
www.allitebooks.com

http://www.allitebooks.org

Zend Framework 2
Cookbook

A guide to all the ins and outs of Zend Framework 2 features

Josephus Callaars

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Zend Framework 2 Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1121213

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-484-1

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Josephus Callaars

Reviewers
Armando Padilla

Diego Sapriza

David Weinraub

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Balaji Naidu

Technical Editors
Pratik More

Pooja Nair

Anita Nayak

Project Coordinator
Abhijit Suvarna

Proofreaders
Bridget Braund

Lesley Harrison

Indexer
Hemangini Bari

Graphics
Disha Haria

Yuvraj Mannari

Production Coordinator
Adonia Jones

Cover Work
Aditi Gajjar

Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Josephus Callaars is a software developer whose passion began like so many other
developers at the appropriate age of twelve. Being intrigued by mathematics and software
languages such as Assembler and Java, he quickly found out that his career was to be found
in the abstract side. Since 2003 he has been developing software applications commercially,
and always tried to stay up-to-date with the latest technologies.

Josephus has been passionate about developing ever since, and always thought it could be
done better every time. He is a Zend Certified Engineer and is regularly to be found in the
open source community, where he is always on the lookout for new things to learn.

I would like to thank my wife for supporting me in everything and deciding to
not kick me out of the house just yet. I would also like to thank my parents
for always believing in me, and teaching me the value of hard work.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Armando Padilla has over 10 years of experience in the PHP ecosystem, working with
some of the best at Yahoo where he assisted with Shine, World Cup, and Winter Olympics,
also as a scalability expert, he helped the RiotGames' web-scalability team by supporting
the demands of its web-based gaming community. He has written two PHP books, Beginning
Zend Framework and Pro PHP Application Performance, and now spends his time as the Sr.
Engineering Manager at Disney Interactive.

I would like to thank Alba Luz Guevara and my baby Amanda Luz Padilla for
giving me the time to tech review this book.

Diego Sapriza is a Senior Software Engineer at CASE who loves technology and applying it
to solve business-related problems. Diego lives in Uruguay where he oversees the CASE web
development team as well as setting the direction and strategy for how the company delivers
software development solutions.

He specializes in web technologies such as PHP, MySQL, Sphinx, JavaScript, jQuery, Python,
and many more. He is also an expert in Linux Server Administration. Pulling from his
experiences as a manager, CTO, developer, and consultant in the IT industry, Diego maintains
his vast knowledge of web technologies through extensive research and development of the
latest advancements in the field. As a result he ensures that custom applications designed for
clients are focused on effective solutions and improving the built environment.

A self-proclaimed libre software evangelist, Diego spends his time near the beautiful beaches
of Uruguay taking pictures and spending time with his family.

www.allitebooks.com

http://www.allitebooks.org

David Weinraub is a Zend Certified Engineer (ZCE) specializing in application development
on the LAMP (Linux, Apache, MySQL, PHP) stack. He is passionate about clean code,
structured architecture, SOLID object-oriented principles, and DRY. He has experience with
Zend Framework, Slim, Lithium, MongoDB, PHPUnit, Vagrant, and a range of associated
technologies.

David earned his Ph.D. in Mathematics from the State University of New York, Albany, for his
work on Hopf algebras. He lives in Phuket, Thailand with his wife and two wonderful children.

Also, he's a sucker for astronomy/cosmology.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Zend Framework 2 Basics 7

Introduction 7
Setting up a Zend Framework 2 project 7
Handling routines 14
Understanding dependency injection 23
Using configurations to your benefit 28
The EventManager and Bootstrap classes 33

Chapter 2: Translating and Mail Handling 43
Introduction 43
Translating your application 43
Localizing your application 51
Sending mail 57
Receiving mail 62

Chapter 3: Handling and Decorating Forms 71
Introduction 71
Creating forms 71
Using form view helpers 89
Creating a custom form element and form view helper 99

Chapter 4: Using View 105
Introduction 105
Working with View 106
Creating a global layout template 114
Creating reusable Views 119
Using view strategies/renderers 122
Using context switching for a different output 127
Writing a custom view strategy/renderer 130

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 5: Configuring and Using Databases 145
Introduction 145
Connecting to a database 147
Executing simple queries 153
Executing queries using TableGateway 160
Optimization with a DB profiler 166
Creating a Database Access Object 168

Chapter 6: Modules, Models, and Services 187
Introduction 187
Creating a new module 187
Using modules as a widget 197
A Model and a Hydrator 206
A basic service 217

Chapter 7: Handling Authentication 221
Introduction 221
Understanding Authentication methods 221
Setting up a simple database Authentication 227
Writing a custom Authentication method 239

Chapter 8: Optimizing Performance 253
Introduction 253
Caching and when to Cache 253
Understanding and using storage plugins 259
Setting up a caching system 262

Chapter 9: Catching Bugs 271
Introduction 271
Handling Exceptions – your partner in crime 271
Logging and how it makes your life easier 275
Unit testing – why would you do it 279
Setting up and using unit testing 284

Appendix: Setting up the Essentials 295
Making sure you have all that you need 295
Downloading Zend Framework 2 and finding its documentation 298
Composer and its uses within Zend Framework 2 299
Basic Zend Framework 2 structures 302
About storage adapters and patterns 308

Index 317

Preface
A couple of years ago I was introduced to Zend Framework 1 by a friend of mine,
and since then I have been a fan. Although the first framework was a real bulky
framework with not much documentation, I feel that the second version of the
framework improved greatly. The incredible toolshed full of features, makes this
framework (personally) one of the best frameworks to work in.

But as we all probably know, because of its incredibly vast library of features the
learning curve can appear very steep. That is why I felt the need to write about
all the important parts of the framework, in bite-size pieces that don't overwhelm
someone (you in this case) who wants to learn it.

What this book covers
Chapter 1, Zend Framework 2 Basics, talks about how we can set up a small application
and run it. The dependency injection and configuration are also handled.

Chapter 2, Translating and Mail Handling, explains the importance of
internationalization and localization, and the overall handling of sending and
receiving of mails in our applications.

Chapter 3, Handling and Decorating Forms, demonstrates how forms are created. After
that it talks about filtering, validation, and decoration of forms.

Chapter 4, Using View, covers one of the most important parts of the framework that
will be discussed here, setting and rendering of the View.

Chapter 5, Configuring and Using Databases, gives out the configuration and
explanation of databases that will give us an insight into how we can fully utilize
them in our application.

Preface

[2]

Chapter 6, Modules, Models, and Services, mainly discusses how modules are built up,
models can be hydrated, and services are defined.

Chapter 7, Handling Authentication, delves into the different ways of authenticating
users and how we can create our own authentication method.

Chapter 8, Optimizing Performance, discusses the use of caching and the methods
available to cache output, opcode, and how to use plugins.

Chapter 9, Catching Bugs, teaches us how to debug applications, handle exceptions,
and log stuff.

Appendix, Setting up the Essentials, shows where we can find the documentation, how
to set up a development environment, and shows how the composer works.

What you need for this book
To follow the book in the best possible way I would recommend using a Linux-based
web server, as most of the recipes are more Linux oriented than Windows. If you are
a Windows user you'll probably be better off installing a virtual machine with Linux
on it, or installing a Zend Server community edition to make sure your machine is
compatible for Zend Framework 2 development (you can also do this without Zend
Server, but it is just more convenient).

Who this book is for
Zend Framework 2 Cookbook is for PHP developers who are fairly advanced in PHP
programming. It will also be useful for developers who have a keen interest in
expanding their knowledge outside the boundaries of simply scripting pages
together. As unit testing and MVC will be discussed, it is beneficial for the reader to
know what these technologies are, although experience with developing applications
is not necessarily essential.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can either get the flags from a message by using the getFlags() method, or by
using the hasFlag() method."

Preface

[3]

A block of code is set as follows:

<?php
echo $this->dateFormat(
 // Format the current UNIX timestamp.
 time(),

 // Our date is to be a LONG date format.
 IntlDateFormatter::LONG,

 // We want to omit the time, defining this is
 // optional as the default is NONE.
 IntlDateFormatter::NONE
);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

SampleModule/
 config/
 module.config.php
 language/
 src/
 SampleModule/
 Controller/
 IndexController.php
 view/
 samplemodule/
 index/
 index.phtml
 Module.php

Any command-line input or output is written as follows:

php composer.phar update

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "After we have done
all that we can, click on OK and you can choose a location to save our file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Zend Framework 2

Basics

In this chapter we will cover:

 f Setting up a Zend Framework 2 project

 f Handling routines

 f Understanding dependency injection

 f Using configurations to your benefit

 f The EventManager and Bootstrap classes

Introduction
In this chapter we will go through a basic Zend Framework 2 application, from download, to
setup, to running it. If you are unfamiliar with how Zend Framework 2 works, and the best
way to install it, you can use this chapter as a reference. Further on in the chapter, we will get
somewhat deeper in the framework by looking at the dependency injection (DI) and how it
can help us code more efficiently. Lastly we will go more into the details of the configuration
options, the EventManager and ModuleManager.

Setting up a Zend Framework 2 project
Nothing is more exciting than setting up a new project in our favourite framework. Every time
we start a new project we begin with a clean slate.

Zend Framework 2 Basics

8

Getting ready
Before you can set up a new Zend Framework 2 application you need to make sure you have
the following items ready:

 f A web server such as Apache running PHP Version 5.3.3 or higher that you can reach
from a web browser

 f Git

If you don't have everything ready as mentioned, you are best off reading the topics
mentioned in the See also section of this recipe (every topic we explain in this chapter is
called a recipe) before you continue reading here.

We are assuming that Zend Framework 2 will be used on a Linux-based platform running
an Apache 2 web server; this means that commands might not directly work on a Windows
platform. Windows users, however, can set up a virtual machine with Linux on it to make full
use of the book.

To install a virtual machine on Windows, we can use an application called Oracle VM
VirtualBox, which is freely available. We can go to www.virtualbox.org and download plus
install the latest version of VirtualBox, we can go to VirtualBoxes (http://virtualboxes.
org/images/ubuntu) and download a preconfigured virtual machine from there.

All we have to do on the VirtualBoxes website is click on the latest Ubuntu (which is a
distribution of Linux) link in the list, please take note of the username and password displayed
there as we will need it later to login. Once the image is downloaded, it can be made ready
by following the instructions in the documentation that can be found on the VirtualBoxes site
(http://virtualboxes.org/doc/register-and-load-a-downloaded-image).

Assuming the image is imported we can easily start up the virtual machine and put in our
username and password that has been supplied with the downloaded virtual machine.

Once logged in to the virtual machine we need to make sure Git is installed, which can be
done easily by typing in the following command (mind that the dollar sign is the command
prompt, and not the command we actually need to type):

$ sudo apt-get install git

If Git wasn't installed, the system will ask you to install Git, which can be done by pressing the
Y key, followed by the Enter key, on the other hand if Git was already installed, than it will not
do anything and tell you it already is installed.

Chapter 1

9

How to do it…
First of all, we need the Zend Framework 2 skeleton so we can easily create a new project. A
skeleton is a template structure that can be used to start developing with an application, and in
this case it creates a template for us to develop within Zend Framework. Fortunately doing this
is relatively easy, and almost never causes any problems, and when it does, it is usually related
to Git not being able to retrieve the code. When Git isn't able to retrieve the skeleton, please
make sure there are no spelling mistakes in the command, and that Git has outside access (we
can test this by typing ping Github.com and see whether we get a response back).

The method we are going to use to retrieve the skeleton is called cloning, through a version
control system called Git. Cloning the source code will make sure we always get the latest
version that the developer (in this case Zend itself) has put online.

Cloning the skeleton
We can clone the skeleton—and almost everything else on Github for that matter — through
use of the following command:

$ git clone git://github.com/zendframework/

 ZendSkeletonApplication.git

Moving the skeleton
Once finished we can go into the newly created folder called ZendSkeletonApplication,
and copy and paste everything in there over to our web server document root. On a Linux
system this is usually /var/www (this is also the case when we use Zend Server, as described
in the Appendix, Setting up the Essentials). We can do this, for example, by typing the
following commands:

$ cd ZendSkeletonApplication

$ mv ./* /var/www –f

$ cd /var/www

Initializing the Composer
When everything is copied over, we are going to initialize the project by typing the
following command:

$ php composer.phar install

Now the Command Line Interface (CLI) of PHP executes composer.phar, which will in this
instance, download and install the Zend Framework 2 library and set up a simple project for
us to be able to work in.

Zend Framework 2 Basics

10

This command can take a long time before it is successfully executed, as Composer needs
to do a lot of things before it tells you that Zend Framework 2 is ready for use, we won't go
into the details of the workings of Composer here, as it is already discussed in the Appendix,
Setting up the Essentials.

Once this command has been completed we need to make sure our web server document
root is changed to match the layout of the skeleton. It is common practice that Zend
Framework 2 uses the public folder as a main landing point for the application. The
structure of the Zend Framework 2 skeleton allows us to bind the user to the public folder,
while all our logic is safely outside the public area.

In essence this means we need to root or jail the web server in using the public folder
first before we can actually see anything that we just installed. We want to root or jail the
web server because we don't want the outside world to be able to abuse our web server more
than necessary, and rooting or jailing makes sure that the web server itself has no access to
any other folders than what it is jailed to, thus making our server a bit more secure.

In my personal case this means changing the Apache 2 configuration. In most Linux-based
systems it will be the Apache web server that is serving our web requests.

The easiest thing that you can do is find your web server configuration (usually located in /
etc/apache2 and append the DocumentRoot with /public. For me this would change the
document root from /var/www' to '/var/www/public.

If you are using Apache, you need to check if the AllowOverride setting
is set correctly, this can be found in the same section as your document
root and should reflect the following:

AllowOverride FileInfo

Finally we need to restart the Apache web server, which can be done by the following
command if you are logged in as a root user or invoke it by prepending the command with
sudo, which tells the server that we want to execute it as a super user.

$ apache2ctl restart

Now we are able to check our browser and see what we have actually done. We now simply
go with a web browser to the project created by typing in the URL, in my case this would be
the following:

http://localhost/

Chapter 1

11

This will result in the following screen:

Congratulations, you have now set up a basic Zend Framework 2 application.

How it works…
After getting the basic Zend Framework 2 skeleton working, it is the perfect time to install the
ZFTool. The ZFTool is a utility module that comes in handy when we want to list the current
modules in our project, or add a new module, or even set up a new project. It also contains an
extremely useful class-map generator that we can use in the somewhat more advanced areas
of Zend Framework 2.

We can install this utility by using the following commands:

$ cd /var/www

$ mkdir -p vendor/zftool

$ cd vendor/zftool

$ wget https://packages.zendframework.com/zftool.phar

Zend Framework 2 Basics

12

Although we already set up our Zend Framework 2 skeleton through the composer, it might be
a fun thing to show you how you can easily set up a new project through the ZFTool.

$ cd /var/www

$ php vendor/zftool/zftool.phar create project new-project

The preceding command will create a new Zend Framework 2 skeleton project in the folder
/var/www/new-project. In turn this means that the document root for our new project
should be set to /var/www/new-project/public.

To complete the Zend Framework 2 application in our new-project, we can simply go to the
new-project directory and execute the following command:

$ cd new-project

$ php composer.phar install

Another handy command of the ZFTool is the creation and display of modules in our project.
The ZFTool can easily display a list of modules that we currently use (with larger applications
we tend to lose sight of the modules) and the ability to create a new skeleton module for
our application. To see a list of the current modules used in our application we can use the
following command:

$ php ../vendor/zftool/zftool.phar modules

To create a new module named wow-module in our project based in the directory /var/
www/new-project we can use the following command:

$ php ../vendor/zftool/zftool.phar create module wow-module

 /var/www/new-project

Giving the path to the application is optional, but if we are using it with multiple projects on
the same machine, it is best to make sure that we have the right path for our project.

And now for the last and probably the most useful command in the ZFTool box, the class-map
generator. A class-map file is a file that has all the classes of a project with their respective
paths declared, which makes it easier for the PHP auto loaders to load the class file. Normally
class files are found in paths that we know of, creating a small lag because the auto loader
actually needs to search for the file. With a class-map file, however, this is not the case as the
auto load can immediately find the file required.

Class-mapping is a big issue in Zend Framework 2 because a bad class mapping can make
a good application terribly slow, and to be completely fair Zend Framework 2 can use all the
speed it can get.

What the class-map generator does is create a file that contains all the classes and paths that
can be autoloaded. That way we don't have to worry about where the classes are located.

Chapter 1

13

To generate a new class-map file, we can use the following command:

$ php zftool.phar classmap generate <directory> <file> -w

The command requires us to give in two different parameters:

 f <directory>: The directory that needs to have the classes indexed. For example,
this can be a new library you added to the vendor directory.

 f <file>: This is the class-map file the ZFTool needs to generate. Our auto loader
in Zend Framework 2 needs to pick this file up, so we need to make sure that the
ZFTool can find the file. If you don't specify a file, it will create a file called autoload_
classmap.php in the current working directory.

Most of the time it is necessary to append a class-map file instead of overwriting it, if you want
to append it you can simply change -w with -a.

An example of a class-map file is the autoload_namespaces.php file in the vendor/
composer directory, and it looks a little bit like this:

<?php
return array(
 // Every class beginning with namespace Zend\ will be
 // searched in this specific directory
 'Zend\\' => array(
 __DIR__ . '/../zendframework/zendframework/library'
),
 'ZendTest\\' => array(
 __DIR__ . '/../zendframework/zendframework/tests'
),
);

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

There's more…
There are also other ways of installing the ZFTool, some are just as easy as using the
composer, so we'll cover two other methods of installing the ZFTool. That way we give
ourselves the broadest options available to use.

Zend Framework 2 Basics

14

Another method of installing ZFTool is by utilizing git, and thus cloning the source code from
the repository itself. This however gets the current master version, which can be a bit buggy.

$ cd vendor

$ git clone https://github.com/zendframework/ZFTool.git

$ cd ZFTool

$ php ./zf.php

Instead of zftool.phar we have now got the zf.php file at our disposal, which can be used
in exactly the same way. Now we have covered all the different options on installing ZFTool.

See also
 f The Making sure you have all that you need recipe in the Appendix, Setting up

the Essentials

 f The Downloading Zend Framework 2 and finding its documentation recipe in the
Appendix, Setting up the Essentials

 f The Composer and its uses within Zend Framework 2 recipe in the Appendix, Setting
up the Essentials

 f Apache web server http://apache.org/

 f PHP website http://php.net

Handling routines
An important aspect (if not the most important one) is the routing within Zend Framework 2.
In its most basic form routing tells the framework how the user should get from page A to page
B, and what needs to be done to arrive at that destination. That is why we generally think this
is the most important part to understand if you are just starting out.

How to do it…
To define a route we can simply go into one of the configuration files and add the router
configuration to there.

Setting up routing
Let's look at our simple (Segment) configuration as follows (file: /module/Application/
config/module.config.php):

return array(
 // Here we define our route configuration
 'routes' => array(

Chapter 1

15

 // We give this route the name 'website'
 'website' => array(

 // The route type is of the class:
 // Zend\Mvc\Router\Http\Segment
 'type' => 'segment',

 // Lets set the options for this route
 'options' => array(

 /*
 The route that we want to match is /website
 where we can optionally add a controller name
 and an action name. For example:
 /website/index/index
 */
 'route' => '/website[/:controller[/:action]]',

 /*
 We don't want to accept everything, but this
 regex makes sure we only accept alpha-
 numeric characters and a dash and underscore.

 In our instance we want to check this for the
 action and the controller.
 */
 'constraints' => array(
 'controller' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*'
),

 /*
 We want to make sure that if the user only
 types /website in the URL bar it will actually
 go somewhere. We defined that here.
 */
 'defaults' => array(
 'controller' => 'Website\Controller\Index',
 'action' => 'index'
),
),
),
),
),
);

Zend Framework 2 Basics

16

With this basic configuration we can easily define routes in our application, and in this
instance we have configured a route that responds to the /website URL. When we
would go to the /website URL, we would be routed to the Website\Controller\
Index::indexAction by default. If we however use the route /website/another/
route, we would be routed to the Website\Controller\Another::routeAction,
as we have defined that the controller and action can be parsed behind that. If we omit
the route path and put in /website/another, we would be redirected to the Website\
Controller\Another::indexAction, as that is used by default by the framework.

The preceding example has only one really major drawback, which is, when we decide to use
anonymous function in the configuration to create more dynamic routes, we would not be able
to cache the route as closures are not serializeable by the cache.

However, there is another method of declaring the route, and that is in the code. The need to
create the route functionality in the code could (obviously everyone has their own reasons and
requirements) arise because we want to cache the configuration in a later stage (as we cannot
cache anonymous function, for example) or when we want to load up a route dynamically from
a database.

Let's take a look at the /module/Application/Module.php example:

<?php

// We are working in the Application module
namespace Application;

// Our main imports that we want to use
use Zend\Mvc\ModuleRouteListener;
use Zend\Mvc\MvcEvent;

// Define our module class, this is always 'Module', but
// needs to be specifically created by the developer.
class Module
{
 public function onBootstrap(MvcEvent $e)
 {
 // First we want to get the ServiceManager
 $sm = $e->getApplication()->getServiceManager();

 /*
 Say our logged in user is 'gdog' and we want
 him to be able to go to /gdog to see his profile.
 */
 $user = 'gdog';

Chapter 1

17

 // Now get the router
 $router = $sm->get('router');

 // Lets add a route called 'member' to our router
 $router->addRoute('member', array(

 /*
 We want to make /$user the main end point, with
 an optional controller and action.
 */
 'route' => '/'. $user. '[/:controller[/:action]]',

 /*
 We want a default end point (if no controller
 and action is given) to go to the index action
 of the index controller.
 */
 'defaults' => array(
 'controller' => 'Member\Controller\Index',
 'action' => 'index'
),

 /*
 We only want to allow alphanumeric characters
 with an exception to the dash and underscore.
 */
 'constraints' => array(
 'controller' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*'
),
));
 }
}

Naturally there are more ways of adding a route, but the method mentioned in the preceding
code for adding a route displays a canny way of dynamically adding a route. What we created
there is that whenever Gdog goes to his profile, he can simply type in http://example.
ext/gdog and end up on his profile.

Even more wonderful is that if our friend Gdog wants to see his friends, he is able to do that
by just typing in for example, http://example.ext/gdog/my/friends, which will resolve
to the Member module and then go to the My controller, lastly executing the Friends action.

Zend Framework 2 Basics

18

Using SimpleRouteStack
This route stack is—as the name implies—the simplest router around and is basically a list with
routes that is being parsed to see which route matches, by default this type of router is not
used in Zend Framework 2. The general rule of thumb is that if we want to add a route with a
high priority, we give it a high index number for example, 100, or 200. If we want to give the
route a very low priority, we would give it an index number of, for example, 5 or 10.

Giving priorities to routes comes in handy when we have very specific routes (which usually
have a high priority) and less specific routes (low priority). If we, for example, want to make /
website/url redirect to a completely different module, controller, and action, but not affect
the other website routes, we need to give the /website/url route a higher priority so that
when it is found, it will not search for the lower priority routes.

If we, by accident, turn the priorities around, we would find our /website/url always
redirect to the route that contains all the /website routes.

SimpleRouteStack uses a Zend\Mvc\Router\PriorityList class to manage its
routes priorities.

We need to consider routing before we want to start creating our application, as when the
application grows we might get into trouble with our routing if we haven't considered 'how to
route' beforehand. It would therefore be wise for us to 'sitemap' the application before coding
the routes to make sure we have a correct route list and are not creating any conflicting
routes.

The SimpleRouteStack class has a number of methods defined that are very useful for us:

 f getRoute($name) / getRoutes($name): This will retrieve the current route—if a
name is provided—or routes that are defined in our SimpleRouteStack. If we are
unsure about the routes we have defined, this would be a good place to check first.

addRoute($name, $route, $priority) / addRoutes($routes): We can use
this to add a new route or an array of routes to our route type by simply adding it through
this method. A route requires a name, route (which can be a string or an instance of
RouteInterface) and if we fancy a priority, we can give that as the third parameter.

hasRoute($name): If we would want to check whether a specific route already exists, we can
search using its name and find out if it does or doesn't.

 f removeRoute($name): When we are tired of a route we can simply give its name
and remove it from the list. This can be particularly handy if we want for example to
have a module override a certain /login when the user has logged in to route to/user.

 f SimpleRouteStack: Does not have a functionality to have multiple routes with the
same priority. If there is a route with a priority already defined, it will prioritize the last
route added as the route with the highest priority.

Chapter 1

19

Using TreeRouteStack
Routers are not restricted to using the URI path to find out how to route a request. They can
also use other information such as the query parameters, headers, methods, or hostnames to
find a match.

How it works…
In Zend Framework 2, we will generally use routing that is based on a request URI,
which contains path segments that should be queried. Routes are matched by a router,
which utilizes RouteStack to find the match to the query made by the router. We use
RouteStack because we want a decent way of managing our different routes. With Zend
Framework 2 there are loads of route types provided, but only two flavorless routers namely
SimpleRouteStack and TreeRouteStack.

When we are defining a router, we need to make sure we understand how it works. Although
creating lists with different paths is simple enough, it is wise to remember that the Zend
Framework 2 router generally works with the Last In First Out (LIFO) concept, which means
that a route that would be used often would be registered last, and a route that is less
common would be registered earlier in the router stack.

There's more…
Besides the two standard route types, Zend Framework 2 comes with a whole scale of route
types that are more specialized to the Internet navigation or even through the console.

Namespace – Zend\Mvc\Router\Http
A wonderful set of HTTP routers can be found in the Zend\Mvc\Router\Http namespace
and we will take a quick look at the different classes that reside within this namespace.

The Hostname class explained
The Zend\Mvc\Router\Http\Hostname namespace will try to match its routing against
the hostname defined in the configuration. For example, if we define the route to be
something.example.ext, our router will make its routing decision based on the full URL.
But, if we add a single colon at the beginning of that same route, for example: :something.
example.ext, the router would base its route on the something variable, which could be
anything from aardvark.example.ext to zyxt.example.ext.

The Literal class explained
The Zend\Mvc\Router\Http\Literal class will literally match the path we give in. For
example, if we put a route in there, which is /grouphug, the route will only resolve to that
URL, and nothing else.

www.allitebooks.com

http://www.allitebooks.org

Zend Framework 2 Basics

20

Methods explained
The Zend\Mvc\Router\Http\Method class is used when we want to match against an
HTTP method instead of a segment or path. This could be, for example, a POST, DELETE and
so on. The method is also called verb by Zend Framework 2, which means that instead of a
route parameter, it requests a verb parameter when adding the route, which is an excellent
way to create RESTful APIs.

The Part class explained
The Zend\Mvc\Router\Http\Part class is used to describe child_routes in our routing
configuration. This means that—although never used directly—we can define that /user/
profile is being redirected to use the UserController, with the profile action.

Let's consider the following configuration:

return array(
 // We begin our router configuration
 'router' => array(

 // Define our routes
 'routes' => array(

 // We are defining a route named 'Example'
 'Example' => array(
 'type' => 'Literal',
 'options' => array(

 /*
 This route will resolve to /recipe
 which will resolve to the Example
 module's IndexController and execute
 the IndexAction.
 */
 'route' => 'recipe',
 'defaults' => array(
 '__NAMESPACE__' => 'Example\Controller',
 'controller' => 'Index',
),
),

 'may_terminate' => true,

 /*

Chapter 1

21

 Here we begin to define our Part route,
 which always begins with the
 'child_routes' configuration.
 */
 'child_routes' => array(
 'client' => array(
 'type' => 'Literal',
 'options' => array(

 /*
 This child route (or Part)
 will resolve to /recipe/foo
 and will call the fooAction in
 the IndexController.
 */
 'route' => '/foo',
 'defaults' => array(
 'action' => 'fooAction'
),
),
),
),
),
),
),
);

Regex explained
The Zend\Mvc\Router\Http\Regex class would be used when we have a complex
routing structure that requires us to dynamically create the route. This would, for example,
come in handy when we look at News sites, where posts are built up like /archive/some-
subject-2013.html. This fairly complex route (as some-subject-2013.html is dynamic
in our case) would require a Regex router that can resolve the Controller, Action, and in our
case also the output format.

Let's consider the following example:

// We begin our router configuration
'router' => array(

 // Define our routes
 'routes' => array(

Zend Framework 2 Basics

22

 // We are defining a route named 'Archive'
 'Archive' => array(
 'type' => 'Literal',
 'options' => array(

 /*
 This route will resolve to /archive
 which will resolve to the Archive
 module's IndexController and execute
 the IndexAction.
 */
 'regex' => '/archive/(?<id>[a-zA-Z0-9_-
]+)(\.(?<format>(html|xml)))?',
 'defaults' => array(
 '__NAMESPACE__' => 'Archive\Controller',
 'controller' => 'Index',
 'action' => 'indexAction',
 'format' => 'html',
),
 'spec' => '/archive/%id%.%format%',
),
),
),
),

In the preceding example, it is important to note that /archive/%id%.%format% tells us that
we will receive two parameters in our method called indexAction that is, id and format.

The Scheme class explained
The Zend\Mvc\Router\Http\Scheme class is always using the defaults parameter and
will accept only one other parameter, which is called scheme and can only contain one of the
following options, that is, http, https, and mailto.

The Segment class explained
The Zend\Mvc\Router\Http\Segment class is probably one of the most-used routers that
we would use, as you can dynamically define the route and controller for any module by using,
for example, /:controller/:action, which is easily recognizable by the colon separation.
We can define any constraints to the segment by configuring only the use of alphanumeric
characters or another definition that we would like to use.

An example of Segment is given in the first example in the How to do it... section.

Chapter 1

23

Understanding dependency injection
When we talk about the dependency injection, or in short DI, we talk about the simple task of,
for example, injecting data in object or methods at initialization when needed by one or other
higher up classes, which either modify or dispose off the object after use. The DI is probably
the most complex feature in Zend Framework 2 to understand. Unfortunately because DI's over
complexity in debugging and performance and the Service Locator (explained in Chapter 6,
Modules, Models and Services). However, although it is not the best tool in the shed, we must
try to learn it, because when mastered it could prove to be a very powerful tool to create a very
maintainable piece of code.

If we come across a situation where it is necessary for us to input a lot of parameters in
classes because of objects deeper in the code are dependent on them is probably the most
annoying and un-maintainable piece of code that we can find in even the most professional
environment. We need to think mainly about objects that are used more than once in an
application, and always required to instantiate again.

How to do it…
Let us take a look at the following example and assume that FirstClass is the only class
that we will actually need further in the code:

namespace OneNamespace
{
 class FirstClass
 {
 private $secondClass;
 public function __construct(SecondClass $secondClass)
 {
 $this->secondClass = $secondClass;
 }
 }

 class SecondClass
 {
 private $thirdClass;
 private $vehicle;
 public function __construct(ThirdClass $thirdClass, $vehicle)
 {
 $this->thirdClass = $thirdClass;
 $this->vehicle = $vehicle;
 }

Zend Framework 2 Basics

24

 }
}

namespace AnotherNamespace
{
 class ThirdClass
 {
 private $first_name;
 private $last_name;

 public function __construct($first_name, $last_name)
 {
 $this->first_name = $first_name;
 $this->last_name = $last_name;
 }
 }
}

// Let us now create the example through the classic
// method.
$thirdClass = new AnotherNamespace\ThirdClass("John", "Doe");
$secondClass = new OneNamespace\SecondClass($thirdClass,
 'Motorcycle');
$firstClass = new OneNamespace\FirstClass($secondClass);

Both the preceding examples give either variables that are only used to instantiate another
class and/or add complexity in reading the code. Although they both are correct, the use of DI
can, in this case, make the configuration of both the classes much easier.

Initializing the DI at call-time
Let's take a look at this DI example, considering that we have the same classes as the
preceding example:

namespace OneNamespace
{
 class FirstClass
 {
 [..]
 }

 class SecondClass
 {

Chapter 1

25

 [..]
 }
}

namespace AnotherNamespace
{
 class ThirdClass
 {
 [..]
 }
}

// Instead of configuring all the classes, we will now
// simply configure the Di, and only instantiate the
// class that we want to use.
$di = new \Zend\Di\Di();
$lister = $di->get(
 'OneNamespace\FirstClass',
 array(
 'first_name' => 'Jane',
 'last_name' => 'Doe',
 'vehicle' => 'Car',
)
);

In the preceding example, we simply say to the DI that AnotherNamespace\ThirdClass
has two parameters in its __construct method. The DI will then utilize Reflection to find
out what parameters are present there, and will then give any class that has a first_name,
vehicle, or last_name parameter in its constructor that parameter.

Of course we will see a potential flaw here, as you might need to utilize multiple instantiations,
one can presume that at some point the same parameter name will be used. In our example,
it would cause a problem if another class also has a $first_name parameter but requires a
different input, as the DI will simply give the one that is in its list.

If we use DI to instantiate our classes and all we need the constructor for is
to set our variables, we can easily remove the constructor altogether as the
DI doesn't use the constructor to initialize the variables. Instead the DI will
just set the properties of the values.

One good thing about this is that this can flaw only happens when we use the DI at a call-
time level, and not in a global configuration level as we will see now. That is why it isn't
recommended to use the DI at call-time level at all.

Zend Framework 2 Basics

26

Initializing the DI through a Configuration object
What we also can do to create a more specific (or accurate) initialization of our object – and
to make sure classes with the same property names don't conflict – is initializing the DI with a
configuration object.

The idea behind this is that we first create a configuration object (or array) that defines which
classes need which properties set, and then use that to initialize the DI, which in its turn finds
out when it needs to initiate what.

Take a look at the following example, which shows you the exact thing we just explained:

<?php
// We are assuming that we are using the same classes as
// in the previously shown examples.
namespace OneNamespace
{
 class FirstClass
 {
 [..]
 }

 class SecondClass
 {
 [..]
 }
}

namespace AnotherNamespace
{
 class ThirdClass
 {
 [..]
 }
}

// After defining our classes we now begin to create our
// configuration array which we will use to initialize
// the DI.
$configuration = array(

 // We want to use this specific configuration at
 // initialization of our class.
 'instance' => array(

Chapter 1

27

 // We specify the class name to use here
 'SecondClass' => array(

 // We want to use this as a parameter
 'parameters' => array(

 // The property name to fill is vehicle.
 'vehicle' => 'Airplane'
),
),

 'FirstClass' => array(
 // Again we want to use this as a parameter
 'parameters' => array(

 // The property name to fill is first name and
 //last name.
 'first_name' => 'Neil',
 'last_name' => 'deGrasse Tyson',
),
),
),
);

// We want to instantiate the Di\Configuration now.
use \Zend\Di\Configuration;

$diConfiguration = new Configuration($configuration);

// Now instantiate the Di itself, with the configuration
// attached.
$di = new \Zend\Di\Di($configuration);

// And to get the object we want to use, we just do the
//same as before.
$firstClass = $di->get('OneNamespace\FirstClass');

To make everything even nicer, we would just put the Zend\Di\Configuration of the DI
in the bootstrap of our module, so that we can use it easily throughout the namespace. This
way we can simply put the configuration of the DI in our module.config.php and let the
framework take care of it.

Zend Framework 2 Basics

28

How it works…
The DI or dependency injector is an important, and most of the time overlooked feature of
Zend Framework 2. The DI makes our lives a lot easier by automatically finding the classes we
need in our application.

With all its complexity however, comes a couple of features we should be wary of.

The DI only gives out one instance of an object
This means that every get() call will result in the same instantiation over and over again. If
we would like a new instance, we would need to call newInstance() as the DI implements
the singleton pattern, which means that all the data persists every time we call the get()
method unless we force a new instance of the DI.

Defining either all properties, or using a Fully Qualified (FQ)
setter parameter
When our class has more properties than we define, we will find out that the DI will use the
last value for every other property in the class. Of course this is unwanted, and if we wrote the
class ourselves we should consider refactoring the configuration and/or class.

However, when there is no other way we can define the right properties only by using a Fully
Qualified (FQ) setter parameter.

In our configuration we would then define a very specific property name, for example,
class::method:paramPos. If we take our ThirdClass example from earlier on, this would
then be ThirdClass::setFirstName:0 and ThirdClass::setLastName:0 respectively.

There's more…
There is loads more we can learn about the DI in Zend Framework 2. The following list
provides a very short and compact description of other interesting DI components:

 f RuntimeDefinition (default), CompilerDefinition and ClassDefinition:
These definitions are used to determine how to configure our objects. Although the
default one usually does the job, it can't hurt to see what the other two Definitions do,
because they all have their pros and cons.

 f InstanceManager: Used to define the configuration, specifically the Aliases,
Parameters and Preferences.

Using configurations to your benefit
Configurations play a crucial role in the workings of Zend Framework 2, therefore it is essential
to know how it works.

Chapter 1

29

How to do it…
Go through the following sections to use configurations to your benefit:

Creating a global configuration
When beginning to code in Zend Framework 2 there is some misunderstanding as to what
the different configuration files do. By default we have multiple configuration files, and it
might not always be simple to understand where things need to go. That is why we like to
apply a simple rule:

Is the configuration necessary throughout all our modules? If yes, place
your configuration in the config/application.config.php file.
If not, place your configuration in the config/global.php file at the
module where it belongs.

The configuration that we usually place in the global.php file can be, for example, the
caching method and configuration, the database configuration. Normally we would like to
place items in there that are environment related, but nothing that is security sensitive.

Let's take a look at a bad example of global.php:

<?php
return array(

 // We want to create a new database connection
 'db' => array(

 // The driver we want to use is the Pdo, our
 // favorite
 'driver' => 'Pdo',

 // This is our connection url, defining a MySQL
 // connection, with database 'somename' which is
 // available on the localhost server.
 'dsn' => 'mysql:dbname=somename;host=localhost',

 // This is exactly what we should NOT do in this
 // file, shame on you developer!
 'username' => 'terribleuser',
 'password' => 'evenworsepassword',
),

Zend Framework 2 Basics

30

 // We need a database adapter defined as well,
 // otherwise we can't use it at all.
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter' =>
 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

It is terrible practice to put the username and password in the global.php file. The
global.php file is to be put in our version control, and therefore should contain only
configuration items that are required to globally run the application, not specific information
that is relevant per environment, such as database usernames and passwords.

Creating configuration that only works for a local machine
One of the benefits of the ultra-many configuration files in Zend Framework 2, is that you are
able to override your global configuration with your local configuration. This certainly comes
in handy when developing and you find yourself in a position where your details are slightly
different in configuration than your production environment.

Let's assume that we have the following /config/autoload/global.php
configuration file:

<?php
return array(

 // We want to create a new database connection
 'db' => array(

 // The driver we want to use is the Pdo, our
 // favorite
 'driver' => 'Pdo',

 // This is our connection url, defining a MySQL
 // connection, with database 'somename' which is
 // available on the localhost server.
 'dsn' => 'mysql:dbname=somename;host=localhost',
),

 // We need a database adapter defined as well,
 // otherwise we can't use it at all.
 'service_manager' => array(

Chapter 1

31

 'factories' => array(
 'Zend\Db\Adapter\Adapter' =>
 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

As we can see in the preceding example, we create a nice and simple MySQL database
connection to our somename database which resides on the localhost. But as good
developers we have not defined our username and password in here. That is where the
/config/autoload/local.php file comes in.

Let's take a look at how our local.php might look like:

<?php
return array(
 'db' => array(
 'username' => 'awesomeuser',
 'password' => 'terriblepassword',
),
);

If we are using a version control system (please say yes), we should not commit this file, not only
for security reasons but also because this is a local configuration file and wouldn't be necessary
on a live system, as we would create a new one with the right details for that environment.

Editing your application.config.php file
If we look at our default config/application.config.php file we have only a few
properties set, but loads of inline comments, which really come in handy when we can't
remember the exact name or description of a property any more.

The main configuration that we will be changing the most in our application as we develop
is the modules property. This specific property is a simple array with the different module
namespaces that we have (and want to use) in our application. At default this looks somewhat
like this:

<?php

return array(
 // This should be an array of module namespaces used
 // in the application.
 'modules' => array(
 'Application',
),
[..]

Zend Framework 2 Basics

32

When we add or remove a module, this line needs to be modified as well and one can even
suggest modifying this before starting a new module or removing one. The reason for this
is simple, when we forget to modify this file when removing a module it will generate a 500
– Application Error when visiting the application in our browser. And because this
configuration file is read quite early in the instantiation, it can sometimes be hard for the
developer to pinpoint why the application fails to load all of a sudden.

How it works…
If we look at the index.php file in the public folder, we can see that we parse our initial
configuration file to the Zend Framework MVC Application with the line require 'config/
application.config.php'. This then loads up the main configuration file, which in its
turn defines all our properties.

A nifty property in the application.config.php file is the config_glob_paths
property. Any additional configuration files are by default read by finding files in the config/
autoload folder as well, using a very specific file pattern namely; *global.php and
*local.php. The order in which this is defined is also very important.

When we say *global.php, we can define anything from somemodule.global.php to
menu.global.php to just global.php, as the file pattern (also named GLOB_BRACE)
searches for anything that matches that. The same happens for *local.php.

The order this is defined is very important as said before because we want our global
configuration to be loaded before our local configuration, otherwise there would be no point in
overriding our global configuration, would there?

There's more…
To summarize the configuration files:

 f config/application.config.php: Modules can be added and removed here,
and very low level configuration happens here.

 f config/autoload/some-module.global.php: Used to override your default
values of your module configuration. Make sure not to put sensitive information in
here, but hostnames and database names should go in here.

 f config/autoload/some-module.local.php: You can put your usernames
and passwords and other configuration items that are very specific to your local
environment here.

 f module/SomeModule/config/module.config.php: Module specific
configuration happens here, use only default values and make sure nothing too
specific will be entered here.

Chapter 1

33

The EventManager and Bootstrap classes
We will be showing off one of the most beautiful features of Zend Framework 2: The
EventManager.

How to do it…
The EventManager and Bootstrap classes are an essential part of our application, this
recipe is all about how to use those two tools:

Using the bootstrap
The bootstrap is in our case the start of a module, whenever a module is requested it will use
the onBootstrap() method located in the Module.php file. Although the method is not
required, we usually want this method in our module as it is an easy method of making sure that
some instances already exist or are configured before venturing further in our client request.

Starting a session
Sessions are a wonderful way of saving information about a user on a temporary basis. Think
about saving the information of a logged-in user, or history on the pages they have been. Once
we begin creating an application we find ourselves saving a lot of things in the session.

The first thing we need to do is modify the /module/Application/config/module.
config.php file, and add another section called session to it. Let's assume that we have a
completely empty module configuration:

<?php
return array(
 'service_manager' => array(
 // These are the factories needed by the Service
 // Locator to load in the session manager
 'factories' => array(
 'Zend\Session\Config\ConfigInterface' =>
 'Zend\Session\Service\SessionConfigFactory',
 'Zend\Session\Storage\StorageInterface' =>
 'Zend\Session\Service\SessionStorageFactory',
 'Zend\Session\ManagerInterface' =>
 'Zend\Session\Service\SessionManagerFactory',
),
 'abstract_factories' => array(
 'Zend\Session\Service\ContainerAbstractFactory',
),
),

Zend Framework 2 Basics

34

 'session_config' => array(
 // How long can the session be idle for in seconds
 // before it is being invalidated
 'remember_me_seconds' => 3600,

 // What is the name of the session (can be anything)
 'name' => 'some_name',
),
 // What kind of session storage do we want to use,
 // only SessionArrayStorage is available at the minute
 'session_storage' => array(
 'type' => 'SessionArrayStorage',
 'options' => array(),
),
 // These are session containers we can use to store
 // our information in
 'session_containers' => array(
 'ContainerOne',
 'ContainerTwo',
),
);

And that is it. Sessions are now useable in our controllers and models. We have now
created two session containers that we can use to store our information in. We can
access these containers in any Controller or Model that has a service locator available by
doing the following (file: /module/Application/src/Application/Controller/
IndexController.php):

<?php

namespace Application;

use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractController
{
 public function indexAction()
 {
 // Every session container we define receives a
 // SessionContainer\ prefix before the name
 $containerOne = $this->getServiceLocator()
 ->get('SessionContainer\ContainerOne');
 }
}

Chapter 1

35

Using the EventManager class
The EventManager class is possibly one of the nicest features in the framework. When
used properly, it can make our code a lot more dynamic and maintainable without creating
spaghetti code.

What it does is relatively simple, for example; a class might have a method called MethodA.
This MethodA has a list of listeners, which are interested in the outcome of that class. When
MethodA executes, it just runs through its normal procedures, and when finished it just
notifies the EventManager a specific event has occurred. Now the EventManager will
trigger all of the interested parties that this event has taken place, and the parties in their
turn will execute their code.

Got it? Don't worry if you don't, because this example code might clear things up (file: /
module/Application/src/Application/Model/SwagMachine.php):

<?php
// Don't forget to add the namespace
namespace Application\Model;

// We shouldn't forget to add these!
use Zend\EventManager\EventManager;

class SwagMachine
{
 // This will hold our EventManager
 private $em;

 public function getEventManager()
 {
 // If there is no EventManager, make one!
 if (!$this->em) {
 $this->em = new EventManager(__CLASS__);
 }

 // Return the EventManager.
 return $this->em;
 }

 public function findSwag($id)
 {
 // Trigger our findSwag.begin event
 // and push our $id variable with it.
 $response = $this->getEventManager()

Zend Framework 2 Basics

36

 ->trigger(
 'findSwag.begin',
 $this,
 array(
 'id' => $id
)
);

 // Make our last response, the final
 // ID if there is a response.
 if ($response->count() > 0)
 $id = $response->last();

 // ********************************
 // In the meantime important code
 // is happening...
 // ********************************

 // ...And that ends up with the
 // folowing return value:
 $returnValue = 'Original Value ('. $id. ')';

 // Now let's trigger our last
 // event called findSwag.end and
 // give the returnValue as a
 // parameter.
 $this->getEventManager()
 ->trigger(
 'findSwag.end',
 $this,
 array(
 'returnValue' => $returnValue
)
);

 // Now return our value.
 return $returnValue;
 }
}

As we can see we created a little class with two event triggers, findSwag.begin and
findSwag.end, respectively on the beginning of the method, and one on the end of the
method. The findSwag.begin event will potentially modify the $id, and the findSwag.
end event only parses the returnValue object, with no modification possible to the value.

Chapter 1

37

Now let's see the code that implements the triggers (file: /module/Application/src/
Application/Controller/IndexController.php):

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Get our SwagMachine
 $machine = new SwagMachine();

 // Let's attach our first callback,
 // which potentially will increase
 // the $id with 10, which would
 // make it result in 30!
 $machine->getEventManager()
 ->attach(
 'findSwag.begin',
 function(Event $e)
 {
 // Get the ID from our findSwag()
 // method, and add it up with 12.
 return $e->getParam('id') + 10;
 },
 200
);

 // Now attach our second callback,
 // which potentially will increase
 // the value of $id to 60! We give
 // this a *higher* priority then
 // the previous attached event
 // trigger.
 $machine->getEventManager()
 ->attach(
 'findSwag.begin',
 function(Event $e)
 {

Zend Framework 2 Basics

38

 // Get the ID from our findSwag()
 // method, and add it up with 15.
 return $e->getParam('id') + 40;
 },
 100
);

 // Now create a trigger callback
 // for the end event called findSwag.end,
 // which has no specific priority,
 // and will just output to the screen.
 $machine->getEventManager()
 ->attach(
 'findSwag.end',
 function(Event $e)
 {
 echo 'We are returning: '
 . $e->getParam('returnValue');
 }
);

 // Now after defining the triggers,
 // simply try and find our 'Swag'.
 echo $machine->findSwag(20);
 }
}

As we can see attaching triggers to events is pretty straightforward. And – if the events are
properly documented – can come in handy when we want to, say, modify parameters going
into a method (like we did with the findSwag.begin), or just outputting the results to a log
(like findSwag.end).

When we look at what is on our screen, it should be something like this:

We are returning: Original Value (60)

Original Value (60)

The result consists of the top line being the output from the findSwag.end trigger, while
the value 60 comes from the highest priority trigger, the one with priority 100 (as that is
considered a higher priority than 200).

Chapter 1

39

Changing the View output
Sometimes it is necessary that we have different View outputs, for example when we need to
build ourselves a REST service or a SOAP service. Although this can be arranged much simpler
by a controller plugin, it is an example on how to hook into the dispatch event, and see what
is going on there.

Without further ado, let us take a look at the following code snippet:

Module.php:
namespace Application;

// We are going to use events, and because we use a MVC,
// we need to use the MvcEvent.
use Zend\Mvc\MvcEvent;

class Module
{
 public function onBootstrap(MvcEvent $e)
 {
 // Get our SharedEventManager from the MvcEvent $e
 // that we got from the method
 $sharedEvents = $e->getApplication()
 ->getEventManager()
 ->getSharedManager();

 // Also retrieve the ServiceManager of the
 // application.
 $sm = $e->getApplication()->getServiceManager();

 // Let's propose a new ViewStrategy to our
 // EventManager.
 $sharedEvents->attach(

 // We are attaching the event to this namespace
 // only.
 __NAMESPACE__,

 // We want to attach to this very specific
 // event, the Dispatch event of our controller.
 MvcEvent::EVENT_DISPATCH,

www.allitebooks.com

http://www.allitebooks.org

Zend Framework 2 Basics

40

 // The callback function of the event, used when
 // the event we attached to happens. In our
 // callback we also want our local variable $sm
 // to be available for use.
 function($e) use ($sm)
 {
 // Get our alternate view strategy from the
 // ServiceManager and attach the EventManager
 // to the strategy.
 $strategy = $sm->get('ViewJsonStrategy');
 $view = $sm->get('ViewManager')->getView();
 $strategy->attach($view->getEventManager());
 },

 // We want to give this a priority, so this will
 // get more priority.
 100
);
}

As we can see it is relatively simple to attach a callback function to the EventManager
object. In this example we are using McvEvent::EVENT_DISPATCH as the event we
want to hook in to. So what basically happens is that whenever a controller executes the
onDispatch() method, this event will be triggered as well. This means that through events
we can modify the outcome of a method without actually needing to modify the code.

How it works…
The EventManager class works through a couple of different methods, namely the Observer
pattern, the Aspect-Oriented Programming technique (or AOP) and the Event-Driven architecture.

The Observer pattern explained
Simply said the Observer pattern means that there are several interested parties, called
listeners that want to know when the application triggers a certain event. When a specific
event is triggered, the listeners will be notified so that they can take their necessary actions.

Aspect-Oriented Programming (AOP) explained
If we want to explain what AOP is, we could say that in short it stands for writing clean code
that have only function and are as isolated from the rest of the code as possible.

Chapter 1

41

Event-driven architecture explained
The benefit of an Event-driven architecture is that instead of creating bulks of code that need
to check every condition, we can easily hook ourselves to different events, which in essence
will create a more responsive application.

There's more…
The EventManager object is queried through a PriorityQueue, which tells us that an
important event will generally get a lower value, while an unimportant event a higher value.
For example, the highest priority might get priority -1000 while a quite low priority might
get 40. The EventManager class then gets the queue through a FIFO (First In, First Out)
concept, meaning the higher the priority, the lower the number.

2
Translating and

Mail Handling

In this chapter we will cover:

 f Translating your application

 f Localizing your application

 f Sending mail

 f Receiving mail

Introduction
An application wouldn't be an application if it couldn't react to the users. One simple but
effective way of reacting is obviously displaying text and sending e-mails. Over the last
couple of years internationalization (i18n) and localization (l10n) have become increasingly
important. Nowadays users expect to be greeted in their language, and even receive
automated e-mails from applications in a normal day's work.

Translating your application
In this recipe we will be using the Zend Framework 2 skeleton as a base, but we will create a
new module to show how it all works.

Translating and Mail Handling

44

Getting ready
For this recipe, we assume that you have a working Zend Framework 2 application/skeleton in
place. To ensure that we can actually run the code that we produce in the recipe, we need to
make sure that the intl and gettext extensions in PHP are enabled.

For translating the strings we will be using Poedit, a cross-platform open source application
used for translating gettext catalogs. The current version is 1.5.5 and can be found
at http://www.poedit.net/ website. We are using gettext as this is a widely used
internationalization and localization system for writing multilingual applications. The files
generated by Poedit have the extensions .po or .mo. The .po file is used for editing; let's say
this is an uncompiled translation file. The .mo file is the compiled translation file, which is
used in our application.

How to do it…
In this recipe we will talk about getting our application translated, something that is of much
use in applications nowadays.

Setting up and checking the essentials
We will assume that we have at least a basic module set up, containing a simple
IndexController that outputs a simple View.

First thing we want to do is make sure we have a language directory in our module structure
as shown in the following code:

SampleModule/
 config/
 module.config.php
 language/
 src/
 SampleModule/
 Controller/
 IndexController.php
 view/
 samplemodule/
 index/
 index.phtml
 Module.php

Chapter 2

45

In this directory all the gettext files will be stored, which will make it easier for us to control
them. Now, we have set up a simple folder structure, we need to make sure the module
configuration also knows what we are doing. Now, we open up the module.config.php and
add the following lines to the array:

// We want to have our translator available through the
// ServiceManager.
'service_manager' => array(
 'factories' => array(
 // Make our translator available in the
 // ServiceManager so we can retrieve it under the
 // 'translator' key.
 'translator' =>
 'Zend\I18n\Translator\TranslatorServiceFactory',
),
),

// Now to configure the Translator
'translator' => array(
 'locale' => 'en_US',

 // We would like using file patterns when matching
 // i18n files, as that makes our lives so much easier,
 // this is default in the skeleton.
 'translation_file_patterns' =>array(
 array(
 // The type of i18n we want to use is gettext.
 'type' => 'gettext',

 // Here we define our i18n file directory, this is
 // the directory we just made.
 'base_dir' => __DIR__ . '/../language',

 // We want to match our i18n files through this
 // pattern, what will be for example 'nl_NL.mo'.
 'pattern' => '%s.mo',
),
),
),

With the above configuration we have set up our module exactly the way we need it to look
That's it; our module is now set up to use i18n.

Translating and Mail Handling

46

Translating strings in the controller
Once we have set up the translator, translating strings couldn't be simpler. In the
following example (file: /module/Application/src/Application/Controller/
IndexController.php) we will translate the strings in the controller, but this is not good
practice if used in the real world and is only shown here as an example:

<?php

// Set our namespace
namespace Application\Controller;

// We need to use the following abstract on our
// controller
use Zend\Mvc\Controller\AbstractActionController;

// Begin our index controller class

class IndexController extends AbstractActionController
{
 // We can use this property to translate the strings,
 // or do some other translator related stuff.
 public $i18n;

 // Lets attach the setLocale to the dispatch event, so
 // it will be run before the action logic is executed
 public function setEventManager(EventManagerInterface $events)
 {
 // Instantiate the i18n through our ServiceLocator.
 parent::setEventManager($events);

 // We want to use this controller in our event
 $c = $this;

 // Attach our locale setting to the dispatch event
 $events->attach(
 'dispatch',

 // Variable $e is a Zend\Mvc\MvcEvent
 function ($e) use ($c)
 {
 // Put our translator in a local property
 $c->i18n = $this->getServiceLocator()
 ->get('translator');

Chapter 2

47

 // while we are here, let's change the locale
 // to Dutch.
 $c->i18n->setLocale('nl_NL');
 },

 // Make sure this event is triggered before the
 // action execution
 100
);

 // Return our selves
 return $this;
 }

 public function indexAction()
 {
 // Now simply translate this string with our i18n.
 $myTranslatedString = $this->i18n
 ->translate("And how about me?");
 }
}

Translating strings in the View
Translation in the view is even simpler than the controller (and that was pretty simple already).
The only thing we need is the string that we want to translate, and that's it. We do the
following alterations to the index.phtml file:

<?php
 // Translate and display this text.
 echo $this->translate(
 "Hello, I am a translated text!"
);

Translating strings with Poedit
Once we have installed Poedit, we need to set a couple of settings before we can start
translating strings. Gettext works with files that are called catalogs. Catalogs are files that
represent the source and translated text for one specific language.

First of all we should create a new catalog. After typing the first tab with the project name and
language we want to translate (for example, nl-NL), we should go to the second tab called
sources paths. That path should contain the path to the sources we would like to translate
and is most likely per module, which means the base path should be the module directory.

Translating and Mail Handling

48

In the third tab there should be a couple of identifiers to which Poedit can identify which
strings should be translated or not. Because we will be using the translate() method, we
need to make sure that at least the word 'translate' is in the list, we can keep the rest in there
however as they won't do any harm.

After we have done all that we can, click on OK and choose a location to save our file. This
file needs to be saved in the languages directory within the module, and should have a name
pattern, for example, nl_NL.po, en_GB.po, en_US.po. The naming convention for the file is
[language]_[COUNTRY]; some countries (for example, Belgium and Canada) have multiple
state languages which also need to be defined.

Once saved, press the Update button, which will result in the code being scanned for
translatable strings. Now a new list appears with all the strings that can be translated. We can
easily put our translation in the Translation box and save.

If we have done all that, our screen might look similar to the following screenshot:

Congratulations, we have now successfully created an i18n application!

Chapter 2

49

How it works…
There are multiple ways of translating strings in ZF2, and all of them are relatively easy to do.

Basic set up of translation in your module
Although the Application module has an already set up translation functionality, this might
not be what we want to use throughout our application. For instance, if we are (and we will
be) using different modules, we wouldn't like to use the translation file in the Application
module as that would make it less dynamic.

If we would use the same gettext file in all our modules, and store that in the Application
module, this would mean that if we don't use a specific module, the translations would be
loaded in anyway. Of course this would mean more memory use which we shouldn't have used.

That is why it is a good idea to set up translation for every module separately.

Translation within ZF2 works, obviously, because of the Zend\I18n\Translator\
Translator class. This class then looks at the configuration and loads up the relevant
Zend\I18n\Translator\Loader which we require. If found, it will look what the current
selected locale, (which we have set through setLocale()) is (for example, nl_NL, en_GB,
en_US, and so on) and then parse the relevant translation file—.mo for gettext, .ini for INI,
.php for PHP Array, and so on—and let is parse through the loader.

Once we call the translate() or translatePlural() method, the translator will search for
the relevant untranslated string in the session. If found, it can easily return the translated string,
but in the case of a string which isn't translated, it will just return the untranslated string.

There's more…
Instead of using gettext, there are also several other methods that can be used as translation
files. By default ZF2 has the option to use one of the following formats:

PHP array
Although this is a viable and easy method of translating, personally I wouldn't recommend it.
My personal experience is that the usage of this method limits the use of the translation files
to PHP. For example, gettext is an industry standard, which can be used by many platforms
and applications.

Translating and Mail Handling

50

In the language directory we would name the PHP files in the format [language]_
[COUNTRY].php, for example nl_NL.php. Our module.config.php would need an entry
as shown in the following code:

'translator' => array(
 'locale' => 'en_US',
 'translation_file_patterns' =>array(
 array(
 // This is the method we want to use.
 'type' => 'phparray',

 // We tell the config that our translations can be
 // found in the language directory.
 'base_dir' => __DIR__ . '/../language',

 // It will now search for files like en_US.php and
 // nl_NL.php.
 'pattern' => '%s.php',
),
),
),

When this is defined in the module.config.php file, the translation itself will work exactly the
same, the translation files (for example, nl_NL.php) will look similar as in the following code:

<?php

// We need to return an array with the translated
// strings.
return array(

 // The key is the untranslated string, while the value
 // is the translated text.
 'And how about me?'=> 'En hoe zit het met mij?',

 // More translations here [..]
);

Gettext
We used this format in the preceding examples, and as we could see they are easily
editable by an application such as Poedit. According to Wikipedia, the most commonly used
implementation of gettext is GNU gettext. Editing a gettext file is done in a so-called .po file
where po stands for portable object, and once the files are compiled for use they will be
placed in a .mo file where mo stands for machine object.

We can find the translation tool Poedit on the http://www.poedit.net/ website.

Chapter 2

51

Ini
The way this ini works is basically the same as any other method described earlier. The files
in the language directory can be named [locale].ini (for example, nl_NL.ini), and in
the module.config.php we would have an entry something like shown in the following
code:

'translator' => array(
 'locale' =>array('en_US', 'nl_NL'),
 'translation_file_patterns' =>array(
 array(
 'type' => 'ini',
 'base_dir' => __DIR__ . '/../language',
 'pattern' => '%s.ini',
),
),
),

As we can see we have defined two locales in our configuration, which means that these two
are our available i18n's, but our en_US is our fallback locale. The fallback locale is used when
no suitable locale can be found. Our translation files (nl_NL.ini) would then be looking
something like the following example:

translation.0.message = "And how about me?"
translation.0.translation = "En hoe zit het met mij?"

translation.1.message = "Hello, I am a translated text!"
translation.1.translation = "Hallo, ik ben een vertaalde
 tekst!"

We would always start a translation with translation.X, where X is a number which isn't
used before. We should think of this as an INI array, similar to how it would work in PHP.

Localizing your application
In this recipe, we will explain localization and its uses. Localization differs from
internationalization in the way that localization refers to, for example, numeric, date and time
formats, and the use of currency.

How to do it…
In this recipe we will be discussing the ever so important localization of our application.

Translating and Mail Handling

52

So it begins
When a user hits our website, we most likely want the user to automatically go to the right
language. Although, there are several methods of doing this, we will be using a manual check
to see if the language the user prefers is also in our list of languages.

We do this by a couple of simple tricks:

 f First, we are getting the Accept-Language headers from the HTTP request

 f Then we iterate through them and see if one of the languages mentioned in the
header matches the language we have

 f Lastly, we set the language to the language we have found, or if nothing is found, the
fallback language is set

Let's see how this looks in our Module.php code:

// We will be using a modified version of the default
// Module.php which comes with the Application module on
// the ZF2 Skeleton.
namespace Application;

// onBootStrap requires a McvEvent.
use Zend\Mvc\MvcEvent;

First, we need to start off by declaring the namespace (in our case Application) as we want
the framework to know where to find our code. We then want to make sure we always put all
the required classes in the use declaration so that we preload these before we go further in
the code.

// Start of our Module class
class Module
{
 // Private storage of all our local languages
 // available.
 private $locales;

 /**
 * Retrieves any locale that is available in the
 * language directory. This
 * assumes that our language directory contains files
 * in the format of en_GB.ext, nl_NL.ext.
 */
 private function retrieveLocales()
 {

Chapter 2

53

 // If we haven't already got all the locales,
 // please do it now.
 if ($this->locales === null) {
 $handle = opendir(__DIR__. '/language');
 $locales = array();

 if ($handle !== false) {
 // Loop through the directory
 while (false !== ($entry = readdir($handle))) {
 if ($entry === '..' || $entry === '.') {
 continue;
 }

 // We only want the front part of the filename
 $split = explode('.', $entry);

 // Split[0] should be en_GB if the file is
 // en_GB.ext.
 if (in_array($split[0], $locales) === false) {
 $locales[] = $split[0];
 }

 unset($split);
 }

 // We are done, now close the directory again
 closedir($handle);
 }

 // Make sure the locale is available for next time
 $this->locales = $locales;

 unset($handle, $locales);
 }

 // Return our available locales
 return $this->locales;
 }

Translating and Mail Handling

54

In the retrieveLocales() method we are parsing through the languages directory and
assume our filenames are called en_GB.ext. This way we can parse all the languages easily
into one array:

public function onBootstrap(MvcEvent $e)
{
 // Retrieve the HTTP headers of the user's request
 $headers = $e->getApplication()
 ->getRequest()
 ->getHeaders();

 // Get the translator
 $translator = $e->getApplication()
 ->getServiceManager()
 ->get('translator');

 // Check if we have a user that accepts specific
 // languages.
 if ($headers->has('Accept-Language')) {
 // Retrieve our locales that our user accepts
 $headerLocales = $headers->get('Accept-Language')
 ->getPrioritized();

 // Retrieve the locales that we have in our system
 $locales = $this->retrieveLocales();

 // Make sure that our fallback has been set in
 // case we couldn't find a locale
 $translator->setFallbackLocale('en_US');

 // Go through all accepted languages, most of the
 // time this will be only 1 or 2 languages.
 foreach ($headerLocales as $locale) {
 // getLanguage retrieves languages in a en-GB
 // manner, but ZF2 only supports the underscore,
 // like en_GB.
 $language = str_replace(
 '-',
 '_',
 $locale->getLanguage()
);

Chapter 2

55

 // See if this is a language we support in our application.
 if (in_array($language, $locales) === true) {
 // We have found our *exact* match
 break;
 }
 }

 // Now set our locale
 $translator->setLocale($language);
 }
}

// We can just use the methods that are already in the
// module.php, let's not repeat that code here.
public function getConfig() {}

public function getAutoloaderConfig() {}
}

As we can see in the previous code, what we try to achieve is to see if we have an exact match
with any of the language (en_GB, nl_NL) that we support. If we don't have an exact match we
already made sure our fallback language (en_US) is being used.

Please make sure that the intl extension of PHP is enabled in the
configuration, otherwise this example will not work correctly.

Localizing currencies
In Zend Framework 2 localizing currencies within a View can be done through the i18n view
helper, which comes standard with ZF2. The view helper, which is called CurrencyFormat,
can easily be used in the view by the following method call. We do the following alterations to
the sometemplate.phtml file:

<?php

// We always use $this for accessing a view helper.
echo $this->currencyFormat(45312.56, "EUR", "nl_NL");

This piece of code will give the output 45.312,56 €, as we specified to localize to a Euro
currency symbol with a Dutch localization format, which in this case is dot for thousands
and a comma for decimal separation. We can also leave the locale nl_NL out, and then the
CurrencyFormat view helper will automatically select the default locale of the application.

Translating and Mail Handling

56

Localizing date/times
To format any dates and times in our applications we can use the DateFormat view helper,
which is just as easy to use as the currency view helper, but has a few more options to use.
We do the following alterations to the sometemplate.phtml file.

<?php
echo $this->dateFormat(
 // Format the current UNIX timestamp.
 time(),

 // Our date is to be a LONG date format.
 IntlDateFormatter::LONG,

 // We want to omit the time, defining this is
 // optional as the default is NONE.
 IntlDateFormatter::NONE
);

The preceding code will only display the date, which is going to be formatted as Monday,
May 14, 2012 AD. We can omit giving any parameters, but then nothing will be displayed as
the default options are IntlDateFormatter::NONE.

How it works…
Localization (l10n) is like internationalization (i18n), a very important aspect of a public
application. We spoke about how to make sure your application can be translatable in the last
recipe, but now it is time to make sure that we are able to find out how to use any l10n.

Zend Framework 2 works closely together with the i18n/l10n functionality that is already
built in PHP. Although, we could use the Locale class of PHP separately of the ZF2 classes,
it is not recommended as the ZF2 already use the Locale from PHP itself, but provide a much
nicer and quicker interface to it.

In the background, however, ZF2 communicates directly with the Locale of PHP itself, but
if we want to use the more robust functionalities, we should use the ZF2 libraries (which are
handy when we are creating multilingual web applications).

Identifying the client language
The previous example code relies on the client browser sending the Accept-Language
header. Although most modern browsers do this, it's still something that might not always
work. Overall it is a pretty good tool to preselect any languages.

Chapter 2

57

Instead of making everything ourselves like shown previously, there is also a very nifty module
called SlmLocale made by Jurian Sluiman (https://github.com/juriansluiman/
SlmLocale) which we can recommend for detecting and selecting the default locale.

Localizing currencies and dates
Localizing currencies and dates are usually done in View, as it basically is only formatting a
piece of information. You can do it somewhere else but we should always be wary to make
sure we won't localize anything in, for example, models, as they only should contain logic. In
most cases the language is not part of the logic, but simply a nice way of making the view a
bit more user friendly.

Sending mail
Sending e-mail through sendmail is usually a pretty standard way of working, as it is
probably one of the most used ways of transporting e-mail (or proxying the e-mail to an SMTP
server) on a Linux-based system. On most Linux servers sendmail is already installed and
therefore it's very easy to start sending e-mail with that.

That is why we will be discussing this method of sending e-mail first, so that we can start
off easy.

How to do it…
In this recipe we will discuss the method of sending mail from within our application.

Transport\Sendmail
Let's take a look at the following example of sending an e-mail through sendmail, and
although this functionality is placed in a controller, in real life this needs to stay far away from
that and be placed safely away in a model:

<?php

namespace Application\Controller;

// We need the following libraries at a minimum to
// send an e-mail.
use Zend\Mail\Message;
use Zend\Mail\Transport\Sendmail;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{

Translating and Mail Handling

58

 public function indexAction()
 {
 // We start off by creating a new Message, which
 // will contain our message body, subject, to,
 // etcetera.
 $message = new Message();

 // Add the options we would like to give the
 // message, in this case we will be creating a text
 // message.
 $message->addFrom('awesome.coder@example.com')
 ->addTo('rookie.coder@example.com')
 ->setSubject('Watch and learn.')
 ->setBody('My wisdom in a message.');

 // Now we have set up our message, let's initialize
 // the transport.
 $sendmail = new Sendmail();

 // Although checking isValid is optional, it is a
 // great way of checking if our message would send
 //if we are getting input from outside.
 if ($message->isValid() === true) {
 // Send the message through sendmail.
 $sendmail->send($message);
 }
 }
}

No configuration is usually required for setting up e-mail to be sent through sendmail, as it is
a mail transport application on the local host only.

Transport\Smtp
We can easily send our e-mail through SMTP if we want (if we know our SMTP server
details obviously):

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

Chapter 2

59

// We need these classes to initiate a SMTP sending.
use Zend\Mail\Message;
use Zend\Mail\Transport\Smtp;
use Zend\Mail\Transport\SmtpOptions;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // First we built up a small message that we want to
 // send off.
 $message = new Message();

 // We need at least one recipient and a message body
 // to send off a message.
 $message->addTo('someone@example.com')
 ->addFrom('developer@example.com')
 ->setSubject('An example message!')
 ->setBody('This is a test message!');

 // Now we created our message we need to set up our
 // SMTP transportation.
 $smtp = new Smtp();

 // Set our authentication and host details of our
 // SMTP server.
 $smtp->setOptions(new SmtpOptions(array(
 // Name represents our domain name.
 'name' => 'ourdomain.com',

 // Host represents the SMTP server that will
 // handle the sending of our mail. This could also
 // be 'localhost' if the sending happens on our
 // local server.
 'host' => 'smtp.somewhere.com',

 // Port is default 25, which in most cases is
 // fine, but this is just to show how we can
 // change it.
 'port' => '1234',

Translating and Mail Handling

60

 // Connection class is the class used for
 // authenticating with the SMTP server. Normally
 // login will suffice, but sometimes the SMTP
 // server requires a PLAIN (plain) or CRAM-MD5
 // (crammd5) authentication method.
 'connection_class' => 'login',

 // This tells the connection_class which
 // properties to set. The default three connection
 // classes only require username and password.
 'connection_config' =>array(
 'username' => 'someuser',
 'password' => 'someplainpassword',
),
)));

 // We have set the options, now let's send the
 // message.
 $smtp->send($message);
 }
}

Transport\File
Let's take a look at an example of how to send our e-mail in to files…

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

// We need these classes to initiate a SMTP sending.
use Zend\Mail\Message;
use Zend\Mail\Transport\File;
use Zend\Mail\Transport\FileOptions;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {

Chapter 2

61

 // First we create our simple message.
 $message = new Message();

 // Set the essential fields send it off.
 $message->addTo('someone@example.com')
 ->addFrom('developer@example.com')
 ->setSubject('An example message!')
 ->setBody('This is a test message!');

 // Now we will initialize our File transport.
 $file = new File();

 // Set the options for the File transport.
 $file->setOptions(new FileOptions(array(
 // We want to save our e-mail in the /tmp path,
 // this can be anything where we have write
 // permission on.
 'path' => '/tmp',

 // Define our callback, which will be ran when
 // the e-mail is being saved to our system. This
 // also called an anonymous function, as it
 // isn't defined as a normal method.
 'callback' = function(File $file) {

 // We want to return a name in which the file
 // should be saved, which should be a unique.
 return 'mail_'. time(). '.txt';
 }
)));

 // Now send off the message.
 $file->send($message);
 }
}

After sending the e-mail the file transporter will create a file which might look something like
mail_453421020.txt. We have given /tmp as the directory to where this file should be
saved, we should look there to see if our file exists.

Of course we can do anything in the callback function, for example, we can check if a certain
file exists, or pull a name from the database. The options are endless.

Translating and Mail Handling

62

How it works…
Zend Framework 2 needs a minimum of two objects to make the sending of e-mails work. First
is the Zend\Mail\Message object, which is used to completely define the message that
needs to be sent. We can define to, cc, bcc, and from addresses in this object. The object
is also used to set the body of the message; this can be either HTML or plain-text, completely
depending on our own requirements.

Then as a second object we need a class that implements the Zend\Mail\Transport\
TransportInterface class that handles the actual sending of the e-mail. This class only
(at the moment anyway) has a send(Mail\Message $message) method defined that
needs to be added when we implement the transport.

What happens after defining the two objects is that we give our Message object to our
Transport object and tell it to send it off. How the sending is handled, is obviously
determined by the Transport object.

Sending mail through SMTP
Transporting mail through SMTP might not sound familiar to us, but it is a common method of
sending e-mail through another system. Think about a desktop e-mail client that retrieves our
e-mail from another server. When we send off an e-mail from that same e-mail client, it could
very well be that we will be using SMTP to send it off. In a nutshell, SMTP is sending an e-mail
to another mail server that then handles our mail transportation for us.

Sending mail through files
Although not used often, there are e-mail senders that simply pick up clear text files with the
complete message which needs sending from a specific directory, and send them off. And
obviously if we have no way of testing our actual e-mail sending, this is also a great way of
testing if the system works.

Receiving mail
Now, let's deal with the part of receiving mails.

Getting ready
In this recipe we will be giving examples on the different methods of connecting to mailbox
through ZF2, and therefore it would be nice if we had access to a mailbox we connect to. Of
course this is not required, but it sure adds to the fun to have an actual working mailbox.

Chapter 2

63

How to do it…
We will now discuss receiving e-mail within an application, which can be useful on
some occasions.

Connecting to an IMAP mail server
The first method of connecting to a mail server is through IMAP. The protocol basically lets
us connect to the mail server, and looking in the different folders on the server if there are
unread e-mails.

Let's take a look at our example:

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

// We need these classes to initiate an IMAP connection
use Zend\Mail\Storage\Imap;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {

 // We will create a new IMAP connection here:
 // host: user/password: The username and password
 // to use.
 $mail = new Imap(array(
 // Refers to the host where we want to connect to.
 'host' => 'imap.example.com',

 // The username/password to connect to the server
 // with.
 'user' => 'some_user',
 'password' => 'some_password',

 // Do we want to explicitly use a secure
 // connection.
 'ssl' => true,

Translating and Mail Handling

64

 // If we want to use a port that is different to
 // the default port, we can do that here.
 'port' => 1234,

 // Specify the folder we want to use, if none
 // given it will always use INBOX. This will also
 // work with the Mbox and Maildir protocol.
 'folder' => 'Some_Folder',
));

 // We want to parse through all our e-mails.
 foreach ($mail as $message) {
 // Display the from and subject line.
 echo $message->from. ': '. $message->subject;
 }
 }
}

Connecting to a POP3 mail server
Let's take a look at our simple connection example:

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

// We need these classes to initiate a POP3 connection
use Zend\Mail\Storage\Pop3;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // We will create a new POP3 connection here
 $mail = new Pop3(array(
 // Refers to the host where we want to connect
 // to
 'host' => 'pop3.example.com',

Chapter 2

65

 // The username/password to connect to the
 // server with.
 'user' => 'some_user',
 'password' => 'some_password',

 // Do we want to explicitly use a secure
 // connection.
 'ssl' => true,

 // If we want to use a port that is different to
 // the default port, we can do that here.
 'port' => 4321
));

 // We want to parse through all our e-mails.
 foreach ($mail as $message) {
 // Display the from and subject line.
 echo $message->from. ': '. $message->subject;
 }
 }
}

Working with flags on IMAP or Maildir connections
Flags are attributes that are attached to a message in which we can see the specific property
of a message. To put it simpler, it can tell us, for example, if a message is read or answered.
We can either get the flags from a message by using the getFlags() method, or by using
the hasFlag() method. The flags that can be used are to be found in the Zend\Mail\
Storage class.

Maildir++ Quota system
Let's take a look at the following example:

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

// We need these classes to initiate a Maildir storage
// connection
use Zend\Mail\Storage\Maildir;
use Zend\Mvc\Controller\AbstractActionController;

Translating and Mail Handling

66

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Open up a new Maildir connection
 $mail = new Maildir(array(
 // Our mail folder on the server.
 'dirname' => '/home/user/.mymail/'
));

 if ($mail->checkQuota() === true) {
 // We are over quote, let's check what we are
 // using!

 // Give us extended information about the quota.
 $quota = $mail->checkQuota(true);

 // Normalise the string if we are over the
 // quota.
 $overQuota = $quota['over_quota'] ? 'Yes' : 'No';

 // Display the information.
 echo "
 -- QUOTA --
 Total quota size: {$quota['quota']['size']}
 Total quota objects: {$quota['quota']['count']}
 -- USE --
 Total used size: {$quota['size']}
 Total used objects: {$quota['count']}
 Are we over quota: {$overQuota}
 ";
 }
 }
}

Keeping a connection alive
The following is an example of the use of NOOP:

<?php
// Usually this sort of code is defined in the Model,
// but to test it out we can place it in the
// controller as well.
namespace Application\Controller;

Chapter 2

67

// We need these classes to initiate a IMAP connection
use Zend\Mail\Storage\IMAP;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Open up a new connection to the mail server.
 $mail = new Imap(array(
 'host' => 'imap.example.com',
 'user' => 'some_user',
 'password' => 'some_password'
));

 // Loop through the messages.
 foreach ($mail as $message) {
 /** Do stuff which takes a lot of time.. **/

 // Now let the server know we are still alive..
 $mail->noop();

 /** Do some more stuff.. **/

 // Let the server know again we are still here..
 $mail->noop();
 }
 }
}

The tricky part here is when to use noop(), as sometimes it is really hard to predict which
process is taking the longest. That is why we created a special example to show you how easy it
is to make sure that noop() is being carried out regularly, until we are done with our process.

We can do this by utilizing register_tick_function, which enables us to call a specific
process on every tick. What we'll do is create a class that handles noop(), and executes it
every 5 minutes until we say it should stop:

<?php

// We can make this anything we want, we just decided on
// this though
namespace Application\System;

Translating and Mail Handling

68

// Lets call our class this
class NoopTick
{
 // This is our Zend\Mail\Storage\Imap which is a
 // static so we can call from outside the context of
 // this class without instantiating the class
 private static $imap;

 // This is the time value in seconds of the next time
 // we want to execute our noop functionality
 private static $newTime;

 // This is the amount of seconds between noop
 // executions, which in this case is 5 minutes
 private static $timeInBetween = 300;

 // This is our main method, which will only call the
 // noop method
 public static function tickTock()
 {
 if (time() >= self::$newTime) {
 // We can execute our noop now
 self::$imap->noop();

 // Now set the new time
 self::$newTime = (time() + self::$timeInBetween);
 }
 }

 // Now we want to have a method that starts up the
 // noop triggering
 public static function start($imap)
 {
 // Set our imap storage to use
 self::$imap = $imap;

 // Now we register the tick function, which executes
 // every tick of the process, we will use the class
 // NoopTicks (this class) and method 'tickTock'
 register_tick_function(array(
 'Application\System\NoopTick','tickTock'
));
 }

Chapter 2

69

 // And we now unregister our tick function again when
 // we are done with our operation
 public static function stop()
 {
 // Unregister our tick function again, mind that we
 // don't have to provide our class name here
 unregister_tick_function('tickTock');
 }
}

If we now are at a piece of code that requires us to execute for a long time, we can easily call
the start() method to do the NOOP'ing for us as shown in the following line of code:

Application\System\NoopTick::start($imapStorage);

And when we are done, we simply stop() the NOOP'ing again as shown in the following line
of code:

Application\System\NoopTick::stop();

How it works…
Mailboxes are being connected to; however we will see them in ZF2 as storage objects.
Because of this we can easily parse through all the messages, and in some cases are able to
manipulate messages on the storage, such as copying or moving them. We need to remember
that messages are always read only, and storages are the ones that can be manipulated. It is
possible, for example, to create and delete a folder, but never edit an existing message.

The only writeable functionality we have for manipulating a message is appendMessage(),
which appends a message to the storage. But when it is stored, we are not able to edit it again.

Connecting to a POP3 server
Connecting with a POP3 server is very similar to using an IMAP server (handy, isn't it?). The
only major difference is normally with a POP3 server the messages disappear from the mail
server after retrieving them, unless we specifically tell the server otherwise.

About the Maildir++ Quota system
Maildir++ is an extended version of Maildir, but still compatible with the normal Maildir
routine and supports quota systems. This is a very useful system because of its quota and
how it stores messages (on filesystem). This is used in a lot of companies, but obviously it
comes with its own troubles. For example, when trying to write/copy a message on a Maildir++
server, it can be that this will throw an exception because we are over the system quota.

That is why that – unless you know for certain Maildir++ isn't used – to implement a check for
the quota before trying to do any write-based functionality.

Translating and Mail Handling

70

Keeping the connection alive
Once a connection has been opened and parsing through messages is instantiated, the
connection has a fair chance of closing once too much time has passed. At that point it is
always wise to implement a No Operation command, or NOOP. This will tell the mail server
that we are still there, but are just doing something else at the moment.

There's more…
There is obviously a lot more to tell about retrieving e-mails from a mail server, and it would be
a great adventure to find them all out. Unfortunately, going in for all the advanced details would
almost be a book in itself, so we have put down a couple of subjects which are worth exploring:

 f Caching instances (see also Chapter 8, Optimizing Performance)

 f Reading HTML messages, or multi part messages with attachments

 f Advanced use of folders on IMAP/Maildir/Mbox

 f Protocol class extensions

 f Setting up e-mail box settings through the configuration

3
Handling and

Decorating Forms

In this chapter we will cover:

 f Creating forms

 f Using form view helpers

 f Creating a custom form element and form view helper

Introduction
In this chapter we will be discussing forms, and specifically the generation and manipulation
of them. Forms are a very important part in the communication with the user, as it is one of
the ways to receive information from the user. It is also a great way to use forms to do a lot of
validation of the elements by combining JavaScript and PHP. If we then can make it so that it
looks great as well, why would we not do that?

Creating forms
This recipe involves different ways of creating forms, and after that we will talk about how
elements are added to the form. In the last part of this recipe we will discuss how to validate
forms, and the best way of accomplishing this.

Handling and Decorating Forms

72

Getting ready…
A basic ZF2 skeleton application, with at least one module where we can work in, is necessary
to create and output forms.

If we want to use form annotations, we also require Doctrine\Common to be initiated in
the skeleton as it has the parsing engine to parse the annotations. If we are using composer
(which comes with the Zend Framework 2 skeleton) we can simply update our composer.
json by adding the following line to the required section:

"doctrine/common": ">=2.1",

Make sure the comma on the end of the line is only there when there
are still lines beneath it. If there are no lines coming after this line
except for a closing brace, please refrain from adding the comma as it
will fail the process.

Next is to run the composer update to make sure it gets installed, by using a command like
the following:

php composer.phar update

If we are not using a composer we are best off looking at the Doctrine project website
(http://www.doctrine-project.org/projects/common.html) to find more
information on how to install this.

How to do it…
We'll first be talking about creating forms and elements, after that we'll talk about adding
filters and validations.

Creating a basic form
A form always needs to be one of the following:

 f A class that is extended from the Zend\Form class

 f A class that is using the Zend\Form\Annotation defining method

Defining a form that is extended from Zend\Form
We will start with defining a form from the first method, by extending it from the Zend\Form
class. This is probably the easiest way to begin if we are new in Zend Framework 2 (ZF2).

The basic idea is that our form class should extend from the Zend\Form class, and has at
least a __construct method that defines our elements.

Chapter 3

73

Let's take a look at the following example in the /module/Application/src/
Application/Form/NormalForm.php file:

<?php

// We define our namespace here
namespace Application\Form;

// We need to use this to create an extend
use Zend\Form\Form;

// Starting class definition, extending from Zend\Form
class NormalForm extends Form
{
 // Define our constructor that sets up our elements
 public function __construct($name = null)
 {
 // Create the form with the following name/id
 parent::__construct($name);
 }
}

If we now go to our controller, say IndexController of the Application module we
can output the form to View by doing the following in file /module/Application/src/
Application/Controller/IndexController.php:

<?php

// Namespace of the controller
namespace Application\Controller;

// Use the following classes at a minimum
use Zend\Mvc\Controller\AbstractActionController;
use Application\Form\NormalForm;
use Zend\View\Model\ViewModel;

// Begin our class definition
class IndexController extends AbstractActionController
{
 // Set up our indexAction, in which we want to
 // display our form.
 public function indexAction()
 {
 // Initialize our form

Handling and Decorating Forms

74

 $form = new NormalForm();

 // Return the view model to the user, with the
 // attached form
 return new ViewModel(array(
 'form' => $form
));
 }
}

If we now take a look at our view script, we can see that we have the variable available.
We will now output the form actually to the screen by the following example (/module/
Application/view/application/index/index.phtml):

<?php
 // Output the opening FORM tag: <form>
 echo $this->form()->openTag($this->form);

 // Output the formatted elements of the form
 echo $this->formCollection($this->form);

 // Output the closing FROM tag </form>
 echo $this->form()->closeTag();

The output of this code example will be somewhat like the following:

<form action="" method="POST" name="normalform"
 id="normalform"></form>

This tells us that the instantiating went well, and that it is fully functional. As we also can see
the name that we defined ("normalform") is coming back as the name and id of the form.

Defining a form that uses the Zend\Form\Annotation
Let's take a look at an empty form (/module/Application/src/Application/Form/
AnnotationForm.php) in an annotated form:

<?php

// We first define our namespace as usual
namespace Application\Form;

// We need to use this otherwise it will not parse the
// elements correctly.
use Zend\Form\Annotation;

Chapter 3

75

/**
 * We want to name this form annotationform, which is
 * why we use the tag below, defining the name.
 *
 * @Annotation\Name("annotationform")
 *
 * A hydrator makes sure our framework can 'read' the
 * properties in our object, in this case we tell our
 * annotation engine that we have an object that needs
 * its properties read. There is probably a more
 * technical, accurate way of explaining it, but let's
 * just keep it to this for now.
 *
* @Annotation\Hydrator(
 * "Zend\Stdlib\Hydrator\ObjectProperty
 * ")
*/
class AnnotationForm
{
 /**
 * If we want to exclude properties in our form just
 * use the Exclude annotation.
 *
 * @Annotation\Exclude()
 */
 public $id;
}

If we now want to begin outputting our form to our user we can do that in a similar way to the
normal form (luckily). The first thing we need to do for that is actually assigning the form to the
View (/module/Application/src/Application/Controller/IndexController.
php) again, which is the only thing that is a bit different to the normal form creation.

<?php

// Namespace of the controller
namespace Application\Controller;

// Use the following classes at a minimum
use Zend\Mvc\Controller\AbstractActionController;
use Application\Form\AnnotationForm;
use Zend\Form\Annotation\AnnotationBuilder;
use Zend\View\Model\ViewModel;

Handling and Decorating Forms

76

// Begin our class definition
class IndexController extends AbstractActionController
{

 // Set up our indexAction, in which we want to
 // display our form.
 public function indexAction()
 {
 // Set up the output model
 $viewModel = new ViewModel;

 // Instantiate the AnnotationBuilder which will
 // create the actual form object
 $builder = new AnnotationBuilder();

 // Instantiate our annotated form
 $annotationForm = new AnnotationForm();

 // Now let the annotation builder create the form
 // from scratch
 $form = $builder->createForm($annotationForm);

 // Set our form to be the form variable in the view
 $viewModel->setVariable('form', $form);

 // Return the view model to the user
 return $viewModel;
 }
}

If we now want to output the form to our View (file /module/Application/view/
application/index/index.phtml), we can simply do the same as we did with the
other form:

<?php
 // Output the opening FORM tag: <form>
 echo $this->form()->openTag($this->form);

 // Output the formatted elements of the form
 echo $this->formCollection($this->form);

 // Output the closing FROM tag </form>
 echo $this->form()->closeTag();

Chapter 3

77

The HTML output of this example would result in the following:

<form action="" method="POST" name="annotationform"
 id="annotationform"></form>

Adding elements to a Zend\Form extend form
Creating elements in this kind of form is pretty simple, let's see what it looks like with a short
example (file /module/Application/src/Form/NormalForm.php):

// Adding a simple input text field
public function __construct($name = null)
{
 // Create the form with the following name/id
 parent::__construct($name);

 $this->add(array(
 // Specifying the name of the field
 'name' => 'name',

 // The type of field we want to show
 'type' => 'Zend\Form\Element\Text',

 // Any extra attributes we can give the element
 'attributes' => array(
 // If there is no text we will display the
 // placeholder
 'placeholder' => 'Your name here...',

 // Tell the validator if the element is required
 // or not
 'required' => 'required',
),

 // Any extra options we can define
 'options' => array(
 // What is the label we want to give this element
 'label' => 'What is your name?',
),
));
}

Handling and Decorating Forms

78

Adding elements to an annotated form
Let's take an example of an annotated element creation:

class AnnotationForm
{
 /**
 * Add two filters to this element.
 *
 * @Annotation\Filter({"name": "StringTrim"})
 * @Annotation\Filter({"name": "StripTags"})

 * Add a validator to make sure the string length
 * isn't going to be longer than 50, but also not
 * smaller than 5.
 *
 * @Annotation\Validator({
 * "name": "StringLength",
 * "options":{
 * "min": 5,
 * "max": 50,
 * "encoding": "UTF-8"
 * }})
 *

 * Set this element to be required.
 *
 * @Annotation\Required(true)

 * Set the attributes for the element
 *
 * @Annotation\Attributes({
 * "type": "text",
 * "placeholder": "Your name here...",
 * })

 * Set the options of this element.
 *
 * @Annotation\Options({
 * "label": "What is your name?"
 * })
 */
 public $name;

Chapter 3

79

Validating form input
One of the most important things of having forms is to use the data in our application,
because why else would we have forms to begin with?

Let's go and create a simple model (/module/Application/src/Application/Model/
SampleModel.php) that we can use for an example later on, but has absolutely no other use
for this recipe at all.

<?php

namespace Application\Model;

class SampleModel
{
 public function doStuff($array) {
 return true;
 }
}

As we can see this model doesn't do anything at all, but we need it later on.

We have now created our own form extension, so it is time to create our InputFilter class
which will filter and validate the values that we are going to put in the form, and attach to our
form through setInputFilter later on (we'll edit the file /module/Application/src/
Application/Form/NormalFormValidator.php):

<?php

// Of course our namespace first
namespace Application\Form;

// As this will be an input filter, we need the
// following imports to make it work
use Zend\InputFilter\Factory as InputFilterFactory;
use Zend\InputFilter\InputFilter;
use Zend\InputFilter\InputFilterAwareInterface;
use Zend\InputFilter\InputFilterInterface;

// Create our class, which should be implementing the
// InputFilterAwareInterface if we want to attach it to
// the form later on
class NormalFormValidator implements
InputFilterAwareInterface
{

Handling and Decorating Forms

80

 // This is the input filter that we will create
 protected $inputFilter;

 // This method is required by the implementation, but
 // we will just throw an exception instead of setting
 //the input filter as we don't want anyone to override
 // us
 public function setInputFilter(InputFilterInterface
 $inputFilter)
 {
 // We want to make sure that we cannot set an input
 // filter, as we already do that ourselves
 throw new \Exception("Cannot set input filter.");
 }

We have now started creating our input filter class, and already created one of the two
required methods of InputFilterAwareInterface. Now, let's continue further to the
point where we implement the second method, and construct the actual filter:

// This is the second method that is required by the
// interface
public function getInputFilter()
{
 // If our input filter doesn't exist yet, create one
 if ($this->inputFilter === null) {
 // Create the input filter which we will put in our
 // property later
 $inputFilter = new InputFilter();

 // Also instantiate our factory so we can get more
 // filters at ease
 $factory = new InputFilterFactory();

 // Let's add a filter for our name Element in our
 // form
 $inputFilter->add($factory->createInput(array(
 // This is the element is applies to
 'name' => 'name',

 // We want no one to skip this field, we need it
 'required' => true,

 // Now we are defining the filters, which make

Chapter 3

81

 // sure that no malicious or invalid characters
 // are supplied
 'filters' => array(
 // Make sure no tags are in our value, which
 // could make our system vulnerable for hacks
 array('name' => 'StripTags'),

 // We want to make sure our string doesn't
 // have any leading or trailing spaced
 array('name' => 'StringTrim'),
),

 // Validators make the form generate errors when
 // the data is invalid, filters only filter
 'validators' => array(
 array (
 // We want to add a validator that checks the
 // length of the string received
 'name' => 'StringLength',
 'options' => array(
 // Check if the string is in UTF-8 encoding
 // and between the 5 and 50 characters long
 'encoding' => 'UTF-8',
 'min' => '5',
 'max' => 50',
),
),
),
)));

We just added a simple validator that makes sure the length of the string is not smaller than 5
and not longer than 50 characters, and of course in our case we also want UTF-8 characters,
but obviously we can either drop this or change the character set if we need to.

We'll add a simple password field validator and filter now, but the next one after that checks
if the repeat_password field is identical in value to our password field. Personally, I really
like that validator because of its simplicity and yet being powerful enough to take away some
manual labor.

 // We are doing the same trick again for the
 // password, so we can just skip over this, as this
 // was just necessary for the one after this one.
 $inputFilter->add($factory->createInput(array(
 'name' => 'password',

Handling and Decorating Forms

82

 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array (
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => '5',
),
),
),
)));

 // And here is the great piece of validation we
 // wanted to show off. This validator checks if the
 // value of the given element is identical to
 // another fields value. This way we don't have to
 // manually check if the password is the same as the
 // repeat password field.
 $inputFilter->add($factory->createInput(array(
 'name' => 'password_verify',
 'filters' => array(
 // The usual filters, as we almost always want
 // to be sure it contains no tags or
 //trailing/leading spaces
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'identical',
 'options' => array(
 'token' => 'password',
),
),
),
)));

Chapter 3

83

After that nifty validator we will now add a simple e-mail validator, which will also have a not
empty validator that checks if the field is empty or not. We will use the following code for
e-mail validation:

// Email validator works perfectly, especially if we
// don't want to trust any client side validation
// (which we shouldn't)
$inputFilter->add($factory->createInput(array(
 'name' => 'email',
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array (
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => '5',
 'max' => '250',
),
),
 array(
 // Don't you hate it when you get email
 // addresses that are not valid? Well, no
 // more as we can simply validate on that
 // as well.
 'name' => 'EmailAddress',
 'options' => array(
 'messages' => array(
 // We can even leave a neat little error
 // message to display
 'emailAddressInvalidFormat' => 'Your email seems to
 be invalid',
)
),
),
 array(
 // This validator makes sure the email
 // address is not left empty. And although we
 // can simply say this field is required,
 // this will give us the opportunity to leave
 // a nice error message that is relevant to

Handling and Decorating Forms

84

 // the user as well
 'name' => 'NotEmpty',
 'options' => array(
 'messages' => array(
 // This message is displayed when the
 // field is empty, instead of a 'field
 // required' message as we didn't make
 // the field required
 'isEmpty' => 'I am sorry, your email is required',
)
),
),
),
)));

Even dates are not a problem for validation, and we can make it even this good that we
are only allowed to select ranges of dates as well, which in some cases (for example 18+
websites) is nice to have.

 $inputFilter->add($factory->createInput(array(
 'name' => 'birthdate',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'Between',
 'options' => array(
 // We can define the ranges of dates
 // here, min and max are both optional,
 // as long as one of them at least exists
 'min' => '1900-01-01',
 'max' => '2013-01-01',
),
),
),
)));

 // Set the property
 $this->inputFilter = $inputFilter;
 }

Chapter 3

85

 // End of our method, just return our created input
 // filter now
 return $this->inputFilter;
 }
}

Let's jump in immediately and take a look at a simple example that uses our normalform like
before (/module/Application/src/Application/Controller/IndexController.
php):

<?php

// Define the namespace of our controller
namespace Application\Controller;

// We need to use the following classes
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
use Application\Form\NormalForm;
use Application\Form\NormalFormValidator;
use Application\Model\SampleModel;

// Set up our class definition
class IndexController extends AbstractActionController
{
 // We want to parse/display our form on the index
 public function indexAction()
 {
 // Initialize our form
 $form = new NormalForm();

 // Set our request in a local variable for easier
 // access
 $request = $this->getRequest();

 if ($request->isPost() === true) {
 // Create a new form validator
 $formValidator = new NormalFormValidator();

 // Set the input filter of the form to the form
 // validator
 $form->setInputFilter(
 $formValidator->getInputFilter()
);

Handling and Decorating Forms

86

 // Set the data from the post to the form
 $form->setData($request->getPost());

 // Check with the form validator if the form is
 // valid or not
 if ($form->isValid() === true) {
 // Do some Model stuff, like saving, this is
 // just an empty model we created to show what
 // probably would happen after a validation
 // success.
 $user = new SampleModel();

 // Get *only* the filtered data from the form
 $user->doStuff($form->getData());

 // Done with this, unset it
 unset($user);
 }
 }

 // Return the view model to the user
 return newViewModel(array(
 'form' => $form
));
 }
}

How it works…
Let's understand how we achieved what we achieved.

Setting up a basic form
The preceding first example, creating a form class that extended from Zend\Form is the bare
minimum to set a form up. As we can see, this form doesn't have any elements or properties
set up at the moment, the only thing it defines is the name/id of the DOM element of the
form object. What we did after that is first initialize the form, and then assign the ViewModel
to it as that will be the View that is going to be outputted to the screen.

The only thing that we did in the example is output the <form> tag first—with all its properties,
such as method, action, and etcetera. The second thing is that we do output all the
elements in the form (which in this case are none), and as a last thing that we do is we output
the end form tag </form>, which now ends our form declaration.

Chapter 3

87

If we open up a browser and look at our code, we will see no much different than we saw
before, probably an empty page. However, when we open out the source code of that page (in
Firefox this is right-clicking on the page and clicking on View Page Source) we see that we
actually did instantiate the form properly in HTML.

Our basic form instantiation is now concluded, if we want a more advanced, but more
attractive as well, way of defining our form, we should continue reading the next bit as well.

Setting up an annotated form
Defining an annotated form is a bit different than a normal form, the main difference being
that an annotated form is just a class with properties, which isn't extended from any other
class, while the other method requires us to extend from the Zend\Form class. In the
preceding example, we first created a very simple and empty form using the annotation
method. We can also see that we require a Hydrator to make the Annotation Engine
understand what we are on about, but we do not need to extend the class, so we are free to
do what we want there.

The only thing we should be wary about is that every element that we require in our form,
should have the property access set to public, otherwise technically the Annotation Engine
can't pick it up. We don't have to make getters/setters for the properties (unless we want to
use it for ourselves), as the Annotation Engine just uses the public properties directly.

Using the form in a controller is slightly different then a normal form, because when we would
just instantiate the class and use that as a form it would end up as an error. The class needs
to go through AnnotationBuilder first to actually build up the form. That is why we need to
do createForm(), which then outputs a form.

This will output nothing visible, but if we then look at the page source code (in Firefox this is
achieved by right-clicking on the page and then clicking on View Page Source) we see that we
have a new form opening tag <form> and a form closing tag </form>. In between those tags
you can see that our form, which was named annotationform is now set as the name and
the id of the form.

Some developers find this way of defining a form a bit overdone, because in the end it might
seem that we are not adding a lot of usability, which in all fairness is a bit true. It all depends
on the situation when something is better than other methods, but in all fairness it is a pretty
slick way of defining forms!

Adding elements to the form
If we have set up the forms in the same way as the previous method then we have two ways
of defining elements to the form. The first one will be the normal method of defining a form,
which is an extension of Zend\Form\Form, just like the form example in the How to do it...
section, and the annotation form of it, like the second example of an AnnotationForm in the
How to do it... section.

Handling and Decorating Forms

88

The first example assumes that we are defining __construct() in a form that has been
extended from Zend\Form\Form. What it does is call the add() method of Zend\Form\
Form where we give the method an array of methods (yes, you can just as well create the
whole form in a configuration file!).

It is as simple as that to add an element. Obviously, there are more elements available, and
all of them have their own options and attributes, but we won't go into all of those as it would
be way too long to discuss.

Adding elements to an annotated form is both easy and complicated. It is easy because in the
most basic idea it only requires you to add a property to the class, which is simple enough.
But if you want to go further than that, and add validations or filters, it requires you to add
Annotation comments above the property.

As we could see in the preceding example, the way of defining elements through annotation
isn't particularly difficult, it is just that we need to know which @Annotation to use. When
setting attributes/options or sometimes other annotations, we will see the two curly braces
{}, which represent an object in JavaScript and is used for JSON.

Obviously, it isn't that difficult, but it requires us to have a bit of a different train of thought.

Forms, filtering, and validation
A normal form that extends from Zend\Form\Form creates the elements by looking into
$this->elements of the form, where all the form elements will be stored. Once it triggers the
form renderer, all these elements will be decorated into real HTML tags. In an annotated form
the process of transforming the class into HTML requires one more step, which is put simply
transforming the annotated class into a frame that looks like a Zend\Form\Form extended
class. That way we can use the build form from the annotated class just like a real form object.

When we post the form (you don't necessarily need to specify a post as it is already a POST
by default), we let the form check if the values are correct, and more importantly we want to
make sure that we are getting the values that we expect.

Not only is validating forms important security wise but also filtering wise. If we put multiple
filters on our elements (for example, string trim and strip tags), we would like to have that all
ready for us to use instead of using the filters afterwards again. Obviously, the bigger issue is
having our application protected from malicious users, and to validate the input of the user.

As we can see in the very last preceding code example, we first create the form and we will
then look if the user tried posting the form. If this is true, we will set up our form validator
that we created specifically for that form. We then assign the request data (this is what the
user filled in our form) to the form. After we assigned the data to the form we call isValid()
to see if the data is valid or not. If it is, we assign the filtered data with getData() to our
sample model to save it.

Lastly, we will assign the form to the view again so we can display any validation errors that
happened through the validation process. Easy!

Chapter 3

89

There's more…
We can also define a form solely through the configuration, this is called form creation by factory
and we encourage you to see how that works, as it is also a great way of creating forms.

To add some form security, one would be looking to add a Zend\Form\Element\Csrf
element to our form, which looks at the source of the form to make sure no Cross-site Request
Forgeries (CSRF) are done. This is a unique key that is added to the form that is used in the
validation process. We would even go as far as to say that it is recommended to create a base
form that has the CSRF element already added to it, so that we don't have to worry that we
forgot or not, as long as we extend from the base form.

Using form view helpers
Instead of the Zend Framework 1 Decorators (where it was a key in the creation and rendering
of forms) we now know in Zend Framework 2 that it is better to use different view helpers and
renderers to render the forms.

How to do it…
View helpers are very important tools to a developer, here we will discuss how to use them in
our code.

Form
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// Just open and close the form tag
echo $this->form()->openTag();
echo $this->form()->closeTag();

// Use a form to pull the attributes from
echo $this->form()->openTag($formObject);

/** Do stuff in between **/

// Close the tag again with no form object attached
echo $this->form->closeTag();

www.allitebooks.com

http://www.allitebooks.org

Handling and Decorating Forms

90

The rendered output of this would be the following:

<form></form>

FormButton
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// First we create a simple button (this is better done
// inside a form/controller or model of course)
$buttonElement = new \Zend\Form\Element\Button(
 // This is the name of the button
 'somebutton'
);

// Render the button immediately through the button
// element
echo $this->formButton($buttonElement);

// Render the button in 3 steps:
// Step 1, the opening tag: Can be called without a
// parameter, and array of attributes or an instance of
// Zend\Form\Element
echo $this->formButton()->openTag($buttonElement);

// Step 2, the inner HTML: Output our custom inner HTML
// here, like the label of the button
echo 'Life is short, click now!';

// Step 3, the closing tag: Close the tag again.
echo $this->formButton()->closeTag();

If we now look at the rendered output, it should look like the following:

<button name="somebutton">Life is short, click
 now!</button>

FormCaptcha
We do the following alterations to a view script called example-viewscript.phtml:

<?php
$captchaElement = new \Zend\Form\Element\Captcha(array(
 // What is the name of the element
 'name' => 'captcha',

Chapter 3

91

 // Now add some captcha specific configuration
 'captcha' => array(
 // The class is necessary for the factory to know
 // what kind of captcha we want. The options are
 // Dumb, Figlet, Image and the famous ReCaptcha
 'class' => 'Dumb',
)
));

// That's all folks, the $captchaElement needs to be of
// the instance Zend\Captcha\AdapterInterface to make it
// work
echo $this->formCaptcha($captchaElement);

FormCheckbox
We do the following alterations to a view script called example-viewscript.phtml:

<?php
// Create a simple checkbox with the name someCheckbox
$checkboxElement = new \Zend\Form\Element\Checkbox(
 'someCheckbox');

// The $checkboxElement needs to be of the instance
// Zend\Form\Element\Checkbox to make it work
echo $this->formCheckbox($checkboxElement);

The rendered output would be something like the following:

<input type="checkbox" name="someCheckbox" />

FormCollection
We do the following alterations to a view script called example-viewscript.phtml:

<?php

$object = new \Zend\Form\Element\Collection(
 // The name of the collection
 'someCollection',

 // Some additional options
 array(
 // The label we want to display
 'label' => 'collectionSample',

Handling and Decorating Forms

92

 // Should the collection create a template of our
 // template element so that we easily duplicate it
 'should_create_template' => true,

 // Are we allowed to add new elements
 'allow_add' => true,

 // And how many elements do we want to render
 'count' => 2,

 // Define the target element to render
 'target_element' =>array(
 'type' => 'Zend\Form\Element\Text'
),
));

// The $object can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formCollection($object);

This has the incredibly vague rendered output like the following:

<fieldset><legend>collectionSample</legend><span data-template="<in
put type="text" name="__index__&quo
t; value="">">

This is enough for the collection to know what it needs to do, as in this case it holds the
template of our input field.

FormColor
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// We want a simple text field for our color
$color = new \Zend\Form\Element\Color('someColor');

// The $color can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formColor($color);

Chapter 3

93

FormDate, FormDateTime, and FormDateTimeLocal
We do the following alterations to a view script called example-viewscript.phtml:

<?php
// Create a date element
$date = new \Zend\Form\Element\Date('someDateElement');

// The $date can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formDate($date);
echo $this->formDateTime($date);
echo $this->formDateTimeLocal($date);

FormEmail
We do the following alterations to a view script called example-viewscript.phtml:

<?php
// Add a simple text field
$element = new \Zend\Form\Element\Text('someElement');

// The $email can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formEmail($email);

FormFile
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// The $file can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formFile($file);

FormHidden
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// The $hidden can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formHidden($hidden);

Handling and Decorating Forms

94

FormImage
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// The $image can be of any class that implements the
// Zend\Form\ElementInterface
$image->setAttrib('src', '/our/image.jpg');

echo $this->formImage($image);

FormInput
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// The $input can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formInput($input);

FormLabel
We do the following alterations to a view script called example-viewscript.phtml:

<?php
// Create a simple text input
$element = new \Zend\Form\Element\Text('someElement');

// 1. This will declare the label immediately. The
// $element can be of any class that implements
// the Zend\Form\ElementInterface

echo $this->formLabel($element);

// 2. Or we can declare the formLabel like this
echo $this->formLabel()->openTag(array(
 'for' => 'someElement',
));

Chapter 3

95

// We are putting some html in between the
// <label></label> tags
echo "Some output in between!";
// Close the tag again
echo $this->formLabel()->closeTag();

// 3. Or as a last method, there is still some other way
// to define the element. This will prepend
// $someOtherElement with our $element's label. Instead
// of prepend we can also use append.
echo $this->formLabel(
 $element,
 $someOtherElement,
 'prepend'
);

FormElementErrors
We do the following alterations to a view script called example-viewscript.phtml:

<?php

// Create a simple text box
$element = new \Zend\Form\Element\Text('someInput');

// 1. Just display the element errors, with the optional
// attributes added as the second parameter.
// The $element can be of any class that implements the
// Zend\Form\ElementInterface
echo $this->formElementErrors($element, array(
 'class' => 'element-error',
 'id' => 'error_three'
));

// 2. Custom formatted validation error messages.
echo $this->formElementErrors()
 ->setMessageOpenFormat('')
 ->setMessageSeparatorString(
 ''
)->setMessageCloseString('')
 ->render($element);

Handling and Decorating Forms

96

How it works…
The form element view helpers are a great way to render your form elements. In the previous
version of Zend Framework this was done by form decorators, which were different to view
helpers in ZF2 because they were used before the form reached the view script. The way
it now works is that a form is still in its original state when it reaches the view script, which
means we can fully manipulate the form to the way our layout looks. This creates a more
dynamic output where we can define layouts per view script (something that was very hard to
achieve in ZF1).

Because the form element view helpers are in charge of the rendering of the element in the
view script, they can also be more in touch with the requirements of the developer. All in all,
this is a great way to create a form that looks and works brilliantly.

Various view helpers and/or renderers can be used in order to create the perfect layout. There
are a lot of standard view helpers that can be used in order to mark up your form.

Form
This helper renders your <form /> tag, which can—if wanted—pull some attributes out of our
Zend\Form object to use as attributes.

The attributes the form helper (by parsing the form) supports is accept-charset, action,
autocomplete, enctype, method, name, novalidate, and target.

FormButton
We can render our <button /> tag with this helper, and obviously it can work in different
ways, just like we want it to. It can either render the button through Zend\Form\Element or
do it in a three-step way, where we can make up our own stuff in between.

The attributes the FormButton helper (by parsing the Element) supports are
name, autofocus, disabled, form, formaction, formenctype, formmethod,
formnovalidate, formtarget, type, and value.

FormCaptcha
Captcha is used to prevent users from submitting forms without validating that they are
human. Occasionally, we will get forms that will be spammed with ridiculous amounts of
spam. That is why we, nowadays, have this little tool that generates a small image, which is an
automated Turing test to find out if we are human or not.

This helper can only be rendered through a Zend\Element\Captcha object, so there is not
a lot to further explain on that.

Chapter 3

97

FormCheckbox
This helper will render two elements by default:

 f The <input /> element of type checkbox

 f An <input /> element of type hidden, with the value of the checkbox state

It creates the hidden input because a checkbox will not get posted if it is left unchecked, so
we can imagine the consequences of form validation when an element is not there. That is
why there is always a hidden field that is rendered before the checkbox element to make sure
at least something is posted.

Also, the checkbox element has some other cool options such as using a hidden field. For the
developers out there that have any experience with checkboxes, they can sigh in relief as an
unchecked checkbox is never posted by the browser in a form.

That is why a hidden field is placed before the checkbox element with the same name as
the checkbox element, but filled with the unchecked value. This means that whenever the
checkbox isn't checked, it will send the hidden field's value, otherwise the checkbox checked
value would override that.

FormCollection
This helper is used, for example, when we want to render a complete form in one instance. If
we use a Zend\Form object as parameter to this helper, we will get a completely rendered
HTML form returned. If we use Zend\Form\Element\Collection on the other hand, we
will get a fully rendered HTML collection back, with template if required.

FormColor
This is a HTML5 element, which is a <input /> element with the type color. It creates an
input form in which the user can select a color, or when used in a non HTML5 compatible
browsers, it will simply display an input field.

FormDate, FormDateTime, and FormDateTimeLocal
Another HTML5 element that outputs an <input /> element with the type date is FormDate.
In an HTML5 compatible browser it will usually output a calendar dropdown where the user can
select the date they like, in a non-compatible browser it again just shows a text input field.

FormEmail
This HTML5 field is a nice field that ships in an HTML5 compatible browser with a nifty
validation which checks if the typed value is an actual e-mail address or not. It is best not to
rely on that too much and still validate the values ourselves just in case the user isn't using an
HTML5 compatible browser.

Handling and Decorating Forms

98

The attributes that can be set on a FormEmail are name, autocomplete, autofocus,
disabled, form, list, maxlength, multiple, pattern, placeholder, readonly,
required, size, type, and value.

FormFile
The FormFile helper is helpful for displaying an <input /> with the type file. Not only does
it show the input element, but it can also prepare the element for any upload progress we
want to monitor. Like many other element helpers, this helper also supports the attributes:
name, accept, autofocus, disabled, form, multiple, required, type, and value.

FormHidden
The hidden <input /> field is handy for posting information to the application without
requiring user input. Nothing fancy about this helper, but it does support the name,
disabled, form, type, and value attributes.

FormImage
The FormImage <input /> tag is mainly used as a replacement for a Submit button in
a form. It is simple to use and only requires the src attribute (the location of the image).
It also supports the name, alt (recommended), autofocus, disabled, form,
formaction, formenctype, formmethod, formnovalidate, formtarget, height,
type, and width attributes.

FormInput
A FormInput is a simple <input /> element that renders an element for us by naturally
selecting the type. Not necessarily recommended to use this one as it is pretty generic and
would have its flaws (for example, when it isn't an input tag that is required).

FormLabel
If we want to display a <label />, then using this helper is the perfect thing, as we can
declare the position of the label (FormLabel::APPEND or FormLabel::PREPEND) and we
can also add the content of the label. It only supports for and form as attributes.

FormElementErrors
This helper is used for displaying form validation errors. By default, this will be displayed
underneath the form element, but with this helper we can customize the display of this error a
bit more.

Chapter 3

99

Creating a custom form element and form
view helper

Once we keep on developing in Zend Framework 2, and our application keeps on growing,
the more it is necessary to stop copy-pasting and just replace all those replicating bits by a
class that simply outputs what we want. In ZF2 this can be done easily through view helpers.

How to do it…
In this recipe we'll create our own form element, and corresponding view helper to display it.

Creating the new element
All we have to do is set the type of the element, and that's it. We do the following alterations
to the /module/Application/src/Application/Form/Element/Video.php file, let's
take a look on what the code should look like:

<?php

// Set our namespace just right
namespace Application\Form\Element;

// We need to extend from the base element
use Zend\Form\Element;

// Set the class name, and make sure we extend from the
// base element
class Video extends Element
{
 // The type of the element is video, 'nuff said.
 protected $attributes = array(
 'type' => 'video',
);
}

As we can see this is a pretty easy job to do, and we have now successfully created a new
element to use in ZF2.

Handling and Decorating Forms

100

Creating the new view helper
The view helper will create the HTML element that we just declared, so let's take a look on
how the view helper should look like in the /module/Application/src/Application/
Form/View/Helper/FormVideo.php file:

<?php

namespace Application\Form\View\Helper;

use Zend\Form\View\Helper\AbstractHelper;
use Zend\Form\ElementInterface;
use Zend\Form\Exception;

class FormVideo extends AbstractHelper
{
 /**
 * Attributes valid for the video tag
 *
 * @var array
 */
 protected $validTagAttributes = array(
 'autoplay' => true,
 'controls' => true,
 'height' => true,
 'loop' => true,
 'muted' => true,
 'poster' => true,
 'preload' => true,
 'src' => true,
 'width' => true,
);

First, we added the attributes that this element can have, this is necessary to make sure we
are not declaring attributes that don't exist (although that would in most cases not be that
much of a problem).

 /**
 * Invoke helper as functor
 *
 * Proxies to {@link render()}.
 *
 * @param ElementInterface|null $element
 * @return string|FormInput
 */

Chapter 3

101

 public function __invoke(ElementInterface $element = null)
 {
 if (!$element) {
 return $this;
 }

 return $this->render($element);
 }

The preceding __invoke method is created so that we don't have to initialize the class
before we want to call the view helper. This way we can use it in the view scripts by using
formVideo(), instead of instantiating a new FormVideo() first.

 /**
 * Creates the <source> element for use in the <video>
 * element.
 *
 * @param array|string $src Can either be an
 * array of strings, or a
 * string alone.
 * @return string
 */
 protected function createSourcesString($src)
 {
 $retval = '';

 if (is_array($src) === true) {
 foreach ($src as $tmpSrc) {
 $retval .= $this->createSourcesString($tmpSrc);
 }
 } else {
 $retval = sprintf(
 '<source src="%s">',
 $src
);
 }

 return $retval;
 }

Handling and Decorating Forms

102

The createSourcesString method gets the string or array containing all our video URLs.
As said this can be either a string or an array, which in the last case will just iterate through
the array and output the string with the source tags.

 /**
 * Render a form <video /> element from the provided
 * $element
 *
 * @param ElementInterface $element
 * @throws Exception\DomainException
 * @return string
 */
 public function render(ElementInterface $element)
 {
 // Get the src attribute of the element
 $src = $element->getAttribute('src');

 // Check if the src is null or empty, in that case
 // throw an error as we can 't play a video without
 // a video link!
 if ($src === null || $src === '') {
 throw new Exception\DomainException(sprintf(
 '%s requires that the element has an assigned'.
 'src; none discovered',
 __METHOD__
));
 }

 // Get the attributes from the element
 $attributes = $element->getAttributes();

 // Unset the src as we don't need it right here as
 // we render it separately
 unset($attributes['src']);

 // Return our rendered object
 return sprintf(
 '<video %s>%s</video>',
 $this->createAttributesString($attributes),
 $this->createSourcesString($src)
);
 }
}

Chapter 3

103

Adding view helper to the configuration
Now we need to add the view helper to the module configuration to make sure the view
helper can be found in the view scripts. We can simply do this by adding another method to
our /module/Application/Module.php as shown in the following code:

class Module
{
 public function getViewHelperConfig()
 {
 return array(
 'invokables' => array(
 // Add our extra view helper to render our video
 'formVideo' => 'Application\Form\View\Helper\FormVideo',
)
);
 }
}

We didn't put the whole class in there, as that would be too much useless information for this
example. The idea however is that we can simply put this method in our Module.php to make
sure our view helper will be located.

Displaying the new element
We do the following alterations to the /module/Application/view/application/
index/video.phtml file:

<?php
use Application\Form\Element\Video;

// Declare a new video element
$video = new Video();

// Set the attribute src for this element
$video->setAttribute('src', array(
// These are some public video urls from
// w3schools.com
 'http://www.w3schools.com/html/mov_bbb.mp4',
 'http://www.w3schools.com/html/mov_bbb.ogg',
));

// We also want to begin auto playing once loaded
$video->setAttribute('autoplay', true);

// Output the formatted element
echo $this->formVideo($video);

We have now created a new form element, and a new form view helper!

Handling and Decorating Forms

104

How it works…

Creating the element
First of all we need to create the new element before we work with it within ZF2. This can be
easily done by extending from the base element of Zend\Form\Element.

Next up is the view helper as we want to make sure that our element is also rendered
correctly to the user. As our element is not of any existing type (otherwise this would be a very
boring recipe) we need to make sure that we create a view helper for ourselves.

The last bit of our code is creating the actual render method, which—as the name tells
us—renders the actual HTML object.

In our case, we want to trigger an exception whenever the src has not been defined, as
without it, this would be a pretty useless HTML element. Now, we have everything set up, we
can use the element either in a form, or on its own in the view script. In the last example, we
just declared the form element in the view script to show how it can work; however using logic
in the view script is not something that is advised to do as we want to keep the view as clean
as possible, and only output code with it. Anything remotely unrelated to HTML or the output
to the user should go in the controller or models.

What did we do
What we did is create a new form element, which was supposed to be a <video /> tag, a
new HTML5 element. This video tag can have several attributes, one of it being an src. The
src in this case tells the video element where we can find the video that we want to play.

A good reason to create our own view helper would be if we have a piece of HTML that is
constantly recurring throughout our application (think of a tool tip or a help text), and which
only needs to be copy-pasted and changed some properties for it to work. To save us time and
space (code and readability wise), we would transform this into a simple view helper class that
replicates the exact object, which we can transform by adding options to it.

In the end, we simply use the formVideo view helper in the view script to actually render the
object for us, which takes a bit of a load off our hands by rendering a piece of code that is
easy to replicate.

4
Using View

In this chapter we will cover:

 f Working with View

 f Using view helpers

 f Creating a global layout template

 f Creating reusable Views

 f Using view strategies/renderers

 f Using context switching for a different output

 f Writing a custom view strategy/renderer

Introduction
In this chapter we are going to talk about using View, something that we have briefly
mentioned in a couple of places before. View was created for the benefit of the developer, to
strictly separate everything frontend with everything backend. This way backend developers
can focus on controllers and models, while frontend developers can work in Views. Another
great benefit of View is that View decides how the data is being outputted, so in most cases
this would be HTML, in other cases maybe JSON and so on.

We will show you in the last recipe of the chapter how to make our own customizations as
well, so that we fully understand how everything works.

Using View

106

Working with View
View can be considered very important as it actually renders the content that is being
outputted to the browser of the user. Therefore, we can assume that knowing how View works
is very useful when creating web applications.

Getting ready
For this recipe it is beneficial if we have the Zend Framework 2 skeleton set up and ready
to work. We will do some basic things to get you started, so no additional extensions are
necessary for this.

How to do it…
We are going to output content to the browser by using PhpRenderer which is the default
view strategy used.

Configure the ViewManager
We make the following alterations to the /module/Application/config/module.
config.php file:

<?php
return array(
 'view_manager' =>array(
 // We want to show the user if the page is not found
 'display_not_found_reason' => true,

 // We want to display exceptions when the occur
 'display_exceptions' => true,

 // This defines the doctype we want to use in our
 // output
 'doctype' => 'HTML5',

 // Here we define the error templates
 'not_found_template' => 'error/404',
 'exception_template' => 'error/index',

 // Create out template mapping
 'template_map' =>array(

Chapter 4

107

 // This is where the global layout resides
 'layout/layout' => __DIR__ . '/../view/layout/layout.phtml',

 // This defines where we can find the templates
 // for the error messages
 'error/404' => __DIR__ . '/../view/error/404.phtml',
 'error/index' => __DIR__ . '/../view/error/index.phtml',
),

 // The template path stack tells our view manager
 // where our templates are stored
 'template_path_stack' =>array(
 __DIR__ . '/../view',
),
),
);

Set variables in the ViewModel instance
Now we have set up the view manager; we can go to our controller and add the following to
the import section of our controller.

use Zend\View\Model\ViewModel;

Now we can use the ViewModel instance for the PhpRenderer in our action controller. Let's
do that now:

public function someAction()
{
 $view = new ViewModel();

 // One way of setting a variable in the view
 $view->setVariable('example', 'Output this to user');

 return $view;
}

It is as easy as that; simply return the ViewModel instance after we are done defining
everything we want.

Mark up the template file
Now it is time for the last part before we are done, and that is to create a template file that
needs to be rendered. We can do this by first creating a file (as an example) in the view/
index folder called some.phtml (as our action in the previous example was called like that).

Using View

108

Now we will just do a simple bit where we output the variable we have just declared in the
ViewModel instance.

<h1><?php echo $this->example ?></h1>

And that's it. We have now outputted our variable example that we declared in our
ViewModel instance in the action. There are also more ways of setting variables to the view,
for example by declaring the variables as the first argument of the ViewModel constructor.

$view = new ViewModel(array(
 'variable_one' => 'Some Variable',
 'variable_two' => 'Some other Variable',
));

Or, if we want to set multiple variables at the same time, but not during the constructor
execution time we can also perform the following:

// First we have the view instantiated
$view = new ViewModel();

// And now we assign a lot of variables at the same time
$view->setVariables(array(
 'variable_one' => 'Some Variable',
 'variable_two' => 'Some other Variable',
));

Now, as we are experts in outputting variables to the View, I say it is time for some cake!

How it works…
View works with a couple of different methods before the requested output is returned to
the user.

The configuration
If we would use the Zend Framework 2 skeleton application, then this would already be in
there by default, but let's assume we have nothing configured just yet and we are working
blindly. The first thing we want to do is make sure that ViewManager is set up through
the Dependency Injection (DI). We can do this by opening the module configuration called
module.config.php in the config folder (assuming that we are using the standard layout)
and add the ViewManager configuration there.

One more thing before we move on is that template_path_stack works by searching for
templates in the base directories that are defined in the array. Then it will descend further in
those directories searching for the template using the format we described.

Chapter 4

109

For example, IndexController with aboutAction would resolve, by default to, the path
view/index/about.phtml in our case.

The ViewModel instance
The ViewModel instance is usually only used in the controller and is basically a container
that holds all the information that needs to be outputted to the user. Although the ViewModel
instance is technically possible to use anywhere else, it wouldn't be a good practice to do so,
as the controller's main responsibility is handling the models and Views. If we go and change
the nature of a controller, the application would become significantly harder to maintain.

The ViewModel instance itself has no other purpose than to keep track of all the variables
we want to output to the user, and other options like the template we'd like to use, and if we
want to render the main layout or not.

What happens next is that the ViewModel instance will be picked up by ViewStrategy and
ViewRenderer to be used in the output.

Almost every ViewStrategy has its own type of ViewModel designed for that specific
purpose. That way we can easily use another ViewModel instance and create a different kind
of output to the user.

The ViewStrategy class
The ViewStrategy class is used to determine if and how we are going to output our content
to the user. The way this works is that –usually- the ViewStrategy first determines if the
ViewModel instance it receives is compatible with the model they expect it to be. It does this
by attaching a ViewEvent to the EVENT_RENDERER event, which will be triggered when the
framework is searching for a suitable renderer.

The ViewStrategy at that point checks if the model is compatible, and if it is it will return
a suitable ViewRenderer, if not, it will return null. Then after the framework has done its
thing and rendered the output (more about this in the The ViewRenderer helper section) it will
trigger another ViewEvent named EVENT_RESPONSE.

This event is basically the end point that the ViewStrategy class can do before the
output is send to the user. In this ViewEvent the ViewStrategy class can make the last
amendments to the response if necessary. We should think about the content type, extra
headers, or some other last minute stuff.

Using View

110

A simplified version of the process is displayed as follows:

The ViewRenderer helper
The renderer is used in between the two events mentioned in the ViewStrategy class
before, and it does exactly like you expect it to be; it renders the output. It takes the data from
the ViewModel instance and renders the output according to that. It usually requires a view
script like the PHTML files that PhpRenderer uses, but sometimes it doesn't require any
script at all and it will just render the output completely by itself (think about outputting in a
JSON format for example). We will cover how to use different ViewStrategy and ViewRenderer
later in this chapter.

Using view helpers

The more we add complexity to View, the less we are able to maintain it properly. That is why
we get the logic out, and put it in our View outside the view script itself, and place them in the
so-called view helpers.

Getting ready
For this recipe it is recommended that the Zend Framework 2 skeleton application is used. We
won't require any out of the ordinary extensions for this recipe.

How to do it…
In Zend Framework 2 there are a bunch of default view helpers that comes with the
framework. Let's look at a bunch of them to see what they do and how to use them.

The BasePath view helper
The BasePath view helper, is a very easy view helper to use, for example:

<!--
 The following will prepend the URL with the base path
 which can be /website/public/js/script.js e or /js/script.js.
 The path is something for the basePath to decide.
-->

Chapter 4

111

<script src="<?php echo $this->basePath('js/script.js'); ?>">
</script>

The Doctype view helper
We make the following alterations to the /module/Application/config/module.
config.php file:

<?php
// This is just a snippet of the code that needs to be
// there for doctype to be defined.
return array(
 'view_manager' => array(
 'doctype' => 'HTML5',
),
);

Then in the view script, we can do the following to output the well-formed doctype helper:

<?php echo $this->doctype(); ?>

The URL view helper
The URL view helper is very handy to use if we want to generate a URL for a specific route, for
example:

<a href="<?php echo $this->url(
 // This is the name we gave the route in our
 //configuration file
 'route-name',

 // Give the parameters for the URL, such as the
 // controller, action or any parameters that should
 // be added to the URL
 array(
 'controller' => 'someController',
 'action' => 'anotherAction',
 'id' => 1234,
)); ?>">Go to this page!

The Partial view helper
First of all it is important to make sure that we actually have a template (/view/
application/index/partial/partial.phtml) that is used as partial content.

<div><?php echo $this->partial_variable; ?></div>

Using View

112

We then can go to our normal layout and use the Partial view helper to add our extra
template (/view/application/index/index.phtml):

<div>Some Content.</div>

<div>
 <?php echo $this->partial(
 './partial/partial.phtml',
 array(
 'partial_variable' => 'Partial content!',
)
); ?>
</div>

How it works…
Once we get in to serious development, view helpers cannot be missed. They make sure our
code doesn't turn into a spaghetti by keeping the logic as separate as possible (for example)
from the HTML. View helpers only work in the view scripts (and if the current view strategy
support it, but let's presume it does), so all the examples we give below are only relevant to
.phtml files in the view directory.

If we have a view helper we can usually instantly use them in the view by calling:

$this->someViewHelper('some-parameter');

This works because without first instantiating the view helper because the someViewHelper
class has an __invoke() method defined. This means that it can be called without first
needing to be instantiated.

However, sometimes we have view helpers that cannot be used through the invocation shown
before; they actually need to be constructed first. This can then be done by performing the
following:

$helper = $this->someViewHelper();
$helper->someMethod('some-parameter');

A single view helper can also have multiple public methods available which is mostly used for
grouping functionality together. For example a (non-existing in Zend Framework 2) view helper
called Person might have getAddress($person) and getName($person) as public
methods, which then could be called by using the invoke shown as follows:

echo $this->person()->getAddress($person);
echo $this->person()->getName($person);

Chapter 4

113

Zend\View\Helper\AbstractHelper
Technically Zend\View\Helper\AbstractHelper is not a view helper, but we mention
it anyway as this is the class we want to extend with if we would want to create our own
view helper. It implements a couple of methods that are required for a view helper class to
work correctly.

The BasePath view helper explained
The BasePath view helper can be really helpful if we use a custom structure to our
application and the public folder is not on the base of a website folder, that is, /website/
public. We can then use BasePath to let it decide where we are. The BasePath view
helper is usually used more often for static assets such as, images, style sheets, and scripts,
which is great to make sure the application stays robust under the change or a root URL.

The Doctype view helper explained
The Doctype is a very useful view helper as we tend to forget how those Doctype helpers
were build up again. Instead of looking on the Internet to find out how to declare them again,
we can now just use this little gem.

You can specify the Doctype helper whenever you like, but it would be wise to do this in the
configuration of your view manager to make sure the rest of the application also knows what
Doctype we are using (sometimes they just want to output different things then).

The valid Doctype view helpers we can use are:

 f XHTML11

 f XHTML1_STRICT

 f XHTML1_TRANSITIONAL

 f XHTML1_FRAMESET

 f XHTML1_RDFA

 f XHTML1_RDFA11

 f XHTML_BASIC1

 f XHTML5

 f HTML4_STRICT

 f HTML4_LOOSE

 f HTML4_FRAMESET

 f HTML5

Using View

114

Setting the Doctype helper is essential for other view helpers because they (for example
in the case of form elements) make rendering decisions based on the selected type. For
example a HTML4_* doctype might render an input fields as <input type="text"></
input> while an XHTML1_STRICT would render it as <input type="text" />. The
Doctype helper is more than essential if we want to use the validation service of the W3C.

The URL view helper explained
A nifty little thing the URL view helper is, it builds up URL's depending on named route that we
have defined in our configuration. This means that if we want to build up a correctly formed
URL we can use this view helper to build it up for us.

The Partial view helper explained
The Partial view helper is particularly helpful when we want to divide our layout into
different parts, something that is always useful if we want to make sure our templates are
maintainable and in a condition to re-use them in multiple places.

The directory we store the partial views in is not strictly set, but it is recommended to place
them in a location where we can find them whenever we require them.

There's more…
We only discussed four view helpers which are default in Zend Framework 2, however there
are tons more view helpers in the framework by default which are just as useful as well.
Personally I would recommend looking through those as well and get to know them a bit as
most of them are quite interesting even if you would never use them. Especially the Cycle,
Gravatar, HeadStyle, and HeadTitle view helpers can come in handy when we are
building a HTML page set up.

A complete list of the view helpers is always available in the official Zend Framework 2
documentation.

Creating a global layout template
The view scripts can be very dynamic but most of the time we need a global template that we
want to wrap around the output from our Action view scripts. This recipe will explain exactly
how to do that, and also tells us how that would work.

Getting ready
For this recipe a working Zend Framework 2 skeleton application is needed as we will do some
creating and editing of some files which are used in there.

Chapter 4

115

How to do it…
The following is how we set about achieving this:

Creating the main layout file
Let's now create the main file /module/Application/view/layout/layout.phtml we
use to create our layout:

<!-- first of all we want to output the doctype -->
<?php echo $this->doctype(); ?>

<!-- now we add the HTML tag -->
<html>

<!-- enter our head tag -->
<head>
 <!-- we want to output in UTF-8 -->
 <meta charset="utf-8">

 <!-- let's use the headTitle View Helper to output our
 website title -->
 <?php echo $this->headTitle('Awesome website!') ?>

 <!-- make sure mobile browsers get the best of it with
 the use of the headMeta View Helper, and setting
 the viewport -->
 <?php echo $this->headMeta()->appendName(
 'viewport',
 'width=device-width, initial-scale=1.0'
) ?>

 <!-- add a favicon.ico file reference for older
 versions of Internet Explorer, as that doesn't
 pick it up by itself -->
 <?php echo $this->headLink(array(
 'rel' => 'shortcut icon',
 'type' => 'image/vnd.microsoft.icon',

 // Use the basePath to find our public folder
 'href' => $this->basePath('/images/favicon.ico')
)) ?>

Using View

116

 <!-- add a style sheet to our template -->
 <?php echo $this->headStyle()->appendStyle(
 $this->basePath('/style.css')
); ?>

 <!-- now add a javascript that we need as well, which
 is only used by Internet Explorer version less
 than 9 -->
 <?php echo $this->headScript()->prependFile(
 $this->basePath('/script.js'),

 // Non HTML5 browsers need a type set for script
 // tags
 'text/javascript',

 // Add the extra script conditions
 array(
 'conditional' => 'lt IE 9',
)
); ?>
</head>

We have now set up the head tag successfully, and used a lot of the view helpers available to
make our lives a little bit easier when it comes to adding head-related tags.

Now let's set up a simple code body and see what we can do there:

<!-- let's continue with our body tag now -->
<body>
 <!-- output our main content from our actions -->
 <?php echo $this->content ?>

 <!-- render any inline scripts that we have -->
 <?php echo $this->inlineScript(); ?>
</body>

<!-- we are done here -->
</html>

Well that was it, once we output the content variable, it basically renders the content
generated from the controller/action output.

Chapter 4

117

Creating the error templates
The error files are easily created as they only require a couple of things. Let's create
the /module/Application/view/error/404.phtml file first as that one is fairly
straight forward.

<h1>404: Page not found!</h1>

<p>
 <!-- show the message of the 404 error, generated by
 the framework -->
 <?php echo $this->message; ?>
</p>

<!-- there is usually also a separate reason attached,
 which (if exists) we want to show as well -->
<?php
 if (isset($this->reason) && $this->reason) {
 switch ($this->reason) {
 case 'error-controller-cannot-dispatch':
 $reason = 'Could not get dispatch controller.';
 break;
 case 'error-controller-invalid':
 $reason = 'Undispatchablecontroller.';
 break;
 case 'error-controller-not-found':
 $reason = 'Controller could not be found.';
 break;
 case 'error-router-no-match':
 $reason = 'URL could not be matched by router.';
 break;
 default:
 $reason = 'Unknown';
 break;
 }

 // Now show the reason to the user
 echo $reason;
 }

There are more variables we can use to show the user what went wrong in the routing, and we
can also see, for example, what they requested, but usually those are more for development
only and not for a production server as we don't want to expose too much data.

Using View

118

Now let's create the file (/module/Application/view/error/index.phtml) that
will be shown when we end up having an exception, one of the favorite things of a developer
(not, obviously).

<h1>An error occurred!</h1>

<p>
 <!-- show the error message, that is the least we can
 do -->
 <?php echo $this->message; ?>
</p>

<!-- now show the exception, if we have turned this on
 in the configuration -->
<?php
 if (isset($this->display_exceptions)
 && $this->display_exceptions) :
 // Now let's see if we have an exception, and if it
 // is the right instance as well
 if(isset($this->exception) && $this->exception
 instanceof Exception) :
?>

<!-- Yup, it is an exception all right -->
<div>
 Exception:

 <!--Show which class threw the exception -->
 <?php echo get_class($this->exception); ?>
</div>

<!-- Show the message thrown -->
<h2>Exception message:</h2>
<div><?php echo $this->exception->getMessage() ?></div>

<!-- And the *beautiful* stack trace as well -->
<h2>Stack trace:</h2>

<div>
 <?php echo $this->exception->getTraceAsString() ?>
</div>

<?phpendif; ?><?phpendif; ?>

Chapter 4

119

How it works…
The AbstractActionController shows the errors when they occur and also selects the
right template (which is defined in the view_manager configuration) to use for the error
messages. The only thing we have to do is to make sure the templates are there.

A global layout is an excellent idea if we would be using the MVC model of Zend Framework 2
and are expecting to use the same layout over and over again, which is what happens in
most cases.

Creating a global layout will really make our lives easier, as it is a way of making our code
more maintainable, and as a coder that is one of the most important tools in your toolset.

First of all we need to make sure the view_manager has been defined properly, this has
been described in the Working with View recipe, so we assume that we are using the same
configuration at this point.

We used the inlineScript view helper to make sure the content can also output scripts
that are not part of the head tag, but should still be used in the output.

We would like to use inlineScript to define any scripts instead of adding them to the
template files as we want to separate the JavaScript with the normal HTML content as far as we
can (we also want inline scripts to be reusable if we can, and it looks better maintenance wise).

The error template example is a very basic error document that is shown when an exception
is happening. There are even more options we could do after this, for example if there were
more exceptions, we could get them by doing $this->exception->getPrevious() and
then parsing through them as an array.

Creating reusable Views
In this time of dynamic applications we have widgets or content that can be used more than
once. Instead of getting everything at the same time we want to be able to dynamically load
new objects in, or at least not have to do a lot to get functionality working.

Getting ready
For this recipe we need nothing more than a working Zend Framework 2 skeleton application.

How to do it…
In this recipe we'll be discussing how to create reusable templates and the best way of using
them in an application.

Using View

120

Use the Action view helper to get the re-usable content
The Action view helper is a great way of calling different actions in our code to retrieve other
parts of our application:

<div class="left">Some content on the left!</div>

<div class="right">
 <?php
 echo $this->action(
 // The action to call
 'sidebar',

 // The controller to call
 'templates',

 // The module to call
 'application',

 // Parameters to parse along
 array('show' => true)
);
 ?>
</div>

Define a child to the ViewModel instance
First of all we should create a simple view script (/module/Application/view/
application/template/sidebar.tpl) to output:

Hello from the sidebar!

After that we need to be in the controller (/module/Application/src/Application/
Controller/IndexController.php).

public function indexAction()
{
 // Instantiate our main view model
 $view = new ViewModel();

 // Now let's instantiate our child model
 $child = new ViewModel();

 // For the child we want to render a different
 // template, namely our sidebar.tpl
 $child->setTemplate('template/sidebar.tpl');

Chapter 4

121

 // Now add the child to our main view model
 $view->addChild($child, 'childModel');

 // Return our view model
 return $view;
}

Now we have the controller set up, we would want to output the child as well in our view script.
We will be using a similar HTML layout as the first method so that we can spot the differences.

<div class="left">Some content on the left!</div>

<div class="right">
 <?php echo $this->childModel; ?>
</div>

How it works…
When we are developing web applications, we find ourselves at a point where we need to re-
use the content that we already made before, such as the build-up of a form or maybe the
layout of a side bar that we want to use on multiple pages.

What we can do in that instance is two things:

 f Use the Action view helper to get the re-usable content

 f Define a child to the ViewModel instance

Both of these methods can be used in different situations, let's explore the both options.

The Action view helper explained
We primarily would want to use this if the re-usable content is outside the current module, for
example if the content is created by a module that provides page widgets then it can be used
anywhere in the application. If we want to use a content that is inside our module, we better
use the second option as that is less performance heavy because it doesn't go through the
whole routing and dispatching process like the first option does.

What this view helper does is call an action within a view script, and post the results of that
action call to the current view script.

If we look at the first example, it makes the call to the action and renders the output inside
the current view script. The difference between this and the use of a partial view script is that
this will go through the whole routing and dispatching process, while a partial simply displays
the rendered output. If we, for example, need to get records from the database, a partial just
wouldn't cut it.

Using View

122

Defining a child to a ViewModel instance explained
This method of rendering re-usable content is primarily used when the re-usable content is
inside the current module, for example when we would like to use a specific overview table
that relies on requires more intelligence than, for instance, a view helper would be able
to provide. The content we are rendering would not require us to mess around in different
modules, we'd rather stay away from relying on other modules from within our controller. We
generally want to keep the modules as separate as possible so that we are able to run the
application, even if one of the other modules is not available.

If we look at the example shown in How it works now, we can see that it has slightly more work
to do in this method instead of the view helper class, but the difference is that the view helper
class needs to do more in the background to get it all to work.

Pros and cons
Some might disagree when we say that we primarily should use the Action view helper
outside the current module, and there are probably good reasons for why we should. One of
the arguments against it is that it is simpler for the developer (or designer in most cases) to
get the content from different locations without being bound by adding it as a ViewModel
child in the controller. However, the view helper class does require the framework to find the
action, controller and module first, render them, and then output them.

Although simpler in set up, it does strain the web application more if we use this option
without good reason. Sometimes it is just better to code more and use the benefit of the
speed of the application, then be lazy and let the application reduce its speed.

Sure everything has its pros and cons, so we should always consider the situation first to
make sure we get the most maintainable and re-usable code possible.

Using view strategies/renderers
Normally we will use the View to output HTML, but sometimes we want a more diverse way of
outputting for example JSON or XML. This recipe will provide us with enough information to
accomplish this easily.

Getting ready
We simply require the Zend Framework 2 skeleton application to get us going with this recipe.
Nothing exotic is required.

How to do it…
Using different view strategies and renderers is a common practice in an application. In this
recipe we'll explain how to do that.

Chapter 4

123

Adding a view strategy
We can easily add a view strategy to our application by simply appending the view_manager
configuration in the module configuration file (/module/Restful/config/module.
config.php) as shown as follows:

<?php

return array(
 'view_manager' =>array(
 'strategies' => array(
 // This could also be ViewFeedStrategy if we want
 // to output as a feed
 'ViewJsonStrategy',
),
),
);

The JSON strategy
If we receive output from the JSON strategy, it might look very much like the following:

{
 "hello": "My name is",
 "first": "Terrible Richard",
 "address: {
 "street": "12 Coronation Street",
 "postcode": "SE1 2PE",
 "city": "London"
 }
}

The Feed strategy
Using the Feed strategy is quite similar to the other strategies, as we can see in the
following example:

// Assume we have a controller set up wrapped around
// this
public function indexAction()
{
 // Start a new feed
 $feed = new \Zend\Feed\Writer\Feed();

 // Set the feed name/title
 $feed->setTitle('My Awesome Feed!');

Using View

124

 // Set the link to where the feed can be found, and
 // the format of the feed
 $feed->setFeedLink(
 'http://winter.example.com/rss',
 'atom'
);

 // Who is the author of our feed
 $feed->addAuthor(array(
 'name' => 'N. Stark',
 'email' => 'ned@winter.example.com',
 'uri' => 'http://winter.example.com',
));

 // Add some description to the feed
 $feed->setDescription('Loremipsum..');
 $feed->setLink('http://winter.example.com');
 $feed->setDateModified(time());

We have now set up our main data, which will be needed to generate our feed. Now let's add
some sample data to the output:

$data = array(
 array(
 'title' => 'Post 1',
 'link' => 'http://winter.example.com/post/1',
 'description' => 'Loremipsum..',
 'date_created' => strtotime('2001-01-01 12:03:23'),
 'date_modified' => strtotime('2001-02-12 11:05:24'),
),

 // More entries here
);

Now we need to parse through the data (I know, it's a bit weird as we just declared it, but in
reality this would never happen) and put them in the feed as an entry:

foreach ($data as $row) {
 $feed->addEntry(
 $feed->createEntry()
 ->setTitle($row['title'])
 ->setLink($row['link'])
 ->setDescription($row['description'])

Chapter 4

125

 ->setDateModified($row['date_modified'])
 ->setDateCreated($row['date_created'])
);
}

Now all that is left to do is export the feed to a specific format and add it to the actual
FeedModel class.

// Export our feed to RSS style
$feed->export('rss');

// Instantiate a new feed model
$feedModel = new FeedModel();

// Set the created feed in the feed model
$feedModel->setFeed($feed);

// Action done, return the feed model
return $feedModel;

How it works…

The view strategy class
The default view strategy used in the Zend Framework 2 skeleton application is the
PhpRenderer class, which does nothing more than search for a .phtml file in a defined
location; by default this would be /module/ModuleName/view. The PhpRenderer class
is able to parse PHP inside the view scripts, which makes it handy (but also very familiar) to
perform some last minute scripting for our layout, such as parsing through records to create a
table or displaying a username, for example.

Although PHP is allowed in the PhpRenderer class, it should be mentioned
that the developer should be wary of putting business logic in the view script.
Logic should be placed in the model or at least the controller as it was never
intended to reside in the view script.

This strategy will always be used whenever there is no other strategy available.

The default view strategies
There are a small number of view strategies readily available in Zend Framework 2, they are:

 f The PHP strategy (default)

 f The JSON strategy

 f The Feed strategy

Using View

126

The JSON strategy explained
A JSON object is short for JavaScript Object Notation and is a text based, human-readable
output format that is mainly used in modern web services around the world. It is derived from
the JavaScript language and thus, resembles a lot of its features.

This is probably a nice example as we have put new lines in the output, while the actual JSON
strategy will never contain that. But hey, if it is server-to-server talk only, why would we care?

The JSON strategy doesn't require a template or view script as it basically parses through the
variables used in the view model, simple!

The Feed strategy explained
The Feed strategy outputs an XML news feed that can be used , for example, by users to
subscribe on as an RSS or RSS2 formatted feed. Using the view model of the Feed strategy
is a bit different though as directly setting the variables in the view model directly might
be a tricky thing to do. Instead of that you can use a Zend\Feed\Writer\Feed object to
determine the layout of your feed, and then feeding it to the FeedModel by passing it as a
parameter to the setFeed method.

More about view strategies
The nice thing about Zend Framework 2 is that it isn't really hard to change the output, as it
comes with a technique called view strategies, and in effect view renderers.

A view strategy is a class that identifies a model and returns a view renderer, which on its turn
renders the output of the content. The view strategy will determine which renderer to use and
how to use it.

Most of the time view strategies come with their own view model as well, which is to make
sure the content we want to output is compatible with the renderer. The view strategy will,
upon receiving the model, determine if it can or cannot render a certain model.

For example, the JSON renderer in the framework only renders models of the type
JsonModel and will, when receiving a ViewModel, do nothing as it is technically not
compatible with the renderer.

Sometimes we just need to output content in a different way. If we are talking about REST
services, RSS feeds, or just something custom, we should always be able to switch between
different output formats without needing to do too much work.

Chapter 4

127

Using context switching for a different output
Not only do we want to be able to output the content through different view strategies, we
sometimes also want to do this on demand, so that we can switch the output, for example,
from HTML to JSON by simply changing the headers in our request.

Getting ready
In some cases (for example, in the REST servers) it is necessary to switch the response output
of the content depending on what the user asks for. The user can add an Accept header to
let the server know which output formats it accepts, for example application/json, and
text/html.

What we are going to do is create a simple website that will output a text/html format on
default (which is normal), but it will also output a JSON string whenever we have Accept: */
json in our header.

How to do it…
Sometimes we want to cater not just to the users that view our website, but to a lot of different
audiences, for example, the Feed readers or other applications. Therefore we'll discuss how to
switch contexts in this recipe.

Define multiple strategies to output
First we want to make sure we have the JSON view strategy lined up so that we can easily
switch between views. We can do this by adding ViewJsonStrategy in the /module/
Restful/config/module.config.php as shown as follows:

<?php

return array(
 // Add the JSON strategy to the view manager for our
 // output
 'view_manager' =>array(
 'strategies' => array(
 'ViewJsonStrategy',
),
),
);

Using View

128

Determine the view model based on the Accept header
In the controller there is a nifty little controller plugin called
AcceptableViewModelSelector, which can be used to return a view model that is based
on the Accept header.

So to make things a bit clear, we first want to define which kind of models we want to
support in our output. Let's create a property in our controller that regulates which view
models we are supporting:

<?php

namespace Restful\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 protected $acceptCriteria = array(
 'Zend\View\Model\ViewModel' =>array(
 'text/html',
),
 'Zend\View\Model\JsonModel' =>array(
 'application/json',
 'text/json',
),
);
}

As we can see here, we will support two models in order of priority. First of all we want the
default view model to use the normal PhpRenderer class, so that users will get to see the
normal HTML output. Second of all we want any application/json or text/json to be
rendered by our JsonRenderer class.

Now let's create a simple indexAction method and make use of the view model's selecting
abilities there:

public function indexAction()
{
 // Get the right view model that goes with the Accept-
 // header
 $viewModel = $this->acceptableViewModelSelector(
 $this->acceptCriteria
);

Chapter 4

129

 // Set the variables in the given view model
 $viewModel->setVariables(array('output' => array(
 'one' => 'Row, row, row your boat,',
 'two' => 'gently down the stream.',
 'three' => 'Merrily, merrily, merrily, merrily,',
 'four' => 'life is but a dream.',
)));

 // output the view model
 return $viewModel;
}

And that's how we do it folks! That was as simple as it can get as
AcceptableViewModelSelector does all the work for us, and the only thing we have to do is
make sure everything is declared in the model.

When we now add a view script for the normal PhpRenderer class, so that it renders our
normal text/html output fine, we can say for sure that everything is done. Please make sure
that this view script (/module/Restful/view/restful/index/index.phtml) resides in
our new Restful module.

<table>
 <tr>
 <!-- output our variables -->
 <?php foreach ($this->output as $col) : ?>
 <td><?php echo $col ?></td>
 <?php endforeach; ?>
 </tr>
</table>

The output for a user with Accept: application/json header would look like the
following, For this we need no view script as the renderer immediately outputs this.

{"output":{"one":"Row, row, row your boat,","two":"gently down the
 stream.","three":"Merrily, merrily, merrily,
 merrily,","four":"life is but a dream."}}

The default PhpRenderer output will look like the following:

<table>
 <tr>
 <!-- output our variables -->
 <td>Row, row, row your boat,</td>
 <td>gently down the stream. </td>
 <td>Merrily, merrily, merrily, merrily, </td>
 <td>life is but a dream.</td>
 </tr>
</table>

Using View

130

How it works…
AcceptableViewModelSelector looks at the header sent with the request to determine
which view model to use. It determines the model by looking in the array we parse into it and
looking at the different Accept headers we have defined that we support.

Next it will take the key of that specific array item, and that will be the view model that will
be instantiated.

There's more…
To test out different headers, I like to use the Mozilla Firefox browser with the Header
Tool add-on (https://addons.mozilla.org/en-us/firefox/addon/header-
tool) installed, or similar Chrome extensions, or if we are feeling particularly brave, just
the command line cURL. There you can just type the header you would like to send along,
and turn it either on or off. However, there are different ways of sending headers as well. It
depends on how you prefer doing things.

Writing a custom view strategy/renderer
Nothing is more exciting in coding than developing your own bits of custom features that
integrate with the framework. In this recipe we will be discussing how to create our own XML
view strategy. We will show you how to simply create the basis for a new strategy without too
much of a bother.

How to do it…
Sometimes the default strategies and renderers provided are not enough for a specific
situation, so let's talk through on how to create our own view strategy/renderer.

Creating the XmlOutput renderer
Let us see first on how our renderer would look like, as that is possibly one of the laziest
classes we will ever code. We will do this in a new class located in /module/XmlOutput/
src/XmlOutput/View/Renderer/XmlRenderer.php.

<?php

namespace XmlOutput\View\Renderer;

use Zend\View\Renderer\PhpRenderer;

Chapter 4

131

/**
 * This is the XML Renderer, which is as you can see
 * empty as we don't really need
 * to do anything to get this one going, the PhpRenderer
 * basically does everything
 * we need.
 */
class XmlRenderer extends PhpRenderer {}

The code for this model is very straightforward as we don't really need to do a lot of coding to
get it working, we'll do this in the /module/XmlOutput/src/XmlOutput/View/Model/
XmlModel.php file.

<?php

namespace XmlOutput\View\Model;

use Zend\View\Model\ViewModel;

/**
* This is the XML View Model
*/
class XmlModel extends ViewModel
{

 /**
 * XML probably won't need to be captured into a
 * a parent container by default.
 *
 * @var string
 */
 protected $captureTo = null;

 /**
 * XML is usually terminal
 *
 * @var bool
 */
 protected $terminate = true;

 /**
 * UTF-8 Default Encoding
 * @var string
 */

Using View

132

 protected $encoding = 'utf-8';

 /**
 * Content Type Header
 * @var string
 */
 protected $contentType = 'application/xml';

 /**
 * Set the encoding
 *
 * @param string $encoding
 * @return XmlModel
 */
 public function setEncoding($encoding)
 {
 $this->encoding = $encoding;
 return $this;
 }

 /**
 * Get the encoding
 *
 * @return string
 */
 public function getEncoding()
 {
 return $this->encoding;
 }

In the previous code snippet we have a simple getter and setter for the encoding which will
usually be UTF-8, as it is also declared as the default value in the property.

 /**
 * Set the content type
 *
 * @param string $contentType
 * @return XmlModel
 */
 public function setContentType($contentType)
 {
 $this->encoding = $contentType;
 return $this;
 }

Chapter 4

133

 /**
 * Get the content type
 *
 * @return string
 */
 public function getContentType()
 {
 return $this->contentType;
 }
}

Now we need to create the more exciting part, the XmlStrategy (located in /module/
XmlOutput/src/XmlOutput/View/Strategy/XmlStrategy.php), which is the part
that will actually tell the framework if, what, and how to render the content by handling the two
View events (which is required).

<?php

namespace XmlOutput\View\Strategy;

use XmlOutput\View\Model\XmlModel;
use XmlOutput\View\Renderer\XmlRenderer;
use Zend\EventManager\EventManagerInterface;
use Zend\EventManager\ListenerAggregateInterface;
use Zend\View\ViewEvent;

/**
 * This is the XML View Strategy
 */
class XmlStrategy implements ListenerAggregateInterface
{
 /**
 * @var \Zend\Stdlib\CallbackHandler[]
 */
 protected $listeners = array();

 /**
 * @var XmlRenderer
 */
 protected $renderer;

Once again we defined all of the properties which we needed. The first one $listeners will
contain an array of CallbackHandler which we will use to attach and detach events to the
EventManager instance.

Using View

134

The second member variable $renderer will store our XmlRenderer which we just created.

 /**
 * Constructor
 *
 * @param XmlRenderer $renderer
 */
 public function __construct(XmlRenderer $renderer)
 {
 $this->renderer = $renderer;
 }

Now we have defined our simple constructor, which basically assigns the given XmlRenderer
class to our local property for safekeeping, which is the typical behavior of a rendering
strategy. Next, we'll continue to implement the event handler.

 /**
 * Make sure we only use our renderer when we are also
 * using our XmlModel.
 *
 * @param ViewEvent $e
 * @return null|XmlRenderer
 */
 public function selectRenderer(ViewEvent $e)
 {
 if (!$e->getModel() instanceof XmlModel) {
 // This is not our type of model, can't do
 // anything
 return;
 }

 return $this->renderer;
 }

 /**
 * We can inject the response now with the XML content
 * and the appropriate Content-Type header
 *
 * @param ViewEvent $e
 * @return void
 */

Chapter 4

135

 public function injectResponse(ViewEvent $e)
 {
 if ($e->getRenderer() !== $this->renderer) {
 // The renderer we got is not ours, returning
 return;
 }

 $result = $e->getResult();

 if (is_string($result)) {
 // String is empty, we cannot output anything
 return;
 }

 $model = $e->getModel();
 $response = $e->getResponse();
 $response->setContent($result);
 $headers = $response->getHeaders();
 $charset = '; charset='. $model->getEncoding(). ';';

 $headers->addHeaderLine(
 'content-type', 'application/xml'. $charset
);
 }

The last bit we need to do for the strategy is to attach and detach our events. The events
methods in this case being selectRenderer and injectResponse, which will be
triggered at different points in the code. The first one will be triggered when the event
ViewEvent::EVENT_RENDERER happens and the second one will be triggered on
ViewEvent::EVENT_RESPONSE. Once the framework has used everything it needs, it will
call the detach method, and we then need to make sure all our events will be detached.

 /**
 * Let's attach the aggregate to the specified event
 * manager
 *
 * @param EventManagerInterface $events
 * @param int $priority
 * @return void
 */

Using View

136

 public function attach(EventManagerInterface $events,
 $priority = 1)
 {
 $this->listeners[] = $events->attach(
 ViewEvent::EVENT_RENDERER,
 array($this, 'selectRenderer'),
 $priority
);

 $this->listeners[] = $events->attach(
 ViewEvent::EVENT_RESPONSE,
 array($this, 'injectResponse'),
 $priority
);
 }

 /**
 * We can detach the aggregate listeners from the
 * specified event manager
 *
 * @param EventManagerInterface $events
 * @return void
 */
 public function detach(EventManagerInterface $events)
 {
 foreach($this->listeners as $index => $listener) {
 if ($events->detach($listener)) {
 unset($this->listeners[$index]);
 }
 }
 }
}

Next up is something we didn't use before, which is the ViewXmlStrategyFactory class.
The factory basically instantiates the XmlStrategy class (in this case) and makes sure
everything is instantiated correctly. We'll create our new file here: /module/XmlOutput/
src/XmlOutput/Service/ViewXmlStrategyFactory.php

<?php

namespace XmlOutput\Service;

use Zend\ServiceManager\FactoryInterface;

Chapter 4

137

use Zend\ServiceManager\ServiceLocatorInterface;
use XmlOutput\View\Strategy\XmlStrategy;

/**
 * Creates the service for the Xml Strategy.
 */
class ViewXmlStrategyFactory implements FactoryInterface
{
 /**
 * Creates and returns the XML view strategy
 *
 * @param ServiceLocatorInterface $serviceLocator
 * @return XmlStrategy
 */
 public function createService(ServiceLocatorInterface
 $serviceLocator)
 {
 return new XmlStrategy($serviceLocator-
 >get('ViewXmlRenderer'));
 }
}

That's it, as we can see it is not a lot, and only the createService method is being defined
in the class. In that method the only thing we do is get the ViewXmlRenderer parameter and
make sure the XmlStrategy class is constructed with that renderer as a parameter.

Now let's take a look at ViewXmlRendererFactory(located in /module/XmlOutput/
src/XmlOutput/Service/ViewXmlRendererFactory.php), which is also a factory but
now for the renderer.

<?php

namespace XmlOutput\Service;

use XmlOutput\View\Renderer\XmlRenderer;
use Zend\ServiceManager\FactoryInterface;
use Zend\ServiceManager\ServiceLocatorInterface;

/**
 * Creates the service for the Xml Renderer.
 */

Using View

138

class ViewXmlRendererFactory implements FactoryInterface
{
 /**
 * Creates and returns the XML view renderer
 *
 * @param ServiceLocatorInterface $serviceLocator
 * @return XmlRenderer
 */
 public function createService(ServiceLocatorInterface
 $serviceLocator)
 {
 $renderer = new XmlRenderer();

 // Set the View resolvers and helper managers.
 $renderer->setResolver(
 $serviceLocator->get('ViewResolver')
);

 $renderer->setHelperPluginManager(
 $serviceLocator->get('ViewHelperManager')
);

 return $renderer;
 }
}

Although this createService method was more work than the one before, it is still a very
light method. The only thing that really happens here is that the XmlRenderer class is
instantiated, and it made sure ViewResolver and ViewHelperManager are set.

Now we have set up our basic functionality, let's tie it all together so that we can start using it!

First of all we need to create the /module/XmlOutput/config/module.config.php file
to make sure our services are instantiated properly, and our view manager knows the new
strategy we offer.

<?php
 return array(
 // Set our factories, so our service manager can find
 // them
 'service_manager' =>array(
 'factories' => array(
 'ViewXmlStrategy' =>
 'XmlOutput\Service\ViewXmlStrategyFactory',

Chapter 4

139

 'ViewXmlRenderer' =>
 'XmlOutput\Service\ViewXmlRendererFactory'
),
),

 // Add our strategy to the view manager for our output
 'view_manager' =>array(
 'strategies' => array(
 'ViewXmlStrategy',
),
),
);

That was rather painless, as we can simply tell serviceManager where everything is located
and it will work immediately.

The last thing we need to create in our new XmlOutput module is the Module.php file,
which is basically the same as the default Module.php that comes with the Application
module. We can simply copy that one over, change the namespace in the file and we are
done. The file should be located in /module/XmlOutput/Module.php.

<?php

namespace XmlOutput;

use Zend\Mvc\ModuleRouteListener;
use Zend\Mvc\MvcEvent;

class Module
{
 public function onBootstrap(MvcEvent $e)
 {
 $eventManager= $e->getApplication()->getEventManager();

 $moduleRouteListener = new ModuleRouteListener();
 $moduleRouteListener->attach($eventManager);
 }

 public function getConfig()
 {
 return include __DIR__. '/config/module.config.php';
 }

Using View

140

 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' =>array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' .
 __NAMESPACE__,
),
),
);
 }
}

Now the /config/application.config.php file needs to have our new module added,
so that the framework will try to instantiate that module as well. We can just add XmlOutput
to the modules array and we are done, nothing else needs changing in there.

return array(
 // This should be an array of module namespaces used
 // in the application.
 'modules' => array(
 'Application',

 // Add our module to this array
 'XmlOutput',
),

 // After this comes the rest of the file, but that is
 // irrelevant at the moment.
);

Everything is ready and set up for use, so now it is time to actually get the ball rolling
and output something to XML. First up is using XmlModel in our indexAction of
the IndexController (located in /module/Application/src/Application/
Controller/IndexController.php). We will just assign some variables to XmlModel
and return this immediately, no need for anything fancy now.

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use XmlOutput\View\Model\XmlModel;

Chapter 4

141

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 return new XmlModel(array(
 "some_variable" => "Awesome!",
 "why_not_another_one" => "While we are here?"
));
 }
}

Once we have done that, we can build up our view script (located in /module/
Application/view/application/index/index.phtml) with the necessary XML.

<nodes>
 <variable_1><?php
 echo $this->some_variable;
 ?></variable_1>
 <variable_2><?php
 echo $this->why_not_another_one;
 ?></variable_2>
</nodes>

And that is it! Once we run it, we can now see that our HTTP headers are set to
application/xml and that the output is the XML we have just put in. Obviously this is
nothing fancy, but it is to show how easy it is to just create our own view strategy.

How it works…
Because we added our factories to the ServiceManager, we can easily get them to use
by their aliases ViewXmlStrategy and ViewXmlRenderer. And because we told the
ViewManager that our new strategy ViewXmlStrategy exists, we can get the ball rolling.

As we would use the XmlModel in our controller, the framework will iterate through all the
view strategies to determine the proper strategy to use. Once it has found the strategy it
needs, it will trigger the EVENT_RENDERER and EVENT_RESPONSE events, which in turn will
trigger our strategy methods. These methods will determine the output of our content.

Our renderer makes sure the content is rendered properly. In our case we took the lazy way
out and let PhpRenderer basically do all the work, this can however vary per renderer.

We are creating this new view strategy as a separate module, with separate namespaces
so that we can easily transfer this to another application if we ever need to. And of course it
comes with greater maintainability when we separate pieces of functionality as well.

Using View

142

When we are done we can easily extend the classes further as we wish, but for now let's keep
it basic.

There are five files that need to be created before we can have at least the most basic form of
a custom view strategy; the files need to be of the following forms:

 f Renderer

 f Model

 f Strategy

 f Strategy Factory

 f Renderer Factory

The first three we already know as we've discussed in this chapter, the last two Factory ones',
however, are new to us.

The XmlRenderer and XmlModel
Because we just want to output XML as a string, we will be using the PhpRenderer as that
does the exact same thing as we want it to do.

Next up is coding the model. As described earlier, the model will be used in the controller to
store variables which we can then use in the View. We will be creating the XmlModel so that
when we use this model in our controller our framework knows we want to output with our
XmlStrategy.

As we can see we made all the properties in the XmlModel protected, because these
properties are protected in the class we are trying to extend (ViewModel) as well. It is
necessary while extending a property to give it the same access level or lower. In this case it is
protected, which means the lower option would be public. Private, however, would result in a
fatal error shown as follows:

PHP Fatal error: Access level to XmlOutput\View\Model\
XmlModel::$captureTo must be protected (as in class Zend\View\Model\
ViewModel) or weaker in /var/www/module/XmlOutput/src/XmlOutput/View/
Model/XmlModel.php on line 0

The last bit we need to do in the XmlModel is create the getter and setter for the content
type, which in our case would become application/xml, because we want to output XML,
not plain text.

Chapter 4

143

The XmlStrategy
In selectRenderer we want to make sure that the model we have is also the model we
expect it to be. If this is not the case we cannot return a renderer, meaning that the framework
needs to search for a different kind of renderer. For example, the use of a ViewModel
instance would result in selectRenderer returning null, which would tell the framework
to search for another suitable strategy. In this case it might be the PhpStrategy, which
in this case would accept ViewModel as a valid model, and that is how the view strategy
communicates to the framework to tell it if he can use the model or not.

The injectResponse is a method that will ready the content for output, and makes sure
that the content type is set in the headers as well. The ViewEvent given as a parameter that
contains all the collected information we need, such as the XmlModel, and also its Response.
The next bit of code will tie the last two methods we just created together and use them as
handlers for the respective ViewEvent::EVENT_RENDERER and ViewEvent::EVENT_
RESPONSE events.

There's more…
We said before we were a bit lazy with the renderer, basically putting off any of the work by
putting all of the work in the hands of the PhpRenderer, which in turn basically rendered the
view script containing the XML. Naturally one would desire a renderer which makes the use of
view scripts obsolete, and just creates the XML from an array in the XmlModel.

So yes, there is a lot more that can be said, but the real fun starts if we start exploring the
different ways of rendering content.

5
Configuring and

Using Databases

In this chapter we will cover:

 f Connecting to a database

 f Executing simple queries

 f Executing queries using the TableGateway

 f Optimization with a DB profiler

 f Creating a Database Access Object

Introduction
Obviously databases are essential if we want to store data, and with all the different kinds
of database engines around, it is sometimes hard to see the wood through the trees.
Zend Framework 2, however, brings us a bit of hope of standardizing the way we work with
databases. In this chapter, we will be showing loads of examples from database connections
to optimizing the performance of our queries.

Default database engines available
Zend Framework 2 has a default collection of database drivers available to use, and obviously
it also supports the PHP PDO extension for a more standardized way of using databases.

Configuring and Using Databases

146

IBM DB2 driver
IBM DB2 is a database server designed by IBM and is the second most used DBMS
according to IDC's report of 2009 (http://www.marketresearch.com/IDC-v2477/
Worldwide-Database-Management-Systems-Forecast-2393193/view-stat/
ibm-14.html). The database engine can be traced back to the 1970's and was mainly only
available for the IBM mainframe until the 1990's when it started supporting other more widely
used operating systems.

Nowadays, the DB2 is mainly used in ZF2 for the IBM i Power Systems such as the AS/400,
but remains a very powerful database engine.

Requirements:

 f The IBM DB2 Universal Database client needs to be installed on the PHP machine

 f PHP configured either with the --with-IBM_DB2 option or enabled (and installed)
the ibm_db2 extension in php.ini

MySQLi driver
For PHP developers, this is probably the most used database engine, the MySQLi instead
of the normal MySQL driver gives the extension several advantages over modern MySQL
system versions (4.1.3 and newer). This improved extension supports the following modern
MySQL functionality:

 f Enhanced server support

 f Transaction support

 f Prepared statements support

 f Object-oriented interface

 f Multiple statements support

 f Enhanced debugging availability

The requirements for MySQLi driver is that the PHP is configured either with the --with-
mysql or --with-mysqli option or enabled (and installed) the mysql and mysqli
extension in php.ini.

OCI8 driver
OCI8 driver supports Oracle Database 11g, 10g, 9i, and 8i (according to the PHP manual), and
is widely used in the PHP community.

Requirements:

 f Oracle 9ir2, 10g, or 11g Client libraries on the PHP machine

 f PHP configured either with the --with-oci8 option or enabled (and installed) the
oci8 extension in php.ini

Chapter 5

147

PGSQL driver
PostgreSQL is an object-relational database and is my personal favorite, this database has
been around since 1995 and is used by websites such as Reddit, Instagram, and Yahoo!.

The requirement for this is that the PHP is configured either with the --with-pgsql option
or enabled (and installed) the pgsql extension in php.ini.

SQLSRV driver
Microsoft SQL Server (and SQL Azure) is a database that works exclusively on Microsoft
Windows, and is widely considered being a very good and stable database engine. Versions
3.0 or higher of the PHP extension support SQL Server 2005.

Requirements:

 f The Microsoft SQL Server 2012 Native Client needs to be installed on the PHP
machine

 f The extension php_sqlsrv_5*_nts.dll or php_sqlsrv_5*_ts.dll should be
enabled (and installed) on the PHP machine

PDO driver
The PDO extension in PHP is probably the best method of connecting to a database available.
Not only does it have a wide selection of database engines it supports, but also a more
standardized way of working with them, which makes it easier to support in the long run (and
that is a pro in the long run).

Not only is it easier to support, for example, its standardized way of connecting to databases
and executing queries makes it much easier for us developers to switch.

The requirements for this is that at least one pdo extension needs to be enabled in the php.
ini file or otherwise it won't work.

All the drivers communicate with PHP through either as the built-in compilation or used as an
extension on the library. Without these extensions PHP would be unable to figure out how to
communicate with the specific libraries. Some extensions (such as the Oracle one) require
even more, like client libraries to make it work.

We should always check the php.net documentation for the requirements of the specific
extension we try to enable.

Connecting to a database
After seeing all the database types that Zend Framework 2 supports, we can finally start
connecting to them. In this recipe, we will connect to a MySQL server and show different ways
of doing this.

Configuring and Using Databases

148

Getting ready
To make full of the following recipe, a Zend Framework 2 skeleton application should be used,
with a MySQL server available to connect to. Don't forget that connecting to a MySQL server
requires the mysql and mysqli extensions enabled in PHP.

How to do it…
In this recipe we'll give some examples of how to connect to a single database or multiple
databases.

Connecting to a MySQL database through the configuration
We can make the following change to the /config/autoload/global.php file:

<?php

return array(

 // Set up the service manager
 'service_manager' => array(

 // Initiate the connection at the start of the
 // application
 'factories' => array(

 // Use the service factory to start up our db
 // adapter
 'Zend\Db\Adapter\Adapter' =>
 'Zend\Db\Adapter\AdapterServiceFactory',
),

 'aliases' => array(
 // Use this db alias in the controllers to get the
 // initialized connection. The value of the db key refers to
 // the factories key with the same name.
 'db' => 'Zend\Db\Adapter\Adapter',
),
),
 'db' => array(
 // We want to use the PDO to connect to the database
 'driver' => 'pdo',

Chapter 5

149

 // DSN, or data source name is a connection url that
 // shows the driver (in this case the PDO) where to
 // connect to. The first bit is the driver to use,
 // then follows the database name and the host. More
 // information on the dsn options can be found here:
 // http://php.net/manual/en/pdo.construct.php
 'dsn' => 'mysql:dbname=some_db_name;host=localhost',

 // Username and password (or at the very least the
 // password) should NOT be in the global.php. This
 // file usually will be committed to a version
 // control, which means your password will be
 // publicly available.
 'username' => 'aGreatUser',
 'password' => 'somePassword',
),
);

As we can see in the example, setting up the database configuration is quite easy. Now, if
you were wondering how to use a configuration like this in a real world example, let's consider
the following controller:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class SomeController extends AbstractActionController
{
 public function indexAction()
 {
 // Get the db adapter through our service manager
 $db = $this->getServiceLocator()->get('db');

 // Now we can execute queries
 $query = $db->query('SELECT * FROM table');
 }
}

As we can see it is very easy to get it going now in the controller.

Configuring and Using Databases

150

Connecting to multiple databases through the configuration
Some applications require us to connect to multiple databases at the same time, and we
can easily achieve that in Zend Framework 2 as well by doing the following in the /config/
autoload/global.php file:

<?php
return array(
 'db' => array(
 'adapters' => array(
 // The first (default) database connection
 'db_one' => array(
 'driver' => 'pdo',
 'dsn' => 'mysql:dbname=db_1;host=localhost',
 'username' => 'someUser',
 'password' => 'aGreatPassword',
),

 // Now the second database connection
 'db_two' => array(
 'driver' => 'pdo',
 'dsn' => 'mysql:dbname=db_2;host=localhost',
 'username' => 'someOtherUser',
 'password' => 'anotherGreatPassword',
),
),
),
 'service_manager' => array(
 // Let's make sure our adapters get instantiated
 'abstract_factories' => array(
 'Zend\Db\Adapter\AdapterAbstractServiceFactory',
),
),
);

In our controllers (or anywhere where we can access the service manager) we can easily get
the db DBAdapter now by doing the following:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;

Chapter 5

151

class SomeController extends AbstractActionController
{
 public function indexAction()
 {
 // Get the first db adapter
 $dbOne = $this->getServiceLocator()->get('db_one');

 // Get the second db adapter
 $dbOne = $this->getServiceLocator()->get('db_two');
 }
}

Connecting to a MySQL database through code
Although it is less clean than the method we showed before, sometimes it is just necessary to
connect through good old instantiation.

First let's see an example if we want to connect to a MySQL server:

<?php

// We need to import this to use the Db Adapter
use Zend\Db\Adapter\Adapter;

class someClass
{
 // This is the property where our database adapter will be
 // stored in
 private $db;

 // First we want to connect to the database on instantiation of
 // this class
 public function __construct()
 {
 // Create the new database adapter
 $this->db = new Adapter(array(
 'driver' => 'Pdo_Mysql',
 'hostname' => 'localhost',
 'database' => 'example_database',
 'username' => 'developer',
 'password' => 'developer-password'
));
 }

Configuring and Using Databases

152

 // This method will execute a query on the database, to show
 // how easy it is to now make use of our database
 public function someData()
 {
 // Create a statement where we select everything from our
 // tableName table
 $statement = $this->db->createStatement(
 "SELECT * FROM tableName"
);

 return $statement->execute();
 }
}

We now can easily execute the queries on the instantiated $db.

How it works…
In Zend Framework 2 there are many ways of defining a database connection, in this section
we will discuss three of them.

Connecting to a MySQL database through the configuration
The first method we are going to show is connecting to a (could be of any type) database
through the configuration files. This is probably the easiest to do, but would obviously not
always be what we want. However, in the case of less code is better maintainability, we should
always consider the option of connecting to a database like this.

We should refrain from putting business logic in the controller, as that is not what a MVC is for,
we just showed it here as an example only. We can get the db adapter from anywhere where
we have the service manager in reach.

Connecting to multiple databases through the configuration
As we can see we now have our adapters defined in the db => adapters array instead of
the db array directly. This functionality can be achieved in any version of Zend Framework 2
greater or equal to 2.2.

Chapter 5

153

About the ServiceManager
When we use the ServiceManager for connecting to our database, the ServiceManager
first checks if it has the key we need. If the key is found it first checks in its internal registry
if there is already an instance for the requested service. If not, it will use the config data to
instantiate it. After instantiation is completed it will stash away the reference in its internal
registry, which can be retrieved again the next time we request it. This way the database
adapter (or any other service) will be only instantiated once by the ServiceManager.
Instantiating the database connection this way has a couple of pros:

 f We always have one connection to the database, which is usually limited on the
server side

 f We don't spend valuable time connecting and reinitializing the connection constantly

 f No memory is wasted on multiple instances

Executing simple queries
Querying the database is obviously something that we need to do once we are connected to
the database. This recipe explains how this can be done, and the different methods available.

Getting ready
To make full of the following recipe, a Zend Framework 2 skeleton application should be used,
with a MySQL server available to connect to. Don't forget that connecting to a MySQL server
requires the mysql and mysqli extension enabled in PHP.

We have configured a database called book, with the table cards that has the columns id,
color, type, and value. The SQL query to create the database and table are included in the
code that comes with the book.

How to do it…
Queries come in all sort of forms, and in this recipe we will discuss some basic querying.

Using raw SQL
We'll be editing in the /module/Application/src/Application/Controller/
IndexController.php file for this example:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;

Configuring and Using Databases

154

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Let's assume there is a service called 'db' that connect to
 // the database
 $connection = $this->getServiceLocator()->get('db');

 // We now start to build up our query
 $query = $connection->query(
 // We will put our raw SQL statement in here, and
 // every variable we want to put in we replace with
 // a question mark. This means we will fill in the
 // blanks later.
 "SELECT * FROM cards WHERE type = ?",

 // We don't want to execute the statement yet, just
 // prepare it.
 Adapter::QUERY_MODE_PREPARE
);

 // These are the parameters that will replace the question
 // marks (?) in the SQL statement above, in the defined order
 $replacements = array('number');

 // Now execute the query with the parameters attached to
 // replace
 $result = $query->execute($replacements);

 // Iterate over the results
 foreach ($result as $res) {
 // Do something with the result, in this case a raw echo
 echo '<pre>'. print_r($res, true). '</pre>';
 }
 }
}

An example using an array or the ParameterContainer object for passing variables:

// We now start to build up our query
$query = $connection->query(

Chapter 5

155

 // We will put our raw SQL statement in here, and
 // every variable we want to put in we replace with
 // a question mark. This means we will fill in the
 // blanks later.
 "SELECT * FROM cards WHERE type = ?",

 // These are the parameters that will replace the question
 // marks (?) in the SQL statement above, in the defined order
 array('number')
);

Using the prepared statements
We'll be editing in the /module/Application/src/Application/Controller/
IndexController.php file for this example:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Let's assume there is a service called 'db' that connect to
 // the database
 $connection = $this->getServiceLocator()->get('db');

 // Now let's create a prepared statement
 $statement = $connection->createStatement();

 // Set up the prepared statement
 $statement->setSql("
 SELECT
 *
 FROM cards
 WHERE type = :type
 AND color = :color
 ");

 // Create a new parameter container to store our where
 // parameters in

Configuring and Using Databases

156

 $container = new ParameterContainer(array(
 // These are the variables used in the same order as
 // displayed in the where condition
 'type' => 'picture', 'color' => 'diamond'
));

 // Set the container to be used in our statement
 $statement->setParameterContainer($container);

 // Prepare the statement for use with the database
 $statement->prepare();

 // Now execute the statement and get the resultset
 $result = $statement->execute();

 // Iterate over the results
 foreach ($result as $res) {
 // Do something with the result, in this case a raw echo
 echo '<pre>'. print_r($res, true). '</pre>';
 }
 }
}

Quote identifier
This method will quote an identifier that is going to be used in a SQL query in a safe way:

<?php

// Adapter is of type Zend\Db\Adapter\Adapter
echo $adapter->getPlatform()->quoteIdentifier('some_var');

The preceding code will give the following output:

"some_var"

Quote identifier chain
The quoteIdentifierChain method will quote multiple identifiers and glue them together
with the identifier separator (see method getIdentifierSeparator()):

<?php

// Adapter is of type Zend\Db\Adapter\Adapter
echo $adapter->getPlatform()->quoteIdentifierChain(array(
 'some_table', 'some_column'
));

Chapter 5

157

The preceding code will give the following output:

"some_table"."some_column"

Quote (trusted) value
quoteValue and quoteTrustedValue are used for quoting values used in for example
WHERE clauses. quoteTrustedValue() should only be used when we trust the value
(for example if we put it in ourselves): The following is an example of quoteValue and
quoteTrustedValue:

<?php

// You can either use quoteValue or quoteTrustedValue,
// quoteValue will log an error in the PHP error log if
// there is no driver or module available to quote the
// value. Both methods output the same value.
echo $adapter->getPlatform()->quoteValue("great-value");

// Adapter is of type Zend\Db\Adapter\Adapter
echo $adapter->getPlatform()->quoteTrustedValue("great-value");

The preceding code will give the following output:

'great-value'

Quote value list
Quote value list quotes an entire list of values and returns them, separated by a comma.
Comes in handy, for example, if we want to use a list in a WHERE clause where we use an IN
operator. There is no method that handles trusted values, so we should be aware that this
could trigger errors in our PHP error log if there are no drivers or modules available to quote
the value, however, it will always return the expected values. The following is an example of
quoteValueList:

<?php

// Adapter is of type Zend\Db\Adapter\Adapter
echo $adapter->getPlatform()->quoteValueList(array(
 "value_one", "value_two"
));

The preceding code will give the following output:

'value_one', 'value_two'

Configuring and Using Databases

158

Quote identifier in fragment
The quoteIdentifierInFragment method plucks out the identifiers by a RegEx pattern,
and makes sure only the right identifiers are quoted. If we are using characters outside the
following characters: A-z,0-9, *, "." or 'AS', we will need to give them up as a safe word by
using the second parameter.

<?php

// Adapter is of type Zend\Db\Adapter\Adapter
echo $adapter->getPlatform()->quoteIdentifierInFragment(
 '(fork.* AS spoon)',

 // Use the braces as a safe word so that they
 // will not be quoted.
 array('(', ')')
);

The preceding code gives the following output:

`fork`.* AS `spoon`

How it works…
Let's understand the operations we just did.

Using raw SQL
The first method of executing SQL is by simply using the query() method on the database
connection. This is the simplest form of querying, and it has it pros and cons, one pro is that
the queries are quick and easy, the con is that it isn't really useful for reuse as the query
constantly needs either new input every time we execute it, or needs the variables passed into
it every time we want to execute it.

As we can see in the example, we created a query first with the mode set to QUERY_MODE_
PREPARE, which in effect means that the query isn't executed straight away, but just prepared
for execution. When we come to execute the query, we see that we parse the variables for the
WHERE clause with the execute() method. The execute() statement then executes the
query and gives the result back.

Instead of the second parameter to query(), we could also do either QUERY_MODE_
EXECUTE to immediately execute the query (and thus returning the result set straight away)
or parse an array with parameters or ParameterContainer. For more information on
ParameterContainer see the following section.

Chapter 5

159

If we parse either an array or a ParameterContainer object as the last option of query(),
it would both lead to the query parameters being filled and the query mode to be put on
QUERY_MODE_PREPARE. This means that because we already parsed the parameters for our
query into the query() method, we don't have to add them again in the execute() method.

Using prepared statements
The query() method is described as a convenience function and is not really usefully when
we want to protect ourselves against SQL injection or want to use a single query multiple
times with different parameters. The createStatement() function on the other hand
provides a great way of storing and preparing a SQL before use in a safe and responsible way.

As seen in the example, we have executed a similar statement such as the query() method,
however this method is much more maintainable and reusable than the query() method.
By using ParameterContainer we can easily inject our variables into the SQL and manage
them simply because of the container nature of the object.

Because we used :type and :color the statement knows that our parameter array
(ParameterContainer implements the ArrayAccess class) should contain the keys type
and color to match them to the SQL statement.

Quoting in our SQL
Usually where there is database access there is user input, and if there is one thing we should
never trust it is user input. Although the majority of people have no intention of hacking your
website, a malicious few will try to do so.

Zend Framework 2 offers a range of quote methods which we can use to protect ourselves
from any harm. We should note however that these are just a small set of tools that you can
use in prevention of a disastrous situation, and we advice that a full range of utilities is used
to prevent SQL injection.

Using createStatement
When we use createStatement() the result objects are instantiated through the driver,
so the workings of a statement for MySQL can be different from Oracle (can, and will I think).
Once we create a statement it will also automatically connect to the database, which is handy
but we must be wary that we are not creating the statement on places where we might not
need the database. If we omit such a thing it might create a leak that isn't necessary in the
first place, although probably not such a big leak but a leak nonetheless.

The query() method works directly on the connection adapter, and although quick in use
isn't recommended to use in 'real life' situations as it doesn't promote reusability (in my
personal opinion). If in doubt, it is always best to do createStatement(), unless we are
simply testing some things out then we can use query() instead.

Configuring and Using Databases

160

Executing queries using TableGateway
After we have seen how to execute simply queries, it is now time to tell you about the
TableGateway, and it's incredible functionality. This recipe is all about querying the
database through this and showing off its capabilities.

Getting ready
To make full of the following recipe, a Zend Framework 2 skeleton application should be used,
with a MySQL server available to connect to. Don't forget that connecting to a MySQL server
requires the mysql and mysqli extension enabled in PHP.

How to do it…
What we are going to do first is insert a record in our sample table. After that we will check
that it was inserted successfully. Next, we will update the record with some new data, and if
that worked we will delete it again from the table.

Inserting a new record
Before we go about updating a record, it might be handy if we actually have a record that we
can use to update first. Zend Framework 2 has some new nifty database tools that make our
lives a little easier when it comes to data handling.

The cards table has the following columns:

 f id (primary key)

 f color

 f value

 f type

Let's consider the following example (/module/Application/src/Application/
Controller/IndexController.php):

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\Db\TableGateway\TableGateway;

class IndexController extends AbstractActionController
{

Chapter 5

161

 public function indexAction()
 {
 // Let's assume there is a service called 'db' that connect to
 // the database
 $connection = $this->getServiceLocator()->get('db');

 // Let's make this object for examples later on
 // $sql = new Sql($this->connection);

 // Create a new Zend\Db\Sql\Insert object
 // You can also do $sql->insert();
 $insert = new Insert('cards');

 // Define the columns in the table, although not
 //required, it is best practice
 $insert->columns(array(
 'id',
 'color',
 'type',
 'value',
));

 // Assign the values we want to insert, the column
 // names are in the keys so that the code knows what
 // to insert where.
 $insert->values(array(
 'color' => 'diamond',
 'type' => 'picture',
 'value' => 'Goblin'
));

 // Create a new table gateway to perform our SQL on
 $tableGateway = new TableGateway(
 'cards', $connection
);

 // We will now use the TableGateway to insert our
 // statement in the table.
 // The insert() / insertWith() method throws an
 // exception whenever the query goes wrong. We need to
 // make sure we catch that.
 try {
 $tableGateway->insertWith($insert);

Configuring and Using Databases

162

 // If we reach this point we can assume that the
 // query went fine.
 echo "Insert success!";
 $hasResult = true;
 } catch (Exception $e) {
 echo "Insert failed.";
 }
 }
}

That concludes the table insert, and obviously this is only one way of inserting data in the
table. Another way to execute the insert statement would be to use the $sql object we
created before. If we do that we can get rid of TableGateway and just use that instead.

If we would prefer that we could go about it like this:

// This will prepare a StatementInterface for us to use
$statement = $sql->prepareStatementForSqlObject(
 // Put the insert object in here
 $insert
);

// Now we simply execute the statement to insert the
// record.
$statement->execute();

Updating a record
We can now go on with checking if the insertion went fine, and following that we will update
the record with some new data:

// If an Exception happened, we will have a false in our
// result.
if (isset($hasResult)) {
 // Let's get the primary key from our last insert for
 // later use.
 $primaryKey = $tableGateway->getLastInsertValue();

 // Now let's update our record
 // You can also do $sql->update();
 $update = new Update('cards');

Chapter 5

163

 // Set the new values (and column names as keys) for
 // the data we want to update.
 $update->set(array(
 'color' => 'spade',
 'value' => '10',
 'type' => 'number',
));

 // Now create a where statement
 $where = new Where();

 // We want to match our record on the primary key that
 // we got back from our insertion.
 $where->equalTo("id", $primaryKey);

 // Set the where in the update statement so that we
 // use that when executing the update. We can add as
 // many where statements as we like, but we only match
 // on one here.
 $update->where($where);

 // Now update the record
 $updated = $tableGateway->updateWith($update);

The result of the update will be the amount of rows affected by our update statement. In our
case that would only be one record as we match exactly with the primary key of the table.

Deleting a record
Now, we are done with all our updates we want to begin deleting this record again, so let's
look at the following code snippet:

// Delete everything again
// You can also do $sql->delete();
$delete = new Delete('cards');

// We can use the same where statement as before!
$delete->where($where);

// Now let's delete it, as there is nothing else to it.
$deleted = $tableGateway->deleteWith($delete);

Well that was easy. We could just use the same where statement as it already defined the
clause to filter on our primary key from before.

Configuring and Using Databases

164

Advanced selects – joins conditions
When developing web application we will require more than one table in our queries for most
of the time, this is because we just need to pull a lot of data from everywhere to get the
results we need. One way of doing this is by using join conditions in our select statement.

Let's just take a look at the following table composition, we are going in our virtual
environment:

The people table will have the following columns:

 f Id (primary key)

 f First_name

 f Last_name

 f Age

 f Gender

 f Address_Id (foreign key to addresses table)

The addresses table will have the following columns:

 f Id (primary key)

 f Street

 f Number

 f Postcode

 f City

 f Country

What we want to achieve here is to retrieve the address that belongs to a person and show
that in our result.

Let's look at an example (/module/Application/src/Application/Controller/
IndexController.php) of how we could achieve that in the best possible way:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\Db\TableGateway\TableGateway;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {

Chapter 5

165

 // Let's assume there is a service called 'db' that connect to
 // the database
 $connection = $this->getServiceLocator()->get('db');

 // First create our Zend\Db\Sql\Sql object, and let's
 // assume $connection has a Zend\Db\Adapter defined.
 $sql = new Sql($connection);

 // Now create a Zend\Db\Sql\Select statement with
 // 'people' as the table we want to select from.
 $select = $sql->select('people');

 // By default we will select all the fields, but let's
 // just change that a bit for sake of the example
 $select->columns(array('first_name', 'last_name'));

 // Now set up our join condition
 $select->join(
 // We want to join the 'addresses' table
 'addresses',

 // We now define the join condition to match the
 // records on
 'addresses.id = people.address_id',

 // We want to select different columns than the
 // default wildcard selection.
 array('street', 'number', 'city', 'postcode'),

 // We want to do a LEFT JOIN on the table
 Select::JOIN_LEFT
);

 // Now we are ready to execute the statement.
 $statement = $sql->prepareStatementForSqlObject(
 $select
);

 // .. And finally execute it
 $records = $statement->execute();

 // Output to the screen for convenience
 echo '<pre>'. print_r($records, true). '</pre>';
 }
}

This is how simple it is to create a join condition on a select statement. Piece of pie!

Configuring and Using Databases

166

How it works…
In Zend Framework 2 they have separated all the actions such as Insert, DropTable,
Update, Delete, and Where into classes of their own, which makes it very reusable for
developers. The great thing about it is that it also makes the code much clearer.

TableGatewayInterface defines a minimum selection of methods that are
implemented by AbstractTableGateway and also TableGateway, as that extends from
AbstractTableGateway in the first place. TableGateway, for short, implements most
common features needed to do table operations.

The TableGatewayInterface, therefore, defines the following methods:

 f getTable()

 f select($where = null)

 f insert($set)

 f update($set, $where = null)

 f delete($where)

Optimizating with a DB profiler
One of the most common bottlenecks in an application is the querying to the database, as
sometimes we just don't know how much is being queried, or we can't find out why something
is going wrong. This recipe provides us with the tools to find even the smallest query used.

Getting ready
A database profiler is used to find bottlenecks in query performance and is a great tool to
debug the queries that are executed in a session and of course the time it takes for them to
execute. Once we develop bigger applications we tend to forget when and how certain pieces
of code execute, which sometimes can lead to unnecessary complexity in our code.

How to do it…
Profiling an application's database usage can give a clear overview on the performance of our
application, in this recipe we will discuss how to set up a simple profiler.

Chapter 5

167

Setting up a new profiler
Setting up a new profiler is really easy as at the moment there is only one class in Zend
Framework 2 that can be used as a profiler. This class is called Zend\Db\Adapter\
Profiler\Profiler and can be instantiated right away. Let's take a look at the
following snippet:

<?php
use Zend\Db\Adapter\Profiler\Profiler;

// Instantiate the Zend\Db\Adapter\Profiler\Profiler
$profiler = new Profiler();

// Let's assume $connection is an active Db\Adapter,
// we then need to set the profiler to be used by the
// adapter.
$connection->setProfiler($profiler);

That's it; this is basically all that is needed to start profiling everything from the database.
The only thing that is left to do for us is to get the profiles back whenever we are done with
querying (or whenever we need it really). Let's consider the following example:

<?php
// This will return all the statements that have been
// executed by the adapter.
$results = $profiler->getProfiles();

The $result variable will now be filled with the statistical information about the statements
executed. This result could look similar to the following:

array(3) {
 [0] => array(5) {
 ["sql"] => string(77)
 "INSERT INTO `cards` (`color`, `type`, `value`)
 VALUES (:color, :type, :value)"
 ["parameters"] => object(
 Zend\Db\Adapter\ParameterContainer)#255 (3) {
 ["data":protected] => array(3) {
 ["color"] => string(7) "diamond"
 ["type"] => string(7) "picture"
 ["value"] => string(6) "Goblin"
 }
 ["positions":protected] => array(3) {
 [0] => string(5) "color"
 [1] => string(4) "type"
 [2] => string(5) "value"
 }

Configuring and Using Databases

168

 ["errata":protected] => array(0) {
 }
 }
 ["start"] => float(1372316727.1188)
 ["end"] => float(1372316727.1209)
 ["elapse"] => float(0.0020461082458496)
 }
}

How it works…
The database profiler is first being attached to the database adapter, making the adapter
aware of the existence of the profiler. The adapter will start profiling (it does this by using the
Profiler::profileStart() method) the statement every time it executes a statement,
making sure that everything important will be logged about the statement.

When the database adapter has finished executing the statement, it will let the profiler know
that the statement is done (it will execute the Profiler::profileFinish() method).

As we can see from the previous example we can view the SQL statement executed and also
the parameters used. After that the start time, end time, and time elapsed are also added so
that we can spot any potential bottlenecks in the code easily.

All in all this is very useful tool that requires almost nothing in code to work, and is still
efficient for developers who want to find faults in their databases' performance.

There's more…
Another great little tool we can take a look at is the Zend Developer Tools, which is a module
made by Zend that fits in Zend Framework 2 that provides very useful debugging tools. If we
want to know more, we can find the tools at https://github.com/zendframework/
ZendDeveloperTools.

Creating a Database Access Object
Although we can use a dozen different methods to standardize our database functionality,
a Database Access Object (or DAO) can be used efficiently to achieve this. This recipe is a
working example of how to make your own, and begin organizing your functionality.

Chapter 5

169

Getting ready
Database Access Object (from now on DAO) is used to simplify functionality to and from
our database(s). The idea behind a DAO is to create mapping classes that have a single
responsibility on their functionality. This means that, for example, we have a table called
cards, which also has a mapping called Cards. This Cards mapping will then contain all the
functionality we need to use in that table.

This could include, for example, the CRUD (Create, Read, Update, and Delete) functionality,
but also more complex methods such as calculations. The idea behind a mapping class is
that we are able to hide the layout of the database and provide an interface for the rest of the
application, which is reliable and consistent without the application needing to know how the
database is structured.

For the recipe we will use the database layout that has a table called cards, with the
following columns:

 f id (primary key)

 f color

 f value

 f type

How to do it…
A DAO is a great way of organizing our database functionality in the application, so that we will
always have a clear structure of our logic. In this recipe, we'll show how to make one of our own.

Creating our new module and configuration
Our DAO is going be in a completely separate module, as that is the best way of separating the
different pieces of code. So, we go ahead to create a new module DAO, which should have the
following directory structure:

module\DAO\
 config\
 module.config.php
 src\
 DAO\
 Connection\
 Connector.php
 DTO\
 Cards.php

Configuring and Using Databases

170

Mapper\
 Cards.php
 MapperAbstract.php
 MapperInterface.php
 Module.php

Once we have created the necessary folders, we can copy the default Module.php from the
Application module over to our DAO folder. We then open our new Module.php, and make
sure the namespace is set to DAO as well.

Now, it is time to create a new /module/DAO/config/module.config.php file and add
the following lines:

<?php

return array(
 // This is going to be the configuration from which we
 // will read. Obviously the username/password should
 // be in the local.php but we will just put it here
 // example wise.
 'dao' => array(
 'hostname' => 'localhost',
 'username' => 'some_user',
 'password' => 'some_password',
 'database' => 'book',

 // This mapper will contain all of our mapper
 // classes such as DAO\Db\Mapper\Cards and let them
 // know which table they need to connect to.
 'mapper' => array(
 'Cards' => 'cards',
),
),

 // Initialize our service manager so that we can reach
 // our mappers from anywhere else in the application
 // (every mapper should have its own entry) and our
 // connector which should be reached only by the
 // mappers and not anywhere else
 'service_manager' => array(
 'invokables' => array(
 'DAO_Connector' =>'DAO\Db\Connection\Connector',
 'DAO_Mapper_Cards' =>'DAO\Db\Mapper\Cards',
),
),
);

Chapter 5

171

This pretty basic configuration will be used by our database connector later on to get the
connection details from.

Creating a connector
Next, we want to create our connector, which is basically a class that will create a database
adapter and set everything up for us. It will not do anything else than that, so we should be
able to code one easily.

Let's now create a file called /module/DAO/src/DAO/db/Connection/Connector.php
in the DAO\Db\Connection namespace and add the following code:

<?php

// Set the correct namespace
namespace DAO\Db\Connection;

// We will be using the following classes
use Zend\ServiceManager\ServiceLocatorAwareInterface;
use Zend\ServiceManager\ServiceLocatorInterface;
use Zend\Db\Adapter\Adapter;

// We are going to make this as a Service, so make sure
// we implement the ServiceLocatorAwareInterface
class Connector implements ServiceLocatorAwareInterface
{
 // Our service locator will be placed in here
 protected $serviceLocator;

 // Now set our service manager instance required by the
 // ServiceLocatorAwareInterface
 public function setServiceLocator(ServiceLocatorInterface
 $serviceLocator)
 {
 $this->serviceLocator = $serviceLocator;
 }

 // And add our getter for the service manager, as is required by
 // the ServiceLocatorAwareInterface
 public function getServiceLocator()
 {
 return $this->serviceLocator;
 }

Configuring and Using Databases

172

 /**
 * Initializes a connection and returns a fresh
 * adapter.
 *
 * @return \Zend\Db\Adapter\Adapter
 * @throws \Exception
 */
 public function initialize()
 {
 // Get the configuration from the module.config.php
 $dao = $this->getServiceLocator()->get('config');

 // The following array of configuration items should
 // be in there
 $configItems = array(
 'hostname',
 'username',
 'database',
 'password'
);

 // Check if everything is there in the configuration
 foreach ($configItems as $required) {
 if (!in_array($required, array_keys($dao['dao'])))
 {
 // If there is a config item missing, just let
 // the develop know
 throw new \Exception("{$required} is not in the DAO
 configuration!");
 }
 }

 // We can assume we have everything, now set up our
 // MySQL connection
 return new Adapter(array(
 'driver' => 'Pdo_Mysql',
 'database' => $dao['dao']['database'],
 'hostname' => $dao['dao']['hostname'],
 'username' => $dao['dao']['username'],
 'password' => $dao['dao']['password'],
));
 }
}

Chapter 5

173

That is it for the class definition; we are now able to initialize the connection if we have the
right items available in our configuration. If not, the method will throw an exception and let us
know anyway.

Creating a mapper interface
We want to create a mapper interface now on which we will base all our future mapper
classes. We do this because we want to make sure that all our mapper classes contain at
least some of the methods we want. Our mapper interface will, therefore, define a small
selection of methods we want our mapper classes to have.

Now, let's create file called /module/DAO/src/DAO/Db/Mapper/MapperInterface.php
in the DAO\Db\Mapper namespace and add the following code:

<?php

// Make sure we have the namespace right
namespace DAO\Db\Mapper;

// Note that this is an interface, and not a regular
// class.
interface MapperInterface
{
 // We need an insert method in our mapper.
 public function insert($data);

 // And obviously we want to update data
 public function update($data);

 // If we want to update, we also want to delete data
 public function delete($id);

 // And of course we want to load one specific record
 public function load($id);

 // Last but not least we also want a method to get all
 // the records in the table
 public function getAll();
}

As we see this is a pretty straightforward file as interfaces don't actually do any
implementation of the code at all.

Configuring and Using Databases

174

Creating an abstract mapper class
Although the interface doesn't implement any of the code, an abstract class can. We want
to create a file called /module/DAO/src/DAO/Db/Mapper/MapperAbstract.php in
the same DAO\Db\Mapper namespace, which will contain a method that will create a
connection to the database, point to the right table, and return a freshly baked Zend\Db\
Sql\Sql object:

<?php

// Namespace, do I need to say more ;-)
namespace DAO\Db\Mapper;

// Use the following classes
use Zend\ServiceManager\ServiceLocatorAwareInterface;
use Zend\ServiceManager\ServiceLocatorInterface;
use Zend\Db\Sql\Sql;

// Note that we are again using the
// ServiceLocatorAwareInterface and therefore need to
// implement the getServiceLocator and setServiceLocator
// (not shown here).
class MapperAbstract implements ServiceLocatorAwareInterface
{
 // Our sql object will be put here
 private $sqlObject;

 // We'll just put our service locator in here
 protected $serviceLocator;

Everything set up, now let's create the method we need for our connection (don't forget to
create setServiceLocator and getServiceLocator methods as well!):

// This method will set up our connection, initialize
// the right table and return a Sql object
protected function getSqlObject()
{
 // We only want to set up our connection once, no
 // point in doing it more, right?

 if ($this->connection === null) {
 // Get our configuration from the
 // module.config.php
 $config = $this->getServiceLocator()->get('config');

Chapter 5

175

 // Get our class name
 $class = explode('\\', get_class($this));

 // Now check if our class name is defined in the
 // mapper configuration of the dao configuration,
 // so that we can get our table name. Looks more
 // complicated than it is really.
 if (isset($config['dao']['mapper']) === true
 && isset($config['dao']['mapper'][end($class)])) {

 // Get the database adapter from our connector
 $adapter = $this->getServiceLocator()
 ->get('DAO_Connector')
 ->initialize();

 // We have a configuration, now return our SQL
 // object with the right table name included
 $this->sqlObject = new Sql(
 $adapter,
 $config['dao']['mapper'][end($class)]
);
 } else {
 // Make sure the developer knows not all the
 // configuration is set.
 throw new \Exception("Configuration dao\mapper\\".
 end($class). " not set.");
 }
 }

 // Now return our sql object
 return $this->sqlObject;
 }
}

Our freshly created connection method can now be used by mappers to get a Zend\Db\Sql\
Sql object, which is relevant to the table they want to work in.

Configuring and Using Databases

176

Creating a Data Transfer Object
Now, let's create a new Data Transfer Object (DTO) file called /module/DAO/src/DAO/Db/
DTO/Cards.php in the DAO\Db\DTO namespace and add the following code:

<?php

// Namespace, quite essential
namespace DAO\Db\DTO;

// We should name our class simply Cards, as that is
// used in the mapper later on as well
class Cards
{
 // Our 'cards' table exists of an id column, color,
 // type and value, let's just define them as private
 // properties.
 private $id;
 private $color;
 private $type;
 private $value;

Now that we have set our private properties, we will also create some basic getters and
setters for them. Use the following code for getters:

public function getId() { return $this->id; }
public function getColor() { return $this->color; }
public function getType() { return $this->type; }
public function getValue() { return $this->value; }

The getters are now done, which was pretty easy, now let's do the setters:

// The id will only be set if we update a record, or
// when we retrieve a record from a database. Never
// when we want to insert a record.
public function setId($id) {
 $this->id = $id;
}

// Make sure we can only use colors that are valid in
// our table.
public function setColor($color)
{
 $validColors = array('diamond', 'spade', 'heart', 'club');

Chapter 5

177

 if (in_array($color,$validColors)== false) {
 throw new \Exception(
 "Type can only be 'diamond', 'spade', 'heart'".
 "or 'club'."
);
 }

 $this->color = $color;
}

// Make sure only a valid type is entered.
public function setType($type)
{
 $validTypes = array('number', 'picture');

 if (!in_array($type, $validTypes)) {
 throw new \Exception(
 "Type can only be 'number' or 'picture'."
);
 }

 $this->type = $type;
}

// A value can only have a maximum of 6 character
public function setValue($value)
{
 $maxValue = 6;

 if (strlen($value) >$maxValue) {
 throw new \Exception(
 "Maximum length of value is 6."
);
 }

 $this->value = $value;
}

The setters were obviously a little more complicated as we also wanted to make sure the data
we put in is valid for our database. This way we can safely parse object to the mapper later on
and be sure that everything will go all right.

Configuring and Using Databases

178

Now, create the last method which is a construct so that we can easily set the properties
without needing to do that manually afterwards:

 public function __construct($type, $value, $color, $id = null)
 {
 // Id is optional, so see if it is parsed or not
 if ($id !== null) $this->setId($id);

 $this->setColor($color);
 $this->setType($type);
 $this->setValue($value);
 }
}

We now created a simple DTO which we can use to communicate to some methods in our
mapper. Now, last but not least let's create the mapper class!

Creating a mapper class
The mapper will be the main DAO class that we will use in the application because it will be
the class that has the methods for insert, getAll, and so on.

Let's start by creating a /module/DAO/src/DAO/Db/Mapper/Cards.php file in the DAO\
Db\Mapper namespace and add the following code:

<?php

namespace DAO\Db\Mapper;

use Zend\Db\Sql\Where;
use DAO\Db\DTO\Cards as CardsDto;
use DAO\Db\Mapper\MapperInterface;

// This class will extend and implement both our
// Abstract as our Interface class
class Cards extends MapperAbstract implements MapperInterface
{

Let's create a method for deleting a row first:

/**
 * Delete a specific row.
 *
 * @param int $id
 */

Chapter 5

179

public function delete($id)
{
 // Get our fresh Sql object from our Abstract method
 $sql = $this->getSqlObject();

 // Create a new WHERE clause
 $where = new Where();

 // When deleting we want to match on an id
 $where->equalTo('id', $id);

 // Statements can throw exceptions, so make sure we
 //catch them in time.
 try {
 // Create a new delete object with our where class
 // attached and then immediately turn it into a
 // statement. That is called pure laziness
 $statement = $sql->prepareStatementForSqlObject(
 $sql->delete()->where($where)
);

 // Execute the statement
 $result = $statement->execute();

 // If there is more than 0 rows deleted return
 // true, otherwise false
 return $result->getAffectedRows() > 0;
 } catch (\Exception $e) {
 // Something went terribly wrong, just ignore it
 // for now ;-)
 // TIP: Don't do this in real life, at least log your
 //exceptions.
 return false;
 }
}

We have created a simple delete method, now let's continue and create our getAll
method, which will retrieve all the records in the database:

/**
 * Returns all the records in the database.
 *
 * @return \DAO\Db\DTO\Cards
 */

Configuring and Using Databases

180

public function getAll()
{
 // Get the SQL object
 $sql = $this->getSqlObject();

 // Prepare a select statement
 $statement = $sql->prepareStatementForSqlObject(
 $sql->select()
);

 // Execute the freshly made statement
 $records = $statement->execute();

 // Create our return array
 $retval = array();

 // Loop through the records and add them to the
 // result array
 foreach ($records as $row) {
 // Create a new Cards DTO and assign our record
 $retval[] = new CardsDto(
 $row['type'],
 $row['value'],
 $row['color'],
 $row['id']
);
 }

 return $retval;
}

After we have created our getAll, which returns an array with Cards DTO's we will now create
the method to insert a record:

/**
 * Inserts a record.
 *
 * @param \DAO\Db\DTO\Cards $data
 */
public function insert($data)
{
 // We can easily insert this as we know the DTO has
 // already taken care of the validation of the values.

Chapter 5

181

 if (!$data instanceof DAO\Db\DTO\Cards) {
 throw new \Exception(
 "Data needs to be of type DAO\Db\DTO\Cards"
);
 }

 // Get our SQL object
 $sql = $this->getSqlObject();

 try {
 // Create our insert statement with the values
 // assigned into it.
 $statement = $sql->prepareStatementForSqlObject(
 $sql->insert()
 ->values(array(
 'color' => $data->getColor(),
 'type' => $data->getType(),
 'value' => $data->getValue()
))
);

 // Execute our statement
 $result = $statement->execute();

 // Return our primary key after insertion
 return $result->getGeneratedValue();
 } catch (\Exception $e) {
 // Something went wrong, handle exception and
 // return false
 return false;
 }
 }

Now, let's continue to our load method, which will return only one record:

public function load($id)
{
 // Get the SQL object
 $sql = $this->connection();

 // A fresh WHERE clause
 $where = new Where();
 $where->equalTo('id', $id);

Configuring and Using Databases

182

 try {
 // Prepare a select statement with the where
 // clause attached.
 $statement = $sql->prepareStatementForSqlObject(
 $sql->select()->where($where)
);

 // Execute the statement and return the first row
 $record = $statement->execute()->current();

 // Now let's return a fresh Cards DTO object
 return new CardsDto(
 $record['type'],
 $record['value'],
 $record['color'],
 $record['id']
);
 } catch (\Exception $e) {
 return false;
 }
}

We now created the load method, which will return a Cards DTO object for us to use, now last
but not least the update method:

 public function update($data)
 {
 // We can easily insert this as we know the DTO has
 // already taken care of the validation of the
 // values.
 if (get_class($data) !== 'DAO\Db\DTO\Cards') {
 throw new \Exception(
 "Data needs to be of type DAO\Db\DTO\Cards"
);
 }

 if ($data->getId() === null) {
 throw new \Exception(
 "Can't update anything if we don't have a card id!"
);
 }

 // Get the connection
 $sql = $this->connection();

Chapter 5

183

 try {
 // Create the WHERE clause
 $where = new Where();
 $where->equalTo('id', $data->getId());

 // Create the update class
 $update = $sql->update();

 // Set the where clause
 $update->where($where);
 $update->set(array(
 'color' => $data->getColor(),
 'type' => $data->getType(),
 'value' => $data->getValue()
));

 // Create the statement
 $statement = $sql->prepareStatementForSqlObject($update);

 // Execute the statement
 $result = $statement->execute();

 // If more than 0 rows were updated return true,
 // otherwise false
 return $result->getAffectedRows() > 0;
 } catch (\Exception $e) {
 return false;
 }
 }
}

We have now successfully created a mapper class and that also concludes our DAO. We can
now easily get the mapper through the service manager in (for example) a controller (/module/
Cards/src/Cards/Controller/CardController.php) by using the following code:

<?php

namespace Cards\Controller;

use Zend\Mvc\Controller\AbstractActionController;

class CardsController extends AbstractActionController
{

Configuring and Using Databases

184

 public function viewAction()
 {
 if (!$this->getParam('id'))
 throw new \Exception("Missing id");

 // Get the record to load from the query string
 $id = $this->params()->fromQuery('id');

 // Get the card mapper from the service manager
 $cardMapper = $this->getServiceLocator()
 ->get('DAO_Mapper_Cards');

 // Load the requested card
 $card = $cardMapper->load($id);

 // Dump the loaded record to the screen
 echo '<pre>'. Print_r($card, true). '</pre>';
 }
}

And, because we created an abstract and interface it is really easy for us to create new mappers
as well. Obviously it requires us to be consistent, but that is a good thing.

How it works…

About the DAO
A DAO or Database Access Object is a design pattern that creates an abstract environment
for developers to access their database related methods. This means that we create a
standardized environment for us to work in, which is not only consistent but also very stable.
Because, we limit ourselves in our way of working with database queries and objects we
create a piece of code which is very easy to work with.

In this recipe, we created a very simple DAO, which (to my personal opinion) is a good basis,
but probably not the most efficient way of creating one. We just took one example how a DAO
can be implemented, but we should never shut our eyes to the literally dozens of different
ways of implementing it.

About the recipe
Because our configuration contains a mapper array with all the mapper class names (DAO\
Db\Mapper\Cards becomes simply cards in the configuration) we cannot go wrong. This
separates the local configuration of the database environment from the code. So if we were
to change the table name to 'books' we only have to change the configuration and the code
would still work!

Chapter 5

185

We are going to create a DTO so that we can easily insert/update and return records through
a standardized way. So instead of returning an array in our selections we can then return an
object which will contain everything we need. This way we make sure our data is filtered and
simply transferrable.

As we can see in the insert method in the Mapper class we assume the DTO object contains
the right information for us to insert our record. Although this method is far from perfect, it is
a good method of separating our checking and validating of the data to another object (in our
case the DTO) so we can just concentrate on inserting the record. This separation is essential
to a good working DAO.

6
Modules, Models,

and Services

In this chapter we will cover:

 f Creating a new module

 f Using modules as a widget

 f A Model and a Hydrator

 f A basic service

Introduction
This chapter is all about making the most of our module, models, and services and their
configuration. As Zend Framework 2 is a modular framework, the modules are obviously one
of the most important features of it all. We will talk about customizing the configuration of the
modules and how to go about working with models and services as well.

Creating a new module
The core of the Zend Framework 2 library is modular and everything is based around a
module based system. That's why we will explain this thoroughly in this recipe, so that we can
use it in its best way possible.

Modules, Models, and Services

188

Getting ready
We will be using the Zend Framework skeleton application for creating new modules. As a
reminder, the Zend Framework 2 skeleton application can be found at https://github.
com/zendframework/ZendSkeletonApplication.

How to do it…
Creating a new module is like starting a new drawing, it is exciting and fun to create a new
functionality, but there are always rules we need to obey. In this recipe we will discuss what
the rules are for setting up a new module.

Creating the Module.php
We can start off with just a simple class file (that is, /module/Sample/Module.php) in the
right namespace (Sample) with nothing in it, which is basically the only requirement there is
for the module.

<?php

 namespace Sample;

 class Module {}

We can add the following method to our Module class:

 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }

Let's just create a /module/Sample/config/module.config.php file now which will
return an empty array for now, as we don't really have anything to configure at the moment.

<?php

return array();

To hook up to the bootstrap event, a module just have to have an onBootstrap method
in our Module.php file which does all the bootstrapping for us, or we can define bootstrap
events that are executed when the bootstrap has been called (my personal favorite).

Chapter 6

189

Let's see both ways, beginning with the onBootstrap method:

public function onBootstrap(MvcEvent $e)
{
 // Let's do something on the bootstrap!
}

As we can see a simple method is enough to create bootstrapping, it bootstraps the module
as soon as the bootstrap event of the application is being triggered.

Attaching to the loadModules.postevent
The following example makes use of the /module/Application/Module.php file:

<?php

namespace Application;

// Use the following classes
use Zend\ModuleManager\ModuleManager;
use Zend\ModuleManager\ModuleEvent;

class Module
{
 public function init(ModuleManager $moduleManager)
 {
 // We can get the event manager from our module manager
 $eventManager = $moduleManager->getEventManager();

 // Now we will attach ourselves to the event manager's event
 $eventManager->attach(
 ModuleEvent::EVENT_LOAD_MODULES_POST,
 function(ModuleEvent $event)
 {
 // Do something with our event, for example print the name
 // of the module to the screen.
 echo '<pre>'. $event->moduleName. '</pre>';
 },
 // Make sure the rest of the triggers all have been
 // triggered already
 -1000
);

 }
}

Modules, Models, and Services

190

Implementing the getAutoloaderConfig
The following example is part of the Module.php Module class:

public function getAutoloaderConfig()
{
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__. '/src/'. __NAMESPACE__
),
),
);
}

Let's consider the following updated code snippet:

public function getAutoloaderConfig()
{
 return array(
 'Zend\Loader\ClassMapAutoloader' => array(
 __DIR__. '/autoload_classmap.php',
),
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__. '/src/'. __NAMESPACE__
),
),
);
}

An example of a class map file (file /module/Application/autoload_classmap.php) is
as follows:

<?php
return array(
 'Sample\Model\Test' => __DIR__. '/src/Sample/Model/Test.php',
 'Sample\Model\Test2' => __DIR__. '/src/Sample/Model/Test2.php',
);

Chapter 6

191

Implementing the getControllerConfig, getControllerPluginConfig
and getViewHelperConfig
Take a look at the following implementation of the getViewHelperConfig (in the
/module/Application/Module.php file):

<?php

namespace Application;

// We need this for the view helper config to be picked up
use Zend\ModuleManager\Feature\ViewHelperProviderInterface;

class ModuleViewHelperProviderInterface
{
 public function getViewHelperConfig()
 {
 // See if the class exists first, to show off that we can use
 return array(
 'invokables' => array(
 // This is a non existing view helper, but is just to
 // show off how to use it.
 // Note: You cannot use a closure as an invokable.
 'exampleHelp' => 'Application\View\Helper\Example',
)
);
 }
}

How it works…
Modules are instantiated by the framework once they are introduced in the application.
config.php file. Adding a module's name the file will make the framework look for the
Module.php file in a directory bearing the name of the module. The Module.php file has
a selection of methods which will then be called by the framework at certain times, such as
loading the configuration or running the module's bootstrap.

For our example we will create a module called Sample, which will have a simple controller
and an action that outputs some text.

Modules, Models, and Services

192

To make sure the ModuleManager of Zend Framework 2 picks up our new module, we need
to understand how the ModuleManager works. What the ModuleManager does is fulfill
three operations:

 f It collects the enabled modules

 f It initializes the module, if necessary

 f It collects the configuration from all the modules

Although we can automatically create a whole new module with the ZFTool, it is still
recommended that we know how to make and structure a module without it. We will now
begin to create a module that makes sure the ModuleManager is happy with it.

Creating a new module directory
When creating a new module, we will follow the recommended way as much as possible, so
that we get the clearest view on how it all works. First things first, create a new directory in
the module directory with the name Sample. This directory will be our main directory when
it comes to code relating to the Sample module's namespace, that way we will have every
related piece of code enclosed in this directory.

Creating the Module.php
The most important file of every module is the Module.php file, which is not only required,
but also feeds the framework with important information about things such as; where to find
the code, and what the configuration is.

Although it won't actually initialize anything in the module, it is the basic requirement to have
a module. Note that because of the lack of code inside Module.php, it is impossible for our
application to reach any of the code inside the module as well.

The first thing we want to do is to make sure that the framework will read our configuration for
our module. This can be done by defining a getConfig method in our Module.php. which
requires an array as a return value.

Because laziness is a skill, we will simply return the complete module.config.php
file to the ModuleManager. We don't have to do this, we can also just return an array with the
configuration in as well, but for the purpose of maintainability it is best to keep
the actual configuration separate from the code. This way we don't have to edit the code to
edit the configuration.

Chapter 6

193

Now we know that our ModuleManager will load our configuration, it is time to go over
the bootstrapping of the module, which is sometimes necessary to initialize more after the
configuration has loaded. This can be done either by using the onBootstrap method in the
Module.php or attach to the ModuleManager events.

Optionally act on ModuleManager events
Another way of making sure additional pieces of code will be executed is by attaching them
to one of the four other strategic events, namely: loadModules, loadModules.resolve,
loadModule, and loadModules.post.

To explain them all a bit better, let's go through all of them briefly.

Understanding the loadModules event
The loadModules event will be triggered when the framework is loading the modules, so
for initializing a module, this event is pretty much useless as it will never be called in the
Module.php file (the event has already passed at that point).

At this point the framework is still loading the modules up and nothing has happened for our
module yet. That is why this event is primarily used on the internal side of the framework and
not on our development side. However, as this event is active throughout the whole process of
loading the modules, it also does some extra things when all the other events have been done.

This event triggers the following functionality by default:

 f Zend\Loader\ModuleAutoloader::register: This makes sure that the
Module class can be found and initiated (It doesn't initiate it just yet, just checks).

 f Zend\ModuleManager\Listener\ConfigListener ::onLoadModulesPre
::onLoadModulesPost: This functionality merges the configuration files with the
local configuration files found by the defined glob() in the application configuration
when all the modules have been loaded, but only if the configuration is not cached
internally (which is not the case by default).

 f Zend\ModuleManager\Listener\LocatorRegistration::onLoadModul
esPost: This attaches the service of the modules to the ServiceManager, if the
Module class implemented the LocatorRegisteredInterface interface, which
will immediately add the Module class to the DI. This is done when all the modules
are loaded up.

Modules, Models, and Services

194

The loadModules.resolve event
Another internal event and not an event a module can make use of is this event, which is
triggered for each module that is defined in our application.config.php. This event will
actually try to find the Module class in the Module.php file of our module, so although not
useful (yet) to our module, it is coming close!

This event triggers the following functionality by default:

 f Zend\ModuleManager\Listener\ModuleResolverListener::__invoke:
This initiates the Module class

The loadModule event
Now the object (of the Module class) has been created; the loadModule event will pass it
along the other listeners.

This event triggers the following functionality by default:

 f Zend\ModuleManager\Listener\ConfigListener::onLoadModule: This
merges the configuration by getting all the getConfig() of the Module classes.

 f Zend\ModuleManager\Listener\AutoloaderListener::__invoke: This
calls the getAutoloaderConfig in the Module class if available, so that we can
get the autoloading going for our new module

 f Zend\ModuleManager\Listener\InitTrigger::__invoke: This calls the init
method in the Module class if available.

 f Zend\ModuleManager\Listener\OnBootstrapListener::__invoke: This
attaches the onBootstrap method of the Module class to the bootstrap event of
the application, so it will be run at that time.

 f Zend\ModuleManager\Listener\ServiceListener::onLoadModule: This
calls the following methods in the Module class if they exist (we will discuss these
methods more extensively a bit further on in this recipe):

 � getServiceConfig: This gets the ServiceManager configuration from
the Module class.

 � getControllerConfig: This gets the controller configuration from the
Module class.

 � getControllerPluginConfig: This gets the controller plugin
configuration from the Module class.

 � getViewHelperConfig: This gets the view helper configuration from the
Module class.

Chapter 6

195

The flow chart showing a simplified version of the module loading is as follows:

ConfigListener::onLoadModule ServiceListener::onLoadModuleOnBootstrapListener::_invokeAutoloaderListener::_invoke InitTrigger::_invoke

getViewHelperConfig getControllerPIuginConfig

End

Start

getAutoLoaderConfig Execute init if
found

Collect
configurations

Merge
configuration getControllerConfig getServiceConfig

Attach to application
bootstrap event

Check if
onBootstrap

exists

Yes

The loadModules.post
The loadModules.post event is triggered when the modules have successfully been loaded
and the last bits are needed to be done to complete it all.

This event triggers the Zend\ModuleManager\Listener\ServiceListener::onLoad
ModulesPost functionality by default and instructs the ServiceManager to create more
services if needed.

Attaching to the loadModules.post event
The loadModules.post event is the first event we can attach a handler to in our
application, as events before this one can only be used by the internal listeners of Zend
Framework 2. That means there is not a good way of hooking up to those events without
making extensions to the framework ourselves.

However, the loadModules.post event can still be useful, for example, to make sure that
our modules are loaded correctly, or for something else modules config related. The best
way of attaching ourselves to this event is by doing that as high up as we can get with the
EventManager. In this case that would be in the init() method of the module, as that is
being called during the loadModule event, and is the first one to contain an EventManager.

Modules, Models, and Services

196

More specific non configuration file Module configuration
Sometimes we choose not to use the module.config.php file all the time and we require a
more dynamic instantiation, for example, of services or configurations. Luckily Zend Framework
2 fully supports any dynamic configuration functionality. As discussed before, there are five extra
methods we can add to our Module class, which are picked up during the module instantiation,
namely the getAutoloaderConfig, getServiceConfig, getControllerConfig,
getControllerPluginConfig, and the getViewHelperConfiguration.

The getAutoloaderConfig method
The getAutoloaderConfig method will load in the autoloader configuration for our
module and expects an array that is compatible with the AutoloaderFactory. There are
generally two accepted ways of autoloading in Zend Framework 2. The first one is to use the
StandardAutoloader, which requires a namespace to load and a directory to recur in to.
The second one is to use a ClassMapAutoloader, which is basically a file with an array
where every full domain and class name is mentioned with a reference to a specific file.

Both of them are displayed in the examples, so please take a look at them to see
the differences.

We use the StandardAutoloader in the first example because we just want our framework
to load all the classes in the namespace __NAMESPACE__ (which is Sample for our module)
through the directory structure in the [current directory]/src/Sample directory. This
means that a class that is fully called in Sample\Model\Test, will be searched in /src/
Sample/Model/Test.php. Although this is very handy in a development environment, it
isn't handy in a production environment because a large application will put a lot of strain on
searching for the class names we need. In that case we can use this StandardAutoloader,
but in addition (with a higher priority) we will also be using a ClassMapAutoloader that
loads in a static file with all the class names mapped to a specific directory.

This tells PHP that when we search for the class Sample\Model\Test, it can be found in /
src/Sample/Model/Test.php (or wherever really, as we point the PHP directly towards
our file anyway). Both of the autoloaders are PSR-0, where PSR stands for PHP Standards
Recommendation compliant.

In the second example we can see we prioritized our autoload_classmap.php file over our
StandardAutoloader, which means that it will look first in our class map file before trying
to find it on its own.

Chapter 6

197

To make the framework use the getAutoloaderConfig method, we must make
sure our Module class implements the Zend\ModuleManager\Feature\
AutoloaderProviderInterface class as well as it consists of the single public method
getAutoloaderConfig(), otherwise it will not try to execute it. Remember that simply
implementing the method is not enough to make it fire as it specifically looks if we are
implementing the interface.

The getControllerConfig, getControllerPluginConfig, and
getViewHelperConfig methods
Instead of loading the controller configuration through the module.config.php or as an
override, we can also do it through the get***Config method. We can create the method
the same way as the getServiceConfig method, as the return object can either be of the
instance Zend\ServiceManager\Config or simply an array with the configuration like in
the module.config.php.

If we want to use these methods, we should not forget to implement our class with the
respective interfaces:

For the getControllerConfig method we need to implement the Zend\
ModuleManager\Feature\ControllerProviderInterface interface.

For the getControllerPluginConfig method we need to implement
the Zend\ModuleManager\Feature\ControllerPluginProviderInterface
interface.

And lastly for the getViewHelperConfig method we need to implement
the Zend\ModuleManager\Feature\ViewHelperProviderInterface interface.

Using modules as a widget
Widgetizing is a great method to use modules on different places in our applications. That's why
this recipe will explain everything we need to know about doing this in the best way possible.

Getting ready
A working Zend Framework 2 skeleton application is needed to make full use of this recipe.

How to do it…
Widgets, they even sound great! We will explain in this recipe what they do and how they can
be used.

Modules, Models, and Services

198

Creating the Comment/Controller/Index
We will create a small controller that will return some example comments, which are static
and hardcoded for example only. First we should make sure we have a Comment module, so
we create the following directories and files:

module/
 Comment/
 config/
 module.config.php
 src/
 Comment/
 Controller/
 IndexController.php
 view/
 comment/
 index/
 index.phtml
 Module.php

Once we have the structure in place, we put the simplest code in the /module/Comment/
Module.php as possible to initialize the module, which is shown as follows:

<?php

namespace Comment;

class Module
{
 // Get our module configuration
 public function getConfig()
 {
 return include __DIR__
 . '/config/module.config.php';
 }

 // Initialize our autoloader to load in our sources
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' => array(

Chapter 6

199

 'namespaces' => array(
 __NAMESPACE__ => __DIR__. '/src/'
 . __NAMESPACE__,
),
),
);
 }
}

As we can see this is the most basic Module class because we don't need it more advanced
than this. Now let's quickly create our module.config.phpconfiguration file in the
/module/Comment/config directory:

<?php

return array(
 // Set up a quick route to our comment output
 'router' => array(
 'routes' => array(
 'comment' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/comment',
 'defaults' => array(
 'controller' => 'Comment\Controller\Index',
 'action' => 'index',
),
),
),
),
),

 // Make sure the controllers are invokable by us
 'controllers' => array(
 'invokables' => array(
 'Comment\Controller\Index' =>
 'Comment\Controller\IndexController'
),
),

Modules, Models, and Services

200

 // Set the path to our view templates
 'view_manager' => array(
 'template_path_stack' => array(
 __DIR__ . '/../view',
),
),
);

Now that we have set up a quick configuration with a route that responds to the /comment
and maps to Comment\Controller\IndexController::indexAction, we can
continue with the actual controller (present in the file /module/Comment/src/Comment/
Controller/IndexController.php):

<?php

namespace Comment\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
 // This is the action that will be called whenever we
 // browse to /comment
 public function indexAction()
 {
 // Initialize our view model
 $view = new ViewModel();
 $comments = array();

 // Create some static comments and put them in our
 // comments array
 for ($i = 0; $i < 10; $i++) {
 $comments[] = array(
 'name' => 'John Doe ('. $i. '),
 'comment' => 'Lorem ipsum dolor sit amet...'
);
 }

 // Return our view with the comments and make sure
 // the renderer doesn't output our layout

Chapter 6

201

 // (setTerminal(true) does that)
 return $view->setVariable('comments', $comments)
 ->setTerminal(true);
 }
}

After creating our controller, the only thing we still need to create is the view script (found in
the file /module/Comment/view/comment/index/index.phtml) to actually output the
data in an HTML table:

<?php /* loop through the comments to display them */ ?>
<?php foreach ($this->comments as $comment) : ?>
 <tr>
 <td>
 <?php echo $comment['name'] ?>:
 </td>
 <td>
 <?php echo $comment['comment'] ?>
 </td>
 </tr>
<?php endforeach; ?>

Now that we have our module completely set up, we can go forth and display the comments in
widget form.

Using a view helper to display the comments statically
First we want to create the view helper itself, let's do this in the Comment module (the file is
/module/Comment/src/Comment/View/Helper/Comments.php) as the data comes
from there anyway:

<?php

namespace Comment\View\Helper;

use Zend\View\Helper\AbstractHelper;
use Comment\Controller\IndexController;

class Comments extends AbstractHelper
{
 public function __invoke()
 {

Modules, Models, and Services

202

 // Instantiate the controller with the comments
 $controller = new IndexController();

 // Execute our indexAction to retrieve the
 // ViewModel, and then add the template of that
 // ViewModel so it renders fine
 $model = $controller->indexAction()->setTemplate(
 'comment/index/index'
);

 // Now return our rendered view
 return $this->getView()
 ->render($model);
 }
}

Now all we need to do is add this view helper to our module configuration (the file is /module/
Comment/config/module.config.php) before we are able to use it in our views:

 // Add our custom view helper to the configuration
 'view_helpers' => array(
 'invokables' => array(
 'comments' => 'Comment\View\Helper\Comments',
),
),

Obviously we omitted the rest of the configuration here because we didn't want to repeat
ourselves. All that is left now is to actually use the new view helper in the code. We can do
that to put the following code line in our view script:

<?php echo $this->comments() ?>

Using the forward to render the comments statically
Let's take a look at a code snippet of the action of a forward() in our
CommentController (the file is /module/Application/src/Application/
Controller/CommentController.php):

public function forwardAction()
{
 $view = new ViewModel();

Chapter 6

203

 // Get the comments from the index action
 $comments = $this->forward()
 ->dispatch(
 // Which controller do we want to invoke
 'Comment\Controller\Index',

 // Any specific options we want to give it
 array('action' => 'index')
);

 // If we keep this on true it will return an
 // exception, so let us not do that
 $comments->setTerminal(false);

 // Return the view model with the comments as child
 return $view->addChild($comments, 'comments');
}

This gets the dispatched state of a action in a specific controller (our Comment\
Controller\Index::indexAction) and returns it to us as $comments, which is a
ViewModel instance. We add that as a child to our current ViewModel instance and then we
can simply output it in the view script with the following code snippet:

<?php echo $this->comments ?>

This is the same as outputting a normal variable, and although this gives the feeling of a clean
solution, the forward() method is known to be horrible under stress.

Getting the comments through AJAX
Let's see what our view script looks like with JavaScript:

<!-- our comments will load in here -->
<table class="comments"></table>

<!-- first we want to make sure that we load in the jQuery script that
comes with the Zend Framework 2 skeleton application -->
<script src="<?php echo $this->basePath('/js/jquery.min.js') ?>"></
script>

<!-- this is the JavaScript bit -->
<script>

Modules, Models, and Services

204

 // This means jQuery will execute this code whenever
 // the document is done loading
 $(document).ready(function() {
 // We want to do a GET request in the background
 $.get(
 // We want to get this URL
 '/comment',

 // This function will be executed when the
 // data comes back from the server
 function(data) {
 // Put our data (the comments) in our
 // comments table
 $('table.comments').html(data);
 }
);
 });
</script>

How it works…
This is the scenario: We have a page that contains a little story on which users should be able
to comment. The comment section however is used at several other locations in the code
and should therefore be reusable. There is one proviso though, the comment section doesn't
change in layout, it will always need to be displayed in the same way.

What we are going to do is create three different but valid implementations of a module that
is being used as a widget. The first two will give a more static feel to it all, while the third
one will use JavaScript (jQuery to be exact) to load in the comments. We will also discuss a
theoretic fourth solution that should be considered.

But first of all we will set up a small environment, which we will use in the examples of
retrieving the comments.

We will set up the Application/Controller/Comment controller, which will have the
helperAction, forwardAction and ajaxAction method defined. Then we will use
this controller and actions to display the comments in the Comment/Controller/Index
controller and indexAction method.

Chapter 6

205

Using a view helper to display the comments statically
The best option to display the comments in a statically way would be to create a view helper
specific for this widget. What we are going to do is create a small view helper that will render
our comments and return them to our view. This way we can use it everywhere in our view
without using a lot of hassle like the forward() or the AJAX methods do.

As we can see in the example we instantiate our controller and manually retrieve the output of
the action, and after that manually render it and return it to the view. It is not always this easy
to do it like this, but it comes close to reality.

Using the forward() method to render the comments statically
A not so great idea but worth mentioning also is getting the comments through the
forward() method, which is brittle, but at least it doesn't go through the whole MVC
initialization like the AJAX functionality does.

Getting the comments through AJAX
Last but not least, a more technical non-PHP solution is also at hand for when we want to
be a little bit more creative, or when our environment just calls for an asynchronous AJAX
implementation. The idea of this method is that we simply retrieve our comments from the
URL through JavaScript, or to be specific the jQuery library.

This only requires us to input a bit of client-side JavaScript in the view script to make it
work, which is nice because we don't have to fiddle around much in the code. It has one big
con though, and that is that we will go through the whole MVC process again to receive the
comments from the database. On the other hand it will speed up the response time from our
main action as it doesn't have to load the comments statically. Another con would be that the
user visiting the website needs a JavaScript enabled browser to see the comments, but we
assume everyone has such browser nowadays.

As we can see from the example this is a pretty easy method of retrieving the comments
as well, but it has afore mentioned cons attached to it. However, sometimes this might be
the best option performance wise to get the data from somewhere else. It is all due to the
architecture of the application.

About Widgetizing
Widgetizing a module is not something that is absolutely native to the framework, but as we
can see in the paragraphs above, it is something we can easily achieve by using (not abusing)
the framework as much as we can.

Modules, Models, and Services

206

Especially, instantiating controllers and executing actions our self is a great method of dealing
with data from other sections of the application. We want to be wary, however, that modules
in itself should be independent (or at least as much as possible) from each other and we
shouldn't rely too much on their existence.

But to be fair, a perfect situation is never to be found, and we just need to do some concessions
some times. In our case this might be relying on modules that might not be there.

A Model and a Hydrator
Models are a great way of providing functionality to our application, and they keep out
the Controllers, nice and clean, from any critical logic. A hydrator is also great to transport
properties and values from one model to another, that's why we will go into this a bit further to
make optimal use of it.

Getting ready
For this recipe a working Zend Framework 2 skeleton application is necessary to make full use
of the examples.

How to do it…
In this recipe we will set up a model and a method for hydrating data to and from our model,
so that we have easy access of our data.

Accessing the Model
We can access the model anywhere in the application by simply adding a use statement at
the top of our document:

use Application\Model\SampleModel;

$object = new SampleModel();

Or by using the fully qualified name of the class including the namespace, shown as follows:

$object = new \Application\Model\SampleModel();

Chapter 6

207

If there is already a class SampleModel used, but from a different namespace, or if we just
want to give it a more identifiable name, we can also use an alias (this is not model specific
however, and we can use it in any namespaced class), as shown as follows:

use Application\Model\SampleModel as NewModel;

$object = new NewModel();

Creating a Hydrator
First thing now is to set up an incredibly simple model (the file is /module/Application/
src/Application/Model/SampleModel.php), which we will use to hydrate, as shown
as follows:

<?php

namespace Application\Model;

class SampleModel
{
 private $engine;
 private $primary;
 private $text;

 public function getEngine() {
 return $this->engine;
 }

 public function setEngine($engines) {
 $this->engine = $engines;
 }

 public function getPrimary() {
 return $this->primary;
 }

 public function setPrimary($primary) {
 $this->primary = $primary;
 }

 public function getText() {
 return $this->text;
 }

Modules, Models, and Services

208

 public function setText($text) {
 $this->text = $text;
 }
}

This incredibly basic model has nothing more than a couple of properties with the getters and
setters for them, simple, but it will work for what we try to achieve next. What we are going to
do in the following example is create a Hydrator for our imaginary database table and then
we will hydrate our SampleModel (the file is /module/Application/src/Application/
Model/Hydrator/SampleModelHydrator.php) with the data from the table:

<?php

// Don't forget to namespace our class
namespace Application\Model\Hydrator;

// We extend from this class
use Zend\Stdlib\Hydrator\AbstractHydrator;

class SampleModelHydrator extends AbstractHydrator
{
 private $mapping = array(
 'id' => 'primary',
 'value' => 'engine',
 'description' => 'text',
);

 // Extracts the hydrated model
 public function extract($object) {}

 // Hydrates our values to our model
 public function hydrate(array $data, $object) {}
}

We have now set up the very basic class of our hydrator, and the methods implemented
are now only the definitions that we need to have because of the AbstractHydrator
class. The next thing we want to do is to get some code in there to actually make it all work.
The first thing we will implement further is the hydrate() method, which will make our
SampleModel hydrated:

Chapter 6

209

public function hydrate(array $data, $object)
{
 // If we are not receiving an object, throw an
 // exception
 if (is_object($object) === false) {
 throw new \Exception(
 "We expect object to be an actual object!"
);
 }

 // Loop through the properties and values
 foreach ($data as $property=>$value) {
 // Check if the property exists in our mapping
 if (array_key_exists($property, $this->mapping)) {
 // Build the setter method from our property
 $setter = 'set'. ucfirst(
 $this->mapping[$property]
);

 // Set the value of the property
 $object->$setter($value);
 }
 }

 // Now return our hydrated object
 return $object;
}

Now let's use the extract() method, which extracts values from our SampleModel and
puts them back in an array which is also formatted in the way we used to hydrate the object in
the first place:

public function extract($object)
{
 // If we are not receiving an object, throw an
 // exception
 if (is_object($object) === false) {
 throw new \Exception(
 "We expect object to be an actual object!"
);
 }

Modules, Models, and Services

210

 $return = array();

 foreach ($this->mapping as $key=>$map) {
 // Build the getter method from our property
 $getter = 'get'. ucfirst($map);

 // Get the property value from the object
 $return[$key] = $object->$getter();
 }

 return $return;
}

And that is how we extract values from the hydrated object again.

Creating a Hydrator strategy
If we change the setter of the primary property in the SampleModel (the file is /module/
Application/src/Application/Model/SampleModel.php) a bit so that it reflects in
the following code snippet:

public function setPrimary($primary)
{
 // Throw an exception if there is no valid integer.
 if (!is_int($primary)) {
 throw new \Exception(
 "Primary ({$primary}) should be an integer!"
);
 }

 $this->primary = $primary;
}

Let's begin by creating our strategy first (the file is /module/Application/src/
Application/Model/Hydrator/Strategy/SampleHydratorStrategy.php):

<?php

namespace Application\Model\Hydrator\Strategy;

// We need to implement this interface to make it
// eligible to be a strategy
use Zend\Stdlib\Hydrator\Strategy\StrategyInterface;

Chapter 6

211

class SampleHydratorStrategy implements StrategyInterface
{

 // This method is called every time an object is
 // extracted
 public function extract($value)
 {
 // Check if the value is an integer
 if (is_int($value) === true) {
 return (int)$value;
 } else {
 // No integer, just randomly return an integer
 return rand(0, 10000);
 }
 }

 // This method is called just before the property of
 // the object is hydrated
 public function hydrate($value)
 {
 // Check if it is a valid integer
 if (is_int($value) === true) {
 return (int)$value;
 } else {
 // No integer, random integer is returned
 return rand(0, 10000);
 }
 }
}

Now we need to change two things in our Hydrator class that we created, so that it also
supports a hydrator strategy (the file is /module/Application/src/Application/
Model/Hydrator/SampleModelHydrator.php):

public function extract($object)
{
 [.. current code in between ..]

 $return[$key] = $this->extractValue(
 $key, $object->$getter()
);

Modules, Models, and Services

212

 [.. rest of the code ..]
}

public function hydrate(array $data, $object)
{
 [.. current code in between ..]

 $object->$setter($this->hydrateValue(
 $this->mapping[$property], $value)
);

 [.. rest of the code ..]
}

As we can see we just have to change the previously shown code lines to make sure it will use
the hydrator strategy in our Hydrator.

In the next example we will use the Hydrator to hydrate our SampleModel into our
controller (the file is /module/Application/src/Application/Controller/
IndexController.php):

<?php

namespace Application\Controller;

use Application\Model\SampleModel;
use Application\Model\Hydrator\SampleModelHydrator;
use Application\Model\Hydrator\Strategy\SampleHydratorStrategy;
use Zend\Mvc\Controller\AbstractActionController;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // First initialize our model
 $model = new \Application\Model\SampleModel();

 // Now create a sample array of data to hydrate
 $data = array(
 'id' => 'Some Id',
 'value' => 'Some Awesome Value',
 'description' => 'Pecunia non olet',
);

Chapter 6

213

 // Now create our Hydrator
 $hydrator = new SampleModelHydrator();

 // Now add our strategy to it to check when the primary
 // value is set (if we put id, it would be when the
 // value would be retrieved)
 $hydrator->addStrategy(
 "primary",
 new SampleHydratorStrategy()
);

 // Now hydrate our model
 $newObject = $hydrator->hydrate($data, $model);

 // And if necessary extract the values again
 $extract = $hydrator->extract($newObject);

 // Now output it to the browser
 echo "<pre>". print_r($extract, true). "</pre>";
 }
}

If we know to compare the extract with the original values, we can see that the ID has now
changed to a random number, telling us that the hydrator strategy did its job.

How it works…

Think about the model's purpose
By definition models should only have functionality related to one very specific bit of
the application. This means that if we begin coding a model, we should be wary of this
requirement and make our models lightweight and catering to a single purpose.

The idea of having loads of small pieces of code is that we can maintain them a lot easier
and we only load in what we like to use. Instead of loading a 40k line long model with all the
functionality we need, we would like to split them up into small functional classes that do only
the thing they are named after.

Modules, Models, and Services

214

Think about the model's location
The location of a model is especially important as we still want to be able to find it among
our code. We should give it a name that resembles its functionality, and it should be as
specific as possible.

If we name the model we need to put it in a location that makes sense as well, so when we look
for certain functionality we can find it by just searching in the location it makes most sense.

For example let's take a look at the following namespace and class name:

Api\Model\Db\User\Information

If we search for a method that retrieves user information then this class would be a great way
to start searching.

Think about the model's methods
The model's methods are obviously the most important part of the model, it is also one that
is usually highly overlooked. For example, developers sometimes use the wrong visibility while
defining their methods, which then ends up misused by other developers who think they could
(or couldn't) use a specific method because of its visibility.

Sometimes the method is named incorrect or the visibility has been set up wrong and in turn we
end up refactoring the code. All of which can be avoided by simply thinking about it beforehand.

It is also wise to name your method right, put the visibility in correctly, and
to use a strict naming convention in our application.

Method names should be named through camelCase, and only protected
and private methods should be allowed to start with an underscore.

Unit test the model
Testing your model is a great way of making sure the output of the methods always matches
with the output we expect it to be. An even greater way (personally) of developing your model
is to TDD (Test-Driven Development) the code so that you have an objective test, instead of a
subjective one, if you write the test after you have written the method. We will talk more about
unit testing and TDD in Chapter 9, Catching bugs.

Chapter 6

215

Document your class
Usually documenting a class is overlooked and/or unmaintained while it should be something
that exists in your routine. Even if we are the only developer on the project, and we know that
in ten years time we would still be the only developer, it still is a great way to let the future us
know why we created that method, what it does, and what we can expect back from it.

The PHP DocBlock or in short the PHPDoc is the formal standard of documenting our code in
the comment format. First of all a docblocks can be identified by the following syntax:

/**
 * This is used to describe the method, file or class.
 *
 * @param string $parameterOne Some description here.
 * @result Boolean
 * @throws Some\Exception
 * @author J. Callaars <bcallaars@gmail.com>
 */
public function someMethod($parameterOne);

As we can see, the difference between a normal comment block and a docblock is the two
asterisks used at the beginning. After that the first line should always describe the current
method, class, or file (whatever the context is). The lines' following that consists of tags, which
are used to define certain properties of the docblock. For example, the @param tag is used to
define parameters to a method, which have a type defined, and the name of the parameter
behind it. The @result expresses the return value of the method call, and the @throws tells
us an exception can occur in this method. And last but not least @author tells us who initially
created the method/file/class.

Obviously there are dozens of other tags to use, of which most of them can be found at
http://en.wikipedia.org/wiki/PHPDoc.

We would recommend using the phpDocumenter syntax to use as the standard of creating
method and class documentation as it is an industry standard and gives us the option of
generating a technical document quite easily.

Creating a hydrator
Hydrators are the sort classes that can be used to hydrate a specific class with values given to
the Hydrator.

Modules, Models, and Services

216

This can be especially useful when retrieving data from a database table, and when we
want to map it to another model, where the model doesn't have to know the mappings of the
table and the TableGateway doesn't have to know how to map them to the model. In such
cases a Hydrator is perfect for the job as an intermediary between the model and the data
access layers.

The mapping property defines the mapping between the received array (which we use to
hydrate) and the property on the object side. So, for example, if our array contains a key ID, we
will set the property primary in the object. Obviously this is the most basic a hydrate method
can possibly be as it simply checks if we have a valid object and then checks if we have the
property name we want to set and sets it if it does.

Creating a hydrator strategy
Now that we have a simple hydrator, we might want to take a look at another amazing piece of
the Zend Framework that is new: the hydrator strategy. The hydrator strategy is simply said a
transformation of one value that is being parsed into the Hydrator.

We changed the primary setter of the hydrator now, so that when it receives something else
than an integer it will throw an exception.

But our Hydrator is not familiar with the properties in our model, which in turn means that
when an incompatible value is used and exception will be thrown. To overcome this (and many
other) problem, we can use a hydrator strategy, which will have the last chance to set a value
before it goes to the model.

Now the plan is that we will create a hydrator strategy which will check our primary property
and make sure it returns an integer. As we can see further on, we basically created an
extract and a hydrate method, which will check if there is an integer as value, and if not
return a random integer. This way we safeguard ourselves so that any value that comes in to
our model is at least the type we expect it to be.

About models
Models are just regular classes which differ nothing from any other class. However, the
principle behind a model is that all the business critical logic is defined in them. An MVC
prefers to have skinny controllers (which means no or almost no logic) and fat models.

Hydrators, on the other hand, are classes that are used in between models, for example,
when exchanging data from one model to another, or from a TableGateway to a model and
vice versa. Obviously not every model we write would require a Hydrator, but as applications
tend to grow, we like to implement new features without having to change the existing ones,
and Hydrator can then serve as a key factor as they can serve as a proxy between objects.

Chapter 6

217

There's more…
There is a lot more to write about hydrators, and especially the different kinds of default
hydrators that come with Zend Framework 2. If we want to know more about that we should
check the documentation for the Zend\Stdlib\Hydrator\ArraySerializable,
Zend\Stdlib\Hydrator\ClassMethods, and the Zend\Stdlib\Hydrator\
ObjectProperty hydrator.

A basic service
One of the biggest features of Zend Framework 2 is the ServiceManager, and its influence
in the framework can be seen from the initial bootstrap of our application. We don't need a
reason to explain why this recipe goes deeper in this topic, do we?

Getting ready
Again a Zend Framework 2 skeleton application should be running to make the full use of our
examples in this recipe.

Before we continue let's get the difference between a service and a model. Although the
definition of a service is sometimes a judgment call, it can be safely assumed that a service is a
class between the controller and the model, which hides all the nasty logic from the controller,
for example, checking the authentication or calling a method in a model. Another thing that
is different is that the service in our case will be managed by the ServiceManager, and
therefore, can be called from any controller (and other service) in our application.

How to do it…
Services are a great way of making sure our functionality can be accessed virtually anywhere
in our application, and in this recipe we will show exactly how to do that!

Creating a service
We will create our service in the /module/Application/src/Application/Service/
Example.php file:

<?php

namespace Application\Service;

Modules, Models, and Services

218

use Zend\ServiceManager\ServiceLocatorAwareInterface,
 Zend\ServiceManager\ServiceLocatorInterface;

class Example implements ServiceLocatorAwareInterface
{
 protected $serviceLocator;

 // This is set by our initialization so we don't
 // actually have to do this ourselves probably
 public function setServiceLocator(ServiceLocatorInterface
 $serviceLocator)
 {
 $this->serviceLocator = $serviceLocator;
 }

 // Retrieve the service locator, handy if we want to
 // read some configuration
 public function getServiceLocator()
 {
 return $this->serviceLocator;
 }

 // Let's create a simple string to rot13 encoder as an
 // example
 public function encodeMyString($string)
 {
 return str_rot13($string);
 }
}

Now the only thing that left to do is to add this service to the module configuration (the file is
/module/Application/config/module.config.php), so it can be reached by the rest
of the application as well:

<?php
return array(
 'service_manager' => array(
 'invokables' => array(
 // We are going to call our service through the
 // ExampleService name
 'ExampleService' => 'Application\Service\Example',
),
),
);

Chapter 6

219

Of course, this is again a snippet to show what needs to be added to the configuration. We
can now easily retrieve the service in, for example, a controller by performing the following:

// This is an example from within a controller and
// returns a rot13 encoded string
echo $this->getServiceLocator()
 ->get('ExampleService')
 ->encodeMyString("Service? Easily created!");

Getting a service from within a controller
This example shows that it is very easy to retrieve a service from a controller. From within a
service we can also easily get our main application configuration by performing the following:

// This is executed from within a service class and will
// return the configuration of the application
$config = $this->getServiceLocator()->get('config');

How it works…
We created a very basic service and added it to the configuration of our Application
module. The idea behind it is that we can show how easy it is to create a service, activate
it, and use it in the application. We will create a service that is going to be managed by the
ServiceManager and does nothing more than rot13 encode on a string.

To create a service we only need to implement the Zend\ServiceManager\
ServiceLocatorAwareInterface in our class, which predefines two methods, the
getServiceLocator and the setServiceLocator. The setServiceLocator is called
during instantiation, and most of the time (at least not when we add the service in our
configuration) we don't have to do this manually.

The getServiceLocator however is a method we can use to get the ServiceLocator,
from which we can get useful things like other services, or perhaps the configuration of the
application itself.

Services are instantiated either at the loading of the modules if they are in the module
configuration, or just during some place in the application. However, when we instantiate
the service, we know that we can always get it through the same easy get() method of the
ServiceLocator anywhere else in the application once it has been instantiated.

7
Handling Authentication

In this chapter we will cover:

 f Understanding Authentication methods

 f Setting up a simple database Authentication

 f Writing a custom Authentication method

Introduction
In this chapter we will talk about the different methods of authentication and we will show you
some examples on how to authenticate and how to create your own authentication method.

Understanding Authentication methods
In a world where security on the Internet is such a big issue, the need for great authentication
methods is something that cannot be missed. Therefore, Zend Framework 2 provides a range
of authentication methods that suits everyone's needs.

Getting ready
To make full use of this recipe, I recommend a working Zend Framework 2 skeleton
application to be set up.

How to do it…
The following is a list of authentication methods—or as they are called adapters—that are
readily available in Zend Framework 2. We will provide a small overview of the adapter, and
instructions on how you can use it.

Handling Authentication

222

The DbTable adapter
Constructing a DbTable adapter is pretty easy, if we take a look at the following constructor:

public function __construct(
 // The Zend\Db\Adapter\Adapter
 DbAdapter $zendDb,

 // The table table name to query on
 $tableName = null,

 // The column that serves as 'username'
 $identityColumn = null,

 // The column that serves as 'password'
 $credentialColumn = null,

 // Any optional treatment of the password before
 // checking, such as MD5(?), SHA1(?), etcetera
 $credentialTreatment = null
);

The Http adapter
After constructing the object we need to define the FileResolver to make sure there are
actually user details parsed in.

Depending on what we configured in the accept_schemes option, the FileResolver can
either be set as a BasicResolver, a DigestResolver, or both.

Let's take a quick look at how to set a FileResolver as a DigestResolver or
BasicResolver (we do this in the /module/Application/src/Application/
Controller/IndexController.php file):

<?php

namespace Application;

// Use the FileResolver, and also the Http
// authentication adapter.
use Zend\Authentication\Adapter\Http\FileResolver;
use Zend\Authentication\Adapter\Http;
use Zend\Mvc\Controller\AbstractActionController;

Chapter 7

223

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 // Create a new FileResolver and read in our file to use
 // in the Basic authentication
 $basicResolver = new FileResolver();
 $basicResolver->setFile(
 '/some/file/with/credentials.txt'
);

 // Now create a FileResolver to read in our Digest file
 $digestResolver = new FileResolver();
 $digestResolver->setFile(
 '/some/other/file/with/credentials.txt'
);

 // Options doesn't really matter at this point, we can
 // fill them in to anything we like
 $adapter = new Http($options);

 // Now set our DigestResolver/BasicResolver, depending
 // on our $options set
 $adapter->setBasicResolver($basicResolver);
 $adapter->setDigestResolver($digestResolver);
 }
}

How it works…
After two short examples, let's take a look at the other adapters available.

The DbTable adapter (again)
Let's begin with probably the most used adapter of them all, the DbTable adapter. This
adapter connects to a database and pulls the requested username/password combination
from a table and, if all went well, it will return to you an identity, which is nothing more than
the record that matched the username details.

To instantiate the adapter, it requires a Zend\Db\Adapter\Adapter in its constructor to
connect with the database with the user details; there are also a couple of other options that
can be set. Let's take a look at the definition of the constructor:

Handling Authentication

224

The second (tableName) option speaks for itself as it is just the table name, which we need
to use to get our users, the third and the fourth (identityColumn, credentialColumn)
options are logical and they represent the username and password (or what we use) columns
in our table. The last option, the credentialTreatment option, however, might not make a
lot of sense.

The credentialTreatment tells the adapter to treat the credentialColumn with a
function before trying to query it. Examples of this could be to use the MD5(?) function,
PASSWORD(?), or SHA1(?) function, if it was a MySQL database, but obviously this can
differ per database as well. To give a small example on how the SQL can look like (the actual
adapter builds this query up differently) with and without a credential treatment, take a look
at the following examples:

With credential treatment:

SELECT * FROM `users` WHERE `username` = 'some_user' AND `password` =
MD5('some_password');

Without credential treatment:

SELECT * FROM `users` WHERE `username` = 'some_user' AND `password` =
'some_password';

When defining the treatment we should always include a question mark for where the
password needs to come, for example, MD5(?) would create MD5('some_password'), but
without the question mark it would not insert the password.

Lastly, instead of giving the options through the constructor, we can also use the
setter methods for the properties: setTableName(), setIdentityColumn(),
setCredentialColumn(), and setCredentialTreatment().

The Http adapter (again)
The HTTP authentication adapter is an adapter that we have probably all come across at least
once in our Internet lives. We can recognize the authentication when we go to a website and
there is a pop up showing where we can fill in our usernames and passwords to continue.

This form of authentication is very basic, but still very effective in certain implementations,
and therefore, a part of Zend Framework 2. There is only one big massive but to this
authentication, and that is that it can (when using the basic authentication) send the
username and password clear text through the browser (ouch!).

There is however a solution to this problem and that is to use the Digest authentication, which
is also supported by this adapter.

If we take a look at the constructor of this adapter, we would see the following code line:

public function __construct(array $config);

Chapter 7

225

The constructor accepts a load of keys in its config parameter, which are as follows:

 f accept_schemes: This refers to what we want to accept authentication wise; this
can be basic, digest, or basic digest.

 f realm: This is a description of the realm we are in, for example Member's area.
This is for the user only and is only to describe what the user is logging in for.

 f digest_domains: These are URLs for which this authentication is working. So if
a user logs in with his details on any of the URLs defined, they will work. The URLs
should be defined in a space-separated (weird, right?) list, for example /members/
area /members/login.

 f nonce_timeout: This will set the number of seconds the nonce (the hash users
login with when we are using Digest authentication) is valid. Note, however, that
nonce tracking and stale support are not implemented in Version 2.2 yet, which
means it will authenticate again every time the nonce times out.

 f use_opaque: This is either true or false (by default is true) and tells our adapter to
send the opaque header to the client. The opaque header is a string sent by the server,
which needs to be returned back on authentication. This does not work sometimes on
Microsoft Internet Explorer browsers though, as they seem to ignore that header. Ideally
the opaque header is an ever-changing string, to reduce predictability, but ZF 2 doesn't
randomize the string and always returns the same hash.

 f algorithm: This includes the algorithm to use for the authentication, it needs to
be a supported algorithm that is defined in the supportedAlgos property. At the
moment there is only MD5 though.

 f proxy_auth: This boolean (by default is false) tells us if the authentication used is a
proxy Authentication or not.

It should be noted that there is a slight difference in files when using either Digest or Basic.
Although both files have the same layout, they cannot be used interchangeably as the Digest
requires the credentials to be MD5 hashed, while the Basic requires the credentials to be
plain text. There should also always be a new line after every credential, meaning that the last
line in the credential file should be empty.

The layout of a credential file is as follows:

username:realm:credentials

For example:

some_user:My Awesome Realm:clear text password

Instead of a FileResolver, one can also use the ApacheResolver which can be used
to read out htpasswd generated files, which comes in handy when there is already such a
file in place.

Handling Authentication

226

The Digest adapter
The Digest adapter is basically the Http adapter without any Basic authentication. As
the idea behind it is the same as the Http adapter, we will just go on and talk about the
constructor, as that is a bit different in implementation:

public function __construct($filename = null, $realm = null,
 $identity = null, $credential = null);

As we can see the following options can be set when constructing the object:

 f filename: This is the direct filename of the file to use with the Digest credentials, so
no need to use a FileResolver with this one.

 f realm: This identifies to the user what he/she is logging on to, for example My
Awesome Realm or The Dragonborn's lair. As we are immediately trying to log
on when constructing this, it does need to correspond with the credential file (see The
Http adapter for the credential file layout).

 f identity: This is the username we are trying to log on with, and again it needs to
resemble a user that is defined in the credential file to work.

 f credential: This is the Digest password we try to log on with, and this again needs
to match the password exactly like the one in the credential file.

We can then, for example, just run $digestAdapter->getIdentity() to find out if we are
successfully authenticated or not, resulting in NULL if we are not, and resulting in the identity
column value if we are.

The LDAP adapter
Using the LDAP authentication is obviously a little more difficult to explain, so we will not go in
to that in full as that would take quite a while. What we will do is show the constructor of the
LDAP adapter and explain its various options. However, if we want to know more about setting
up an LDAP connection, we should take a look at the documentation of ZF2, as it is explained
in there very well:

public function __construct(array $options = array(), $identity =
 null, $credential = null);

The options parameter in the construct refers to an array of configuration options that are
compatible with the Zend\Ldap\Ldap configuration. There are literally dozens of options
that can be set here so we advise to go and look at the LDAP documentation of ZF2 to
know more about that. The next two parameters identity and credential are respectively the
username and password again, so that explains itself really.

Once you have set up the connection with the LDAP there isn't much left to do but to get the
identity and see whether we were successfully validated or not.

Chapter 7

227

About Authentication
Authentication in Zend Framework 2 works through specific adapters, which are always an
implementation of the Zend\Authentication\Adapter\AdapterInterface and thus,
always provides the methods defined in there. However, the methods of Authentication are all
different, and strong knowledge of the methods displayed previously is always a requirement.
Some work through the browser, like the Http and Digest adapter, and others just require
us to create a whole implementation like the LDAP and the DbTable adapter.

Setting up a simple database Authentication
After seeing all the authentication methods available, it is time to see how it will actually work
when we have a database authentication in place. This recipe will explain all the ins and outs
of this specific method.

Getting ready
A working Zend Framework 2 skeleton application with the PHP sqlite extension loaded
and enabled.

How to do it…
Database authentication can very well be the most widely used authentication method there
is. In this recipe we will set up our own database authentication.

Setting up the module initialization
We will create our database as soon as possible after initialization of the modules, so we
will attach it to an event called route or MvcEvent::EVENT_ROUTE. As a template for the
Module.php we can just copy over the Application/Module.php file and change the
namespace; we will be working in the onBootstrap method anyway, and the rest of the
Module class can stay the same (but don't forget to change the namespace!).

Let's take a look at the code of our /module/Authentication/Module.php file:

// We can assume the rest of the Module class file is
// exactly the same as the default
// Application/Module.php file, except of course the
// namespace.
public function onBootstrap(MvcEvent $e)
{
 // This is also default
 $eventManager = $e->getApplication()->getEventManager();
 $moduleRouteListener = new ModuleRouteListener();
 $moduleRouteListener->attach($eventManager);

Handling Authentication

228

 // And now we let the magic happen (this is the bit we
 // will insert)
 $eventManager->attach(
 // We want to attach to the route event, which means
 // it happens before our controllers are initialized
 // (because that would mean we already found the
 // route)
 MvcEvent::EVENT_ROUTE,

 // We are using this function as our callback
 function (MvcEvent $event)
 {
 // Get the database adapter from the configuration
 $dbAdapter = $event->getApplication()
 ->getServiceManager()
 ->get('db');

 // Our example is an in memory database, so the
 // table never exists, but better sure than sorry
 $result = $dbAdapter->query("
 SELECT name
 FROM sqlite_master
 WHERE type='table' AND name='users'
 ")->execute();

 // If we couldn't find a users table, we will
 // create one now (with an in memory db this is
 // always the case)
 if ($result->current() === false) {
 try {
 // The user table doesn't exist yet, so let's
 // just create some sample data
 $result = $dbAdapter->query("
 CREATE TABLE `users` (
 `id` INT(10) NOT NULL,
 `username` VARCHAR(20) NOT NULL,
 `password` CHAR(32) NOT NULL,
 PRIMARY KEY (`id`)
)
 ")->execute();

 // Now insert some users

Chapter 7

229

 $dbAdapter->query("
 INSERT INTO `users` VALUES
 (1, 'admin', '". md5("adminpassword"). "')
 ")->execute();

 $dbAdapter->query("
 INSERT INTO `users` VALUES
 (2, 'test', '". md5("testpassword"). "')
 ")->execute();
 } catch (\Exception $e) {
 \Zend\Debug\Debug::dump($e->getMessage());
 }
 }
 });
}

We have now created an event that will be triggered when we start routing. If we look carefully
enough we can find one big mistake that will crash this code for sure. The problem of course
being the db key in the ServiceManager, as we refer to a service we have yet to create. So
let's get cracking and create that /module/Authentication/config/module.config.
php file…

<?php

return array(
 // Let's initialize the ServiceManager
 'service_manager' => array(
 'factories' => array(
 // Create a Db Adapter on initialization of the
 // ServiceManager
 'Zend\Db\Adapter\Adapter' =>
 'Zend\Db\Adapter\AdapterServiceFactory',
),

 // Let's give this Db Adapter the alias db
 'aliases' => array(
 'db' => 'Zend\Db\Adapter\Adapter',
),
),

 // We will now configure our Sqlite database, for
 // which we only need these two lines
 'db' => array(

Handling Authentication

230

 'driver' => 'Pdo_Sqlite',
 'database' => ':memory:',
),
);

That's it; our basic configuration to get the database going is done, and if we run the code now
we can be certain our database is created.

Creating the authentication service
The next thing we want to do is to create our Authentication service, the service that will
help our application do all the authentication functionality. Let's create this service in the
Authentication\Service namespace, and let's call the class Authentication (the file is
/module/Authentication/src/Authentication/Service/Authentication.php).

<?php

// Set the namespace
namespace Authentication\Service;

use Zend\ServiceManager\ServiceLocatorAwareInterface;

// We give this one an alias, because otherwise
// DbTable might confuse us in thinking that it is
// an actual db table
use Zend\Authentication\Adapter\DbTable as AuthDbTable;
use Zend\Authentication\Storage\Session;

// We want to make a service, so we implement the
// ServiceLocatorAwareInterface for that as well
class Authentication implements ServiceLocatorAwareInterface
{
 // Storage for our service locator
 private $servicelocator;

 // Get the ServiceManager
 public function getServiceLocator()
 {
 return $this->servicelocator;
 }

 // Set the ServiceManager
 public function setServiceLocator(
 \Zend\ServiceManager\ServiceLocatorInterface $serviceLocator)
 {

Chapter 7

231

 $this->servicelocator = $serviceLocator;
 }

Well that was easy; we just created our service… which does absolutely nothing at the
moment. Let's first create a method that checks if we are authenticated or not. We do this by
checking the authentication session, and see if it is empty or not. Assuming that in this case
we only have a (authentication!) session when are actually authenticated, we can safely agree
that we will be logged in;

 /**
 * Lets us know if we are authenticated or not.
 *
 * @return boolean
 */
 public function isAuthenticated()
 {
 // Check if the authentication session is empty, if
 // not we assume we are authenticated
 $session = new Session();

 // Return false if the session IS empty, and true if
 // the session ISN'T empty
 return !$session->isEmpty();
 }

We can easily just open a session as the namespace of the session will only be used for
authentication purposes.

Let's now create our authentication, which will authenticate a username and password, and
return a boolean stating that we are or aren't successful in authenticating:

 /**
 * Authenticates the user against the Authentication
 * adapter.
 *
 * @param string $username
 * @param string $password
 * @return boolean
 */
 public function authenticate($username, $password)
 {
 // Create our authentication adapter, and set our
 // DbAdapter (the one we created before) by getting

Handling Authentication

232

 // it from the ServiceManager. Also tell the adapter
 // to use table 'users', where 'username' is the
 // identity and 'password' is the credential column
 $authentication = new AuthDbTable(
 $this->getServiceLocator()->get('db'),
 'users',
 'username',
 'password'
);

 // We use md5 in here because SQLite doesn't have
 // any functionality to encrypt strings
 $result = $authentication->setIdentity($username)
 ->setCredential(md5($password))
 ->authenticate();

 // Check if we are successfully authenticated or not
 if ($result->isValid() === true) {
 // Now save the identity to the session
 $session = new Session();
 $session->write($result->getIdentity());
 }

 return $result->isValid();
 }

As we saw in the previous code snippet, we created a simple authentication method that
returns either true or false, depending on if we are authenticated or not. What it also does is
save the identity to the authentication session, so we can see in our previous method if we
were authenticated or not. We also need the identity in the session for when we want to get
the username from our logged in user, which will retrieve with the following method:

 /**
 * Gets the identity of the user, if available,
 * otherwise returns false.
 * @return array
 */
 public function getIdentity()
 {
 // Clear out the session, we are done here
 $session = new Session();

 // Check if the session is empty, if not return the
 // identity of the logged in user

Chapter 7

233

 if ($session->isEmpty() === false) {
 return $session->read();
 } else {
 return false;
 }
 }

Now that we got our identity, it is also important that we are able to logout. In our case it is as
simple as just clearing the session, because why would we make it more difficult than just that?

 /**
 * Logs the user out by clearing the session.
 */
 public function logout()
 {
 // Clear out the session, we are done here
 $session = new Session();
 $session->clear();
 }

 // This is our last method, close the bracket for the
 // class as well!
}

We have now created a simple authentication service, and the only part left now is to register
it in the service manager so that it will be instantiated when we boot up. We can do this in the
/module/Authentication/config/module.config.php file as usual, and because we
already have a service_manager configuration there, we can just plant the invokable in there:

<?php
return array(
 'service_manager' => array(
 // [The rest of the service manager configuration
 // comes here]

 // And our new invokable can be put here
 'invokables' => array(
 'AuthService' => 'Authentication\Service\Authentication',
),
),
);

And that's it for the service! All that is left now to do is create the login/logout action and
then check if we are logged in or not. Let's begin with the login/logout action so that we
are actually able to login!

Handling Authentication

234

Setting up the controller and action
Let's first change the /module/Authentication/config/module.config.php file
while we are still in there so we can access our login/logout action, which is kind of
crucial to us:

<?php
return array(
 // [The configuration that we have now resides here..]

 // And our route configuration comes here..
 'router' => array(
 'routes' => array(
 'authentication' => array(
 'type' => 'Literal',
 'options' => array(
 'route' => '/authentication',
 'defaults' => array(
 '__NAMESPACE__' =>
 'Authentication\Controller',
 'controller' => 'Index',
 'action' => 'login',
),
),
 'may_terminate' => true,
 'child_routes' => array(
 'default' => array(
 'type' => 'Segment',
 'options' => array(
 'route' => '[/:action]',
 'constraints' => array(
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
),
 'defaults' => array(),
),
),
),
),
),
),

// Make our controller invokable
'controllers' => array(

Chapter 7

235

 'invokables' => array(
 'Authentication\Controller\Index' =>
 'Authentication\Controller\IndexController'
),
),

 // Make sure our template path is set correctly
 'view_manager' => array(
 'template_path_stack' => array(
 __DIR__ . '/../view',
),
),

);

This basic route just makes /authentication redirect to our loginAction and because
of the segment route we can simply do /authentication/logout to redirect to our
logoutAction; if more explanation is required for the routes, we can review Chapter 1, Zend
Framework 2 Basics, and look in the Handling routines recipe.

Let's continue creating our /module/Authentication/src/Authentication/
Controller/IndexController in the Authentication\Controller namespace:

<?php

namespace Authentication\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
}

We have simply declared our controller; now let's add the logoutAction (we will begin with
that, as it is incredibly simple) and the loginAction:

public function logoutAction()
{
 // Log out the user
 $this->getServiceLocator()
 ->get('AuthService')
 ->logout();

Handling Authentication

236

 // Redirect the user back to the login screen
 $this->redirect()
 ->toRoute('authentication');
}

As we can see this is almost too simple, but we won't complain if it works. Now let us
create our loginAction, which basically looks if there is a post and if there is tries to
login, otherwise shows a login form. Upon successful login we will be redirected to the /
application route, and if not successful we will just display an error message:

public function loginAction()
{
 // See if we are trying to authenticate
 if ($this->params()->fromPost('username') !== null) {
 // Try to authenticate with our post variables from
 // the form we just send
 $done = $this->getServiceLocator()
 ->get('AuthService')
 ->authenticate(
 $this->params()->fromPost('username'),
 $this->params()->fromPost('password')
);

 if ($done === true) {
 $this->redirect()
 ->toRoute('application');
 } else {
 \Zend\Debug\Debug::dump(
 "Username/password unknown!"
);
 }
 }

 // On an unsuccessful attempt or just a get request
 // show the form.
 return new ViewModel();
}

As we can see the loginAction is merely checking if we have anything posted, and if we do,
it lets the AuthService handle it. This way is not perfect as it doesn't check for malicious
parameters or anything, but it does show how clean a controller is supposed to be with no
login in there except the bare minimum parsing of variables.

Chapter 7

237

The logoutAction doesn't contain a view script, as that action only redirects the user and
never has a response of its own. The loginAction, however, does have view script, as it
needs to show a form. Let's quickly build a view script for the loginAction now (the file is
/module/Authentication/view/authentication/index/login.phtml):

<form action="/authentication" method="post">
 <label for="username">Username:</label>
 <input type="text" name="username" />

 <label for="password">Password:</label>
 <input type="password" name="password" />

 <button type="submit">Login</button>
</form>

A simple form to login and in my opinion doesn't require any explanation.

The last thing that we want to do know is to make sure nobody can access anything in the
application other than the authentication if he/she is not logged in. We can do that by a new
event in the Module (the file is /module/Authentication/Module.php) class of the
Authentication module, which will check if we are logged in, and if not redirects us before any
output is done to the screen:

public function onBootstrap(MvcEvent $e)
{
 // Get the event manager from the event
 $eventManager = $e->getApplication()->getEventManager();

 // Attach the module route listeners
 $moduleRouteListener = new ModuleRouteListener();
 $moduleRouteListener->attach($eventManager);

 // Do this event when dispatch is triggered, on the
 // highest priority (1)
 $eventManager->attach(
 MvcEvent::EVENT_DISPATCH,
 function (MvcEvent $event) {
 // We don't have to redirect if we are in a
 // 'public' area, so don't even try
 if ($event->getRouteMatch()->getMatchedRouteName()
 === 'authentication') return;

 // See if we are authenticated, if not lets
 // redirect to our login page

Handling Authentication

238

 if ($event->getApplication()->getServiceManager()
 ->get('AuthService')->isAuthenticated() ===
 false)
 {
 // Get the response from the event
 $response = $event->getResponse();

 // Clear current headers and add our Location
 // redirection
 $response->getHeaders()
 ->clearHeaders()
 ->addHeaderLine(
 'Location', '/authentication'
);

 // Set the status code to redirect
 $response->setStatusCode(302)
 ->sendHeaders();

 // Don't forget to exit the application, as we
 // don't want anything to overrule at this point
 exit;
 }
 },

 // Give this event priority 1
 1);
}

That's the event that we need, what happens is that we will simply be redirected to the login
page whenever we try to reach a route which is not our authentication route.

How it works…
What we are going to do is create a simple database authentication that works through
an in-memory SQLite database. This means that the database isn't stored and that all the
tables and records need building up every time we request the page. Obviously this is highly
inconvenient to use in a production environment, it is, however, excellent to show off how it
works and is really handy to get something going quickly.

Chapter 7

239

Assuming we are working on a default Zend Skeleton application, let's create a new module
Authentication. This new module will contain the database connection, the authentication
itself and the login and logout actions. When we created the directory for the new module,
we should also be wary to add the new module in the application.config.php file,
otherwise we might end up having trouble finding out why it doesn't do anything (oh yes, I am
talking from experience).

First of all we built our in-memory database in the Module.php for the authentication. We
then created a table called users, with a unique ID, username, and password. The ID consist
of an integer, the username a variable character of 20 positions, and the password will be a
character of 32, as that is the size of an MD5 encrypted string.

Because we set up a user table, and connected that table to the authentication adapter, we
were able to authenticate the username and password simply. As an extra measure we made
sure the user can't go to any other page than the login page when he isn't logged in, which we
did by using an event that happens before the output was send to the user.

Writing a custom Authentication method
Sometimes the standard methods just don't cut it, and that is okay. That is why this recipe
gives a clear insight into how to create our own authentication method.

Getting ready
For this recipe it would be preferred if there is a web environment that has SSL enabled.
Configuring such an environment is outside the scope but it would be beneficial for the
execution of this recipe.

An example of an environment like this would be an Apache 2 web server with mod_ssl
correctly configured. To enable the certificate verification on Apache2, one needs to place the
following code in their public/.htaccess file:

Only execute the following code when mod_ssl is
enabled
<IfModule mod_ssl.c>
 # This means the client can present their
 # certificate, but it doesn't need to be verifiable
 # by the server
 SSLVerifyClient optional_no_ca

 # This depth means the certificate can only be self-
 # signed otherwise it will be denied
 SSLVerifyDepth 0

Handling Authentication

240

 # We want to export the standard variables but also
 # the certificate data as well to use in PHP
 SSLOptions +StdEnvVars +ExportCertData
</IfModule>

Another thing that is important to mention is that PHP should be configured (and compiled)
with the --with-openssl parameter, otherwise the code to parse the certificate will not
exist and thus, we would not be able to use the code. More information on how to do this can
be found at http://www.php.net/manual/en/book.openssl.php.

How to do it…
Authentication by certification might be rare, but it is sometimes used when the level of
security is a little bit higher than the average web application. In this recipe we will show an
example of a certificate-based authentication.

Creating our adapter
Let's get started by creating our new adapter, which will be an implementation of Zend\
Authentication\Adapter\AdapterInterface as we want to integrate as much as
possible with the current authentication adapters.

As we already have an Authentication module from the previous recipe, we will just take that
as the namespace in which we are going to work; just as easy as described earlier.

First let's create the adapter (the file is /module/Authentication/src/
Authentication/Adapter/Certificate.php).

The adapter outline
We'll first start with our basic class outline:

// Set the right namespace
namespace Authentication\Adapter;

// We will use this to implement the right methods
use Zend\Authentication\Adapter\AdapterInterface;

// Out class name, not to forget the implementation
class Certificate implements AdapterInterface
{
 // Currently authenticate is the only method required
 // for the AdapterInterface; lucky us!
 public function authenticate() {}
}

Chapter 7

241

Creating a getter and setter for any error messages
Normally we would come up with error messages as we go in development. But as this
code is already made, we already have the error messages defined. There is no good way to
describe these getters and setters, so we will just show them in the following piece of code
so that it is at least clear what is going on (the file is /module/Authentication/src/
Authentication/Adapter/Certificate.php):

// After coding the adapter we found the following
// errors that need to be relayed to the user/developer

// Invalid certificate, there is no certificate set
const AUTH_FAIL_INV_CERT = 0;

// Insecure connection, no HTTPS
const AUTH_FAIL_NO_HTTPS = 1;

// Couldn't parse the certificate, invalid certificate
const AUTH_FAIL_PARSE_CERT = 2;

// Certificate is expired
const AUTH_FAIL_EXP_CERT = 3;

// Not all the required fields we need are in the
// certificate, thus rendering it invalid
const AUTH_FAIL_NOT_ALL_FIELDS = 4;

// No Database adapter was provided
const AUTH_FAIL_NO_DB_ADAPTER = 5;

// An error occurred in the SQL
const AUTH_FAIL_SQL_ERR = 6;

// The user requested couldn't be found
const AUTH_FAIL_NO_USER = 7;

// By default we have no error
private $error = -1;

Handling Authentication

242

These are the error messages we thought of and will be used somewhere in the code later on.
Now let's create the setter for these error messages so that the getter can easily retrieve them
later on:

/**
 * Sets an error.
 *
 * @param int $error
 */
private function setError($error)
{
 $this->error = $error;
}

Well that was exciting. Let's create the getter now, which is slightly more elaborate, but only
just a little:

/**
 * Gets the latest error message back.
 *
 * @return string
 */
public function getErrorMessage()
{
 switch ($this->error) {
 case self::AUTH_FAIL_SQL_ERR:
 $retval = "SQL error occurred while checking "
 . "for the user.";
 break;
 case self::AUTH_FAIL_INV_CERT:
 $retval = "Certificate provided is invalid.";
 break;
 case self::AUTH_FAIL_PARSE_CERT:
 $retval = "Certificate provided couldn't be "
 . "parsed.";
 break;
 case self::AUTH_FAIL_EXP_CERT:
 $retval = "Certificate has expired.";
 break;
 case self::AUTH_FAIL_NO_DB_ADAPTER:
 $retval = "No Database adapter set.";
 break;
 case self::AUTH_FAIL_NOT_ALL_FIELDS:

Chapter 7

243

 $retval = "Not all the fields required are "
 . "available.";
 break;
 case self::AUTH_FAIL_NO_USER:
 $retval = "The user could not be found.";
 break;
 case self::AUTH_FAIL_NO_HTTPS:
 $retval = "Connection is not secure.";
 break;
 case -1:
 $retval = "No error occurred.";
 break;
 default:
 $retval = "Unknown error occurred.";
 break;
 }

 // Reset the error
 $this->error = -1;

 // Return the string with the error message
 return $retval;
}

Making sure we have a secure connection
Although certificates are only sent when we do have an SSL connection, an extra check isn't
that bad as we want to be certain that the user is using a secure connection.

/**
 * Returns true if the current connection is through
 * HTTPS.
 *
 * @return boolean
 */
private function isHTTPS()
{
 return isset($_SERVER['HTTPS']) ? true : false;
}

Wow, that must have been the best method ever! All joking aside, it is fairly simple as the
HTTPS key is given in the $_SERVER variable, whenever a secure connection through HTTPS
is set up. When the key is present, we can assume that there is a secure connection.

Handling Authentication

244

Checking if the certificate is an actual certificate
Next up is to check if the certificate is valid or not, but before we can do that we should also
make sure there is a way to set the certificate as well:

// This property will store our certificate array
private $certificate;

/**
 * Sets (and parses) a certificate, returns false if the
 * certificate couldn't be parsed.
 *
 * @param string $certificateContent
 * @return boolean
 */
public function setCertificate($certificateContent)
{
 // This function is part of the OpenSSL extension in
 // PHP. This means that if OpenSSL is not installed
 // into PHP this function will not exist and thus give
 // a fatal error. This function deciphers the
 // information received in the certificate to a great
 // array with variables.
 $certificate = openssl_x509_parse(
 $certificateContent
);

 // If the certificate can't be parsed (i.e. it is
 // invalid) the function above will return false
 if ($certificate !== false) {
 // We can be sure the certificate is valid at least
 // in raw state now
 $this->certificate = $certificate;

 // Done here
 return true;
 } else {
 // Use the failure to parse certificate here to make
 // sure the developer/user will know what is going
 // on
 $this->setError(self::AUTH_FAIL_PARSE_CERT);
 return false;
 }
}

Chapter 7

245

This method did a basic check to see if we actually got a certificate that is at least valid, even
if it is expired or doesn't have any of our fields.

Checking if we have all the certificate fields
As we want to check the e-mail address in our certificate, we need to make sure we actually
have an e-mail address in there as well. And while we are at it, we will also check for a couple
of other fields that are not relevant to our authentication, but would be nice to have anyway:

/**
 * Checks if all our fields (issuer, issuer[O],
 * issuer[CN], issuer[emailAddress], serialNumber) are
 * in the certificate.
 *
 * @return boolean
 */
private function checkRequiredFields()
{
 // First get our certificate
 $certificate = $this->getCertificate();

 // Check if our certificate at least is valid
 if ($certificate !== false) {
 // We want to check if the following fields (and
 // subfields) are in the certificate
 $required = array(
 'issuer' => array('O', 'CN', 'emailAddress'),
 'serialNumber' => null
);

 // Loop through the primary fields
 foreach ($required as $field=>$value) {
 if (in_array($field, $certificate) === true) {
 // The primary field is in there, check if
 // there are any secondary fields we need to
 // check
 if (is_array($value && is_array($certificate[$field) {
 // Loop through the secondary fields
 foreach ($value as $key) {
 // Now check of our values are in there
 if (in_array(
 $key,
 array_keys(

Handling Authentication

246

 $certificate[$field])) === false)
 {
 return false;
 }
 }
 }
 } else {
 return false;
 }
 }

 // If we reach this point, we are always ok to go
 $retval = true;

 unset($required);
 }

 unset($certificate);

 return isset($retval) ? $retval : false;
}

We check if the fields are in there, and if the field isn't in there we will return false.

Checking if the certificate isn't expired yet
Now we want to know if the certificate is still valid in terms of time, as certificates usually
expire after a set time (this can be months, weeks, years, anything really):

/**
 * Checks if the current certificate is valid or not.
 *
 * @return boolean
 */
private function isCertificateValid()
{
 // Get our certificate again
 $certificate = $this->getCertificate();

 // Again make sure it is not false (highly unlikely
 // here, but hey, never be sure
 if ($certificate !== false) {
 // Check if the valid from and to fields are set,
 // because if they are not, we won't be able to
 // check if the certificate is valid or not

Chapter 7

247

 if (isset($certificate['validFrom_time_t']) === true
 && isset($certificate['validTo_time_t']) === true)
 {
 // Check if the from time is smaller than our
 // current time and the to time is bigger than the
 // current time
 if (time() >= $certificate['validFrom_time_t']
 && time() < $certificate['validTo_time_t'])
 {
 $retval = true;
 }
 }
 }

 unset($certificate);

 return isset($retval) ? $retval : false;
}

If this method returns true, we can be sure that we have a certificate that isn't expired.

Creating a getter and setter for the Database adapter
Now we need a simple getter and setter for our database adapter, before we can actually do
the authentication:

/**
 * Our Database adapter property.
 *
 * @var \Zend\Db\Adapter\Adapter
 */
private $dbAdapter;

/**
 * Sets the Db adapter.
 *
 * @param \Zend\Db\Adapter\Adapter $db
 */
public function setDbAdapter(\Zend\Db\Adapter\Adapter $db)
{
 $this->dbAdapter = $db;
}

/**

Handling Authentication

248

 * Returns the Db adapter.
 *
 * @return \Zend\Db\Adapter\Adapter
 */
private function getDbAdapter()
{
 return $this->dbAdapter;
}

Of course this was again very simple, as it requires no logic at all. Now that we have set our
database adapter, we can actually begin authenticating the user.

Creating the authenticate method
This method will implement all our previously defined methods and if they are all successful, it
will authenticate through the database and see if our user is there (or not). But first, we need
another method to get fields from our certificate, which is a neater way, and a method to get
our identity once authenticated:

// We will store our identity in here, once
// authenticated
private $identity;

/**
 * Retrieves a variable from the certificate, returns
 * null if not found.
 *
 * @param string $variable
 * @return string
 */
private function getCertificateVariable($variable)
{
 if (is_array($this->certificate) === true &&
 isset($this->certificate[$variable]) === true)
 {
 return $this->certificate[$variable];
 } else if (is_array($this->certificate) === true &&
 isset($this->certificate['issuer'][$variable)
 {
 return $this->certificate['issuer'][$variable];
 } else {
 return null;
 }
}

Chapter 7

249

/**
 * Retrieves the identity of the user.
 *
 * @return array
 */
public function getIdentity()
{
 return $this->identity;
}

And now for the supreme moment, after a long wait, finally the authenticate method!

/**
 * Tries to authenticate the user through the
 * certificate.
 *
 * @return boolean
 */
public function authenticate()
{
 $continue = true;

 if ($this->getDbAdapter() !== null) {
 // Check if we are on a secure connection
 if ($this->isHTTPS() === true) {
 // Check if the certificate is valid
 if ($this->getCertificate() !== false) {
 // Check if the fields we require are available
 if ($this->checkRequiredFields() === true) {
 // Check if the certificate isn't expired
 if ($this->isCertificateValid() === false) {
 // Certificate is expired!
 $this->setError(self::AUTH_FAIL_EXP_CERT);
 $continue = false;
 }
 } else {
 // Not all the fields are available
 $this->setError(
 self::AUTH_FAIL_NOT_ALL_FIELDS
);
 $continue = false;
 }
 } else {

Handling Authentication

250

 // This is an invalid certificate
 $this->setError(self::AUTH_FAIL_INV_CERT);
 $continue = false;
 }
 } else {
 // Oh, oh, no secure connection
 $this->setError(self::AUTH_FAIL_NO_HTTPS);
 $continue = false;
 }
 } else {
 // We don't have a db adapter
 $this->setError(self::AUTH_FAIL_NO_DB_ADAPTER);
 $continue = false;
 }

 if ($continue === true) {
 // Now we are going to check with the database if
 // the email address is in there
 $statement = $this->getDbAdapter()->createStatement(
 "SELECT * FROM users WHERE email = :email"
);

 try {
 // Input the email address in the statement and
 // execute it on the database adapter
 $result = $statement->execute(array(
 'email' => $this->getCertificateVariable(
 'emailAddress'
)
));

 // Check if we have one result
 if ($result->count() === 1) {
 // One result found, put it in the identity kit
 $this->identity = $result->current();

 // Because we are super-cool add some of our
 // certificate variables as well
 $this->identity['serialNumber'] =
 $this->getCertificateVariable('serialNumber');

 $this->identity['organization'] =
 $this->getCertificateVariable('O');

Chapter 7

251

 $this->identity['commonName'] =
 $this->getCertificateVariable('CN');

 // We successfully found our user
 $retval = true;
 } else {
 $this->setError(self::AUTH_FAIL_NO_USER);
 }
 } catch (\Exception $e) {
 $this->setError(self::AUTH_FAIL_SQL_ERR);
 error_log($e->getMessage());
 }
 }

 // Return the retval is we have one, otherwise just
 // false
 return isset($retval) ? $retval : false;
}

And that's it! The authenticate method will either return true on successful authentication
or false, and will set an error at the same time so that we can see what exactly went wrong!

How it works…
Now that we have created our own authentication adapter, it is time to sit back and
review what we just did.

What are we trying to achieve
On some websites the access is prohibited on such a level that usernames and passwords
are a thing of the past. In environments where we want to check every customer that comes
in without them needing to type the username and password themselves, we might use
certificate authentication.

Certificate authentication works because the client will send a certificate with every server
request they do. This certificate then shows the server who the user is, who is trying to browse
their pages. Usually one or more fields in the certificate are used to identify the user. In our
example we will use the e-mail address, which is a common field to be used for identification.

What we will do first off, is create an adapter that will get the certificate either from manual
input (easier testing that way) or the browser, whichever works really. We will then check if
the e-mail address exists in our database, and if so we consider the user logged in. Obviously
our server will not be configured so strictly that no certificate will be allowed, as in this stage
basically every certificate with a right e-mail address gets access. If we want to know how we
can prevent users from using any certificate, we can take a look at the There's more… section,
where we will look in the direction of securing your server a bit further, and restricting the
certificate use.

Handling Authentication

252

From an application point of view, however, we just presume that all the certificates that we
get, are valid.

The AdapterInterface only requires us to have an authenticate method. But before we
can go ahead we want to make sure that the following items are checked:

 f We want to make sure the user is coming through a secure connection (HTTPS)

 f We also want to make sure the certificate is valid (obviously)

 f While we are checking, we'll make sure our certificate has the fields we require
for authentication

 f And we need to know if the certificate is still valid and not expired

 f Last but not least, we also need to make sure that we have a database adapter to
check the values against

About certificates
In general the certificates are validated on the server before they reach the application.
The validation usually happens against some sort of CA, or Certificate Authority, which is
basically an entity on the server site that issues certificates, and therefore can vouch for any
certificates carrying its signature. Of course in real life this is way more complicated than just
described, but the idea is the same. So when a certain level of checking is being done on the
server to verify the identity of the certificate, and if it is valid against the CA provided by the
server, it will then parse it through to our application.

By the time it reaches our application, we usually assume that the user got the certificate from
us, and therefore should be allowed in, as he knew the password at the door. But although he
knew the password, that doesn't mean we know who it is! That is why a second authentication
(the one we just made) verifies if a user actually belongs in our application or not, that is, if it
is a valid certificate or not!

There's more…
Securing a server is the most important part of this kind of validation, as we really (really,
really) need to be sure that the user carrying the certificate is actually valid. Usually building
complex servers like this are done with server engineers and not the task of the developer,
but if it is then it would be a great idea to read up on the subject first.

Personally, I am a fan of Apache and would recommend anyone to read up on the mod_ssl
configuration, as it is very thorough on the subject of securing a server and it has a lot of
resources to find out how to configure it just right.

But in the end configuring SSL without the proper know-how is a very tedious and error-prone
process and it is likely that properly configuring a server is a bit over the head of a developer.
In that case getting a server engineer to do it for us is the best way, and the laziest, which lets
us concentrate on our work!

8
Optimizing Performance

In this chapter we will cover:

 f Caching, and when to cache

 f Understanding and using storage plugins

 f Setting up a caching system

Introduction
In a society where we want our data now, it is important to make sure that our websites and
applications also deliver it as soon as possible. When we rule out any obvious cause of slow
downs, such as network infrastructure or server configuration, we can start looking at caching.
This chapter is all about what to cache and how to cache, making our lives a lot faster.

Caching and when to Cache
Caching, everyone knows about it, everybody talks about it, but what is it? In its purest
essence caching is all about serving your application as quickly as possible to the user. That's
what we will talk in this recipe when and how to cache.

Getting ready
We will be working with the Zend Framework skeleton application again, so it would be wise to
have that set up.

Optimizing Performance

254

How to do it…
When developing an application, caching might not be something that immediately comes up
in the design, and most probably this will come up when the application goes live and after a
while you find your application responding slower than when you first put it live.

That is the perfect (well not perfect, as that would be during the design phase, obviously) time
to consider implementing a cache.

When we talk about caching, a common misunderstanding is that we are solely talking about
caching an HTML output. Nothing could be further from the truth, as we have several powerful
methods of caching in PHP.

The following list is a collection of some methods available to us to cache different sections of
our application:

 f Caching the ZF2 configuration

 f Caching the rendered output

 f Caching the class map

We will now go in further detail of the methods named in the preceding list.

Caching configuration
Probably the most static bit of code in your application will be the configuration. Oh but how
we need configuration to properly load our application, but in the meantime we might hate it
for all the merging it needs to do before we end up with the final version of the configuration.

But fear not, as we can simply cache the merged configuration so that your application doesn't
have to parse through the lot anymore! This is actually such a simple process, that it is almost
hilarious to give the example for it (/config/application.config.php):

<?php
return array(
 // Look for this ke y in the configuration array.
 'module_listener_options' => array(

 // Enable the config cache.
 'config_cache_enabled' => true,

 // If we want to give the cache a special filename
 // we can just type a name here.
 'config_cache_key' => 'configuration'

Chapter 8

255

 // The directory where we want to write the cache
 // to. Don't forget that we need read/write access
 // to this directory by the process running the app, which in
 // most cases is the web server process!
 'cache_dir' => 'data/cache/',
),
);

And that's it. Nothing fancy is needed to make this work as everything that is required to make
this work is already built in Zend Framework 2.

This is a very effective way to start caching everything that is static, and although it probably
doesn't give the application an enormous speed boost (unless we have literally dozens of
modules) it will be a method that shouldn't be forgotten.

Caching output
Caching output is useful when we have a lot of static files that normally don't or rarely change.
When we talk about content that doesn't change a lot we can think of blog posts or news
items as those usually get generated once and put live indefinitely. There are obviously more
output types that are useful to cache, but we will just give an example to show how easy it is
to cache output that we deem static.

First we need to create the configuration in our module to make sure the caching is enabled in
our ServiceManager (/module/SomeModule/config/module.config.php):

<?php
return array(
 // We need to define the ServiceManager
 'service_manager' => array(
 // We will call it cache-service
 'cache-service' => function () {
 // Return a new cache adapter
 return \Zend\Cache\StorageFactory::factory(array(
 'adapter' => array(
 // We want to use the cache that is being
 // stored on the filesystem
 'name' => 'filesystem',
 'options' => array(
 'cache_dir' => 'data/cache/',

 // This is the amount in minutes the cache is valid
 'ttl' => 100
),

Optimizing Performance

256

),
));
 },
 },
);

Now that we created the configuration, let's continue to control the caching in our /module/
SomeModule/Module.php file's onBootstrap method:

<?php
// Don't forget the namespace (obviously)
namespace SomeModule;

// We need this event for the onBootstrap event
use Zend\Mvc\MvcEvent;

// Begin our module class
class Module
{
 // This is going to be run at bootstrap, and will thus
 // create our events that will create our cached
 // output
 public function onBootstrap(MvcEvent $e)
 {
 // We will need a list of routes that we deem
 // cacheable
 $routes = array('blog/pages', 'blog/archives');

 $eventManager = $e->getApplication()->getEventManager();
 $serviceManager = $e->getApplication()->getServiceManager();

 $eventManager->attach(
 MvcEvent::EVENT_ROUTE,
 function($e) use ($serviceManager)
 {
 $route = $e->getRouteMatch()
 ->getMatchedRouteName();

 // Check if this is a page that we want to cache,
 // if not then just exit this method
 if (!in_array($route, $routes)) {
 return;
 }

Chapter 8

257

 // Get the cache-service from the configuration
 $cache = $serviceManager->get('cache-service');

 // Define a unique key that we use for the route
 $key = 'route-'. $route;

 // Check if our cache has the key with our route
 // content
 if ($cache->hasItem($key)) {
 // Handle response
 $response = $e->getResponse();

 // Set the content to our cached content
 $response->setContent($cache->getItem($key));

 // Return the response, because when we return
 // the response from a route event, the
 // application will output that response.
 return $response;
 }
 },
 // Make this priority super low to make sure this
 // route has already happened
 -1000);

 // Now we create an trigger for the render event
 // which will come after the route event. This means
 // that we didn't have a valid cache, and we will
 // now use this opportunity to create a cache of our
 // rendered content.
 $eventManager->attach(
 MvcEvent::EVENT_RENDER,
 function($e) use ($serviceManager, $routes)
 {
 // Get the current route name
 $route = $e->getRouteMatch()
 ->getMatchedRouteName();

 // Check if this is a page that we want to cache,
 // if not then just exit this method
 if (!in_array($route, $routes))
 return;

Optimizing Performance

258

 // Apparently we want to cache the content, so
 // here we go!
 $response = $e->getResponse();

 // Get the cache service from the ServiceManager
 $cache = $serviceManager->get('cache-service');

 // Build up our unique cache key
 $key = 'route-'. $route;

 // And now set the cache item
 $cache->setItem($key, $response->getContent());
 },
 // Again the lowest priority to make sure rendering
 // already has happened.
 -1000);
 }
}

Now every time we go to our application the route event will check if we might have a cache of
the specific route, and if we do, it will return the cache (if not expired, of course). If the route
hasn't been cached yet it will do so if necessary once the rendered event is triggered.

Credit for this example goes to Jurian Sluiman (jurian-sluiman) who is a user on the
stackoverflow.com website and a significant contributor to Zend Framework 2.

Caching the class map
The class map file is one of those files that are just big, and basically static after the
application has done merging it. That it is static and is obviously a great opportunity for us
so we can cache it and take a bit of the load from the applications merging away. As for the
first method of our caching, this one also only requires us to add a couple of properties in the
configuration file.

Let's get this example started (/config/application.config.php):

<?php
return array(
 // Look for this key in the configuration array.
 'module_listener_options' => array(

 // Enable the module map cache.
 'module_map_cache_enabled' => true,

Chapter 8

259

 // If we want to give the cache a special filename
 // we can just type a name here.
 'module_map_cache_key' => 'classmap

 // The directory where we want to write the cache
 // to. Don't forget that we need read/write access
 // to this directory!
 'cache_dir' => 'data/cache/',
),
);

Again, although this might not be a significant improvement on the overall performance,
we can be sure that every little bit helps, and it will certainly help lighten the load for the
autoloader process.

How it works…
All that caching does is speeding up the application by keeping everything ready for when
it is needed within a certain time (the ttl or also called time-to-live) period. It speeds up
the application because it gives the application the data it requires without the application
needing to make the connection to the database, or recompiling templates for example.

Caching is usually done on the filesystem, as it is considered to be a very fast option instead
of going through a database for example. However, technically the fastest option for caching
would be in-memory (this is because the memory or RAM is the closest data storage for the
CPU and therefore the fastest). Although memory caching is a great method of caching, it can
also become the worst kind if there is just too much to cache.

It is therefore wise to think about different caching methods (filesystem cache, for example,
only with blog posts and application configuration, for example, in memory cache) before just
generally using a method.

Understanding and using storage plugins
Instead of customizing everything, Zend Framework 2 provides an excellent interface that can
manipulate the storing, removing, and retrieving of cache data by using storage plugins.

How to do it…
Storage plugins are used to compliment the storage adapters whenever a developer feels
that they need more functionality added to the adapter without necessarily making a custom
adapter. Therefore, plugins are the handiest tool to use when we want to modify the way our
storage adapters handle the cache.

Optimizing Performance

260

There are a couple of storage plugins readily available in Zend Framework 2, so let's get
cracking on and explain them a bit further.

Using the ClearExpiredByFactor plugin
The ClearExpiredByFactor plugin clears the expired cache items once in a while, which
are determined by a set factor. The higher the factor integer is, the less likely it will be that the
cache will clear its expired items. But don't forget; this being a (pseudo) random process and all
chances could be that it will be called every single time. We understand that this is incredibly
counterintuitive, so maybe this code snippet taken from the plugin will clear things up.

if ($factor && mt_rand(1, $factor) == 1) {
 $storage->clearExpired();
}

We should also note that this plugin is only fired when there is cache to be written, it does not
fire when cache is read.

PluginOptions that can be set is setClearingFactor, which sets the clearing factor.

This plugin requires the storage adapter to be an instance of
ClearExpiredInterface, otherwise it will not do anything (and we
would never know as it doesn't log this error). Only the Filesystem and
Memory Storage adapters support this interface.

Using the ExceptionHandler plugin
The ExceptionHandler plugin catches any exceptions that are thrown when getting/setting
the cache and forwards it to a developer defined callback.

PluginOptions that can be set are:

 f setExceptionCallback: This is a callback function to call when an exception
occurs

 f setThrowExceptions: This is a Boolean (default true) value that tells the plugin
to re-throw exceptions that it caught

Using the IgnoreUserAbort plugin
The IgnoreUserAbort plugin makes sure that the script isn't aborted before the writing has
finished to the cache. This way we can be sure we won't get any corrupted data in our cache.

PluginOptions that can be set is setExitOnAbort, which is a Boolean (default true)
value that tells us if we can abort the script whenever we want, or if we need to wait until we
are done writing.

Chapter 8

261

Using the OptimizeByFactor plugin
You wanted to clear by factor? I am sure you also want to optimize by factor then! This
plugin (pseudo) randomly optimizes the cache. The factor determines the chance it has
of actually optimizing, the lower the number (between 1 and a high number) the greater
chance, the higher the number the lower the chance. We understand that this is incredibly
counterintuitive, so maybe this code snippet taken from the plugin will clear things up:

if ($factor && mt_rand(1, $factor) == 1) {
 $storage->clearExpired();
}

We should also note that this plugin is only fired when there is cache to be removed, it does
not fire when the cache is read or written.

PluginOptions that can be set is setOptimizingFactor, which sets the optimizing factor.

This plugin only works on storage adapters with an instance of
OptimizableInterface. If this is not available it will not throw an
error, so we will never know. The adapters currently supporting this
interface are Dba and Filesystem.

Using the Serializer plugin
The Serializer plugin will serialize and unserialize the data when setting and getting it
from the cache.

PluginOptions that can be set:

 f setSerializer: This sets the serializer we want to use, it needs to be an class that
implements the Zend\Serializer\Adapter\AdapterInterface class

 f setSerializerOptions: If a string is given at the setSerializer option (the full
class name as a string) then the instantiation options need to be set in this option

Using any plugin
Fortunately plugins are easy to use, and all we have to do is add them to the storage adapter
to make it work.

We know that there are several ways of instantiating plugins, but we will just display one
method to show off how it basically works:

<?php

// Use the following libraries for our example
use Zend\Cache\Storage\Plugin\Serializer;

Optimizing Performance

262

use Zend\Cache\Storage\Adapter\FileSystem;

// Initialize our Serializer plugin
$plugin = new Serializer();

// Initialize our FileSystem adapter
$adapter = new FileSystem();

// Now bind the two together
$adapter->addPlugin($plugin);

That's all that needs configuring to make it all work together nicely. In a MVC application
(which we probably will use Zend Framework 2 for) plugin can be on very different locations.
Normally though we want to configure this in the configuration or in the bootstrap event
if we will use it constantly throughout the application, as that will save time compared to
instantiating it more than once.

How it works…
Plugins are attached to storage adapters and work because they attach themselves to events
of the storage adapters. When these events get triggered, the functionality gets triggered as
well. It is really as simple as that, and there is no real further explanation needed for this.

Setting up a caching system
A good example on how to do it is always the best way to learn a new technique quickly. That is
why we will show you how to implement a caching system on different parts of our application.

Getting ready
In this recipe we will show off a simple system that makes use of caching. We will also
show off some benchmarks so that we can clearly see the differences between a system
without caching and a system with caching. The code for this project can also be found with
the book, which contain a couple of sample classes so that we can measure the performance
a bit better. We will not discuss any of the sample classes (which all can be found in the
/module/Application/src/Application directory), but we will refer to them in some
of the examples.

How to do it…
Setting up a simple caching system is easy enough, but the question most of the time is,
where to begin.

Chapter 8

263

Benchmarking our application before cache
For the benchmark we will use an application called ab, which is short for ApacheBench. This
is a tool which comes standard with the Apache web server on both the Microsoft Windows as
the Linux version; for our recipe we will be using the Linux version of the benchmarking tool,
don't worry though as both versions do exactly the same.

For our benchmark, we will use no caching at all and we will use the following code in
Application\Controller\IndexController (/module/Application/src/
Application/Controller/IndexController.php) to generate our ridiculously
long output:

<?php

// Don't forget to set our namespace
namespace Application\Controller;

// Use the following classes
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

// Define our class name and extend
class IndexController extends AbstractActionController
{
 // We will just use the index for this
 public function indexAction()
 {
 // Initialize our LongOutput class
 $output = new \Application\Model\LongOutput();

 // echo our stupidly long output
 echo '<!-- '. $output->run(1500). ' -->';

 // Just return a view model, it doesn't affect us
 return new ViewModel();
 }
}

This action will output a very long string, which is overly complicated, but we don't really care
about that as we just want to measure how long it takes to create such a string. We can now
commence with the first benchmark.

The following command will be used to do the benchmarking:

$ ab -c 4 -n 10 http://localhost/

Optimizing Performance

264

The command stands for a concurrency of four (-c 4) and we want to run the test ten times
(-n 10) on the localhost as our website. This means that a total of 40 times our page will
be visited, which will give us quite a clear view on the average in response times.

The following is a review of the most important result of the benchmark. Obviously the rest of
the result is also somewhat interesting, but we are just interested in the response time at the
moment.

Time taken for tests: 18.111 seconds

We will use the 18.111 seconds as the base to compare all the other results with.

Implementing configuration/class map cache
First we are going to implement the configuration cache as that is the basis of all caching (at
least I like to think so).

We can do that by adding the following configuration to the /config/application.
config.php file:

<?php
// Lets add our options to the configuration array,
// please be aware that we don't show any other options
// here that could very well be in the configuration
// already.
return array(
 // We should add our options inside this array key
 'module_listener_options' => array(
 // Enable the config cache
 'config_cache_enabled' => true,

 // Give the config cache a file name like module-
 // config-cache.config.php
 'config_cache_key' => 'config',

 // Enable the class map caching
 'module_map_cache_enabled' => true,

 // Give the class map cache a file name like module-
 // classmap-cache.classmap.php
 'module_map_cache_key' => 'classmap',

 // Use our data/cache as the cache directory
 // (remember this directory need to be writeable for
 // the web server).
 'cache_dir' => 'data/cache',

Chapter 8

265

 // We don't want to check the module dependencies as
 // that is the job of the developer, it just takes
 // time to do this and is pretty much useless.
 'check_dependencies' => false,
),
);

We now enabled the configuration/class map caching, which should get us a very (very) small
increase in response time. Naturally, this will be a bigger difference when we have a larger
application with more modules.

Let's do our benchmark again to see what the difference is:

Time taken for tests: 15.428 seconds

As we can see our result has been significantly different, a staggering 14.2 percent faster
actually. We should not forget, however, that our application is incredibly small and this
percentage may actually be a lot smaller if our application grows larger in the future. Still, this
is a clear sign that caching our configuration and class mapping is a good practice.

A little bug in the configuration caching system we should wary about is that
we cannot use closures (also called anonymous functions). If we do we get a
PHP fatal error saying something like the following:

Call to undefined method Closure::__set_state() in
your_configuration_cache.php on line XX

Implementing the class caching
Because we have this incredibly long output, it is interesting to use the ClassCache adapter
to cache the output of the single method that generates this output. And we also know our
LongOutput model has no output that changes, we can safely cache the output.

For this caching method to work we need to make sure that the configuration cache has been
turned off, otherwise it will end up in a PHP error.

We are going to change module.config.php in the Application module first to initialize
our cache storage adapter first. After that we will change the Application\Controller\
IndexController so that we can use our pattern. We can just add the following code to
/module/Application/config/module.config.php:

<?php
return array(
 // We are configuring the service manager
 'service_manager' => array(
 'factories' => array(

Optimizing Performance

266

 // Initialize our file system storage
 'Zend\Cache\StorageFactory' => function() {
 return Zend\Cache\StorageFactory::factory(
 array(
 'adapter' => array(
 'name' => 'filesystem',
 'options' => array(
 // Define the directory to store the
 // cache in
 'cacheDir' => 'data/cache',
),
),
 // For the file system storage we need to
 // have the serializer plugin enabled,
 // otherwise thing just go wrong when we
 // want to storage a class or so
 'plugins' => array('serializer'),
),
);
 }
),
 // We want to call our cache with the 'cache' key
 'aliases' => array(
 'cache' => 'Zend\Cache\StorageFactory',
),
),
);

Now we have initialized our cache, we need to make sure our output is cached as well.
This will be done in IndexController (/module/Application/src/Application/
Controller/IndexController.php) of our Application module:

<?php

// Set the namespace
namespace Application\Controller;

// Define the imports
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

// Define the class name and extend
class IndexController extends AbstractActionController
{

Chapter 8

267

 // Begin our index action again
 public function indexAction()
 {
 // This time we want to make sure our class is
 // loaded in to the ClassCache pattern so that we
 // can eventually cache the output of our class
 // method
 $pattern = \Zend\Cache\PatternFactory::factory(
 'class', array(
 'storage' => $this->getServiceLocator()->get('cache'),
 'class' => '\Application\Model\LongOutput'
));

 // Now call our method through the ClassCache
 // pattern with the same arguments as the previous
 // test
 echo '<!-- '. $pattern->call('run', array(1500)). '-->';

 // Return the view model again because we don't
 // actually do anything with it
 return new ViewModel();
 }
}

If we now take a look at the benchmarking, we can see that the following caching has resulted
in the following performance improvement:

Time taken for tests: 14.956 seconds

As we can see this is almost a 17.4 percent improvement on the original benchmark, which
obviously is a fantastic improvement. It is also a 3.2 percent response increase in comparison
to the configuration/class map caching. We know that this doesn't sound too impressive, and
we understand your disappointment. However, do understand that in real life a database call
or a service call can take a lot longer than this, and the percentage of improvement therefore
would be much more!

There is only one slight issue with this method; and that is we won't be able to cache the
configuration/class map this way. Because we want to optimize our application the best we
can, this is obviously not good practice. Don't panic, however, there is a solution to this issue,
and it comes in the form of StorageCacheFactory!

We didn't immediately discuss this because it is always best to see more than one way of
coding, at least that is my personal choice.

Optimizing Performance

268

What we'll do is strip the configuration we just added in /module/Application/config/
module.config.php and add the following configuration:

<?php
// We need to assume that we have stripped the previous
// configuration out of here and it is back to the
// default configuration file
return array(
 'service_manager' => array(
 // Instantiate the cache through our storage cache
 // factory. It will look for the 'cache' key to
 // initialize the cache
 'factories' => array(
 'cache' => '\Zend\Cache\Service\StorageCacheFactory',
),
),

 // And here we go, initializing the cache
 'cache' => array(
 // We want to use the filesystem adapter
 'adapter' => 'Filesystem',
 'options' => array(
 // Of course we need to set the directory to cache
 // in
 'cache_dir' => 'data/cache'
),

 // We also want the serializer otherwise it will
 // throw an exception
 'plugins' => array('Serializer'),
),
);

If we now turn back on the configuration and class map caching and do a benchmark, we get
the following result.

Time taken for tests: 14.303 seconds

As we can see this time with both caching systems enabled, we get a 21 percent speed
increase in comparison to the original.

Chapter 8

269

How it works…
It is always good to cache the things we use regularly and are sure about their persistence. If
we know a class's output doesn't change, but for example merely does some calculations we
know that it will be a strong candidate to use for caching. Don't forget that caching methods
which rely on third party input, such as databases, are harder to cache as they require a
certain time-to-live in which the cache knows the data they have cached is out-of-date.

Another thing to look out for is to cache too much, that way your application actually slows
down instead of speeding up as the cache is too busy refreshing/getting and setting the
cache instead of actually outputting it. A good way of auto-cleaning and auto-optimizing
however, is by setting up a periodic cron (much like scheduled tasks for Windows users)
process that runs periodically.

9
Catching Bugs

In this chapter we will cover:

 f Handling Exceptions—your partner in crime

 f Logging and how it makes your life easier

 f Unit testing – why would you do it

 f Setting up and using unit testing

Introduction
On 9 September, 1947 the first computer bug was found by Grace Hopper. This computer bug
was an actual insect instead of a software bug. Since then we are basically chasing bugs in
our software applications, and the more we learn to code the more we begin to appreciate
good error handling, and catching bugs in time.

As a coder nothing is more annoying than getting customers on the phone that say "it doesn't
work", without us knowing what actually is going on. That is why this chapter is focused on
catching bugs early, and finding the cause of the bug more easily.

Handling Exceptions – your partner in crime
To find the source of errors, good error handling should be implemented. In this recipe we'll
talk about Exception handling within the Zend Framework 2 and how to optimally use it.

Catching Bugs

272

Getting ready
We can safely assume that we all know about try-catch and Exceptions, but to make sure
nobody is caught out please take a look at the link to the PHP manual in the See also
subsection in this section.

How to do it...
Exception handling is not that difficult to use, but it is a very useful tool if used correctly.

Exception classes in Zend Framework 2
Let's take a look at the following example:

<?php

// This non existing method throws a couple of Exception, which
// is a PDOException, BadMethodCallException and probably more.
try {
 $object->executeMe();
} catch(PDOException $e) {
 // We catch the most specific Exception first, as this is an
 // Exception that has to do with a database query that went wrong
} catch(BadMethodCallException $e) {
 // Next up this one, as this tells us that we have done
 // something wrong when calling this method, maybe we forgot
 // some arguments, or the method might not exist?
} catch(Exception $e) {
 // We don't know what is going wrong, but we know something did
 // go wrong. Perhaps we just want to log this, or handle it on
 // another way?
}

This implementation of try-catch is also called cascading Exceptions.

Handling Exceptions on dispatch or rendering
To implement the trigger on one of these events we should add some code to the
/module/Application/Module.php file in one of our Modules (it doesn't specifically
matter which one).

<?php
 use Zend\Mvc\Application;
 use Zend\Mvc\MvcEvent;

Chapter 9

273

 // We'll skip the beginning of the file as it has no
 // effect on us
class Module
{
 // We want to add/create the onBootstrap method to put
 // our event attachment in
 public function onBootstrap(MvcEvent $e)
 {
 // Get the event manager from the application
 $eventManager = $e->getApplication()
 ->getEventManager();

 // Make sure our module router listens to our event
 // manager as well
 $moduleRouteListener = new ModuleRouteListener();
 $moduleRouteListener->attach($eventManager);

 // Get the service manager for later use
 $serviceManager = $e->getApplication()
 ->getServiceManager();

 // Attach our handler to the events
 $eventManager->attach(
 // What events do we want to attach to
 array(
 MvcEvent::EVENT_DISPATCH_ERROR,
 MvcEvent::EVENT_RENDER_ERROR,
),

 // What class and method do we want to trigger
 array($this, 'handleException')
);
 }

 // This is the method we use to handle the exception
 public function handleException(MvcEvent $event)
 {
 // Make sure the error is an exception, otherwise
 // it might be some other parameter in the event
 if ($event->getError() === Application::ERROR_EXCEPTION) {
 // Now get the exception from the event
 $exception = $event->getParam('exception');

Catching Bugs

274

 // Do whatever with this exception
 }
 }

 // Again, we are not bothered by the rest of the
 // Module class
}

How it works...
Now we have seen how to do it, let's see how it actually works in Zend Framework 2.

Exception classes in Zend Framework 2
Zend Framework 2 throws a different Exception for almost every component of the framework,
and although different in name they are all the same in functionality.

First of all here is a list of Exceptions that are default to PHP but are overridden by Zend
Framework 2 because Zend Framework 2 just likes to use Exceptions that are in the Zend
namespace, instead of in the global namespace:

 f BadMethodCallException

 f DomainException

 f ExtensionNotLoadedException

 f InvalidArgumentException

 f InvalidCallbackException

 f LogicException

 f RuntimeException

Luckily we can use the global \DomainException as well as \Zend\Stdlib\Exception\
DomainException (it is such a mouthful) when catching our Exceptions, as the Exceptions
are overridden from the original.

It can however be useful if we are using a chain of catches to know where a specific Exception
comes from; for example, when we catch a RuntimeException and we know that either
Zend\Cache or Zend\Authentication can throw one. However usually it is quite clear
what it might be or reactions to Exceptions might be different per instance.

Zend Framework 2, however, has docblocks for every class and method and luckily for us also
has documented @throws as well. This means that we can easily look at the documentation
and see what that specific functionality throws, that way we can easily wrap our code inside a
try-catch block and handle the Exceptions.

Chapter 9

275

We can also just catch any \Exception that is thrown, instead of specifically targeting a
named Exception, but we don't tend to do that as it doesn't give us good control over the
errors occurring. In general we would like to be as specific as possible when it comes to
Exceptions, and the rule is to catch them from most specific down to least specific.

Handling exceptions on dispatch or rendering
If we don't handle exceptions on either dispatch or rendering, we are in for a bad time. One
of the issues that can arise is the white screen issue where we won't see anything on the
screen because of an error happening. During the development stage, this only leads to mild
frustration for the developer, but think about the user that sees this on a live environment as
they want to tell you their nephew/cousin/uncle is a better coder than us. We can't have that.

That is why we need to make sure that we listen to the Zend\Mvc\MvcEvent::EVENT_
DISPATCH_ERROR and Zend\Mvc\MvcEvent::EVENT_RENDER_ERROR events. These
events will be triggered when a controller or route is not found or an error occurrs during the
rendering of the templates.

As we can see from the example, this event is only triggered when an error occurs, when
dispatching, or rendering. The exception retrieved can then be used to either log, or dump to
the screen, whatever feels appropriate. The idea here is that we are able to debug effectively
even if we don't see the error happening.

For example, if this technique was implemented on the live application, it could log all the
exceptions to a log (or e-mail to support) then we would be able to see errors that occur when
we are "not around" to see it for ourselves.

About try-catch
The try-catch block in PHP is one incredibly useful tool of the trade and we would need to
use it as much as possible as chains of Exceptions are much easier to solve than a return
false or null back from a method. Especially in combination of events we are able to catch
anything in time, or at least make sure we are able to debug it in a reasonable fashion.

See also
Exceptions manual and the introduction to try-catch: http://php.net/manual/en/
language.exceptions.php

Logging and how it makes your life easier
Besides good error handling, logging is a good way to make sure you get the most knowledge
of what is going on out of your system. Most of time we can even build it so that we can record
events that lead up to an error, which can then be traced back to the original issue.

Catching Bugs

276

Getting ready
Because we want to go all exotic with the logging in Zend Framework 2, it is required for us to
install the FirePHP core on our web server. We can install this library through the Composer
tool (we need to assume that we already use this on the server, otherwise it would get a bit
too complicated).

We can install the FirePHP library by adding the following lines in the require section of the
composer.json file:

"firephp/firephp-core" : "dev-master"

If we now execute 'php composer.phar update' in the command line, it will install the
library for use within our code later on. To make full use of the logger functionality, it would
also be wise to use a browser that can understand FirePHP headers. With the Mozilla Firefox
browser we need to install the Firebug and FirePHP add-ons to make it work. If we want to use
FirePHP logging in Google's Chrome browser or Microsoft Internet Explorer, we need separate
extensions/add-ons as well, as none of these support it by default.

How to do it...
In this recipe we will show off examples on how to implement a logger system in our application.

Implementing a really simple file logger
Let's implement a simple file logger first, which can be done in one of our configuration files.
We will add our logger to our /config/autoload/global.php file as we want it available
everywhere in our application:

return array(
 // We want to put our logger in the service manager
 'service_manager' => array(
 'factories' => array(
 // We will call our logger 'log' so we can find it
 // easily back in our application
 'log' => function () {
 // Instantiate our logger
 $log = new Zend\Log\Logger();

 // Add the writer to our logger (don't forget to
 // make the data directory writable)
 $log->addWriter(new Zend\Log\Writer\Stream(
 getcwd(). '/data/application.log'
));

Chapter 9

277

 // Return our logger now
 return $log;
 },
),
),
);

That was pretty easy as we can see, and now everywhere we have the ServiceManager
object to our disposal we can get the logger by doing something like the following
Controller (file: /module/Application/src/Application/Controller/
IndexController.php) code:

<?php

namespace Application\Controller;

use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController
{
 public function indexAction()
 {
 $this->getServiceLocator()
 ->get('log')
 ->debug("A Debug Log Message");
 }
}

Implementing a FirePHP logger
The FirePHP logger is the same as the Logger initialization shown before in /config/
autoload/global.php with one difference, and that is Zend\Log\Writer attached to
Zend\Log\Logger.

// As we can see we can just change (or add if
// we want more loggers) the log writer to FirePHP.
$log->addWriter(new Zend\Log\Writer\FirePhp());

How it works...
Logging is one of the most underestimated pieces of code that we kind of forget to implement.
And when we implement it, we forget to make use of it regularly enough.

Catching Bugs

278

We all know that it is important, but for some reason we are hesitant to implement it on a
regular basis.

What we are going to do is install a logger in our basic Zend Framework 2 application, and
a more special way of logging with FirePHP.

Implementing a really simple file logger
As we saw in the preceding indexAction method, we have simply put a debug statement in
our application.log file, which will look similar like the following:

2013-03-04T13:58:38+02:00 DEBUG (7): A Debug Log Message

The log methods we can use are log(), info(), warn(), err(), and debug(), if we use
log(), we need to give it a priority first and then pass the message as parameters. As we can
also see, assigned to DEBUG is the value 7, this refers to the level of priority used. In our case
DEBUG has priority 7, but there are more priorities:

/**
 * @const int defined from the BSD Syslog message severities
 * @link http://tools.ietf.org/html/rfc3164
 */
const EMERG = 0;
const ALERT = 1;
const CRIT = 2;
const ERR = 3;
const WARN = 4;
const NOTICE = 5;
const INFO = 6;
const DEBUG = 7;

Implementing a FirePHP logger
If we now begin logging with the FirePHP writer, we will receive the following entries in our
Browser console. (Press F12 in Mozilla Firefox, Chrome, and Microsoft Internet Explorer.)

Chapter 9

279

As we can see this gives a quite clear view of the log items sent through the browser.

Please note that using the debug() log method in Zend Framework 2.2.4 still
executes and outputs a trace() instead of the message we want to display
when using the FirePHP writer. This is currently reported as a bug, but it hasn't
been confirmed yet, so we don't know for sure if it will be ever solved.

However, using this debug() method results in a really (really) big return
header and it will slow down the response times of a larger application by
literally minutes.

One more thing before we move on, please don't use the FirePHP log() method in a
production environment, as everyone (literally) will be able to see what and when you logged
in and out; and that is something you don't want.

About the Logger
The Log\Logger holds a collection of methods that can be used to log in a standardized
fashion. The Logger has one or more Zend\Log\Writer objects attached to it, to which the
Logger writes to. The Writer is the only class that does the actual writing to the requested
log method.

With Writer\FirePhp, this is by sending headers to the client browser through the response,
with the Writer\Stream it is a physical file (funny how we use physical here isn't it?).

Unit testing – why would you do it
Unit testing is a form of testing that has been widely accepted in the programming world.
Unfortunately a lot of PHP developers still lack the knowledge on how to utilize it to their
benefit, or they just don't know how to get started. This recipe will try to change that.

Getting ready
To get started with Unit testing a Zend Framework 2 application, it is required that we have
PHPUnit 3.7.x installed. We can do this in a couple of different ways, but the easiest and
most recommended way is by installing it through Composer, which comes with the Zend
Framework 2 application.

Catching Bugs

280

To install PHPUnit through Composer we just need to add the following lines to
composer.json:

{
 "require-dev": {
 "phpunit/phpunit": "3.7.*"
 }
}

After saving the composer.json file, run Composer to update the new requirements.

$ php composer.phar update

After a short while, the Composer installer will be complete and we will be ready to begin
creating our unit tests. We can see that we now have an extra directory in our vendor directory
called phpunit.

How to do it...
Before we can show how to really unit test our application, it is best that we show off the
concept behind it first.

Pseudo-code examples
We will now examine a couple of pseudo-code examples that display an effective way of
coding according to a (sort of) TDD principle (technically it will be PHP, but we won't take it too
seriously as we just want to show some example).

For this example we will have a class, called Person, with only the isAdult() method in
there. After we have defined the method, we should write our first test that should let our
initial outcome fail.

public function testIsAdult()
{
 // Initialize our Person
 $person = new Person();

 // Our first fail test that makes sure that when no
 // parameters are given the test will result in false
 assertFalse($person->isAdult());
}

As we have no code in our method yet, the result will always be null, so this test will
immediately fail as we expect a false to be returned back at the moment.

Chapter 9

281

When we execute PHPUnit now, it would (hypothetically) result in the following result:

PHPUnit 3.7.9 by Sebastian Bergmann.

F

FAILURES!

Tests: 1, Assertions: 1, Failures: 3.

Normally seeing a failure would be considered wrong, however in this instance, we would
know that our method does what we expect it to do: fail! The next step is to make the test
pass, so let's add a simple return false to our isAdult definition.

public function isAdult()
{
 // If the return value is set, return that, otherwise
 // return false; which will always happen at this
 // point
 return isset($retval) ? $retval : false;
}

If we know run the test again we will see that the test has now passed:

PHPUnit 3.7.9 by Sebastian Bergmann.

.

OK (1 test, 1 assertion)

Now it is time to continue by making sure that the test fails again, this time we want to make
sure that we accept a parameter, $age and we want this value always to be an integer and
higher or equal to 18, and if not we want to get false returned back as result.

So let's continue and edit the test script so that it fails again (never was failing so much fun).

public function testIsAdult()
{
 // Initialize our Person
 $person = new Person();

 // Our first fail test that makes sure that when no
 // parameters are given the test will result in false
 assertFalse($person->isAdult());

Catching Bugs

282

 // Ok, that works now, let's now parse in an integer
 // parameter so that we get result true back
 assertTrue($person->isAdult(21));
}

If we now run the test again, we will see that the test fails, which in this case triggers us to
rewrite the following code so that the test will pass again:

public function isAdult($age)
{
 // Check if $age is an integer, and if so,
 // make sure the person is above 18
 if (isset($age) && is_int($age) && $age >= 18) {
 $retval = true;
 }

 // If the return value is set, return that, otherwise
 // return false; which will always happen at this
 // point
 return isset($retval) ? $retval : false;

And if we now run the test, the test will pass again, which means we can (if we need to) run
the cycle again of making the test fail, change the code to let it pass again, etcetera, etcetera!
The cycle will continue until we are happy with the result of the method and it exactly does
what we planned it to do.

How it works...
When we talk about unit testing, a lot of developers have one of the following thoughts
about it:

They simply don't know what it is, or what its use is; or they know they should do it, but they
tend to not do it.

Of course there is also the occasional "I don't see any positive side to it" kind of developer, but
we will just ignore that comment for now.

What is unit testing
Unit testing is the art of testing the smallest testable part of an application. Unit tests are
divided up in test cases, which are compartmentalized tests that should test only one specific
part of your code.

Chapter 9

283

This unit test can use other objects through the use of mock objects, fakes and method stubs,
but the main part is that only one particular piece of code should be tested in a unit test at
any given time. The idea behind this is that we have a small unit test which tests only a small
part of the code, so when problems occur we don't have to look far and wide to find out where
the problem lies.

In reference to Zend Framework 2 we would usually unit test the models, services and
controllers but not the html output (unless we are testing the ViewRenderer perhaps).

When should we test? – before, or after code is written
In a pure TDD (test-driven development) point of view, it is a simple answer: before. The
whole idea of TDD is that a test is written before development begins, and therefore it always
fails. The reason why it is important that a test fails is that we then know that the test we
wrote at least fails. If we write a test that has never failed, how can we know that it will fail
when it actually should fail?

Obviously there are also arguments for writing the test afterwards, one of them being that
we cannot test code that we haven't designed yet. Although there is a point to that argument,
personally I don't view it is a valid one. We can write tests beforehand, but that doesn't mean
that we should write the full test before the code is written. The idea is to do the following:
write a test, let it fail, write code to let it pass, and repeat the process from the start again. It
also forces you to think about the app architecture before you start coding your app.

It is a matter of discipline
Unit testing is a strong matter of discipline, as it requires us to stop being eager to code and
write the test first. For a lot of developers this means that we should throw out our current
"muscle-memory" coding and really think what we want to code, before we actually start to code.

Of course when we start a new piece of code we have an idea of what we want the functionality
to do, for example getting records from the database. However it is important to think about
what we want to get as a return from that functionality. Is it an array, or is it a boolean, does
it throw Exceptions and what if we don't get valid parameters? All of these things are questions
that are architecture related, but are usually not defined beforehand.

Unit testing works only because of a strong discipline in the team. If we were the only one in
our team that would write the tests for the code, we would surely fail in being able to maintain
it as other members of our team would (unintentionally probably) break our unit tests
whenever they would change something in the code.

However, it cannot be under estimated that unit testing is an invaluable part of software
development, even if done after the code is already written (as you can see I am all for writing
tests first).

Catching Bugs

284

Setting up and using unit testing
To start using Unit testing in Zend Framework 2 can be a bit of a hassle. But don't worry; help
is coming as we fly you through a proper set up of Zend Framework 2 unit testing.

Getting ready
To get started with Unit Testing a Zend Framework 2 application, it is required that we
have PHPUnit 3.7.x installed. We can do this on a couple of different ways but the easiest
and recommended way is by installing it through Composer which comes with the Zend
Framework 2 application.

To install PHPUnit through composer we just need to add the following lines to
composer.json.

{
 "require-dev": {
 "phpunit/phpunit": "3.7.*"
 }
}

After saving the composer.json file, run Composer to update the new requirements.

$ php composer.phar update

After a short while the Composer installer will be complete and we will be ready to begin
creating our unit tests. We can see that we now have an extra directory in our vendor directory
called phpunit.

How to do it...
Setting up unit testing with PHPUnit is fairly simple in Zend Framework 2, and fortunately well
documented as well.

Setting up the test framework
To get everything to work in order, we need to set up our separate test framework first. For that
we will need three new files: Bootstrap.php, TestConfig.php, and phpunit.xml.

Because we basically want to test per module (keeping it all separate from each other,
remember) we need to set this up for every module we are testing.

Chapter 9

285

First of all we should create the directory called test in the root of the module directory.
In that directory we create a file called phpunit.xml in /module/Application/test/,
which is used by PHPUnit to determine some configurations.

<?xml version="1.0" encoding="UTF-8"?>

<!-- we want to bootstrap with the Bootstrap.php file, and we want to
 output in pretty colors. -->
<phpunit bootstrap="Bootstrap.php" colors="true">
 <testsuites>
 <!-- we can just give this a name for our own
 identification -->
 <testsuite name="Application Module Tests">
 <!-- this is the directory we want to use for
 testing -->
 <directory>./Application</directory>
 </testsuite>
 </testsuites>
</phpunit>

This first file is used for the general configuration of PHPUnit, and has many more options than
the ones we showed here, but these are not relevant for our setup right here.

The next thing we want is to set up the TestConfig.php file in /module/Application/
test/, which is a simple configuration file that loads up the most basic configurations we
need to start up the application and run our code. It is basically the same as the normal
application.config.php, but we need it in a separate file as we want to be able to make
changes without it affecting the main application.

<?php

// Just as the normal configuration we simply return the
// array
return array(
 // These are the modules we need to test our module.
 // Normally this only the current module, but if
 // this module has dependencies we need to add them
 // here as well.
 'modules' => array(
 'Application',
),

Catching Bugs

286

 // Here we define our default module listener options,
 // nothing special to note here.
 'module_listener_options' => array(
 'module_paths' => array(
 'module',
 'vendor',
),
),
);

The next and last thing to set up in our testing framework is the Bootstrap.php file in
/module/Application/test/ that we referenced in the phpunit.xml file as our
bootstrap. This bootstrap class is created by Evan Coury the primary author of the entire ZF2
module system, but we added the commentary to make it all a bit clearer of what is going on. It
is important for us to know how this bootstrap works to ensure we can make optimal use of it.

<?php
// The namespace needs to reflect the namespace of the
// module we want to test.
namespace Application;

// The following imports are needed for our class
use Zend\Loader\AutoloaderFactory;
use Zend\Mvc\Service\ServiceManagerConfig;
use Zend\ServiceManager\ServiceManager;
use Zend\Stdlib\ArrayUtils;
use RuntimeException;

// We want to put the error reporting on, so that we see
// if there is something going wrong
error_reporting(E_ALL | E_STRICT);

// Our current directory is going to be our root
// directory
chdir(__DIR__);

// Begin our bootstrap class here
class Bootstrap
{
 // Here we will define our ServiceManager in
 protected static $serviceManager;

Chapter 9

287

 // The merged configuration of our application will be
 // put in this property
 protected static $config;

 // This property isn't used, but we copied it for
 // originality sake any way
 protected static $bootstrap;

Now let's start by creating the init() method, which will be used later on to bootstrap the
application so that we can use it to test on.

 public static function init()
 {
 // Read our created TestConfig file, and if it
 // doesn't exist try the TestConfig.php.dist, but
 // that won't exist in our environment
 if (is_readable(__DIR__ . '/TestConfig.php')) {
 $testConfig = include __DIR__ . '/TestConfig.php';
 } else {
 $testConfig = include __DIR__ . '/TestConfig.php.dist';
 }

 $zf2ModulePaths = array();

 // Now we will load in all the module paths from the
 // configuration (if set).
 if (isset($testConfig['module_listener_options']
 ['module_paths']))
 {
 // Get the module path from the configuration
 $modulePaths = $testConfig
 ['module_listener_options']['module_paths'];

 // Now loop through the module paths and find out
 // what the parent path is of the module
 foreach ($modulePaths as $modulePath) {
 // This method is defined later in the class
 if ($path = static::findParentPath($modulePath)) {
 $zf2ModulePaths[] = $path;
 }
 }
 }

Catching Bugs

288

 // Now make a concatenated string with all the
 // module paths separated by a colon.
 $zf2ModulePaths = implode(
 PATH_SEPARATOR, $zf2ModulePaths
) . PATH_SEPARATOR;

 // See if we defined some module paths outside this
 // class or configuration and add them to the
 // existing module paths
 $zf2ModulePaths .= getenv('ZF2_MODULES_TEST_PATHS')
 ?: (defined('ZF2_MODULES_TEST_PATHS')
 ? ZF2_MODULES_TEST_PATHS : '');

 // Make sure that we initiate auto loading so we
 // don't have to worry about that (this method is
 // defined later in the class)
 static::initAutoloader();

 // Now create a new configuration array so that we
 // can merge it with the loaded configuration.
 $baseConfig = array(
 'module_listener_options' => array(
 'module_paths' => explode(
 PATH_SEPARATOR, $zf2ModulePaths
),
),
);

 // Merge our configuration with the base
 // configuration that we just generated.
 $config = ArrayUtils::merge(
 $baseConfig, $testConfig
);

Up until now showed the definition of the configuration file, and it is now all merged for use by
our bootstrap. Next up is the definition of the service manager.

 // Let's create a new service manager
 $serviceManager = new ServiceManager(
 new ServiceManagerConfig()
);

 // Set the service manager to load the configuration

Chapter 9

289

 // so that the ModuleManager can use it to load up
 // the modules and dependencies
 $serviceManager->setService(
 'ApplicationConfig', $config
);

 // Now get the module manager, and load up the
 // modules plus dependencies
 $serviceManager->get('ModuleManager')
 ->loadModules();

 // Make the service manager and configuration
 // available as a static in the bootstrap class
 static::$serviceManager = $serviceManager;
 static::$config = $config;
 }

That's the end of our initialization, and as we can see it is pretty straightforward what is being
done. The bootstrap initialization first read out the configuration and then created the service
manager. After the service manager was created, we used the module manager to load up the
modules (and dependencies) we required for our tests. Now that we have defined our most
important part of the class, let's define the rest of the methods that we used in the preceding
init() method.

 // Not completely unimportant, this is a getter for
 // our servicemanager property.
 public static function getServiceManager()
 {
 return static::$serviceManager;
 }

 // A simple getter for our static configuration.
 public static function getConfig()
 {
 return static::$config;
 }

 protected static function initAutoloader()
 {
 // Get the parent path of the ZF2 library (this
 // method is defined later on)
 $vendorPath = static::findParentPath('vendor');

Catching Bugs

290

 // Now make sure the ZF2 path is ready to go
 if (is_readable($vendorPath . '/autoload.php')) {
 $loader = include $vendorPath . '/autoload.php';
 } else {
 // The vendor path isn't in the configuration, try
 // to find it ourselves.
 $zf2Path = getenv('ZF2_PATH')
 ?: (defined('ZF2_PATH') ? ZF2_PATH
 : (is_dir($vendorPath . '/ZF2/library')
 ? $vendorPath . '/ZF2/library' : false));

 // If the path is not defined, we cannot continue
 if (!$zf2Path) {
 throw new RuntimeException(
 'Unable to load ZF2.'
);
 }

 // Include our autoloader from ZF2
 include $zf2Path. '/Zend/Loader/AutoloaderFactory.php';
 }

 // If we come here that means we have a valid ZF2
 // path, and can safely initialize our Autoloader.
 AutoloaderFactory::factory(array(
 'Zend\Loader\StandardAutoloader' => array(
 'autoregister_zf' => true,
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/' . __NAMESPACE__,
),
),
));
 }

 // This method finds the parent path of a given path.
 protected static function findParentPath($path)
 {
 $dir = __DIR__;
 $previousDir = '.';

 while (!is_dir($dir . '/' . $path)) {
 $dir = dirname($dir);

Chapter 9

291

 if ($previousDir === $dir) return false;
 $previousDir = $dir;
 }

 return $dir . '/' . $path;
 }
}

// And finally, initialize the application bootstrap
Bootstrap::init();

Now we finally set up our testing framework, it is time to write a simple test to see if
everything works. What we'll do first is create a small Model (file Company.php: /module/
Application/src/Application/Model/), which we are going to test.

<?php

namespace Application\Model;

class Company
{
 public function hasEmployees() {}
}

That's it, no more coding at this point, as we first need to create our unit test (file
CompanyTest.php: /module/Application/test/Application/Model/).

<?php
// Define the namespace like a boss
namespace ApplicationTest\Model;

// We want to use this model for testing
use Application\Model\Company;

// Begin our test class, which needs to be extended from
// the PHPUnit framework test case.
class CompanyTest extends \PHPUnit_Framework_TestCase
{
 /**
 * Test some method.
 * @covers Application\Model\Company::hasEmployees
 */
 public function testHasEmployees()
 {
 $this->markTestIncomplete();
 }
}

Catching Bugs

292

And there we go, a simple test that does nothing but prints an I (which means one incomplete
test) in the terminal if we were to execute it. As we can see we also defined a @covers
PHPDoc tag, which is always a good idea for the sake of good documentation to actually
document what method you are testing.

To execute the PHPUnit tests, simple go to the test directory and type
phpunit, which will trigger PHPUnit to test every file that ends in Test.
php like SomeModelTest.php and look for methods that begin with
test like testSomeMethod.

Let's do a simple test now, which tests if our method return value is true or not (file
CompanyTest.php in /module/Application/test/Application/Model/).

public function testHasEmployees()
{
 // Instantiate our model (remember the use statement
 // in the top of the file).
 $object = new Company();

 // Make sure the method returns true
 $this->assertTrue($object->hasEmployees());
}

If we now run PHPUnit again, we'll see that it has printed a nice big red F (which means the
test failed) in the terminal. Now we know that the unit test fails, we will modify our model (file
Company.php in /module/Application/src/Application/Model/) again to make
sure it passes again.

public function hasEmployees()
{
 return true;
}

If we now run PHPUnit again, a . (which means that the test passed) simply appears in the
terminal. We know now that our test worked, and that we can trust the outcome of the unit
test as well. We can now use this test framework over and over again for every other method
and module that we write.

How it works...
What we did first is set up a small testing framework that would load in anything we need for
the module that we want to test. After that we wrote a couple of simple tests for some code
that we wanted.

Chapter 9

293

The test framework we set up is a test framework that can be used per module separately,
as it is unwise to make one test framework for the whole application. What we are trying to
achieve is that our modules are still as independent as they can be (considering of course
that some modules will have dependencies), and that we can test them separately as well.

There's more...
The framework we've set up is also available in the official documentation, which means that
there is always support available if we are stuck with something.

See also
 f The PHPUnit XML configuration file options:http://phpunit.de/manual/3.7/

en/appendixes.configuration.html

 f The PHPUnit cheat sheet: https://gist.github.com/loonies/1255249

Setting up the
Essentials

In the appendix we will cover:

 f Making sure you have all that you need

 f Downloading Zend Framework 2 and finding its documentation

 f Composer and its uses within Zend Framework 2

 f Basic Zend Framework 2 structures

 f About storage adapters and patterns

Making sure you have all that you need
The Zend Server is a nice piece of software that takes out a lot of work from our hands by
installing everything we need (or at least provide a good platform) to code Zend Framework
2 (and Zend Framework 1!) applications. Although the paid version of Zend Server might not
be necessary for production applications, developing in the developer version of the Zend
Server is a pure delight as it will give a proper overview of the system, logs, configuration, and
everything else we need to know.

We are going the cheap way by installing the Zend Server Community Edition, which installs
everything we need to use Zend Framework and Zend Framework 2. The handy thing about
the Zend Server is not only the ease of installation, but the immense toolset you get with the
server itself. It is a great product to get a good overview of any PHP related configuration and
is also able to monitor performance and track events in your system.

Setting up the Essentials

296

To install the Zend Server we need to download it first from the Zend website (http://www.
zend.com), at the moment Zend Server 6.2.0 is the latest version of the application, and
although we use it, the installation process should be the same for any later versions.

Zend Server is not needed to run Zend Framework 2, but does,
however, provide an excellent platform that needs only minimal
configuration to get started.

Installing Zend Server Community Edition on a Linux
environment

When we have downloaded Zend Server for Linux (you need a free Zend account
to download any of their software), we will have a file called ZendServer-6.2.0-
RepositoryInstaller-linux.tar.gz.

Next, to install the Zend Server we need to execute the following command sequence:

$ tar -xf ZendServer-6.2.0-RepositoryInstaller-linux.tar.gz

This will unpack the Gzipped Tarball (this is a compression method) package and extract it in the
ZendServer-RepositoryInstaller-linux directory. Now let's install the Zend Server:

$ cd ZendServer-RepositoryInstaller-linux/

$ sudo ./install_zs.sh 5.4

We have chosen to install PHP 5.4, and if there is no reasonable explanation why we need
PHP 5.3, we recommend keeping it in this version. If we need PHP 5.3, however, we can easily
change the 5.4 to 5.3 and it will install the lower PHP version. Once we execute the install_
zs.sh command as the root user (hence, the sudo, which tells the system we want to
execute a command as a super user) we will get a short confirmation window asking us if we
really want to install the Zend Server. Simply press Enter to continue the installation.

At some point during the installation, the script will ask if you want to install X amount of new
packages. You want to answer Y or yes for that, otherwise the installation will end there.

The installation itself takes a couple of minutes and upon successful installation, the script
will display the following message:

Appendix

297

**
* Zend Server was successfully installed. *
* *
* To access the Zend Server UI open your browser at: *
* https://<hostname>:10082/ZendServer (secure) *
* or *
* http://<hostname>:10081/ZendServer *
**

Security wise it is best to always use the secure version of Zend Server, as you want to make
sure that passwords are put in securely. However, while working locally it doesn't really matter
that much.

Installing Zend Server Community Edition on a
Windows environment

When we have downloaded the Zend Server for Microsoft Windows (you need a free Zend
account to download any of their software) and we started up the ZendServer-6.2.0-php-
5.4.21-Windows_x86.exe file, we find ourselves again with a very simple installation. If we
choose the custom installation, we have a few options that we can change, but normally the
default options are fine enough for us.

Another great thing about the Windows installation of Zend Server is that the installation
program asks us if we want to use an existing IIS web server or install an Apache server instead.

What option you choose is all down to the configuration requirements for the rest of the
project, assuming that we have more requirements; otherwise, we would really need to
reconsider using Windows for our PHP environment.

After a summary screen of the installation we are about to commence, the installation will
continue and configure the system. If the installation has been completed successfully, we get
the option to start working with the Zend Server and to add the Zend Server as a desktop icon.

First-time run of Zend Server
If we go to the Zend Server interface in the browser for the first time (please note that the
Zend Server in Windows does not have the secure connection built-in like the Linux version
has), we will see the license agreement, which we need to accept before we can go on.

In the next screen, depending on the purpose of the Zend Server, we need to choose between
the Development, Single Server, or Cluster license. The Single Server and Cluster license
come standard with a 30-day trial version, and if we are new to the Zend Server then this is
the best option to see the full server capabilities in action.

Setting up the Essentials

298

Next up is setting the administrator and developer password. If we are not the only one
working on the server environment, it is best to use separate accounts as that creates a
better maintenance structure in the organization; if only one person (or account) is capable of
changing the system settings, then we can just skip filling in the developer details as they will
not really have any use.

Once we have done all that, we are ready to login for the first time in our brand new system.

By default the login URL to the administration panel is http://localhost:10081/
ZendServer for the non secure panel and https://localhost:10082/ZendServer for
the secure administration panel.

The first thing we will see is the overview of the server's health, which also displays the current
events that have taken place such as high memory uses, exceptions, and slow execution
times.

The main bit we want to view now is the PHP configuration, which can be found in the
Configuration screen, under PHP. It is very important to set the time zone for PHP as
otherwise PHP will annoy us(for a reason: as some application developers erroneously believe
that the machine is running on their local time zone, and base many of their date and time
code on this) with warnings telling us that this should be set. If we search for the date.
timezone in the search bar in the top right corner of the screen, it will take us (and highlight)
immediately to the setting that we need to change. We can easily search on the Internet what
the relevant value is for our specific time zone; this can be, for example, Europe/London or
America/New_York.

See also
 f PHP manual: This is a list of supported time zones http://php.net/manual/en/

timezones.php

Downloading Zend Framework 2 and finding
its documentation

Let's find out where to get all the essential literature on the Zend Framework.

Finding Zend Framework 2
The main website of Zend Framework 2 is http://framework.zend.com and always holds
the most updated information on Zend Framework 2. We can easily download the framework
from there, as well as some packages, for example the framework including the Zend Server,
or the minimal package of Zend Framework.

Appendix

299

Downloading only the framework itself, without any context like the skeleton application is a
great way of starting an application from scratch without any of the clutter that comes with the
default skeleton.

Coding in the phpcloud
A new toy made by Zend that is currently still in beta level is the phpcloud, which allows
developers to create a fast reliable development environment for developers to develop on.
One of the features of using the phpcloud is that it not only comes with Zend Framework
2, but also runs on the Zend Server which allows spectacular debugging capabilities and
application deployment. At the moment sign up for the phpcloud is free, but we can assume
that this will change in the future. How this will turn out, however, is not known to us yet.

The documentation and getting started guide
The Zend Framework 2 documentation is luckily much more reliable than the original Zend
Framework documentation (which is a good thing, trust me). Zend really committed to creating
a framework that is well documented and has an open contribution that is powered by a
strong community and tools like Github (instead of Subversion as in the original framework).
The documentation and getting started guide can both be found under the Learn menu option
on the main Zend Framework 2 website.

See also
 f The main Zend Framework 2 website found at http://framework.zend.com

 f The Zend Framework 2 Coding Standards found at http://framework.zend.
com/wiki/x/yQCvAg

 f The latest Zend Framework 2 Documentation PDF found at https://media.
readthedocs.org/pdf/zf2/latest/zf2.pdf

 f The Zend Framework 2 Security RSS Feed found at http://framework.zend.
com/security/feed/

 f The Zend Framework 2 Blog RSS Feed found at http://framework.zend.com/
blog/feed-rss.xml

Composer and its uses within Zend
Framework 2

Composer is a dependency manager tool for PHP, which has been live since the spring of
2011, and is incredibly handy when it comes to getting projects set up with ease.

Setting up the Essentials

300

Composer reads its configuration from a file called composer.json, which is a JSON file that
is being read by composer.phar (PHP archive).

We can use Composer to initialize the Zend Framework 2 library when we are using the Zend
Framework 2 skeleton application. Other functionalities within Zend Framework 2 include
installing new modules or libraries, which we can use to extend our application.

The composer.json file
If we open up the composer.json file we can see that the file has a couple of keys defined,
which tells the Composer what it needs to load, and what versions we need. By default, the
Zend Framework 2 skeleton application's composer.json will look similar to the following:

{
 "name": "zendframework/skeleton-application",
 "description": "Skeleton Application for ZF2",
 "license": "BSD-3-Clause",
 "keywords": [
 "framework",
 "zf2"
],
 "homepage": "http://framework.zend.com/",
 "require": {
 "php": ">=5.3.3",
 "zendframework/zendframework": ">2.2.0rc1",
 }
}

As we can see the file is pretty easy to understand, and the keys are pretty self explanatory,
but to be sure we will go through them quickly to make sure we understand what is going on.

 f name: This is the name of the package with the vendor name as the prefix, in this
case the vendor is zendframework and the skeleton-application is the
package.

 f description: This short description tells us what the package does.

 f license: This is the license the software is licensed under, normally this is one of
the numerous open source/software licenses such as the BSD, GPL and MIT licenses.
However, a closed-source software license is also available under the key 'proprietary'.

 f keywords: This is an array of keywords that is used when searching for this package
on the getcomposer.org website.

 f homepage: Well this is pretty clear, is it not?

Appendix

301

 f require: Now this is getting interesting, as this will tell Composer exactly what we
need to run our package. In this case it is an array with PHP, where we need Version
5.3.3 or higher and Zend Framework 2 version 2.2.0rc1 or higher. Please note
however, that in production we should always avoid a dev Version or a package with
a greater than symbol, as it could potentially break our application. Always (please
remember!) to get the exact version required when putting the application live.

Although it doesn't say it here, Composer will always install Zend Framework 2 to the vendor
directory, as the required section in the composer.json says we need zendframework/
zendframework to run our application. Composer knows that it needs to be installed to the
vendor directory because the zendframework/zendframework package is of the type
library, and that type is always being copied by Composer to the vendor directory.

Upgrading packages
Sometimes we just want to update our libraries, for example, when we know that a bug
has been solved in Zend Framework 2's library, and we really want to have it. Fortunately,
Composer comes with a great self-update and update command that we have for our disposal.

To update our libraries automatically through Composer, we should execute the following
commands in the terminal (this cannot be done properly through the web browser):

$ php composer.phar self-update

First we want to make sure that we are using the latest Composer, as using an outdated
Composer might give unnecessary errors.

$ php composer.phar update

This will update all our packages that we have put in the require section of the composer.
json to update to the latest (compatible) version. We should be wary, however, that when we
want a new package installed, but without the updation rest of the packages, we should use
the following command:

$ php composer.phar update vendor-name/package-name

Here vendor-name and package-name are the names of the packages we want to install.

Composer works because all the packages are registered on their website getcomposer.
org. In the website they keep all the packages together, and whenever we try to update or
install, the composer.phar will connect to the website and retrieve the newest packages.

When we create our own modules or libraries, we can also submit that to the composer
website. Submitting to composer's website will create a better community and a better
understanding of the dependencies needed when we begin developing certain applications.

Setting up the Essentials

302

See also
 f The composer's main website http://getcomposer.org

Basic Zend Framework 2 structures
When we consider the Zend Framework 2 structure, we must be aware that Zend Framework
2 doesn't actually care how our directory structure looks like, as long as we tell Zend
Framework 2 in our configuration where all the paths can be found.

In the skeleton application we see that our configuration can be found in the config/
application.config.php file. But that file solely exists there because in the public/
index.php it is being loaded. If we, for example, want to change the location of that
configuration file to somewhere else, we (in this case) only need to change it in the public/
index.php file. The same goes for the module and vendor directory, as these can be
anywhere we like, as long as we tell the application.config.php file where exactly that
location is.

If we want to change the public directory, we can safely change it to any name we want,
as long as we tell our web server where the new DocumentRoot is. Obviously making a
good structure is of course, the key to a successful application, and therefore the skeleton
application was created. That doesn't mean that different structure requirements have to
make us stop using Zend Framework 2, as the framework can be fully configured to such
requirements.

However, we can assume that because we are using the skeleton made available by Zend, it
displays a very optimal structure for us to develop in.

When we list the initial folder of our skeleton application, we note some of the following
objects of importance:

 f config

 f module

 f public

 f vendor

 f init_autoloader.php

As we can see there are many objects in our folder, but these have no significant importance
to our basic application.

Appendix

303

Folder – config
The config folder consists of the following objects by default:

 f autoload/

 f global.php

 f local.php.dist

 f application.config.php

Probably the most important file in this folder would be the application.config.php as
it contains all of our main configuration options. If we open this file we can see that it has a
couple of options set to make our application work.

The file contains, for example, the modules key, which tells the framework which modules
we need to load in for our application. It also contains the module_listener_options -
module_paths, which tells our framework where to find our modules and libraries, which
modules and vendor are by default.

The config folder also contains an autoload folder, which in itself contains two files which
are the global configuration override and the local configuration override files. Both files are
empty by default.

Folder – module
The default module folder consists of the following important objects:

 f Application/config/module.config.php

 f Application/language/src/Application/Controller/
IndexController.php

 f Application/src/Application/Controller/IndexController.php

 f Application/view/Application/index/index.phtml

 f Application/view/Application/error/404.phtml

 f Application/view/Application/error/index.phtml

 f Application/view/Application/layout/layout.phtml

 f Application/Module.php

The application module gives away the basic structure that we would like to see when creating
a new module. The most important file that we see here is the Module.php, which tells the
framework how our module is built up, where it can find our controllers, and many more.

Setting up the Essentials

304

Depending on how our application is built up, we would also want to have a configuration
file for each module as we would like to keep the application as dynamic as possible.
In the skeleton application we can see that our Module.php contains a method called
Module::getConfig(); all it does is a simple include to the config/module.config.
php file. Although we theoretically could just define the configuration in the Module.php,
it is nicer if we separate the actual configuration file from our code, as that also brings a
lot more maintainability with itself if we don't need to change the code for a simple change
in configuration.

We can also see a language folder in this folder, which contains all the i18n (short for
internationalization as it contains 18 characters between I and N) files needed for translating
our application. Although probably used by a lot of developers, not all of our application will
require translation, so we might not need this folder at all in our project.

But if we do require i18n and l10n (localization) then it would be beneficial to do this module
wise instead of application wise, again for maintainability as we don't want the application
(which is the whole application) to define i18n/l10n for all the modules, as theoretically not
all of the modules have to be there. That is why working module oriented makes the code a lot
more dynamic, but also maintainable as we can safely assume that if an error occurs in one of
our modules, the problem also lies in that module.

The next folder src might very well be one of the most interesting folders in our module, as it
contains—as we might have guessed—the source of our module. The folder src only contains
another folder called Application, which is the defined namespace of the classes inside.

Make sure that you name your subdirectories in src to the namespace they are using.
Otherwise it might not only lead to conflicts, but also confusion and inconsistencies. For
example, if your module is called Winter, then our directory should be called src/Winter,
to make sure that all our Winter namespaces are in that directory. That way we can safely
assume that all our code for that namespace has been neatly put in that directory and its
sub directories.

The subfolder in Application is in our skeleton application Controller, which contains
only the IndexController.php. The IndexController.php is an extension of the
Zend\Mvc\Controller\AbstractActionController, which is generally used for our
day-to-day controllers; however, there is also the AbstractRestfulController in the
same namespace, which we can use if we want to create a restful service.

Next up is the view folder, which contains all our view scripts. View scripts are basically
template files we use to do the actual displaying to the user requesting the page. As we can
see in the default module.config.php of our Application module, we have the view
scripts configured to point to the view directory, which tells the framework that when it needs
to find any view scripts, it should look in that folder.

Appendix

305

As we can see the view folder is built up with the same structure as in the configuration
file. The Application folder refers to the namespace which is using this view script that
is, Application, then we see that there is also a layout defined, which is used as a global
layout for our module—and the rest of the project if none is defined elsewhere—and an error
folder, that is only used whenever an error occurs in the application. If we want to read up
more about how the layouts work in Zend Framework 2, you should take a look at Chapter 4,
Using View.

The layout folder and the error folder are usually considered to be the
main template files for the project. This does not mean, however, that we
can only have one layout defined; all we need to do is just define another
layout configuration in our module file, which makes a specific module
different to the others.

That concludes the buildup of our module folder, and when creating other modules—when
using the skeleton application—it requires us to use the same folder structure.

Folder – public
The public folder contains all of the files that the public may see. We need to make sure
our application is secure, so we will only put images, style sheets, and JavaScript files in here.
The only file related to the framework here, will be the index.php file, as that is the file that
initializes our application, and is used only when an HTTP request is made. Although we can
put PHP files here, we would strongly recommend against it, as it can potentially make your
project open for vulnerabilities.

Setting up the Essentials

306

Folder – vendor
The vendor folder contains—as the name suggests—libraries that are made by a third party.
In our default project this will only contain the Zend Framework 2 libraries, which are needed
to run the project (located in the zendframework/library folder). Whenever we are going
to use third party libraries like Smarty or Doctrine, these will be placed here.

If we have a homemade library that is (or can be) non application specific
we would recommend putting it in here as well, especially if the library
is maintained somewhere else. Once we begin scattering our libraries
around in other folders, it is almost impossible to maintain consistency and
maintainability.

File – init_autoloader.php
The init_autoloader.php file makes sure our project can find the classes and
namespaces we are trying to use. It is called by the public/index.php file.

For the Zend Framework 2 to start up and configure itself, a couple of actions happen. If we
use the skeleton application, the following flow of information can be assumed:

 f /public/index.php: This is the first file that is going to be ran as that is the only
public script file related to the application. When run, the script is including the
init_autoloader.php in the root folder to the script and after that it initializes the
Zend Framework 2.

 f /init_autoloader.php: This file does exactly what it says it does, it initializes
the autoloader. One of the best features of Zend Framework 2 is the extensity
of the autoloader. All this file does is make sure the autoloader has most of the
namespaces and classes that we use known (but not loaded up yet) before we go
on and initialize the application, that way the autoloader can simply load up the
class whenever it is requested. Although the skeleton application has a very lazy
autoloader, which we shouldn't use in this form, in a production environment it can be
a very powerful tool to create the best performance for your application.

What's next?
After the public/index.php has loaded up the locations of known classes and
namespaces, it is ready to start up the Zend Framework 2 MVC application.

1. Get the config/application.config.php file. It actually doesn't do anything
with this file at the moment.

Appendix

307

2. Run the Zend\Mvc\Application::init($configurationArray), where
$configurationArray is the variable that contains the read configuration from
step 1.

 � Initialization of the ServiceManager, which handles all the services in
the application.

Invoke Zend\EventManager\SharedEventManager.

Factory Zend\ModuleManager\ModuleManager.

 � Request the ModuleManager from the ServiceManager and run its
loadModules() method.

 � This will then resolve all the modules and load in the module-specific
configurations.

 � Request the Zend\Mvc\Application from the ServiceManager.

 � It will run the bootstrap() method.

3. The public/index.php will now execute the run() method on the fully initialized
Zend\Mvc\Application, which will make the sure the routing, which will trigger
the bootstrap, route, dispatch, render and finish events, making sure the application
has done what was requested of it.

4. After the Zend\Mvc\Application has completed its run() method, it will execute
the send() method, which will send the output made by the run() method back to
the client.

Here is a flow chart diagram to show how the process goes a bit more graphically:

Setting up the Essentials

308

About storage adapters and patterns
The different storage adapters and patterns are a great way of implementing different
functionality throughout our cache adapters, and storing them on different platforms, for
example, the file system or just in memory. This recipe will tell us all about the default tools
available in Zend Framework 2.

Storage adapter's implementations
Storage adapters in ZF2 are adapters used to do the actual caching of our data, meaning
they also control how the data is stored. The storage adapters always implement the Zend\
Cache\Storage\StorageInterface, which contains the basic functionality that the
storage adapter needs to comply with. Most of the storage adapters also extend from the
Zend\Cache\Storage\Adapter\AbstractAdapter, but no guarantee can be given
for that. Aside from the StorageInterface, storage adapters often implement additional
interfaces representing enhanced functionality. These implementations obviously play a
crucial role of the functionality of the adapter, so we think it is best to give a short list of
implementations that the adapter can use that are defined by the framework.

 f AvailableSpaceCapableInterface: This interface provides a method to check
the available space for the caching.

 f Capabilities: This interface provides methods to check the capabilities of the
Storage adapter, such as the minimum and maximum ttl (time-to-live) of the cache, or
the supported data types (boolean, string, object, and so on).

 f ClearByNamespaceInterface: This interface has a method defined that can clear
cache by the given namespace.

 f ClearByPrefixInterface: This interface defines a method that can clear cache
by the given prefix.

 f ClearExpiredInterface: This interface provides a method to clear expired
cache items.

 f FlushableInterface: This interface is able to flush the whole cache.

 f IterableInterface: This interface provides functionality to iterate over the cache
items. Super handy to foreach over them!

 f OptimizableInterface: This interface gives the ability to optimize the caching.

 f TaggableInterface: This interface provides methods to get and set tags for a
specific cache item, and the ability to remove all the cache items through a certain tag.

 f TotalSpaceCapableInterface: This interface has a method that returns the
total space of the cache.

Appendix

309

Storage adapters
Now that we know the interfaces an adapter may implement, it is time to give a
comprehensive list of the storage adapters available in the Zend\Cache\Storage\
Adapter namespace.

Apc caching
Apc or Alternative PHP Cache is a well known framework that heavily optimizes the PHP
output and stores the compiled PHP code in the shared-memory. This way some of the opcode
(operation code) doesn't have to be recompiled again as it is ready for immediate use. The
Apc adapter also extends from the AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByNamespaceInterface

 f ClearByPrefixInterface

 f FlushableInterface

 f IterableInterface

 f TotalSpaceCapableInterface

This adapter can only work if the APC extension in PHP has been enabled,
please make sure that it is before trying.

Dba caching
You want to store the cache in a pre-relation dbm database, then this is your chance! This
adapter can store it all neatly away in a nice database. This adapter also extends from the
AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByNamespaceInterface

 f ClearByPrefixInterface

 f FlushableInterface

 f IterableInterface

Setting up the Essentials

310

 f OptimizableInterface

 f TotalSpaceCapableInterface

This adapter needs the dba extension enabled in PHP before it can work,
please make sure it is enabled.

File system caching
File system caching is a personal favorite, to store the cache on the good old file
system, a fast and usually reliable place to place it. This adapter also extends from the
AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByNamespaceInterface

 f ClearByPrefixInterface

 f ClearExpiredInterface

 f FlushableInterface

 f IterableInterface

 f OptimizableInterface

 f TaggableInterface

 f TotalSpaceCapableInterface

It sounds as something really obvious, but make sure we have write
permissions on the directory where we want to store the cache.

Memcached caching
The Memcached adapter stores the cache in the memory, which is a great way to store static
file that don't change often and can be considered semi-static. This adapter also extends from
the AbstractAdapter. Please note that Memcached is not restricted by PHP's memory
limit settings, as Memcached stores the memory outside of the PHP process in its own
Memcached process.

Appendix

311

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f FlushableInterface

 f TotalSpaceCapableInterface

We need the memcached PHP extension to cache through this
adapter. Please make sure it is enabled on your system.

Memory caching
The Memory adapter stores all the cache in the PHP process, in comparison to the
Memcached adapter, as that stores all the cache in an external Memcached process.
This adapter also extends from the AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByPrefixInterface

 f ClearByNamespaceInterface

 f ClearExpiredInterface

 f FlushableInterface

 f IterableInterface

 f TaggableInterface

 f TotalSpaceCapableInterface

Redis caching
The Redis is a key-value data store that stores the data in-memory, which is extremely well
done and certainly is a caching method worth using. This adapter also extends from the
AbstractAdapter.

This adapter implements the following interfaces:

 f FlushableInterface

 f TotalSpaceCapableInterface

If we want to use this caching adapter, we need to make sure the redis
extension is loaded, otherwise this storage adapter cannot be used. Please
make sure the extension is installed and enabled.

Setting up the Essentials

312

Session caching
The Session storage adapter uses the session to store our cache in. Although handy for one
user at a time, this method isn't really effective for users who view the same pages as it
builds up the cache every time a user initiates a session. This adapter also extends from the
AbstractAdapter.

This adapter implements the following interfaces:

 f ClearByPrefixInterface

 f FlushableInterface

 f IterableInterface

WinCache caching
The WinCache is an excellent adapter that is useful when running PHP on a Microsoft
Windows server. WinCache supports opcode caching, file system caching, and relative path
caching. This adapter also extends from the AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f FlushableInterface

 f TotalSpaceCapableInterface

For this method the wincache extension needs to be loaded, and if that
wasn't all you also need to be on Microsoft Windows to, to use this.

XCache caching
The XCache is an adapter that utilizes the XCache module in PHP, which is another cache
adapter like APC and is a fast opcode cacher, which is very useful. This adapter also extends
from the AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByNamespaceInterface

 f ClearByPrefixInterface

 f FlushableInterface

Appendix

313

 f IterableInterface

 f TotalSpaceCapableInterface

This adapter requires the XCache extension to be loaded and enabled in
PHP. Please make sure this is the case before trying to use the adapter.

ZendServerDisk caching
The ZendServerDisk adapter is a great file system cache adapter provided by the Zend Server
application. If we have the Zend Server installed, this adapter is a great way of storing the
cache on the file system as it integrates ridiculously good with the Zend Server. This adapter
also extends from the AbstractAdapter.

This adapter implements the following interfaces:

 f AvailableSpaceCapableInterface

 f ClearByNamespaceInterface

 f FlushableInterface

 f TotalSpaceCapableInterface

To make this adapter work you'll need to have the Zend Server installed,
otherwise it will just throw an exception.

ZendServerShm caching
The ZendServerShm adapter also requires us to have the Zend Server installed, but if we have
and we want to cache items in the shared memory (shm) then this is an amazing way of doing
it, as this adapter integrates very nicely with the Zend Server. This adapter also extends from
the AbstractAdapter.

This adapter implements the following interfaces:

 f ClearByNamespaceInterface

 f FlushableInterface

 f TotalSpaceCapableInterface

To make this adapter work you'll need to have the Zend Server installed
to make this adapter work, otherwise it will just throw an exception.

Setting up the Essentials

314

Cache patterns
When we start caching, we will quickly find ourselves in situations that are counteractive to
the performance while we just wanted everything to go faster. That is why there are classes in
ZF2 that are called Cache patterns, which are there for us to use when we want to overcome
some common problems.

Like the adapters, patterns are also always implementations of an interface; in this case the
PatternInterface. And because we usually also want some basic functionality, most of
the patterns also extend from the AbstractPattern class.

Options for the patterns are defined through the PatternOptions class, which is explained
a bit further on as well.

The CallbackCache pattern
What do we want, a callback or the cache? Sometimes we just don't know for sure, so we'll
let the pattern to figure it out itself! The CallbackCache pattern first makes sure if there
is a result for our callback already defined in the cache, and if so, returns that. If the result
is not in the cache yet, it will call our callback function, put our output in the result and then
return that. Either way, the second time that callback is being handled, we will get our cache
back. So if this is a long running method, it will be considerably faster when we don't have to
execute the code again.

This pattern also takes the arguments for that callback in consideration, which means you
don't really have to worry much about the callback providing you with the wrong results!

This Pattern uses the AbstractPattern class.

The CaptureCache pattern
The CaptureCache pattern captures the output we are sending to the browser by initiating
an ob_start() and ob_implicit_flush(). We can then do a check if the cache exists
every time we sent the output out, so that instead of generating it we just display the output.

This pattern uses the AbstractPattern class.

This pattern does not automatically output cache once defined, the
developer needs to get the cache themselves first before using the start
method. If we want to output cache when it exists before generating new
content we should use the OutputCache pattern.

Appendix

315

The ClassCache pattern
The ClassCache pattern caches the output of a class method call and returns that instead
of the actual call. But of course, this only happens when the cache is actually available,
otherwise it will just do the method call and cache the results. The class name (not the object)
needs to be set in the PatternOptions::setClass to make it work.

This pattern uses the AbstractPattern class.

The ObjectCache pattern
The ObjectCache pattern caches the object and can be used to call methods upon its
retrieval, very handy if we have objects that need to persistent for a very long time. The object
needs to be set in the PatternOptions::setObject to make it work.

This pattern uses the AbstractPattern class.

The OutputCache pattern
The OutputCache pattern outputs the cache if it is defined. If not, then OutputCache
caches the output and sets the cache upon script end (or call to the end method, whichever
comes first).

This pattern uses the AbstractPattern class.

The PatternOptions pattern
The PatternOptions pattern can be used to set options or get options from and to the
patterns (setOptions and getOptions respectively). For most patterns some form of
options need to be set before the pattern can be used. Think here about the setStorage
method for example, because the pattern needs to know the storage adapter before it can
actually store things.

Explaining the difference
Storage adapters store and retrieve the cache data. We can set options to determine the
length of the validity or perhaps check if the cache is full or not, but we can't determine how it
is stored, as that is part of the adapter's job description.

Patterns however don't store anything themselves. They determine if they need to store
anything by checking if the cache already exists, or if the cache is what we expect it to be (for
example, when we use a different method call or different arguments to that call). They do tell
the adapters what they want to retrieve and store, so that the adapter then can find out how
to retrieve it from the actual storage again.

In a developer's eye we would rather be using patterns before we would want to use the
adapters, as we'd not want to interfere with the adapters too much if there are already
patterns doing most of the work for us.

Index
Symbols
.mo file 44, 50
.po file 44, 50

A
AbstractActionController 119
AbstractHydrator class 208
abstract mapper class

creating 174, 175
Action view helper

about 121
cons 122
pros 122
used, for getting re-usable content 120

annotated form
elements, adding 78
setting up 87

Apc adapter
about 309
interfaces 309

application
date/time, localizing 56
essentials, checking 44, 45
essentials, setting up 44, 45
localizing 51-56
translating 43, 44

application.config.php file
editing 31

Application module
translation, setting up 49

Aspect-Oriented Programming (AOP) 40
authentication 227

authentication methods
DbTable adapter 222-224
Digest adapter 226
Http adapter 222, 224
LDAP adapter 226

AvailableSpaceCapableInterface 308

B
BasePath view helper 110, 113
basic form

creating 72
setting up 86

C
cache

class map, caching 258, 259
configuration, caching 254, 255
output, caching 255-258
performing 253, 254

cache patterns
about 314
CallbackCache 314
CaptureCache 314
ClassCache 315
ObjectCache 315
OutputCache 315
PatternOptions 315

caching 253
caching system

application, benchmarking 263, 264
class caching, implementing 265-268
configuration/class map cache, implementing

264, 265
setting up 262

318

CallbackCache pattern 314
Capabilities 308
CaptureCache pattern 314
catalogs 47
ClassCache pattern 315
ClearByNamespaceInterface 308
ClearExpiredByFactor plugin

about 260
using 260

ClearExpiredInterface 308
client language

identifying 56
composer.json file 300, 301
Composer, Zend Framework 2

about 299
composer.json file 300
packages, upgrading 301
using 300

config folder, Zend Framework 2 303
configuration

application.config.php file, editing 31
creating, for local machine 30, 31
global configuration, creating 29, 30
using 28
view helper, adding to 103

connector
creating 171, 173

context switching
multiple strategies, defining to output 127
using, for different output 127
view model, determining on accept header

128-130
controller

strings, translating 46
createStatement() function 159
currencies

localizing, within view 55, 57
custom authentication method

adapter, creating 240
adapter outline 240
certificate expiry, checking 246, 247
certificate fields, verifying 245, 246
certificates 252
certificate, verifying 244
creating 248-251
getter and setter, creating for Database

adapter 247, 248

getter, creating 241, 242
secure connection, verifying 243
setter, creating 242
writing 239, 240

custom form element
creating 99

custom view strategy/renderer
writing 130
XmlOutput renderer, writing 130-141

D
database

connecting to 147
multiple database connecting to, configuration

used 150, 152
MySQL database connecting to, code used

151, 152
MySQL database connecting to, configuration

used 148-152
ServiceManager 153

Database Access Object (DAO)
about 184
abstract mapper class, creating 174, 175
configuration, creating 169-171
connector, creating 171, 173
creating 168, 169
Data Transfer Object (DTO), creating 176, 178
mapper class, creating 178-184
mapper interface, creating 173
new module, creating 169

database authentication
action, setting up 235-238
authentication service, creating 230-233
controller, setting up 234
module initialization, setting up 227-230
setting up 227
working 238

Data Transfer Object (DTO)
creating 176, 178

date
localizing, within view 57

date/time
localizing 56

dba adapter
interfaces 309

319

DB profiler
new profiler, setting up 167, 168
optimization with 166

DbTable adapter 222, 223
default view strategies 125
dependency injection

about 23, 24
initializing 25
initializing, at call time 24
initializing, through Configuration object 26,

27
properties, defining 28
properties, defining with FQ setter parameter

28
singleton pattern 28

Dependency Injection (DI) 108
Digest adapter 226
Doctype view helper 111, 113

E
elements

adding, to annotated form 78
adding, to form 87, 88
adding, to Zend\Form extend form 77

e-mail
receiving 62, 63, 69
sending 57, 62
sending, into files 60-62
sending, through sendmail 57, 58
sending, through SMTP server 58, 62

Event-driven architecture 41
EventManager

about 33
Aspect-Oriented Programming (AOP) 40
bootstrap, using 33
Event-driven architecture 41
EventManager class 35, 36, 38
methods 40
Observer pattern 40
session, starting 33, 34
View output, changing 39, 40

ExceptionHandler plugin
about 260
using 260

Exception handling
about 271, 272
classes 272-275
implementing, on dispatch or rendering 272-

275
try-catch block 275

F
Feed strategy 123-126
file system adapter

about 310
interfaces 310

filters 88
FirePHP logger

implementing 277, 278
working 277

FirePHP log() method 279
flags 65
FlushableInterface 308
FormButton

about 90
working 96

FormCaptcha
about 90
working 96

FormCheckbox
about 91
working 97

FormCollection
about 91
working 97

FormColor
about 92
working 97

FormDate
about 93
working 97

FormDateTime
about 93
working 97

FormDateTimeLocal
about 93
working 97

form element
creating 104
displaying 103

320

FormElementErrors
about 95
working 98

FormEmail
about 93
working 97

FormFile
about 93
working 98

FormHidden
about 93
working 98

FormImage
about 94
working 98

FormInput
about 94
validating 79-85
working 98

FormLabel
about 94
working 98

forms
about 71, 88, 89
creating 71, 72
elements, adding to 87, 88
extending, from Zend\Form class 72-74
working 96
Zend\Form\Annotation, using 74-77

form view helper
creating 100-102

form view helpers
Form 89
FormButton 90
FormCaptcha 90
FormCheckbox 91
FormCollection 91
FormColor 92
FormDate 93
FormDateTime 93
FormDateTimeLocal 93
FormElementErrors 95
FormEmail 93
FormFile 93
FormHidden 93
FormImage 94
FormInput 94

FormLabel 94
using 89

G
getAutoloaderConfig

implementing 190
getAutoloaderConfig method 196
getControllerConfig method

about 197
implementing 191

getControllerPluginConfig method
about 197
implementing 191

getData() method 88
getFlags() method 65
get() method 219
getServiceLocator 219
Gettext 50
getViewHelperConfig method

about 197
implementing 191

global configuration
creating 29, 30

global layout template
creating 114
error templates, creating 117-119
main layout file, creating 115, 116

H
hasFlag() method 65
Http adapter 222, 224
hydrator

about 206
creating 207-209, 215

hydrator strategy
creating 210-216

I
IBM DB2 driver 146
IgnoreUserAbort plugin

about 260
using 260

IMAP mail server
connecting to 63

321

indexAction method 278
ini array 51
init_autoloader.php file, Zend Framework 2

306
isValid() method 88
IterableInterface 308

J
JSON strategy 123, 126

L
LDAP adapter 226
Linux

Zend Server Community Edition, installing
296, 297

loadModules event 193, 194
loadModules.post event

about 195
attaching to 189, 195

loadModules.resolve event 194
logger system

FirePHP logger, implementing 277, 278
implementing 276
simple file logger, implementing 276-278

logging 275
Log\Logger 279

M
machine object 50
Maildir connection

keeping alive 66-69
Maildir++ Quota system 65, 69
mapper class

creating 178-180
mapper interface

creating 173
Memcached adapter

about 310
interfaces 311

Memory adapter
about 311
interfaces 311

model
about 206, 216
accessing 206

class, documenting 215
location 214
methods 214
purpose 213
setting up 206
testing 214

module
creating 187, 188

module directory
creating 192

module folder, Zend Framework 2 303, 304
ModuleManager 192
ModuleManager events

about 193
loadModule event 194
loadModules event 193
loadModules.post event 195
loadModules.resolve event 194

Module.php
creating 188-193

modules, using as widget
about 197
comment/controller/index, creating 198-201
comment module, creating 198
comments, getting through AJAX 203-205
controller, creating 198
forward(), using 202-205
view helper, using 201-205
widgetizing 205

multiple databases
connecting to, configuration used 150

MySQL database
connecting to, code used 151, 152
connecting to, configuration used 148-152

MySQLi driver 146

N
No Operation command 70
noop() function 67

O
ObjectCache pattern 315
Observer pattern 40
OCI8 driver 146
onBootstrap method 189
OptimizableInterface 308

322

OptimizeByFactor plugin
about 261
using 261

OutputCache pattern 315

P
ParameterContainer object 154, 159
Partial view helper 111, 114
PatternOptions pattern 315
PDO driver 147
PGSQL driver 147
PHP array 49, 50
PHPDoc 215
PHP DocBlock 215
PHPUnit cheat sheet

reference link 293
PHPUnit XML configuration file

reference link 293
Poedit

about 44
strings, translating with 47, 48
URL 44, 50

POP3 mail server
connecting to 64

POP3 server
connecting to 69

portable object 50
prepared statements

using 155
Profiler$$profileStart() method 168
public folder, Zend Framework 2 305
public/index.php file, Zend Framework 2 306

Q
queries

createStatement, using 159
executing 153
executing, TableGateway used 160, 162
joins conditions 164, 165
prepared statements, using 155, 159
quote identifier 156
quote identifier, chain 156
quote identifier, in fragment 158
quote (trusted) value 157
quote value list 157
raw SQL 158

raw SQL, using 153, 154
record, deleting 163
record, updating 162, 163
SQL, quoting 159

query() method 159
quote identifier

about 156
chain 156
in fragment 158

quoteIdentifierChain method 156
quoteIdentifierInFragment method 158
quote value list 157

R
record

deleting 163
inserting 160, 162
updating 162, 163

Redis adapter
about 311
interfaces 311

retrieveLocales() method 54
reusable Views

child, defining to ViewModel instance 120,
121

creating 119
creating, Action view helper used 120

routine
handling 14

routing
defining 14
setting up 14, 16, 17
SimpleRouteStack, using 18
TreeRouteStack, using 19

S
sendmail

e-mail, sending through 57, 58
Serializer plugin

about 261
using 261

service
creating 217-219
getting, from within controller 219

ServiceManager 153, 217

323

Session storage adapter
about 312
interfaces 312

simple file logger
implementing 276-278

SlmLocale module 57
URL 57

SMTP server
e-mail, sending through 58, 62

SQL
quoting in 159

SQLSRV driver 147
start() method 69
stop() method 69
storage adapters

about 308
Apc adapter 309
dba 309
differentiating, with patterns 315
file system 310
implementing 308
Memcached adapter 310
Memory adapter 311
Redis 311
Session storage adapter 312
WinCache 312
XCache 312
ZendServerDisk 313
ZendServerShm 313

storage plugins
about 259
ClearExpiredByFactor plugin 260
ExceptionHandler plugin 260
IgnoreUserAbort plugin 260
OptimizeByFactor plugin 261
Serializer plugin 261
using 261, 262

strings
translating, in controller 46
translating, in view 47
translating, with Poedit 47, 48

structures, Zend Framework 2
about 302
config folder 303
init_autoloader.php file 306
module folder 303

public folder 305
vendor folder 306

T
TableGateway

used, for executing queries 160
TableGatewayInterface 166
TaggableInterface 308
TDD (test-driven development) 283
TotalSpaceCapableInterface 308
translate() method 48
translatePlural() method 49
translation, Application module

setting up 49
try-catch block 275

U
Unit testing

about 279-282
discipline 283
Pseudo-code examples 280, 281, 282
setting up 284-292
TDD (test-driven development) 283
working 282, 292

URL view helper 111, 114

V
validation 88
vendor folder, Zend Framework 2 306
view

BasePath view helper 110
configuration 108
currencies, localizing 55, 57
date, localizing within 57
Doctype view helper 111
Partial view helper 111
strings, translating 47
template file, marking 107, 108
URL view helper 111
variables, setting in ViewModel instance 107
ViewManager, configuring 106
ViewModel instance 109
ViewRenderer helper 110
ViewStrategy class 109

324

working with 106
Zend\View\Helper\AbstractHelper 113

view helper
adding, to configuration 103

ViewManager
configuring 106

ViewModel instance
about 109
child, defining 122
variables, setting 107

ViewRenderer helper 110
view strategies/renderers

default view strategies 125
Feed strategy 123
JSON strategy 123
using 122
view strategy, adding 123
view strategy class 125

view strategy
about 126
adding 123

view strategy class 109, 125

W
widgetizing 197, 205
WinCache adapter

about 312
interfaces 312

Windows
Zend Server Community Edition, installing

297

X
XCache adapter

about 312
interfaces 312

XmlModel 142
XmlOutput renderer

creating 130-141
XmlRenderer 142
XmlStrategy 143

Z
Zend\Form extend form

elements, adding 77
Zend Framework

URL 168
Zend Framework 2

about 43
application, localizing 51-56
application, translating 43, 44
authentication methods 221
basic service 217
cache patterns 314
Composer 299
Composer, initializing 9, 10
documentation 299
downloading 299
e-mail, receiving 62, 63, 69
e-mail, sending 57, 62
EventManager 33
Exception handling 271
flow chart diagram 307
logging 275
module, creating 187
phpcloud, coding in 299
searching 298
setting up 7-9
skeleton, cloning 9
skeleton, moving 9
storage adapters 308
storage plugins 259
structures 302
Unit testing 279

Zend\Mvc\Router\Http\Hostname names-
pace 19

Zend\Mvc\Router\Http\Literal class 19
Zend\Mvc\Router\Http\Method class 20
Zend\Mvc\Router\Http namespace 19
Zend\Mvc\Router\Http\Part class 20
Zend\Mvc\Router\Http\Regex class 21
Zend\Mvc\Router\Http\Scheme class 22
Zend\Mvc\Router\Http\Segment class 22

325

ZendServerDisk adapter
about 313
interfaces 313

ZendServerShm adapter
about 313
interfaces 313

Zend\View\Helper\AbstractHelper 113
ZF2 skeleton application 72

Zend Server
about 295
first-time run 297, 298
installing 296
URL 296

Zend Server Community Edition
installing, on Linux 296, 297
installing, on Windows 297

Thank you for buying

Zend Framework 2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Zend Framework 2.0 by
Example: Beginner's Guide
ISBN: 978-1-78216-192-9 Paperback: 228 pages

A step-by-step guid to help you build full-scale web
applications using Zend framework 2.0

1. Master application development with Zend
Framework 2.0

2. Learn about Zend Framework components and
use them for functions such as searching, image
processing, and payment gateway integrations

3. Integrate third-party services for media sharing
and payment processing

PHP Application Development
with NetBeans: Beginner's
Guide
ISBN: 978-1-84951-580-1 Paperback: 302 pages

Boost your PHP development skills with this step-by-step
practical guide

1. Clear step-by-step instructions with lots of
practical examples

2. Develop cutting-edge PHP applications like never
before with the help of this popular IDE, through
quick and simple techniques

3. Experience exciting features of PHP application
development with real-life PHP projects

Please check www.PacktPub.com for information on our titles

Expert PHP 5 Tools
ISBN: 978-1-84719-838-9 Paperback: 468 pages

Proven enterprise development tools and best practices
for designing, coding, testing, and deployment PHP
applications

1. Best practices for designing, coding, testing, and
deploying PHP applications – all the information in
one book

2. Learn to write unit tests and practice test-driven
development from an expert

3. Set up a professional development environment
with integrated debugging capabilities

4. Develop your own coding standard and enforce it
automatically

Magento 1.4 Development
Cookbook
ISBN: 978-1-84951-144-5 Paperback: 268 pages

Extend your Magento store to the optimum level by
developing modules and widgets

1. Develop Modules and Extensions for Magento 1.4
using PHP with ease

2. Socialize your store by writing custom modules
and widgets to drive in more customers

3. Achieve a tremendous performance boost by
applying powerful techniques such as YSlow,
PageSpeed, and Siege

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Zend Framework 2 Basics
	Introduction
	Setting up a Zend Framework 2 project
	Handling routines
	Understanding dependency injection
	Using configurations to your benefit
	The EventManager and Bootstrap

	Chapter 2: Translating and
Mail Handling
	Introduction
	Translating your application
	Localizing your application
	Sending mail
	Receiving mail

	Chapter 3: Handling and Decorating Forms
	Introduction
	Creating forms
	Using form view helpers
	Creating a custom form element and form view helper

	Chapter 4: Using View
	Introduction
	Working with View
	Creating a global layout template
	Creating reusable Views
	Using view strategies/renderers
	Using context switching for a different output
	Writing a custom view strategy/renderer

	Chapter 5: Configuring and
Using Databases
	Introduction
	Connecting to a database
	Executing simple queries
	Executing queries using the TableGateway
	Optimization with a DB profiler
	Creating a Database Access Object

	Chapter 6: Modules, Models,
and Services
	Introduction
	Creating a new module
	Using modules as a widget
	A Model and a Hydrator
	A basic service

	Chapter 7: Handling Authentication
	Introduction
	Understanding Authentication methods
	Setting up a simple database Authentication
	Writing a custom Authentication method

	Chapter 8: Optimizing Performance
	Introduction
	Caching, and when to Cache
	Understanding and using storage plugins
	Setting up a caching system

	Chapter 9: Catching Bugs
	Introduction
	Handling Exceptions – your partner in crime
	Logging and how it makes your life easier
	Unit testing, why would you do it?
	Setting up and using unit testing

	Appendix: Setting up the Essentials
	Making sure you have all that you need
	Downloading Zend Framework 2 and finding its documentation
	Composer and its uses within Zend Framework 2
	Basic Zend Framework 2 structures
	About storage adapters and patterns

	Index

