouch Interface

[226]

Each of the UITouch touches that get received has a phase, location, the view in which the
touch occurred, a timestamp and a count of the number of taps that occurred. In the table
below, we explain what happens when each of the touch phases are fired:

UITOUCH PHASE EVENTS DESCRIPTION

UITouchPhaseBegan Occurs at the beginning of the touch life cycle when the user
has touched an area of the iPhone screen.

UITouchPhaseMoved Occurs when the user has moves their finger or fingers around
the screen of the iPhone.

UITouchPhaseStationary Occurs when the user has paused on an area of the screen.

UITouchPhaseEnd Occurs when the user has removed their fingers from the
screen of the iPhone.

UITouchPhaseCancelled Occurs when the iOS device determines that something has
happened and needs to abort the gesture. An example of this
can be due to a system interruption caused when you are
receiving an incoming phone call, or when an application or
window view is no longer active.

Detecting taps
The iPhone is equipped to keep track of taps that occur when the user taps on an area of the
screen and delivers this as a single tap event to the UIResponder event chain with the count
of the number of taps that have occurred. Just like with mouse clicks, the iPhone can receive
and handle both single or double taps.

Time for action – creating the TapExample project
Before we can proceed, we first need to create the TapExample project. ���������������� To refresh your
memory, you can refer to the section Creating your first iPhone application which we covered
in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

Chapter 7

[227]

7.	 Specify a name for the project which you want to create.

8.	 Enter TapExample and then click on the Next button to proceed to the next step in
the wizard. You will then be asked to choose a location where you would like to save
the project.

Once our project has been created, you will be presented with the Xcode interface, along
with the project files that the template has created for you within the Project Navigator
Window.

Our next step is to concentrate and start to build our user interface. We will be keeping this
example simple and will be adding just one control which will display how many taps have
occurred when the user taps on the view:

1.	 From the Object Library, select and drag a (UILabel) label control and drag it onto
the view.

2.	 Modify the Object Attributes of the label control, and set the title to read Tap Count:

3.	 Adjust the Tap Count: label font size to be Helvetica 24.0

If you have followed everything correctly, your view should look something like the
screenshot below. Feel free to adjust yours accordingly:

Exploring the MultiTouch Interface

[228]

What just happened?
In the above section, we looked at the steps involved in creating a View-based application
for our TapExample application. We then looked at the steps involved in building our user
interface by using the Label control from the Object Library and modifying some of the
properties associated with the control to set the size of the label. In the next section, we will
take a look at how we can bind the label control to an event, and set the background color of
the view depending on the total number of taps made.

Time for action – binding our Controls
Now that we have created a user interface, we need to create the events so that we can
update this label to show how many taps have occurred. If you need to refresh your memory
on how to go about this, you can refer to the section Making our components work together
which we covered in Chapter 3, Working with the Interface Builder:

1.	 Open the TapExampleViewController.h interface file located within the
Classes folder of your project and add the following code:

#import <UIKit/UIKit.h>

@interface TapExampleViewController : UIViewController {
 UILabel *tapCountLabel;

}
@property (nonatomic, retain) IBOutlet UILabel *tapCountLabel;

@end

2.	 We now need to open our TapExampleViewController.m implementation file,
located within the Classes folder of our project so that we can synthesize our
properties to be able to use them.

If we don't declare these, we will receive compiler warning
messages which can result in unexpected results occurring in
our application and can even make our application terminate
unexpectedly which will not be too pleasing to our users.

#import "TapExampleViewController.h"

@implementation TapExampleViewController
@synthesize tapCountLabel;

Chapter 7

[229]

3.	 Our next step is to implement the touchesBegan:touches method as we need
to declare a UITouch variable *touch that will be used to retrieve the touch events.
We then need to construct our labelOutput string to show how many times the
user tapped, and then based on the number of taps made, we set the background
color of our view.

With the TapExampleViewController.m implementation file open, create the
following event as shown in the code snippet below:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 NSString *labelOutput;
 UITouch *touch = [[event allTouches] anyObject];
 labelOutput = [NSString stringWithFormat:@"You tapped %i
 times.",[touch tapCount]];
 tapCountLabel.text=labelOutput;
 switch ([touch tapCount])
 {
 case 1:
 self.view.backgroundColor=[UIColor redColor];
 break;
 case 2:
 self.view.backgroundColor=[UIColor greenColor];
 break;
 case 3:
 self.view.backgroundColor=[UIColor blueColor];
 break;
 case 4:
 self.view.backgroundColor=[UIColor yellowColor];
 break;
 case 5:
 self.view.backgroundColor=[UIColor orangeColor];
 break;
 default:
 self.view.backgroundColor=[UIColor redColor];
 break;
 }
}

4.	 Our final step is to release the memory used by the view controller objects which
we have declared. Xcode creates these for you automatically when you declare the
outlets in your TapExampleViewController.h interface file, located within the
Classes folder of your project:

- (void)dealloc {
 [tapCount release];
 [super dealloc];
}

Exploring the MultiTouch Interface

[230]

5.	 We are now ready to build and compile our TapExample application. The screenshot
below shows the output for the number of taps that have been pressed:

So there you have it; we have successfully created a simple, yet effective application
which can respond to user taps. By implementing any of the four touch events into your
application, you can respond to each accordingly.

What just happened?
What we just covered in the section above were the steps involved in hooking up our
tapCountLabel control to the touches event method of the view controller. This enabled
us to determine the number of times the view was tapped. This was handled by the
implementation of the touchesBegan:touches method. Based on the total number of
taps made, the application then updated the labelOutput control to display how many times
the user tapped the view and also changed the background color.

Chapter 7

[231]

Have a go hero – modify the program to change background
I will let you put into practice what you have just learnt.

Our application needs an addition made to the code to change the background color to purple
whenever the number of taps made exceeds 10. One way to do this would be as follows:

1.	 Create another case item inside the switch statement.

2.	 Initilalise the backgroundColor method of the view to change its background
color to Purple which is derived from the UIColor class.

3.	 Include a break statement after the added code to avoid this from falling through
into any other case statements you have.

4.	 Compile, Build and Run the application.

Once you have that working, you will have customized the application to change the
background color based on the number of taps exceeding 10.

Pop quiz – tap counts
1.	 Which method allows you to determine the number of taps made?

a.	 tapCount

b.	 touchCount

c.	 getCount

2.	 What method determines when a touch has been performed?

a.	 touchesMoved

b.	 touchesCancelled

c.	 touchesBegan

Detecting swipes
Up to now, you have looked at the tap gesture of the iPhone and have learned how to handle
and respond to the events. You may have noticed while working with the tap gesture that it
only requires one UIResponder method. When dealing with swipes and the swipe gesture,
this is more involved and the responder lasts longer.

The swipe gesture starts with the touchesBegan:touches:withEvent method when it
detects that a finger or fingers have first touched the screen. The responder will then call a
series of touchesMoved:touches:withEvent method calls when the user proceeds to
move their fingers across the screen. The method touchesEnded:touches:withEvent is
called when the responder realizes that the user has removed their finger or fingers from
the screen.

Exploring the MultiTouch Interface

[232]

Time for action – creating the SwipeExample project
To learn a bit more about how we go about handling and using the Swipe gesture, let's
proceed and create a View-based application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project which you want to create.

8.	 Enter SwipeExample and then click on the Next button to proceed to the next step
in the wizard. You will then be asked to choose a location where you would like to
save the project.

Once your project has been created, you will be presented with the Xcode interface, along
with the project files that the template created for you within the Project Navigator Window.
We are now ready to start implementing the code to detect and handle when a swipe has
occurred, by following these simple steps:

1.	 Open the SwipeExampleViewController.h implementation file, located within
the Classes folder of your project and add the following code:

#import <UIKit/UIKit.h>

#define minGestureLength 25 // The Minimum length to denote a
swipe.

#define allowableVariance 5 // The variance of 5 pixels in
length.

#define delayFactor 3 // Define our delay factor

@interface SwipeExampleViewController : UIViewController {
 CGPoint currentStartingPoint;
}

@end

Chapter 7

[233]

2.	 Next, open the SwipeExampleViewController.m implementation file located
within the Classes folder of your project so that we can start to use these within
our application. We need to locate the viewDidLoad method and add the following
highlighted code:

// Implement viewDidLoad to do additional setup after loading the
 view, typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
 self.view.backgroundColor=[UIColor blackColor];

}

3.	 Our next step is to create the touchesBegan:withEvent method and enter in the
following code:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 UITouch *touch = [touches anyObject];
 currentStartingPoint = [touch locationInView:self.view];
}

4.	 Next, we create the touchesMoved:withEvent method, which will be used to
handle the swipe and work out how far the user has travelled within the view to
make it validate that a swipe has taken place. Enter in the following code:

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
 UITouch *touch = [touches anyObject];
 CGPoint currentPosition = [touch locationInView:self.view];

 // Calculate how far the user's finger has moved both
horizontally
 and vertically from its starting position.
 CGFloat deltaX = fabsf(currentStartingPoint.x - currentPosition.
x);
 CGFloat deltaY = fabsf(currentStartingPoint.y - currentPosition.
y);

 // Check to see if we are currently doing a Horizontal Swipe
 if(deltaX >= minGestureLength && deltaY <= allowableVariance){
 // Horizontal Swipe detected, so set our background color to
Red
 // reset the background color to black after our delay of 3
 seconds have passed.
 self.view.backgroundColor = [UIColor redColor];
 [self performSelector:@selector(resetBackground) withObject:
nil
 afterDelay:delayFactor];
 }

Exploring the MultiTouch Interface

[234]

 // Check to see if we are currently doing a Vertical Swipe
 else if(deltaY >= minGestureLength && deltaX <=
allowableVariance){
 // Vertical Swipe Detected.
 self.view.backgroundColor=[UIColor blueColor];
 // [self performSelector:@selector(resetBackground)
 withObject:nil afterDelay:10];
 [self performSelector:@selector(resetBackground) withObject:
nil
 afterDelay:delayFactor];
 }
}

// Handles resetting the background
-(void)resetBackground
{
 self.view.backgroundColor=[UIColor blackColor];
}

We have finally made it and now we are ready to Compile, Build and Run our SwipeExample
application. The screenshot below shows the output when the application is run, and when
the user swipes in the horizontal direction and vertical direction:

Chapter 7

[235]

What just happened?
What we covered in this section were the steps involved to create our SwipeExample.
We define a number of variables that will be used to determine how far the user moved
within the view in order to be counted as a swipe. We declare the minimum gesture length
and an allowable variance variable range to be either five pixels above or below. We then
located and modified the viewDidLoad event method to set and initialize the background
color of the view to black when the application is loaded. Next, we declared a call to the
touchesBegan method to obtain the current starting point when the user first places their
finger or fingers onto the iOS screen and then declared an instance variable touch which
is used to grab the position of the location within the view and then calculate how far the
user's finger has moved since its last starting position.

We then determine if the swipe was a horizontal action or a vertical action and then set the
view background colors accordingly and implement a timer to reset the background back
to black by calling the resetBackground method after a number of seconds have passed,
which is handled by the afterDelay property.

The function fabsf() is from the standard C math library that returns the
absolute value of a float.

Have a go hero – adjust the delayFactor and change the background
I will let you put into practice what you have just learnt.

What we need to do here is modify our SwipeExample application to change the delay
factor before resetting the background. Instead of setting this back to black, we need to
allow it to cycle through a number of colors. One way to do this would be as follows:

1.	 In the SwipeExampleViewController.h interface file, change the delayFactor
variable to another value. This can be anything that you like.

2.	 Locate the resetBackground method inside the
SwipeExampleViewController.m implementation file, and create a series of
self.view.backgroundColor statements, and set the background color for
each.

Once you have completed this task, Compile, Build and Run the application.

Exploring the MultiTouch Interface

[236]

Pop quiz – tracking and identifying swipes
1.	 In order to receive events of the UIEventTypeMotion, what event method must

the view or view-controller override?

a.	 motionEnded.

b.	 motionCancelled.

c.	 motionBegan.

d.	 All of the above

2.	 What is always the last responder in an iOS applications responder change?

a.	 UIResponder.

b.	 UIKit.

c.	 UIApplication.�

Detecting pinches
So far, we have looked at how we can detect when a user taps and swipes on the iPhone
device. There is still one more MultiTouch gesture that we need to cover, that being the
two-finger pinch. A pinch is basically when two fingers are placed on the iOS device and
then moved apart or brought closer together to simulate a zoom-in or zoom-out feature.
Apple uses this feature in many of its applications: Safari web browser, Maps, and resizing of
various images which you take with your iPhone camera or download from the internet.

Time for action – creating the PinchExample project
To learn a bit more about how we go about handling and setting up the pinch gesture, let's
proceed and create a View-based application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project that you want to create.

Chapter 7

[237]

8.	 Enter PinchExample and then click on the Next button to proceed to the next step in
the wizard. You will then be asked to choose a location where you would like to save
the project.

Once our project has been created, you will be presented with the Xcode interface, along
with the project files that the template has created for you within the Project Navigator
Window. We are now ready to start implementing the code that will be used to detect and
handle when a pinch has occurred, by following these simple steps:

1.	 Open the PinchExampleViewController.h interface file, located within the
Classes folder of your project and add the following code:

#import <UIKit/UIKit.h>

@interface PinchExampleViewController : UIViewController {
 UIView *ourBox;

}

@end

2.	 Next, open the PinchExampleViewController.m implementation file, located
within the Classes folder of your project and add the following code:

// Implement viewDidLoad to do additional setup after loading
 the view, typically from a nib.

- (void)viewDidLoad {

 [super viewDidLoad];

 // initialise and create our Box
 float boxSize = 100.0;
 CGRect ourBoxRect = CGRectMake(100,150,boxSize,boxSize);
 ourBox = [[UIView alloc] initWithFrame:ourBoxRect];
 ourBox.backgroundColor = [UIColor greenColor];

 // we need to tell our object that we want to be able to

 handle multiple touches
 ourBox.multipleTouchEnabled = YES;

 // initialise our view background color and then add the box

 to the view.
 self.view.backgroundColor = [UIColor blackColor];
 [self.view addSubview:ourBox];
}

Exploring the MultiTouch Interface

[238]

3.	 Next, we need to create the distanceBetweenPoints method within the
PinchExampleViewController.m implementation file and add the following
code:

// Calculate the distance between the two points
CGFloat distanceBetweenPoints(CGPoint pt1, CGPoint pt2) {
 CGFloat distance;
 CGFloat xDifferenceSquared = pow(pt1.x - pt2.x, 2);
 CGFloat yDifferenceSquared = pow(pt1.y - pt2.y, 2);
 distance = sqrt(xDifferenceSquared + yDifferenceSquared);
 return distance;
}

4.	 Next, create the transformWithScale method within the
PinchExampleViewController.m implementation file and add the following
code:

CGAffineTransform transformWithScale(CGAffineTransform
 oldTransform, UITouch *touch1, UITouch *touch2) {

 CGPoint touch1Location = [touch1 locationInView:nil];
 CGPoint touch1PreviousLocation = [touch1

 previousLocationInView:nil];
 CGPoint touch2Location = [touch2 locationInView:nil];
 CGPoint touch2PreviousLocation = [touch2

 previousLocationInView:nil];

 // Get distance between points
 CGFloat distance =

 distanceBetweenPoints(touch1Location,touch2Location);
 CGFloat prevDistance =

 distanceBetweenPoints(touch1PreviousLocation,
 touch2PreviousLocation);

 // Figure out the new scale ratio
 CGFloat scaleRatio = distance / prevDistance;
 CGAffineTransform newTransform =

 CGAffineTransformScale(oldTransform, scaleRatio, scaleRatio);

 // Return result
 return newTransform;
}

Chapter 7

[239]

5.	 Next, create the transformWithRotation method within the
PinchExampleViewController.m implementation file and add the
following code:

CGAffineTransform transformWithRotation(CGAffineTransform
 oldTransform, UITouch *touch, UIView *view, id superview) {

 CGPoint pt1 = [touch locationInView:superview];
 CGPoint pt2 = [touch previousLocationInView:superview];
 CGPoint center = view.center;
 CGFloat angle1 = atan2(center.y - pt2.y, center.x - pt2.x);
 CGFloat angle2 = atan2(center.y - pt1.y, center.x - pt1.x);

 CGAffineTransform newTransform =

 CGAffineTransformRotate(oldTransform, angle2-angle1);

 // Return result
 return newTransform;
}

6.	 Next, create the touchesMoved method within the
PinchExampleViewController.m implementation file and add the following
highlighted code:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent
*)event {

 if ([[event touchesForView:ourBox] count] == 1)
 {
 UITouch *touch = [[[event touchesForView:ourBox]

 allObjects] objectAtIndex:0];
 ourBox.transform =

 transformWithRotation(ourBox.transform,touch,ourBox,self.view);
 }

 if ([[event touchesForView:ourBox] count] == 2)
 {
 UITouch *touch1 = [[[event touchesForView:ourBox]

 allObjects] objectAtIndex:0];
 UITouch *touch2 = [[[event touchesForView:ourBox]

 allObjects] objectAtIndex:1];
 ourBox.transform = transformWithScale(ourBox.transform,

 touch1, touch2);
 }
}

Exploring the MultiTouch Interface

[240]

7.	 Our final step is to release the memory used by our view controller objects which
we declared in our PinchExampleViewController.h interface file. Add the
following highlighted code as shown below to your dealloc method:

- (void)dealloc {
 [ourBox release];

 [super dealloc];
}

We have finally made it and now we are ready to Compile, Build and Run our PinchExample
application. The screenshot below shows the output when the application is run, and when
the user resizes the image.

So there you have it; by using the Core Graphics library and implementing some methods,
you can make your application incorporate the ability to support MultiTouch features.

To resize the image from within the iPhone Simulator, hold down the Control
+ Option buttons and then use your mouse to stretch the image.

Chapter 7

[241]

What just happened?
What we covered in this section were the steps involved in creating our SwipeExample.
We declared an instance UIView variable ourBox which will be eventually placed in our
view. Next, we declared an instance CGRect variable ourBoxRect which is used to define our
rectangle. We then allocated the memory for our box, set the background color and then set
this up to handle and use multitouch events. We then proceeded to set the background color
of our view and then added our box as a subview to the current view controller.

The algorithm to calculate distance between two points is made freely available
on the Wikipedia website at the following location: http://en.wikipedia.
org/wiki/Distance.

After adding the box to the view, we need to determine the touch locations of the two
points. We make use of our distanceBetweenPoints function to calculate the distance
of the previous location, and then work out the scale ratio portion of our box image that we
need to redraw back to the view. Next, we work out the touch location positions which are
derived from the UITouch class as well as determining the angle to which the object needs
to be rotated within the view. We use the CGAffineTransformRotate function which
is part of the Xcode CoreGraphics library to transform the object within the view. Next,
we need to determine if we are handling a single touch and if this is the case we just want
to call and rotate our box object within the view. However, if we have determined that we
are handling more than a single touch, we need to call our function to scale the image and
redraw it to the view, before finally releasing the memory used by the dealloc method.

Have a go hero – handling more than two fingers
I will let you put into practice what you have just learnt.

Our application needs to be modified to cater for more than two fingers being placed down
on the view at any given time. We need to incorporate into our application the ability for the
box to be moved around the screen while it is being rotated. One way to do this would be
as follows:

1.	 In the touchesMoved method, add another event type to check if the number of
touches are 3.

2.	 Declare another touch3 instance of the UITouch class.

3.	 Use the CGPoint class to determine the location of the two points and then
reposition the box object within the view.

Once you have that working, you will have a more user-friendly application which will allow
the user to resize, rotate, and move the object around the view.

Exploring the MultiTouch Interface

[242]

Pop quiz – pinches and transformations
1.	 When identifying pinches, how many instances of the UITouch method are

allowed?

a.	 one

b.	 three

c.	 two

2.	 What method allows you to Rotate an object?

a.	 CGAffineTransform.

b.	 transformWithRotation.

3.	 What method allows you to Scale your object?

a.	 CGAffineTransformScale.

b.	 transformWithScale.

Detecting shakes
When the iPhone device is shaken, the system makes use of the accelerometer and then
interprets the accelerometer data to see if it is a shake instruction.

If this has been determined to be a shake gesture, the system creates a UIEvent object
which represents this gesture and then sends the object to the currently active application
for processing.

Using the shake gesture on the iPhone is a lot simpler to use than touch events. Events
are still generated when a motion starts or stops and it is even possible for you to track
individual motions as you would do with touch events.

In order to make your applications incorporate and handle the iOS shake gesture, this can be
easily accomplished by implementing the following three methods as shown in the
table below:

METHOD DESCRIPTION

motionBegan:motion:withEvent: This method is called when a motion event begins.

motionEnded:motion:withEvent: This method is called when a motion event has
ended.

motionCancelled:motion:
withEvent:

This method is called if the system thinks that the
motion is not a shake. Shakes are determined to
be approximately a second or so in length.

Chapter 7

[243]

Motion events were first introduced in the iOS 3.0 SDK, with shaking
motions currently being interpreted as gestures which then move on
to become motion events.

Time for action – creating the ShakeExample project
To learn a bit more about how we go about handling and setting up the shake gesture, let's
proceed and create a View-based application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project which you want to create.

8.	 Enter ShakeExample and then click on the Next button to proceed to the next step
in the wizard. You will then be asked to choose a location where you would like to
save the project.

Once our project has been created, we will be presented with the Xcode interface, along
with the project files that the template has created for you within the Project Navigator
Window.

We are now ready to start implementing the code that will be used to detect when a shake
has occurred on the iOS device, by following these simple steps:

1.	 Next, open the ShakeExampleViewController.m implementation file, located
within the Classes folder of your project and add the following code as shown
below:

// Implement viewDidLoad to do additional setup after loading
the view, typically from a nib.

- (void)viewDidLoad {

 [super viewDidLoad];
 self.view.backgroundColor=[UIColor greenColor];

}

Exploring the MultiTouch Interface

[244]

2.	 Next, in order for our view or view controller to start receiving motion events of
the UIEventTypeMotion type, we need to make our view or view controller the
first responder in the UIResponder responder chain and this must override one or
more of the three UIResponder motion event methods which are shown below:

a.	 - (void)motionBegan:(UIEventSubtype)motion
withEvent:(UIEvent *)event

b.	 - (void)motionEnded:(UIEventSubtype)motion
withEvent:(UIEvent *)event

c.	 - (void)motionCancelled:(UIEventSubtype)motion
withEvent:(UIEvent *)event

For the purpose of this example, we will be just overriding the motionEnded:motion:
withEvent which will show an alert message when the shake gesture ends.

3.	 Next, we need to allow our view controller to support and start receiving motion
events. With the ShakeExampleViewController.m implementation file still open,
add the following code snippet above the viewDidAppear method:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

-(void)viewDidAppear:(BOOL)animated {

 [self becomeFirstResponder];
 [super viewDidAppear:animated];
}

What just happened
What we covered in this section were the steps involved in creating our ShakeExample. We
initialized our view background color to green in the viewDidLoad event to indicate that
no shake has occurred yet. Next, we needed to make our view controller the first responder
in the UIResponder responder chain by overriding the motionEnded:motion:withEvent
which will show an alert message when the shake gesture ends. Finally, we needed to add
a method inside the viewDidAppear method in the ShakeExampleViewController.
m implementation file to allow our view or view controller to be able to support the motion
events. If we don't include this, none of the motion events will fire and our application will
not behave as we have designed it to.

Chapter 7

[245]

Time for action – implementing the motionBegan, motionEnded,
and motionCancelled methods

We are now ready to start implementing the code that will be used to detect when a shake
has occurred on the iOS device. We will learn about the various motion methods and how to
implement these by following these simple steps:

1.	 To begin, open the ShakeExampleViewController.m implementation file,
located within the Classes folder of your project and add the following code:

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent
*)event {

 if (event.type == UIEventTypeMotion && event.subtype ==
UIEventSubtypeMotionShake)

 {
 self.view.backgroundColor=[UIColor yellowColor];
 NSLog(@"Device has been shaken");
 }
}

Next, we need to implement the code to handle when the motion has ended.
Unfortunately, it is not possible to track individual motions as you can do with touch
events.

2.	 Add the following code to our ShakeExampleViewController.m
implementation file:

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent
*)event {

 if (event.type == UIEventTypeMotion && event.subtype ==
UIEventSubtypeMotionShake)

 {
 // Declare an instance of our Alert View dialog
 UIAlertView *dialog;

 // Initialise our Alert View Window with options
 dialog =[[UIAlertView alloc] initWithTitle:@"Device has

been
 shaken" message:@"I was asleep, now i'm awake.
 Press OK to reset" delegate:self cancelButtonTitle:nil
 otherButtonTitles:@"OK",nil];

 // display our dialog and free the memory allocated by our

dialog
 box

 [dialog show];

Exploring the MultiTouch Interface

[246]

 [dialog release];
 }
}
// Responds to the options within our Alert View Dialog
-(void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:

(NSInteger)buttonIndex
{
 // String will be used to hold the text chosen for the button

 pressed.
 NSString *buttonTitle=[alertView buttonTitleAtIndex:

buttonIndex];
 if ([buttonTitle isEqualToString:@"OK"])
 {
 self.view.backgroundColor=[UIColor greenColor];
 NSLog(@"Device has stopped shaking");
 }
}

Next we need to implement the motionCancelled event. This event is called
when the system thinks that the type of motion is not a shake.

3.	 Add the following code to our ShakeExampleViewController.m implementation
file:

- (void)motionCancelled:(UIEventSubtype)motion
withEvent:(UIEvent *)event

{
 self.view.backgroundColor=[UIColor blackColor];
 NSLog(@"Device shake has been cancelled");
}

We have finally made it and now we are ready to Compile, Build and Run our ShakeExample
application. Given that you have typed in everything correctly, your code should compile
without any issues.

If all compiles well, your application should resemble something like what is shown in the
screenshot below showing the output when the device has been shaken and when it has
not. You will notice that where we have told our application to log those events, these
appear in the output window:

Chapter 7

[247]

So there you have it. In just a few simple steps, you can make your application shake-aware
and you can create some fantastic applications using this feature.

What just happened?
In this section, we looked into the various methods that we can use to detect when a motion
happens on the iOS device. We looked at how to implement the motionBegan method
and set the background color to yellow when the iOS device has detected that a shake has
occurred.

When the device determines that the motion has stopped, the motionEnded method is
called and that is where we can detect what type of event happened. In this case, we then
declare and instantiate our instance of the UIAlertView class and display a message to the
user, alerting them that the shake has ended.

The method motionCancelled is called if the system thinks that the motion is not a
shake. Shakes are determined to be approximately a second or so in length. It then calls the
motionEnded method and sets the background color of our view controller to black.

Exploring the MultiTouch Interface

[248]

Have a go hero – modifying the ShakeExample application
I will let you put into practice what you have just learnt.

What we need to do for this example is to expand and modify the message that comes up
when the device has been shaken to allow the user to choose from a number of options.
The first button will say Sleep, and the second one Awake. We want to be able to store the
chosen response value selected by the user and when Awake is pressed, we have a message
which says I was awake, now I am asleep, and vice-versa. One way to do this would be
as follows:

1.	 Modify the otherButtonTitles property in the UIAlertView in the
motionEnded method.

2.	 Add the Awake and Sleep button titles.

3.	 In the alertView:(UIAlertView) method, create separate if statements for
both scenarios.

4.	 Create another UIAlertView class variable in the above method with the
associated text.

5.	 Once you have done this, Compile, Build and Run your application.

Once you have that working, you will have a more user-friendly application which lets the
user choose between two different responses and have the associated text display.

Pop quiz – motion events
1.	 What are the three methods that need to be implemented for motion?

a.	motionBegan.

b.	motionDead.

c.	motionInitialise.

d.	motionCancelled.

e.	motionEnded.

2.	 You have implemented the motion methods, but when you run your application,
nothing happens. Why?

a.	motionBegan method has not been created.

b.	[self becomeFirstResponder] has not been added to the
viewDidLoad method.

c.	–(BOOL)canBecomeFirstResponder method has not been implemented
to re�����turn YES.

Chapter 7

[249]

Exploring the Accelerometer/Gyroscope
So far you have been focusing on how to detect when a user performs taps, swipes, pinches
and how to detect device shakes. We now move on to the really exciting stuff, not that what
you have already covered is not exciting, but the iPhone's accelerometer is much more
powerful than you think and is capable of giving you live data for all three dimensions
of the (x, y, and z) axes when the phone is tilted.

The iPhone's accelerometer data is delivered via the UIAccelerometer class and the
delegate accelerometer:didAccelerate method which provides you with the data for
each of the three axes, each being of UIAcceleration class. Each of the values returned
has a range between -1 and +1 with 0 being the middle centre point. When the device is
moved or tilted, these values increase or decrease.

The iPhone 4 adds another sensor: a three-axis gyroscope, and when combining
the gyroscope with the accelerometer, this gives the iPhone 4 six axes on
which it can operate and was designed to make the iPhone 4 more sensitive,
responsive, and powerful for gaming.

Understanding the Core Motion Framework
The Core Motion Framework is a system framework which obtains motion data from sensors
on the iPhone device. The application can then use these values. Handling of the sensor data
is handled within the Core Motion's own thread and it detects the motion events for the
accelerometer and the gyroscope (which is currently only available on the iPhone 4):

Exploring the MultiTouch Interface

[250]

The table below describes each of the components which make up the Core Motion
framework:

CORE MOTION CLASSES DESCRIPTION

CMMotionManager This class defines a manager class which encapsulates
measurements of motion data.

CMAccelerometerData This class records measurement of device acceleration
and gathers data from the accelerometer for each of its
three axes.

CMDeviceMotion This captures device-motion data from both the
Accelerometer and Gyroscope.

CMAttitude This is contained as part of the CMDeviceMotion
class and contains properties which give different
measurements of attitude, including the following: roll,
pitch, and yaw.

CMGyroData This class records the devices rate of rotation along its
three spatial axes from the gyroscope.

The iPhone Simulator does not support the Accelerometer and Gyroscope
features, so in the event that you want to run the examples shown in this
chapter, you will need to deploy them to your iPhone device.

Sensing orientation
In order to determine which way the iPhone device is facing, you can get this information by
using the UIDevice class and then using its orientation property.

By registering the UIDeviceOrientationDidChangeNotification notification method
of the UIDevice class, you are not only told when the iPhone has been rotated between the
Portrait and Landscape views, but also if the phone is in the facing up or facing down view.
We will be taking a look at these in more detail when we create our sample application for
this section.

Time for action – creating the OrientationExample project
We will now proceed with creating our OrientationExample project which will show how
to determine when the device orientation changes:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

Chapter 7

[251]

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family dropdown as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project which you want to create.

8.	 Enter OrientationExample and then click on the Next button to proceed to the next
step in the wizard. You will then be asked to choose a location where you would like
to save the project.

Once our project has been created, you will be presented with the Xcode interface, along
with the project files that the template created for you within the Project Navigator Window:

9..	 Open the OrientationExampleViewController.m implementation file, located
within the Classes folder of your project and locate the viewDidLoad method and
add the following code:

// Implement viewDidLoad to do additional setup after loading
the view, typically from a nib.

- (void)viewDidLoad {
 [[UIDevice

 currentDevice]beginGeneratingDeviceOrientationNotifications];

 [[NSNotificationCenter defaultCenter]

 addObserver:self selector:@selector(hasOrientationChanged:)
 name:@”UIDeviceOrientationDidChangeNotification”
 object:nil];

 [super viewDidLoad];
}

10.	 Next, we need to implement the method which will be responsible for handling
when changes in orientation have been detected. Add the following code:

- (void)hasOrientationChanged:(NSNotification *)notification {
 UIDeviceOrientation currentOrientation;
 currentOrientation = [[UIDevice currentDevice] orientation];

 switch (currentOrientation) {
 case UIDeviceOrientationFaceUp:
 self.view.backgroundColor = [UIColor brownColor];
 break;
 case UIDeviceOrientationFaceDown:

Exploring the MultiTouch Interface

[252]

 self.view.backgroundColor = [UIColor magentaColor];
 break;
 case UIDeviceOrientationPortrait:
 self.view.backgroundColor = [UIColor blueColor];
 break;
 case UIDeviceOrientationPortraitUpsideDown:
 self.view.backgroundColor = [UIColor greenColor];
 break;
 case UIDeviceOrientationLandscapeLeft:
 self.view.backgroundColor = [UIColor redColor];
 break;
 case UIDeviceOrientationLandscapeRight:
 self.view.backgroundColor = [UIColor purpleColor];
 break;
 default:
 // Handle cases where orientation fails
 self.view.backgroundColor = [UIColor blackColor];
 break;
 }
}

We have finally made it and now we are ready to Compile, Build and Run our
OrientationExample application. Given that you have typed in everything correctly, your
code should compile without any issues. Try changing the different views of orientation by
pressing the Command + Left Arrow and Command + Right arrow if you are running this
within the iPhone simulator:

Chapter 7

[253]

So there you have it; in just a few simple steps, you can make your applications determine
and respond to a device when its view orientation has changed.

What just happened?
What we covered in this section were the steps involved in to creating our
OrientationExample project. We began by telling our iPhone device to start generating
notifications for each of the changes in orientation and then set up an observer to the
UIDeviceOrientationDidChangeNotification notification class which is fired each
time the device changes its orientation. Next, we determine the current orientation that our
phone is in by using deriving this from the UIDeviceOrientation class. We then proceed
and determine what the current orientation is by using a case statement and then change
the background color of our view.

Have a go hero – modify the OrientationExample application
I will let you put into practice what you have just learnt.

Our application needs be modified slightly to allow it to only change the color when the
device is in Portrait and Landscape Left. One way to do this would be as follows:

1.	 Modify the hasOrientationChanged method in the
OrientationExampleViewController.m implementation file.

2.	 Comment out cases where they do not equal UIDeviceOrientationPortrait
and UIDeviceOrientationLandscape.

3.	 Once you have done this, Compile, Build and Run your application.

Once you have that working, you will have an application that provides interaction with the
user when the device is in Portrait and Landscape.

Pop quiz – sensing orientation
1.	 What class determines the current orientation of the iOS device?

a.	 UIDevice

b.	 UIOrientation

c.	 UIDeviceOrientation

2.	 What method needs to be initialized to allow for device orientation notifications?

a.	UIDeviceCurrentDevice

b.	beginGeneratingDeviceOrientationNotifications

Exploring the MultiTouch Interface

[254]

Detecting device tilting
In this example, we will be looking at how to derive the values from our Accelerometer and
Gyroscope and set the background color of our view as well as setting the background to
fade in and out from transparent to opaque when the device is tilted.

By using the Accelerometer and Gyroscope, you will be able to create some great
applications; from car games to flight simulators. You will have a reasonable amount of
understanding on how to go about implementing both of these in your own applications
after having gone through the next section.

Time for action – creating the AccelGyroExample project
We will now proceed with creating our AccelGyroExample project which will show how to
determine and handle the accelerometer and gyroscope features:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project which you want to create.

8.	 Enter AccelGyroExample and then click on the Next button to proceed to the next
step in the wizard. You will then be asked to choose a location where you would like
to save the project.

Once your project has been created, you will be presented with the Xcode interface, along
with the project files that the template created for you within the Project Navigator Window.

Before we can start using the Accelerometer and Gyroscope features of the iPhone, we need
to add an important framework to our project to enable us to use the accelerometer, so let’s
do that now by following these steps:

1.	 In the project navigator, select and highlight your project.

2.	 Select and click on your Target.

3.	 Select the Build Phases tab.

Chapter 7

[255]

4.	 Open the Link Binaries With Libraries expander.

5.	 Click the + button.

6.	 Select the CoreMotion.Framework framework from the list.

7.	 Click Add:

Now that you have added the CoreMotion.Framework into your project, you need to import
the code into the View Controller which will be responsible for handling the motion:

1.	 Open the AccelGyroExampleViewController.h implementation file, located
within the Classes folder of your project and add the following code. You will
notice that we have also included the CoreMotion/CoreMotion.h interface file
so that we can make use of the methods that this class contains:

#import <UIKit/UIKit.h>
#import <CoreMotion/CoreMotion.h>

@interface AccelGyroExampleViewController : UIViewController
<UIAccelerometerDelegate>{

 CMMotionManager *motionManager;
}

@property (nonatomic, retain) CMMotionManager *motionManager;

@end

Exploring the MultiTouch Interface

[256]

2.	 Next, we need to create a property object which will enable us to
reference the instance variable motionManager from within our
AccelGyroExampleViewController.m implementation file:

#import “AccelGyroExampleViewController.h”

@implementation AccelGyroExampleViewController

@synthesize motionManager;

3.	 Next, open the AccelGyroExampleViewController.m implementation file,
located within the Classes folder of your project and add the following code as
shown in the code snippet below:

// Handle processing of the Accelerometer
-(void)handleAcceleration:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration
{
 UIAccelerationValue xAxes;
 UIAccelerationValue yAxes;
 UIAccelerationValue zAxes;

 xAxes = acceleration.x;
 yAxes = acceleration.y;
 zAxes = acceleration.z;

 if (xAxes > 0.5) { // Check to see if we are Moving Right
 self.view.backgroundColor = [UIColor purpleColor];
 } else if (xAxes < -0.5) { // Check to see if we are Moving Left
 self.view.backgroundColor = [UIColor redColor];
 } else if (yAxes > 0.5) { // Check to see if we are Upside
Down.
 self.view.backgroundColor = [UIColor yellowColor];
 } else if (yAxes < -0.5) { // Check to see if we are Standing
Up.
 self.view.backgroundColor = [UIColor blueColor];
 } else if (zAxes > 0.5) { // Check to see if we are Facing Up.
 self.view.backgroundColor = [UIColor magentaColor];
 } else if (zAxes < -0.5) { // Check to see if we are Facing
Down.
 self.view.backgroundColor = [UIColor greenColor];
 }
 double value = fabs(xAxes);
 if (value > 1.0) { value = 1.0;}
 self.view.alpha = value;
}
// Handles rotation of the Gyroscope
- (void)doGyroRotation:(CMRotationRate)rotation {
 double value =

Chapter 7

[257]

 (fabs(rotation.x)+fabs(rotation.y)+fabs(rotation.z))/8.0;
 if (value > 1.0) { value = 1.0;}
 self.view.alpha = value;
}

4.	 Next, open the AccelGyroExampleViewController.m implementation file,
located within the Classes folder of your project and locate the viewDidLoad
method and add the following code:

// Checks to see if Gyroscope is available on the device
- (BOOL) isGyroscopeAvailable
{
#ifdef __IPHONE_4_0
 CMMotionManager *gyroManager = [[CMMotionManager alloc] init];
 gyroManager.gyroUpdateInterval = 1.0/60.0;
 BOOL gyroAvailable = gyroManager.gyroAvailable;
 [gyroManager release];
 return gyroAvailable;
#else
 return NO;
#endif
}

5.	 We now need to add some code to our viewDidLoad method. With the
AccelGyroExampleViewController.m still open, locate the viewDidLoad and
add the following code:

- (void)viewDidLoad {
 // Set up our accelerometer interval and delegate
 UIAccelerometer *accelerometer =[UIAccelerometer
 sharedAccelerometer];
 accelerometer.updateInterval = 0.5;
 accelerometer.delegate = self;

 // Check to see if the device supports the Gyroscope feature
 if ([self isGyroscopeAvailable] == YES) {
 motionManager = [[CMMotionManager alloc] init];
 [motionManager
 startGyroUpdatesToQueue:[NSOperationQueue currentQueue]
 withHandler:^(CMGyroData *gyroData, NSError *error)
 {
 [self doGyroRotation:gyroData.rotationRate];
 }];
 }
 else { // Device does not support the gyroscope feature

Exploring the MultiTouch Interface

[258]

 NSLog(@”No Gyroscope detected. Upgrade to an iPhone 4.”);
 [motionManager release];
 }
 self.view.backgroundColor = [UIColor magentaColor];
 [super viewDidLoad];
}

6..	 Our final step is to release the memory used by our view controller objects which
we declared in our AccelGyroExampleViewController.h interface file, located
within the Classes folder of your project. Add the following highlighted code as
shown in the code snippet below to your dealloc method:

- (void)dealloc {
 [motionManager release];

 [super dealloc];
}

7.	 We have finally made it to the end of the chapter and now we are ready to Compile,
Build and Run our AccelGyroExample application.

Since the iOS Simulator does not support the accelerometer and Gyroscope
features, you will need to deploy this example to your iPhone device in order
to see this working.

The screenshot below shows how the iPhone responds to changes on its three axes when
the iPhone is tilted. Under normal gravity, each of these values will be between -1 and +1
with a value of 0 being the middle centre point. Moving the phone in a rapid motion will
increase these values:

Chapter 7

[259]

What just happened?
What we have done in this section is implement the UIAccelerometerDelegate
protocol so that we can use this within our AccelGyroExampleViewController.
m implementation file. We then declare an instance CMMotionManager variable
motionManager which will enable us to use the accelerometer and gyroscope
features. We then need to synthesize our property which we declared within our
AccelGyroExampleViewController.h interface file. If we don’t declare this, we will
receive warning error messages which can cause unexpected application errors. We have
also mentioned this in previous chapters as this is common practice to release the memory
used by these objects once you have finished using them.

Next, we declare our methods which will handle the accelerometer and the gyroscope
features. In the first part, we declare a delegate to the UIAccelerometer class, and then
derive the values for the x, y, and z axes, which will be used to determine the current
device orientation; then we set the background color accordingly. As a final step, we set
the background alpha property from transparent to opaque depending on whether the
value is within the range 0.0 to 1.0, where 0.0 represents totally transparent, and 1.0
represents opaque.

When you set the alpha property of a view, it only affects the current view and
does not affect any of its embedded subviews. The fabs function is a C/C++
library function which returns the absolute value of X.

In our next step, we determine by using the #Ifdef __IPHONE_4_0 directive if the device
currently in use is an iPhone 4. If this is the case, it then checks to see if the device supports
the gyroscope feature and a Boolean status YES is returned; otherwise NO is returned.

Next, we set up our UIAccelerometer delegate and update the interval to be twice per
second in order to request updates. We then make a call to our isGyroscopeAvailable
function to check to see if the gyroscope feature is supported. We then set up a call to the
startGyroUpdatesToQueue function and add a handler to call our doGryroRotation
function which then updates the alpha blend color of our view. If no gyroscope feature is
supported, this is logged out to the debug window.

To start receiving and handling rotation-rate data for the gyroscope feature, you
need to create an instance of the CMMotionManager class and call one of the
following methods to it.

Exploring the MultiTouch Interface

[260]

The following table explains each of the method calls relating to the CMMotionManager
class:

CMMotionManager Methods DESCRIPTION

startGyroUpdates When this method is called, Core Motion kicks in and
continuously updates the gyroData property of the
CMMotionManager class with the latest measurement
of activity.

startGyroUpdatesToQueue:
withHandler

Before calling this method, you need to ensure that you
have set the update interval of the gyroUpdateInterval
property.

When this method is called, it creates an
NSOperationQueue event which queues the
gyroscope event which then fires when the update
interval has been reached, then calls the function and
passes it the latest gyroscope data.

stopGyroUpdates This method turns off the core motion sensors and stops
all updates of motion data. It is a good idea to always stop
gyro updates as this will save battery power.

Summary
In this chapter, we learned about the MultiTouch Architecture and how to go about detecting
taps, swipes, pinching and device shaking and tilting. We also looked into one of the new
features which come as part of the iPhone 4, that being the Gyroscope feature.

Now that we have learned about the various ways in which we can handle and respond to
device Multi-Touch features, we are ready to learn how to debug projects and explore the
new debugging feature improvements and code analysis to help you eliminate bugs within
your applications.

In the next chapter, we will be taking a look into how to go about Debugging your Xcode
Projects, and taking a look at the new and improved debugger, as well as learning how to go
about creating a new debugging project. We will also look at how we can use Fix-It to correct
syntax errors and code as you type. We will also learn about breakpoints, and how to define
schemes within your project workspace, as well as using static analysis to show code flow.

8
Debugging Xcode Projects

In this chapter, we will look at how we go about debugging our projects
through the use of the various debugging tools that Xcode provides.

We will look at the following methods to debug code:

Fix-it, which corrects code as you type and provides you with some
great coding alternatives

Static Analysis, which shows you potential coding errors, that is,
memory leaks and dead or unreachable code

In this chapter, we will be covering the following topics:

Introducing the new and improved debugger

Creating, running, and debugging projects

Setting up project schemes using the Scheme Editor

Navigating through threads and stacks within the Debugger

Finding potential coding errors by using Fix-it and the Static Analyzer

We have got quite a bit to cover, so let's get started.

Introducing the new and improved Debugger
The Xcode Debugger is a collection of sophisticated tools that allows you to monitor your
application as it runs, and provides you with information about the current state of the
program line by line.















Debugging Xcode Projects

[262]

This has been fully integrated into the Xcode 4 workspace environment and any errors or
issues will be automatically displayed within the Project Navigator. Through effectively using
the Debugger, it will give insights into how your code is performing and, most importantly,
helpful pointers to where it may be going wrong.

The following screenshot shows the various parts of the Xcode Debugger:

The Xcode Debugger contains a console pane, which is used to log output messages as well
as variables, and a register pane, which can display the values of variables on the stack, as
well as the methods.

The Xcode Debugger window consists of the following parts; these are explained in greater
detail in the following sections.

Debugger toolbar
The Debugger toolbar consists of a number of items for you to be able to step into your
code line by line to determine where an error has occurred. This also enables you to check
the value of a particular variable to ensure that it is being assigned a value correctly. These
options become available when your execution stops at a breakpoint within your code.

Chapter 8

[263]

The screenshot below displays the debugging toolbar which becomes available when your
project is in debugging mode:

Stack trace panel
The Stack Panel window enables you to look at each file running within the stack. This view is
particularly useful if your code stops at a breakpoint, and you want to see a list of all threads
that were running up to the point the program halted.

The screenshot below displays the stack trace panel toolbar, displaying all of the associated
threads that your application is running when a breakpoint has been encountered within
your code:

Disassembly view
The Disassembly window enables you to trace through a stack dump within your program
logic to determine where the crash occurred. You are also able to examine program variables
and registers of all files within your project.

Debugging Xcode Projects

[264]

The screenshot below displays the Xcode Disassembly view whenever your program causes a
crash, due to a piece of faulty code that has been detected within your code:

Code Editor window
The Code Editor window shown below is where you start to provide the instructions to build
your application. This editor is where you can navigate to other files within your workspace,
as well as enabling you to debug your projects:

Chapter 8

[265]

Console output window
The console output window as shown below displays all compiler messages as well as any
messages logged using the NSLog function:

You can specify the type of output the console displays by using the pop up menu in the
top-left corner of the console pane. The descriptions of each of these types are given below:

CONSOLE OUTPUT TYPES DESCRIPTION

All Output Displays both Target and Debugger Output. This is the default
view for this window.

Debugger Output Only displays output information relating to the Debugger.

Target Output Only displays output information relating to the Target.

The following screenshot displays a list of all the variables and registers that are currently
used by your application:

Debugging Xcode Projects

[266]

You are able to specify which items you would like to display by using the pop up menu item
within the variables pane. A description of each of these types is given below:

VARIABLES PANE TYPES DESCRIPTION

Auto Displays a listing of all recently accessed variables.

Local Displays only locally accessible variables.

All Displays both Variables and Registers. This is the default view for
this window.

The default setting for both of these views is All or All Output. Don't worry; we will be using
these when we start to debug our sample application in the section Running and Debugging
the Project.

Creating a new debugging project
Before you can start to use the Debugger, you will need to create an application to debug.
We will create a small simple application, which will highlight this. The program will set the
background color of the view to red and display some text in the console view window.

Time for action – creating the DebuggingExample project
Before we can proceed, we first need to create the DebuggingExample project. ����������� To refresh
your memory, you can refer to the section Creating your first iPhone application which we
covered in Chapter 2, Introducing the Xcode 4 Workspace:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project, or File | New Project.

3.	 You will be prompted to choose a project type and template.

4.	 From the Project Template Dialog, select the View-based Application project type.

5.	 Ensure that you have selected iPhone from the Device Family drop-down as the type
of View to create.

6.	 Click on the Next button to proceed to the next step.

7.	 Specify a name for the project that you want to create.

8.	 Enter DebuggingExample and then click on the Next button to proceed to the next
step in the wizard. You will then be asked to choose a location where you would like
to save the project.

Chapter 8

[267]

Once our project has been created, you will be presented with the Xcode interface, along
with the project files that the template created for you within the Project Navigator window.

We now need to implement the code, which will be used to set the background color of our
view, as well as being able to log messages out to the Debugger console window:

1.	 Next, open the DebuggingExampleViewController.m implementation file.

2.	 Then scroll down and locate the viewDidLoad method, and enter the following
code snippet:

// Implement viewDidLoad to do additional setup after loading
// the view, typically from a nib.
- (void)viewDidLoad
{
 [super viewDidLoad];

 NSLog(@"Hello, welcome to XCode 4!");

 int x = 42;
 float y = 150.00;
 NSLog(@"Value of x = %i, Value of y = %f", x, y);

 self.view.backgroundColor = [UIColor redColor];
 NSLog(@"Value of 100 divided by 0 = %i", (100 / 0));
}

What just happened?
In the above section, we looked at the steps involved in creating our Debugging example
project. We then inserted some code in our viewDidLoad method and declared two
variables int and float and assigned each a value, before logging messages and the values
of these variables out to our Debugger Console Output window using the NSLog method.

We then proceeded to set the background color of our view to be red using the UIColor
class, before finally logging the value of what 100 divided by 0 is (which as we know will give
us a runtime error). In the next part, we will look at how we are able to Build and Run
our application.

Debugging Xcode Projects

[268]

Running and debugging the project
Now you are ready to Build and Run your application. Click on the Run button within the
Xcode 4 IDE, or select the Product | Run DebuggingExample.

You will notice that when you build the application, there is an immediate problem and the
build fails. The following screenshot shows the Build Log results tab with the resultant error,
as well as the line of code that the compiler has found to be causing the problem:

For more information on the Debugger, refer to the Apple Developer Documentation at:
http://developer.apple.com/library/mac/#documentation/toolslanguages/
conceptual/xcode4userguide/debugging/debugging.html.

Handling errors
No software application is ever perfect. There will be times when you will need to revisit
the code to correct a coding problem, or to change the way the code is performing due to a
change in user requirements. Xcode provides you with the tools to make your life easier, and
prevent coding issues from happening. There are three common forms of error, which we
will see in the following sections.

Chapter 8

[269]

Runtime errors
These types of error cause your program to stop executing. It can be caused by an unhandled
exception due to an out of memory issue, or if you are writing some data to a database, you
may have exceeded the allowable size that the field can handle.

In most cases, you will receive an error message, but in some cases your application will
likely crash or hang.

Syntax errors
These types of errors are the most obvious, simply because your program will not compile
(and therefore won't run) until all of them are fixed. Generally, syntax errors come from
typographical errors.

The Objective-C compiler in Xcode is case-sensitive, which means that UIcolor and UIColor
are treated differently. For example, in Objective-C, the compiler can understand the following:

self.view.backgroundColor = [UIColor redColor];

But if you type in:

self.view.backgroundColor = [UIColor redcolor];

The compiler will call it a syntax error, because you've specified language-specific (syntax)
that it can't recognize. Whilst this may be a small error to you, it is phenomenal to the
computer. Even forgetting the semicolon at the end of that line would give you a syntax
error. Syntax errors are very easy to identify, since the compiler recognizes them on its own.

Logic errors
These types of errors occur when you have created a piece of code logic which is not
performing correctly and producing the correct results. It is worth mentioning here, that the
program will do what you tell it to do, the classic catch phrase, Garbage-In-Garbage-Out (GIGO).

A classic example of a logic error would be when you are dividing a value by zero, but not
checking to see if the denominator is zero first. During the building phase of your project,
Xcode will bring your attention to this error, but will still go ahead and build and run
the application:

Debugging Xcode Projects

[270]

As you can see from the previous screenshot, Xcode has cleverly detected that the piece of
code within the NSLog statement can potentially cause your application to stop executing
and crash your application. A better approach would be to store these values in separate
variables and check to see if the value is greater than zero prior to executing the statement.

Using Fix-it to correct code as you type
When your target is set to use the LLVM compiler, a new feature called Fix-it scans your
source code as you type. Fix-it marks syntax errors and misspelt words with a red line at the
position where the error was located and a red exclamation mark symbol is placed within the
gutter area of your project workspace.

Time for action – setting up the LLVM compiler
To set up your project to use the LLVM Compiler, you will need to adjust the settings for your
project workspace by following these simple steps:

1.	 In the project navigator, select and highlight your project.

2.	 Select and click on your Target.

3.	 Select the Build Settings tab.

4.	 Scroll down to the C/C++ Compiler Version.

5.	 Select the LLVM compiler 2.0 option from the list.

The following screenshot shows you how to go about setting the project target to use the
LLVM 2.0 Compiler:

Chapter 8

[271]

Now that you have changed the default compiler to use the LLVM Compiler 2.0, your project
will start to use and compile all code using this new version.

Take for example, the following piece of code as shown in the screenshot below where we
are setting the background color of our view to red.

We have obviously mistakenly forgotten to add a semicolon to the end of our method and
the LLVM compiler has detected this for us and has provided us with some suggestions. To
accept one of the proposed changes given by the compiler, click on the item and watch your
code update automatically. Clicking on the symbols located in the gutter bar displays an error
message describing the possible syntax error and in some cases offers to repair this for you
automatically:

What just happened?
In the above section, we looked at the steps required to configure our project to use the
LLVM 2.0 Compiler. We also took a look at the use of Fix-it to correct coding pitfalls when
typing directly into the Xcode 4 IDE.

As you can see, Fix-it is a great tool for finding and fixing your code on-the-fly and is a great
companion to the rigorous testing performed by the static analyzer tool, which will walk
through thousands of potential code paths, looking for places where code, while perfectly
valid, could potentially cause unexpected results.

Some of the common programming pitfalls are due to allocating memory that is never
released, improperly constructed code loops, or case statements that have not properly
been assigned a default value, resulting in them never falling into a condition.

For more information on Fix-it, please refer to the Apple Developer
Documentation at: http://developer.apple.com/library/
mac/#documentation/toolslanguages/conceptual/
xcode4userguide/debugging/debugging.html.

Debugging Xcode Projects

[272]

Debugging with breakpoints
Although you can use the Debugger to pause execution of your program at any time and
view the state of the running code, it's usually helpful to set breakpoints before running
your executable so you can stop at known points and view the values of variables in your
source code.

A breakpoint is basically just an instruction in code that tells the application to "stop" when
the breakpoint is reached, and the execution of the program pauses, waiting for further
instructions as to what to do next. During this phase, you have the opportunity to either
inspect the current values of any of the properties, or step through the code.

Adding a breakpoint is easy and is done by following these simple steps:

1.	 Click within the grey gutter area to the left of the code editor using your mouse.

2.	 You will notice that a blue arrow appears at the line which you have selected:

Removing Breakpoints are a breeze too and can be done as follows:

1.	 Right-click on the breakpoint arrow.

2.	 Then select Delete Breakpoint from the list of options or simply drag it off from the
gutter area:

The Breakpoints menu includes a variety of other useful debugging options, which are
explained below:

Edit Breakpoint: Several options can be set for each breakpoint, such as setting the
number of times to pass through the breakpoint before it is triggered, or specifying
a conditional breakpoint.



Chapter 8

[273]

There is also an option of having it perform an action, such as logging a message to the
Debugger console window, or executing a shell command, or even playing a sound:

Disable Breakpoint: This sets the color of the breakpoint to more of a washed out
transparent blue. The breakpoint will still be displayed within the gutter bar, but will
no longer be active and your program will not stop at this location.

Reveal in Breakpoint Navigator: This will display a list of all breakpoints (with
this option set) within the Breakpoint Navigator pane. It displays the module
name, function, and line number at which the breakpoint occurs as shown in
the screenshot below:

Using NSLog to track changing properties
There are times when you want to place your own form of debugging into your projects.
These could be, for instance, to check on the status of a variable or to check why an event
is not firing inside your code. This is where the NSLog function comes in.

Any statements that you log using the NSLog function will be echoed out to the Xcode's
Debugger Console window, which appears when you build and run your application. The
console window can be displayed by pressing the Command + Shift + R key combinations.





Debugging Xcode Projects

[274]

The NSLog function takes an NSString argument that can optionally contain what are
called string format specifiers. The table below provides a list of some of these types:

STRING FORMAT SPECIFIER DESCRIPTION

%@ An Objective-C object using the description or
descriptionWithLocale : results.

%d Displays the result as a signed integer (32-bit).

%f Displays the result as a floating point value.

%c Displays the result as an unsigned character.

%s Displays the result as a null-terminated character string array.

%x Displays the result as an unsigned hexadecimal value.

The table above only lists the most commonly used string formats.
If you are interested in seeing the full list, you can access these at:
http://en.wikipedia.org/wiki/Printf.

The NSlog function takes a variable number of arguments which are inserted into the string
at the location of the specifiers, which is quite similar to the printf() function as found within
the Standard C library.

The string format specifier is basically displayed as a percent (%) symbol, which is then
followed by one or two characters indicating the type of the variable that will be displayed.

Consider the following code snippet below. It has been written using the C-Notation:

int x = 42;
float y = 150.00

printf("%s","Hello, welcome to XCode 4!");
NSLog(@"Hello, welcome to XCode 4!");
NSLog(@"Value of x = %i, Value of y = %f", x, y);

When you Build and Run the above code output, the text is logged out to the Xcode
Debugger output window as shown in the screenshot below:

Chapter 8

[275]

It is worth mentioning that the NSLog function is merely a means of logging output to the window
when you want to see if an event is being fired or the value of a variable. It is highly recommended
that prior to releasing your product for distribution, you remove or comment out all references made
to NSLog from within your project as this will end up writing out to the filesystem, and will take up
unnecessary space on the user iOS device.

Exploring the new Debugger
Given the flexibility of the Xcode Developer Tools you have come to expect, there are several
ways to use the debugging features within the Xcode development environment. You have
several ways in which you can debug your projects. These are listed below:

The Code Editor

The Debugger window

The Console view

Debugging features in the Code Editor
The debugging features only apply to the code editor within the Xcode development
workspace. If you set breakpoints in your code, you will see the Debugger toolbar when
your program stops at the breakpoint in your code. The screenshot below shows the
Debugger toolbar:

The Debugger toolbar is context-sensitive, which means that it will only be visible while you
are in the middle of debugging. When your debugging session completes, the normal Code
Editor Toolbar is restored. The buttons on the debugging toolbar enable you to:

Open or close the Debugger area window

Pause or resume execution of your code

Step over a method

Step into a method

Step out of the current method

See exception and other messages, such as the current method name and the
executing threads



















Debugging Xcode Projects

[276]

It is worth mentioning that if you hold down the Option or Option + Shift
buttons when clicking on the step over or step into controls, this will provide
you with different ways in which you can step through your code.

You can step through your code using the assembly language instructions view,
instead of by statements; or if you prefer, you can step directly into the currently
active thread.

The Activity Viewer/Progress window
We touched on this briefly in Chapter 2, Introducing the Xcode 4 workspace, so this section will
just be a refresher in case you may have forgotten. Basically, the Activity Viewer (or Progress
window) shows you the progress of tasks which are currently executing. These tasks may fall
along the lines of building your project, or you may be using the Static Analysis feature to
analyze your project for syntax or code errors.

The Activity Viewer can also show you any compiler warnings or syntax errors and any
information relating to project builds:

Defining a scheme for project builds using the Scheme Editor
Schemes are not new to Xcode 4; they have existed since the release of Xcode 3. In previous
releases of Xcode, you had to configure each of the items separately when setting an active
target, a build configuration, and an executable. This posed many issues as all of these were
linked to one another. This is where Schemes come in.

Schemes can be thought of as separate configurations, meaning that you can create
a scheme to specify which targets to build, what configuration build to use, and what
executable environment to use when the product specified by the target is launched.
This could be if you wanted to target a specific iOS version, or if you wanted to have the
application launch within the simulator.

Chapter 8

[277]

Time for action – using the Scheme Editor to define a Scheme
In Xcode 4, whenever you open an existing Xcode project, or create a new one, Xcode 4
automatically creates a default scheme for you. This scheme allows you to either test your
application within the iOS Simulator or have it deployed to an iOS device. Additional schemes
can be created, and in this section we will see how this can be done:

1.	 To select a scheme, you can use the Scheme popup menu, which is located in the
upper-left corner of the Xcode workspace:

2.	 In order to create a new scheme, choose the New Scheme… option. Alternatively, if
you wanted to edit the active scheme, you would choose the Edit Active Scheme…
menu option. These options are also available under the Product menu bar.

Each scheme can be set to do a specific task; for instance, you may have a scheme to do a
Debug build, and one to handle the Release or Distribution. Various types of build options
are available for building, testing, running, profiling (using instruments), and archiving
your products.

There is no limit on the number of schemes that you can define. However, only one scheme
can be active at a time.

3.	 Schemes can also be managed by choosing the Manage Schemes… option from the
popup menu, or similarly from the Product menu.

You can specify whether schemes should be stored per project, in which case it will be made
available to every workspace that includes that project; or be stored within the workspace
environment it's currently in.

Debugging Xcode Projects

[278]

The following screenshot shows you how you can go about customizing the active scheme:

You can specify the type of Build Configuration to use, the type of Debugger, and the
current working directory to use. You can also choose to have your product run at a
higher resolution. This enables you to simulate your application running at different
display resolutions.

What just happened?
In this section, we looked at how we are able to define and manage schemes in Xcode 4
using the Scheme Editor. We also looked at the ways in which we can use the Scheme
Editor to define a separate scheme for Debug, Release, and Distribution.

Viewing the Static Analysis results
There may be times when you want to examine the syntax of your code for bugs. This is
where the Static Analyzer comes in. It was first introduced in Xcode 3, which opened and
displayed the build results within a new window. Xcode 4 lets you perform the analysis,
examine the results, and apply the fixes to your source files all within the Xcode 4 workspace.

Chapter 8

[279]

Time for action – running the Static Analyzer
To run the Static Analyzer, follow these simple steps:

1.	 Select your project from the project Navigator.

2.	 From the Product menu, select Analyze or alternatively, hold down the Command + I
key combinations:

When the analyzer finishes checking your code for problems, the issues navigator opens
automatically showing you a list of issues that were found with your project as shown in the
following screenshot:

Clicking on an issue within this view will open the file in question, and display the problem
which has been marked with a blue triangle. Clicking on this triangle will display the faulty
flow of logic that has been identified and detected by the analyzer.

Debugging Xcode Projects

[280]

What just happened?
In this section, we looked at how we can use the Static Analyzer to validate our program to
ensure that it is free from problems and how we are able to use the Issues Navigator to jump
directly into the code file at the location where the faulty code that was causing the issue
was found.

Time for action – configuring your project to perform automatic
Static Analysis

Xcode offers you an option to automatically analyze your code whenever your project is
built. In this section, we will look at how we can configure our project by following these
simple steps.

To set up your project to use the Static Analyzer, you will need to adjust the settings for your
project workspace as shown below:

1.	 In the project navigator, select and highlight your project.

2.	 Select and click on your target.

3.	 Select the Build Settings tab.

4.	 Scroll down to the Run Static Analyzer.

5.	 Select the Yes option ������������������������������������� from the list. The default option is No.

Now that you have changed the default compiler to use the Static Analyzer, your project will
start to use this when you compile and build your application:

Chapter 8

[281]

You have successfully updated the build configuration for your project. Now when you build
your application, it will also run the Static Analyzer.

What just happened?
In this section, we looked at how we are able to configure a project to perform automatic
static analysis when the project is built, by following simple steps to modify the configuration
of the project build.

Time for action – Detecting a memory leak
Memory leaks are a very serious type of bug that the static analyzer can help you discover. As
you can see in the following screenshot, the analyzer has detected a potential memory leak
for the instance of NSString.

If your project does not release objects which have been declared from memory, you are
opening the doors to some serious issues which can affect your application, and make it run
out of memory very quickly which may result in your application crashing. We will take a look
at an example and add some code to our project to show you how memory leaks occur:

1.	 Firstly, open the file main.m located within the Supporting Files folder of your
project, and add the following code as shown in the snippet below:

// --
// Example: Potential Memory Leak
// --
void performMemoryleak()
{
 NSString *obj = [[NSString alloc] init];
 [obj doubleValue];

// Add this to prevent memory leaks.

 [obj release];

}

Debugging Xcode Projects

[282]

You will notice that when the Static Analyzer ran through our project, it picked up some
serious issues with the code which resulted in it flagging that a potential memory leak is
being performed. The blue arrows in the screenshot below show the program flow of the
object that is being allocated memory and it has been determined that the object has not
been freed:

What just happened?
In the above code example, we declared a variable object obj of type NSString and
allocated memory to this object. We then called the doubleValue method on this object,
before finally exiting the function. Since we are not using garbage collection to release this
object from the stack, it will result in a serious case of memory leakage.

Time for action – detecting an instance of an uninitialized
variable

Another type of common error made by developers is variables which have not been
initialized upon being declared. Fortunately, the Static Analyzer can also catch these types
of bugs.

To demonstrate how the Static Analyzer helps detect instances of uninitialized variables, we
will use the following code:

1.	 Open the file main.m located within the Supporting Files folder of
your project.

2.	 Enter the following piece of code as shown in the snippet below:

// --
// Example: Uninitialized Variable being declared
// --
int setReturnValue(int _varX)
{
 int number;

 if (_varX > 100)

Chapter 8

[283]

 {
 number = _varX * 2;
 }
 else if (_varX == 100)
 {
 number = _varX - 50;
 }
 return number;
}

In the following screenshot, you will notice that the static analyzer has flagged the variable
number as a potential error. This is due to the fact that the variable was uninitialized and is
returned with some random value. This is due to the fact that the number was not initialized
upon declaration.

If the if-else clause fails due to the value of _varX resulting in a negative value, the variable
number will remain unassigned, resulting in your application producing unexpected
random results.

You will also notice that the analyzer provides additional detail when you click on the
message bubbles and displays the control-flow (as shown by the blue arrows), and a set
of events that give a full diagnosis of the bug. Many of the issues that are reported by the
Static Analyzer tool have this information, and this makes analysis and fixing of these errors
much easier:

What just happened?
In the above section, we looked at how we can use the power of the Static Analyzer to detect
variables which have not yet been initialized within our application. We also looked at how
the static analyzer uses control-flows (highlighted by the blue arrows) to show the execution
path of your code. This helps prevent unexpected results from happening within code that
should execute, but doesn't.

Debugging Xcode Projects

[284]

Viewing the Issues Navigator
During the building of your application, the compiler checks your code to ensure that it is
syntactically correct and that no errors exist. However, if the compiler finds any problems
during the building of your project, the issues navigator window opens and displays all
potential errors and warnings that were found.

The issues navigator can be changed to show problems broken down By File or By Type.
If you select any of the errors or warning messages that are displayed within the list,
they will automatically display within the source code editor at the line where the error
was discovered.

The following screenshot displays potential errors that were found within the project. This
list can be broken down to display by File or By File Type:

Viewing the Program Build log
The Build log contains a history of all project builds that are contained within your project
workspace. This list contains all warnings and error messages that were found during each
stage of the project build process, and contains the date and timestamp. When you
select one of the project builds in the build log, the results are displayed within the
editor window area.

Double-clicking on a warning or error message will open the source file and jump to the line
containing the error. The build log window can display the results in a compact/normal view
(default) as shown in the screenshot below, or in a more verbose type (full build) form, as
shown in the second screenshot.

Chapter 8

[285]

The screenshot shown below displays the Build Log in Compact View. This view is more of a
condensed view, which unlike the verbose mode view, shows minimal information:

The screenshot below displays the Build Log in the verbose view, which provides us with a bit
more information about the types of errors we are receiving. It provides the module name,
line number(s), and the piece of code which is potentially causing the problem:

Debugging Xcode Projects

[286]

Understanding and using code completion
Code completion makes your development experience a lot easier by having Xcode
provide you with suggestions when you have entered enough letters for Xcode to make a
reasonable guess as to what you are intending to type and it will then display the suggestion
as dimmed text.

The following screenshot displays a list of inline suggestions for completing the symbol name
that is being entered, as well as a list of all its possibilities. If there is no common prefix, code
completion shows the dotted underline up to the next uppercase letter in the symbol:

Time for action – working with code completion
To accept the auto completion suggestion, follow these simple steps:

1.	 Press the Tab key and the code will be inserted just as if you had typed in the
whole thing.

2.	 Press Return to accept the entire auto completion suggestion. You will notice from
the screenshot below that Xcode is smart enough to work out what you intended to
type in. As soon as you get to a point in each line, it will display an autocompleted
version of the code:

Chapter 8

[287]

A Quick Help popup is also available from code completion, even when the Quick Help
inspector is not open. Hover over the code completion option you're interested in until a
question mark icon appears:

3.	 Click the question mark or use the Command + Shift + Control + ? keyboard short-cut
to display the Quick-Help for the method.

4.	 When you have finished, click on the Done button in the Quick Help popup to cancel
the operation:

5.	 Press the Tab key to accept only the sub-word or Return to accept the entire
suggestion. Xcode will even try to complete method names, variables that you have
declared, as well as anything else related to the project that it might recognize.

If you look at the example where we type in the CGRectMake method, Xcode displays an
auto completed version of the code as shown in the screenshot below:

6.	 Press Control + Space bar to toggle the completion suggestion on or off. That is,
if the inline suggestion and list are being displayed, pressing Control + Space bar
cancels the code completion operation. If there is no suggestion displayed, place
the cursor at the end of a partially typed symbol and press Control + Space bar to get
completion suggestions.

Debugging Xcode Projects

[288]

In Xcode 4, pressing the Esc key cancels the operation and pressing the Delete
key always deletes the preceding character.

What just happened?
In this section, we looked at how we can use the code completion features of the Xcode
4 IDE to enable developers to be more productive. The editor is intelligent enough to
somehow work out what the developer is trying to do and therefore provides a list of
suggestions for the developer to choose from.

Time for action – stopping Xcode from alerting you to problems
If for some reason you would like to stop Xcode from alerting you and correcting your code
for you, you can turn off this feature by following these simple steps:

1.	 Click on the Xcode menu item or alternatively, press the Command + , key.

2.	 Next, select the Preferences menu option.

3.	 Then click on the Text Editing Page.

4.	 Locate the Code Completion section.

5.	 Check or Uncheck the Suggest Completions while typing option.

The screenshot below shows the Xcode Preferences page and the Code Completion section
highlighted by a red rectangle to show how to turn this feature on/off:

Chapter 8

[289]

As you can see from the above screenshot, you can also stop Xcode from automatically
adding the closing brace. Various other options are also made available to hide or show line
numbers and code folding.

What just happened?
In this section, we looked at how we can configure the Xcode preferences to turn features on
and off and how we would like the IDE to alert the developer to problems. We also looked at
how we can turn code completion on and off, as well as looking at some of the other options
made available on this tab, for instance, displaying line numbers within the code editor and
code folding.

Navigating through threads and stacks in the Debugger
Whenever you pause execution of your code or the running code stops at a breakpoint
located within your code, Xcode opens the debug navigator window, and displays the
threads that were running when program execution halted.

Under each of the threads is the program stack at that point in the program execution.
Select a stack frame to see the corresponding source file in the source editor or
disassembled object code. At the bottom of the debug navigator window is a slider
control. This controls how much stack information the Threads and Stacks navigator
is to display within the window:

Debugging Xcode Projects

[290]

Located at the left end of the slider control is a feature to display only the top frame threads
of each stack. The option at the right end of the control bar shows all stack frames. The
button towards the last left of the slider control displays all active threads or only those
threads that have your code in them, as opposed to only including the system library code.

Have a go hero – Static Analyzer and debugging features
Now that you have a good working knowledge of the debugging features within
Xcode, your task will be to apply some breakpoints and use the static analyzer on your
GetUsersAttention example that we created in Chapter 6, Displaying notification messages:

1.	 Open Xcode 4 and load the GetUsersAttention example program.

2.	 Modify the scheme to ensure that the option to run the Static Analyzer has been set
when the application is run. You can refer to the section Configuring your project to
perform automatic Static Analysis located in this chapter.

3.	 Next, place a breakpoint in the function that handles the displaying of when the
activity indicator button is pressed. You can refer to the section Debugging with
Breakpoints located in this chapter.

4.	 Run the application and analyse the results of any errors or warnings reported by
the static analyser. You can refer to the section Viewing the Issues Navigator located
in this chapter.

5.	 Next, click on the button to display the activity indicator. When your application
stops at the breakpoint, use the step over and step into buttons. You can refer to the
section Debugging features in the Code Editor located in this chapter.

6.	 Familiarise yourself with the Stack Trace Panel, Disassembly View, and Variables
Pane to see what types of information are being displayed. You can refer to the
section Introducing the New and Improved Debugger located in this chapter.

7.	 Once you have familiarised yourself with the information that has been displayed,
click on the Resume button located within the debugging toolbar to resume
execution of the application. You can refer to the section Debugging features in the
Code Editor located in this chapter.

8.	 Close down the iOS simulator and return back to the Xcode IDE.

9.	 Remove all breakpoints that you have added to the code. You can refer to the
section Debugging with Breakpoints located in this chapter.

Once you have followed the above steps correctly, you would have successfully set up your
project to use the Static Analyzer, setting breakpoints within your code as well as using the
debugging features within the Xcode IDE.

Chapter 8

[291]

Pop quiz – all about debugging projects
1.	 What option within the Variables Pane allows you to display a list of all recently

accessed variables?

a.	 Local

b.	 Auto

c.	 All

2.	 What option in the Console Pane allows you to show information relating to
the Debugger?

a.	 All Output

b.	 Target Information

c.	 Target Output

3.	 What is the default view of the Variables and Console Pane?

a.	 Auto

b.	 Local

c.	 All

d.	 All Output

4.	 What is the purpose of the Issues Navigator?

a.	 Displays all flow issues

b.	 Displays a list of all issues found within your project

c.	 All of the above

5.	 What are the two ways in which you can run the Static Analyzer?

a.	 Select Analyze from the Product Menu

b.	 Press Command + A

c.	 Hold down the Command + I key

Debugging Xcode Projects

[292]

Summary
In this chapter, we learned how we go about debugging our projects through the use of
the various debugging tools that Xcode provides us. We looked at how we can use Fix-it to
correct code as we type, Static Analysis which showed us potential coding errors, that is,
Memory leaks, Dead code, or unreachable code, as well as using the Debugger to navigate
through threads and stacks within our project. You will see that by using these two great
companion tools, Fix-it and the static analyzer, you will ensure that your code is free from
bugs long before your users find them.

We have learned about the various debugging features that Xcode offers. We looked at how
we can go about detecting and preventing our application from giving unexpected errors.
We are now ready to move on to and learn about Source Code Management (SCM) with the
Version Editor.

In the next chapter, we will learn about the Source Code Management (SCM) features of
Xcode, by creating, configuring, and adding items to new and existing code repositories. We
will also talk about the Version Editor and how we are able to compare different versions of a
file side-by-side, all within the Xcode IDE.

We will also learn about the Track Blame feature of the version editor to check past check-ins
of files to see which person made the last revision, and finally we will learn how to use Git
and Subversion to manage multiple projects.

9
Source Code Management with the

Version Editor

In this chapter, we will focus on the new features of the Xcode Version Editor
that has been integrated directly within the Xcode 4 IDE and provides you
with an easy way to manage your source code. By using this tool, it allows
you to travel back through your revisions to compare previous changes made
throughout the life cycle of the file.

In this chapter, we will be covering the following topics:

Introducing the new Xcode Version Editor

Introduction to Subversion

Learning how to create and configure Repositories in Xcode

Learning how to add items into an existing Repository

Learning how to compare different versions of a file using the Version Editor

Learning how to use the Track Blame feature to check on past source code check-ins

Learning how to use both Subversion and Git to manage multiple projects

We have got quite a bit to cover, so let's get started.















Source Code Management with the Version Editor

[294]

Introducing the new Version Editor
The new Version editor in Xcode 4 makes it easy to see any two versions of your source
code, side by side, all within the IDE. By having the Version editor integrated directly into
the IDE development environment, it sets a different direction in the way we think of
source-control management.

The Version Editor provides you with a comparison view of each of your files within the
repository to what is stored locally via a timeline. Dragging the slider in the middle of this
timeline enables you to travel back in time through your project, thus comparing any two
versions of the same file.

The Version editor can also show you a detailed log of past events, and track blame for past
check-ins. You don't need to worry about anything else as all of the complex source code
management (SCM) commands are managed for you behind the scenes. It is even possible
to manage multiple projects within a single Xcode 4 workspace, one project managed in
Subversion, and the other in Git, with all being updated for you automatically.

In the screenshot on the following page, are displayed the contents of a local revision of
the file showing the piece of code that has been added, but has not yet been checked into
Source-Control:

Chapter 9

[295]

The next section of the image shown in the following screenshot shows the version of the
file that is within source-control being compared with a local version of the file. It also
displays the various options available to you when in this mode; that is, Comparison view,
Blame mode, and Log mode:

The Project Navigator contains badges, which are for SCM and pertain to Subversion and
repositories. If you need to refresh your memory on what these status codes mean, you
can refer to the section which we covered in Chapter 2, Introducing the Xcode 4 Workspace
under the section Listing files in a project.

Source Code Management with the Version Editor

[296]

Introducing Subversion
You may be asking yourself? What is Subversion? ��� Subversion is a version control system, that
handles keeping track of the changes made to a file and who made the changes. While the
use of version control is not limited to source code files (I could use version control to keep
track of the changes I make to the articles and book chapters I write), the primary users of
version control are software developers.

Version control is especially helpful on large projects with multiple developers. Each
developer can add code to a file, and the version control system records the code each
developer added along with their name. Even if you're working on a project by yourself,
version control can help you. If you've ever mistakenly saved a file and wished you could
go back to the way the file was before you saved it, you'll appreciate version control. With
version control, you can go back to an older version of a file.

You may have worked with and used other version control software such as Microsoft Visual
Source-Safe, Tortoise SVN, or ��� Concurrent Versions System (CVS)����������������������������� , which is a popular version
control system.

Apart from the ones mentioned above, the use of Subversion has several other
advantages too:

Subversion can handle the renaming of files.

Subversion can track the changes made to directories.

Subversion handles atomic commits. Atomic commits allow you to commit changes
in multiple files while making sure all the changes get committed.

Installing a local Subversion server
In this section, we are going to look at how we go about installing the server components
onto the same computer, as you will be using for development. In the real world, this will
not be the case as you will be connecting to another computer (so as to avoid an unexpected
system crash), which will be periodically backed up). But for the purposes of learning, this is
the easiest way.

Firstly, we will check the current version of Subversion that you currently have on your Mac
computer. This is to confirm that you are using the latest version of the software. Open a
Terminal window session and type svn –-version:

$ svn –-version

You should eventually see the following text appear on your screen:

svn, version 1.6.5 (r38866)

 compiled Jun 24 2010, 17:16:45







Chapter 9

[297]

Copyright (C) 2000-2009 CollabNet.

Subversion is open source software, see http://subversion.tigris.org/

This product includes software developed by CollabNet
 (http://www.Collab.Net/).

The following repository access (RA) modules are available:

* ra_neon : Module for accessing a repository via WebDAV protocol using
 Neon.

 - handles 'http' scheme

 - handles 'https' scheme

* ra_svn : Module for accessing a repository using the svn network
 protocol.

 - handles 'svn' scheme

* ra_local : Module for accessing a repository on local disk.

 - handles 'file' scheme

$

In the unlikely event that you don't happen to see the above displayed on your screen, you
will have to download and install the Subversion software onto your computer. You can
obtain the binary distributions from the following location http://subversion.apache.
org/packages.html and then choose the Mac OS X option from the top section of the
main page. From the list of available options, select openCollabNet, make your selection
between Universal Subversion 1.6.16 Binaries for Leopard (Mac OS X 10.5) or Universal
Subversion 1.6.16 Binaries for Snow Leopard (Mac OS X 10.6) depending on your system.
It is a requirement that before downloading either version, you will need to sign-up and
register your details. This process is completely free.

Creating a repository
Once you have installed the Subversion software, you will be able to create your repository.
We will be creating a single repository for this chapter and then look at how we can use
Xcode and Subversion and Git to manage multiple projects.

Before we start to look at how we create a repository, it is worthwhile to mention the types
of repositories that Subversion supports. Subversion enables you to create two types of
repositories: Local and Remote. These are explained in the table below:

Source Code Management with the Version Editor

[298]

REPOSITORY TYPES DESCRIPTION

Local Repositories These types of repositories reside on your computer and will only be used
by you.

Remote repositories These allow other people to access the repository and check out the files
in the repository from their computers.

Subversion is a complex, powerful, and sophisticated product that you can configure and
use in many ways. We will be covering the essential areas of Subversion to get you started. If
you want to learn more about Subversion, I would thoroughly recommend reading the free
online book Version Control with Subversion that can be accessed at http://svnbook.
red-bean.com/.

Even though Subversion is included with the installation of Xcode 4, it is possible to install
a local version of Subversion manually. In the next section, we will look at how this can
be done.

In this chapter, we will be covering local repositories. Apple
provides documentation on their developer site that shows you
how to set up remote Subversion repositories at the following
location http://developer.apple.com/.

Time for action – setting up a local Subversion repository
In this section, we will be looking at how we can use the command line to set up a
Subversion repository. We will now start to create a repository, that will be used to house
our project revisions:

1.	 In your documents folder, create two folders: Master_Projects and Working_Copy
by following the commands below:

cd ~/Documents

mkdir –p Repositories/Master_Projects

mkdir –p Repositories/Working_Copy

2.	 Next, we will use one of the examples from a previous chapter. Locate the project
TapExample from Chapter 7, Exploring the MultiTouch Interface and copy it to the
Master_Projects folder.

3.	 Open the Terminal utility application using Shift + Command + U. At the command
prompt, type in the following command to create a subversion repository:

svnadmin create ~/Documents/Repositories/svn

Chapter 9

[299]

4.	 Our next step is to use the verify command to ensure that our command which we
executed above has successfully created our Subversion repository to house our
projects. At the command prompt, enter in the following command:

	 svnadmin verify ~/Documents/Repositories/svn

* Verified revision 0.

Notice that when you run the above command, it displays revision 0. This is because we
have not created any revisions or imported any content.

When creating Subversion repositories, it is common to create three top-
level folders, called branches, tags, and trunk, below the repository name.
The trunk folder holds the main folder structure, while the branches and
tags hold the information that is contained within your revision history
that you assign to specific folders within a revision by giving them friendly
easy to identify names.

What just happened?
In this section, we looked at how to manually create the Subversion repositories using
the command line tool svnadmin. We then verified to ensure that our repository got
created. In the next section, we will look at how we can use Xcode to configure our
subversion repository.

This folder structure, that we just created, contains the configuration files that are required
for the repository and the database files that are used by the Subversion server to manage
and handle the project revisions.

Source Code Management with the Version Editor

[300]

Never make changes directly into this folder. This could corrupt the
database that holds all of your code history and there is no way to
get this back. It is best to leave this up to Subversion and Xcode to
automatically handle for you.

Configuring the repository in Xcode
In this section, we will look at the necessary steps into what is involved with setting up and
configuring a source code repository using Subversion within Xcode 4. We will be creating
the necessary branches for each section to ensure that it has been configured correctly.

Time for action – configuring the Subversion repository
Now that you have successfully created a Subversion repository, it is time for us to add our
project to source code management:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Select Organizer from the Window menu or press Shift + Command + 2.

3.	 Click on the Add (+) button and then select Add Repository… to create a new
repository. This will bring up the Add a Repository dialog window from where you
specify the name of the repository configuration that you would like to create.

4.	 Enter in a suitable name for the repository. I have chosen GS SVN Repository.

5.	 In the Location box, type the location of the repository, which we created
previously. This will need to be in URI format, which is the folder location.
Enter in: file:///users/stevendaniel/documents/repositories/svn.

6.	 Make sure that you select Subversion as the type of repository to set up.

Chapter 9

[301]

7.	 Click Next once you have filled in all of the fields:

One thing that you will notice when filling in the location field, is that a green light is
displayed. What Xcode is doing is testing the configuration to ensure that it can connect
properly to the repository and confirms that you have a valid connection.

Source Code Management with the Version Editor

[302]

Our next step is to add the branches, tags, and trunk folders. However, since we are
creating a Subversion repository, this is not a mandatory step to add a project to a
Subversion repository:

I would personally recommend creating these folders, as this will make your life easier later
on should you decide to branch out your code. An example of this could be, say, that you
currently have a Mac OS X application, and then later on you decide that you want to create
an iPhone/iPad application.

You could in theory use the same Subversion repository and create three separate branches:
one for Mac OS X, iPhone, and finally one for iPad. Creating these folders now for branches,
tags, and trunk will not do any harm.

What just happened?
In this section we looked at how we can use Xcode to configure our subversion repository
that we created in the previous section. We provided the Name, Location, and Type of
repository to configure. We also specified the folder names to create for the Trunk, Branches,
and Tags. In the next section, we will look at how we go about adding an existing project into
our repository using Xcode 4.

Chapter 9

[303]

Adding items to an existing repository
In this section, we will look at the necessary steps involved in how we go about adding an
existing project and its accompanying files into source control using Subversion and Xcode 4.

Time for action – adding our TapExample project to the
repository

Now that we have configured and set up our SCM repository, Xcode is aware of this, and we
can start to proceed with importing our TapExample example project:

1.	 Click on the Import button as shown in the screenshot below, and use the file
browser to navigate to the Master_Projects folder and select the TapExample
example project:

2.	 Once you have successfully navigated to the Master_Projects folder and selected
the TapExample project, click on the Import button.

3.	 This will display a popup dialog box where you must submit a descriptive message
before proceeding to have your project added to Subversion.

Source Code Management with the Version Editor

[304]

I usually tend to add a fairly descriptive message along with my initials and date that the
project was added to the repository:

Once you have clicked on the Import button, Xcode will begin to start importing your project.
Since this is being imported into a local repository, this process will complete very quickly:

Now that the project has successfully been added into Subversion, it is safe to delete the
version located within the Master_Projects folder. You will notice that when you import
your project into the Subversion Repository, it creates a project revision number along with
the name of the user who added the project and the associated comment. This is located
within the middle windowpane of the SCM Organizer window.

Chapter 9

[305]

If you decide to add the branches, tags, and trunk folders to your project folder, it is
important that you move the files from within the project folder to the trunk folder.

What just happened?
In this section, we looked at how we are able to use Xcode to add items into a previously
configured repository, which we did in the previous section. We imported our TapExample
project into this repository and provided a comment entry. In the next section, we will look
at how we can check-out a working copy of an existing project from the repository.

Getting a working copy of the project out of the repository
In this section, we will look at how we go about checking out the project from the repository
so that we have a version that we can work with and apply the necessary changes, then
check these changes back into the repository.

Time for action – checking out the project from the repository
We will look at two different ways in which we can check-out and get a working copy of a
project within an Xcode repository.

The first and easiest option is to:

1.	 Select the Connect to a repository option from the Welcome to Xcode screen:

Source Code Management with the Version Editor

[306]

2.	 When this option is selected, it will display the Checkout or Clone dialog where you
will need to specify the file location where your repository is located. This is shown
in the screenshot below:

3.	 Click on the Next button to proceed to the next screen, which will display the
file browser window and allow you to specify the folder location to where you
would like to checkout your project. I have decided to checkout this project to the
Working_Copy folder location:

Chapter 9

[307]

4.	 Once you have selected your folder location, click on the Checkout button. This
will create a Subversion-managed copy of the TapExample project folder and its
contents in the Working_Copy folder or the folder which you have specified.

5.	 Once Xcode has successfully completed checking out the project, you will see the
message box displayed as shown in the screenshot below. Click on the Open button
to have the project open within the Xcode environment:

The second option to check-out the project is to click on the CheckOut button located within
the SCM Repository organizer window, as shown in the following screenshot:

Source Code Management with the Version Editor

[308]

This will display the same dialogs as shown in the previous screenshots and allow you to
specify the folder to checkout your project to.

What just happened?
In this section, we looked at how we are able to use Xcode to connect to an existing
repository to check out the master copy of our project and have it save to another folder
location on disk, prior to having it opening directly within the Xcode IDE. In the next section,
we will look at how we are able to use the Source Control menu within the Xcode 4 IDE, to
commit, merge, or update our changes.

Xcode source-control features and file statuses
The screenshot below displays the file statuses, which have been modified, added, or
deleted from a Subversion repository. These badges propagate up to the highest container
so you can see the source control status of the whole project workspace:

The Source Control Management (SCM) menu shown below is where you can Add, Update,
Merge, and Commit your changes made to your project into your repository. In the section
below, each of these main options are explained:

Chapter 9

[309]

Whenever you make changes to a file within your project, these are changed and stored
locally and are not included as part of the source code control repository. Before you can
add those changes to the repository, you must first commit changes made to the file. Saving
changes to a file is not the same as committing it into the repository.

In order to see what files have been modified since the last checkout from the repository,
look for the M badge next to the filename within the Project navigator. Any new files which
are added to your project will have an A badge beside their name. Any files that are not
under source control will have a question mark badge.

When you choose the Commit… option from the Source Control menu, a confirmation dialog
is displayed that you can use to make sure that the changes which you are committing are
what you intended.

Source Code Management with the Version Editor

[310]

Within this comparison view, any changes that you make to the file locally can be compared
with any previous version stored within the repository. Only those files that you select will be
added into the repository. In order to proceed committing your changes, a comment must be
provided before this can happen. Any last minute changes to the file can also be applied and
are saved back into your project.

Make sure that the comment you provide is informative enough, so that anyone else using
the repository can see what changes were actually done to the file. If the changes made to
the file was a bug fix, provide the ID. If the change was an enhancement, provide the change
request number:

The Merge facility helps you to reconcile different branches and allows you to merge the
code in a separate branch back into the main branch, or when you want to combine the
code in any two branches to reconcile differences between the branches.

The Update or Pull commands update your working copy from the repository when two
or more people are working on the same project. From time to time, you will need to
synchronize your working copy with changes made in the local or remote repository.

When using Git, you can use the Pull command or the Update command in Subversion
to do so.

Chapter 9

[311]

If you are using a remote or local Git repository and you want to share your work with the
other members of your team, you can use the Push command to push your files back to
the repository.

Before you can perform a Push, you will need to save and commit any changes made to your
project files and then execute the Pull command to reconcile any differences between your
version and the one stored within the repository, before finally selecting the Push command.

Comparing different versions of a file side-by-side
There may be t﻿imes when you want to compare a file which you are working on with another
one located within the repository. It could be that someone else in your team may have
applied some changes to one of the code modules within your project and it is causing some
issues and you need to determine what the previous change was.

This is where the version editor comes in and it is particularly useful to find out what has
been changed and why. In order to compare any two versions of the same file under source
control, select the file from within the Project Navigator window and then click on the Show
the Version editor button and Comparison View button, as shown in the screenshot below:

Source Code Management with the Version Editor

[312]

Use the jump bar underneath each of the editor panes to select the version of the file to
compare with the one in the other pane. It is possible to select any committed version
of that file from any revision within the repository and merge the code changes from the
version editor for the revision being viewed directly into the current working copy of the file.

Using Timeline to select and compare revisions
Another great feature of the Version editor which you will find very useful is the ability to
select any revision within the repository to compare with the working copy of the file. This
can be very useful if you want to track what changes have been made to this file. However,
there is a much simpler way to achieve this and we will take a look at this in the section
Using Track Blame to check past check-ins:

In order to use the version timeline to choose file versions to compare, click on the Timeline
icon in the center column to display a visual timeline of all repository revision versions.

Chapter 9

[313]

Use the sliders to control which version of the file should be displayed in each windowpane;
you can use the Up and Down arrow keys to cycle through the available versions. Versions
are listed in chronological order, with a line for each version. Newer versions of the file are
at the bottom of the timeline.

Each major division within the timeline group's revisions is submitted within a twenty-four
hour period. As you reach each version in the timeline, additional information for that
version is displayed in an annotation. When you find the version you want, click the left
or right indicator triangle to display that version in the corresponding editor pane.

Using Track Blame to check past check-ins
The Version editor also includes a feature called Blame mode. In Blame mode, the current
revision of the file is displayed along with the last revision that modified each line of the
file and it is even possible to see which person is responsible for submitting the last change
made to the last revision of the line of code:

Source Code Management with the Version Editor

[314]

To display the Blame Mode screen, click on the Blame button, which is shown in the
screenshot above. Each log entry is aligned with the line where the change was made.
The log entry includes the name of the person who committed the change, the date it was
committed, and the ID of the committed record. Next to the entry is an arrow button which,
when clicked will open the file and let you see the change associated with it.

Using Log Mode to list all revisions chronologically
One other great feature that the Version editor comes with is the ability to review all
revisions on a file. Each change made to each file is listed individually in chronological order
and displays the name of the person who committed the change, the date, the ID of the
commit, and the commit comments. Clicking on the arrow next to the log entry will open
the file and allow you to see what changes were made to the file:

Chapter 9

[315]

Using the Repository Organizer to keep track of your files
Another way in which we are able to keep track of all revision changes made to our projects
contained within the repository, is to use the Repository Organizer.

This can be accessed from the Window | Organizer option or by clicking on the Organizer
button from within the Xcode IDE:

As you can see from the above screenshot it shows you all revisions made to the project,
with the most recent revision located at the top of the hierarchy. It also displays the total
number of files that were modified and the time the change was made. If you expand the
revision node, you are able to see what files are contained within this release.

Source Code Management with the Version Editor

[316]

Clicking on the View Changes button will display the version editor in a read-only
comparison view to show you what was changed:

When the version editor comparison view is displayed, you can decide to view the files in
the repository which have been modified in either File View or Flat View. In File View, all files
are displayed and broken down in a tree-like structure, and each of the files that have been
modified are located within their respective folder(s), as shown in the above screenshot.

In Flat View, as the name suggests, all project files are displayed in a flat one-dimensional
view enabling you to select each of the files and see their associated changes within each
of the file panes. You can see this in the screenshot below:

Chapter 9

[317]

Using Git to manage multiple projects
When working on a software project, it can be very useful to use source control management
(SCM) to keep track of changes made to code. When using an SCM system, it saves multiple
versions of each file on disk, storing metadata about each version of each file in a location,
that is known as the SCM repository. Xcode supports two SCM systems: Subversion and Git.

When using Subversion, it is always better to have this stored on a remote computer
which is backed up on a daily basis, but it can be stored locally as we have seen in the
examples above.

Git on the other hand, can be purely used as a local repository, or like Subversion, can be
installed as a Git server on a remote machine in order to share your files amongst your team
members. Xcode provides a consistent user interface and workflow for users who use either
Subversion or Git.

Source Code Management with the Version Editor

[318]

Time for action – creating a new Xcode project using Git
Before we can proceed, we first need to create the UsingGitExample project. ��To refresh
your memory, you can refer to the section which we covered in Chapter 2, Introducing the
Xcode 4 Workspace under the section Creating your first iPhone application:

1.	 Launch Xcode from the /Xcode4/Applications folder.

2.	 Choose Create a new Xcode project or File | New Project.

3.	 Select the View-based Application template from the list of available templates.

4.	 Click on the Next button to proceed to the next step in the wizard.

5.	 Enter in UsingGitExample as the name of the Product to create.

6.	 Select iPhone from under the Device Family dropdown.

7.	 Click on the Next button to proceed to the next step in the wizard.

8.	 Specify the location where you would like to save your project.

9.	 Ensure that you have checked Create local git repository for this project from under
the Source Control section.

10.	Click on the Create button to continue and display the Xcode workspace
environment.

What just happened?
In this section, we looked at how we can use Xcode to create a new project using Git to
manage multiple projects and having this added automatically for us under Source-Control.

As you can see, creating Git projects is much easier than creating Subversion projects and
as you begin to start using them you will come to understand why it is the preferred choice
of many developers and is highly recommended by Apple. In the next section, we will look
at how we are able to use the Organizer screen to assign address book information for each
person and are able to examine changes made to files when they have been committed back
into the repository.

Chapter 9

[319]

Time for action – assigning address book identities within the
organizer

Now that we have created our project, we will look at how we can assign address book
information to the person who committed each version listed into the repository and let
you examine the changes made to each of the files at each commit:

1.	 Open the Repository Organizer.

2.	 Select our UsingGitExample repository in the navigation pane of the
repositories organizer:

Source Code Management with the Version Editor

[320]

3.	 Click on the icon next to the commit ID number:

4.	 Fill in the information about the person who executed the commit. If the person
is in your address book, you can click on the Choose Card… button and select the
person's card in your address book. If your address book has an associated picture,
it will also be displayed.

5.	 To see what changes were committed for this release or to see what changes were
made on a specific file, click the View Changes button.

Chapter 9

[321]

What just happened?
In this section, we looked at how we can add information applying to the user that
committed the changes to the Git Repository. Comparing Subversion and Git, you can
obviously see why Git is the perfect way to go when creating your projects. While Subversion
is good, it was designed to replace Concurrent Versions System (or CVS) to save and retrieve
multiple versions of source code.

Git on the other hand is a distributed version control system, that was designed to handle
everything from small to very large projects, and was designed for speed and efficiency.

If you are interested in reading up on and learning more about Git, please
check out the provided links: http://en.wikipedia.org/wiki/
Git_(software) and http://git-scm.com/

Have a go hero – adding a project to a Subversion repository
Now you have a good knowledge of Subversion and understand how it all works, and are
familiar with how to go about creating a repository. The task that you will be performing will
be to add the MoviePlayer example, that we created in Chapter 4, Working with the Xcode
Frameworks to a repository:

1.	 Load up the Xcode 4 Organizer

2.	 Next, locate the MoviePlayer project and then import this into the repository.

3.	 Provide a descriptive message for your project prior to importing.

4.	 Once the project has been imported, verify that you can see theMoviePlayer
folder added to the navigational pane, under the repository to which you imported.

5.	 Exit from the Organizer window to return back to the Xcode IDE.

Once you have followed the above steps correctly, you would have successfully added a
project into an SVN Repository..

Source Code Management with the Version Editor

[322]

Pop quiz – Subversion / Version Editor
1.	 What command and switch would you use to set up a local subversion repository?

a.	������������� svn --version

b.	 svnadmin create

c.	 svnadmin --create

d.	 svnadmin verify

e.	 svnadmin /create

2.	 What command would you use to check the version of svn installed on your machine?

a.���� 	 svn

b.	 svn –version

c.	 svn --version

3.	 Where would you find the import and checkout buttons?

a.	 File | Source Control

b.	 Editor����� menu

c.	������������������������ Organizer | Repositories

4.	 What is the purpose of the Timeline feature of the Version Editor?

a.�������������������������������� 	 Transport the file back in time

b.	 Warp speed engage

c.	 Provides the ability to select any revision of the file within a repository to
compare with the local copy of the file to track changes made

d.	 I don't know

5.	 What option displays a list of all revisions made to a file in chronological order?

a.������������ 	 Track Blame

b.	 Comparison View

c.	 Log Mode

d.	 A Library

6.	 Which Source Control Status specifies that the file(s) have been modified locally,
with regards to SCM?

a.	 *

b.	 D

c.	 ?

d.	 M

Chapter 9

[323]

Summary
In this chapter, we focused on the new features of the Xcode Version Editor and how to go
about creating, configuring, and adding items to existing source code repositories.

We also spent some time looking at how we can use the Xcode Version Editor to compare
different versions of the same source file and the Track Blame feature to check on what
changes were made by other developers, before finishing up learning how we can use
Subversion and Git together to manage multiple projects.

Now that we have learned about the features and capabilities of the Version Editor, how
to manage source code repositories, and gained some insight into what Subversion and
Git are, we are now ready to get stuck in and focus on how we can use Xcode Instruments
to track down memory leaks and how we can profile our application to ensure that it is
running smoothly.

In the next chapter, we will be taking a look into how to go about Making your applications
run smoothly, and taking a look at the new features that come with Instruments, and how to
track down iPhone graphics performance using OpenGL ES.

10
Making your Applications

Run Smoothly

In this chapter, we will focus on how we can effectively use Instruments within
our applications to track down memory leaks and bottlenecks within our
applications. These types of issues could potentially cause our application to
crash on the user's iOS device.

We will take a look into each of the different types of built-in instruments,
that come as part of the Instruments application and how we can use the
Leaks instruments to help track down and determine where memory leaks are
happening within our code. We will look at how we can configure instruments
to display data differently within the trace document that is being reported.

In this chapter, we will be covering the following topics:

Introducing the Instruments environment

Learning how to add and profile against different instrument sets

Learning how to track down and fix memory leaks

Introducing other components of the Instruments family

Introducing the new Instruments that are included with Xcode 4

We have got quite a bit to cover, so let's get started.











Making your Applications Run Smoothly

[326]

Introducing Instruments
The Instruments application is a powerful tool that enables you to collect information about
the performance of your application over time. Instruments lets you gather information
based on a variety of different types of data and view them side by side at the same time.
This lets you spot trends that would be hard to spot otherwise and this can be used to see
code running by your program along with the corresponding memory usage.

The instruments application includes a standard library, that you can use to examine various
aspects of your code. You can configure instruments to gather data about the same process
or about different processes on the system.

Each instrument collects and displays different types of information relating to file access,
memory usage (leaks and allocation), and so forth. As you can see from the screenshot
below, it shows the Instruments application profiling against our InstrumentsExample,
using a number of different types of instruments to monitor how much memory is being
allocated but not freed, what parts are causing memory leaks, number of disk reads and
writes, and how much memory is being consumed:

The information in the table below outlines each feature of the Instruments application, and
provides a description about what each part covers:

Chapter 10

[327]

INSTRUMENTS FEATURE DESCRIPTION

Instruments Pane This section lists all of the instruments which have been added for
those that you want to profile against. New instruments can be added
by selecting and then dragging each one from the instruments library
into this pane. Items within this pane can also be deleted.

Track Pane This section displays a graphical summary of the data returned by the
current instruments. Each instrument has its own track, which provides
a chart of the data that is collected by that instrument. The information
within this pane is read-only.

Detail Pane This section shows the details of the data collected by each of the
instruments. It displays the set of events gathered and is used to
create the graphical view in the track pane. Depending on the type of
instrument, information that is represented within this pane can be
customized to represent the data differently.

Extended Detail Pane This section shows you detailed information about the item that is
currently selected in the Detail pane. This pane displays the complete
stack trace, timestamp, and other instrument-specific data gathered for
the given event.

Navigation Bar This shows you where you are and the steps you took to get there. It
includes two menus—the active instrument menu and the detail view
menu. You can click on the entries within the navigation bar to select
the active instrument and the level and type of information in the
detail view.

The instruments trace document toolbar allows you to add and control instruments, open
view, and configure the track pane:

In the table below, an explanation is given for each of the different controls on the toolbar:

TOOLBAR ITEM DESCRIPTION

Pause/Resume Button Pauses the gathering of trace data during a recording. Selecting this
option does not actually stop the recording; it just simply stops the
instruments from gathering data while a recording is in progress.
When the pause button has been pressed, in the track pane, it will
show a gap in the trace data to highlight this.

Record/Stop Button Starts or stops the recording process. You use this button to begin
gathering trace data for your application.

Loop Button Enables you to set whether the recorder should loop during
playback to repeat the recorded steps continuously. This can be
useful if you want to gather multiple runs for a given set of steps.

Making your Applications Run Smoothly

[328]

TOOLBAR ITEM DESCRIPTION

Target Menu Selects the trace target for the document. This is the process for
which data is gathered.

Inspection Range Control This enables you to select a time range in the track pane. When this
has been set, the instruments display only the data collected within
the specified time period. Using the buttons with this control enable
you to set the start and ending points of the inspection range and to
clear the current range.

Time/Run Control Shows the time elapsed by the current document trace. If the trace
document contains multiple data runs associated with it, you can
use the arrow controls to choose which run data you want to display
in the track pane.

View Control Hides or shows the Instruments Pane, Detail Pane, and Extended
View Pane. This control makes it easier to only focus on the area in
which you are interested.

Library Button Hides or shows the instrument library window.

Search Field This option filters information within the Detail pane, based on a
search term that you enter.

The Instruments application comes as part of the Xcode 4 Tools installation and can be found
located within the <Xcode>/Developer/Applications folder; where <Xcode> is the
installation folder where Xcode 4 is installed on your system.

Tracking down and fixing memory leaks
One common use for Instruments is to detect memory leaks within an application. A
memory leak occurs when memory is allocated by an application, but is never released.
One of the instruments that come with the Instruments application is the leak detector,
called Leaks.

This nifty instrument tracks all memory that is allocated by the application and tracks all of
the pointers made to that memory location. So how does the Leak Instrument know when a
leak has happened? Well, this occurs when the application no longer has a valid pointer to
the memory it has allocated and the Leak instrument knows that the application can never
free the memory.

An application can use too much memory by never freeing the memory that
it allocates, even after it no longer needs it. You can use the Static Analyzer
to detect for potential memory leaks, or the Object Allocations instrument
to detect this.

Chapter 10

[329]

To show the use of the Leaks Instrument, we will create an example application in Xcode
to show how to purposely leak memory. There are many ways in which you can start the
Instruments application; you can run Instruments and then have it launch the iPhone
application, or you can use the tools under the Product menu from within Xcode.
Let's start by creating our sample application.

Time for action – creating the InstrumentsExample project
Before we proceed with creating our InstrumentsExample project, we must first launch
the Xcode development environment. This can be located in the /Xcode4/Applications
folder. Alternatively, you can use spotlight to search for Xcode by typing Xcode into the
search box window.

1.	 Choose Create a new Xcode project, or File | New Project

2.	 Select the View-based Application template from the list of available templates

3.	 Click on the Next button to proceed to the next step in the wizard

4.	 Enter in InstrumentsExample as the name of the Product to create

5.	 Select iPhone from under the Device Family dropdown

6.	 Click on the Next button to proceed to the next step in the wizard

7.	 Specify the location where you would like to save your project

8.	 Ensure that the Create local git repository for this project is unchecked from under
the Source Control section

9.	 Click on the Create button to continue and display the Xcode workspace environment:

Making your Applications Run Smoothly

[330]

We now need to start implementing the code, that will be used to perform our
Memory Leak.

Open the InstrumentsExampleViewController.m implementation file, then scroll
down and locate the viewDidLoad method, and enter in the following code snippet:

// Implement viewDidLoad to do additional setup after loading
// the view, typically from a nib.
- (void)viewDidLoad
{
 [super viewDidLoad];

 NSLog(@"Starting....");

 // Loop for 5000 times
 for (int i = 1; i <= 5000; i++){
 NSString *MemStatus = [[NSString alloc]initWithFormat:@"Memory
 Leaking...."];
 NSLog(@"Value of i: - %i and status - %@", i, MemStatus);
 }

 NSLog(@"Completed...");
}

What just happened?
In this section, we created a simple project within Xcode and allocated 5,000 strings inside
a loop to demonstrate ways of how memory leaks can happen. We then implemented some
code within our viewDidLoad method. What this code does is that it allocates memory
for a new string MemStatus each time through the loop, and lets the pointer to each string
that we allocate go out of scope as we progress through the loop. In the next section, we will
Build, Run, and Profile our InstrumentsExample application using the Leaks instrument.

Time for action – running and Profiling the project
We are now ready to Build and Run our application. To run the instruments application from
within the Xcode environment, you can either use the Command + P option or the Build For
Profiling option under the Build For menu. You can access this using the keyboard shortcut
Shift + Command + P:

Chapter 10

[331]

Once this option has been selected, you will eventually see the Instruments application
window display on your screen. This is shown in the screenshot below:

Making your Applications Run Smoothly

[332]

The table below gives an overview of each of the templates that are available and required
for iPhone development:

INSTRUMENT TEMPLATE DESCRIPTION

Blank Template Creates an empty trace document to which you can add your own
combinations of instruments.

Allocations Monitors memory and object-allocation patterns within your
program.

Activity Monitor Monitors overall CPU, memory, disk, and network activity.

Leaks Detects memory leaks within your application.

Zombies Measures memory usage and detection of over-released objects.

Time Profiler Performs low-overhead time-based sampling of one or all processes.

Automation Automates User interface tests within your application.

Threads Analyzes thread state transitions within a process, including running
and terminated threads, thread state, and associated back traces.

File Activity Monitors an application's interaction with the file system.

The type of Instrument that we want to use for this example is the Leaks Instrument. Select
the Leaks option and then click on the Profile button to proceed to load the Instruments
Trace Document window and start profiling our InstrumentsExample application.

When running the Instruments application, you can't use the Xcode
gdb debugger at the same time. Any breakpoints that have been set
within the application will be ignored and no output is written out to
the debug console.

You will notice that after a number of seconds have passed, you will see a red spike appear
which tells us that our application contains a leak and represents the 5,000 strings which
we have allocated. You can stop the application from profiling by clicking on the red record
button. Since the Instruments application has detected that our application contains leaks, it
knows exactly where in our application we have allocated the memory that was leaked:

Chapter 10

[333]

The Extended Detail portion of the Instruments window shows a color-coded stack trace.
Each of the colors within this view indicate which library each method belongs to, and our
InstrumentsExample code is highlighted in purple, with the methods highlighted in a black-
grey color and we are able to see the method which allocated and leaked the memory.

Making your Applications Run Smoothly

[334]

If you double-click on the InstrumentsExample:viewDidLoad method within the list, it
will open up the code module, and point you to the section where the leaked occurred:

As you can see from the screenshot above, the Instruments application has cleverly
highlighted the line within the module where the leak has occurred and has provided us
with the amount of processing time that this has taken up. The value can be changed to
View as Percentage or View as Value. The default option for this view is View as Default.

What just happened?
In this section, we looked at how to run and profile our example project using the
Instruments application to help track down, locate, and fix memory leaks within our
application, using the Leaks instrument. We looked at the different views available within
the Instruments application, which displays a color-coded stack trace to indicate which
library each method belongs to, with the color-code of purple indicating our code. We then
saw that if we clicked on a method viewDidLoad, it would take us directly into the code
module, and section where the leaked occurred, with the line highlighted. Through the use
of instruments, this helps highlight bottle-necks within our code, that could eventually make
our application crash on the user's iOS device.

Chapter 10

[335]

Adding and configuring Instruments
The instruments application comes with a wide-range of built-in instruments to make
your job easier by using them to gather data from one or more processes. Most of these
instruments require little configuration to use and are simply added to your trace document
to start gathering trace data. We will look at how we add and configure instruments into an
existing trace document.

Using the Instruments Library
The instruments library displays all instruments that you can use and add to your trace
document. The library contains all of the built-in instruments that come with the installation
of Xcode 4, as well as any custom instruments that you have already created. To open the
Instruments window, click on the Library button from within your trace document window
or choose Window | Library from the menu bar. Alternatively, you can use the Command + L
keyboard shortcut:

Making your Applications Run Smoothly

[336]

As you can see from the above screenshot, the Instruments Library list contains a massive
number of instruments, that can grow over time especially when you start adding your own
custom built instruments. The library list provides several options for organizing and finding
the instrument that you are looking for by using the different view modes.

View modes help you to decide the amount of information that should be displayed at any
one time and the amount of space you want that instrument group to occupy. In the table
below, we describe the following view modes supported by the Instruments Library:

VIEW MODE TYPES DESCRIPTION

View Icons This setting displays only the icon representing each instrument.

View Icons and Labels This setting displays the icon with the name of the instrument.

View Icons and Descriptions This setting displays the icon, name, and full description of each of
the instruments

View Small Icons and Labels This setting displays the name of the instrument with a small
version of its icon.

In addition to setting the view mode of the Instruments Library, Instruments can be
organized into groups that make it easier to identify which instrument relates to which
group. This is shown in the screenshot above.

Locating an Instrument within the Library
There are two ways to locate an instrument within the Instrument Library. One common
way is to use the group selection criteria controls, which are located at the top of the Library
window and can be used to select one or more groups to limit the amount of instruments
that are displayed within the Library window.

Chapter 10

[337]

If you drag the split bar between the pop-up menu and the instrument pane downwards,
you will notice that the pop-up menu changes from a single selection to an outline
view, so that you can select multiple groups by holding down the Command + Shift key
combinations and then selecting the desired groups to display with your mouse as shown
in the screenshot below:

Making your Applications Run Smoothly

[338]

Another way to filter the contents of the Instruments Library window is to use the search
field, that is located at the bottom of the Library window. By using this search field, you
can quickly narrow down and display only those instruments that have the search keyword
within their name, description, category, list, or keywords. In the screenshot below, all
instruments that contain the search string file are displayed:

Chapter 10

[339]

Adding and removing Instruments
There will be times when you want to trace your application against other instruments
within the Instruments library. This could be when you want to check to see how your
application is performing on the device and how much battery is being consumed by
your application.

You can add as many instruments as you like to your trace document, but be aware that
not all instruments included in the library are capable of tracking a wide range of system
processes, as you will find that some can only track a single process. But to get around
this, you can add multiple instances of the instrument, and assign each one to a different
process. By doing it this way, you gather similar information for multiple programs
running simultaneously.

To add an instrument to the trace document, select the instrument from the Instrument
library and then drag it either to the Instruments pane or directly onto the track pane of
your trace document as shown in the screenshot below:

To remove an instrument from the trace document, select the instrument that you would
like to remove from the Instruments pane and then press the Delete key on your keyboard.

Making your Applications Run Smoothly

[340]

You will then receive a confirmation message. Click on the OK button to proceed:

In the next section, we will look at how we go about configuring an instrument that you have
added to your trace document.

Configuring an Instrument
You will find that most of the instruments that you add to your trace document are ready
to use, out of the box. However, some instruments can be configured using the Instruments
Inspector and this varies depending on the type of instrument that is being configured. You
will notice that most instruments will contain options for configuring the contents of the
track pane, while only a small handful contain additional functionality for determining
what type of information is gathered by the instrument.

Chapter 10

[341]

To configure an instrument, select the instrument from the Instruments pane and then click
on the Inspector icon, which is located to the right of the instrument. This is shown in the
screenshot below:

When the Instrument Inspector icon is clicked, it displays the inspector configuration
dialog next to the instrument name. To dismiss the inspector, click on the close button
highlighted by an X. You can use the Command + I and File | Get Info commands to close
this window also.

Depending on the type of instrument that is being configured, they can either be configured
before, during, or after the data within your trace document has been recorded.

The Zoom control can be found in most of the inspector controls for those instruments which
you configure. This feature controls the magnification of the trace data that is displayed
within the track pane and adjusts the height of the instrument within the track pane.
Alternatively, you can use the View | Decrease Deck Size and View | Increase Deck Size
menu options to do the same thing.

Making your Applications Run Smoothly

[342]

Other components of the Instruments family explained
There are other instruments which come with the Instruments application, apart from
tracking down Memory Leaks and Allocation Objects. Although not every instrument works
with iPhone applications, the list of Instruments pertaining to each type is explained in the
table below:

INSTRUMENT TYPE PLATFORM TYPE DESCRIPTION

Activity Monitor iPhone /Simulator Correlates the system workload with the virtual
memory size.

Allocations iPhone/ Simulator This can be used to take snapshots of the heap as
apps perform their tasks. If taken at two different
points in time, it can be used to identify situations
where memory is being lost, not leaked.

The test case would be to take a snapshot,
do something in the app, and then undo that
something, returning the state of the app to its
prior point. If the memory allocated in the heap is
the same, no worries. It's a simple and repeatable
test scenario of performing a task, and returning
the app to its state prior to performing the task.

Automation iPhone/ Simulator Used to automate user interface tests in your iOS
application.

Core Animation iPhone Measures the number of Core Animation frames
per second in a process running on an iOS device
through visual hints that help you understand
how content is rendered on the screen.

CPU Sampler iPhone/ Simulator Correlates the overall system workload with the
work being done specifically by your application.

Energy
Diagnostics

iPhone Displays diagnostics information regarding the
amount of energy being used on the device for
GPU Activity, Display brightness, Sleep/Wake,
Bluetooth, WiFi, and GPS.

File Activity Simulator Examines file usage patterns in the system by
monitoring when files open, close, read, and
write operations to files. It also monitors changes
in the file system itself relating to permission and
owner changes.

Leaks iPhone/ Simulator This instrument looks for situations where
memory has been allocated, but is no longer able
to be used. These memory leaks can lead to the
application crashing or being shut down.

Chapter 10

[343]

INSTRUMENT TYPE PLATFORM TYPE DESCRIPTION

OpenGL ES Driver iPhone Determines how efficiently you are using Open GL
and the GPU on iOS devices.

System Usage iPhone Records calls to functions that operate on files
within a process on the iOS device.

Threads Simulator Analyzes state transitions within a process,
including both running and terminating threads,
thread state, and associated back traces.

Time Profiler iPhone/ Simulator Performs low-overhead time-based sampling of
one or all processes.

Zombies Simulator The Zombies instrument keeps an empty or 'dead'
object alive (in a sense) in place of objects that
have already been released. These 'dead' objects
are later accessed by the faulty application logic
and halt execution of the app without crashing.
The 'zombie' objects receive the call and point the
instrument to the exact location where the app
would normally crash.

New Instruments in Xcode 4
The instruments application that comes with Xcode contains a wide range of built-in
instruments to make your job easier and to gather and display data for one or more
processes. In Xcode 4, a collection of new instruments has been added and these are
explained below.

Automated Testing
The Automation instrument allows you to automate user interface tests of your iOS
application that are guided by your test scripts which exercise the user interface elements
of your application, allowing you to log the results for your analysis at a later time.

As you can see that using this fantastic Automation instrument, can simulate the many user
actions supported by the devices that support multitasking and are running iOS 4.0 or later.
Any test scripts that you create can be run on the iOS device or within the iOS simulator
without any modifications being made to your scripts.

Performance and Power Analysis
The Performance and Power Analysis Instrument allows you to collect performance data and
track the power usage of your application through the use of the Time Profiler and Energy
Diagnostics Instruments for iOS.

Making your Applications Run Smoothly

[344]

Time Profiler
The Time Profiler Instrument illustrates how much time is being spent in each code segment.
This allows developers to prioritize which bit of logic needs to be refactored prior to release.
Although this can be run using the iOS Simulator, it is recommended to run this on the iOS
devices, as the performance will vary greatly between the two.

Energy Diagnosis
The Energy Diagnostics instrument is the most exciting tool that Apple gave to developers.

This instrument will help you identify optimum use of the iOS device resources by enabling
you to test your application as close to real world scenarios as possible. The data that is
collected can later be analyzed to see how much of the device's battery life each function
consumes and it will tell the developer how long each of the device's various components
are used.

If you need to know the user's location, it will tell you which devices were turned on and for
how long. GPS is a resource hog and consumes much of the device's battery life. Turning off
location services once a location has been obtained is ideal.

Tracking iPhone graphics performance using OpenGL ES Driver
The OpenGL ES Driver instrument queries the GPU (Graphics Processing Unit) driver on an
iOS device to sample OpenGL statistics for a given single process. This instrument helps you
determine how efficiently your device is using OpenGL and the GPU on your device.

The GPU hardware comes with two components: Tiler and Renderer. The scene is tiled and
then it is rendered. Both the Tiler and Renderer components often work on different scenes
and the utilization of each component can reach up to 100%.

Using both the Tiler and Renderer utilization can be helpful in determining where
bottlenecks exist. Low renderer utilization might mean that the process is stuck waiting
for tiling, which would suggest decreasing the complexity of the scene that is being
drawn. A low tiler and renderer utilization can suggest a CPU bottleneck somewhere
else in the application.

If you are interested in reading more about Instruments, check out the Apple
Developer Connection documentation at the following location: http://
developer.apple.com/library/ios/#documentation/
DeveloperTools/Conceptual/InstrumentsUserGuide/
Introduction/Introduction.html.

Chapter 10

[345]

Have a go hero – adding Instruments to your project
Now you have a good working knowledge of the Xcode Instruments and how to go about
using these to profile your project. The task will be to profile our MoviePlayer example
that we created in Chapter 4, Working with the Xcode Frameworks and add the Activity
Monitor and Thread instruments to monitor each process:

1.	 Open Xcode 4 and load the MoviePlayer example program.

2.	 Start profiling the MoviePlayer example, which will launch the Instruments
application. You can refer to the section Running and Profiling the Project located
in this chapter.

3.	 Locate and add the Blank template from theTrace Templates or Existing
Document dialog.

4.	 From the Instruments Library, add the Activity Monitor to the Instruments Pane. You
can refer to the section Adding and Removing Instruments located in this chapter.

5.	 Next, drag the Threads instrument to the instruments Pane. You can refer to the
section Adding and Removing Instruments located in this chapter.

6.	 Start profiling the MoviePlayer application. You can refer to the section Running
and Profiling the Project located in this chapter.

7.	 You will notice that your application will compile and run within the iOS simulator,
and then profile your application, monitoring the Activity and Threads being used.

8.	 Exit from the Instruments application to return back to the Xcode IDE.

Once you have followed the above steps correctly, you would have successfully added
instruments to a blank template, as well as successfully profiling an existing application.

Pop quiz – playing with Instruments
1.	 What instrument helps you identify optimum use of the iOS device resources to test

your application as close to real world scenarios?

a.	 Automated Testing

b.	 Performance and Power Analysis

c.	 Energy Diagnosis

2.	 What instrument queries the GPU (Graphics Processing Unit) driver on an
iOS device?

a.	 OpenGL

b.	 Energy Diagnosis

c.	 OpenGL ES

d.	 All of the above

Making your Applications Run Smoothly

[346]

3.	 What are the ways in which you can configure an instrument?

a.	 Click on the Inspector icon
b.	 View | Config
c.	 File | Get Info
d.	 Command + I
e.	 All of the above

4.	 When profiling a project, where would you find the Build for Profiling option?

a.	 Under the Product | Build For menu
b.	 Under the Window menu
c.	 Under the Product | Profile menu
d.	 I don't know

5.	 What two methods can you use to find potential memory leaks for memory that has
already been allocated?

a.	 Static Analyzer
b.	 Leaks Instrument
c.	 Object Allocations
d.	 All of the above

Summary
In this chapter, we focused on the new features of the Xcode Instruments application and
how we can use this brilliant tool to ensure that our application runs smoothly, and that it is
free from memory leaks and bottlenecks to avoid having our application crash on the users'
iOS device.

We took a look into each of the different types of built-in instruments that come as part of
the instruments application, in particular the Leaks instrument to help to track down and
determine where memory leaks are occurring within the code in our applications. We ended
the chapter by looking at how we can configure instruments to represent data differently
within the trace document.

Now that we have learned about the power and features of the different types of
instruments that are included with Xcode 4, we are ready to embark on our final
chapter, Building, Packaging, and Distributing your application.

In this chapter, we will be taking a look at how to create Build configurations for Debugging
stage to Release and learn how to go about obtaining provisioning profiles for Testing and
Submission and how to register devices to be used for testing. Finally, we will look at the
steps involved in making our application ready for submission to the Apple AppStore and
join the other thousands of developers out there.

11
Distributing your Application

Well done for making it to the final chapter of this book. This is where you start
to submit your application to the Apple App Store and share your creation with
the rest of the community.

So, you've finally done it. You have successfully built your application and
now you are ready to release it to the rest of the world. All you now need
to do is decide how to deploy it and market it. In this chapter, we will look at
step-by-step instructions on how to go about submitting your application to
the Apple App Store.

In this chapter, we will be covering the following topics:

How to create the different build configurations for debug and release

Setting up your profile for testing and submitting of apps

Setting up your iPhone development team and certificate

Creating application IDs and how to register iOS devices for testing

Conforming to the iPhone Human Interface Guidelines

How to price your app and avoid it being rejected

How to market and promote your application

We have got quite a bit to cover, so let's get started.















Distributing your Application

[348]

Build configurations – debug to release
Since the beginning of this book, the default build configuration that we have been dealing
with has been the Debug Build Configuration. The screenshot below shows the currently
active build configuration within the Xcode workspace toolbar:

When the Debug configuration is selected, it causes your application to be compiled along
with the debug symbols. On the other hand, when the Release configuration is selected,
this removes the debug symbols and also carries out some optimization of the code during
compilation. You can also create custom build configurations using the Manage Schemes…
option as shown above. As a refresher, you can refer to Chapter 8, Debugging your
Xcode Projects.

The iPhone Developer Program
The iPhone Developer Program provides you with a means of being able to share your
applications with the rest of the iOS community. In order for you to test, submit, or give your
apps to your friends to test, you will need to join up with the iPhone Developer Program.

To sign up, you will need to go to http://developer.apple.com/programs/ios and
then click on the Enroll Now button to proceed.

Chapter 11

[349]

For most developers wanting to release their applications to the App Store, they can simply
sign up for the Standard program, that costs US$99, or US$299 for Enterprise users. Prices
vary depending on which path you want to take—either register as an Individual/Company
or Enterprise Developer.

If you are interested in learning more about the differences between the
Standard and Enterprise programs, you can find more information on what
these entail at http://developer.apple.com/programs/ios/
enterprise/#compare.

When you become a member, you will have access to numerous resources to help you get
started. Below is a list of some of the things that you will be able to access upon becoming
a member:

Getting started guides to help you get up and running

Helpful tips which show you how to submit your apps to the App Store

Access to programming guides for various areas of iOS development

Access to sample code – TableViews, CoreData, OpenGL ES, and so on

Ability to download current releases of the software

Preview/beta releases of the iOS and iOS SDK

Access to the Apple developer forums

Access Developer videos on iOS development and WWDC 2010 (World Wide
Developer Conference)

Setting up your iPhone development team
Before you can submit your application to the Apple App Store for approval, you will need
to set up your iPhone development team. This enables you or the people within your
organisation to log into the iOS Developer portal website to test apps on the iOS devices they
are being deployed to, add additional iOS devices to the account to be used for testing, and
so on.

















Distributing your Application

[350]

Time for action – setting up the team
In order to set up your team for iPhone development, follow these steps:

1.	 Log into the iOS Developer Portal website and click on the Member Center link
which is located right at the top. This will then display the Developer Program
Resources page, which is shown below:

2.	 Next, click on the iTunes Connect button as highlighted in the screenshot above.
This will display the iTunes Connect page where you have the ability to check on
various things like Sales and Trends as well as Manage your In App Purchases:

Chapter 11

[351]

3.	 Click on the Manage Users button to add yourself or the people within your
organization who will be able to log into the iOS Developer Program Portal,
test apps on iOS devices, add iOS devices to the account for testing, and so on:

Distributing your Application

[352]

4.	 Select the iTunes Connect User option as highlighted above. This will bring
up the Add New User option pane from where you can add a new user as
highlighted below:

5.	 The list above shows a list of any existing users, that you have set up previously,
along with their details and Roles that they have been set up with and have access
to. To continue, click on the Add New User button:

6.	 Fill in the Personal details for the person that you will be adding to your
development team. Once all details have been filled in, click the Continue button.
In the next step, we will need to assign which roles the user will take on:

Chapter 11

[353]

7.	 Select from one of the four options as shown in the screenshot above, and click on the
Continue button to proceed to the final step in the wizard where we will be assigning
the relevant notification types and territories that will be assigned to the user:

Distributing your Application

[354]

8.	 Once you have finished specifying the different types of notification methods for
each territory, click on the Save Changes button. The new user account will then
be created, and a confirmation e-mail will be sent to the user's account for them
to activate their account.

What just happened?
In this section, we looked at how to go about setting up our iOS development team, and
how to go about creating and assigning roles to users, as well as which user roles are allowed
to log into the iOS Developer portal to manage users, view sales or trends, payments and
financial reports, or that have the ability to add new devices in order to test apps on the
iOS devices. We ended the section by looking at how we can assign the different types of
notification methods for each territory to each user.

The table below explains each of the different types of notifications that are shown in the
screenshot above.

NOTIFICATION DESCRIPTION

App Status Provides e-mail alerts with app status updates.

Contract Provides e-mail alerts with contract status updates (for example, contract
expiration warnings) or if iTunes needs more contract information.

Financial Report Provides e-mail alerts when finance reports are available for download on
iTunes Connect.

Payment Provides e-mail alerts when payment(s) to your bank are returned.

Getting an iOS development certificate
The first steps that are required before we can start to generate our iOS development
certificate, and registering the iOS devices that will be used for both, development and
distribution, will be to generate a Certificate Request file. This file will enable you to request
the development certificate that will be used for code signing your application.

Time for action – generating a Certificate Request
In this section, we will be taking a look at the steps involved in generating an iOS
development certificate. This certificate is encrypted and serves as your digital identification
and you must sign your app using this certificate before you can run and test any applications
that you develop on your iOS device.

Chapter 11

[355]

In order to generate a certificate request for iOS development, you must first generate
a Certificate Signing Request (CSR) using the pre-installed Mac OS X Keychain Access
application following these steps:

1.	 To begin, launch the Keychain Access application located within your
/Applications/Utilities folder, or which can be accessed via the Keychain
Access | Certificate Assistant menu and selecting the Request a Certificate From
a Certificate Authority… option:

2.	 Next, we need to provide some information before the certificate can be
generated. Enter the required information as shown in the screenshot below,
ensuring that you have selected the Saved to disk and the Let me specify key
pair information options:

Distributing your Application

[356]

3.	 Once all information has been filled out, click on the Continue button. You will be
asked to specify a name for the certificate; accept the default suggested name and
click on the Save button:

4.	 At this point, the certificate is being created at the location specified. You will be
asked to specify the Key Size and Algorithm to use. Accept the default bits of 2048
and the RSA Algorithm and then click on the Continue button. Click on Done when
the final screen appears:

Chapter 11

[357]

What just happened?
In this section, we looked at the steps involved in generating a certificate and how we
can specify the type of Key pair to use for both development and distribution by using
the Keychain Access Application. ��� The Keychain Access Application is a great utility for
generating certificate requests that you can then send to Apple later to request the iOS
development certificates.

Time for action – getting the certificate
Once a certificate request has been generated you will need to use it to request what is
called A Development Certificate from Apple. This development certificate will be used for
code signing your applications in order to deploy your applications onto the real device.

To generate a development request, follow these steps:

1.	 Sign in to the iOS Developer Program at http://developer.apple.com/
devcenter/ios and click on the iOS Provisioning Portal which is located on
the right-hand side of the page:

Distributing your Application

[358]

2.	 You will then see the Welcome to the iPhone Provisioning Portal page appear.
Click on the Certificates tab, which is located on the left-hand side of the panel and
then click on the Development tab. The Current Development Certificates window
appears allowing you to request a certificate:

3.	 Click on the Request Certificate button; the Create iOS Development Certificate
screen appears.

4.	 Click on the Choose File button and then select the certificate request file that you
created in the previous section. Click on the Submit button once done:

At the point, you should see that the provisioning profile will be showing Pending
issuance status. This is shown in the screenshot below:

Chapter 11

[359]

5.	 After a few seconds, the page will refresh (if this does not happen, click on the
Refresh button within your browser) and the certificate will be ready and you will be
able to download it. Once it is downloaded, double-click the file to install it within
the Keychain Access application, as shown in the screenshot below:

What just happened?
In this section, we covered how to go about obtaining an iOS Development Certificate that
you need to code-sign and deploy your applications to a real iOS device. ��������������������� The certificate that
is installed within the Keychain Access application contains the public and private key pairs.

Distributing your Application

[360]

Next, we looked at how we can use the iOS Provisioning Portal to create a certificate for
development by using the keychain file that we created in the section Getting an iOS
Development Certificate. Finally we looked at how to download and install the certificate
within our Keychain Access application.

Registering devices for testing
Before you can start to test your iOS applications on your devices for distribution and testing,
you will need to register the devices to support your mobile provisioning profile. To do this,
you will need the unique device identifier (UDID) for each of those devices.

Once you have obtained the device identifiers, you will need to obtain each of the users'
devices in the same way you obtained your own.

Time for action – registering devices
In this section, we will look at how to register our iOS device so that we will be able to test
the applications that we develop. You can register up to 100 iOS devices for you to test your
applications on. To register each device, follow these simple steps:

1.	 First, we need to obtain the 40-character identifier that uniquely identifies your iOS
device. To do this, connect your device to your Mac and launch Xcode. Select the
Window|Organizer menu item to launch the organizer application.

2.	 The screenshot below shows the Organizer window and the identifier of the
currently connected iOS device. Copy this UDID identifier and save it somewhere,
as we will be using this in the next part:

Chapter 11

[361]

3.	 Log back into the Apple iOS Developer Center page and click on the iOS Provisioning
Portal link on the right-hand side of the page.

4.	 Next, from the iOS Provisioning Portal page, click on the Devices tab, then click on
the Manage tab and then click on the Add Devices button. The screenshot below
shows you a listing of all iOS devices that have been registered:

5.	 The next step is to enter a suitable and meaningful name for each of the devices
that will be used for testing. Provide the Device Name and UDID for the Device ID
into each appropriate box and then click on the Submit button to save your changes:

Distributing your Application

[362]

Clicking on the + button will allow you to add additional devices at once. Upon clicking on
the Submit button, you will have successfully registered each of the devices you provided.
You will need to go through the same process if you intend to deploy to additional devices.

What just happened?
In this section, we looked at what is involved in registering devices to be used within iOS
development within Xcode. We looked at how to register new devices using their UDIDs
(Unique Device Identifier) that will be added to the iOS Provisioning Portal profile so that
it can later be deployed to only those devices that have been specified.

In the next section, we will be taking a look at how to go about creating the Application IDs
and development certificates so that we can use these to deploy applications to test on our
iOS devices.

Creating application IDs
Each IOS application that you create must have a unique application ID that identifies
itself. The App ID is part of the provisioning profile and identifies an app or a suite of
related applications. It is used when your applications communicate with the iOS
hardware accessories and the Apple Push Notification service and when sharing data
between your applications.

Time for action – creating the application ID
In the following steps, we will take a look at how to create an application ID:

1.	 Log back into the Apple iOS Developer Center page and click on the iOS Provisioning
Portal link on the right-hand side of the page.

2.	 Next, from the iOS Provisioning Portal page, click on the App IDs tab, then click on
the New App ID button:

Chapter 11

[363]

3.	 You will then be asked to create an App ID for your application. This App ID is a
series of characters, which will be used to uniquely identify any application, that you
create on your iPhone. It is only necessary to create an App ID once per application.
If you are implementing iAds within your applications, then the App ID must be
unique. Provide a friendly name for your Application ID and then click on the
Continue button.

4.	 Next, you will need to provide a description that will be used to identify your
application and then click on the Generate New for the Bundle Seed ID (App ID
Prefix). Ensure that you provide a suitable name for your Bundle Identifier
(App ID Suffix).

Distributing your Application

[364]

5.	 Once all details have been filled in, click on the Submit button:

In the screenshot below, you should now see the newly created App ID that you created in
the previous step, together with those you may have previously created:

What just happened?
In this section, we looked at how we can use the iOS Provisioning Portal ������������������ to create the App
IDs that will be used when we start to distribute our App to the App Store. This enables you
to associate an individual App ID to each iOS application that you develop and is particularly
useful when communicating with the iOS device hardware accessories and the Apple Push
Notifications especially when sharing data between suites of applications that you develop.
We then looked at how to create the Bundle Seed ID and Bundle Identifier for our App which
needs to be unique. When creating the Bundle Identifier, Apple recommends using the
reverse-domain style (for example, com.DomainName.AppName).

Chapter 11

[365]

Creating a Provisioning Profile
In this section, we will look at how we go about creating a Provisioning Profile so that your
application can be installed onto a real iOS device. Creating provisioning profiles gives you
the ability to assign team members who are authorized to install and test an application on
their iOS devices. When it is installed, it contains the iOS Development Certificates for each
team member, as well as the UDID (Unique Device Identifier) and the App ID.

Time for action – creating the profile
In order to create a provisioning profile, follow the simple steps below:

1.	 In the iPhone Provisioning Profile, click on the Provisioning tab and then click on the
New Profile button:

2.	 Once the New Profile button has been clicked, the provisioning profile screen
appears which is shown in the screenshot below. This screen allows you to associate
one or more development certificates with one or more devices, using the App ID
so that you can install your signed iOS applications onto a real iOS device. From this
screen, enter in MyApplications as the Profile Name, ensuring that you select all
certificates that you would like to associate with this provisioning.

3.	 Select MyFirstApp as the App ID to use.

Distributing your Application

[366]

4.	 Finally, check all the devices that you would like to provision and then click on the
Submit button once finished:

You can choose to register additional devices using the iOS Provisioning Portal
by clicking on the Devices tab and then follow the steps outlined in section
Registering devices for testing located within this document.

At this point, the provisioning profile will be shown as pending approval status. This is shown
in the screenshot below:

Chapter 11

[367]

After a few seconds, you should see that the status changes from Pending to Active. If this
does not happen, you may need to refresh your browser. At this point, you will be able to
download your mobile provisioning file:

Click on the Download button to download your provisioning certificate profile. You will
notice that when you download the mobile provisioning file, the file will be named as
MyApplications.mobileprovision.

Distributing your Application

[368]

What just happened?
In this section, we looked at how to create a provisioning profile certificate so that a signed
iOS application can be deployed to a real iOS device to see how it will perform in a real
environment. We then saw how we can associate a development certificate with one or
more devices using an Application (App ID) and Unique Device Identifier (UDID). To end the
section, we learned how to download our mobile provisioning certificate. In the next section,
we will look at how to deploy an application to an iOS device using this certificate.

Using the Provisional Profile to install an App on an iOS device
Now that we have generated our Development Certificate and have created our Provisioning
Profiles, the final thing that we need to do is create a version of our application that can be
deployed onto an iOS device. What we are going to do for this example is create a simple
Open GL ES application. We won't be doing any coding as this application will run and show
a multi-colored box bouncing up and down the screen.

Time for action – creating and deploying the app to an iOS
device

Before we proceed with creating our MyFirstApp project, we must first launch the Xcode
development environment. This can be located in the /Developer/Applications folder.
Alternatively, you can use the spotlight to search for Xcode by typing Xcode into the search
box window:

1.	 Choose Create a new Xcode project, or File | New Project.

2.	 Select the OpenGL ES Application template from the list of available templates.

3.	 Click on the Next button to proceed to the next step in the wizard.

4.	 Enter MyFirstApp as the name of the Product to create.

5.	 Select iPhone from under the Device Family dropdown.

6.	 Click on the Next button to proceed to the next step in the wizard.

7.	 Specify the location where you would like to save your project.

Chapter 11

[369]

8.	 Ensure that the Create local git repository for this project is unchecked from under
the Source Control section.

9.	 Click on the Create button to continue and display the Xcode workspace
environment.

10.	 The next step that we need to do is add the Mobile Provisioning profile that we
created in the previous sections of this chapter. Open the Organizer Window by
pressing Shift + Command + 2:

11.	 Click on the Import button and select the file MyApplications.mobileprovision.

Distributing your Application

[370]

12.	 Next, we need to associate our distribution certificate and provisioning profile with
the build. From the Build Settings tab, select the Code Signing section, select Any
iOS SDK, and choose your certificate from the drop-down list. Your certificate will
be in bold, with your provisioning profile in gray. Without a valid certificate, you
cannot deploy or upload your applications to the App Store:

Chapter 11

[371]

13.	 Next, display the Info tab so that you can specify the bundle identifier for your
application. This bundle identifier needs to be the same as the App ID you used
to register with the Developer Portal:

Distributing your Application

[372]

14.	 Now you can create an entitlements.plist. This file provides the code signing
for the application. Choose File | New | New File | Code Signing and then select
the Entitlements option:

15.	 Click on the Next button to proceed to the next step and save the file. Most people
name the entitlement file Entitlements.plist for ease of use. This file is saved to the
root folder of your application. This file has one property called get-task-allow and
has the Boolean value of this property set to YES.

16.	 Change your Active Configuration to Release and Run your application to see if all
works well. You will be asked to grant access to the certificate. Click Always Allow:

Chapter 11

[373]

What just happened?
In this section, we created a simple OpenGL ES application and added our previously created
Mobile Provisioning Profile that we created from the iOS Provisioning Portal. We also looked
at how we go about Code Signing our application and creating an Entitlements.plist
file in order for us to be able to deploy the project out to an iOS device.

Getting a Distribution Certificate for your app
Before you can submit your application for Distribution, you will need to create a
Distribution Certificate. This certificate enables the person responsible for submitting the
final applications to the iTunes store, and is referred to as the Team agent. In order for the
Team agent to submit any solutions, they must have an approved iOS Distribution Certificate.
The section below, explains how to obtain this certificate.

Time for action – getting the Distribution Certificate
In order to obtain the iOS Distribution Certificate for your application, follow these
simple steps:

1.	 Log in to the iOS Provisioning Portal and click on the Certificates tab, which is
located on the left-hand side of the panel and then click on the Distribution tab.
The Current Distribution Certificate window appears, allowing you to request
a certificate:

Distributing your Application

[374]

2.	 Click on the Request Certificate button. The Create iOS Distribution Certificate
screen appears.

3.	 Click on the Choose File button and then select the certificate request file that you
created in the previous section. Click on the Submit button once done. At this point,
the provisioning profile will be shown as Pending Issuance status. This is shown in
the screenshot below:

4.	 Our next step is to refresh the page and after a few seconds, the certificate will
be ready and you will be able to download it. Once the certificate is downloaded,
double-click on it to install it in the Keychain Access application as shown in the
screenshot below:

Chapter 11

[375]

What just happened?
In the above section, we looked at how to request and obtain a distribution certificate
in order to deploy our apps to the App Store. We looked at how we can use the iOS
Provisioning Portal to create our distribution certificate from our Keychain which we created
in the section Getting an iOS Development Certificate. Finally, we looked at how to download
and install the certificate within our Keychain Access application.

Archiving and submitting Apps using Xcode 4
Before archiving your application, ensure that the binary is self-contained. What this means
is that, if the binary relies on any static libraries, it ensures that those libraries are part of
the application binary by setting the Skip Install build setting to Yes within the Build Settings
section of the target that builds and archives the application:

Our next step is to make sure the Archive action of the scheme has the appropriate
destination set for the type of application to archive. Ensure that the Destination has been
set to use iOS Device, and the Build Configuration has been set to use the Release scheme:

Distributing your Application

[376]

Before submitting an application to the App Store, or shareing it with others, you create
an application archive which will enable you to share your application archive with other
developers and testers, or distribute it to users. Select the Product | Archive option from
the Xcode menu and it will begin to create the application archive. Eventually, the archives
organizer window will be displayed:

In order to have your application considered for inclusion on the Apple App store, you must
submit the archive to iTunes Connect. This is to ensure that your application archive passes
the essential iTunes Connect validation tests. Xcode can validate this for you before you
submit it:

Chapter 11

[377]

For more information on other ways of distributing your applications
check out the provided link made available through the Apple Developer
Connection website at: http://developer.apple.com/library/
mac/#documentation/ToolsLanguages/Conceptual/
Xcode4UserGuide/Introduction/Introduction.html.

iOS Human Interface Guidelines
When you begin creating iOS applications, it is important to keep in mind and follow the
iOS Human Interface Guidelines document that Apple provides. This document describes
the guidelines and principles that help you design a consistent user interface and user
experience for your iOS app.

This document provides you with the guidelines needed for developing applications that run
efficiently and effectively on the iOS platform. This involves considering the screen size of
your window, the memory limitations, and the ease of use.

Other areas are covered to ensure the consistency of your application as you navigate from
screen to screen, as well as principles for developing good user interfaces. This document
also includes information on how to go about providing status updates when the network is
down, or other feedback, through using messages if an error occurred or if a field cannot be
left blank.

There is also information relating to the proper use and appearance of views and controls for
Navigation and Toolbars, Alerts, Table Views, Buttons, and icons, as well as the creation of
custom icons and images.

To obtain further information about what these guidelines consist of, it is
worthwhile checking out the iOS Human Interface Guidelines document at
the following location: http://developer.apple.com/library/
ios/documentation/userexperience/conceptual/
mobilehig/MobileHIG.pdf.

Testing your application
Before submitting your application for approval to the Apple App Store, you need to ensure
that it works properly and is free from problems. The iOS simulator is a good place to start,
and although not everything can be tested within the simulator, it proves a good starting
point. Whilst your application may run perfectly within the simulator, problems may still exist
when it has been deployed to the iOS device; it is always best to deploy it to a real iOS device
running the latest OS 4.x.

Distributing your Application

[378]

You can also make use of the Instruments application to ensure that no memory leaks exist
within your application and avoid having your app crash on the user's device. If your app
crashes, it could also prevent your application from being successfully approved and being
displayed on the App Store by Apple.

Preparing your App for submission through iTunes Connect
When you have tested your application to ensure that it all works and is free from problems
and you have set up all of your accounts, you will want to start uploading your application
to the App Store. Please bear in mind that only a release version of your application can
be uploaded.

First, log into iTunes Connect and then click on the Manage Your Applications button as
shown in the screenshot below:

Click on the Add New App link to begin adding your application to the App Store as shown in
the screenshot below:

Next, we need to enter the Application details for the application we are uploading. Enter
the Application details, and then click on the Continue button to proceed to the next step.
The SKU Number is a unique identifier that you create for your app:

Chapter 11

[379]

In the next step, we specify the availability date and pricing tier for when the application
should be made available for download:

Distributing your Application

[380]

There are up to 85 pricing tiers to choose from, including an option for selling your
application for free. The screenshot below shows a small snapshot of the pricing matrix
that Apple provides:

On clicking on the Continue button, you will be directed to the Metadata screen, where you
are required to fill in the information pertaining to your application. The fields in that screen
along with their description are listed in the table below:

SCREEN FIELD DESCRIPTION

Version Number This can be anything that you like. It is preferable to start at 1.0.

Description The Application Description that can contain up to 4,000
characters.

Primary Category These contain up to 20 different categories to choose from,
including Games, Entertainment, Business, Books, and so on.

Secondary Category (Optional) You can choose from a Secondary Category.

Keywords These help return results faster when a customer is searching
for an application within iTunes.

Copyright The name of the person or entity that owns the exclusive rights
to the app, preceded by the year the rights were obtained (for
example, "2011 GenieSoft Studios").

Contact Email Address An e-mail address where users can contact you if there are
problems with your app.

Support URL A URL that provides support for the app you are adding. This
will be visible to customers on the App Store.

App URL (Optional) A URL with information about the app you are adding. If
provided, this will be visible to customers on the App Store.

Review Notes (Optional) Additional information about your app and/or your in-app
purchases. Review Notes cannot be longer than 4,000 bytes.

Chapter 11

[381]

When Apple released their iOS 3.0 release, they included a rating scheme that allowed
parents to control which applications their children could download. This screen is
compulsory and you must complete this before you can submit your application. The age
limit will change depending on how you go about rating your application. Ensure that you
rate this correctly as Apple uses this information during their internal process and reviews
how you score your application:

Avoiding rejection of your App
As with any application, there are many reasons why your application may be rejected by
Apple and can be as simple as the application crashes or does not conform to the iOS Human
Interface Guidelines. The list below outlines the various possibilities to watch out for to avoid
your application being rejected:

Application does not run on the latest iOS.

Application fails to comply with the guidelines outlined in the iOS Human
Interface Guidelines.

Has a similarity to existing features found in iOS applications.

Functionality does not work as outlined.

Application crashes on the iOS device.











Distributing your Application

[382]

Differences between your application icons, that is, large and small icons
are different.

Failure to inform the user through messages, that is, Network Unavailable or if an
error has occurred.

Collecting of personal user data without receiving their permission.

The use of Apple's private APIs (such as the built-in text-to-speech functionality)
is strictly prohibited. If they determine that your application makes use of such
functionality, it will be rejected immediately.

If you are interested in learning more about the different ways in which Apple
can reject your application, you can check out the following link provided which
breaks down each of these into the various categories: http://developer.
apple.com/appstore/resources/approval/guidelines.html.

Pricing your app
How much you should charge for your application is a tough question for all developers and
companies selling their applications on the App Store. One of the tactics that I have found
that many developers have seemed to adopt is to start selling their application at $6.99
and then, shortly after release, they temporarily drop the price by a couple of dollars, or
sometimes offer 50-80% off the price for a limited time.

By reducing the price, this will create a surefire sale, encouraging people to purchase before
the limited time expires which can also increase the number of sales for your Application
within the iTunes App Store hence getting into the top 10 or even to number 1.

Adding your App to iTunes Connect
This section shows you how you can upload your application. Before this can happen, you
will need to provide the iTunes artwork and application icon and have a screenshot of the
application. Apple prefers that you create all artwork in the PNG file format. The final images
should be 72 pixels per inch with no transparency or layers.

The artwork to be used as the main artwork for your application should be 512x512 pixels
in size and exported in PNG file format, and must be named as iTunesArtwork, with no file
extension present.

The icon used to distinguish your application on the iOS device will need to be 57x57 pixels,
with no transparency or layers. To help identify your applications icon image, it is best to
save this file as icon.png. Prior to iOS4, iPhone app icons were 57x57-pixel PNG files. For
the iPhone 4's retina display, you need one that's double that size: 114x114 pixels.









Chapter 11

[383]

For more information on creating high resolution icons, check out the Apple
Developer Documentation at: http://developer.apple.com/
library/ios/#documentation/xcode/conceptual/iphone_
development/115-Configuring_Applications/configuring_
applications.html.

As well as providing the iTunes artwork, you also need to provide up to four additional
screenshots to show the different parts of the application each of 320x460 pixels in size,
in order to allow the image to fit on your screen when you view the image via an iOS
device or the App Store. Within iOS4 and the new iPhone 4's retina display, you can create
application graphics that look sharp and crisp on the ������������������������������������� new retina display. You will need to
create high-resolution versions of your application images. These are double the size
(width x height) of the original images, and are named imageName@2x.png.

For more information on creating high resolution images, you can check
out the Apple Developer Documentation at: http://developer.
apple.com/library/ios/#documentation/2DDrawing/
Conceptual/DrawingPrintingiOS/SupportingHiResScreens/
SupportingHiResScreens.html.

Time for action – uploading the application icon and
screenshot images

In the section below, we will take a look at how we can upload the application icon and
screenshot images for our application. You will only need to add the ones highlighted by
a red rectangle. To upload the images and icon files, follow these simple steps:

1.	 First, we need to add the icon image that will be used on the App Store. ���������� This is a
large version of your app icon that will be used on the App Store. It must be at least
72 DPI and a minimum of 512x512 pixels (it cannot be scaled up). It must be flat
artwork without rounded corners.

2.	 Navigate to the iTunes Connect page under the section Uploads and click on the
Choose File button as shown under the Large 512x512 icon section heading�.

3.	 Next, we need to add the iPhone screenshots and these must be .jpeg, .jpg, .tif,
.tiff, or .png files, that is 960x640, 960x600, 640x960, 640x920, 480x320, 480x300,
320x480 or 320x460 pixels, at least 72 DPI, and in the RGB color space. Apple
recommends that you include at least three screenshots with a maximum of five.

Distributing your Application

[384]

4.	 Click on the Choose File button, located under the iPhone and iPod touch
Screenshots.

5.	 Finally, this option is purely for iPad development (which this book does not cover),
basically for iPad screenshots. These must be .jpeg, .jpg, .tif, .tiff, or .png files, that is
1024x768, 1024x748, 768x1024 or 768x1004 pixels, at least 72 DPI, and in the RGB
color space. If you wanted to add iPad screenshots, click on the Choose File button,
located under the iPad Screenshots section:

6.	 Once you have finished providing this information, click on the Save button to
submit your changes.

What just happened?
In this section, we looked at the steps involved in uploading the images and icons for our
application and learned about the different types of acceptable file formats expected by
Apple, the resolution that these images need to be in, as well as the recommended number
of images that Apple expects you to submit.

Apple takes up to a week to review your application before it appears on the App Store. You
will receive numerous e-mails from Apple when your application changes state.

Using iTunes Connect to manage your Apps
The iTunes Connect application is a fantastic tool, which you use to upload and manage your
application in the Apple App Store. By using iTunes Connect, you can achieve the following,
as described below:

Manage and upload your applications to the App Store

Chapter 11

[385]

Assess sales/trends for each of your applications

Review your contracts, tax, and banking information

Download financial reports

The ability to manage your users, for example, iTunes Connect Users or
General Users

Include an internal Application Store from within your application, which allows you
to sell optional content for your app

Request promotional codes to enable people that you know to get free copies of
your applications

Contact Apple support with any questions that you may have

You will only be able to upload a release version of your application to
iTunes Connect and the App Store.

The screenshot below shows the iTunes Connect tool which you can use to upload and
manage your applications within the App Store:















Distributing your Application

[386]

Once you have logged into iTunes Connect, it is a good idea to ensure that your banking
detail information is correct and up-to-date. Since you are selling something, you want
to ensure that you are receiving the funds and getting paid. After you have validated and
ensured that all of your banking information is up-to-date, you will need to set up accounts
for those people in your company who will need access to iTunes Connect.

The iTunes Connect website allows three different user types that can be set up to enable
access to iTunes Connect, in addition to the original person who set up the account (this is
sometimes referred to as a Legal Account):

The Admin account has the right to view, add, and delete additional accounts as well
as managing the whole iTunes Connect environment

The Finance accounts give the user access to all financial reports and contracts, as
well as tax and banking information, and sales/trend report modules

The Technical Account allows the user to manage applications and manage the
user modules

Marketing and promoting your app
So, you have submitted and installed your application on the Apple App Store, and you
are really excited to tell the world about your latest creation. Although you can make a lot
of money from selling your application, you must also be willing to put in a bit of effort to
promote your application.

In order to sell any piece of software, using the traditional ways is always the most effective.
Some of the ways are explained below:

Using the Apple's iTunes Connect to monitor/manage sales

Make use of websites, brochures, and flyers

Networking at social gatherings

Advertise in computer magazines, for example, Mac User

Update your application and change your price often

Creating and making use of application promotional codes to give to your testers

Using one or more of the items shown above, can help you gain an interest in your
application and drive sales of your application.



















Chapter 11

[387]

iOS Developer Documentation
The Xcode development suite is a good place to start, and contains a great wealth of
information for developing on iOS devices. This can be accessed from within the Xcode
development environment. Select Shift | Command | 2 to bring up the Window Organizer
window and then click on the Documentation icon:

The Apple website contains a number of freely available and downloadable reference
materials for the iPhone. If you require additional documentation, it can be found on the
Apple Developer Connection website using the following URL: http://developer.apple.
com/index.html.

Distributing your Application

[388]

Have a go hero – creating App IDs and submitting your App
Now that you have a good working knowledge on how to go about creating an application
ID for your application, the task will be to build a deployable version of your application and
send it to some of your closest friends to have them test it on their iOS devices. When you
are confident that the application is good enough to be published, submit it to the iTunes
Connect App Store:

1.	 You will need to build a full release version of your application. You can refer to the
section Build Configurations – debug to release located within this chapter.

2.	 Next, you will need to obtain each person's UDID and add this to your provisioning
profile. You can refer to the section(s) Registering Devices for Testing, Creating
Application IDs and Creating a Provisioning Profile, again all located within
this chapter.

3.	 When you are satisfied that the application is free from bugs and are ready to
submit your application to the Apple App Store, you will need to create and obtain
a Distribution Certificate. For help on this area, refer to the section Getting a
Distribution Certificate for your app.

Once you have a working application, you will have mastered how to create application IDs
for your application as well as know how to create Provisioning profiles and distribution
certificates for submission to iTunes Connect and the Apple App Store.

Pop quiz – distribution of your App
1.	 What does iTunes Connect do?

a.	 Allows you to manage your application after you have uploaded it to the
iTunes App Store

b.	 Enables you to connect to iTunes to play music

c.	 I don't know

2.	 Where would you find the UDID for your iOS device?

a.	 From the iOS Provisioning Portal

b.	 The Organizer application located under the Window | Organizer menu
item

c.	 All of the above

Chapter 11

[389]

3.	 What is the purpose of creating Provisioning Profiles?

a.	 It allows you to deploy and test your app on an iOS device

b.	 Enables you to have your app run on multiple devices

c.	 Allows you to give your a copy of your App to your friends to test

d.	 All of the above

4.	 Where can you modify the settings for iPhone icons?

a.	 This can be modified in the plist file and by adding the setting
UIPrerenderedIcon and setting the option to True

b.	 This can be done via the iOS Provisioning portal

c.	 I don't know

5.	 When building your application, what do we mean by release?

a.	 Releases your application to the world and breaks free

b.	 The release step builds a version of your application with the extension
.app that will be sent to the iTunes App Store or ad hoc via e-mail

c.	 All of the above

Summary
In this final chapter, we looked at the steps required to submit applications to the iTunes
App Store and how we can use Xcode to create separate build configurations for debug
and release and how we go about signing up to the iOS Development program.

We also looked at how we go about creating provisioning profiles, Application IDs, and how
to register devices required for testing. To finish up, we looked at what are the best ways to
go about pricing out Apps, and the ways in which we can avoid our application from being
rejected by Apple by following the iOS Human Interface Guidelines.

We have now come to the end of the book. I hope you have enjoyed reading it as much
as I did writing it. This is certainly not the end of the road for you. There is a lot of stuff to
explore in the world of Xcode and iPhone. Don't worry; you won't be on your own. There are
many developers out there who are more than willing to help you in case you get stuck at
any point of time at http://developer.apple.com/devforums/.

Good luck with your Xcode journey. I hope to see your app on the Apple App Store soon!

Pop Quiz Answers

Chapter 3

Actions and Rotatable Interfaces
1. 2. 3.

d. a., b., c., d., e. a.

Chapter 4

Core Data/Media Playback and Core Location
1. 2. 3. 4. 5. 6.

c. b., d. b. c. a. b.

Chapter 5

Table Views/repositioning Controls
1. 2. 3. 4.

b. c. c. b.

Pop Quiz Answers

[392]

Chapter 6

Frameworks
1. 2. 3.

b. d. d.

Activity Indicators
1. 2. 3.

c. b. c.

Alert Dialogs and Button Indexes
1. 2.

c. c.

Sounds and vibrations
1. 2. 3.

c. c. c.

Chapter 7

Tap counts
1. 2.

a. c.

Tracking and identifying swipes
1. 2.

d. c.

Pinches and transformations
1. 2. 3.

c. b. b.

Appendix

[393]

Motion events
1. 2.

a., d., e. c.

Sensing orientation
1. 2.

c. b.

Chapter 8

All about debugging projects
1. 2. 3. 4. 5.

b. a. c., d. b. a., c.

Chapter 9

Subversion/Version Editor
1. 2. 3. 4. 5. 6.

b. c. c. c. c. d.

Chapter 10

Playing with Instruments
1. 2. 3. 4. 5.

c. c. a., c., d. a. a., b.

Chapter 11

Distribution of your App
1. 2. 3. 4. 5.

a. b. a. a. b.

Index
Symbols
#import statement 21
+ Add Attribute button 106
+ Add Entity button 106
.h file type 20
[moviePlayerController play] statement 129
@implementation compiler directive 22
@implementation directive 22
@interface directive 21
@private, access privilege 22
@property directive 71, 153, 154
@property method 46
@protected, access privilege 22
@public, access privilege 22
@synthesize directive 153, 154

A
accelerometer

didAccelerate method 249
accelerometer, exploring 249
AccelGyroExample application 258
AccelGyroExampleViewController.h

implementation file 255
AccelGyroExampleViewController.h interface file

258, 259
AccelGyroExampleViewController.m

implementation file 256, 257
Actions (IBActions) 145
action sheet button presses

responding to 215-217
actionSheet property 215

action sheets
alerts, handling via sounds 217-220
alerts, handling via vibrations 217-220
appearance, changing 220
associating, with view 214
customizing 217
Display Action Sheet method, implementing

214
items, adding 220
parameters 215

action sheets, parameters
cancelButtonTitle parameter 215
delegate parameter 215
destructiveButtonTitle parameter 215
initWithTitle parameter 215
OtherButtonTitles parameter 215

active/inactive breakpoints, unified navigation
UI 54

activityindicator object 209
activity monitor 332, 342
Add New User button 352
Add New User option pane 352
AddressBook.Framework 101
address book component 13
address book identities

assigning, within organizer 319-321
AddressBookUI.Framework 101
afterDelay property 209
alert dialog button presses

additional buttons, adding 213
events, creating 213
responding to 211, 213

[396]

alerts
AudioToolbox Framework, adding to application

203, 204
dialog button presses, responding to 211-213
generating 202
GetUsersAttention application, creating

202, 203
alerts, handling

via sounds 217-220
via vibrations 217-220

alerts component 15
alertView property 211
allocations 332, 342
alloc keyword 22
APIs

using, in iPhone development 102
app

adding, to iTunes Connect 382
archiving, XCode 4 used 375-377
icon, uploading 383, 384
managing, iTunes Connect used 384, 386
marketing 386
preparing for submission, through iTunes

Connect 378-381
pricing 382
promoting 386
rejection, avoiding 381, 382
screenshot images, uploading 383, 384
submitting, XCode 4 used 375-377
testing 377

AppKit.Framework 101
Apple Developer Documentation

URL 271, 383
Apple Human Interface Guidelines

URL 78
Apple website

URL 8
application. See app
Application (App ID) 368
applicationDidFinishLaunching$ method 74
application ID's

creating 362-364
application life cycle

about 73, 74
application status bar / activity window, Xcode 4

workspace environment 49

Application ToolBar, Xcode 4 workspace
environment 48, 49

applicationWillTerminate$ method 74
App Status, notification 354
App URL (Optional) 380
arrVegetables array 161
Assistant button 46
audio file

playing 118, 119
AudioServicesPlaySystemSound method 218
AudioToolBox.Framework 101
AudioToolbox Framework

adding, to application 203, 204
AudioUnit.Framework 101
automated testing, instruments 343
automation 332, 342
AVAudioSession class

about 117
application, creating to play audio file 119
audio file, playing 117-119
AVAudioPlayer, framework 118
AVAudioRecorder, framework 118
MoviePlayer application, creating 125-131
movie playing, media player used 118, 125
MusicPlayer application, creating 119-124

AVFoundation.Framework 101
AV foundation fameworks 117

B
backgroundColor method 231
behaviors preference pane, Xcode workspace

preferences 61
blank template 332
bonjour component 12
breakpoints

debugging with 272
disabling 273
editing 272
navigator, revealing 273

BSD (Berkeley Standard Distribution) component
12

button controls 192
buttons

applications, creating 193-195
using 193

[397]

C
calculatePurchase method 152
cancelButtonTitle, alert parameter 211
cancelButtonTitle parameter 215
case statements 231
cellForRowAtIndexPath method 198
central search interface, unified navigation UI

listing, in project 52, 53
certificates component 12
Certificate Signing Request (CSR) 355
CFNetwork.Framework 101
CFURLRef parameter 219
CGAffineTransformRotate function 241
CGPoint class 241
CGRect object 46
CGRect variable 241
clickedButtonIndex method 211, 215
CLLocationManagerDelegate protocol 133
CLLocationManager instance 131
CLLocationManager method 131
CLLocation method 131
CLLocation object 131
CMAccelerometerData, CORE MOTION CLASS

250
CMAttitude, CORE MOTION CLASS 250
CMDeviceMotion, CORE MOTION CLASS 250
CMGyroData, CORE MOTION CLASS 250
CMMotionManager, CORE MOTION CLASS 250
CMMotionManager class 259
Cocoa

about 16
and Cocoa touch, differences 16
design patterns 16
Model-View-Controller (MVC) design pattern

16
cocoa-Accelerometer component 15
cocoa-touch layer, iOS architecture layer

Accelerometer component 15
alerts component 15
controllers component 15
Geographical component 15
Gyroscope component 15
image picker component 15
Localization component 15
multi-touch controls component 15

multi-touch events component 15
people picker component 15
view hierarchy component 15
web views component 15

Cocoa touch
and Cocoa, differences 16

code assistants, unified navigation UI 55
code completion

about 286
accepting, steps 286-288

code editor
debugging features 275, 276

code editor window, Xcode Debugger 264
code snippets library, unified navigation UI 57,

58
collections component 13
components

making, to work 81
console output window, Xcode Debugger 265
Contact Email Address 380
Continue button 352, 353
contract, notification 354
Controller 17, 145
controllers component 15
control objects

binding 82, 84
controls

adding, to user interface 67
adding, to view 205-207
relocating, within view on rotation 80, 81
repositioning 84, 86

Copyright 380
core animation 342
core application architecture

layer 72
CoreAudio.Framework 101
core data

example 141
CoreData.Framework 101
core data application

+ Add Attribute button 106
+ Add Entity button 106
application delegate and view controller,

connecting 111
CoreDataExampleAppDelegate.h interface file

108

[398]

CoreDataSample.xcdatamodel file 106
coreDataViewController.h interface file 112
coreDataViewController.m implementation file

113
coreDataViewController class 110
creating 104
dealloc() method 116
Next button 105
Save button 106
saveData() method 114-116
searchData() method 115
setValue method 115
valueForKey method 116
viewController object 109
viewDidLoad() method 116
viewDidUnload method 116
With XIB for user interface option 107

CoreDataExampleAppDelegate.h interface file
108

core data frameworks 103, 104
CoreDataSample.xcdatamodel file 106
coreDataViewController.h interface file 112
coreDataViewController.m implementation file

113
coreDataViewController class 110
CoreFoundation.Framework 101
CoreGraphics.Framework 101
CoreLocation.Framework 101
core location component 13
core location framework

about 131
adding, to project 132, 133
application, making location aware 131, 132
CLLocationManagerDelegate protocol 133
description method 134
didFailWithError method 135
didUpdateToLocation method 134, 135
locationManager:didUpdateToLocation method

134
NSLog function 134
stopUpdatingLocation method 134, 135

core motion framework 249
core OS layer, iOS architecture layer

about 11
bonjour component 12
BSD (Berkeley Standard Distribution) compo-

nent 12

certificates component 12
file system component 12
keychain component 12
Mach 3.0 component 12
OS X Kernel component 12
power management component 12
security component 12
sockets component 12

core services layer, iOS architecture layer
address book component 13
collections component 13
core location component 13
file access component 13
net services component 13
networking component 13
preferences component 13
SQLite component 13
threading component 13
URL Utilities component 13

count property 162
CPU sampler 342
Custom Picker project

controls binding, actions used 188-191
controls binding, outlets used 188-191
creating 186-188

D
DashCode component 8
data, unified navigation UI

debugging, with compressionable stack traces
54

data hiding 17
dataOfType method 95
DatePickersExampleViewController.m

implementation file 184
dealloc function 44
dealloc() method 116, 179, 184, 240, 241, 258
debugger toolbar, Xcode Debugger 262
DebuggingExample project, Xcode Debugger

breakpoints, debugging with 272, 273
creating 266, 267
debugging 268
errors, handling 268
fix-it, using to correct code 270
LLVM compiler, setting up 270, 271
logic errors 269, 270

[399]

NSLog, using to track changing properties
273-275

running 268
runtime errors 269
syntax errors 269

delayFactor
adjusting 235

delegate, alert parameter 211
delegate parameter 215
Description 380
description method 134
design pattern 16, 144
destructiveButtonTitle parameter 215
devices

registering, for testing 360-362
device tilting

AccelGyroExample project, creating 254-258
detecting 254

didFailWithError method 135
didUpdateToLocation method 134, 135
disassembly window, Xcode Debugger 263
Display Action Sheet button

implementing 214
displayActionSheet method 216, 220
displayAlertDialog method

about 210-213
implementing 210, 211

distanceBetweenPoints function 241
distanceBetweenPoints method 238
distributed builds, Xcode workspace preferences

63
Document-based application

creating 90-93
file, loading 95-97
file, saving 95-97

documentation, Xcode workspace preferences
62

Dog class 18
doGryroRotation function 259
doubleValue method 282
Download button 367

E
energy diagnosis, instruments 344
energy diagnostics 342
Enroll Now button 348

errors
handling 268
logic errors 269, 270
runtime errors 269
syntax errors 269

events
activity indicators 210
creating 207
Display Alert Dialog method, implementing

210, 211
second activity indicator, adding 209, 210
Show Activity Indicator method, implementing

207-209
ExternalAccessory.Framework 101

F
FavoriteColor application

creating 155, 156
FavoriteColorViewController.h interface file 158
file

versions, comparing 311, 312
file access component 13
file activity 332, 342
files, tracking

repository organizer used 315, 316
files, unified navigation UI

listing, in project 50, 51
file statuses, Xcode

features 308-311
file system component 12
file templates library, unified navigation UI 56
financial report, notification 354
fix-it method

about 261, 288
LLVM compiler, setting up 270, 271
using, to correct code 270

fonts & colors preference, Xcode workspace
preferences 61

Foundation.Framework 101
framework APIs

calendar access 140
core data, example 141
In-App SMS 140
photo library access 140
quick look 140

[400]

frameworks
about 100, 102
using, in iPhone development 102

G
GameKit.Framework 102
general button, Xcode workspace preferences

61
generateTextView method 196, 197
Geographical component 15
getter 153
GetUsersAttention application 203

creating 202, 203
GetUsersAttentionViewController.h interface

file 207
GetUsersAttentionViewController.m

implementation file 212
Git

address book identities, assigning within
organizer 319-321

new Xcode project, creating 318, 321
project, adding to subversion repository 321
using, to manage multiple projects 317

GUI (Graphical User Interface) 16
gyroscope, exploring 249
Gyroscope component 15

H
hasOrientationChanged method 253
header files 20
HelloXcode4_GUI application

creating 67-69
HelloXcode4_GUI application, architecture

about 70
HelloXcode4_GUIAppDelegate.h 71
HelloXcode4_GUIAppDelegate.m 71
Main.m 70

hideKeyboard method 88
hideWhenStopped property 209

I
IB

about 66
controls, adding to user interface 67
HelloXcode4_GUI application, architecture 70

HelloXcode4_GUI application, creating 67-69
used, for implementing MVC 145

icon.png 382
id directive 153
if-else clause 283
imageName@2x.png 383
image picker component 15
implementation files 20
initWithFormat function 84
initWithTitle, alert parameter 211
initWithTitle parameter 215
inspection range control 328
instruments

about 326
adding 335, 339, 340
components 342, 343
configuring 340, 341
features 327
inspection range control 328
InstrumentsExample project, creating 329, 330
instruments library, using 335, 336
library button 328
locating, with library 336-338
loop button 327
memory leaks, fixing 328, 329
pause/resume button 327
project, profiling 330-334
project, running 330-334
record/stop button 327
removing 339, 340
search field 328
target menu 328
time/run control 328
view control 328

instruments, in Xcode 4
adding, to project 345
automated testing 343
energy diagnosis 344
iPhone graphics performance 344
performance and power analysis 343
time profiler 344

instruments, template
activity monitor 332
allocations 332
automation 332
blank template 332
file activity 332

[401]

leaks 332
threads 332
time profiler 332
zombies 332

instruments, types
activity monitor 342
allocations 342
automation 342
core animation 342
CPU sampler 342
energy diagnostics 342
file activity 342
leaks 342
OpenGL ES Driver 343
system usage 343
threads 343
time profiler 343

instruments component 9
InstrumentsExample project

creating 329, 330
instruments library

using 335, 336
view icons, view mode types 336
view icons and descriptions, view mode types

336
view icons and labels, view mode types 336
view small icons and labels, view mode types

336
Integrated Development Environment (IDE) 10

9
Interface Builder. See IB
Interface Builder component 9
interface files 20
IOKit.Framework 102
iOS4 SDK

features 28
iOS applications

developing, MVC design used 144
iOS architecture, layers

about 11
Ccore services layer 13
cocoa-touch layer 14, 15
core OS layer 11, 12
core services layer 13
media layer 14

iOS cocoa-touch layer
URL 15

iOS developer
URL 8

iOS Developer Documentation
about 387
app, submitting 388
app IDs, creating 388

iOS Developer Program 357
iOS development certificate

getting 357-360
request, generating 354-357

iOS distribution certificate
obtaining, steps 373-375

iOS Human Interface Guidelines 377
iOS native maps application 139
iOS SDK (software development kit)

about 8
installing 33, 34
URL 32
Xcode developer tools, removing 35

iPhone application
enhancing 87
HelloXcode4 example, hiding 88, 89
keyboard, hiding 87, 88
writing 38

iPhone Developer Program 348, 349
iPhone development

APIs, using 102
frameworks, using 102

iPhone development team
setting up 349
setting up, steps 350-354

iPhone graphics performance
tracking, OpenGL ES Driver used 344

iPhone OS4 SDK, features
apps folder 29
game center 29
iAd 29
multi-tasking 28

iPhone SDK core components
about 8
DashCode component 8
instruments component 9
interface builder component 9
iPhone Simulator component 8
Xcode component 8

[402]

iPhone Simulator
about 8, 10
features 25

isEqualToString method 213
isOn property 176
issues, unified navigation UI

tracking 53
issues navigator

viewing 284
items

adding, to existing repository 303
iTunes Connect

app, adding 382
app, preparing for submission 378-380
using, to manage apps 384-386

iTunes Connect User option 352

J
jump bar, unified navigation UI

collection 55

K
key bindings, Xcode workspace preferences 62
keychain component 12
Keywords 380

L
labelOutput string 229
labels 193
landscape left, orientation method 79
landscape right, orientation method 79
lblColor control 157
leaks 332, 342
library button 328
LLVM (Low Level Virtual Machine) 9
LLVM Compiler 2.0, unified navigation UI 55
Localization component 15
local repositories 298
local subversion repository

setting up 298-300
locationManager

didUpdateToLocation method 134
locations, Xcode workspace preferences

about 62

archives location 63
build location 63
derived data 62
snapshots location 63

logic errors 269, 270
Log Mode

using, to list revisions chronologically 314
logs, unified navigation UI

logs, unified navigation UIcollection 55
loop button 327

M
Mach 3.0 component 12
main function 40, 73
MainWindow.xib file 71, 72
managed object 104
managed object context 104
managed object model 104
Manage Schemes… option 348
map kit framework

about 135, 136
simple geographical application, creating

136-139
mapView object 138
media layer, iOS architecture layer

about 14
audio mixing component 14
audio recording component 14
core animations component 14
core audio component 14
image formats component 14
OpenGL component 14
OpenGL ES component 14
PDF component 14
quartz component 14
video playback component 14

media library, unified navigation UI 59
media player

used, for playing movie 125
MediaPlayer.Framework 102, 203
memory leaks

detecting 281, 282
fixing 328

message, alert parameter 211
MessageUI.Framework 102
MKMapTypeHybrid, map type constant 139

[403]

MKMapTypeSatellite, map type constant 139
MKMapTypeStandard map type constant 139
MobileCoreServices.Framework 102
Model 17, 145
Model-View-Controller. See MVC
motionBegan

motion:withEvent$ method 242
motionCancelled

motion:withEvent$ method 242
motionCancelled event 246
motionEnded

motion:withEvent$ method 242
MoviePlayer application

creating 125-131
moviePlayerController object 129, 130
MoviePlayer project 125
MoviePlayerViewController.m implementation

file class 127
MPMediaItemCollection framework 119
MPMediaItem framework 118
MPMediaPickerController framework 118
MPMoviePlayerController class 131
MPMoviePlayerController framework 118
MPMoviePlayerController object 129
MPMoviePlayerController pointer 130
MPMusicPlayerController framework 119
multi-touch controls component 15
multi-touch events component 15
multiple projects

managing, Git used 317
MultiTouch architecture 224-226
MultiTouch gesture 236
MusicPlayer application

creating 119-125
MVC

about 16, 17, 145
controls building, actions used 147-152
controls building, outlets used 147-152
design pattern 144
implementing, interface builder used 145
implementing, XCode used 145
input field, declaring as property 154
Pizza order application, building 145-147
view controllers, implementing 152, 153
views, implementing 152

MyDocument.h interface file 92

N
navigation-based applications 168-169
net services component 13
networking component 13
New Profile button 365
Next button 105
notification methods

exploring 201, 202
NSArchiver class 97
NSAttributedString class 96
NSDateFormatter object 185
NSLog

using, to track changing properties 273-275
NSLog function 134, 273, 275
NSLog statement 270
NSObject class 21
NSString argument 274
NSString buttonTitle 213, 217
NSString variable buttonText 216
NSUnarchiver class 97
numberOfRowsInSection method 198
numberOfSectionsInTableView method 165, 198

O
Object-Oriented programming

about 17
data hiding 17-19

object controls
adding, to view 74-78

Objective-C
.h, file type 20
.m, file type 20
about 20
directives 21
files, type 20

Objective-C classes
@implementation directive 22
@interface directive 21
about 21
access privileges 22
instantiation 22

object library, unified navigation UI 58
object model

managed object 104

[404]

managed object context 104
managed object model 104

ofType method 219
OpenAL.Framework 102
OpenGLES.Framework 102
OpenGL ES Driver 343

used, for tracking iPhone graphics performance
344

orientation
sensing 250, 253

OrientationExample application
modifying 253

OrientationExample project 253
creating 250-253

OS X Kernel component 12
OtherButtonTitles, alert parameter 211
OtherButtonTitles parameter 215
otherButtonTitles property 213, 248
Outlets (IBOutlets) 145

P
past check-ins

checking, Track Blame used 313
pause/resume button 327
payment, notification 354
people picker component 15
performance and power analysis, instruments

343
pickers

about 181
controls binding, actions used 183-185
controls binding, outlets used 183-185
Custom Picker project, creating 186-188
custom pickers 186
Date Picker project, creating 182
date pickers 181, 182

pinches
detecting 236
multiple fingers, handling 241
PinchExample project, creating 236-240

PinchExample application 240
PinchExample project

creating 236-240
PinchExampleViewController.h interface file

237, 240

PinchExampleViewController.m implementation
file 237-239

Pizza order application
building 145-147
controls binding, actions used 147-152
controls binding, outlets used 147-152

PizzaOrdersViewController.h interface file
147, 151

PizzaOrdersViewController.m implementation
file 148, 152

playAlertSound method 218
playMovie function 128
portrait, orientation method 79
Portrait upside-down, orientation method 79
power management component 12
pre-processor directive 21
preferences component 13
Primary Category 380
program build log

viewing 284, 285
project

breakpoints, debugging with 272, 273
debugging 268
errors, handling 268
fix-it, used for correcting code 270
LLVM compiler, setting up 270, 271
logic errors 269
properties tracking, NSLog used 273-275
running 268
runtime errors 269
syntax errors 269

provisioning profile
app, creating to iOS device 368-373
app, deploying to iOS device 368-373
creating 365-368
using, to install app on iOS device 368

push 168

Q
QuartzCore.Framework 102

R
readFromData method 96, 97
record/stop button 327
remote repositories 298

[405]

repository
creating 297
in Xcode, configuring 300
items, adding 303
local repositories 298
local subversion repository, setting up 298-300
project, checking 305-308
remote repositories 298
subversion repository, configuring 300-302
TapExample project, adding 303-305
types 298

repository, in Xcode
configuring 300
subversion repository, configuring 300-302

repository organizer
used, to tracking files 315, 316

resignFirstResponder message 88
resignFirstResponder method 87
resizable interface 79
Review Notes (Optional) 380
revisions

comparing, Timeline used 312, 313
listing chronologically, log mode used 314
selecting, Timeline used 312, 313

RootViewContoller.m 160
RootViewController.h 160
RootViewController.m implementation file 163
RootViewController.xib 160
rotatable interface

about 79
controls, relocating within view 80, 81
enabling 79, 80

runtime errors 269

S
Save button 106, 356
Save Changes button 354
saveData() method 114-116
scalingMode property 129
scheme

defining, scheme editor used 277, 278
defining for project builds, scheme editor used

276
scheme editor

used, for defining scheme 277, 278
ScrollingViews application 180

ScrollingViews project
controls binding, actions used 179, 180
controls binding, outlets used 179, 180
creating 177-179

ScrollingViewsViewController.m implementation
file 179

searchData() method 115
search field 328
Secondary Category (Optional) 380
Security.Framework 102
security component 12
segmented controls 169
Sender directive 153
setter 153
setValue method 115
ShakeExample application 246

modifying 248
ShakeExample project

creating 243, 244
ShakeExampleViewController.m implementation

file 243-245
shakes

detecting 242
motionBegan method, implementing 245-247
motionCancelled method, implementing

245-247
motionEnded method, implementing 245-247
motion events 248, 249
ShakeExample application, modifying 248
ShakeExample project, creating 243, 244

shouldAutorotateToInterfaceOrientation$
message 79

Show Activity Indicator method
implementing 207-209

showInView$self.view method 215
showProgressDismiss method 209
showProgress event 209
simple database application

building 104
core data application 104-108

sliders 169
SliderValue label 176
sockets component 12
Software Development Kit (SDK) 31
sorted symbols, unified navigation UI

listing, in project 51, 52
SoundID variable 220

[406]

source-code management (SCM) 294
source-control, Xcode

features 308-311
Source Configuration Management (SCM) 10
Source Control Management (SCM) 308, 317
SQLite component 13
square_root function 20
stack trace panel, Xcode Debugger 263
startAnimating method 209
startGyroUpdates, CMMotionManager Method

260
startGyroUpdatesToQueue function

about 259
withHandler, CMMotionManager Method 260

startUpdatingLocation method 131
static analysis 261, 288
static analysis result

Static Analyzer, running 279
viewing 278

stopAnimating method 209
stopGyroUpdates, CMMotionManager Method

260
stopUpdatingLocation method 134, 135
StoreKit.Framework 102
Submit button 362
subversion

about 296
advantages 296
local subversion, installing 296, 297

subversion repository
project, adding 321
project, adding to 321

Support URL 380
SwipeExample project

creating 232-235
swipes

background, changing 235
delayFactor, adjusting 235
detecting 231
identifying 236
SwipeExample project, creating 232-234
tracking 236

switches 169
SwitchesSlidersSegments project

creating 170-172
SwitchesSlidersSegmentsViewController.m

implementation file 173, 176

switch statement 167
syntax errors 269
SystemConfiguration.Framework 102
System Sound Services class 202
system usage 343

T
tableView

cellForRowAtIndexPath method 161
tableView class 162
Table View example

modifying 198
TableViewExample application 166, 168
table views

implementing 159
row items, grouping in TableViewExample

application 163-168
Table view application, creating 159-162

tapCountLabel control 230
TapExample application 228, 230
TapExample project 226

adding, to repository 303-305
creating 226-228

TapExampleViewController.h interface file 228
TapExampleViewController.m implementation

file 228, 229
taps

controls, binding 228-230
detecting 226
program, modifying to change background 231
TapExample project, creating 226-228

target menu 328
text editing, Xcode workspace preferences 62
text fields

about 192
applications, creating 193-195
using 193

text property 193
textStorage property 97
TextView control 195
text views

about 192
applications, creating 193-195
using 193

TextViewsandButtonsViewController.h interface
file 197

[407]

TextViewsandButtonsViewController.m
implementation file 196

threading component 13
threads 332, 343
time/run control 328
Timeline

used, for comparing revisions 312, 313
used, for selecting revisions 312, 313

time profiler 332, 343
time profiler, instruments 344
titleForHeaderInSection method 198
touchesBegan

touches method 229
touchesMoved method 239, 241
Track Blame

using, to check past check-ins 313
transformWithRotation method 239
transformWithScale method 238
txtUsername control 84

U
UIAcceleration class 249
UIAccelerometer class 249, 259
UIAccelerometerDelegate protocol 259
UIActionSheet class 202, 215
UIActivityIndicator class 209
UIActivityIndicatorView class 207
UIActivityIndicatorViewStyleWhiteLarge style

208
UIAlertView alert class 209, 211
UIAlertView class 202, 207, 211
UIAlertView class variable 248
UIAlertView control 208
UIAlertView object 212, 216
UIApplication class 70
UIApplication instance 224
UIApplicationMain() function 70
UIApplication object 40, 70, 71, 73
UIBarStyle class 217
UIButton button 67, 192
UIColor class 267
UIDeviceOrientation class 253
UIDeviceOrientationDidChangeNotification

notification method 250
UIEvent events 224
UIKit.Framework 102

UILabel 75
UILabel controls 147
UILabel label control 67
UILabel objects 113
UIResponder class 224, 225
UIResponder event 226
UIResponder motion 244
UIResponder responder chain 244
UIScrollView class 177
UITextField control 146, 152
UITextField field 67
UITouch class 224, 241
UITouchPhaseBegan, UITOUCH PHASE EVENT

226
UITouchPhaseCancelled, UITOUCH PHASE EVENT

226
UITouchPhaseEnd, UITOUCH PHASE EVENT 226
UITouchPhaseMoved, UITOUCH PHASE EVENT

226
UITouchPhaseStationary, UITOUCH PHASE

EVENT 226
UIViewController class 225
UIView object 42
UIView variable 241
UIWindow instance 224
unified navigation UI

about 50
active/inactive breakpoints 54
central search interface 52, 53
code assistants, using 55
code snippets library 57, 58
data, debugging with compresssionable stack

traces 54
files in project, listing 50, 51
file templates library 56, 57
issues, tracking 53
jump bar 55
LLVM Compiler 2.0 55
logs, collection 55
media library 59
object library 58
static analysis, using to find potential problems

53
symbol navigator 51, 52
version editor 56
Xcode's development environment settings,

resetting 60

[408]

unique device identifier (UDID) 360, 368
URL Utilities component 13
user interface

building 205
controls, adding to view 205-207

userName 152
UsingGitExample project 318

V
valueForKey method 116
version editor

in Xcode 4 294, 295
local subversion server, installing 296, 297
subversion 296

version editor, unified navigation UI 56
Version Number 380
vfiew control 328
vibratePhone method 218
View 17
view

about 17, 145
action sheets, associating 214
implementing 152

view based application template
application, creating with buttons 193, 194
application, creating with text fields 193, 194
application, creating with text view 193, 194
button controls 192
controls binding, actions used 156, 158,

173-197
controls binding, outlets used 156, 158,

173-197
creating 154
Custom Picker project, creating 186-188
custom pickers 186
Date Picker project, creating 182, 183
date pickers 181
FavoriteColor application, creating 155, 156
labels 193
navigation-based applications 168, 169
pickers 181
row items, grouping in TableViewExample

application 163-167
row items, grouping into sections 163
ScrollingViews project, creating 177-179

segmented controls 169, 170
sliders 169, 170
switchers 169, 170
SwitchesSlidersSegments project, creating

170-172
Table view application, creating 159-162
Table View example, modifying 198
table views, implementing 159
text fields 192
text view 192
user input, handling 192
user output, handling 192
web views 169, 170

viewController object 109
view controllers

implementing 152, 153
input field, declaring as view controller property

154
viewDidAppear method 244
viewDidLoad() method 116, 138, 175, 188, 330,

334
viewDidUnload method 116
view hierarchy component 15
view icons, view mode types 336
view icons and descriptions, view mode types

336
view icons and labels, view mode types 336
view property 42
view small icons and labels, view mode types

336

W
web views 169, 170
web views component 15
With XIB for user interface option 107
workspace 36
workspace settings, Xcode 4 workspace

environment 49

X
Xcode

about 10
file statuses 308-311
repository, configuring 300

[409]

source-control features 308-311
used, for implementing MVC 145

Xcode's development environment settings,
unified navigation UI 60

Xcode 4
about 9
instruments 343
used, for archiving apps 375-377
used, for submitting apps 375-377
version editor 294, 295

Xcode 4 workspace environment
about 48
application status bar/activity window 49
Application ToolBar 48, 49
workspace, settings 49

Xcode component 8
Xcode Debugger

about 261, 262
activity viewer 276
code completion, using 286-288
code editor, debugging features 275, 276
code editor window 264
console output window 265
debugger toolbar 262
disassembly window 263
exploring 275
issues navigator, viewing 284
memory leak, detecting 281, 282
progress window 276
program build log, viewing 284, 285
project, configuring for automatic Static

Analysis 280, 281
scheme defining for project builds, scheme

editor used 276
schemes defining, scheme editor used 277, 278
stacks, navigating through 289
stack trace panel window 263
static analysis results, viewing 278
static analyzer 290
Static Analyzer, running 279, 280
threads, navigating through 289
uninitialized variable, instance detecting

282, 283
Xcode, stopping from alerting 288, 289

Xcode developer set of tools
about 23
interface builder 23
iPhone simulator 23
Xcode instruments 26, 27, 28
Xcode Integrated Development Environment

(IDE) 23
Xcode developer tools

removing 35
Xcode development environment

about 35, 36, 67, 368
iPhone application, writing 38-44
new project, creating 37
new Xcode Assistant, working with 46, 48
older projects, migrating into new environment

37
single-development environment, working

within 36
Xcode Integrated Development Environment

(IDE) 24
Xcode screen 23
Xcode workspace preferences

about 60
behaviors preference pane 61
distributed builds preference 63
documentation preference 62
fonts & colors preference 61
general button 61
key binding preference 62
locations preference 62, 63
source trees preference 63
text editing preference 62

xib file 66

Z
zombies 332, 343

Thank you for buying
Xcode 4 iOS Development Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Core Data iOS Essentials
ISBN: 978-1-849690-94-2 Paperback: 340 pages

A fast-paced, example-driven guide guide to data-
drive iPhone, iPad, and iPod Touch applications

1.	 Covers the essential skills you need for working with
Core Data in your applications

2.	 Particularly focused on developing fast, light weight
data-driven iOS applications

3.	 Builds a complete example application. Every
technique is shown in context

4.	 Completely practical with clear, step-by-step
instructions

iPhone JavaScript Cookbook
ISBN: 978-1-849691-08-6 Paperback: 328 pages

Clear and practical recipes for building web
applications using JavaScript and AJAX without
having to learn Objective-C or Cocoa

1.	 Build web applications for iPhone with a native look
feel using only JavaScript, CSS, and XHTML

2.	 Develop applications faster using frameworks.

3.	 Integrate videos, sound, and images into your
iPhone applications

4.	 Work with data using SQL and AJAX

Please check www.PacktPub.com for information on our titles

Cocos2d for iPhone 0.99 Beginner’s Guide
ISBN: 978-1-849513-16-6 Paperback: 368 pages

Make mind-blowing 2D games for iPhone with this
fast, flexible, and easy-to-use framework!

1.	 A cool guide to learning cocos2d with iPhone to get
you into the iPhone game industry quickly

2.	 Learn all the aspects of cocos2d while building three
different games

3.	 Add a lot of trendy features such as particles and
tilemaps to your games to captivate your players

4.	 Full of illustrations, diagrams, and tips for building
iPhone games, with clear step-by-step instructions
and practical examples

jQuery Mobile First Look
ISBN: 978-1-849515-90-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid Mobile Web Development

1.	 Easily create your mobile web applications from
scratch with jQuery Mobile

2.	 Learn the important elements of the framework and
mobile web development best practices

3.	 Customize elements and widgets to match your
desired style

4.	 Step-by-step instructions on how to use jQuery
Mobile

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Xcode 4 Tools for iPhone Development
	Development using the Xcode tools
	iPhone SDK core components

	Inside Xcode, Cocoa, and Objective-C
	The iPhone Simulator
	Layers of the iOS architecture
	The Core OS layer
	The Core Services layer
	The Media layer
	The Cocoa-Touch layer

	Understanding Cocoa, the language of the Mac
	What are Design Patterns?
	What is the difference between Cocoa and Cocoa-Touch?

	The Model-View-Controller
	What is Object-Oriented Programming?
	What is Data Hiding?

	What is Objective-C?
	Directives

	Objective-C classes
	The @interface directive
	The @implementation directive
	Class instantiation
	Class access privileges

	Introducing the Xcode Developer set of tools
	Introducing the core tools
	The Welcome to Xcode screen
	The Xcode Integrated Development Environment
	Features of the iPhone Simulator

	Companion tools and features
	Instruments
	iPhone OS4 SDK new features
	Summary

	Chapter 2: Introducing the Xcode 4 Workspace
	Downloading and installing the iOS SDK
	Removing the Xcode Developer Tools

	Getting to know the Xcode Development Environment
	One environment to bind them all
	Working within a single-development environment
	Creating a new project
	Migrating older projects into the new environment
	Writing a simple iPhone application

	Time for action – creating your first iPhone application
	Working with the new Xcode Assistant

	Introducing the Xcode 4 Workspace Environment
	Application ToolBar
	Application Status Bar / Activity Window
	WorkSpace Settings

	Introducing the Unified Navigation UI
	Listing files in a project
	Sorted Symbols
	Central Search Interface
	Issues Tracking
	Using Static Analysis to find potential problems
	Debugging data with Compressionable Stack Traces
	Active / inactive breakpoints
	Collection of Logs
	Jump Bar
	Using Code Assistants
	Introducing the new and improved LLVM Compiler 2.0
	Version Editor
	File Templates Library
	Code Snippets Library
	Object Library
	Media Library
	Resetting Xcode's Development Environment Settings

	Xcode Workspace Preferences
	General
	Behaviors
	Fonts & Colors
	Text Editing
	Key Bindings
	Documentation
	Locations
	Source Trees
	Distributed Builds

	Summary

	Chapter 3: Working with the Interface Builder
	Getting to know the Interface Builder environment
	Adding Controls to your user interface

	Time for action – creating the HelloXcode4_GUI application
	Application structure of our HelloXcode4 example application
	The MainWindow.xib file
	The Core Application Architecture layer
	The application life cycle

	Time for action – adding object controls to our View
	Understanding Rotatable Interfaces

	Time for Action – enabling Interface Rotation
	Relocating controls within the view on Rotation

	Making our Components work together
	Time for action – binding Control Objects
	Time for action – repositioning the Controls
	Enhancing our iPhone application

	Time for action – hiding the keyboard
	Introducing Document-based applications
	Time for action – creating a Document-based application
	File saving and loading

	Time for action – implementing file saving and loading
	Summary

	Chapter 4: Working with the Xcode Frameworks
	Introducing the Frameworks
	Using Frameworks and APIs in iPhone development
	Core Data Frameworks
	Building a simple database application

	Time for action – creating the Core Data application
	AV Foundation Frameworks
	Playing an audio File
	Creating an application to play an audio file

	Time for action – creating the MusicPlayer application
	Playing a movie using Media Player

	Time for action – creating the MoviePlayer application
	Core Location Framework

	Time for action – making your application location aware
	Map Kit Framework—new and improved

	Time for action – creating a simple geographical application
	New Framework APIs
	Summary

	Chapter 5: Designing Application Interfaces using MVC
	Developing iOS applications using MVC design
	Reusing tested (or standard) solutions: Design patterns
	Understanding the Model-View-Controller design pattern

	Implementing MVC using Xcode and Interface Builder
	Time for action – building a Pizza order application
	Time for action – binding our Controls using Outlets and Actions
	Implementing views
	Implementing view controllers

	Time for action – declaring input field as a property of View
	Controller
	Creating a view-based application template
	Time for Action – creating the FavoriteColor application
	Time for action – binding our Controls using Outlets and Actions
	Implementing Table Views

	Time for action – creating a Table view application
	Grouping row items into sections

	Time for action – grouping row items in our TableViewExample
	application
	Understanding Navigation-based applications
	Using Switches, Sliders, Segmented Controls, and Web Views

	Time for action – creating the SwitchesSlidersSegments project
	Time for action – binding our Controls using Outlets and Actions
	Creating an application to scroll through large content

	Time for action – creating the ScrollingViews project
	Time for action – binding our Controls using Outlets and Actions
	Understanding Pickers
	Date Pickers

	Time for action – creating the Date Picker project
	Time for action – binding our Controls using Outlets and Actions
	Custom Pickers

	Time for Action – creating the Custom Picker project
	Time for action – binding our Controls using Outlets and Actions
	Handling basic user input and output
	Button Controls
	Text Fields
	Text Views
	Labels

	Using Text Fields, Text Views, and Buttons

	Time for action – creating application with Text fields, Text
	Views, and Buttons
	Time for action – binding our Controls using Outlets and Actions
	Summary

	Chapter 6: Displaying Notification Messages
	Exploring the notification methods
	Generating alerts
	Time for action – creating the GetUsersAttention application
	Time for action – adding the AudioToolbox Framework to our
	application
	Building our user interface

	Time for action – adding controls to our View
	Creating events

	Time for action – implementing the Show Activity Indicator
	method
	Time for action – implementing the Display Alert Dialog method
	Responding to Alert Dialog Button presses

	Using Action Sheets to associate with a view
	Time for action – implementing the Display Action Sheet method
	Responding to Action Sheet Button presses
	Customizing an Action Sheet

	Time for action – handling alerts via sounds and vibrations
	Summary

	Chapter 7: Exploring the MultiTouch Interface
	Introducing the MultiTouch architecture
	Detecting taps

	Time for action – creating the TapExample project
	Time for action – binding our Controls
	Detecting swipes

	Time for action – creating the SwipeExample project
	Detecting pinches

	Time for action – creating the PinchExample project
	Detecting shakes

	Time for action – creating the ShakeExample project
	Time for action – implementing the motionBegan, motionEnded,
	and motionCancelled methods
	Exploring the Accelerometer / Gyroscope
	Understanding the Core Motion Framework
	Sensing orientation

	Time for action – creating the OrientationExample project
	Detecting device tilting

	Time for action – creating the AccelGyroExample project
	Summary

	Chapter 8: Debugging Xcode Projects
	Introducing the new and improved Debugger
	Debugger toolbar
	Stack trace panel
	Disassembly view
	Code Editor window
	Console output window

	Creating a new debugging project
	Time for action – creating the DebuggingExample project
	Running and debugging the project
	Handling errors
	Runtime errors
	Syntax errors
	Logic errors

	Using Fix-it to correct code as you type

	Time for action – setting up the LLVM compiler
	Debugging with breakpoints
	Using NSLog to track changing properties

	Exploring the new Debugger
	Debugging features in the Code Editor
	The Activity Viewer / Progress window
	Defining a scheme for project builds using the Scheme Editor

	Time for action – using the Scheme Editor to define a Scheme
	Viewing the Static Analysis results

	Time for action – running the Static Analyzer
	Time for action – configuring your project to perform automatic
	Static Analysis
	Time for action – Detecting a memory leak
	Time for action – detecting an instance of an uninitialized
	variable
	Viewing the Issues Navigator
	Viewing the Program Build log
	Understanding and using code completion

	Time for action – working with code completion
	Time for action – stopping Xcode from alerting you to problems
	Navigating through threads and stacks in the Debugger

	Summary

	Chapter 9: Source Code Management with the Version Editor
	Introducing the new Version Editor
	Introducing Subversion
	Installing a local Subversion server
	Creating a repository

	Time for action – setting up a local Subversion repository
	Configuring the repository in Xcode

	Time for action – configuring the Subversion repository
	Adding items to an existing repository

	Time for action – adding our TapExample project to the
	repository
	Getting a working copy of the project out of the repository

	Time for action – checking out the project from the repository
	Xcode source-control features and file statuses
	Comparing different versions of a file side-by-side
	Using Timeline to select and compare revisions
	Using Track Blame to check past check-ins
	Using Log Mode to list all revisions chronologically
	Using the Repository Organizer to keep track of your files

	Using Git to manage multiple projects
	Time for action – creating a new Xcode project using Git
	Time for action – assigning address book identities within the
	organizer
	Summary

	Chapter 10: Making your Applications Run Smoothly
	Introducing Instruments
	Tracking down and fixing memory leaks

	Time for action – creating the InstrumentsExample project
	Time for action – running and Profiling the project
	Adding and configuring Instruments
	Using the Instruments Library
	Locating an Instrument within the Library
	Adding and removing Instruments
	Configuring an Instrument
	Other components of the Instruments family explained

	New Instruments in Xcode 4
	Automated Testing
	Performance and Power Analysis
	Time Profiler
	Energy Diagnosis
	Tracking iPhone graphics performance using OpenGL ES Driver

	Summary

	Chapter 11: Distributing your Application
	Build configurations – debug to release
	The iPhone Developer Program
	Setting up your iPhone development team

	Time for action – setting up the team
	Getting an iOS development certificate

	Time for action – generating a Certificate Request
	Time for action – getting the certificate
	Registering devices for testing

	Time for action – registering devices
	Creating application IDs

	Time for action – creating the application ID
	Creating a Provisioning Profile

	Time for action – creating the profile
	Using the Provisional Profile to install an App on an iOS device

	Time for action – creating and deploying the app to an iOS
	device
	Getting a Distribution Certificate for your app

	Time for action – getting the Distribution Certificate
	Archiving and submitting Apps using Xcode 4
	iOS Human Interface Guidelines
	Testing your application
	Preparing your App for submission through iTunes Connect
	Avoiding rejection of your App
	Pricing your app
	Adding your App to iTunes Connect

	Time for action – uploading the application icon and
	screenshot images
	Using iTunes Connect to manage your Apps
	Marketing and promoting your app
	iOS Developer Documentation

	Summary

	Appendix: Pop Quiz Answers
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	Index

