

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

MEAP Edition
Manning Early Access Program

Copyright 2007 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning.com/�
http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Table of Contents

Part 1: The essentials

 1. Introducing the Zend Framework

2. Hello Zend Framework!

Part 2: A core application

3. Building a web site with the Zend Framework

4. Ajax

5. Managing the database

6. User authentication and authorisation

7. Forms

8. Searching

9. Email

10. Deployment

Part 3: More power to your application

11. Talking with other applications

12. Mash ups with public web services

13. Caching: making it faster

14. Internationalization and localization

15. Creating PDFs

16. Integrating with other PHP libraries

 Appendix A. Stuff you (should) already know

Appendix B. System-specific gotchas

Appendix C. Zend Framework Core Components reference

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

1

Introducing the Zend Framework
PHP has been used to develop dynamic websites for over 10 years. Initially all PHP websites were written as
PHP code interspersed within HTML on the same page. This works very well initially as there is immediate
feedback and for simple scripts this appears to be all that is needed. PHP grew in popularity through versions 3
and 4, and so it was inevitable that larger and larger applications would be written in PHP. It became obvious
very quickly that intermixing PHP code and HTML was not a long term solution for large websites.

The problems are obvious in hindsight: maintainability and extensibility. Whilst PHP intermixed with
HTML allows for extremely rapid results, in the longer term it is hard to continue to update the website. One
of the really cool features of publishing on the web is that it is dynamic with content and site layouts changing.
Large websites change all the time. The look and feel of the site is updated regularly. New content is added
and content is regularly re-categorized as the needs of the users (and advertisers!) change. Something had to
be done!

The Zend Framework was created to help ensure that the production of PHP based websites is easier and
maintainable in the long term. It contains a rich set of reusable components containing everything from a set of
Model-View-Controller application components to PDF generation. Over the course of this book, we will look
at how to use all the components within the context of a real website.

1.1 Introducing structure to PHP websites
The solution to this tangled mess of PHP code and HTML on a website is structure. The most obvious
introduction to structured applications within PHP sites is applying the concept of “separation of concerns”.
This means that the code that does the display should not be in the same file as the code that connects to the
database and collects the data as shown in Figure 1.1.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 1.1: The organization of a typical PHP file created by a novice interleaves HTML and PHP code in a linear fashion as the file is
created.

The first stages of introducing structure to a website’s code happen by default for most developers; the
concept of reusability dawns. Generally, this means that the code that connects to the database is separated into
a file called something like db.inc.php. Then it seems logical to separate out the code that displays the common
header and footer elements on every page. Functions are introduced to help solve the problem of global
variables affecting one another

As the website grows, common functionality is grouped together into libraries. Before you know it, the
application is much easier to maintain and adding new features becomes possible again. This stage lasts for a
little while and the website continues to expand until it gets to the point where the supporting code is so large
that you can’t hold a picture of how it all works in your head.

PHP coders are used to standing on the shoulders of giants as our language provides easy access to
libraries such as the GD image library, the many database client access libraries and even system specific
libraries such as COM on Windows. It was inevitable that Object-Oriented Programming would enter the PHP
landscape. Whilst classes in PHP4 provided little more than glorified arrays, PHP5 provides excellent support
for all the things you’d expect in an object oriented language. Hence there are visibility specifiers for class
members (public, private and protected) along with interfaces, abstract classes and support for exceptions.

The improved object-oriented support allows for more complicated libraries (known as frameworks) to
evolve, such as the Zend Framework which supports a way of organizing web application files know as the
MVC design pattern. This is shown in Figure 1.2.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 1.2: The organization of a typical MVC application

An application designed using MVC principles results in more files. Each file is specialized in what it does

which makes maintenance much easier. For example, all the code that makes database queries is stored in
classes known as Models. The actual HTML code is known as the View (which may also contain simple PHP
logic) and the Controller files handle the connection of the correct models to the correct views to display the
desired page.

The Zend Framework isn’t the only option for organizing a website based on MVC principles; there are
many others in the PHP world. Let’s look at what the Zend Framework contains and why it should be
considered.

1.2 Why use the Zend Framework?
As you have this book in your hands, you probably want to know why you’d be interested in the Zend
Framework over all the other PHP frameworks out there. In a nutshell, the Zend Framework introduces a
standardized set of components that allow for easy development of web applications. These applications can be
easily developed, maintained and enhanced.

The key features of the Zend Framework are:
 Everything in the box
 Modern design
 Easy to learn
 Full documentation
 Simpler Development
 Rapid development

1.2.1 Everything in the box
The Zend Framework is a comprehensive full stack framework that contains everything you need to develop
your application. This includes a robust MVC component to ensure that your website is structured according to
best practices. Accompanying the MVC component, there are components for authentication, searching,
localization, PDF creation, email and connecting to web services, along with a few other more esoteric items
as shown in Figure 1.2.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 1.3: The Zend Framework can be divided into ten main modules

That’s not to say that the Zend Framework doesn’t “play nice” with other libraries; it does that too. A core
feature of the design of the framework is that it is easy to use just those bits you want to use with the rest of
your application or with other libraries such as PEAR, the Doctrine ORM or the Smarty template library.

1.2.2 Modern design
The Zend Framework is written in object-oriented PHP5 using the modern design techniques, known as

design patterns. Software design patterns are recognized high level solutions to design problems and, as such,
are not a specific implementation of the solution. The actual implementation depends on the nature of the rest
of the design. The Zend Framework makes use of many design patterns and its implementation has been
carefully designed to allow the maximum flexibility for application developers without making them do too
much work!

The framework recognizes the PHP way and doesn’t force you into using all the components, so you are
free to pick and choose between them. This is especially important as it allows you to introduce specific
components into an existing site. The key is that each component within the Framework has very few
dependencies on other components.

1.2.3 Easy to learn
If you are anything like me, learning how a vast body of code works is hard! Fortunately the Zend Framework
is modular and has a design goal of simplicity which makes it easy to learn, one step at a time. Each
component doesn’t depend on lots of other components and so is easy to study. The design of each component
is such that you do not need to understand how it works in its entirety before you can use it and benefit from it.
Once you have some experience of using the component, building up to use the more advanced features is
straight-forward as it can be done in steps. This is key to reducing the barrier to entry for most users.

For example, the configuration component Zend_Config is used to provide an object oriented interface to
a configuration file. It supports two advanced features: section overloading and nested keys, but neither of
these features need to be understood in order to use the component. Once the user has a working

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

implementation of Zend_Config in their code, confidence increases and so using the advanced features is a
small step.

1.2.4 Full documentation
No matter how good the code is, lack of documentation can kill a project through lack of adoption. The Zend
Framework is aimed at developers who do not want to have to dig through all the source code to get their job
done and so the Zend Framework puts documentation on an equal footing with the code. This means that the
core team will not allow new code into the framework unless it has accompanying documentation.

There are two types of documentation supplied with the framework: API and end-user. The API
documentation is created using PHPDocumenter and is automatically generated using special “docblock”
comments in the source code. These comments are typically found just above every class, function and
member variable declaration. The key advantage of using docblocks is that IDEs such as PHPIDE in Eclipse or
Zend’s Studio are able to supply auto-completion tool tips whilst coding and so improve developer
productivity.

The Zend Framework also supplies a full manual as part of the download and also available online at
http://framework.zend.com/manual. The manual provides details on all components of the framework and
shows what functionality is available. Examples are provided to help you get started in using the component in
an application. More importantly, in the case of the more complicated components (such as Zend_Controller),
the theory of operation is also covered, so that you can understand why the component works the way it does.

The documentation provided with the framework does not explain how to fit all the components together
to make a complete application. As a result, a number of tutorials have sprung up on the web by community
members to help developers get started on the framework. These have been collated on a web page on the
framework’s wiki at http://framework.zend.com/wiki/x/q. The tutorials, whilst a useful starting point, do not
tend to go depth with each component or show how it works within a non-trivial application, which is why this
book exists.

1.2.5 Simpler development
As we have noted, one of PHP’s strengths is that developing simple dynamic web pages is very easy. This has
enabled millions of people to have fantastic websites who may not have had them otherwise. The ability of
PHP programmers range from people who are beginners to programming through to enterprise developers
needing to meet their deadlines. The Zend Framework is designed to make development simpler for every type
of developer.

So how does it make development simpler? The key feature that the framework brings to the table is
tested, reliable code that does the “grunt” work of an application. This means that the code you write is the
code you need for your application. The code that does the “boring” bits is taken care of for you and is not
cluttering up your code.

1.2.6 Rapid Development
The Zend Framework makes it easy to get going on your web application or add new functionality to a current
website. As the framework provides many of the underlying components of an application, you are free to
concentrate on the core parts of your application, rather than on the underlying foundation. Hence, it is easy to
get started quickly on a given piece of functionality and immediately see the results.

Another way the framework speeds up development is that the default use of most components is the
common case. In other words, you don’t have to worry having to set lots of configuration settings for each

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://framework.zend.com/manual
http://framework.zend.com/wiki/x/q
http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

component just so that you can get started using it. For example, the most simplistic use of the whole MVC is
bootstrapped with just:

require_once('Zend/Loader.php');
Zend_Loader::registerAuthoload();
Zend_Controller_Front::run('/path/to/controllers');

Once up and running, adding a new page to your application can be as easy as adding a new function to a

class, along with a new template file in the correct directory. Similarly, Zend_Session provides a multitude of
options that can be set so that you can manage your session exactly how you want to, however none need to be
set in order to use the component for most use-cases.

1.2.7 Structured code is easy to maintain
As we have seen earlier, separating out different responsibilities makes for a structured application. It also
means finding what you are looking for is easier whilst bug fixing. Similarly, when you need to add a new
feature to the display code, the only files you need to look at are related to the display logic. This avoids bugs
created inadvertently by breaking something else. The framework also encourages you to write object oriented
code, which helps to ensure that maintenance of your application is simpler.

1.3 What is the Zend Framework?
The Zend Framework is a PHP library for building PHP web application. It provides a set of components to
enable you to build PHP applications more easily which will be easier to maintain and extend over the lifetime
of the application. That rather simple description doesn’t tell the whole story though, so we will look at where
this framework came from and then have a brief look at what it actually contains

1.3.1 Where did it come from?
Frameworks have been around for years. The very first web framework I used in a real project was Fusebox
which was originally written for ColdFusion. Many other frameworks have come along since then, with the
next major highlight being Struts, written in Java. A number of PHP clones of Structs were written, but didn’t
translate well to PHP. The biggest difference being that Java web applications run in a virtual machine that
runs continuously, so the startup time of the application is not a factor for every web request. PHP initializes
each request from a clean slate and so the large initiation required for Structs clones made them relatively slow
as a result. Recently, a new framework entered the world based on a relatively unknown language called Ruby.
Rails (or Ruby on Rails as it is also known) promoted the concept of convention over configuration and has
taken the web development world by storm. Shortly after Rails came along, a number of direct PHP clones
have appeared, along with a number of frameworks that are inspired by Rails, rather than direct copies.

In late 2005, Zend Technologies, a company that specializes in PHP, started their PHP Collaboration
project to advance the use of PHP. There are three strands to the project: an eclipse IDE plugin called PDT, the
Zend Framework and the Zend Developer Zone website. The Zend Framework is an open source project that
provides a web framework for PHP and is intended to become one of the standard frameworks that PHP
applications of the future will be based on.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

1.3.2 What’s in it?
The Zend Framework is composed of many distinct components grouped into a set of top level modules. As a
complete framework, you have everything you need to build enterprise ready web applications. However, the
system is very flexible and has been designed so that you can pick and choose to use those bits of the
framework that are applicable to your situation. Following on from the high level overview in Figure 1.3
shown earlier, Figure 1.4 gives a good overview of all the components within the framework.

Core:
 Zend_Controller
 Zend_View
 Zend_Db
 Zend_Config
 Zend_Filter & Zend_Validate
 Zend_Registry
 Authentication and Access:
 Zend_Acl
 Zend_Auth
 Zend_Session
Internationalization:
 Zend_Date
 Zend_Locale
 Zend_Measure
Http:
 Zend_Http_Client
 Zend_Http_Server
 Zend_Uri

 Inter-application communication:
 Zend_Json
 Zend_XmlRpc
 Zend_Soap
 Zend_Rest
Web Services:
 Zend_Feed
 Zend_Gdata
 Zend_Service_Amazon
 Zend_Service_Flickr
 Zend_Service_Yahoo
Advanced:
 Zend_Cache
 Zend_Search
 Zend_Pdf
 Zend_Mail/Zend_Mime
Misc!
 Zend_Measure

Figure 1.4: The Zend Framework contains lots of components that cover everything required to build an enterprise application.

Each section of the framework consists of a number of components, which is usually the name of the main
class too. For example, Zend_View is the concrete view class used by applications. Each component also
contains a number of other classes too that are not listed in Figure 1.4. The classes that are actually used within
your application are discussed as we go through the book and learn about each component.

The Core Components
The core components provide a full-features Model-View-Controller (MVC) system for building applications
that separate out the view templates from the business logic and controller files. There are three families of
classes that make up the MVC system: Zend_Controller (Controller), Zend_View (View) and Zend_Db
(Model). Figure 1.5 shows the basics of the Zend Framework’s MVC system.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 1.5: MVC: the Zend Framework way

 The Zend_Controller family of classes provides a front controller design which dispatches requests to
controller actions (also known as commands) so that all processing is centralized. As you’d expect from a fully
featured system, the controller supports plug-ins at all levels of the process and has built in flex-points to
enable you to change specific parts of the behavior without having to do too much work.

The view template system is called Zend_View which provides a PHP based template system. This means
that, unlike Smarty or PHPTAL, all the view templates are written in PHP. Zend_View provides a helper plug-
in system to allow for creation of reusable display code. It is designed to allow for overriding for specific
requirements, or even replacing entirely with another template system such as Smarty.

Zend_Db_Table implements a table row gateway pattern to form the basis of the model within the MVC
system. The model provides the business logic for the application which is usually database-based in a web
application. Supporting Zend_Db_Table is Zend_Db which provides object oriented, database independent
access to a variety of different databases, such as MySQL, Postgres, SQL Server, Oracle and SQLite.

The most simplistic setup of the MVC components can be done with the very simple code:
require_once 'Zend/Controller/Front.php';
Zend_Controller_Front::run('/path/to/your/controllers');

It is more likely, however, that a more complicated bootstrap file will be required for a non-trivial
application as we will explore in chapter 2 when we build a complete Hello World application in Zend
Framework.

Working with the MVC classes are a couple of separate classes that are used to create the core of a
complete application. The framework encourages convention over configuration, however some configuration
is invariably required (such as database login details). Zend_Config allows for reading configuration data in

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

either INI or XML formats and includes a useful inheritance system for supporting different configuration
settings on different servers, such as production, staging and test.

Security is very much on the minds of every PHP developer worth his salt. Input data validation and
filtering is the key to a secure application. Zend_Filter and Zend_Validate are provided to help the developer
ensure that input data is safe for use in the application.

The Zend_Filter class provides a set of filters that typically remove or transform unwanted data from the
input as it passes through the filter. For example, an numeric filter would remove any characters that were not
numbers from the input and an HTML entities filter would convert the “<” character to the sequence “<”.
Appropriate filters can then be set up to ensure that the data is valid for the context it will be used in.

Zend_Validate provides a very similar function to Zend_Filter, except that it provides a yes/no answer to
the question “is this data what I expect?”. Validation is generally used to ensure that the data is correctly
formed, such as the data provided as an email address is actually an email address. In the case of failure,
Zend_Validate also provides a message indicating why the input failed validation so that appropriate error
messages can be provided back the end user.

Authentication and Access Components
Not every application needs to identify their users, but it is a surprisingly common requirement. Authorization
is the process of providing access to a given resource, such as a web page, to an authenticated user. That is,
authentication is the process of identifying and entity, usually via a token such as a username/password pair,
but could equally be via a fingerprint. Authorization is the process of deciding if the authenticated entity is
allowed to have access to, or perform operations on, a given resource, such as a record from a database.

As there are two separate processes required, the Zend Framework provides two separate components:
Zend_Acl and Zend_Auth. Zend_Auth is used to identify the user and is typically used in conjunction with
Zend_Session to hold that information across multiple page requests (known as token persistence). Zend_Acl
is then uses the authentication token to provide access to private information using the Role Based Access
Control List system.

As is becoming a watchword around here, flexibility is a key design decision within the Zend_Auth
component. There are so many ways to authenticate a user that the Zend_Auth system is built with the
intention that the user will provide their own. The most common scenario of HTTP digest authentication is
provided out of the box, but for any other method, you must create a class that extends Zend_Auth_Adapter.
Fortunately, this is not difficult as we will see in chapter 6.

As Zend_Acl is an implementation of the Role Based Access Control List system, the manual talks in lots
of abstract terms. This is because RBACL is a generic system that can provide access to anything by anyone
and so specific terms are discouraged. Hence we talk about Roles requesting access to Resources. A Role is
anything that may want to access something that is under the protection of the Zend_Acl system. Generally, for
a web application, this means that a Role is a user that has been identified using Zend_Auth. A Resource is
anything that is to be protected. This is generally a record in a database, but could equally be an image file
stored on disk. As there is such a wide type of resources, the Zend_Acl system provides for us to create our
own very simply by implementing Zend_Acl_Role_Interface within our class.

Internationalization Components
As we live in a multi-cultural world with multiple languages, the framework provides a rich set of functionality
to allow for localizing your application to match your target users. This covers minor issues like ensuring that
the correct currency symbol is used through to full support for changing all the text on the page to the correct

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

language. Date and time routines are also provided with a simple object oriented interface to the multitude of
ways that we humans display the calendar.

Http Components
The Zend Framework provides a component to read data from other websites. Zend_Http_Client makes it easy
to collect data from other web sites and services and then present it on your site. A server component is also
provided to allow for PHP based serving for web pages. Obviously this component is intended for
development and other specialized requirements rather than general web page serving, as proper web-servers
like Apache are orders of magnitude faster!

Inter-application Communication Components
When you need to communicated with another application over HTTP, the most common transfer format is
one of two flavors of XML: XML-RPC and SOAP. As you would expect from an enterprise-class framework,
the Zend Framework provides components to allow for easy processing of both XML-RPC and SOAP
protocols. More recently, the lightweight JSON protocol is gaining favor, mainly due to how easy it is to
process within the JavaScript of an Ajax application. Zend_Json provides a nice solution to both creating and
reading JSON data.

Web Services Components
The Zend Framework provides a rich set of functionality to allow access to services provided by other
suppliers. These components cover generic RSS feeds along with specific components for working with the
public APIs from Google, Yahoo! and Amazon. RSS has come a long way from its niche amongst the more
technologically minded bloggers and is now used by the majority of news sites. Zend_Feed provides a
consistent interface to reading feeds in the various RSS and atom versions that are available without having to
worry about the details.

Google, Yahoo! and Amazon have provided public APIs to their online services in order to encourage
developers to create extended applications around the core service. For Amazon, the API revolves around
providing access to the data on amazon.com in the hope that the new application will encourage more sales!
Similarly, Yahoo! provides API access to their Flickr photo data in order to allow additional services for Flickr
users, such as the print service provided by moo.com. The traditional Yahoo! properties such as search, news
and images are also available via Zend_Service_Yahoo.

Google has a number of online applications that allow for API access which are supported by the
Zend_Gdata component. The Zend_Gdata component provides access to Google’s Blogger, Calendar, Base
and CodeSearch applications. In order to provide consistency, the Zend_Gdata component provides the data
using Zend_Feed, so if you can process an RSS feed, then you can process Google Calendar data too.

Advanced Components
There are a set of other components provided with the Zend Framework that do not fit easily into any category,
so I have rather lazily grouped them together into the advanced category. This potpourri of components
includes caching, searching, pdf creation, email and the rather esoteric measurement class.

Everyone wants a faster website and caching is one tool that can be used to help speed up your website.
Whilst not a sexy component, the Zend_Cache component provides a generic and consistent interface to cache
any data in a variety of back end systems such as disk, database or even with APC’s shared memory. This
flexibility ensures that you can start small with Zend_Cache and as the load on your site increases, the caching
solution can grow up with you to help ensure you get the most out of the server hardware.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Every modern website provides a search facility. Most provide a terrible search facility; so terrible that the
site’s users would rather search Google than use the site’s own system. Zend_Search is based on the Apache
Lucene search engine for Java and provides an industrial strength text search system that will allow your users
to find what they are looking for. As required by a good search system, it supports ranked searching so that the
best results are at the top, along with a powerful query system.

Another component that I’ve lumped into the advanced category is Zend_Pdf which covers the creation of
PDF files programmatically. PDF is a very portable format for creating documents intended for printing. This
is because you can control the position of everything on the page with pixel-perfect precision without having to
worry about differences in the way web browsers render the page. Zend_Pdf is written entirely in PHP and can
create new PDF documents or load existing one for editing.

Email Components
The Zend Framework provides a strong email component to allow for sending emails in plain text or HTML.
As with all Zend Framework components, emphasis has been placed on flexibility combined with sensible
defaults. Within the world of email, this means that the component allows for sending email using SMTP or
via the standard PHP mail() command. Additional transports can be easily slotted into the system by writing a
new class that implements Zend_Email_Transport_Interface. When sending email, a simple object-oriented
interface is used:
$mail = new Zend_Mail();
$mail->setBodyText('My first email!')
 ->setBodyHtml('My first email!')
 ->setFrom('rob@akrabat.com', 'Rob Allen')
 ->addTo('somebody@example.com', 'Some Recipient')
 ->setSubject('Hello from Zend Framework in Action!')
 ->send();

This snippet also shows a fluent interface where each member function returns an object to itself so that
they can be chained together to make the code more readable.

1.4 Zend Framework design philosophy
The Zend Framework has a number of published goals that make up the design philosophy of the framework.
If these goals do not mesh with what your view on developing PHP applications then the Zend Framework is
unlikely to be a good fit for your way of doing things. Let’s look at what makes the Zend Framework unique.

1.4.1 Provide high quality components
All code within the Zend Framework library will be of high quality. This means that it will be written using
PHP5’s features and will not generate any messages from the PHP parser (i.e. it is E_STRICT compliant). This
is good as it means that any PHP parser messages in your logs come from your code, not the framework; this
will help debugging considerably! Zend also defines high quality to include documentation, so the manual for
a given component is as important as the code.

It is intended that it will be possible to develop entire applications with no external library dependencies
(unless you want them). This means that the Zend Framework is intended to be a “full stack” framework (like
Ruby on Rails or the Django Python framework) rather than a set of components. This will ensure that there
will be consistency in the way you use all the components: how they are named, how they work and how the
files are laid out in sub directories. Having said that, it is important to Zend that the Zend Framework is
modular with few dependencies between modules. This ensures that it plays well with other frameworks and

Licensed to Menshu You <dollequatki@gmail.com>

mailto:rob@akrabat.com
mailto:somebody@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

libraries and you can therefore use as much or as little as you want. For example, if you just want PDF
generation, you don’t have to use the MVC system.

1.4.2 Simple as possible
Another design goal for the framework is the mantra “Don’t change PHP”. The PHP way is simple, pragmatic
solutions and so the Zend Framework is intended to reflect that simplicity in order to provide a simple solution
for mainstream developers. It is also powerful enough to allow for specialized usage via extension. The core
developers have done a great job in covering the common scenarios and providing “flex-points” to allow for
easy changing of the default behavior by those who want something more powerful or specialized.

1.4.3 Clean IP
All contributors to the Zend Framework have signed a Contributor License Agreement. This is an agreement
with Zend which defines intellectual property status of the contribution. That is, the contributor warrants that
(to the best of her knowledge), she is entitled to make the contribution and that no one else’s intellectual
property rights are being infringed. This is intended to help protect all users of the framework from potential
legal issues related to IP and copyright. The risk is minimal, but with relatively recent actions by SCO against
AutoZone shows that a litigator going after the user of the allegedly copyright infringing code is a possibility.
As with everything, it is better to be prepared.

1.4.4 Supported by Zend Technologies
An obvious but important consideration is that the Zend Framework is supported by the company Zend
Technologies. This means that the framework is unlikely to “die” due to inactivity of the core developers or by
lack of updating to the latest and greatest version of PHP. Zend Technologies also have the resources to
provide for the “boring” bits of the framework, such as documentation, which (as we all know) few developers
really like doing!

1.5 Alternative PHP frameworks
As usage of PHP is so broad, no one framework is going to suit everyone. In the PHP world there are many
other frameworks vying for your attention and all have their strengths and weaknesses. I have rather arbitrarily
picked four other frameworks which all have some traction in the community but these are by no means the
only choices. I have listed what I see as their strengths and weaknesses in Table 1.1.

Table 1.1 Key features matrix: Zend Framework, Cake, Code Igniter, Solar and Symfony
 Zend Framework Cake Code Igniter Solar Symfony
Uses PHP5 to full
advantage

Yes No No Yes Yes

Prescribed directory
structure

No
(Optional
recommended
structure)

Yes Yes No Yes

Official
internationalization
support

Yes In progress for
version 1.2

No Yes Yes

Command line
scripts required to
setup framework

No No No No Yes

Requires
configuration

Yes (minor amount) No No Yes Yes

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Comprehensive
ORM provided

No Yes No No Yes (Propel)

Good
documentation and
tutorials

Yes Yes Yes Yes Yes

Unit tests for source
available

Yes No No Yes Yes

Community support Yes Yes Yes Yes (some) Yes
License New BSD MIT BSD-style New BSD MIT

Whilst this book is all about the Zend Framework, the other frameworks are worth investigating to see if

they match better with your requirements. If you still need to support PHP 4, then you will need to use either
Cake or Code Igniter as the rest do not support PHP 4. In this day and age, however, it’s time to leave PHP 4
behind us!

1.6 Summary
In this chapter we have looked at what the Zend Framework is and why it is useful for writing web
applications. It enables rapid development of enterprise applications by providing a full stack framework using
best practices in object oriented design. The framework contains many components from an MVC controller
through PDF generation to providing a powerful search tool.

This book is about providing real world examples and so will have Ajax technology built in wherever it is
appropriate. Now, let’s move onto the core topic of this book and look at a how to build a simple, but complete
Zend Framework application in Chapter 2.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

2

Hello Zend Framework!
In chapter 2, we are going to look at a simple Zend Framework application that will display “Hello World!”.
For a standard PHP application, the code to do this constitutes one line in one file:
<?php echo 'Hello World';

As the Zend Framework requires many more files in order to create the foundation from which a full website
can be created. As a result, the code for our Hello World application may appear unnecessarily verbose as we
set the stage for the full blown website that will follow in the remainder of the book. We will also consider
how to organize the website’s files on disk to make sure we can find what we are looking for and look at the
Zend Framework files required to create an application that uses the Model-View-Controller (MVC) design
pattern. Let’s dive right in and look at what the Model-View-Controller design pattern is all about first.

2.1 The Model-View-Controller Design Pattern
In order to make sense of a Zend Framework application we need to cover a little bit of theory. There are many
framework classes involved along with a few files that we need to create ourselves. Therefore we should cover
the basics of the controller system used by the Zend Framework first.

The Zend Framework controller system is an implementation of the Model-View-Controller software
design pattern as shown in Figure 2.1. A software design pattern is a standard general solution to a common
problem. This means that whilst the exact implementation will differ, the concepts used to solve a problem
using a given pattern will be the same. The MVC pattern describes a way to separate out the key parts of an
application into three main sections.

Figure 2.1: MVC pattern diagram showing the three main sections of a web application along with the dispatcher that find the correct
controller to be executed in response to a request.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

2.1.1 The Model
The model part of the MVC pattern is all the code that works behind the scenes related to how this particular
application works. This is known as business logic. This is the code that decides how to apply the shipping
cost to an e-commerce order or the code that knows that a user has a first name and a surname. It follows
therefore that retrieving and storing data to a database is within the model layer. In terms of the code, the Zend
Framework provides the Zend_Db_Table class which provides table level access to the database and allows for
easily manipulating the data used by the application.

2.1.2 The View
The view is the display logic of the application. For a web application, this is usually the HTML code that
makes up the web pages, but can include, say, XML that is used for an RSS feed. Also, if the website allows
for export in CSV format, the generation of the CSV would be part of the view. The view files themselves are
known as templates as they usually have some code that allows for the displaying of data created by the model.
It is also usual to move the more complex template related code into functions known as View Helpers, View
Helpers improve the re-usability of the view code. By default the Zend Framework’s view class (Zend_View)
uses PHP within the template files, but another template engine such as Smarty or PHPTAL may be
substituted.

2.1.3 The Controller
The controller is the rest of the code that makes up the application. For web applications, the controller code is
the code that works out what to actually run in response to the web request. For Zend Framework applications,
the controller system is based on the design pattern known as Front Controller which uses a handler
(Zend_Controller_Front) and action commands (Zend_Controller_Action) which work together in tandem.
The front controller handler accepts all server requests and runs the correct action function within the action
command. This process is known as routing and dispatching. The action class is responsible for a group of
related action functions which perform the “real” work required from the request. Within the Controller of the
Zend Framework, it is possible to have a single request result in the dispatch of multiple actions.

2.2 The Anatomy of a Zend Framework Application
A typical Zend Framework application has many directories in it. This helps to ensure that the different parts
of the application are separated. The top level directory structure is shown in Figure 2.2.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 2.2: Directory layout for a standard Zend Framework application

There are four top level directories within the application’s folder:
1. application
2. library
3. tests
4. web_root

2.2.1 The application directory
The application directory contains all the code required to run the application and is not directly accessed by
the web server. In order to emphasize the separation between display, business and control logic, there are
three separate directories within application to contain the model, view and controller files. Other directories
may be created as required, for example for configuration files.

2.2.2 The library directory
All applications use library code as everyone reuses previously written code! In a Zend Framework
application, the framework itself is obviously stored here. However other libraries such as a custom super-set
of the framework, a database ORM library such as Propel, or a template engine such as Smarty may also be
used.

Libraries can be stored anywhere that the application can find them - either in a global directory or a local
one. A global include directory is one that is accessible to all PHP applications on the server, such as
/usr/php_include (or c:\code\php_include for Windows) and is set using the include_path setting within the
php.ini configuration file. Alternatively, each application can store its libraries locally within the application’s
directory. In this case we use a directory called library, though it is common to see this directory called lib,
include or inc.

2.2.3 The tests directory
The tests directory is used to store all unit tests that are written. Unit tests are used to help ensures that the code
continues to work as it grows and changes throughout the lifetime of the application. As the application is

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

developed, code that was written previously often needs to be changed (known as refactored) ready for the
addition of new functionality or as a result of other code added to the application. Whilst, within the PHP
world, test code is rarely considered important, you will thank yourself over and over again if you have unit
tests for your code.

2.2.4 The web_root directory
To improve the security of a web application, the web server should only have direct access to the files that it
needs to serve. As the Zend Framework uses the front controller pattern, all web requests are channeled though
a single file, usually called index.php. This file is the only PHP file that needs to be accessible by the web
server and so is stored in the web_root/ directory. Other common files that are accessed directly are images,
CSS and JavaScript files, so each has their own sub-directory within the web_root directory.

Now that we have an overview of the directory system used by a Zend Framework website, we can
proceed to add the files required to create a very simple application that displays some text on the page.

2.5 Hello World: File by File
To create a simple Hello World application we need to create four files within our directory structure: a
bootstrap file, an Apache control file (.htaccess), a controller file and a view template. A copy of the Zend
Framework itself needs to be added to the library directory. The final program will look as shown in Figure
2.3.

Figure 2.3: A minimal Zend Framework application requires a bootstrap file, a controller and a view working together to produce the
text “Hello World!”.

2.5.1 Bootstrapping
Bootstrapping is the term used to describe starting the application up. With the Front Controller pattern, this
file is the only file needed in the web root directory and so is usually called index.php. As this file is used for
all page requests, it is used for setting up the application’s environment, setting up the Zend Framework’s
controller system and then running the application itself as shown in listing 2.1.

Listing 2.1: web_root/index.php
<?php
error_reporting(E_ALL|E_STRICT); |#1
ini_set('display_errors', true); |
date_default_timezone_set('Europe/London'); |

$rootDir = dirname(dirname(__FILE__));

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

set_include_path$rootDir . '/library' |#2
 . PATH_SEPARATOR . get_include_path()); |

require_once 'Zend/Loader.php';
Zend_Loader::loadClass('Zend_Debug');
Zend_Loader::loadClass('Zend_Controller_Front');

// setup controller
$frontController = Zend_Controller_Front::getInstance(); #3
$frontController->throwExceptions(true); #4
$frontController->setControllerDirectory('../application/controllers');

// run!
$frontController->dispatch();

(annotation) <#1: Setup environment>
(annotation) <#2: Set the path>
(annotation) <#3: Zend_Controller_Front is a Singleton>
(annotation) <#4: Throw exceptions. Don’t do this in production!>

Let’s look at this file in more detail. Most of the work done in the bootstrap is initialization of one form or

another. Initially, the environment is set up correctly (#1) to ensure that all errors or notices are displayed.
PHP 5.1 introduced new time and date functionality that needs to know where in the world we are. There are
multiple ways to set this, but the easiest user-land method is date_default_timezone_set().

The Zend Framework is written with the assumption that the library directory is available on the
php_include path. There are multiple ways of doing this and the fastest for a global library is to alter the
include_path setting directly in php.ini. A more portable method, especially if you use multiple versions of the
framework on one server, is to set the include path within the bootstrap as we do here (#2).

The Zend Framework applications does not depend on any particular file, however it is useful to have a
couple of helper classes loaded early. Zend_Loader::loadClass() is used “include” the correct file for the
supplied class name. The function converts the underscores in the class’s name to directory separators and
then, after error checking, includes the file. Hence the code line
Zend_Loader::loadClass('Zend_Controller_Front'); and include_once

'Zend/Controller/Front.php'; have the same end result. Zend_Debug::dump() is used to output
debugging information about a variable by providing a formatted var_dump() output.

The final section of the bootstrap sets up the front controller and then runs it. The front controller class,
Zend_Controller_Front implements the Singleton design pattern (#3). This means that the class definition itself
ensures that there can only be one instance of the object allowed. A Singleton design is appropriate for a front
controller as it ensures that there is only ever one class that is processing the request. One of the consequences
of the Singleton design is that you cannot use the new operator to instantiate it and must, instead, use the
getInstance() static member function. The front controller has a feature that captures all exceptions thrown by
default and stores them into the Response object that it creates. This Response object holds all information
about the response to the requested URL and for HTML applications this is the HTTP headers, the page
content and any exceptions that were thrown. The front controller automatically sends the headers and displays
the page content when it finishes processing the request.

For our Hello World application, I’ve decided to instruct the front controller to throw all exceptions that
occur (#4). The default behaviour to store exceptions within the response object can be quite confusing for
people new to the Zend Framework, so let’s turn it off and force the error to be displayed. Of course, on a
production server, you shouldn’t be displaying errors to the user anyway and so you should either let the
controller catch exceptions or wrap the index.php code with a try/catch block yourself.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

To actually run the application we call the front controller’s dispatch() method. This function will
automatically create a request and response object for us to encapsulate the input and output of the application.
It will then create a router to work out which controller and action the user has asked for. A dispatcher object
is then created to load the correct controller class and call the action member function that does the “real”
work.

Finally, as we’ve noted above, the front controller outputs the data within the response object and so a web
page is displayed to the user.

2.5.2 Apache .htaccess
To ensure that all web requests that are not for images, scripts or style sheets are directed to the bootstrap

file, Apache’s mod_rewrite module is used. This can be configured directly in Apache’s httpd.conf file or in a
local Apache configuration file named .htaccess that is placed in the web_root/ directory. Listing 2.2 shows the
.htaccess file required for the Zend Framework:
Listing 2.2: web_root/.htaccess
Rewrite rules for Zend Framework
RewriteEngine on
RewriteCond %{REQUEST_FILENAME} !-f #1
RewriteRule .* index.php #2

(annotation) <#1 Only continue if requested URL is not a file on disk.>
(annotation) <#2 Redirect request to index.php.>

Fortunately, this is not the most complicated set of Apache mod_rewrite rules and so can be easily

explained. The RewriteCond statement and the RewriteRule command between them instruct Apache to route
all requests to index.php unless the request maps exactly to a file that exists within the web_root/ directory
tree. This will allow us to serve any static resources placed in the web_root directory, such as JavaScript, CSS
and image files, whilst directing any other requests to our bootstrap file allowing the front controller to work
out what to display to the user.

2.5.3 Index Controller
The front controller pattern maps the URL requested by the user to a particular member function (the

action) within a specific controller class. This process is known as routing and dispatching. The controller
classes have a strict naming convention requirement in order for the dispatcher to find the correct function. The
router expects to call a function named {actionName}Action() within the {ControllerName}Controller class.
This class must be within a file called {ControllerName}.php. If either the controller or the action are not
provided, then the default used is index. Therefore, a call to http://zfia.example.com/ will result in the “index”
action of the Index controller running. Similarly, a call to http://zfia.example.com/test will results in the index
action of the test controller running. As we will discover later, this mapping is very flexible, however the
default covers most scenarios out of the box.

Within the front controller system, the dispatcher expects to find a file called IndexController.php within
the application/controllers directory. This file must contain a class called IndexController and, as a minimum,
this class must contain a function called indexAction(). For our Hello World application, Listing 2.3 shows the
IndexController.php required.

Listing 2.3: The index controller: application/controllers/IndexController.php
<?php
Zend::LoadClass('Zend_View');

Licensed to Menshu You <dollequatki@gmail.com>

http://zfia.example.com/
http://zfia.example.com/test
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $ this->view->assign('title', 'Hello World!'); #1
 }
}

(annotation) <#1 Assign the title to the view property.>

As you can see, IndexController is a child class of Zend_Controller_Action which contains the request and
response objects for access within the action functions, along with a few useful helper functions to control the
program flow. For Hello World, our indexAction() function just needs to assign a variable to the view
property which is provided for us by an Action Helper called ViewRenderer.

NOTE

An Action Helper is a class that plugs into the controller to provide services specific to actions.

The ViewRenderer action helper performs two useful functions for us. Firstly, before our action is called,

it creates a Zend_View object and sets it to the action’s $view property allowing us to assign data to the view
within the action. Secondly, after our action finishes it automatically renders the correct view template into the
response object after the controller action has completed. This ensures that our controller’s action functions
can concentrate on the real work and not on the framework “plumbing”.

What is the “correct view template” though? The ViewRenderer looks for a template file named after the
action with a phtml extension within a folder named after the controller and it looks in the view/scripts
directory for this. This means that for the index action within the index controller, it will look for the view
template file view/scripts/index/index.phtml.

As we noted previously, the response’s body is automatically printed by the front controller, so anything
we assign to the body will be displayed in the browser and hence we do not need to echo ourselves.

Zend_View is the View component of the MVC troika and is a fairly simple PHP based template system.
As we have seen, the assign() function is used to pass variables from the main code body to the template which
can then be used within the view template file.

View Template
Finally, we need to provide a view template for our application. This file, index.phtml, is stored within the
views/scripts/index subdirectory. A useful convention that ViewRenderer supplies is to name all view files
with an extension of .phtml as a visual indication that they are for display only. Of course it’s easily changed
by setting the $_viewSuffix property of ViewRenderer. Even though this is a simple application, we have a
separate directory for each controllers view templates as this will make it much easier to manage as the
application grows. Listing 2.4 shows the view template.

Listing 2.4: The view template: views/scripts/index/index.phtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <title><?php echo $this->escape($this->title);?></title> #1
</head>
<body>
 <h1><?php echo $this->escape($this->title);?></h1>
</body>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

</html>

(annotation) <#1 convert special characters to their HTML entity representations.>

As, Zend_View is a PHP based template engine, we use PHP within the file to display data from the model
and controller. The template file, index.phtml in this case, is executed within a member function of Zend_View
and so $this is available within the template file which is the gateway to Zend_View’s functionality. All
variables that have been assigned to the view from within the controller are available directly as properties of
$this, as can be seen by the use of $this->title within index.phtml. Also, a number of helper functions, are
provided for use by templates to make them easier to write.

The most commonly used helper function is escape(). This function is used to ensure that the output is
HTML-safe and helps to secure your site from Cross-Site Scripting (XSS) attacks. All variables that are not
expected to contain displayable HTML should be displayed via the escape() function. Zend_View’s
architecture is designed so that creating new helper functions is encouraged. For maximum flexibility, the
convention is that view helper functions return their data and then the template file echoes it to the browser.

With these four files in place, we have created a minimal Zend Framework application with all the pieces
in place ready for building a full scale website and you should now have a fundamental understanding of how
the pieces fit together. We will now look at what is happening within the Zend Framework’s code which is
providing the MVC foundation that our code has been built upon.

2.6 How MVC Applies to the Zend Framework
Whilst there appears to be many different ways of routing web requests to code within web applications, they
can all be grouped into two camps: page controllers and front controllers. A page controller uses separate files
for every page (or group of pages) that make up the website and is traditionally how most PHP websites have
been built. This means that the control of the application is decentralized across lots of different files which
can result in repeated code, or worse, repeated and slightly altered code leading to issues such as lost sessions
when one of the files doesn’t do a session_start().

A front controller, on the other hand, centralizes all web requests into a single file, typically called
index.php, which lives in the root directory of the website. There are numerous advantages to this system; the
most obvious are that there is less duplicated code and that it is easier to separate the URLs that a website has
from the actual code that is used to generate the pages. Usually, the pages are displayed using two additional
GET parameters passed to the index.php file to create URLs such as index.php?controller=news&action=list to
display a list page.

If we recap from chapter 1, Figure 2.4 shows the Zend Framework classes that implement the MVC design
pattern. There are three separate components used and within each component, more than one class is required
for the application.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 2.4: The interaction of the various Zend Framework classes used to create an MVC application

One important aspect of all modern web applications is that the URL looks “good” so that it is more

memorable for users and is also easier for search engines like Yahoo! or Google to index the pages of the
website. An example friendly URL would be www.example.com/news/list and it should come as no surprise
that the Zend Framework’s front controller uses a sub-component, known as a router, support friendly URLs
by default.

2.6.1 The Zend Framework’s Controller
The Zend Framework’s front controller code is spread over a number of classes that work together to provide a
very flexible solution to the problem of routing a web request to the correct place to do the work.

Zend_Controller_Front is the foundation and it processes all requests received by the application and
delegates that actual work to action controllers.

Request
The request is encapsulated within an instance of Zend_Controller_Request_Http which provides access to

the entire HTTP request environment. What is a request environment though? It is all the variables received by
the application from outside the application along with relevant controller parameters such as the controller
and action router variables

The HTTP request environment contains all the super globals ($_GET, $_POST, $_COOKIE, $_SERVER
and $_ENV) along with the base path to the application. The router also places the module, controller and

Licensed to Menshu You <dollequatki@gmail.com>

http://www.example.com/news/list
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

action names into the request object once it has worked them out. Zend_Controller_Request_Http provides the
function getParam() to allow the application to collect the request variables and so the rest of the application is
protected from a change in environment. For example, a command line request environment wouldn’t contain
the HTTP specific items, but would include the command line arguments passed to the script. Thus the code:
$items = $request->getParam('items');

will work unchanged when run as a web request or as a command line script.
In general, The request object should be treated as read only to the application as, implicitly, the values set

by the user shouldn’t be changed. Having said that, Zend_Controller_Request_Http also contains parameters
which can be set in the start up phase of the application and then retrieved by the action functions as required.
This can be used for passing additional information from the front controller to the action functions if required.

Routing
Routing is the process of determining which controller’s action needs to be run in order to satisfy the request.
This is performed by a class that implements Zend_Controller_Router_Interface and the framework supplies
Zend_Controller_Router_Rewrite which will handle most routing requirements. Routing works by taking the
part of the URI after the base URL (known as the URI endpoint) and decomposing it into separate parameters.
For a standard URL such as http://example.com/index.php?controller=news&action=list the decomposition is
done by simply reading the $_GET array and looking for the ‘controller’ and ‘action’ elements. As a modern
framework, it is expected that most applications built using the Zend Framework will use pretty URLs of the
form http://example.com/news/list. In this case, the router will use the $_SERVER['REQUEST_URI'] variable
to determine the which controller and action has been requested.

Dispatching
Dispatching is the process of actually calling the correct function in the correct class. As with everything in the
Zend Framework, the standard dispatcher provides enough functionality for nearly every situation, but if you
need something special, it is easy to write your own and fit it into the front controller. The key things that the
dispatcher controls are formatting of the controller class name, formatting of the action function name and
calling the action function itself.

Zend_Controller_Dispatcher_Standard is where the rules concerning case are enforced, such that the name
format of the controller is always TitleCase and only contains alphabetic characters. The dispatcher’s
dispatch() method is responsible for loading the controller class file, instantiating the class and then calling the
action function within that class. Hence, if you decided that you wanted to reorganize the structure so that
each action lived in its own class within a directory named after the controller, you would supply your own
dispatcher.

The Action
Zend_Controller_Action is an abstract class that all action controllers are derived from. The dispatcher
enforces that your action controllers derive from this class to ensure that it can expect certain methods to be
available. The action contains an instance of the request for reading parameters from and an instance of the
response for writing to. The rest of the class concentrates on ensuring that writing actions and managing
changes from one action to another one are easy to do; There are accessor functions to get and set parameters,
and redirection functions to redirect to another action or another URL entirely.

Assuming that the standard dispatcher is used, the action functions are all named after the action’s name
with the word “Action” appended. You can therefore expect a controller action class to contain functions such
as indexAction(), viewAction(), editAction(), deleteAction() etc. Each of these are discrete functions that are

Licensed to Menshu You <dollequatki@gmail.com>

http://example.com/index.php?controller=news&action=list
http://example.com/news/list
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

run in response to a specific URL. There are, however, a number of tasks that you will want to do regardless of
which action is run. Zend_Controller_Action provides two levels of functionality to accommodate this
requirement: init() and pre/postdispatch(). The init() function is called whenever the controller class is
constructed. This makes it very similar to the standard constructor, except that it does not take any parameters
and does not require the parent function to be called.

preDispatch() and postDispatch() are a complementary pair of functions that are run before and after each
action function is called. For an application where only one action is run in response to a request, there is no
difference between init() and preDispatch() as each are only call once. If, however, the first action function
uses the _forward() function to pass control to another action function, then preDispatch() will be run again,
but init() will not be. To illustrate this point, we could use init() to ensure that only administrators are allowed
access to any action function in the controller and preDispatch() to set the correct view template file that will
be used by the action.

The Response
The final link in the front controller chain is the response. For a web application
Zend_Controller_Reponse_Http is provided, but if you are writing a command line application, then
Zend_Controller_Response_Cli would be more appropriate. The response object is very simple and is
essentially a bucket to hold all the output until the end of the controller processing. This can be very useful
when using front controller plugins as they could alter the output of the action before it is sent back to the
client.

Zend_Controller_Response_Http contains three types of information: header, body and exception. In the
context of the response, the headers are HTTP headers, not HTML headers. Each header is an array containing
a name along with its value and it is possible to have two header with the same name but different values
within the response’s container. The response also holds the HTTP response code (as defined in RFC 2616)
which is sent to the client at the end of processing. By default, this is set to 200 which mean OK. Other
common response codes are 404 (Not Found) and 302 (Found) which is used when redirecting to a new URL.
As we will see later, the use of status code 304 (Not Modified) can be very useful when responding to requests
for RSS feeds as it can save considerable bandwidth.

The body container within the response is used to contain everything else that needs to be sent back to the
client. For a web application this means everything you see when you view source on a web page. If you are
sending a file to a client, then the body would contain the contents of the file. For example, to send a pdf file to
the client, the following code would be used:

$filename = 'example.pdf';
$response = new Zend_Controller_Response_Http();

// set the HTTP headers
$response->setHeader('Content-Type', 'application/pdf');
$response->setHeader('Content-Disposition',
 'attachment; filename="'.$filename.'"');
$response->setHeader('Accept-Ranges', 'bytes');
$response->setHeader('Content-Length', filesize($filename));

// load the file to send into the body
$response->setBody(file_get_contents($filename));

echo $response;

The final container within the response object houses the exceptions. This is an array that can be added to
by calling $response->setException() and is used by Zend_Controller_Front to ensure that errors within your

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

code are not sent to the client, possibly exposing private information that may be used to compromise your
application. Of course, during development, you would want to see the errors, so the response has a setting,
renderExceptions, that you can set to true so that the exception text is displayed.

Front Controller Plug-ins
The front controller’s architecture contains a plug-in system to allow user code to be executed automatically at
certain points in the routing and dispatching process. All plug-ins are derived from
Zend_Controller_Plugin_Abstract and there are six event methods that can be overridden:

1. routeStartup() is called just before the router is executed.
2. dispatchLoopStartup() is called just before the dispatcher starts executing.
3. preDispatch() is called before each action is executed.
4. postDispatch() is called after each action is executed.
5. dispatchLoopShutdown() is called after all actions have been dispatched.
6. routeShutdown() is called after the router has finished.
As you can see, there are three pairs of hooks into the process at three different points which allow for

increasingly finer control of the process.
One problem with the current router is that if you specify a controller that does not exist, then an exception

is thrown. A front controller plug-in is a good way to inject a solution into the routing process and redirect to a
more useful page. The Zend Framework supplies the ErrorHandler plug-in for this purpose and it’s use is very
well explained in the manual.

Now that we have looked in detail at the controller part of MVC, it’s time to look at the View part as
provided for by the Zend_View component.

2.6.2 Understanding Zend_View
Zend_View is a class for keeping the view portion of an MVC application separated from the rest of the
application. It is a PHP template library which means that the code in the templates is in PHP rather than
another pseudo-language like Smarty for instance. However, it is easy to extend Zend_View to support any
other template system.

Assigning data to the view
In order for the view to display data from the model, it is necessary to assign it. Zend_View’s assign() method
allows for assigning simple variables using $view->assign('title', 'Hello World!'); or you
can assign multiple variables simultaneously using an associative array:
$music = array('title'=>'Abbey Road', 'artist'=>'The Beatles');
$music = array('title'=>'The Wall', 'artist'=>'Pink Floyd');
$view->assign($music);
As we are using PHP5, we can also take advantage of the __set()magic method to write $view->title
= 'Hello World!'; and it will work exactly the same way and the data from the model or controller
is now available to the view template.

The view template
A view template is just like any other regular PHP file, except that its scope is contained within an instance of
a Zend_View object. This means that it has access to all the methods and data of Zend_View as if it was a
function within the class. The data that we assigned to the view are public properties of the view class and so

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

are directly accessible. Also, helper functions are provided by the view to make writing view templates easier.
A typical view script might look like:

<h1>Glossary</h1>
<?php if($this->glossary) :?>
<dl>
<?php foreach ($this->glossary as $item) : ?>
<dt><?php echo $this->escape($item['term']);?></dt>
<dd><?php echo $this->escape($item['description']);?></dd>
<?php endforeach; ?>
</dl>
<?php endif; ?>

As you can see, this script is a PHP script with an HTML bias as the PHP commands are always contained
within their own <?php and ?> tags. Also, we have used the alternate convention for control loops so that we
don’t have braces within separate PHP tags as matching braces can be quite tricky when using lots of separate
PHP tags.

Note that we do not trust the glossary data that has been assigned to the script. It could have come from
anywhere! In the code accompanying this book, the data is created using an array, but it could equally have
come from the users of a website. As we do not want any cross site scripting security vulnerabilities in our
website, we use the helper function escape() to ensure the term and description do not have any embedded
HTML.

View Helper Functions
Zend_View contains a number of helpful functions to make writing templates easier and allows for you to
write your own. These are functions are known as View Helpers and exist in their own directory. As we have
already seen, the most common view helper is the escape() function which is built into the Zend_View class
itself. Every other helper exists in its own class and is automatically loaded by Zend_View. Let’s create a
simple formatting helper for displaying a cash amount. Consider that we need to display a monetary value that
may be negative. In the UK, for a value of 10, the display would be £10.00 and for a value of -10, then the
display would be -£10.00.

We would use this helper in our templates like this:
<p>He gave me <?php echo $this->formatCurrency(10);?>.</p>

Which outputs the correctly formatted amount as shown in Figure 2.5.

Figure 2.5: Front controller plug-in correctly routing to the IndexController’s noRoute action.

To separate our helpers from the default ones, we will use the class prefix ZFiA_View_Helper and so our
helper class is called ZFiA_View_Helper_FormatCurrency as shown in listing 2.6.

Listing 2.6: ZFiA_Helper_ FormatCurrency view helper
class ZFiA_View_Helper_FormatCurrency {

 public function formatCurrency($value, $symbol='£') #1
 {
 $output = $value;
 $value = trim($value);
 if (is_numeric($value)) { #2

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 if ($value >= 0) {
 $output = $symbol . number_format($value, 2);
 } else {
 $output = '-' . $symbol . number_format(abs($value), 2);
 }
 }
 return $output;
 }
}

(annotation) <#1 Helper function is named using camelCase.>
(annotation) <#2 If $value is not a number, then ignore it.>

#2 shows a security consideration. If we don’t know that $value is a number, then we do not return it as

part of the output. This helps to ensure that we do not inadvertently introduce an XSS vulnerability.

The name of the function within the helper class is the same as the function that is called within the

template, formatCurrency() in our case. Internally, Zend_View has an implementation of the __call() magic
function to find our helper class and execute the formatCurrency () function. In order to find it though, we need
to register the directory and class prefix with Zend_View using the SetHelperPath member function:
$view->setHelperPath('./Helper', 'ZFiA_View_Helper');

This allows us to have many helper functions within the same directory. The file containing
ZFiA_View_Helper_FormatCurrency must be called FormatCurrency.php and must be in the Helper directory.
Note that, in a break from the usual convention within the framework, there is no actual requirement that
FormatCurrency.php must exist in the directory ZFiA/View/Helper; it is placed in the directory that was
registed with setHelperPath(). It is wise to follow the convention though as it makes finding files easier for the
developer!

View helpers are the key to extracting common code from your view templates and ensuring that they are
easy to maintain and should be used whenever possible to simplify the view files.

Security considerations
When writing the view code, the most important security issue to be aware of is Cross Site Scripting (also
known as XSS). Cross site scripting vulnerabilities occur when unexpected HTML, CSS or Javascript is
displayed by your website. Generally, this happens when a website displays data created by a user without
checking that it is safe for display. As an example, this could happen when the text from a comment form
contains HTML and is displayed on a guestbook page “as is”.

One of the more famous examples of an XSS exploit is the MySpace worm known as Samy. This used
specially crafted JavaScript in the profile that was displayed when you made Samy your friend. The JavaScript
would run automatically whenever anyone viewed the page and if you were logged into MySpace, then it made
Samy your “friend”. Thus whenever anyone looked at your page, they were also made “friends” of Samy’s.
This resulted in an exponential increase in friends for Samy. Fortunately, the code wasn’t too malicious and
didn’t steal each user’s passwords along the way as over 1 million MySpace profiles were infected within 20
hours.

The easiest way to preventing XSS vulnerabilities is to encode the characters that have sepecial meaning
in HTML. That is, we need to change all instances of < to <, & to & and > to > so that the browser
treats them as literals rather than HTML. Within the Zend Framework, we use the helper function escape() to
do this. Every time that you display a PHP variable within a template file, you should use escape() unless you
need it to contain HTML in which case, you should write a sanitizing function to allow only HTML codes that
you trust.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

2.6.3 The Model in M-V-C
We have spent a lot of time in the chapter talking about controller and the view as these are the minimum
required for a hello world application. In a real application though, the model side of MVC will take on more
importance as this is where the business logic of the application resides. In most cases, the model is linked in
some way to a database which will hold data to be manipulated and displayed by the application.

Database abstraction with Zend_Db
Zend_Db is the Zend Framework’s database abstraction library which provides a suite of functions to insulate
your code from the underlying database engine. This is most useful for those cases when you need to scale
your application from using, say SQLite to MySQL or Oracle. Zend_Db uses the factory design pattern to
provide the correct database-specific class based on the parameters passed into the factory() function. For
example, to create a Zend_Db object for MySQL you would use:
$params = array ('host' => '127.0.0.1',
 'username' => 'rob',
 'password' => '******',
 'dbname' => 'zfia');
$db = Zend_Db::factory('PDO_MYSQL', $params);

The Zend_Db abstraction is mostly built upon PHP’s PDO extension which supports a wide range of
databases. There is also support for DB2 and Oracle outside of PDO, though as they all extend from
Zend_Db_Adapter_Abstract, the interface is essentially the same, regardless of the underlying database.

So, what you do get in Zend_Db that you don’t get in PDO itself then? Well, you get lots of helper
functions to manipulate the database and also a profiler to work out why your code is so slow! There are all the
standard functions for inserting, updating and deleting rows, along with fetching rows. The manual is
particularly good at describing all these functions, so let’s move on and consider security.

2.6.4 Security issues with databases
The most common type of database security problems are known as SQL injection security breaches. These
occur when your user is able to trick your code into running a database query that you didn’t intend to happen.
Consider this code:
$result = $db->query("SELECT * FROM users
WHERE name='" . $_POST['name'] . "'");

This typical code might be used to authorize a user after they have submitted a login form. The coder has
ensured that the correct superglobal, $_POST, is used, but hasn’t checked what it contains. Suppose that
$_POST['name'] contains the string “' OR 1 OR name = '” (single quote, followed by “OR 1 OR
name=” followed by another single quote). This would result in the perfectly legal SQL statement of:
SELECT * from users where name='' OR 1 OR name= ''

As you can see, the OR 1 in the SQL statement will result in all the users being returned from the
database table. With SQL injection vulnerabilities like this, it can be possible to retrieve username and
password information or to maliciously delete database rows causing your application to stop working.

As should be obvious, the way to avoid SQL injection attacks is to ensure that the data that you are putting
into the SQL statement has been escaped using the correct functionality for your database. For MySQL, you
would use the function mysql_real_escape_string() and for PostgreSQL, you would use pg_escape_string(). As
we are using Zend_Db, we can use the member function quote() to take care of this issue. The quote() function
will call the correct underlying database specific function and if there isn’t one, then it will escape the string
using the correct rules for the database involved. Usage is very easy:
$value = $db->quote("It's a kind of magic");

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

An alternative solution is to use parameterized queries, where variables are denoted by placeholders and
are substituted by the database engine with the correct variable. The Zend_Db provides the quoteInto()
function for this. For example:
$sql = $db->quoteInto('SELECT * FROM table WHERE id = ?', 1);
$result = $db->query($sql);

Higher level interaction with Zend_Db_Table
When considering the model of an MVC application, we don’t tend to want to work at the level of database
queries if we can help it. The framework provides Zend_Db_Table, a table row gateway pattern that provides a
higher level abstraction for thinking about data from the the database. Zend_Db_Table uses Zend_Db behind
the scenes and provides a static class function, setDefaultAdpater() for setting the database adapter to be used
for all instances of Zend_Db_Table.
$db = Zend_Db::factory('PDO_MYSQL', $params);
Zend_Db_Table::setDefaultAdapter($db);

We don’t actually use Zend_Db_Table directly. Instead, we create a child class that represents the
database table we wish to work with. For the purposes of this discussion, we will assume that we have a
database table called “news” with the columns id, date_created, created_by, title, and body to work with. We
now create a class called News:
Class News extends Zend_Db_Table
{
 protected $_name = 'news';
}

The $_name property is used to specify the name of the table. If it is not provided then Zend_Db_Table
will use the name of the class and is case-sensitive. Zend_Db_Table also expects a primary key called id
(which is preferably automatically incremented on an insert).Both these default expectations can be changed
by initializing the protected member variables $_name and $_primary respectively. For example:
class LatestNews extends Zend_Db_Table
{
 protected $_name = 'news';
 protected $_primary = 'article_id';
}

The LatestNews class usese a table called “news” which has primary key called “article_id”.
As Zend_Db_Table implements the Table Data Gateway design pattern, it provides a number of functions

for collecting data including find(), fetchRow() and fetchAll(). The find() function is used to find rows by
primary key and the fetch methods are used to find rows using other criteria. The only difference between
fetchRow() and fetchAll() is that fetchRow() returns a single rowset, whereas fetchAll() returns an array of
rowsets. Zend_Db_Table also has helper functions for inserting, updating, and deleting rows with the functions
insert(), update() and delete() respectively.

Whilst Zend_Db_Table is interesting in its own right, its usefulness comes out when we add business logic
to it. This is the point when we enter the realm of the Model within MVC. There are lots of things you can do
and we’ll start with overriding insert and update for our News model.

First of all, let’s assume that our news database table has the following definition (in MySQL):
CREATE TABLE `news` (
`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`date_created` DATETIME NOT NULL ,
`date_updated` DATETIME NULL ,
`title` VARCHAR(100) NULL ,
`body` MEDIUMTEXT NOT NULL
)

To make our News class, a model, the first business logic that we will implement is to automatically
manage the date_created and date_updated fields when inserting and updating records as shown in listing 2.7.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

These are “behind the scenes” details that the rest of the system doesn’t need worry about and so ideal for
placing in the model.

Listing 2.7: Automatically maintaing date fields in a model
class News extends Zend_Db_Table
{
 protected $_name = 'news';

 public function insert($data)
 {
 if (empty($data['date_created'])) {
 $data['date_created'] = date('Y-m-d H:i:s');
 }
 return parent::insert($data); #1
 }

 public function update($data)
 {
 if (empty($data['date_updated'])) { |#2
 $data['date_updated'] = date('Y-m-d H:i:s'); |
 } |
 return parent::update($data);
 }

}

(annotation) <#1 Zend_DB_Table’s insert() function continues to do the real work.>
(annotation) <#2 Only set the date field if it’s not already be seen by the caller.>

This code is self-explanatory. When inserting, if date_created hasn’t already been supplied by the caller,

we fill in today’s date and then call Zend_Db_Table’s insert() function. For updating, the story is similar,
except that we change the date_updated field instead.

We can also write our own functions for retrieving data according to the business logic required by the
application. Let’s assume that for our web site, we want the five most recent news items that have been created
within the last three months displayed on the home page. This could be done using $news->fetchAll() in
the home page controller, but it is better to move the logic down into the News model to maintain the correct
layering of the application and so that it can be reused by other controllers if required:
 public function fetchLatest($count = 5)
 {
 $cutOff = date('Y-m-', strtotime('-3 months'))
 $where = "date_created > '$cutOff'";
 $order = "date_created DESC";
 return $this->fetchAll($where, $order, $count);
 }

Again, very simple functionality, that becomes much more powerful when placed in the right layer of the
M-V-C triumvirate.

2.7 Summary
We have now written a simple hello world application using the Zend Framework and have explored the way
the Model-View-Controller design pattern is applied to our applications. You should now have a good idea
about what the Zend Framework gives us for making our applications maintainable and easy to write.

One key ideal that the framework developers try to adhere to is known as the 80/20 rule. Each component
is intended to solve 80% of the problem space it addresses, whilst providing flex points to enable those
developers needing the other 20%. For example, the front controller system provides a very flexible router

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

covers nearly all requirements. However if you need a specialized router, then it is very easy to insert your own
one into the rest of the front controller setup. Similarly, whilst only a PHP view is provided,
Zend_View_Interface allows for adding other template engines such as Smarty or PHPTAL.

We will now move on to build an application that will utilize most of the components supplied with the
framework in order to build a fully functioning community website.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

3

Building a web site with the Zend
Framework
Zend Framework in Action is all about using the Zend Framework in a real world context. Initially I planned to
build a corporate extranet application to show off the features of the framework. Then I thought about it again
and decided that a community site that might be slightly different from the run of the mill company websites
that I develop for a living.

Whilst holidaying in Wales last year, my wife and I realized that we didn’t actually know the kid-friendly
places to go to whilst we were there. A community website where parents could let each other know about
which places were pro-child would be very useful to the parents out there. Let’s build one called Places to take
the kids!

Building such a community website, requires a lot of time and effort and it will be tempting to take the
easy road towards intermingled PHP and HTML. We expect our website to be a key resource for many years
and following good software engineering principles now will pay off many times over the lifetime of the
project. The Zend Framework’s MVC system will help us to do things the right way. There is even a side
benefit of being quicker as we can take advantage of the simplicity and convention over configuration
principles to ensure that our code is easy to write and refactor.

Before we dive right in and build the basic website, we will first focus on what we intend to build and the
features it will need. We will then be able to set up an initial database and code the first pages.

3.1 Initial planning of a website
Obviously, we can’t build a website without some sort of specification. Well, we could, but we are

professionals! Rather than write a whole specification that will take up an entire chapter, we will use Agile
web development techniques to design (and refactor) as we go along using user stories to sort out the next bit
of our site. We are going to need to define our overarching goal, but we don’t need to go into the detail about
every part of the journey until we are on the road. After looking at what the site will achieve, we will then look
at any issues within the user interface of the website which will lead us into the code.

3.1.1 The site’s goals
For any website, there is only one question that needs to be answered from the user’s point of view: What does
this site do for me? If we can identify whom we want to be asking this question and what the answer is, then
we have a website that will get visitors. There are some secondary questions to ask too, including working out
how to fund the site, but these are relatively minor compared to ensuring that the site gets visitors.

One way to describe features of a website is to use “stories”. These are paragraphs of prose that explain
how a certain feature works from a very high level perspective. A user-story’s main benefit over a “proper
specification” is that it is written in a way that normal people (i.e. the client!) can understand. We can use the
same mechanism to describe the entire website too and use prose to describe the goals of our website:

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Places to take the kids is a site for parents to enable them to fully enjoy a day out or a longer holiday
confident that the places they visit will be suitable for their children. They will also be able to plan their
journey with relevant stops-overs for food and rest that are child-friendly. The site will grow a community of
users who will be able to review and recommend places to visit and also communicate with each other using
forums. The site will provide simple mechanisms for finding places to visit via browsing through categories or
via searching and the use will be able to mark places as part of a planned trip and then print out the details of
their trip in a printer-friendly format.

Our site story is only one paragraph long and conveys all we need to know to create a good website and
we are now able to start planning. Clearly, we could write even more on what else the site could do, but that
can be left for future phases of development. We will start with a list of the main functionality provided by the
site and also a basic understanding of the site map.

Main functionality
Let’s start by brainstorming a list of all the things that the website is going to need. A mind map is a good way
to do this and my initial thoughts are shown in figure 3.1.

Figure 3.1: Mind maps are a good way to brainstorm features for a new website. For this site, we have found seven main areas of the
website that will be required to meet the main goals with the “Locations” section fleshed out the most.

Another nice thing about mind maps is that they can be easily added to on an ad-hoc basis. In this case, the
Locations section is key to the site and so has had the most thought about it. I’ve not thought too much about
competitions though as they count as a “nice to have” idea rather than a core requirement to meet the site’s
goals.

Testing
We will write tests for anything we are unsure about as we go along. This will give us the confidence in our
code and allow us to refactor it as we improve the design. Improving the design shouldn’t be hard as we have
barely done any! Even if we did lots of up front design, it is a certainty that what we learn whilst building will
be of immeasurable value; we want to incorporate what we learn as we go along. Whilst we won’t be
discussing all the tests within these pages, the accompanying source code contains all the tests required for us
to have confidence in the code.

As testing is a relatively boring exercise, testing for Places will be done mainly using unit tests as these
can be automated. Testing that requires someone to follow a written procedure will not be done often enough
to catch errors as a result of code changes. As the Zend Framework’s MVC system provides a response object,

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

we can use unit testing to check that the HTML output has the correct data in it, so we can test elements of the
page rendering too.

3.1.2 Designing the User Interface
We also need to consider how our new website is going to work in terms of the user interface (UI). I’m a
software engineer, not a creative designer, so it’s probably best if I don’t provide many thoughts on design! A
good user interface is much more than just the appearance; you also have to consider how it operates for the
user and ensure that they can get to the information they are looking for with the minimum of fuss.

When designing a user interface for the site, we need to think about the features we need, page layout,
accessibility, images and menus and navigation. We will now look at the key issues to consider for these
elements which form part of the design brief for creation of the actual look and feel of the website.

UI features
The key features we will be considering on Places are navigation via a menu and a search system. The
navigation will use a drill-down approach with the main menu always visible and the current level menu also
shown. This allows for a lot of flexibility whilst not creating a cluttered menu. We could also display a
breadcrumb so that the user has an appreciation of where they are in the site and which route they took from
the home page to get to the page they are currently viewing.

Page layout
As a community site, we want to make sure that there is plenty of room for content and also room for
discretely placed advertisements that will help pay the bandwidth bills. The site’s basic look and feel will be
long lived as we want to build a brand and also because communities don’t tend to like change, so we will
need a design that will grow with us as we to improve the site with new features.

Accessibility
As a modern site, we will ensure that we are accessible to all. This means that our site will be standards
compliant so that it works in all modern browsers and also that we have given consideration for those users
with less than perfect eyes and mouse coordination. The WAI accessibility standard will therefore be
considered at all times when building the front end of the website.

Images
They say that an image tells a thousand words, but it also costs a lot of time and bandwidth compared to those
words! We will use images to improve how the site looks and to add value for our users. Obviously we will
provide images of the locations themselves and images also work well for feature lists and other visual clues to
different sections of the pages.

Menus and navigation
For the menus, we will have a main menu across the top of the site and any sub menus in a vertical column as
required. This means that we will have a site that is easy to navigate and also has plenty of expansion room as
we build up features.

Putting all this together into a design, we have got a site that looks like Figure 3.2.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 3.2: The Places to take the kids home page maximizes the amount of space for content whilst being easy to use.

There are four sections to this design: header (including menu), main content on left, advert on right and a
footer. We are now ready to look at the code required to build the site, starting with the initial set up of the
directory structure, bootstrap and loading of configuration information. We will also look at how we build the
view templates to ensure that we do not repeat the header and footer code within every action template.

3.1.3 Planning the code
We have looked at the goals of the site and how the user interface will work, so we can now look at how we
will organize the PHP code. As with the UI, we need to ensure that our code is not “hemmed in” as the site’s
functionality and feature lists grow. We also want the system to do as much of the “plumbing” automatically
for us, so for instance, we don’t have to worry about finding the correct class in the file structure, choosing the
name of a view template or struggle to relate to database tables. We will also be using Ajax when appropriate,
so whilst linking the view to the controllers is important for simplicity, we want to be able to override it.

The Zend Framework is a good choice to meet these requirements. As we discussed in chapter one, the
key benefits of the Zend Framework mean that we are basing our website on a flexible, robust and supported
platform that will be around as long as our site is.

The Zend Framework MVC system means that we will organize our site into separate controllers, each
with a set of view templates. We will also access our data via models that will provide us with a “problem-
domain” interface to the database tables that we use. Another feature of the MVC system is modules which
allow us to group a set of related controllers, views and models together. We will use this functionality to
separate out different logical concerns of the Places website.

With the initial planning in place, we can now start creating some code and tests – just as soon as we know
where to put it!

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

3.2 Initial Coding
We can kick of the initial coding to get a skeleton structure from which we can build the features that are
required. This means that we will set up the directories that we will need, write the bootstrap file, consider
configuration issues and create the database.

3.2.1 The initial directory structure
From our work in chapter two, we already know what directories we need for a Zend Framework application,
so we can start from there. Places is a bit bigger than Hello World though, so we will need some additional
directories to keep the files manageable as shown in Figure 3.3.

Figure 3.3: Directory structure of the Places website.

As with Hello World, we organize our directory structure with the goal of ensuring we can find files again.
This means that we separate out all the functionality both logically using modules and also by concern into
separate controllers, views and models directories. For security, the web_root directory is the only directory
that the web server can directly serve files from and so it only contains one file: the bootstrap file which is the
next thing we will look at.

3.2.2 Bootstrap
The web_root/index.php file from our Hello World application is a good starting point for the bootstrap files
required for Places. We will however augment it as there is additional things we need to do to make our
application easier to develop. These are loading configuration data, initializing the database and automatically
loading classes as we use them.

3.2.3 Automatically loading classes
One aspect of the index.php in Hello World that is less than ideal is that there is a lot of
Zend_Loader::loadClass() calls to load up the classes we need before we use them. In a “real” application,
there are even more classes in use and so there is going to be a lot of clutter throughout our application just to
ensure that we have the right classes included at the right time.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

For Places, we are going to use PHP’s __autoload() functionality so that PHP will automatically load our
classes for us. PHP5 introduced the __autoload() magic function that is called whenever you try to instantiate a
class that hasn’t yet been defined. The Zend_Loader class has a special function registerAutoload() specifically
for use with __autoload(). This method will automatically use PHP5’s Standard PHP Library (SPL) function
spl_autoload_register() so that multiple autoloaders can be used. After Zend_Loader::registerAutoload() has
been called, whenever a class is created which has not yet been defined, file containing the class is included.
This solves the problem of Zend_Loader::loadClass() clutter nicely.

3.2.4 Configuration with Zend_Config
 There is an implicit requirement that Places will store its data to a database, such as MySQL. We therefore
need to store the database connection settings and we will use Zend_Config for this purpose. Zend_Config
provides for three types of configuration file format: XML, INI and PHP Arrays. We will use the INI format as
it easy to maintain. Zend_Config provides an object oriented interface to the configuration data regardless of
which file format has been loaded. Consider an INI file called config.ini containing the following:
[db]
adapter = PDO_MYSQL
database.host = localhost
database.username = user1234
database.password = 1234
database.name = db_one

This file is loaded and data can then be accessed like this:
$config = new Zend_Config_Ini('config.ini', 'db');
$adapter = $config->adapter;
$databaseHost = $config->database->host;

Note how the “.” within the key name of a setting is automatically turned into a hierarchical separator by
Zend_Config. This allows us to group our config data easily within the confines of the INI file format. Another
extension to the INI format that Zend_Config supports is section inheritance using the colon character (“:”) as
a separator within the section name. This allows for defining a base set of configuration settings and then
changing them based on which section is the master section as shown in Listing 3.1.

Listing 3.1 Example Zend_Config INI file.
[general]
db.adapter = PDO_MYSQL #1
db.config.host = localhost
db.config.username = user1234
db.config.password = 1234
db.config.dbname = db_one

[live : general] #2
db.config.host = livedb.example.com

[dev : general]
db.config.host = devdb.example.com

(annotation) <#1 The “.” In db.adapater means that adapter is a child of db.>
(annotation) <#2 The live section inherits from the general section.>

We can now load this ini file in two ways. On the live site, the INI file is loaded with the command:
$config = new Zend_Config_Ini('config.ini', 'live');

which loads the live configuration. To load the dev configuration for use on a developer’s local
workstation, the load statement would be:
$config = new Zend_Config_Ini('config.ini', 'dev');

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

In both cases, Zend_Config will load the “general” section first and then apply the settings in the specific
“live” or “dev” section,. This will have the effect of selecting a different database depending on whether the
application is running on the live or development server.

The Places configuration file
As we will have only one configuration file, we will call it config.ini as shown in listing 3.2 and place it in the
application directory.

Listing 3.2: The initial config.ini for Places contains just database connection information.
[general]
db.adapter = PDO_MYSQL
db.config.host = localhost
db.config.username = zfia
db.config.password = 123456
db.config.dbname = places #1

[live : general]

[dev : general]

[test : general]
db.config.dbname = places_test #2
(annotation) <#1 The default database to connect to is called “places”.>
(annotation) <#2 When running unit tests, we need to control what is in the database, so a different one is used.>

The only thing we need to set up at this point is the connection to the database. The test section is for use

when using automatic testing of our application. Whilst we are testing, we don’t want to touch our main
database, so we use a separate database that we can overwrite at will whilst testing different scenarios.
We will load our INI file in the bootstrap and then register it to the Zend Registry class so that the config data
can be retrieved wherever we need it:
// load configuration
$section = getenv('PLACES_CONFIG') ? getenv('PLACES_CONFIG') : 'live';
$config = new Zend_Config_Ini('./application/config.ini', $section);
Zend_Registry::set('config', $config);

In order to ensure that we load the correct section, we use an environment variable “PLACES_CONFIG”.
This is set on a per server basis using the Apache configuration command setenv PLACE_CONFIG
{section_name}. For my development server, I therefore have configured my Apache configuration with
setenv PLACE_CONFIG dev and on the live site, we would use setenv PLACE_CONFIG live.

Zend_Registry
Using global variables is generally considered unwise for large applications as it introduces coupling

between modules and it is very difficult to track down where and when a given global variable is modified
during the processing of a script. The solution is to pass variables as parameters through functions to where the
data is required. However, this causes a problem in that you can end up with lots of “pass-through” parameters
which clutter up function signatures for functions that do not use the data, except to pass it on to the next
function.

One solution to this is to consolidate the storage of such data into a single object which is easy to find; this
is known as the registry. As its name implies, Zend_Registry implements the Registry design pattern and so is
a handy place to store objects that are required in different parts of the application.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Zend_Registry::set() is used to register to objects with the registry. Internally, the registry is implemented
as an associative array and so when you register an object with it, you have to supply the key name that you
want to identify it with. To retrieve the object at a different place in the code, Zend_Registry::get() is used,
where you supply the key name and a reference to the object is returned. There is also a helper function
Zend_Registry::isRegistered() which enables you to check if a given object key is registered or now.

As a word of warning, the registry is very similar to using a global variable and so unwanted coupling
between the registered objects and the rest of the code can occur if we are not careful. Zend_Registry should
therefore be used with caution. We will use it with confidence for two object: $config and $db. These two
objects are ideal for storing to a registry as they are generally only read from and not written to and so we can
be confident that they are unlikely to change during the course of the request. Hence, even though the data is in
the registry, we will still pass the relevant configuration data around our application when appropriate if it
minimizes coupling or a given section easier to test.

3.2.5 Database initialization
The configuration file contains all the information we need to initialize the database. As we discussed in
Chapter two, we use the Zend_Db factory class to create a Zend_Db_Adapter specific to our database. In this
case, we’ll receive an object of type Zend_Db_Adapter_Pdo_Mysql. To create the object, we need to pass the
adapter name and an array of configuration parameters. Zend_Config’s nested parameter system comes into its
own here as we can use the asArray() function to retrieve a subsection’s keys as an associative array ready for
passing to Zend_Db::factory() as shown:
// set up database
$db = Zend_Db::factory($config->db->adapter, $config->db->config->asArray());
Zend_Db_Table::setDefaultAdapter($db);
Zend::register('db', $db);

Again, we register the database with the registry and with Zend_Db_Table. As our models will be derived
from Zend_Db_Table, the registry will rarely be used.

3.3 Two-Step View
All but the smallest of websites have common display elements on all pages. Usually this includes the header,
footer and the navigation elements, but could also include advertising banners and other elements as required
by the site’s design. Within the current design of the ViewRenderer, the view template associated with the
current action is automatically rendered. One solution, therefore is to add two includes to every view template
like this:

<?php include('header.phtml');?>
<h1>page title</h1>
<p>body copy here</p>
<?php include('footer.phtml');?>

The main problem is that we are repeating those two lines of code in every single view template. This

clutters up the view template with code that is not relevant to the job in hand and as it happens all the time, is
ripe for automation. The easiest way to implement a better solution is to use what is known as the Two-Step
View design pattern. This is documented by Martin Fowler like this:

Two Step View deals with this problem by splitting the transformation into two stages. The first transforms
the model data into a logical presentation without any specific formatting; the second converts that logical
presentation with the actual formatting needed. This way you can make a global change by altering the

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

second stage, or you can support multiple output looks and feels with one second stage each. (From
http://www.martinfowler.com/eaaCatalog/twoStepView.html)

In terms of building a website with the Zend Framework, this means that the view script that is rendered

automatically by the ViewRenderer action helper should only contain the HTML related to that action. The rest
of the page is built up independently and the content of the controller action is placed into it. This is shown in
Figure 3.4 where we have a master template (site.phtml) providing the overall layout and the action template
containing the action specific content.

Figure 3.4: Two view templates make up the complete page.

The master template contains those parts of the page that do not change much, such as the header, footer

and menu sections, and is site.phtml. The action template contains the display code specific to the action being
dispatched. The current ViewRenderer ensures that all action template files related to one controller will be
stored in a sub directory named after the controller. That is, if we have a controller called reviews, then the
index action’s view template is called index.phtml and resides in the reviews sub-directory. The master layout
templates will reside directly in the views/ directory.

There are multiple ways to apply the Two-Step view to the MVC system within the Zend Framework and
we are going to use a Front Controller plug in called SiteTemplate. Front Controller plug-ins allow us to inject
functionality into the dispatching flow in order to alter the default behaviour. SiteTemplate will collect the
view output from any actions that have been run and then place the content into a master template and render
it. A plug-in for the front controller can implement a number of functions, known as hooks, that the front
controller will call at different stages in the dispatch cycle. The SiteTemplate plug-in uses three hooks:
dispatchLoopStartup(), preDispatch() and dispatchLookShutdown().

Figure 3.5 shows a simplified view of the Zend Framework dispatch loop and where the SiteTemplate
plugin’s hook functions get called during code the process.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.martinfowler.com/eaaCatalog/twoStepView.html
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 3.5: Front controller’s dispatch loop

The dispatchLoopStartup() function is called after all routing is done, but before processing all the

controller actions. It is therefore an ideal place to initialize the view. The preDispatch() function is called
everytime a new controller action function is called. Usually there is only one controller action during a
request, however, it is possible to add more using the _forward() function or other front controller plug-ins. As
preDispatch() gets called every time, it is used to ensure that the view object is assigned the current names of
the module, controller and action. Finally dispatchLoopShutdown() is called after everything is done. It is
therefore the perfect time to render the master view template to complete the Two-Step view.

Let’s look at the code. Listing 3.3 shows the SiteTemplate’s dispatchLoopStartup() function.

Listing 3.3: SiteTemplate::dispatchLoopStartup()
public function dispatchLoopStartup(

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 Zend_Controller_Request_Abstract $request)
{
 $viewRenderer = Zend_Controller_Action_HelperBroker:: \
 getExistingHelper('viewRenderer');
 if (is_null($viewRenderer->view)) {
 $viewRenderer->init(); #1
 }
 $this->_view = $viewRenderer->view;

 // add View/Helper directory to path
 $prefix = 'Places_View_Helper'; #2
 $dir = dirname(__FILE__) . '/../../View/Helper'; |#3
 $this->_view->addHelperPath($dir, $prefix); |

}

(annotation) <#1 Ensure view is created by the view renderer>
(annotation) <#2 Set prefix for Places specific view helpers>
(annotation) <#3 Set up path to helper directory>

The dispatchLoopStartup() function initializes the view and adds an additional view helper directory to it.
By default the view created by the ViewRenderer sets up two directories for the view helpers:
Zend/View/Helpers and the local module’s views/helpers. Most applications have view helpers that are used
across multiple modules and Places is no exception. In our case, we will store them in lib/Places/View/Helper
which mimics the location of the global view helpers provided by the Zend Framework.

After the Front Controller has started this dispatch loop, it calls the preDispatch() function of all registered
plugins. SiteTemplate’s preDispatch() function performs the per-action initialization and sets up some useful
variables for use in our view templates:

public function preDispatch(Zend_Controller_Request_Abstract $request)
{
 // set up common variables for the view
 $this->_view->baseUrl = $request->getBaseUrl();
 $this->_view->module = $request->getModuleName();
 $this->_view->controller = $request->getControllerName();
 $this->_view->action = $request->getActionName();
}

As you can see, this is a very simple function that doesn’t need further explanation. All it does is ensure

that when we are within a view template, we have easy access to the information on the module, controller,
action. We also pass through the baseUrl which is useful for referencing images, JavaScript and CSS files.

After dispatching has completed, the Front Controller calls the dispatchLoopShutdown() function for all
registered plugins. This is the plugins’ last chance to do anything before the response is sent back to the
browser. For SiteTemplate, we use this hook to render the master layout with the content from the action views
embedded with it. This is shown in Listing 3.4.

Listing 3.4: SiteTemplate::dispatchLoopShutdown()
public function dispatchLoopShutdown()
{
 if (!$this->_renderLayout) { #1
 $frontController = Zend_Controller_Front::getInstance();
 $request = $frontController->getRequest();
 $response = $frontController->getResponse();

 $body = $response->getBody(); |#2
 $this->_view->actionContent = $body; |

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 $layoutScript = $this->getLayoutScript(); #3

 $content = $this->_view->render($layoutScript),'default'; |#4
 $response->setBody($content); |
 }
}

(annotation) <#1 Flag to turn off rendering of master>
(annotation) <#2 The rendered action content >
(annotation) <#3 Name of master template can be overridden>
(annotation) <#4 Render master template>

dispatchLoopShutdown() does quite a lot for so few lines. Firstly we check that the user actually wants to
render the master layout template (#1). There are multiple reasons why she might not, such as using Ajax or
sending non html data such as a CSV file. The default is obviously to render the layout and SiteTemplate
provides a helper function called setNoRenderLayout() to change this.

To render the layout, we retrieve the current body from the response and assign as a variable in the view
(#2). This contains the content from the actions as rendered by the standard ViewRenderer action helper.
Finding the master layout script name is delegated to a helper function, getLayoutScript() to allow for
overriding the default site.phtml (#3) and then it is rendered and assigned to the response (#4).

To get a reference to the SiteTemplate plug-in, you can use the code:
$front = Zend_Controller_Front::getInstance();
$st = $front->getPlugin('SiteTemplate');
This allows access to the two main control functions:
$st->setNoRenderLayout(); and $st->setLayoutScript();

We have now implemented the Two-Step view using a Front Controller plug-in which has resulted in a

fully automated solution. This means that within our action functions we do not have to think about rendering
the master layout as it will all be handled for us. Let’s look now at the home page of the Places website.

3.4 The Home Page
The home page is the shop front to our application and so we want to ensure that we provide an attractive page
with easy to use navigation. We will write unit tests as we go along so that we can be confident that as we
refactor to add new functionality, we do not break what we know to be working. The centerpiece of Places is
reviews of places to take children, so we will start there.

There are four main sections to the home page. At the top, there is a header with logo and main navigation
menu. The main content area is in the middle and a right hand column provides space for advertising. The site
also contains a footer, which is not shown in Figure 3.6, to provide contact and copyright information on all
pages.

3.4.1 The initial models
As we know we need a list of reviews on the home page, let’s start with a database table called reviews

where each row represents a new review of a place. We can also assume that any given place will have more
than one review, so we will need a list of locations in a table called places. The initial database schema is
shown in Figure 3.5 and shows two tables, places and reviews.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 3.6 In order to build the initial pages, the database consists of two tables with a foreign key from Reviews to Places.

We can now go ahead and create our initial model classes Reviews and Places. These will be created in the
application/models directory and initially are very simple:
class Reviews extends Zend_Db_Table
{

}
class Places extends Zend_Db_Table
{

}

As we have already discussed in Chapter 2, Zend_Db_Table gives us all the functionality of a Table
Gateway without us having to write any code. As we have no intention of writing code that isn’t going to be
used, we will not expand our model classes until we need to. For now, we’ll just populate the database directly
with a few rows so we have something to display on the home page as shown in listing 3.5.

Listing 3.5 MySQL statements to create populate the tables with initial data

CREATE TABLE `places` (
 `id` int(11) NOT NULL auto_increment, #1
 `date_created` datetime NOT NULL, |#2
 `date_updated` datetime NOT NULL, |#2
 `name` varchar(100) NOT NULL,
 `address1` varchar(100) default NULL,
 `address2` varchar(100) default NULL,
 `address3` varchar(100) default NULL,
 `town` varchar(75) default NULL,
 `county` varchar(75) default NULL,
 `postcode` varchar(30) default NULL,
 `country` varchar(75) default NULL,
 PRIMARY KEY (`id`)
);

INSERT INTO places (name, address1, town, county, postcode, date_created)
VALUES
('London Zoo', 'Regent\'s Park', 'London', '', 'NW1 4RY', '2007-02-14 00:00:00')
,('Alton Towers', 'Regent\'s Park', 'Alton', 'Staffordshire', 'ST10 4DB', '2007-02-14 00:00:00')
,('Coughton Court', '', 'Alcester', 'Warwickshire', 'B49 5JA', '2007-02-14 00:00:00');

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

CREATE TABLE `reviews` (
 `id` int(11) NOT NULL auto_increment,
 `date_created` datetime NOT NULL,
 `date_updated` datetime NOT NULL,
 `places_id` int(11) NOT NULL, #3
 `user_name` varchar(50) NOT NULL,
 `body` mediumtext NOT NULL,
 `rating` int(11) default NULL,
 `helpful_yes` int(11) NOT NULL default '0',
 `helpful_total` int(11) NOT NULL default '0',
 PRIMARY KEY (`id`)
);

INSERT INTO reviews (places_id, body, rating, date_created)
VALUES
(1, 'The facilities here are really good. All the family enjoyed it', 4,
 '2007-02-14 00:00:00')
,(1, 'Good day out, but not so many big animals now.', 2,
 '2007-02-14 00:00:00')
,(1, 'Excellent food in the cafeteria. Even my 2 year old ate her lunch!', 4,
 '2007-02-14 00:00:00');

(annotation) <#1 Primary key is called id and automatically increments. >
(annotation) <#2 Date metadata information is useful to store from the beginning. >
(annotation) <#3 Foreign key to another table is named “{table name}_id”. >

The SQL in Listing 3.5. needs to be seeded into the database using a MySQL client, such as the command
line mysql application or another one like phpMyAdmin.

3.4.2 Testing our Code
Testing code provides confidence. We are going to use unit tests to ensure that the code works the way we
intend it to. Unit testing is the process of testing individual functionality separately from the rest of the code.
The tests are designed to be run very regularly and so have to be fast as we want to run them whenever we
make changes to the code. Whenever you run the tests you can be sure that your code functions correctly. This
gives you a safety net to make changes to improve your program because if the tests still work, then the
changes were good. If the tests no longer work, then the changes can be backed out.

The process of changing already working code to make it better and easier to understand is known as
refactoring. This is the single most important skill required for maintaining an application over a long period of
time. Refactoring without tests to check that the changes haven’t broken anything is an extremely risky
business and so doesn’t get done. With tests though, refactoring is easy and possibly even fun; everything
changes because of confidence.

As we are going to write tests for the majority of our code, we need a system to run them. PHPUnit
(http://www.phpunit.de) is a testing framework for PHP that runs each test in isolation and provides
functionality to allow us to organize the test code. Listing 3.6 shows the initial testing of our models, although
at this stage we do not have much to test!

Listing 3.6: Places model unit test
class PlacesTest extends PHPUnit_Framework_TestCase
{
 public function setUp() |#1
 { |
 // reset database to known state |
 setupDatabase(); |
 } |

 public function testFetchAll()

Licensed to Menshu You <dollequatki@gmail.com>

http://www.phpunit.de
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 {
 $placesFinder = new Places();
 $places = $placesFinder->fetchAll();

 $this->assertSame(3, $places->count()); #2
 }
}

(annotation) <#1 setUp() is called before every test to ensure a clean slate.>
(annotation) <#2 Use assertSame to check we have the correct row count.>

A PHPUnit test case consists of a number of separate functions that contain each test. These function all

start with the word test, so that PHPUnit can identify them. The member function setUp() is run before each
test and so can be used to initialize the system for the test. This helps to ensure that each test is not dependant
upon any other test and also does not cause problems for subsequent tests. The function tearDown() also exists,
which is run after each test and so can be used for any cleanup required.

For testing our models, we want to ensure that the database is in a known state for every test. I have
written a separate function, setupDatabase(), that does this for us. It is not part of this class as it will be used
for testing more than just the Places model. Our initial test, testFetchAll(), does a simple sanity check to ensure
that everything is working. We collect all the places in our test database and count them. In this case we are
expecting three places and that’s what we get as shown in Figure 3.7.

Figure 3.7: PHPUnit is run from the command line. This run is successful as all tests passed.

In order for our test case to work, and to support multiple test case classes, we will organize our tests into
two suites, one for models and one for controllers. We will group these suites into an encompassing suite, so
that we can run all the tests with the simple command phpunit AllTests.php. A certain amount of
initialization is required, and so we will put this into a separate file called TestConfiguration.php as shown in
Figure 3.8.

Figure 3.8: The unit tests are divided into controllers and models. The AllTests.php scripts allow each to be run independently if
required.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

TestConfiguration.php has two functions initialiseTests() and setupDatabase(). The initialiseTests() function sets up
environment for the tests and registers the Zend_Db connection. It loads the config.ini file, section called ‘test’, so
that we can specify a different database (places_test) to ensure that we don’t accidentally affect our main database.
The source code supplied with the book contains the test suite files, and as they are basically cloned from the
instructions on the PHPUnit website, I will not go through them here.

3.4.3 The home page controller
The home page controller’s action is the default action of the default controller and so the url /index/index will
also display the home page. This maps to the indexAction() function within the class IndexController. In this
function, all we need to do is collect the data from the Places model and assign to the view.

The Zend_Db_Table provides the fetchAll() function to retrieve multiple rows from the database, so we
could just directly call it from the controller. I am, however, going to encapsulate the requirements for the
home page’s list within the Places class. This is so that we keep the database code where it belongs: in the
model. We will add a new function fetchLatest() to the Places class which will automatically order the results
by reverse date of update as shown in listing 3.7.

Listing 3.7: The Places model implements fetchLatest() to ensure the business logic is kept in the correct layer.
class Places extends Zend_Db_Table
{
 function fetchLatest($count = 10)
 {
 return $this->fetchAll(null, |#2
 'date_created DESC', $count); |
 }
}

(annotation) <#1 The results are ordered by reverse date and are limited to $count records.>

Zend_Db_Table’s fetchAll() function returns a Zend_Db_Table_Rowset which can be iterated over using

the foreach() construct in our view template. In listing 3.8, we assign it to the view within indexAction().

Listing 3.8 The IndexController’s indexAction displays a list of the places that have most recently been added.
class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $this->view->title = 'Browse places'; #1
 $placesFinder = new Places(); |#2
 $this->view->places = $places->fetchLatest(); |
 }
}

(annotation) <#1 Set the title for the web browser’s title bar.>
(annotation) <#2 .Use the model to collect the recently created places and assign to the view.>

The IndexController’s indexAction function is quite simple as all it does is assign a couple of member

variables to the view. The model has encapsulated all the details of dealing with the database, leaving the
controller to work at the “business logic” level. This is the MVC separation at work and so the controller only
needs to worry about linking the model data to the view and then asking the view to render itself.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

3.4.4 Using the view to display the home page
The first cut of the home page is very simple. We just need to display our list of places with reviews in date
reversed order. In order to do this, we need to develop the master site template, an associated CSS file and the
actual action content template itself.

3.4.5 Site.phtml: The master layout template
Let’s start with the master template, site.phtml and include some basic styling. For Places, we are going to use
a three column layout to allow for a left hand menu, main content and space for adverts on the right hand side.
The master template, shown in Listing 3.9, is a simple XHTML file which uses CSS to style the layout of the
site.

Listing 3.9: Site.phtml: the master view template file
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title><?php echo $this->escape($this->title);?> #1
 - Places to Take the Kids</title>
<link rel="stylesheet" href="<?php echo $this->baseUrl; ?>/css/site.css"
 type="text/css" media="screen" />
</head>
<body>

 <div id="scrn-read" title="links to aid navigation for screen readers">|#2
 [Skip to main content] |
 </div> |
<div id="header">Places to Take the Kids!</div>
<div id="container">
 <div id="center" class="column">
 <?php echo $this->render($this->actionTemplate); ?></div> #3
 <div id="right" class="column"></div>
</div>
<div id="footer-wrapper">
<div id="footer">Copyright ©2007 Rob Allen & Nick Lo</div>
</div>
</body>
</html>

(annotation) <#1 Title was assigned in the action.>
(annotation) <#2 Accessibility feature for screen readers for jumping to main content.>
(annotation) <#3 Render the action template from within the master template.>

One issue when using search engine friendly URLs (that is, without using ?a=b&c=d parameters) is that

all references to other files or links within the site have to be fully qualified from the root of the URL. The
Request object knows this information and you can access it using its getBaseUrl() function. As we need this
in the view so that we can reference CSS files, we used the SiteTemplate plugin’s preDispatch() function to
create a new view variable, baseUrl which is just a direct assignment of the output of getBaseUrl(). This
ensures that it is available in the view without having to remember to assign it in every controller action.

The CSS file is similarly simple and the first half controls the layout of the page with the styling of the
elements following. It is available as part of the source code that accompanies this book. As it is served
directly by the web server, we store it within in the web_root directory structure as this is the only area that the
web server can access.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

3.4.6 Index.phtml: The action view template
The unique content of the home page is contained within index/index.phtml. As we discussed earlier, we have
automated the location of the action templates based on the controller and action. For our initial home page, we
need to display a title along with the list of places that have recently been updated as shown in listing 3.10.

Listing 3.10: The home page action view: index.phtml
<h1><?php echo $this->escape($this->title);?></h1> #1

<?php if(count($this->places)) : ?>
<table>
<?php foreach($this->places as $place) : ?>
<tr>
 <td><a href="<?php echo $this->baseUrl;?>/place/<?php
 echo $place->id; ?>"><?php
 echo $this->escape($place->name); ?></td> #2
 <td><?php echo $this->displayDate($place->dateUpdated); ?></td> #3
</tr>
<?php endforeach; ?>
</table>
<?php endif; ?>

(annotation) <#1 Reuse that title again!>
(annotation) <#2 escape() helper to help guard against XSS attacks.>
(annotation) <#3 DisplayDate() convenience helper .>

Note that we are very careful to escape any string data that we know should not include HTML. This is to

ensure that we don’t accidentally introduce an XSS vulnerability later down the line when a variable that is
currently “known to be safe” ceases to be as the site’s functionality changes; it is always better to code
defensively at the start when you can.

The DisplayDate View Helper
The power of the view is shown when using view helpers to encapsulate view logic away from the main
template files. This allows us to reuse common constructs and also helps to keep the main templates free from
“cruft”. When displaying the list of places that have been recently updated, we also display the on which date
that the last update occurred. The field in the database is in ISO format (YYY-MM-DD hh:mm:ss) which is
not very friendly to the user of the website. Whilst we could convert directly in the template, using a view
helper, as shown in listing 3.11, ensures that we are consistent in our display of dates and makes it easier to
change that display should the client want a different format.

Listing 3.11: View helper to ensure all dates are displayed consistently.
class ZFiA_View_Helper_DisplayDate
{
 function displayDate($time, $format='%d %B %Y') #1
 {
 $timestamp = strtotime($time); #2
 return strftime($format, $timestamp);
 }
}

(annotation) <#1 Allow for override of the default format for special cases.>
(annotation) <#2 use strtotime() to remove dependency on the format of the $time variable.>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Although we use strtotime() to ensure that the $time variable can be in pretty much any format, be aware
that it can get confused between UK and US short dates of the format dd/mm/yyyy and mm/dd/yyyyy! We
have now completed the first page of the website and Places is ready to have bells and whistles added to it.

3.5 Summary
This chapter has introduced a real application, Places to take the kids, which will be expanded upon throughout
the rest of the book as we discuss all the components of the Zend Framework. In keeping with modern design
practices, we haven’t tried to design Places up-front, but have a story that describes what the site is about and
from that we have an initial list of functional ideas. We have then concentrated on getting something going and
ensuring that we have some tests in place for refactoring later. Testing is vitally important and we need the
freedom to be able to change our code to suit each new piece of added functionality and be sure that it still
works!

In order to get it all working, we have set up the directory structure for Places and have decided that our
view templates should be organized into a master template containing an action content template. As each view
template is named after its action, we have created a Front Controller plug-in, SiteTemplate, to implement the
Two-Step View design pattern to allow for an easily maintainable common look and feel using a master layout
view template.

We have also created two models that extend Zend_Db_Table to provide database access. The models
implement the business logic required to retrieve reviews for a specific place. Places is a fully working website
ready to add the foundations for enabling Ajax in our new Web 2.0 world.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

4

Ajax
Ajax is a way of using JavaScript to create interactive web pages that send data to and from the server behind
the scenes so that the user doesn’t see the full page refresh. This means that a web site is more responsive and
feels faster to a user. This allows for a web application, such as a web-based email client to behave more like
its desktop cousins. As a result, Ajax is gaining in popularity. Although it is server based, the Zend
Framework’s MVC system that separates different layers of the application helps make it easier to add Ajax
functionality to your websites.

In this chapter we will look at what Ajax is and how it used in web applications and examine all the
components that make up a simple example in pure JavaScript and also using client libraries. We will also
integrate Ajax into a Zend Framework application so that we can investigate how Ajax interacts with the MVC
system. Let’s consider exactly what Ajax is.

4.1 Introducing Ajax
Ajax enabled applications do not use full page refreshes to provide new information to the user. This can make
them more user friendly as they are more responsive. Figure 4.1 shows Google Suggest
(http://labs.google.com/suggest), which is an Ajax application that shows a dropdown list of sorted search
terms as you type into the search box. Google’s calendar (http://calendar.google.com) also shows good use of
Ajax with the ability to drag and drop calendar events in order to change their date and time.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://labs.google.com/suggest
http://calendar.google.com

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 4.1: Google Suggest uses Ajax to provide contextual auto completion

As with any technology, there are advantages and disadvantages to using it. The main advantages are that
the user’s workflow is interrupted much less as the application feels more responsive, the user interface is
more intuitive and less bandwidth is used as only the required data is sent from the server. The main
disadvantages are that Ajax applications tend to break well-known browser features such as the back button
and reliable URLs on the address bar for bookmarks or emailing to other people. There are also additional user
interface issues for the web designer to be concerned about, such as providing notification of processing as the
“spinning globe” no longer performs this task. Websites that use Ajax can also have problems with adhering to
the WAI accessibility guidelines, so a fall back system is often required.

4.1.1 Defining Ajax
Ajax came into use in 2005 as a way of describing the suite of technologies used to build dynamic websites
and the official expansion is Asynchronous JavaScript and XML. So, let’s look at each component technology
in turn.

Asynchronous
In order for an Ajax application to be an Ajax application, it needs to talk with the server without a page
refresh. This is known as asynchronous data exchange and is generally performed using the web browser’s

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

XMLHttpRequest object. A hidden iframe element can also be used. The XMLHttpRequest object is
essentially a mini web browser built into the web browser that can be used by JavaScript without interrupting
the user. Thus it is ideal for Ajax applications.

JavaScript
The key component in Ajax technologies is JavaScript and the browser’s Document Object Model (DOM) to
allow for manipulation of the webpage using scripts. JavaScript is a full blown programming language in its
own right and has been implemented in mainstream browsers since 1995. The DOM is a standardized way of
representing the elements of a web page as a tree of objects that can be manipulated by JavaScript. Within
Ajax applications, this is the means by which the application dynamically changes the webpage to show new
information without the server’s sending new data.

XML
In order to transfer the new data from the server to the web browser within an asynchronous request, XML is
used to format the data. In general, the language used to write the server application is different from
JavaScript as used in the web browser, so a language neutral data transfer format is used. XML is a well
known standard for solving this type of problem, but other formats, notably structured HTML, plain text and
JSON (a JavaScript based data transfer format) are also used in Ajax applications.

Note that even if JSON rather than XML is used as the data transfer format, the application is still known
as an Ajax application as it sounds better than Ajaj! The term Ajax has taken on meaning beyond its original
definition and nowadays it represents a class of technologies that provide dynamic user interaction with the
web server.

4.1.2 Using Ajax in enterprise applications
Ajax has many uses in all kinds of web applications. The main uses are:

 Form validation
 Form helpers: Auto-completion and drop down lists
 Dragging and dropping of items on the page
 Let’s look at each one in more detail.

Form validation
JavaScript has been used for form validation for a long while. Usually the validation is a piece of ad-hoc code
above the form that checks for the obvious errors, but the main validation is left to the server. As your form is
not the only way to post data to a given webpage, it is vital that server side validation remains. However, the
more validation that can be done before the user has to wait for the full page to refresh the better. There is
nothing more frustrating than to click the submit button, wait 10 seconds and then find out that you didn’t
format your telephone number correctly!

Form Helpers: Autocompletion and drop down lists
Forms are generally complicated and anything that helps the user to complete one is welcome. Form field auto-
completion is so useful that all the major web browsers offer this feature to remember what you have typed
into a given field. Ajax applications take this idea one step further and enable the user to fill in text fields
correctly all the time. Any form drop down list of options that has too many choices in it is a candidate for

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

replacing with a text field that is auto-complete enabled. Examples would include choosing your country when
completing your address.

Form field auto-completion is also useful when the user should either supply a new value or use an
existing one. This occurs when (for instance) assigning a task to a category within a project management
application. Most of the time, the user would want to select an existing category (and not misspell it!), so the
auto-complete dropdown will help her in this task. For those times when she needs to create a new category,
then her workflow is not interrupted in the slightest as she can just type the new category straight into the field.

Dragging and Dropping
Dragging and dropping is very common within computer tasks on your desktop. For instance, in a file
manager, you can select some files and drag them into another folder. Ajax enables this metaphor to work on
the web as well. For instance, you could have a shopping basket in an e-commerce website that allows the user
to drag items from the basket to a trash can to remove them from their order. One caveat here is that many web
applications don’t allow for drag and drop, so users are “trained” to recognize that it is possible on the web.
You should therefore always allow for an alternative method of performing the action, or write very clear
instructions!

Now that we have looked at what Ajax is and how it is used, we will write a simple application that allows
us to investigate how to use JavaScript to send a request back to the server and deal with the response.

4.2 A Simple Ajax Example
We will use form validation and check that a given username is acceptable for use. To create the simplest of
simple examples, we need three files for this example: an HTML page for the form, a JavaScript file to
perform the XMLHTTPRequest and a PHP file to do the server side validation. As the user types each
character into the form field, a message appears underneath it showing any errors in their choice of name.

The application in action is shown in Figure 4.2.

Figure 4.2: Simple Ajax example showing an error message whilst typing into the text field

The flow of information in an Ajax request is a little more complicated than a straight web page request. It all
starts with an HTML element containing a JavaScript callback function, such as “onclick” which executes the
JavaScript callback code. The JavaScript callback initiates a request to the web server using the
XMLHttpRequest system and the server side code such as PHP performs the work. Once the PHP code has

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

completed, it formats the response in either XML or JSON and sends it back to the browser where it is
processed by a JavaScript callback. Finally the JavaScript updates the HTML display to change the text, add
new elements via the DOM or change CSS styles. This is shown in Figure 4.3.

Figure 4.3: Application data flow in an Ajax request

For this example, let us start with the server-side PHP validation code, in listing 4.1, which will check that
the submitted username is at least four characters long and doesn’t clash with an existing username.

Listing 4.1: ajax.php: A simple server side validation routine in PHP
<?php
function checkUsername($username) {
 $existingUsers = array('rasmus', 'zeev', 'andi');
 // empty check
 if ($username == '') { |#1
 return ''; |
 } elseif (strlen($username) < 4) { #2
 return '
 Username is less than 4 characters
 ';
 } elseif (in_array($username, $existingUsers)) { #3
 return '
 Username already exists
 ';
 } else {
 return '
 Username is acceptable
 ';
 }
}

if(!class_exists('PHPUnit_Framework_TestCase')) { |#4
 $name = isset($_GET['name']) ? $_GET['name'] : ''; |
 echo checkUsername(trim($name)); |
} |
(annotation)<#1 No message if there is no username>
(annotation)<#2 Check that the username is long enough>
(annotation)<#3 Check that the username doesn’t already exist>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

(annotation)<#4 PHPUnit check to avoid echoing result when in test mode>

Note that we put the actual validation code into a function checkUsername() and only perform the actual

check if we are not using PHPUnit. This makes it possible to test the validation logic easily and the test case is
included in the code with this book. Although the list of existing users is an array in this example, it’s more
likely that the script would execute a database call to check the current list of users.

To access our validation script, we need a form where the user can type in the preferred username. The
HTML is shown in listing 4.2

Listing 4.2: HTML file with simple form that requires validation
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Simple Ajax Example</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<style> |#1
 .ok {color: green;} |
 .error {color: red;} |
</style> |
<script type="text/javascript" src="ajax.js" />
</head>
<body>

<h1>Registration:</h1>

<form action="#">
 <div>
 <label for="name">Username:</label>
 <input id="name" name="name" type="text"
 onkeyup="checkUsername(this.value)" /> #2
 <div id="message"></div> #3
 </div>
</form>
</body>
</html>
(annotation)<#1 Simple styling>
(annotation)<#2 onkeyup event is used so that checkUsername() is called on every keystroke>
(annotation)<#3 Placeholder for message returned by server>

This is a simple form that uses the onkeyup event on the input field to send the current text that the user
has entered to the PHP file on the server. This is done in the JavaScript check() function which is stored in a
separate JavaScript file called ajax.js as shown in Listing 4.3.

Listing 4.3: Hand crafted JavaScript code to call back to the server for validation
var request;
if (navigator.appName == "Microsoft Internet Explorer") { |#1
 request = new ActiveXObject("Microsoft.XMLHTTP"); |
} else { |
 request = new XMLHttpRequest(); |
}

function checkUsername(username)
{
 var success = 4;
 request.abort();
 request.open("GET", "ajax1.php?name=" + username, true); |#2

 request.onreadystatechange=function() { |#3
 if (request.readyState == success) { |#4

Licensed to Menshu You <dollequatki@gmail.com>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 document.getElementById('message').innerHTML
 = request.responseText;
 }
 }
 request.send(null);
}
(annotation)<#1 IE uses an ActiveX control, everyone else uses a built in object. (IE was the first implementation though)>
(annotation)<#2 Send the request back to the server>
(annotation)<#3 Called by browser when the request object changes state>
(annotation)<#4 If the readyState is “success” (4) then update the place holder div with the returned text>

The magic of updating the HTML page with the new data is done by selecting an element on the page
using document.getElementById() and then changing its attributes. In this case we change it entirely by
replacing its innerHTML property with the server’s response. We could equally have changed its CSS style or
build new child HTML elements such as new li elements, based on the data received from the server.

You should now have an appreciation of what Ajax is and how the various components fit together. This
example is necessarily simplistic as this book is not about Ajax per-se. To really understand what’s going on
and the full possibilities available with Ajax, I recommend that you take a look at Ajax in Action by Dave
Crane and Eric Pascarello.

The JavaScript code I have presented here looks nice and simple and breaks pretty much every rule of
defensive programming; there is no error checking at all! Other than the fact that it would clutter up the
example, it is hard to get it right for all the browsers out there. We can abstract all the complications away into
an client library though, and fortunately, other people have already done this for us, so we will examine them
next.

4.3 Ajax Client Libraries
Adding the required JavaScript to create an Ajax application used to be quite painful. Even considering the
very simple application above, the checkUsername() function mixes code dealing with the request with code
that knows about how the HTML document is built. This is not good for long term maintenance, as we have
seen in Chapter 2 where we separate concerns using the MVC design pattern for our main application. We
should be separating the responsibilities of our client-side Ajax code too and rather than write all the required
code ourselves, we can utilize an Ajax library to help us.

A JavaScript library will enable us to build upon the work of others. As PHP application developers, we
are often more interested in solving our client’s problems rather than worrying about the underlying
technology. A JavaScript toolkit library will enable us to work at a higher level with our Ajax in much the
same way that the Zend Framework empowers us in our server side application development.

There are many JavaScript toolkit libraries to choose from and it is not obvious how to make the choice. In
much the same way as we chose to use the Zend Framework, the key considerations when choosing a
JavaScript library are features, performance, documentation and community. We are going to look at two of
the more popular libraries: Prototype and its cousin Script.aculo.us, and Yahoo’s YUI.

4.3.1 Prototype and Script.aculo.us
The Prototype library provides a set of functionalities to make Ajax calls easy. It has an emphasis on extending
the JavaScript DOM to make it easier to work with. Prototype also cross browser compatible. The
script.aculo.us library is a higher level library built upon Prototype that concentrates on visual effects such as
drag-and-drop and visual effects. Prototype and script.aculo.us development is tried quite closely to Ruby on
Rails and you see some Ruby/Rails idioms in the prototype function names.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Let’s look at how our simple example changes when using prototype. Other than including the prototype.js
file in ajax.html, all the changes are in ajax.js, as shown in listing 4.4.

Listing 4.4: Replacing our JavaScript with prototype for our simple Ajax example
var handleSuccess = function(transport) {
 if(transport.responseText !== undefined){
 document.getElementById('message').innerHTML = transport.responseText;
 }
}

var handleFailure = function() {
 document.getElementById('message').innerHTML = "";
}

function check(name)
{
 var sUrl = "ajax.php?name=" + name;
 new Ajax.Request(sUrl, #1
 {
 method: 'get', |#2
 onSuccess: handleSuccess, |
 onFailure: handleFailure |
 }
);
}
(annotation)<#1 Prototype supplies the Ajax object which takes two parameters: the url and a configuration array>

Although there is a little more code than with our simple example, this time we have some error checking
and also have separated the functionality out. The prototype object that wraps XMLHttpRequest is called Ajax
and is created in the check() function. The constructor (#1) takes two arguments: the URL to connect to and a
configuration object. The configuration object is defined directly within the function call as an anonymous
object using the {} syntax (#2). (In some ways JavaScript takes the concept of dynamic in dynamic languages
to a whole new level!)

To configure our Ajax request, we tell prototype that we want to use a GET HTTP call and we register two
callback functions for success and failure. The code in handleSuccess() is very simple. The function receives a
transport object that encapsulates all that we know about the returned data, so all we have to do is extract the
responseText and assign it to the placeholder element.

4.3.2 The YUI library from Yahoo!
The Yahoo! User Interface (YUI) also provides a set of user interface widgets along with some underlying
classes to make the creation of Ajax applications easier. The attraction of the YUI is that a big company is
supporting it and it has great documentation including examples. As with prototype, there is a good community
using the library that has produced extensions that enhance the standard components.

Changing our example JavaScript so that it uses the YUI results in very similar code to the prototype
example. We add the required files to the HTML (yahoo.js and connection.js) and then the rest of the work is
in ajax.js (see listing 4.5).

Listing 4.5: ajax.js: Integrating YUI into our example Ajax application
var handleSuccess = function(o) {
 if(o.responseText !== undefined){
 document.getElementById('message').innerHTML = o.responseText;
 }
}

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

var handleFailure = function(o) {
 document.getElementById('message').innerHTML = "";
}

function check(name)
{
 var sUrl = "ajax.php?name=" + name;
 var callback =
 {
 success: handleSuccess,
 failure: handleFailure
 };
 var request = YAHOO.util.Connect.asyncRequest('GET', sUrl, callback); #1
}
(annotation)<#1 With YUI we use the Connect object for Ajax connections>

As you can see, the code is pretty much the same. In this case, the class that wraps up XMLHttpRequest is
called YAHOO.util.Connect and we call the static method, asyncRequest to initiate the connection to the
server. Again a configuration object is used to define which call back functions we want to use, though this
time, I have created the object, callback, first and then assigned it to the function.

Using YUI or prototype makes development of Ajax applications much easier and less prone to error than
hand-coding from scratch. Obviously there are a lot of other client libraries out there such as Mootools and
dojo which are worth looking at before making a decision. For the remainder of this book, we will use the
Yahoo! User Interface library for no other reason than I quite like it and Yahoo! hosts the JavaScript files for
us, saving us a little bit of bandwidth. Now that we have a library to make development easier, we can now
look at how Ajax fits with the Zend Framework.

4.4 Using Ajax with the Zend Framework
The first thing to consider when using Ajax with the Zend Framework is that the Zend Framework does

not provide an Ajax components per-se, but the MVC system and other components such as Zend_Json make
it easy to add Ajax features to your application As throughout this book, maintenance of the application is a
key consideration and the Zend Framework’s separation of the model and controller from the view makes it
easy to replace the standard HTML-based view of most pages with another view especially for Ajax requests.

Integration into the Zend Framework takes two forms: handling the Ajax request from the user within the
controller and providing the JavaScript elements to handle the response from the server back to the client.

4.4.1 The server-side of an Ajax request
From the Zend Framework’s point of view, an Ajax request looks remarkably like any other request into the
application. The most significant difference is that the response back to the client is a either snippet of HTML,
XML or JSON. To respond to an Ajax request is, therefore, just a case of ensuring that we use a different view
and the easiest way to do this is to use a different controller. The advantage of the MVC design pattern comes
into play now as the business logic is in the Model and so can be reused without any changes when adding
Ajax to an application.

The controller
When providing controller actions that respond to Ajax calls, the view must not send back full HTML pages,
but must instead send HTML fragments, JSON or XML data. If we take the simple example application, then
the controller will require two actions; one for the displaying the page and one for responding to the Ajax
request. Displaying the page, as shown in Listing 4.6, should now look familiar.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Listing 4.6: IndexController action to display the page
 public function indexAction()
 {
 $this->view->baseUrl = $this->_request->getBaseUrl(); |#1
 }
<#1: store the base url in the view so that we can use it to load the requried JavaScript files >

To respond to the Ajax call, we need a separate action, which we will call ajaxAction. We will reuse the
same ajax.php file that we have been using for all examples as it has a perfectly good checkUsername()
function to do the actual validation. In keeping with the MVC separation, we have put this file in the models
directory and then include it for use in our action:
 public function ajaxAction()
 {
 include ('models/ajax.php');
 $name = trim($this->_request->getParam('name'));
 $this->_view->result = checkUsername($name);
 }

The associated view file, views/scripts/ajax.phtml contains just one line of code to output the result:

<?php echo $this->result; ?>

This is probably the simplest view file you’ll ever see!

4.4.2 The client site of an Ajax request
In the Zend Framework, the JavaScript part of an Ajax request is held within the view section. Usually this
means that we use a template.

The view
As we have come to expect, the view (index.phtml) contains the HTML code for the page. This is the same as
before except that we have to qualify where to find the JavaScript files using the baseUrl property that we
created in indexAction:
<script type="text/javascript"
 src="<?php echo $this->baseUrl; ?>/js/yahoo.js"></script>
<script type="text/javascript"
 src="<?php echo $this->baseUrl; ?>/js/connection.js"></script>
<script type="text/javascript"
 src="<?php echo $this->baseUrl; ?>/js/ajax.js"></script>

In this case, I’ve chosen to use the YUI for the Ajax request, but Prototype would have worked just as
well. The check() function also needs changing as we need a fully qualified URL for the request back to the
server. We therefore pass the base URL property to the check() and rework the JavaScript sUrl variable to be
in the Zend Framework format of controller/action/param_name/param_value as shown in Listing 4.7.

Listing 4.7: The URL in the Ajax request back to our server needs to be in the correct format
function check(baseUrl, name)
{
 var sUrl = baseUrl + "/index/ajax/name/" + name;
 var callback =
 {
 success: handleSuccess,
 failure: handleFailure,
 };

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 var request = YAHOO.util.Connect.asyncRequest('GET', sUrl, callback);
}

We now have a working Ajax example that uses the Zend Framework’s MVC structure. The only changes
made to the basic example application were to ensure that the code was correctly separated according to its
role. We can now do something more interesting and look at how to fully integrate Ajax into a typical Zend
Framework application, such as the Places example application..

4.5 Integrating into a Zend Framework Application
When considering the use of Ajax in a Zend Framework application, it’s not just the client side JavaScript that
needs to be written. We also have to ensure that the View doesn’t try to display a full HTML page in response
to an Ajax request and that our controller doesn’t do work that our model should be doing. To look at these
issues in context, we will write a feedback system into the Places example application.

Consider this use-case:
We are hoping that Places becomes very popular and so we will get lots of reviews on each location. We

would like to make it easy for users to let us know whether they thought any given review was helpful for
them. We can then display the “helpfulness” of each listed review to users which will guide them whilst
reading the site. Also, as the number of reviews gets larger, we can display only the most helpful on the
location’s main page, and relegate the less helpful reviews to a secondary page.

This is an ideal task for Ajax as we do not want to intrude upon users with a page refresh and hence an in-
place update will allow them to continue looking at the other reviews once they have indicated that a given
review is helpful or not.

To provide feedback on a review we need to ask the question “was this review helpful to you?” with the
possible answers of yes or no. We keep a count of the number of people who have answered yes and the total
number of respondents. This will then allow us to inform the user that “N of M people found this review
helpful”. At a later stage, as we get more and more reviews, we could even consider ordering the list by
“helpfulness” of the review. The user interface to our review feedback system is very simple as shown in
Figure 4.4.

Figure 4.4: Review feedback system has two buttons to provide feedback.

The review feedback system is a single line of text containing the number of people who found the review
helpful and the number of people who have provided feedback. The user is left to determine if this ratio means
that this review is “helpful” or not. We also have two buttons to allow the user to provide feedback. We will
build this feature by starting with the View templates and add HTML and then the JavaScript. We also need
two database fields to hold the two count numbers. I’m going to use helpful_yes for the first one and
helpful_total for the second.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

4.5.1 Adding HTML to the View Templates
The view template that displays the reviews about a place is views/place/index.phtml. We already have a list
containing each review, so we just need to add the count information and the Yes and No buttons. We must
also make sure that we can identify each HTML element that we want to change dynamically by giving it a
unique id. The easiest way to get a unique id is to use a string followed by the review id. The entire code
within the list is shown in listing 4.8.

Listing 4.8: The HTML for the review feedback system
<p class="helpful">
 <span id="yes-<?php echo $review->id?>"> #1
 <?php echo $review->helpful_yes;?>
 of <span id="total-<?php echo $review->id?>">
 <?php echo $review->helpful_total; ?>
 people found this review helpful. Was this review helpful to you?
 <span id="yesno-<?php echo $review->id?>">
 <a class="reviewLink" href="#"
 onclick="new RF(1, <?php echo $review->id;?>, |#2
 '<?php echo $this->baseUrl; ?>'); return false;">Yes |
 <a class="reviewLink" href="#"
 onclick="new RF(0, <?php echo $review->id;?>,
 '<?php echo $this->baseUrl; ?>'); return false;">No

 <span id="spinner-<?php echo $review->id?>">
 <div id="message-<?php echo $review->id?>"></div>
</p>
<#1: Set the id of each element that we want to address using the format {label}-{review_id} >
<#2: Create a new instance of a request feedback object, RF. This object will intiate the Ajax connection in its constructor >

As you can see in listing 4.8, the HTML for the review feedback system consists of a message informing
the user of the helpfulness of the review, two links for providing feedback (Yes or No) and two place holders
for providing interactive responses after clicking a link. To make this HTML code useful for an Ajax
application we have to make each part easily accessible from Javascript. We do this by setting the id attribute
to a unique value using the review’s database id. Now that we have a the HTML, we can add some JavaScript
to do the work.

4.5.2 Adding JavaScript to the View Templates
As the review feedback system uses Ajax, we will use the YUI framework for the behind the scenes

connection to the server. We will place the required JavaScript file, reviewFeedback.js, in the “js” directory
under web_root. We also need some YUI files, but Yahoo! will serve those for us.

We can break down the client side work into a number of distinct tasks:
 Initiate request to server and start a spinner animation
 On success:

 Update the count
 Stop the spinner animation
 Say thank you to the user

 On failure:
 Inform the user
 Stop the spinner animation

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

In order to prevent pollution of the global namespace, we put all the JavaScript code for the review
feedback module into a class called RF (for Review Feedback). The constructor initializes everything and
connects to the server as shown in Listing 4.9.

Listing 4.9: The JavaScript class constructor
function RF(response, reviewId, baseUrl) {
 this.id = reviewId;
 this.baseUrl = baseUrl;

 // turn on spinner and empty the information message
 this.startSpinner();
 this.message("","");

 // ensure that we don't have to encode parameters
 var response = parseInt(response); |#1
 var reviewId = parseInt(reviewId); |

 var sUrl = baseUrl + "/review/feedback/id/"
 + reviewId + "/helpful/" + response;

 // perform the request.
 YAHOO.util.Connect.asyncRequest('GET', sUrl, this); #2
}

<#1: Using parseInt() we can avoid having to encode the parameters.>
<#2: The constructor initiates the Ajax call back to the server.>

JavaScript’s object model is a little different from PHPs and to create a class, we don’t need a “class”
keyword, we just need a function which will act as the constructor. The rest of the class’s functions are then
added to the “prototype” property of the function which will make them available to all instances of the class.
Appendix B of Ajax in Action has more details if you need to catch up on your JavaScript object model.

As you can see in Listing 4.9, when we initiate the Ajax call with asyncRequest, we pass in the “this” as
the callback object. This means that we must define the member functions success() and failure() so that the
YUI system can call them when appropriate. The advantage of using an instance is that we can store the
reviewId and the baseURL into the instance and they will be available in the member functions when we need
them. We can also provide helper functions within the class to keep the main call back functions easier to read.

We need to provide a message on success and on failure, so it makes sense to write a function called
message():
RF.prototype.message = function(class, text) {
 document.getElementById('message-'+this.id).className = class;
 document.getElementById('message-'+this.id).innerHTML = text;
}

The thank you message is displayed in the div with an id of message-{review_id} and the message
function just hides the verbosity of setting the CSS class and the text of the message that we need to display.
Two other helper functions, startSpinner() and stopSpinner() are needed also. To create a spinner, we use an
animated GIF image which is added to the HTML in startSpinner() and removed in stopSpinner():
RF.prototype.startSpinner = function() {
 var spinner = document.getElementById('spinner-'+this.id);
 var url = this.baseUrl+'/img/spinner.gif';
 spinner.innerHTML = '';
}

RF.prototype.stopSpinner = function() {
 document.getElementById('spinner-'+this.id).innerHTML = "";

}
We can now define the success() call back function that does the real work, as shown in listing 4.10.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Listing 4.10: The success call back function
RF.prototype.success = function(o) {
 if(o.responseText !== undefined) {
 var json = eval("(" + o.responseText + ")") ;
 if(json.result && json.id == this.id) { #1
 var id = json.id;

 // update the information text to include the new counts
 document.getElementById('yes-'+ id).innerHTML = json.helpful_yes;
 document.getElementById('total-'+id).innerHTML = json.helpful_total;

 // say thank you and stop the spinner
 this.message("success", 'Thankyou for your feedback.');
 this.stopSpinner();

 // remove yes/no buttons as they aren't needed after feedback
 document.getElementById('yesno-'+ id).innerHTML = "";
 } else {
 this.failure(o); #2
 }
 }
}
(annotation) <#1: Sanity checks: Check that we got back the same review Id as we sent.>
(annotation)<#2: If the sanity checks fail, then treat this as any other failure.>

As we noted earlier, the success function has to do three different things: update the review count text,
display a thank you message and stop the spinner. We also remove the Yes and No buttons as they are no
longer needed. To update the count, we deliberately placed a with an id of helpful-{review_id} around
the two numbers that we needed to update. We then set the innerHTML property of the two spans to update the
new number of “yes” and “total” counts. To update the message and stop the spinner, we use the helper
functions that we previously created, which ensures that this function is easier to maintain.

The failure() call back function is very similar, except that we only need to display a message and stop the
spinner:
RF.prototype.failure = function(o) {
 // inform the user of failure and stop the spinner
 var text = "Sorry, our feedback system hasn't worked. Please try later.";
 this.message("failed", text);
 this.stopSpinner();
}

This is all the JavaScript code required for our review feedback system. The server side code is similarly
simple.

4.5.3 The server code
The client side JavaScript calls into the feedback action of the Review controller. This is a standard action like
any other in the system and so is a class function called ReviewController::feedbackAction() that
is stored in ReviewController.php. The most significant difference between an action that responds to an Ajax
request and an action that displays HTML directly is the view code; we do not need any HTML.

The output of the action is an array of JSON ecoded data and so we do not need a view template file at all
and we can assign the data directly to the response. We therefore turn off the view renderer action helper to
ensure that it doesn’t try and render a complete page. The feedback action function is shown in listing 4.11.

Listing 4.11: ReviewController::feedbackAction() contains the server side Ajax response.
class ReviewController extends Places_Controller_Action
{

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 public function feedbackAction()
 {
 $id = (int)$this->_request->getParam('id'); #1
 if ($id == 0) {
 $return = Zend_Json::encode(array('result'=>false));
 $this->_response->appendBody($return); #2
 return;
 }

 $helpful = (int)$this->_request->getParam('helpful');
 $helpful = $helpful == 0 ? 0 : 1; //ensure is only 0 or 1

 $reviewsFinder = new Reviews();
 $review = $reviewsFinder->fetchRow('id='.$id);
 if ($review->id != $id) {
 $return = Zend_Json::encode(array('result'=>false));
 $this->_response->appendBody($return);
 return;
 }

 if ($helpful) {
 $sql = "Update reviews SET helpful_yes = (helpful_yes+1),
 helpful_total = (helpful_total+1)
 WHERE id=$id";
 } else {
 $sql = "Update reviews SET helpful_total = (helpful_total+1)
 WHERE id=$id";
 }
 $reviewsFinder->getAdapter()->query($sql);

 $review = $reviewsFinder->fetchRow('id='.$id);

 $return = array('result'=>true, 'id'=>$id,
 'helpful_yes'=>$review->helpful_yes,
 'helpful_total'=>$review->helpful_total);
 $this->_response->appendBody(Zend_Json::encode($return));
 $this->_helper->viewRenderer->setNoRender(); #3
 }
}

(annotation) <#1 Casting to an integer ensures that the id is “safe” to use in SQL statements.>
(annotation) <#2 The result key in the returned array is used for error reporting.>
(annotation) <#3 Turn off the view renderer.>

Encoding to JSON is taken care of by the Zend_Json component. There are two static functions, encode()
and decode() available that will use the PHP JSON extension if available, otherwise will use a PHP
implementation. Obviously, the PHP JSON extension is faster, but it is useful to know that the class will work
even if it isn’t available.

The rest of the code in feedbackAction() is standard Zend_Framework code that updates the counts of the
database fields helpful_yes and helpful_total within the reviews table for the particular view in question. In this
case, we construct the SQL directly and execute it using the query() function of the Zend_Db object. Note
that as we use the review id from the user within the SQL directly, the cast to an integer is vital to ensure that
we don’t accidentally introduce an SQL injection vulnerability.

4.6 Summary
Within this chapter we have looked at what Ajax is and where it fits within a Zend_Framework application.
While it is possible to hand craft all the Ajax code required, it is easier to use one of the many libraries

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

available to simplify development and make the code more robust. We had a look at both prototype and the
Yahoo! YUI libraries and saw how easy they are to use. To place it all in context, we have also integrated a
mechanism to allow users to feeding back the helpfulness of reviews in Places.

We have now covered all the basics of building a Zend Framework application and fitting out the front end
with the latest technology; it is now time to look in detail at the database functionality provided with the Zend
Framework and how Zend_Db_Table can help us build models that are powerful to use, yet easy to maintain.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

5

Managing the Database
For most web sites, a database is a vital part of the application. The Zend Framework acknowledges this with a
comprehensive set to database related components that provide varying levels of abstraction. There are two
important levels of abstraction provided by the Zend Framework’s database classes: database and table. The
database abstraction provides for independence of your PHP code from the underlying database server used.
This means that it is easier for your application to support multiple database servers. Table abstraction is a way
to represent the database tables and rows as PHP objects. This allows for the rest of your application to interact
with PHP and never need to know that there is an underlying database.

5.1 Database abstraction with Zend_Db_Adapter
The subject of database abstraction appears to be a religious one with many developers claiming that such
layers are a performance drain and serve no useful purpose. This belief comes from the fact that to get the best
from a database engine, you have to understand how the engine works and use its specific interpretation of
SQL to get the best from it. On the other hand, other developers wouldn’t dream of not using a database
abstraction layer and argue that it allows them to migrate easily from one database to another and their
applications to be distributed more widely.

As always in such debates, it all depends on what the task is. If you are developing an application that
needs to extract the maximum performance out of the database, such as say Google, then coding for one
database is clearly the way forward. If you are writing an application that you intend to sell to customers, then
supporting multiple databases makes your product more desirable as your customer will want to standardize
the database servers used wherever possible. There is no right answer. In my current job, we have sold to
customers who will only use SQL Server and will not countenance the use of MySQL or PostgreSQL, so we
have found database abstraction layers very useful for making sales.

The Zend Framework’s interface to the database is via an abstraction layer. The standardized interface to
the database that this gives ensures that the higher level components will work with any database. It also means
that the support for a given database is encapsulated at a single point and so supporting new database engines
is easier. We will now look at using the Zend Framework’s Zend_Db_Adapter to connect to a database and
then interact with the data within it.

5.1.1 Creating an Zend_Db_Adapater
The heart of the database abstraction components within the Zend Framework is Zend_Db_Adapter_Abstract.
Each supported database engine has a specific adapter class that inherits from this class. For example, DB2’s
adapter is named Zend_Db_Adapter_Db2. The PDO library is also used to for some adapters, such as
Zend_Db_Adapter_Pdo_Pgsql for PostgreSQL.
The Factory design pattern is used to create a database adapter using the Zend_Db::factory() function a shown
in listing 5.1:
Listing 5.1: Creating a Zend_Db_Adapter instance using the factory function Zend_Db::factory()
$params = array ('host' => 'localhost', |#1

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 'username' => 'rob', |
 'password' => 'password', |
 'dbname' => 'places'); |

$db = Zend_Db::factory('PDO_MYSQL', $params); #2

(annotation) <#1 Database engine specific configuration parameters within an associative array.>
(annotation) <#2 The PDO_MYSQL constant specifies the database engine.>

As every adapter extends Zend_Db_Adapter_Abstract, only functions within the abstract class can be used

if you want database independence. The list of supported databases is quite extensive and includes DB2,
MySQL, Oracle, SQL Server and PostgreSQL. I would expect other databases to be supported over time too,
especially PDO-based ones.

The database adapters use the lazy loading technique to avoid connecting to the database on creation of the
object instance. This means that the even though the adapter object is created using Zend_Db::factory(),
connection to the database doesn’t actually happen until you do something with that object that requires a
connection. Calling the getConnection() function will also create a connection if there isn’t one already.

5.1.2 Querying the database
Running an SQL query directly against a database is very simple:
$date = $db->quote('1980-01-01')
$sql = 'SELECT * FROM users WHERE date_of_birth > ' . $date;
$result = $db->query($sql);

The $result variable contains a standard PHP PDOStatement object and so you can use the standard calls
such as fetch() or fetchAll() and to retrieve the data. In this case I used a standard SQL string for specifying my
query.

The query() function also supports parameter binding to save having to quote() all strings. This system
allows us to put placeholders into the SQL statement where we want our variables to be and then the adapter
(or underlying core PHP) will ensure that our query is valid SQL and doesn’t contain a string that isn’t quoted
properly. The query above could therefore be written as:
$sql = 'SELECT * FROM users WHERE date_of_birth > ?';
$result = $db->query($sql, array('1980-01-01'));

As a rule of thumb, using parameter based queries is a good habit to get into as it removes the opportunity
for accidentally forgetting to quote() some data from the user and thereby possibly creating an SQL injection
vulnerability in your application. It also has the side benefit that for some databases it is quicker to use bound
data parameters.

Not everyone is comfortable creating complex SQL queries though. The Zend Framework’s
Zend_Db_Select classes provides a PHP-based object-oriented interface to the database data.

Zend_Db_Select
Zend_Db_Select allows for using PHP to build database query statements in the comfortable language of PHP
rather than SQL.

The Zend_Db_Select provides a number of advantages. The most important ones are:
 Automatic quoting of meta-data (table and field names)
 Object oriented interface can provide for easier maintenance
 Helps to promote database independent queries
 Quoting of values to help reduce SQL injection vulnerabilities

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

A simple query using Zend_Db_Select is shown in Listing 5.2:

Listing 5.2: Creating a Zend_Db_Adapter instance using the factory function Zend_Db::factory()
$select = new Zend_Db_Select($db); #1
$select->from('users');
$select->where('date_of_birth > ?', '1980-01-01');
$result = $select->query(); #2

(annotation) <#1 Attach the Zend_Db_Adapter to the select object>
(annotation) <#2 execute the query>

One very useful feature of Zend_Db_Select is that you can build the query in any order. This differs from
standard SQL in that you must have each section of your SQL string in the correct place. For a complex query,
the maintenance required is simplified using Zend_Db_Select.

5.1.3 Inserting, Updating and Deleting
In order to simplify inserting, updating and deleting database rows, Zend_Db_Adapter provides the functions
insert(), update() and delete() respectively.

Inserting and updating use the same basic premise in that you provide an associative array of data and it
does the rest. Listing 5.3 shows how to add a user to a table called ‘users’.

Listing 5.3: Inserting a row using Zend_Db_Adapter
// insert a user
$data = array(|#1
 'date_created' => date('Y-m-d'), |
 'date_updated' => date('Y-m-d'), |
 'first_name' => 'Ben', |
 'surname' => 'Ramsey' |
);

$table = 'users';
$rows_affected = $db->insert($table, $data);
$last_insert_id = $db->lastInsertId(); #2

(annotation) <#1 Associative array of data.>
(annotation) <#2 The id of the row just inserted.>

Note that Zend_Db_Adapter’s insert() method will automatically ensure that your data is quoted correctly

as it creates an insert statement that uses parameter binding in the same manner as we discussed in section
5.2.2

Updating a record using the update() method works petty much the same way except that you need to pass
in a SQL condition to limit the update to the rows that you are interested in. Typically, you would know the id
of the row you want to update, however update() is flexible enough to allow for updating multiple rows as
shown in Listing 5.4.

Listing 5.4: Updating multiple rows using Zend_Db_Adapter
// update a user
$data = array(|#1
 'country' => 'United Kingdom' |
); |

$table = 'users';
$where = $db->quoteInto('country = ?', 'UK'); #2
$db->update($table, $data, $where);

(annotation) <#1 Fields to be updated only.>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

(annotation) <#2 Quote strings in where clause.>

Again, update() automatically quotes the data in the $data array, but does not automatically quote the data

in the $where clause, so we use quoteInto() to ensure that the data is safe for use with the database.
Deleting from the database works in exactly the same manner, only we just need the table and the where

clause, so for deleting a particular user the code would be:
$table = 'users';
$where = 'id = 1';
$rows_affected = $db->delete($table, $where);

Obviously, we need to quote strings in the $where clause again. In all cases insert(), update() and delete()

return the number of rows affected by the operation. We can now look at how to handle database specific
differences.

5.1.4 Handling database specific differences
All databases are not equal and this is especially true of their interpretation of SQL and the additional functions
they provide to allow access to the more advanced features. To call the specific SQL functions of your
database server, Zend_Db_Select class has a helper class called Zend_Db_Expr. Zend_Db_Expr is used for
calling SQL functions or creating other expressions for use in SQL. Let’s consider an example where we want
to extract the names of our users in lower case. The code is in Listing 5.5.

Listing 5.5: Using functions in SQL statements
$select = $db->select();
$columns = array(id, "CONCAT(first_name, ' ', last_name" as n); #1
$select->from('users', $columns);
$stmt = $db->query($select);
$result = $stmt->fetchAll();

(annotation) <#1 CONCAT() is a MySQL specific function.>

The from() function realizes that a bracket has been used in the columns parameter and so converts it to a

Zend_Db_Expr automatically for us. We can however always use Zend_Db_Expr ourselves by setting the
columns statement explicitly:
$columns = array(id, "n"=> new
Zend_Db_Expr("CONCAT(first_name, ' ', last_name"));

Now that we have considered how to abstract the differences between database engines away by using

adapters created by the factory method of Zend_Db, we can now turn our attention to how we use a database
within an application. Novice web programmers tend to put the database calls required directly where they
need them which leads to a maintenance nightmare with SQL statements spread all over the application. We
will now consider ways to consolidate our SQL and see how the Zend Framework’s Zend_Db_Table
component helps to improve the architecture of our applications.

5.2 Table Abstraction: Zend_Db_Table
When dealing with a database, it is useful to be able to abstract your thinking above the nitty-gritty of the
actual SQL statements and consider the system at the domain level. The domain level is where you are
thinking about the problem being solved in the language of the problem. The easiest way to do this is to create
classes that know how to load and save themselves to the database. A class that represents one row in a

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

database table is known as the Row Gateway pattern (or Active Record pattern depending on what else the
class does).

One area where Row Gateway doesn’t work so well is when dealing with lists such as retrieving a list of
products in an e-commerce application. This is because it works at the row-level and lists are generally dealt
with at the table level. The Zend Framework provides the Zend_Db_Table component to support database
manipulation at the table level and so we will look at what it provides for us and how table level support
differs from what we have already seen with Zend_Db_Adapter.

5.2.1 What is the Table Data Gateway Pattern?
Zend_Db_Table has three main components: Zend_Db_Table_Abstract, Zend_Db_Table_Rowset and
Zend_Db_Table_Row. As indicated by its name, Zend_Db_Table_Abstract is an abstract class which has to
be extended for each table that it acts as a gate way to. When selecting multiple records from the table, an
instance of Zend_Db_Table_Rowset is returned to you which can then be iterated over to access each
individual row. Each row is an instance of Zend_Db_Table_Row which is itself an implementation of the Row
Gateway pattern. This is shown in Figure 5.1.

Figure 5.1 The Zend_Db_Table components fit together to produce a clean method of managing a database table and its associated
rows.

Whilst, Zend_Db_Table_Abstract is always extended, Zend_Db_Table_Rowset is much less likely to be as it
provides pretty much all you need for handling a set of database rows. In more complicated systems, extending
Zend_Db_Table_Row into an Active Record by adding domain logic to it can help avoid duplicating of the
same code in multiple places, as we’ll see when we look at how to use the Zend_Db_Table.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

5.2.2 Using Zend_Db_Table
In order to actually use the Zend_Db_Table components, you must create a class to represent your table as
shown in Listing 5.6. This is usually named along the same lines as the database table that it accesses, but there
is no requirement for it to do so.
Listing 5.6: Declaring a table class for use with Zend_Db_Table
class Users extends Zend_Db_Table_Abstract
{
 protected $_name = 'users'; #1
}
(annotation) <#1. The name of the database table is explicitly set>

As you can see, in listing 5.1, we have explicitly set the name of the underlying table to “users”. In reality,

if the $_name property is not set, the name of the class the name of the class (preserving the case) will be used
instead. I prefer to name my classes starting with an upper case letter and name my database tables entirely in
lower case, hence it is wise for me to explicitly declare the database table name.

Now that we have a Users class, we can fetch data from the table in exactly the same way as if we were
collecting data from an instance of Zend_Db_Adapter:
 $users = new Users();
 $rows = $users->fetchAll();

Whilst it performs the same functionality, the Zend_Db_Table_Abstract::fetchAll() is used completely
differently from Zend_Db_Adapater_Abstract::fetchAll(). As we are working at a higher abstraction level with
the table, fetchAll() also works at the higher level as shown by its signature:
public function fetchAll($where = null, $order = null,
 $count = null, $offset = null)

The function will handle creation of the SQL statement using Zend_Db_Select for us; we just need to
specify the parts we are interested in and it will handle the rest. For example, to select all female users born
from 1980:
 $users = new Users();

 $where = array('sex = ?' => 'F',
 'date_of_birth >= ?'=>'1980-01-01');
 $rows = $users->fetchAll($where);

5.2.3 Inserting and updating with Zend_Db_Table
Inserting and updating with Zend_Db_Table is very similar to the usage with Zend_Db_Adapter except that
this time we know the table already. Table 5.1 shows exactly how similar.

Table 5.1: Inserting with Zend_Db_Table and Zend_Db_Adapter compared
Zend_Db_Adapter

// insert a user
$table = 'users';

$data = array(
 'date_created' => date('Y-m-d'),
 'date_updated' => date('Y-m-d'),
 'first_name' => 'Ben',
 'surname' => 'Ramsey'
);

$db->insert($table, $data);
$id = $db->lastInsertId();

Zend_Db_Table

// insert a user
$users = new Users();

$data = array(
 'date_created' => date('Y-m-d'),
 'date_updated' => date('Y-m-d'),
 'first_name' => 'Ben',
 'surname' => 'Ramsey'
);

$id = $users->insert($data);

1.1

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

As you see from Table 5.1, exactly the same process is used, except that with Zend_Db_Table, we already
know the table’s name and we get the id of the newly inserted record back directly. Updating a database row
follows the same concept as shown in Table 5.2.

Table 5.2: Updating with Zend_Db_Table and Zend_Db_Adapter compared
Zend_Db_Adapter

// update a user
$table = 'users';

$data = array(
 'date_updated' => date('Y-m-d'),
 'first_name' => 'Ben',
 'surname' => 'Ramsey'
);

$where = 'id=2';
$db->update($table, $data, $where);

Zend_Db_Table

// update a user
$users = new Users();

$data = array(
 'date_updated' => date('Y-m-d'),
 'first_name' => 'Ben',
 'surname' => 'Ramsey'
);

$where = 'id=2';
$users->update($data, $where);

1.2

Note that you need to quote any values and identifiers in the SQL expression used for the where clause.
This is done using the database apdapter’s quote(), quoteInto() and quoteIdentifier() methods.

Similarities between inserting and updating
The similarities between inserting and updating lead to the conclusion that somehow it might be worth having
a single “save” function in Zend_Db_Table. This would be incorrect as at the table level, you never know
which record (or records!) need updating. At the Zend_Db_Table_Row level however, it makes perfect sense.
Looking at Zend_Db_Table_Row, we discover that this functionality is already written for us as there is a
function called save(). It is used as shown in Table 5.3.
Table 5.3: Saving with Zend_Db_Table_Row
Inserting a new record

$users = new Users();
$row = $users->fetchNew();

$row->first_name = 'Ben';
$row->surname = 'Ramsey';

$row->save();

Updating a record

$users = new Users();
$row = $users->fetchRow('id=2');

$row->first_name = 'Ben';
$row->surname = 'Ramsey';

$row->save();

1.3

In this case, the entirety of the differences between inserting a new record and updating a current one are
hidden from us. This is because the Zend_Db_Table_Row object works at a higher level abstraction.

5.2.4 Deleting records with Zend_Db_Table
As you would expect, deleting works exactly the same as inserting and updating only we use the delete()
function. The delete() function is available in both Zend_Db and Zend_Db_Table and as with insert and
update, the usage is very similar between the two classes as shown in Table 5.4.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Table 5.4: Deleting rows with Zend_Db_Table and Zend_Db_Adapter compared
Zend_Db_Adapter

// delete a user
$table = 'users';

$where = 'id = 2';
$db->delete($table, $where);

Zend_Db_Table

// delete a user
$users = new Users();

$where = 'id = 2';
$users->delete($where);

1.4

The $where clause in delete() for both Zend_Db_Table and Zend_Db_Adapter does not quote the values

for us, so if we were to delete based on anything other than an integer, then we would have to use quote(),
quoteInto(). For example, to delete all users who live in London:
$users = new Users();
$db = $users->getAdapter();
$where = $db->quoteInto('town = ?', 'London');
$users->delete($where);

We have now looked at all the major database operations that can be done using the Zend_Db_Adapter
and Zend_Db_Table components. When fitting in database operations into a Model-View-Controller
application, they usually fit as part of the Model. This is because the Model is where the business logic of your
application is and the data stored in a database is very much related to the business of the application. We will
now look using Zend_Db_Table based objects within a Model and, possibly more importantly, how to test it.

5.3 Using Zend_Db_Table as a Model
Zend_Db_Table is usually the point where we integrate the Zend_Db component into a Zend Framework

MVC application. The model is usually a set of classes that build off of Zend_Db_Table_Abtract and
Zend_Db_Table_Row_Abtract. Within the Places application we use a model to represent the registered users
of the website. The database table required is quite simple and is shown in Figure 5.2.

Figure 5.2. The Users table for Places contains login information along with demographic information for advertisers.

As we want to make money from Places, we expect that advertisers will want to know the demographics
of the membership, so we would like our members to tell us their age, sex and location. Of course, this would
be optional, whereas the username and password are mandatory.

We will need to access our database tables at two different levels: table and row. The table level is used
when we need to display lists and the row level is used when dealing with individual records. In order to deal
with this in the code, we need two classes, Users and User which are extensions of Zend_Db_Table_Abstract
and Zend_Db_Table_Rowset respectively. The class definitions are shown in Listing 5.7. Note that in usually

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

you would use two files: User.php and Users.php for the two classes as it makes the application easier to
maintain.

Listing 5.7: Creating a Model using Zend_Db_Table compoents
class Users extends Zend_Db_Table_Abstract
{
 protected $_name = 'users';
 protected $_rowClass = 'User'; #1
}

class User extends Zend_Db_Table_Row_Abstract
{
}

(annotation) <#1. Link the User class as the class to use when creating Rows for this table.>

Linking the User class to the Users class is done through the property $_rowClass in the Users table. This
means that the Zend_Db_Table_Abstract class will create objects of type User whenever it would normally
have created an object of type Zend_Db_Table_Row. The implementation in listing 5.6 is not very useful over
and over the standard Zend_Db_Table_Row though as no additional functionality is provided. To make our
User class useful, we are going to add a new property called “name”. This will be used throughout the
application to display the user’s name. It will initially display the combination of first name and surname, but
if they are not set, then it will use the user’s username.

Our initial implementation of the function User::name() is therefore:
Class User extends Zend_Db_Table_Row_Abstract
{
 public function name()
 {
 $name = trim($this->first_name . ' ' . $this->last_name);
 if (empty($name)) {
 $name = $this->username;
 }
 return $name;
 }

 We can use name() directly, for example:
$rob = $users->find(1)->current();
echo $rob->name();

It would however be “nicer” to be able to treat the name as a read-only property of the record so that it is
used in exactly the same way as, say town. This will increase the predictability of the class as the programmer
will not have to think about whether a given property is a field in the database or a function within the class.
The easiest and most efficient way to do this is to override __get() as shown in Listing 5.8.
Listing 5.8: Overriding __get() to provide custom properties
class User extends Zend_Db_Table_Row_Abstract
{
//...
 function __get($key)
 {
 if(method_exists($this, $key)) #1
 {
 return $this->$key(); #2
 }
 return parent::__get($key); #2
 }
//...
}

(annotation) <#1. Check that there’s a class method names the same as $key.>
(annotation) <#2. If so, call the function and return.>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

(annotation) <#3. If not, call through to the original implementation of __get().>
We have to call our parent’s __get() function last as it will throw an exception if $key does not exist in the

database as a field. Note also that if one of the functions in the class is named the same as a field in the
database, then the function will be called rather that the value of the field returned. This is handy if you want to
do some processing on a given field before passing it through to the rest of the application, though such a use-
case is rare.

5.3.1 Testing the Model
As we have mentioned before, it is good practice to test your code and it is even better practice to test it more
than once! To test the users model, I have used PHPUnit and written some tests in the tests/models directory of
the places application.

Setting up and tearing down
One key thing about running tests automatically is that each test must not interfere with another test. Also, a
given test must not depend upon a previous test having run. To achieve this separation, PHPUnit provides the
functions setUp() and tearDown() which are run just before (and after in the case of tearDown(), just after)
each test.

In order to separate each database test, we use the setUp() function to recreate the database tables and
populate them to a known state. This obviously means that we do not use the master database for testing! I
have chosen to use a different database which is configured in the main config.ini for the application. We use
the [test] section to specify our test database as shown in Listing 5.9.

Listing 5.9: The [test] section overrides [general] in application/config.ini.
[general] |#1
db.adapter = PDO_MYSQL |
db.config.host = localhost |
db.config.username = zfia |
db.config.password = 123456 |
db.config.dbname = places |

[test : general] #2
db.config.dbname = places_test #3
(annotation) <#1. [general] contains the main database connection infomation.>
(annotation) <#2. [test] overrides [general].>
(annotation) <#3. Override the database name when testing.>

In our case, we only need to change the database name from places to places_test; we can rely on the other
settings in the general section to provide the other connection information. We are now in a position to create
the unit test class skeleton as shown in Listing 5.10.

Listing 5.10: tests/models/UsersTests.php
<?php
require_once 'PHPUnit/Framework.php';

if(!defined('ROOT_DIR')) {
 define('ROOT_DIR', dirname(dirname(dirname(__FILE__)))); |#1
 |
 set_include_path('.' |
 . PATH_SEPARATOR . ROOT_DIR . '/library' |
 . PATH_SEPARATOR . ROOT_DIR . '/../../lib/zf/library' |
 . PATH_SEPARATOR . ROOT_DIR . '/application/models' |
 . PATH_SEPARATOR . get_include_path()); |
}

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

require_once 'Zend/Registry.php';
require_once 'Zend/Db/Table.php';
require_once 'Zend/Config/Ini.php';
require_once 'Users.php'; // Users: Table gateway
require_once 'User.php'; // User: Row gateway

class UsersTest extends PHPUnit_Framework_TestCase #2
{
 public function __construct($name = NULL)
 {
 parent::__construct($name);

 if(Zend_Registry::isRegistered('db')) { |#3
 $this->db = Zend_Registry::get('db'); |
 } else {
 // load configuration information from [test] in config.ini |#4
 $configFile = ROOT_DIR .'/application/config.ini'; |
 $config = new Zend_Config_Ini($configFile, 'test'); |
 Zend_Registry::set('config', $config); |

 // set up database
 $dbConfig = $config->db->config->asArray(); |#5
 $db = Zend_Db::factory($config->db->adapter, $dbConfig); |
 Zend_Db_Table::setDefaultAdapter($db); |
 Zend_Registry::set('db', $db); |
 $this->db = $db; |
 }
 }
}

(annotation) <#1. Setup path.>
(annotation) <#2. Class name is the same as the filename. >
(annotation) <#3. Collect database adapter from registry if it has been stored already. >
(annotation) <#4. Load test specific configuration information. >
(annotation) <#5. Connect to database and store adapter for later use. >

This section of the unit test file contains only the initialization code that is run once. As you can see at the
top (#1), we have to ensure that we have set up our paths correctly so that the files can be found and we also
have to include all the files we are going to need. There is a check for the definition of ROOT_DIR to allow
for expansion and placing this unit test file in to a suite of files that can be tested all at the same time; when we
are testing as part of a suite, we will not want to alter the path. We also include the files from the Framework
that we need for this test.

As the constructor is only called once, it is the ideal place to load the config.ini file and connect to the
database. Again, if this class is part of a test suite, then the database connection will already have been made,
in which case we just collect it from the Registry. Otherwise, once we have connected, we set the database
adapter as the default adapter for Zend_Db_Table and store to the registry. We also assign it as a class member
variable as it is going to be used in the setUp() function to set our database to a known state.

Initializing our database is just a case of using the database adapter to create the table and insert some
rows. This is done in function called _setupDatabase() which is called by setUp() as shown in Listing 5.11.
Listing 5.11: Initializing the database in setUp()
 public function setUp() #1
 {
 // reset database to known state
 $this->_setupDatabase();
 }

 protected function _setupDatabase()
 {
 $this->db->query('DROP TABLE IF EXISTS users;'); #2

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 $this->db->query(<<<EOT |#3
 CREATE TABLE users (|
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, |
 date_created DATETIME, |
 date_updated DATETIME, |
 username VARCHAR(100) NOT NULL, |
 password VARCHAR(40) NOT NULL, |
 first_name VARCHAR(100), |
 last_name VARCHAR(100), |
 email VARCHAR(150) NOT NULL, |
 town VARCHAR(100), |
 country VARCHAR(100), |
 date_of_birth datetime, |
 sex char(1), |
 postcode VARCHAR(30) |
) |
EOT |
);

 // insert row #1 #4
 $row = array (
 'first_name' => 'Rob',
 'last_name' => 'Allen',
 'username' => 'rob',
 'password' => 'rob',
 'email' => 'rob@akrabat.com',
 'town' => 'London',
 'country' => 'UK',
 'date_of_birth' => '1970-01-04',
 'sex' => 'M',
 'date_created' => '2007-02-14 00:00:00',
);
 $this->db->insert('users', $row);

 // insert row #2
 $row = array (
 'first_name' => 'Julie',
 'last_name' => 'Smith',
 'username' => 'julie',
 'password' => 'julie',
 'email' => 'julie@example.com',
 'town' => 'London',
 'country' => 'UK',
 'date_of_birth' => '1981-03-15',
 'sex' => 'F',
 'date_created' => '2007-02-14 00:00:00',
 'date_updated' => '2007-02-14 00:00:00'
);
 $this->db->insert('users', $row);

 }

(annotation) <#1. setUp() is called before every unit test is executed.>
(annotation) <#2. Drop the table if it exists.>
(annotation) <#3. Create the table.>
(annotation) <#4. Insert some known data.>

This is very simple code that just ensures that our database is set up correctly for every test. Note that there
is a MySQL-ism in the Drop Table command which would need to be changed for other database engines. To
insert the database rows, we take advantage of the database adapter’s insert() method which we discussed
earlier.

We are now in a position to actually write some tests to ensure that our model works as expected!

Licensed to Menshu You <dollequatki@gmail.com>

mailto:rob@akrabat.com
mailto:julie@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Testing the Users table gatway
The Users class overrides the insert() and update() functions to ensure that the date_created and date_updated
fields are filled in without the rest of the code having to worry about it. The unit tests to ensure that this code
works is shown in listing 5.12. I have separated the tests into two separate functions: one to test inserting and
one to test updating.
Listing 5.12: Initializing the database in setUp()
 public function testInsert()
 {
 $users = new Users();
 $newUser = $users->fetchNew(); #1

 $newUser->first_name = 'Nick'; |#2
 $newUser->last_name = 'Lo'; |
 $newUser->username = 'nick'; |
 $newUser->password = 'nick'; |
 $newUser->email = 'nick@example.com'; |

 $id = $newUser->save(); #3

 $nick = $users->find($id)->current(); |#4
 $this->assertSame(3, $nick->id); |

 // check that the date_created has been filled in
 $this->assertNotNull($nick->date_created); #5

 // check that the date_updated has been filled in
 $this->assertSame($nick->date_updated, $nick->date_created); #6
 }

 public function testUpdate()
 {
 $users = new Users();
 $rob = $users->find(1)->current(); |#7
 $rob->town = 'Worcester'; |
 $rob->save(); |

 $rob2 = $users->find(1)->current();
 $this->assertTrue(($rob2->date_updated > $rob2->date_created)); #8
 }

(annotation) <#1. Create a new empy row object.>
(annotation) <#2. Fill in some data.>
(annotation) <#3. Save the new obejct which will insert the data into the database. >
(annotation) <#4. Retrieve the newly inserted row and check it has the right id>
(annotation) <#5. Ensure the date_created field has been filled in>
(annotation) <#6. Ensure the date_update is the same as the date_created>
(annotation) <#7. Edit a row to create a change>
(annotation) <#8. Check that the date_updated is more recent than the date_created>

Within testInsert() there is a reasonable amount of set up code. (#5) and (#6) are the actual tests that we
want to conduct, but to do them, we need to have inserted a new record into the database. As you can see,
Zend_Db_Table’s fetchNew() function returns an empty object, of type User that represents a row in the
database. We can then set the fields that we need and then insert it into the database using the save() method.
The row’s save() method uses that table gateway’s insert() or update() as appropriate which then uses our
overridden functions to ensure that the date_created and date_updated fields are correctly filled in.

The testUpdate() function does the same basic test, but here we just edit one of the rows in the database
that was created by the setUp() functions. It is important to get the row from the database again though to

Licensed to Menshu You <dollequatki@gmail.com>

mailto:nick@example.com
http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

ensure that the date_created field has been changed in the database itself. Now that we have explored the
Zend_Db_Table class and its assocated rowset and row classes, we can look at joining tables together.

5.3.2 Table Relationships with Zend_Db_Table
Table relationships are where Zend_Db_Table starts getting very interesting. This is the realm of linking tables
together using SQL JOIN statements and is one area where it is nice to get the framework doing the leg work
for us. We will look at how Zend_Db_Table can help us with one-to-many and many-to-many relationships.

One-to-Many relationships
We have already come across one to many relationships in Chapter 3 when we created the initial schema for
the Places application. Each location can have many reviews. This is shown in figure 5.3.

Figure 5.3: A One-to-Many relationship is created via a foreign key (places_id) in the Reviews table.

To represent this using Zend_Db_Table we create two new classes that extend from

Zend_Db_Table_Abtract and then use the $_dependantTables and $_referenceMap properties to link them
together. This is show in Listing 5.13.
Listing 5.13: One-to-many relationship using Zend_Db_Table
class Places extends Zend_Db_Table_Abstract
{
 protected $_name = 'places'; #1
 protected $_dependentTables = array('Reviews'); #2
}

class Reviews extends Zend_Db_Table_Abstract
{
 protected $_name = 'reviews';
 protected $_referenceMap = array(#3
 'Place' => array(|#4
 'columns' => array('place_id'), |
 'refTableClass' => 'Places', |
 'refColumns' => array('id') |
)
);
}

(annotation) <#1 name of the database table>
(annotation) <#2 classname of dependency >
(annotation) <#3 list of relationships for this table>
(annotation) <#4 one-to-many relationship definition>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

To define a one-to-many relationship, the $_referenceMap is used. As shown in #4, each relationship has
its own sub-array and to ensure maximum flexibility, you inform the class exactly which columns are used in
each table. In our case, the reviews table has a column called places_id which is linked to the id column in the
places table.

NOTE

Both columns entries in the reference map are defined as arrays. This is to allow for composite keys
containing more than one table field.

To actually retrieve the reviews for a given “place” record the findDependentRowset() function is used as

shown:
$londonZoo = $places->fetchRow('id = 1');
$reviews = $londonZoo->findDependentRowset('Reviews');

findDependentRowset() takes two parameters: the name of the table class that you wish to receive the data

from and an optional rule name. The rule name must be a key in the _referenceMap previously set up, but if
you don’t supply one, it will look for a rule with a refTableClass that is the same as the class name of the table
from which the row was created (“Places” in our case).

Many-to-Many Relationships
By definition, each Place has many reviews which were written by different users. Therefore for any given
user, we can obtain the list of places that they have reviewed and conversely, for any given place, we can list
the users who have reviewed it. This is known as a many-to-many relationship between places and users. To
map this relationship within a database, a third table, known as a link table, is required. In our case, the link
table is the Reviews table as shown in Figure 5.4.

Figure 5.4: A Many-to-Many relationship between Places and Users is created via the Reviews table acting as a link.

The Reviews table as two foreign keys, one to Places and one to Users and so there are two one-to-many

relationships also. There are three classes to define as shown in Listing 5.14.
Listing 5.14: Many-to-many relationship using Zend_Db_Table
class Places extends Zend_Db_Table_Abstract
{
 protected $_name = 'places';
 protected $_dependentTables = array('Reviews');
}

class Reviews extends Zend_Db_Table_Abstract
{
 protected $_name = 'reviews';
 protected $_referenceMap = array(#1
 'Place' => array(
 'columns' => array('place_id'),

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 'refTableClass' => 'Places',
 'refColumns' => array('id')
),
 'User' => array(
 'columns' => array('user_id'),
 'refTableClass' => 'Users',
 'refColumns' => array('id')
)
);
}

class Users extends Zend_Db_Table_Abstract
{
 protected $_name = 'users';
 protected $_dependentTables = array('Reviews'); #2
}
(annotation) <#1 Two rules in the $_referenceMap>
(annotation) <#2 Directly dependant classes only>

As you can see in Listing 5.14, the Users class follows exactly the same pattern as that Places class and

only defines the table classes that are directly dependant on. This means that we don’t explicitly state a many-
to-many relationship in the code and we let the Zend_Db_Table work out that there is one. To create a list of
the places that a given user has reviewed, the following code is used:
$users = new Users();
$robAllen = $users->fetchRow('id = 1');
$places = $robAllen->findManyToManyRowset('Places', 'Reviews');

As you can see, the function that does the work for us is called findManyToManyRowset(). The first

parameter is the destination table and the second is the intersection table class containing the rules that will
link the initial table class to the intersection table class. In both cases, the parameters can either be strings or
instances of Zend_Db_Table, so the snippet above could be written as:
 $users = new Users();
 $places = new Places();
 $reviews = new Reviews();

 $robAllen = $users->fetchRow('id = 1');
 $places = $robAllen->findManyToManyRowset($places, $reviews);

This would produce exactly the same result. Note that if there is more than one rule in the $_referenceMap

of the intersection table that that would link the tables, then you can specify which rule to use as additional
parameters to findManyToManyRowset(). Consider the situation where each review has to be approved by a
moderator. The new table diagram would look like Figure 5.5.

Figure 5.5: Multiple many-to-many relationship between Places and Users is created via two keys in the Reviews table.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

In this case, we now have two foreign keys in the Reviews table that link to the Users table. To implement
the second link, a new rule is required in the $_referenceMap for the Reviews table as shown in listing 5.15.
Listing 5.15: Reviews class with updated $_referenceMap
class Reviews extends Zend_Db_Table_Abstract
{
 protected $_name = 'reviews';
 protected $_referenceMap = array(
 'Place' => array(
 'columns' => array('place_id'),
 'refTableClass' => 'Places',
 'refColumns' => array('id')
),
 'User' => array(
 'columns' => array('user_id'),
 'refTableClass' => 'Users',
 'refColumns' => array('id')
),
 'ApprovedBy' => array(#1
 'columns' => array('approved_by'), #2
 'refTableClass' => 'Users',
 'refColumns' => array('id')
)
);
}

(annotation) <#1 Second rule to link to Users table .>
(annotation) <#2 Field name in reviews table.>

As you can see, we can have multiple rules in the reference map that refer to the same table as long as they
have different names (User and ApprovedBy in this case). We then use the columns key to in each map
element to tell Zend_Db_Table the field name of the correct foreign key in the reviews table.

Selecting the list of places that have been reviewed by a given user is done using
findManyToManyRowset() again, but this time we pass in the name of the rule we want to use:
// find all places that John Smith has approved a review of.
$johnSmith = $users->fetchRow('id = 4');
$places = $johnSmith->findManyToManyRowset('Places', 'Reviews', 'ApprovedBy');

The Zend_Db_Table’s handling of one-to-many and many-to-many relationships is surprisingly powerful,
although requiring manual setting up of the relationships in the intersection class. We will now look at how we
insert and update records using a Zend_Db_Table.

5.4 Summary
Throughout this chapter we have looked at the support for databases provided by the Zend Framework. As
nearly all web applications use databases to store there data, it comes as no surprise to find that rich database
support is provided. The foundation is the database abstraction layer, Zend_Db_Abstract, that takes care of the
nitty-gritty of dealing with the differences between specific database engines and so provides a standardized
interface for the rest of the components in the Framework. Zend_Db_Table builds upon the foundation to
provide a table based interface to the data in the table and so makes working with the database from within the
Model of an MVC application much easier. For those times when it is important to work with a specific row of
data, Zend_Db_Table_Row provides simple access.

We have now covered the all the bases required for the underlying structure of a Zend Framework
application and so will move on in our journey to look authentication and authorization which will allow us to
restrict certain parts of our application to specific users and to ensure that those users can only perform actions
appropriate to the trust that the application has in them.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

6

User Authentication and Authorisation
Most websites nowadays restrict different areas to different people. For example, most e-commerce sites
require that you are logged in before you can checkout your order. Other sites have “members-only” pages that
can only be accessed after log-in. In Places, only registered users are able to write or rate a review. This
functionality is known as authentication and authorisation and in this chapter we will look at the support
provided by the Zend Framework.

6.1 Introducing Authentication and Authorisation
There are two different processes involved when it comes to allowing a user access to specific pages on a
website. Authentication is the process of identifying an individual based on their credentials (usually username
and password) and authorisation is the process of deciding if the user is allowed to do something. The Zend
Framework’s two components, Zend_Auth and Zend_Acl, provide comprehensive support for all aspects of
authentication and authorisation for websites.

As you must know who the user is, it follows that the authentication process must occur before
authorisation, and so we will look at authentication and Zend_Auth first, before looking at Zend_Acl.

6.1.1 What is authentication?
The goal of the authentication is the process of deciding if someone is whom they say they are. There are three
ways to recognise a user which are known as “factors”:
Something they know: password, pin, etc.

 Something they have: Driving licence, credit card, etc.
 Something thy are: fingerprints, typing patterns, etc.

When you buy something from a shop using a credit card, two factors are used: “have” (the credit card in

your pocket) and “know” (the pin number). For pretty much every website out there (including online banks)
the “know” factor is the only mechanism used to identify a user. Generally this means a username and
password, although banks in particular tend to ask for multiple pieces of information, such as a memorable
date or place, in addition to a password.

Even though we have discovered that accepting a username/password for authorization is the standard for
websites, the choice of where to store the information still has to be made. For standalone websites, it is
common to use a database table containing the list of usernames and passwords, but there are other options.
For sites that are part of a group, such as Yahoo!, then a separate system to handle the authentication is
necessary. One common system is LDAP, the Lightweight Directory Access Protocol, which stores the
information about the users in a separate service which can then be queried by other applications as required.
OpenID and Six Apart’s Typekey are other systems that allow for authorization to be performed by another
service.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

6.1.2 What is authorisation?
Authorisation is the process of deciding whether or not to allow a user access to a resource or action. In web
terms, this usually means we are deciding if someone is allowed to view a certain page or perform an action
such as add a comment. One standard mechanism for doing this is to use an Access Control List (ACL) which
is a list of permissions that are attached to a resource. The list specifies who is allowed access to the resource
and what can be done with it. This means that the list will tell the system if a given user is allowed to view a
database record, or execute a controller action.

Whenever a user wishes to do something, the list is checked to see if they are allowed to do the desired
action with the desired data item. For example, a user may be allowed to view a news article, but be denied
permission to edit it.

6.2 Implementing authentication
Now that we know what authentication and authorisation are, we can look at how they are implemented with a
Zend Framework application. We will first look at how to implement authorisation with Zend_Auth using
HTTP authentication and then look at how authentication is implemented within a “real-world” application
using a database to hold the user information and sessions to store the information across multiple page views.

6.2.1 Introducing Zend_Auth
The Zend_Auth component is the part of the framework that deals with authentication and is separated

into the core component and a set of authorisation adapters. The adapters contain the actual mechanisms for
authorising users, such as using HTTP with a file or authorising against a database table. The authentication
results are known as the identity. The fields stored in the identity depend upon the adapter. For example, HTTP
authentication will place only the username into the identity, but database authentication might also include
full name and email address. As it is common to display the name of the logged in user, this feature is very
useful. To get at the identity information with the application, Zend Auth uses the Singleton pattern, so that the
identity results can be retrieved wherever they are required.

The authorisation adapters that are provided “out of the box” for Zend_Auth are:
Zend_Auth_Adapter_Http, Zend_Auth_Adapter_Digest and Zend_Auth_Adapter_DbTable. The Http and
Digest adapters authorise against a file on disk using the standard HTTP login mechanism built into all
browers. The DbTable adapter is used for authorising against a list of users that are stored in a database table.

6.2.2 Logging in using HTTP authentication
There must be very few people who have not seen the standard HTTP login box as provided by the web
browser (Figure 6.1).

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 6.1: The standard Http login box provided by a web browser.

Using this login system within your web application has the benefit of familiarity for the user at the

expense of there being no easy way to log out. Let’s look at how we implement HTTP authentication using
Zend_Auth.

To authenticate someone, the process is to create an instance of an Auth Adapter and then authenticate
using Zend_Auth’s authenticate() function.
$authAdapter = new Zend_Auth_Adapter_Http();
// set up $authAdapter so that it knows what to do
$auth = Zend_Auth::getInstance();
$result = $auth->authenticate($authAdapter);

The HTTP authentication protocol assumes that the pages that you want to protect are grouped into a
realm, which is displayed to the user. For example, in Figure 6.1, the realm is “My Protected Area”. The name
of the realm must be provided to the Zend_Auth_Adapter_Http adapter and we must also create a resolver
class to provide the password for a given username. The resolver class decouples the mechanism for
authentication from the mechanics of retrieving the username and password from the user and generally would
read the password from a database or file. A flowchart that describes the process is shown in Figure 6.2

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 6.2: HTTP Authentication showing Zend_Auth methods.

To implement this, firstly, we need to configure the Zend_Auth_Adapater_Http as shown in listing 6.1.

Listing 6.1 Configuration of Zend_Auth_Adapter_Http
// create a Zend_Auth_Adapter_Http instance
$config['accept_schemes'] = 'basic';
$config['realm'] = 'ZFiA Chapter 06';
$authAdapter = new Zend_Auth_Adapter_Http($config); #1

$resolver = new Zend_Auth_Adapter_Http_Resolver_File('passwords.txt');
$authAdapter->setBasicResolver($resolver);
$authAdapter->setRequest($request); |#2
$authAdapter->setResponse($response); |

(annotation) <#1 Create the adapter>
(annotation) <#2 Access to http headers>

As you can see, configuration of a Zend_Auth_Adapter_Http object is two stage as some settings are
configured within the $config array that is used on construction of the object (#1), and the setting of the
resolver, request and response objects is done after creation. The request object is used to retrieve the username
and password and the response object is used to set the correct HTTP headers to indicate if authentication was
successful (or not).

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

The authenticate() function is used to perform the actual authentication as shown in listing 6.2.

Listing 6.3 Authentication with Zend_Auth_Adapter_Http
$result = $authAdapter->authenticate(); #1
if (!$result->isValid()) {
 // Failed to validate. The response contains the correct HTTP
 // headers for the browser to ask for a username/password.
 $response->appendBody('Sorry, you are not authorised');
} else {
 // Successfully validated.
 $identity = $result->getIdentity(); #2
 $username = $identity['username'];
 $response->appendBody('Welcome, '.$username);
}

(annotation) <#1. Authenticate supplied username and password.>
(annotation) <#2. Retrieve the username and realm from the result.>

When authenticate() is called, it looks for the username and password HTTP headers. If they are not their,
then the validation has failed, and it will set the “WWW-Authenticate” header in the response object. This will
result in the browser displaying a dialog box requesting a username and password. Upon successful validation,
the username of the person who has just logged in can be retrieved using the getIdentity() function which
returns a (#2).

As you can see, HTTP authentication is easy with Zend_Auth_Adapter_Http., however most websites do
not use it. Every public facing, commercial website provides their own login form to identify the user, usually
asking for a username and password. There are a number of reasons for this, the main ones being:

 No way to log out other than exiting the browser completely.
 It’s not optional, so you cannot display the page regardless with different content for logged in users.
 You cannot change the look and feel or provide additional information within the login dialog box. For

example, you may want to use email address rather than username.
 It’s not clear what to do if you have forgotten your password or do not have an account
Some of these can be worked around using cookies and JavaScript, but the user experience is still not good

enough which is why everyone uses forms and sessions (or cookies). We will now integrate authentication
using a login form and Zend_Auth into the Places application.

6.3 Using Zend_Auth within a real application
As Places is a community web site, the ability for members to be able to be identified is crucial and we have a
users table ready to use. In order to implement authentication, we need a controller action to handle display
and processing of a form to allow the user to enter their username and password. We also need to ensure that
we know the identity of the current user throughout the application, so we take advantage of the Zend
Framework’s Front Controller plug-in system.

6.3.1 Logging in
To log in and out of our application a separate controller, called AuthController is required. We use an action
for display of the form (auth/login) and a separate action (auth/identify) to perform the actual identification.
The class skeleton therefore looks like:

class AuthController extends Zend_Controller_Action
{
 public function indexAction()

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 {
 $this->_forward('login');
 }

 public function loginAction()
 {
 }

 public function identifyAction()
 {
 }

}

Note that we need indexAction as it is marked abstract in the Zend_Controller_Action parent class. We
simply redirect to auth/login if someone goes to auth/index. The HTML for a log in form is very simple and
goes in the view script for the login action (scripts/auth/login.tpl.php) as show in Listing 6.4.

Listing 6.4 Log in Form: auth/login.tpl.php
<h1>Log in</h1>
<p>Please log in here</p>

<form method="POST"
 action="<?php echo $this->LinkTo('auth/identify'); ?>"> #1
 <div>
 <label>Username</label>
 <input type="text" name="username" value="" />
 </div>
 <div>
 <label>Password</label>
 <input type="password" name="password" value="" />
 </div>
 <div>
 <input type="submit" name="login" value="Login" />
 </div>
</form>
(annotation) <#1. View Helper sets base URL.>

The HTML in listing 6.4 is very simple as we just need the user to supply two fields to us: username and

password. As you can see in (#1), we use a view helper, LinkTo(), to create the correct URL to the
auth/identify controller action. This View Helper is shown in listing 6.5 and exists to encapsulate the retrieval
of the base URL from the request. The view script itself is not interested in such details which is why a view
helper is the ideal solution.

Listing 6.5 LinkTo() View Helper

class Zend_View_Helper_LinkTo
{
 protected static $baseUrl = null; #1

 public function linkTo($path)
 {
 if (self::$baseUrl === null) {
 $request = Zend_Controller_Front::getInstance()->getRequest();
 $root = '/' . trim($request->getBaseUrl(), '/');
 if ($root == '/') {
 $root = '';
 }
 self::$baseUrl = $root . '/';
 }

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 return self::$baseUrl . ltrim($path, '/');
 }
}

(annotation) <#1. Cache the baseURL.>

The LinkTo() function uses a static variable (#1) to cache the creation of the base URL. This minor

optimization is to save the time taken to call through the multiple functions to get at the value from the front
controller’s request property. To actually log in, we direct the form to the action identify within the auth
controller. The identify action’s job is to use Zend_Auth to check that the supplied username and password is
valid and is shown in listing 6.6.

Listing 6.6 The auth/identify Action

 public function identifyAction()
 {
 $success = false;
 $message = '';
 if ($this->_request->isPost()) { #1
 // collect the data from the user
 $formData = $this->_getFormData(); #2

 if (empty($formData['username'])
 || empty($formData['password'])) {
 $message = 'Please provide a username and password.';
 } else {
 // do the authentication
 $authAdapter = $this->_getAuthAdapter(); #3
 $auth = Zend_Auth::getInstance();
 $result = $auth->authenticate($authAdapter); #4
 if ($result->isValid()) {
 // success: store database row to auth's storage
 // (Not the password though!)
 $data = $authAdapter->getResultRowObject(null,
 'password');
 $auth->getStorage()->write($data); 5

 $success = true;
 $redirectUrl = $this->_redirectUrl;
 } else {
 $message = 'Login failed';
 }
 }
 }

 if(!$success) {
 $flashMessenger = $this->_helper->FlashMessenger; |#6
 $flashMessenger->setNamespace('actionErrors'); |
 $flashMessenger->addMessage($message); |
 $redirectUrl = '/auth/login'; |
 }
 $this->_redirect($redirectUrl);
 }
(annotation) <#1. Check for POST.>
(annotation) <#2. Retrieve form data.>
(annotation) <#3. Setup database adapter.>
(annotation) <#4. Do the work.>
(annotation) <#5. Store in the session.>
(annotation) <#6. Send message to next action.>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

(#1) We are only interested in this request if it is a POST. This is a minor security improvement, but
prevents us using GET where the username and password would be displayed on the address bar and hence
may be bookmarked.

(#2) We use a helper function within the class to collect the data from the request and put into an array.
The helper function filters the data to ensure that it is okay for use.

(#3) Setting up the Zend_Auth_Adapter_Dbtable instance is complicated enough that we factor it out to its
own function.

(#4) The authenticate() message does the authentication and returns a result object. The result’s isValid()
member function is used to test for successful log in.

(#5) If we have successfully authenticated, then we store the user’s database record (except the password
field) to the session.

(#6) Finally, if authentication has failed, we set up the Flash Messenger action helper to pass through the
error message to the next request which is the log in form. The Flash Messenger is a “one time” message and
automatically deletes itself when it is read. This makes it ideal for sending validation messages from one
screen to the next. In our case it is read by the login controller action and the message is assigned to the view
using this code:

$flashMessenger = $this->_helper->FlashMessenger;
$flashMessenger->setNamespace('actionErrors');
$this->view->actionErrors = $flashMessenger->getMessages();

Listing 6.6 shows the _getAuthAdapter() function which is the last part authentication puzzle. It creates an

instance of Zend_Auth_Adapter_DbTable and assigns the supplied username and password to it ready for
authentication by Zend_Auth.

Listing 6.6 The auth/identify Action
 protected function _getAuthAdapter($formData)
 {
 $dbAdapter = Zend_Registry::get('db'); #1

 $authAdapter = new Zend_Auth_Adapter_DbTable($dbAdapter);
 $authAdapter->setTableName('users') |#2
 ->setIdentityColumn('username') |
 ->setCredentialColumn('password'); |

 // get "salt" for better security |#3
 $config = Zend_Registry::get('config'); |
 $salt = $config->auth->salt; |
 $password = sha1($salt.$formData['password']); |

 $authAdapter->setIdentity($formData['username']); |#4
 $authAdapter->setCredential($password); |

 return $authAdapter;
 }

(annotation) <#1. Retreive from registry.>
(annotation) <#2. Set up database specifc information.>
(annotation) <#3. Secure the password better..>
(annotation) <#4. Set the authentication data.>

For a short function, quite a lot happens! The Zend_Auth_Adapter_DbTable object requires a connection
to the database; fortunately, we stored one in the registry (#1) during the bootstrap startup phase ready for this
sort of situation. After creation, we need to tell the adapter the name of the database table to use and which

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

fields within that table contain the identity and credentials (#2). In our case, we need the username and
password fields from the users table.

While you can store the password in the database in plain text, it is more secure to store a hash of the
password. A hash can be thought of as a one-way encryption in that it is unique for a given source string, but if
you know the hash, you cannot determine the original string. As this is a common method of storing password
data, websites have sprung up containing thousands of hashes for the two common hash algorithms (MD5 and
SHA1). In order to help prevent reverse engineering should our data fall into the wrong hands, we further
protect our users’ passwords with a “salt”. The salt is private string known only to the application that we
prepend to the user’s password to create a word that will not be in an online dictionary. This makes the hash
very, very difficult, if not impossible to reverse engineer.

At this point we have completed logging in for our application. It would however be helpful if we
provided links for logging in and out for the user. A view helper is one way to do this and encapsulates the
logic required away from the view templates themselves.

6.3.3 A view helper welcome message
To provide a welcome message within a view helper we can take advantage of the fact that Zend_Auth
implements the Singleton pattern and so we do not need to pass around an instance of it. Listing 6.7 shows the
LoggedInUser view helper.

Listing 6.6 The auth/identify Action

class Zend_View_Helper_LoggedInUser
{
 protected $_view;

 function setView($view) |#1
 { |
 $this->_view = $view; |
 } |

 function loggedInUser()
 {
 $auth = Zend_Auth::getInstance();
 if($auth->hasIdentity()) #2
 {
 $logoutUrl = $this->_view->linkTo('auth/logout');
 $user = $auth->getIdentity(); #3
 $username = $this->_view->escape(ucfirst($user->username));

 $string = 'Logged in as ' . $username . ' | <a href="' .
 $logoutUrl . '">Log out';
 } else {
 $loginUrl = $this->_view->linkTo('auth/identify'); #4
 $string = 'Log in'; #5
 }
 return $string;
 }
}

(annotation) <#1. Save view object.>
(annotation) <#2. Are we logged in?.>
(annotation) <#3. Get the user record.>
(annotation) <#4. Use a view helper for the url.>
(annotation) <#5. Create string for display.>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Set setView() function (#1) is automatically called by the view before calling the main helper function. We
use it to store a local reference to the view so that we can reference another view helper, linkTo() (#4). This is
the same view helper that we created earlier in Listing 6.5 and is usefully re-used here.

The actual work is done within the loggedInUser() function. The Zend_Auth function hasIdentity() is used
to check if there is a logged in user (#2). If there is, then we the user’s record is retrieved using the
getIdentity() function (#3). As the user can select their own username, we use the escape() function to ensure
that we don’t accidentally introduce an XSS vulnerability and then create the string to display. If the current
visitor is not logged in, a string is created with a link to allow the user to log in.

We use the view helper in our main site template to create the link in the main menu bar using the code:
<p><?php echo $this->loggedInUser(); ?></p>

The final result looks like Figure 6.3 and provides an easily discoverable log out link.

Figure 6.3. The logged in welcome message.

The final part of authentication is now upon us and we can implement the ability to log out.

6.3.4 Logging out
In comparison to logging in, logging out is very simple as all we need to do is call Zend_Auth’s clearIdenity
function. Listing 6.7 shows the log out action in the Auth controller.

Listing 6.7: The auth/logout Controller Action

 public function logoutAction()
 {
 $auth = Zend_Auth::getInstance();
 $auth->clearIdentity(); #1
 $this->_redirect('/'); #2
 }

(annotation) <#1. Unset the session variable.>
(annotation) <#2. Redirect to home page.>

As you can see, logging out really is simple, so it’s time to move on to look at authorisation and giving

logged in users more rights than visitors. This is handled by Zend_Auth’s sibling, Zend_Acl.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

6.4 Implementing Authorisation
As we discussed in section 6.1, authorisation is the process of allowing a logged in user access to a specific
resource. There are many ways of doing this, but a flexible and standard method is to employ role-based
access control lists. The Zend Framework provide Zend_Acl to take care of this for us.

NOTE

There is a lot of jargon when talking about authorisation. The key ones are:

• Role: a grouping of users

• Resource: something to protect, such as a controller action or a data record such as a news item.

• Privilege: The type of access to required. Such as read or edit

Access control lists are a very flexible solution to access control; hence it is quite hard to understand how to
apply the theory to the real world problem that you have. Figure 6.4 shows how the three main pieces of the
puzzle are related.

Figure 6.4. The relationship between the pieces of the ACL puzzle

This is just one way that ACL can be used to provide access to a resource, controller actions in this case.

We’ll start with a look at Zend_Acl and then move onto applying ACL to control access to different controller
actions. Finally we will look at access control at the database level.

6.4.1 Introducing Zend_Acl
Using Zend_Acl is deceptively simple in theory. You create some roles and resources, set up the required

permissions and call the isAllowed() function. Sounds easy enough! Let’s look at that in a bit more detail,
starting with a diagram of all related Zend_Acl classes as shown in figure 6.3.

Figure 6.3: Zend_Acl classes.

Zend_Acl_Role
A role is a responsibility that a user has within the system. A typical role would be “news editor” or

“member”. This is encapsulated with Zend_Acl_Role which is a very simple class that just holds the name of
the role. The code to create a role is:
$roleMember = new Zend_Acl_Role('member');

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Once a role is created, its name cannot be changed. Note also, that within the context of the ACL, each
role name must be unique. We can assign a role to the Zend_Acl instance using:

$acl = new Zend_Acl();
$acl->addRole($roleMember);

A given role may have a parent which means that the new role can do everything the parent role can do. A

typical situation may be a forum moderator role, which would be coded like this:

$acl = new Zend_Acl();
$acl->addRole(new Zend_Acl_Role('member'));
$acl->addRole(new Zend_Acl_Role('moderator'), 'member');

In this situation, the moderator role has a parent of member and so a moderator can do everything that a
member can do in addition to any other permissions that have been set.

Zend_Acl_Resource
A resource is something that you want to protect. A typical resource in a Zend Framework application would
be a controller or action. For example you may want to protect access to the forums module controller so that
only those users belonging to the member role have access to the controllers within it. Zend_Acl_Resource is
as simple as Zend_Acl_Role and just holds the name of the resource, so creating one is simply a case of:

$forumResource = new Zend_Acl_Resource('comments');

A resource is attached to Zend_Acl in a similar manner to a role using the addResource() member function

and again, parents are supported:

$acl = new Zend_Acl();
$acl->addRole(new Zend_Acl_Role('member'));
$acl->addRole(new Zend_Acl_Role('moderator'), 'member');
$acl->addResource(new Zend_Acl_Resource('forum'));
$acl->addResource(new Zend_Acl_Resource('posts'), 'forum');
$acl->addResource(new Zend_Acl_Resource('threads'), 'forum');

In this example, we have created resource called posts and threads that are children of the forum resource.
If we are mapping resources to modules and controllers, then the “posts” and “threads” resources represent
controllers within the forum module.

Setting up Zend_Acl’s Permissions
The final part of the setting up a Zend_Acl object for use is telling the object which permissions a given

role has for accessing a given resources. To do this we need to look at the concept of privileges. A privilege is
the type of access required. Typically, privileges are based around the operations that will be performed, so
have names like “view”, “create”, “update”, etc.

Zend_Acl has two functions for setting permissions: allow() and deny(). We start off in state where all
roles are denied access to all resources. The allow() function then provides access to a resource for a role and
deny() and remove a subset of the allowed access for a particular case. Inheritance also comes into play here as
permissions set for a parent role will cascade to child roles.

Let’s look at an example:

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

$acl->allow('members', 'forum', 'view');
$acl->allow('moderators', 'forum', array('moderate', 'blacklist');

In this example we have given view privileges to the member role for the forum resource and then have

given the additional privileges of moderate and blacklist to the moderator role which also has view privileges
as moderator is a child of member.

We have now looked at the building blocks of Zend_Acl and the key components of its API, so we can
now look at how to integrate it into a real Zend Framework application. The first approach we will take is to
protect specific controllers and actions for specific roles.

6.4.2 Configuring a Zend_Acl Object
As we have discovered, a fair amount of configuration of a Zend_Acl object is required before we can use it.
This means that we want to make the setting up as easy as possible. We can make it easier on ourselves by
storing the roles in our config.ini file. For each role, we need to store in its name and parent the INI file.
Therefore we enter them into the INI file as shown in listing 6.8.
Listing 6.8: Extended Zend_Acl object
acl.roles.guest = null | #1
acl.roles.member = guest |
acl.roles.admin = member |

(annotation) <#1. All roles are a child of acl.roles for easy reading back.>

To read the configuration file, we extend Zend_Acl to read from the roles from config object and into the Acl
object. The code do to this is shown in Listing 6.9.

Listing 6.9: Extended Zend_Acl object
class Places_Acl extends Zend_Acl
{
 public function __construct()
 {
 $config = Zend_Registry::get('config'); #1
 $roles = $config->acl->roles;
 $this->_addRoles($roles);
 }

 protected function _addRoles($roles)
 {
 foreach ($roles as $name=>$parents) { #2
 if (!$this->hasRole($name)) { #3
 if (empty($parents)) {
 $parents = null;
 } else {
 $parents = explode(',', $parents);
 }
 $this->addRole(new Zend_Acl_Role($name), $parents);
 }
 }
 }
}

(annotation) <#1. Retrieve from registry.>
(annotation) <#2. Iterate over all the roles.>
(annotation) <#2. Only add role if it doesn’t already exist..>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

As we have already explored Zend_Config, it comes as no surprise how easy it is to retrieve the data from
the config object using a foreach loop. For each role, we check that it isn’t already added and then create a new
Zend_Acl_Role and add it to this object. The Acl object is going to be used to check permissions for every
action and so we can create it in the bootstrap.

An especially tricky aspect is ensuring that we don’t need to load the Acl object with information about
every controller and action. The main issues are maintenance and performance. Maintaining a list of
controllers independently of the actual controller class files will result in inaccuracies. We also do not want to
spend the time and memory loading the Acl with rules that will never be required as this is a needless
performance hit.

6.4.3 Checking the Zend_Acl Object
With these requirements in mind, the correct place to implement Acl checking is as an action helper. An action
helper ties into the MVC dispatch system at the controller level and allows us to check the Acl rules before the
controller’s preDispatch() function is called. This happens before the actual action itself and so is an ideal
place for the check. We need to populate the Acl object with the rules to be checked at preDispatch(). As this
needs to be done earlier in the process, the init() function is where this needs to be done. In this case, the rules
are controller-specific and so are written within each controller as required. Figure 6.5 shows the complete
flow from requesting access to a controller’s action to gaining access.

Licensed to Menshu You <dollequatki@gmail.com>www.allitebooks.com

http://www.manning-sandbox.com/forum.jspa?forumID=329
http://www.allitebooks.org

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Figure 6.5. Zend_Auth and Zend_Acl working together to provide access to a controller action

The action controller is called Places_Controller_Action_Helper_Acl and is too long to list out completely
here, so we’ll look at the bits that do the real work. The class handles two important functions: providing a
controller-centric interface to the underlying Acl object and performing the actual authentication. As the class
is quite long, we’ll look at it three sections. Listing 6.10 shows the class skeleton and the initial set up required.

Listing 6.10: Setting up the Acl action helper
class Places_Controller_Action_Helper_Acl extends
Zend_Controller_Action_Helper_Abstract
{
 protected $_action;
 protected $_auth;
 protected $_acl;
 protected $_controllerName;

 public function __construct(Zend_View_Interface $view = null,
array $options = array())

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 {
 $this->_auth = Zend_Auth::getInstance(); |#1
 $this->_acl = $options['acl']; |
 }

 /**
 * Hook into action controller initialization
 * @return void
 */
 public function init() #2
 {
 $this->_action = $this->getActionController();

 // add resource for this controller
 $controller = $this->_action->getRequest()->getControllerName();
 if(!$this->_acl->has($controller)) {
 $this->_acl->add(new Zend_Acl_Resource($controller));
 }
 }
}

(annotation) <#1. Constructor.>
(annotation) <#2. Initialisation.>

(#1) The constructor is used to pass in an instance of the Acl object that we will use via the options array.

We have to use the options array as the constructor signature is already set in the parent
Zend_Controller_Action_Helper_Abstract class. As the Zend_Auth class is a singleton, we can use its
getInstance() function to collect a reference to it.

(#2) The init() function is called immediately before the call to the controller’s init() function. This makes
it an ideal place to set up the required resource for the controller: the controller’s name. We don’t need any
more resources than that, as we will use Zend_Acl’s privileges as the actions, so that we don’t have the
performance hit of working out the names of the action functions dynamically.

Listing 6.11 shows the controller-centric rule functions, allow() and deny() which proxy through to the
underlying Acl object.

Listing 6.10: Acl action helper
 /**
 * Proxy to the underlying Zend_Acl's allow() function.
 *
 * We use the controller's name as the resource and the
 * action name(s) as the privilege(s)
 *
 * @param Zend_Acl_Role_Interface|string|array $roles
 * @param string|array $actions
 * @uses Zend_Acl::setRule()
 * @return Places_Controller_Action_Helper_Acl Provides a fluent interface
 */
 public function allow($roles = null, $actions = null)
 {
 $resource = $this->_controllerName;
 $this->_acl->allow($roles, $resource, $actions);
 return $this;
 }

 /**
 * Proxy to the underlying Zend_Acl's deny() function.
 *
 * We use the controller's name as the resource and the
 * action name(s) as the privilege(s)

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 *
 * @param Zend_Acl_Role_Interface|string|array $roles
 * @param string|array $actions
 * @uses Zend_Acl::setRule()
 * @return Places_Controller_Action_Helper_Acl Provides a fluent interface
 */
 public function deny($roles = null, $actions = null)
 {
 $resource = $this->_controllerName;
 $this->_acl->allow($roles, $resource, $actions);
 return $this;
 }

(annotation) <#1. Constructor.>
(annotation) <#2. Initialisation.>

The functions allow() and deny() are used to set up the authentication rules for the controller. Typically

this done in the controllers init() function. The view helper’s versions of allow() and deny() simply fill in the
resource parameter for us and change the terminology from privileges to actions. Whilst that doesn’t seem like
a lot, it makes much more sense when creating the rules in the controller and hence maintenance long-term is
easier too.

For Places, we have different rules depending on the controller. For the index controller, we just want to
give everyone access, so the init() function is simply:

class IndexController extends Zend_Controller_Action
{
 public function init()
 {
 $this->_helper->acl->allow(null);
 }

 //... class continues...

For other controllers, the rules will be more complex. For example listing 6.11 shows what is needed to

ensure that members cannot manage records within the Places Controller.

Listing 6.10: Acl action helper
class PlaceController extends Zend_Controller_Action
{
 function init()
 {
 $memberActions = array('index', 'details', 'reportError'); |#1
 $this->_helper->_acl->allow('member', $memberActions); |

 $adminActions = array('add', 'edit', 'delete'); |#2
 $this->_helper->_acl->allow('admin', $adminActions); |
 }
 //... class continues...

As you can see, we allow the member role access to one set of actions (#1) and administrators access to

another set (#2). We don’t need to explicitly tell the system to allow administrators access to the member
actions as the administrators role is a child of the member role and so inherits those permissions automatically.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

6.5 Summary
In this chapter we have looked at the two related concepts of authorisation and authentication. Ensuing that we
know the identity of the current user is the process of authorisation and Zend_Auth is an intuitive and
comprehensive component to that allows for checking against different data sources with more being added.
By leveraging Zend_Session, Zend_Auth provides a one-stop-shop solution and enables us to look up the
currently logged on user very easily.

Choosing an authentication strategy to ensure that only users with the correct privileges are allowed access
to certain parts of the application is an art in itself. We have explored a solution that uses a action helper to
easily limit access to controller actions without having to do lots of set up independently of the controller being
protected. One key benefit of the flexibility of the Zend Framework is that there is no need to force a particular
application’s requirements into one methodology as the framework can be moulded to solve the problem in
hand.

Forms are one of those aspects of building a web site that developers either love or loathe due to the
complexities of validation and ensuring that the user is informed about issues in the form in a friendly manner.
In the next chapter, we will look at how the Zend Framework can help make building and validating online
forms easier with view helpers and the Zend_Filter_Input component.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

8

Searching
One feature that marks out an excellent web site from a mediocre one is search. It doesn’t matter how

good your navigation system is, your users are used to Google and so expect that they can search your web site
to find what they are looking for and if they can’t search, or if the search doesn’t return useful results, then
they will try another site that does. A good search system is also hard to write but the Zend Framework
provides the Zend_Search_Lucene component to make it easier.

In this chapter, we’ll look at how search should work for the user and then look at how the
Zend_Search_Lucene component works. We will then integrate search into an example website, looking at
how to index a model and how to present results to the user.

8.1 Benefits of search
For most of us, we get the best from a web site when we successfully read the information we came for. For an
e-commerce site, this generally means finding the item and purchasing it.

8.1.1 Key usability issue for users
Users want only one thing from their search: to find the right thing with the minimum amount of effort.
Obviously, this isn’t easy and is a major reason why Google is the number one search engine. Generally, a
single text field is all that is required. The user enters their search term, presses the submit button and gets a
list of answers.

8.1.2 Ranking results is important
For a search system to be any good, it is important that the relevant results are displayed. The way to do this is
for each results to be ranked in order of relevance to the search query. In order to do this a full text search
engine is used. Full text search engines work by creating a list of keywords for each page of the site. The list of
keywords is known as the index. Along with the list of keywords, other relevant data is also stored, such as a
title, date of document, author and information on how to retrieve the page, such as the url. When the runs a
query, each document in the index is ranked based on how many of the requested keywords are in the
document. The results are then displayed in order with (hopefully) the most useful at the top

8.2 Introducing Zend_Search_Lucene
The Zend Framework’s search component, Zend_Search_Lucene is a very powerful tool. It is a full text search
engine that is based on the popular Apache Lucene project which is a search engine for Java. The index files
created by Zend_Search_Lucene are compatible with Apache Lucene and hence any of the index management
utilities written for Apache Lucene will work with Zend_Search_Lucene too.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Zend_Search_Lucene creates an index of documents. The documents are each instances of
Zend_Search_Lucene_Document. Each document contains Zend_Search_Lucene_Field objects which contain
the actual data. A visual representation is shown in Figure 8.1.

Figure 8.1 A Zend_Search_Lucene index consists of multiple documents, each containing multiple fields. Not all fields are stored and
some fields may contain data for display rather than searching.

Queries can then the issues against the index and an ordered array of results (each of type

Zend_Search_Lucene_Search_QueryHit) is returned. The first part of implementing a solution using it, is
therefore to create an index.

8.2.1 A separate search index for your website
Creating an index for Zend_Search_Lucene is just a case of calling the create() function:
$index = Zend_Search_Lucene::create('path/to/index');

The index created is actually a directory that contains a few files in a format that is compatible with the

main Apache Lucene project. This means that if you want to, you could create index files using the Java or
.Net applications, or conversely, create indexes with Zend_Search_Lucene and search them using Java.

Having created the index, the next thing to do is to put data in it for searching on. This is where it gets
complicated and we have to pay attention! Adding data is easily done using the addDocument() method,
however you need to set up the fields within the document and each field has a type.

For example:
$doc = new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search_Lucene_Field::UnIndexed('url', $url));
$doc->addField(Zend_Search_Lucene_Field::UnStored('contents', $contents));
$doc->addField(Zend_Search_Lucene_Field::Text('desc', $desc));

$index->addDocument($doc);

As you can see in this example, the url data is of field type “UnIndexed”, contents are “UnStored” and the

description is “Text”. Each field type is treated differently by the search engine to decide if it needs to store the

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

actual data or just use it for creating the index file. Table 8.1 shows the key field types and what the differences
are.

Table 8.1 Lucene field types for adding fields to an index
Name Indexed Stored Tokenised Notes
Keyword Yes Yes No Use for storing and indexing data that is already split into separate

words for searching.
UnIndexed No Yes No Use for data that isn’t searched on, but is displayed in the search

results, such as dates or database id fields.
Text Yes Yes Yes Use for storing data that is both indexed and used in the search results

display. This data is split into separate words for indexing.
Unstored Yes No Yes Use for indexing the main content of the document. The actual data isn’t

stored as you won’t be using it for search results display.
Binary No Yes No Use for storing binary data that is associated with the document, such

as a thumbnail.

There are two reasons for adding a field to the search index: providing the search data and providing for
display of the results. The data fields available cover both these operations and choosing the correct field type
for a given piece of information is crucial for the correct operation of the search engine. Let’s look at storing
the data for searching first. This is known as indexing and so the Keyword, Text and Unstored fields are
relevant. The main difference between Keyword and Text/Unstored is the concept of tokenizing which is when
the indexing engine needs to analyse the data to determine the actual words in use. The Keyword field is not
tokenized which means that each word is used exactly as spelt for the purposes of search matching. The Text
/Unstored fields however are tokenized, which means that each word is analyzed and the underlying base word
is used for search matching. For example, punctuation and plurals are removed for each word.

When using a search engine, the list of results needs to provide enough information for the user to
determine if a given result is the one she is looking for. The field types that are “Stored” can help with this as
they are returned by the search engine. These are the Keyword, UnIndexed, Text and Binary field types. The
Unindexed and Binary field types exist solely for storing data used in the results display. Typically, the Binary
field type would be used for storing a thumbnail image that relates to the record and the UnIndexed field type
is used to store items such as a summary of the result or data related to finding the result, such as its database
table, id or URL.

Zend_Search_Lucene will automatically optimize the search index as new documents are added. You can
also force optimization by calling the optimize() function if required though. Now that we have created an
index file, we can now perform searches on the index. As you would expect, Zend_Search_Lucene provides a
variety of powerful mechanisms for building queries that produce the desired results and we shall explore them
next

8.2.2 Powerful queries
Searching a Zend_Search_Lucene index is as simple as:

$index = Zend_Search_Lucene::open('path/to/index');
$index->find($query);

The $query parameter may be either a string or you can build a query using Zend_Search_Lucene objects

and pass in an instance of Zend_Search_Lucene_Search_Query. Clearly passing in a string is the easiest, but
for maximum flexibility, using the Zend_Search_Lucene_Search_Query object can be very useful. The String
is converted to a search query object using a query parser and a good rule of thumb is that you should use the
query parser for data from users and the query objects directly when programmatically creating queries. This

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

implies that for an advanced search system that most websites provide, a hybrid approach would be used.
We’ll explore that a little later. Let’s look first at the query parser for strings.

String queries
All search engines provide a very simple search interface for their users: a single text field. This makes it

very easy to use, but at first glance seems to make it harder to provide a complex query. Like Google,
Zend_Search_Lucene has a query parser that can interpret what is typed into a single text field into a powerful
query. When you pass in a string to the find() function, behind the scenes the function
Zend_Search_Lucene_Search_QueryParser::parse() is called. This class implements the Lucene query parser
syntax as supported by v 2.0 of Apache Lucene.

To do its work, the parser breaks down the query into terms, phrases and operators. A term is a single
word and a query is multiple words grouped using quotation marks, such as “hello world”. An operator is a
boolean word (such as AND) or symbol modified used to provide more complex queries. Wildcards are also
supported using the asterisk and question mark symbols. A question mark is used to represent a single
character and the asterisk represents several characters. For instance searching for frame* will find frame,
framework, frameset and so on. Other

Table 8.2 lists the key modifier symbols that can be applied to a search term

Table 8.2: Modifiers for search terms can be applied to control how the parser uses the term when searching.
Modifier Symbol Example Description
Wildcards ? and * H?t h*t ? is a single character placeholder and *

represents multiple characters
Proximity ~x “php power”~10 The terms must be within a certain number of

words apart (10 in the example)
Inclusive Range fieldname:[x TO y] category:[skiing TO surfing] Find all documents whose field values are

between the upper and lower bounds specified
Exclusive Range fieldname:{x To y} published:[20070101 TO 20080101] Find all documents whose field values are

greater than the specified lower bound and less
than the upper bound. This does not include the
bounds.

Term Boost ^x “Rob Allen”^3 Increase the relevance of a document containing
this term. The number determines how much of
a increase in relevance is given.

Each modifier in table 8.1 affects only the term to which it is attached. Operators on the other hand affect

the make up of the query. The key operators available are listed in Table 8.3.

Table 8.3: Boolean operators affect the make up of the query and provide the power to refines the search
Operator Symbol Example Description
Required + +php power The term after the + symbol must exist in the document.
Prohibit - Documents containing the term after the – symbol are excluded from

the search results.
AND AND or && php and power Both terms must exist anywhere in the document
OR OR or || php or html Either term must be present in all returned documents.
NOT NOT or ! php not java Only include documents that contain the first term but not the second

term.

Careful use of the Boolean operators can create very complex queries however, in the “real world” most

users are unlike to use more than one or two operators in any given query. The set of Boolean operators
supported is pretty much the same as that used by major search engines, such as Google, and so your users will
have a degree of familiarity. We will now look at the other way to creating a search query: programmatic
creation.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Programmatically creating search queries
A programmatic query involves instantiating the correct objects and putting them together. There are a lot

of different objects available that can be combined to make up a query. Table 8.4 lists search query objects that
can be used.

Table 8.4: Search query objects
Type Example and Description
Term Query A term query is used to search for a single term.

Example search: category:php

$term = new Zend_Search_Lucene_Index_Term('php', 'category');
$query = new Zend_Search_Lucene_Search_Query_Term($term);
$hits = $index->find($query);

Finds the term “php” within the category field. If the second term of the Zend_Search_Lucene_Index_Term constructor
is omitted, then all fields will be searched.

Multi-Term Query Multi-term queries allow for searching through many terms. For each term, you can optionally apply the required or
prohibited modifier. All terms are applied to each document when searching.

Example search: +php power –java

$query = new Zend_Search_Lucene_Search_Query_MultiTerm();
$query->addTerm(new Zend_Search_Lucene_Index_Term('php'), true);
$query->addTerm(new Zend_Search_Lucene_Index_Term('power'), null);
$query->addTerm(new Zend_Search_Lucene_Index_Term('java'), false);
$hits = $index->find($query);

The second parameter controls the modifier: true for required, false for prohibited and null for no modifer. In this the
query will find all documents that contain the word “php” and may contain the word “power” but do not contain the
word “java”.

Wildcard Query Wildcard queries are used for search for a set of terms where only some of the letters are known.

Example search: super*

$term = new Zend_Search_Lucene_Index_Term('super*');
$query = new Zend_Search_Lucene_Search_Query_Wildcard($term);
$hits = $index->find($query);

As you can see, the standard Zend_Search_Lucene_Index_Term object is used and then passed to a
Zend_Search_Lucene_Search_Query_Wildcard object to ensure that the * (or ?) is interpreted correctly. If you pass a
wildcard term into an instance of Zend_Search_Lucene_Search_Query_Term, then it will be treated as a literal.

Phrase Query Phrase queries allow for searching for a specific multi-word phrase.

Example search: “php is powerful”

$query = new Zend_Search_Lucene_Search_Query_Phrase(array('php', 'is', 'powerful'));
$hits = $index->find($query);

or

// separate Index_Term objects
$query = new Zend_Search_Lucene_Search_Query_Phrase();
$query->addTerm(new Zend_Search_Lucene_Index_Term('php'));
$query->addTerm(new Zend_Search_Lucene_Index_Term('is'));
$query->addTerm(new Zend_Search_Lucene_Index_Term('powerful'));
$hits = $index->find($query);

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

The words that make up the query can be either specified in the constructor of the
Zend_Search_Lucene_Search_Query_Phrase object or each term can be added separately. You can also search with
“word” wildcards so:

$query = new Zend_Search_Lucene_Search_Query_Phrase(array('php', 'powerful'), array(0, 2));
$hits = $index->find($query);

will find all three word phrases that have “php” as the first word and “powerful” as the last. This is known as “slop”
and you can also use the setSlop() function to achieve the same effect like this:

$query = new Zend_Search_Lucene_Search_Query_Phrase(array('php', 'powerful');
$query->setSlop(2);
$hits = $index->find($query);

Range Query Find all records within a particular range, usually date, but can be anything.

Example search: published_date:[20070101 to 20080101]

$from = new Zend_Search_Lucene_Index_Term('20070101', 'published_date');
$to = new Zend_Search_Lucene_Index_Term('20080101', 'published_date');
$query = new Zend_Search_Lucene_Search_Query_Range($from, $to, true /* inclusive */);
$hits = $index->find($query);

Either boundary may be null to imply “from the beginning” or “until the end” as appropriate.

Clearly the benefit of using the programmatic interface to Zend_Search_Lucene over the string parser is

that it’s easier to clearly express search criteria exactly and allows the use of an “advanced search” web form
for the user to refine their search.

8.2.3 Best practices
We have now covered all you need to know about the using Zend_Search_Lucene, but before we move on to
implementing search into a real application, it will be beneficial to look at a few best practices for using
Zend_Search_Lucene.

Firstly, don’t use id or score in field names as this will make them harder to retrieve again. For other field

names you can do this:
$hits = $index->find($query);
foreach ($hits as $hit) {
 // Get 'title' document field
 $title = $hit->title;

But to retrieve the a field called id, you have to do:

 $id = $hit->getDocument()->id;

This is only required for the fieldnames called id and score, so it’s best to use different names, such as

doc_id and doc_score.
Secondly, you need to be aware of memory usage. Zend_Search_Lucene uses a lot of memory! The

memory usage increases if you have a lot of unique terms which occurs if you have a lot of untokenised phases
as field values. This means that you are indexing a lot of non-text data. From a practical point of view, this
means that Zend_Search_Lucene works best for searching text which isn’t a problem for most websites! Note
that indexing uses a bit more memory too, and can be controlled using the MaxBufferedDocs parameter.
Further details are in the main Zend Framework manual.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Lastly, Zend_Search_Lucene uses UTF-8 character coding internally and if you are indexing non-ascii
data, it is wise to specify the encoding of the data fields when adding to the index. This is done using the
optional third parameter of the field creation methods, for example:
$doc = new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search_Lucene_Field::Text('body', $body, 'iso-8859-1'));

Let’s do something interesting with Zend_Search_Lucene and integrate searching into the Places website.

8.3 Adding search to Places
As Places is a community site, a search facility will be expected by its members. We will implement a simple
“one field” search available on every page in the side bar so that it is very easy for users to find what they
want. The results will look like Figure 8.2.

Figure 8.2 Search results page for Places. Each entry has a title which is linked to the page followed by a summary. The results are
ranked by the search engine so that the most relevant are at the top.

In order to achieve this, we are going to create the index files used by the search first and then we will

write the simple form and search results page, finishing with the advanced search form.

8.3.1 Updating the index as new content is added
We have two choices when to create index files: when adding data to the database or as a scheduled task using
cron or similar. A lot depends on the traffic that the site receives as to when the additional stress of creating an
index is done. For Places, we want both. Adding to the index as new data is added to the site is vital for a
useful web site. We also want the ability to re-index all the data in one hit so that we can optimize the search
index files as the amount of data on the site gets larger. We’ll start by looking at adding to the index as we go
along as we can leverage that work for the full re-index later.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Designing the index
When creating out index, we need to consider the fields that we are going to create in our index. The

search index is going to contain records of different types, such as paces, reviews or user profile data but
presents to the user a list of web pages to view. Therefore we unify the set of fields in the index so that the
results will make sense to the user. Table 8.5 shows the set of fields we will use.

Table 8.5 Lucene field types for adding fields to an index
Field name Type Notes
class UnIndexed The class name of the stored data. We need this on retrieval in order to be able to create a URL to the

correct page in the results list.
key UnIndexed The key of the stored data. Usually this is the id of the data record. We need this on retrieval in order

to be able to create a url to the correct page in the results list.
docRef Keyword A unique identifier for this record. We need this so we can find it for updates or deletions.
title Text This is the title of the data and will be used for searching on and display within the results.
contents UnStored This is the main content which is used for search and is not displayed.
summary UnIndexed The summary contains information about the search result to display within the results. It is not used

for searching.
createdBy Text The author of the record is used for searching and display. We use the Keyword type as we want to

preserve the author’s name exactly when searching.
dateCreated Keyword The date created is used for searching and display. We use the keyword type as we do not want

Lucene to parse the data.

The basic code for creating the Zend_Search_Lucene_Document to be indexed is the same no matter what type
of data we are going to be indexing. It looks something like the code in Listing 8.1

Listing 8.1: Adding a document to the search index.
function addToIndex($index, $class, $key, $title, $contents,
 $summary, $createdBy, $dateCreated)
{
 $doc = new Zend_Search_Lucene_Document(); A

 $doc->addField(Zend_Search_Lucene_Field::UnIndexed('class', 1
 $class)); 1
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed('key', 1
 $key)); 1
 $this->addField(Zend_Search_Lucene_Field::Keyword('docRef', 1
 "$class:$key")); 1
 $doc->addField(Zend_Search_Lucene_Field::Text('title', 1
 $title)); 1
 $doc->addField(Zend_Search_Lucene_Field::UnStored('contents', 1
 $contents)); 1
 $doc->addField(Zend_Search_Lucene_Field::UnIndexed('summary', 1
 $summary)); 1
 $doc->addField(Zend_Search_Lucene_Field::Keyword('createdBy', 1
 $createdBy)); 1
 $doc->addField(Zend_Search_Lucene_Field::Keyword('dateCreated', 1
 $dateCreated)); 1

 $index->addDocument($doc); 2
}

A Create the search document.
B Add document to the index.

This function creates a Zend_Search_Lucene document, called $doc and then we add each field to the
document (#1), before calling addDocument() (#2). As we are going to be adding documents for every page
on the website, we should make the creation of the document as easy as possible. We will extend

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Zend_Search_Lucene_Document so that we can instantiate the object with the right data in one line of code.
This is shown in listing 8.2.

Listing 8.2: Extending Zend_Search_Luncene_Document for easier creation
class Places_Search_Lucene_Document extends Zend_Search_Lucene_Document
{

 public function __construct($class, $key, $title,
 $contents, $summary, $createdBy, $dateCreated)
 {
 $this->addField(Zend_Search_Lucene_Field::Keyword(
 'docRef', "$class:$key"));
 $this->addField(Zend_Search_Lucene_Field::UnIndexed(
 'class', $class));
 $this->addField(Zend_Search_Lucene_Field::UnIndexed(
 'key', $key));
 $this->addField(Zend_Search_Lucene_Field::Text(
 'title', $title));
 $this->addField(Zend_Search_Lucene_Field::UnStored(
 'contents', $contents));
 $this->addField(Zend_Search_Lucene_Field::UnIndexed(
 'summary', $summary));
 $this->addField(Zend_Search_Lucene_Field::Keyword(
 'createdBy', $createdBy));
 $this->addField(Zend_Search_Lucene_Field::Keyword(
 'dateCreated', $dateCreated));

 }

}

Using the new Places_Search_Lucene_Document class is now very easy as shown in listing 8.3.

Listing 8.3: Adding to the index
$index = Zend_Search_Lucene::open($path); A

$doc = new Places_Search_Lucene_Document(B
 $class, $key, $title, $contents, B
 $summary, $createdBy, $dateCreated); B

$index->addDocument($doc); C

A Open the index
B Create the document in one line of code
C Add to the index

That’s all there is to it! We now need to write this code within each model class that is to be searched over.

and we immediately hit a design brick wall. The model clearly knows all about the data to be searched,
however it should not be know about how to add that data to the search index. If it did, it would be tightly
coupled to the search system which would make our lives much harder if we ever want to change the search
engine to another one. Fortunately, programmers before us have had the same basic problem that we have and
it turns out that it’s so common that there’s a design pattern named after the solution: the Observer pattern.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Using the Observer Pattern to decouple indexing from the model
The Observer pattern describes a solution that uses the concept of notifications. An observer object registers
interest in an observerable object , and then when something happens to the observerable, the observer is
notified and can take appropriate action. In our case, this is shown in Figure 8.3.

Figure 8.3 The Observer pattern allows us to decouple the search indexing from the model data. This will allow us to easily add new
models to be searched or to change the way we index for searching.

Our observable classes are our models and so we want to allow observers to register themselves with the

models. The data we are interested in are instances of Zend_Db_Table_Row_Abstract, and so we’ll create an
extension class called Places_Db_Table_Row_Observerable that will contain the functions that allow us to
register and notify observers. Listing 8.4 shows the class skeleton.

Listing 8.4: Places_Db_Table_Row class
class Places_Db_Table_Row_Observerable extends Zend_Db_Table_Row_Abstract
{
 protected static $_observers = array(); A

 public static function attachObserver($class)
 {
 if (!is_string($class) || !class_exists($class) 1
 || !is_callable(array($class, 'observeTableRow'))) { 1
 return false; 1
 } 1

 if (!isset(self::$_observers[$class])) { 2
 self::$_observers[$class] = true; 2
 } 2

 return true;
 }

 protected function notifyObservers($event)
 {
 if (!empty(self::$_observers)) {
 foreach (array_keys(self::$_observers) as $observer) { 3
 call_user_func(array($observer , 'observeTableRow'),
 $event, $this);
 }
 }
 parent::_postInsert();

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 }
}
A Array of registered observers
1 Ensure that observer contains a function called observeTableRow()
2 Add the observer to the list if it’s not already there.

The first two functions we need are the core of the Observer pattern. The attachObserver() function

is used to allow an observer to attach itself. We use a static function as the list of observers because the list of
observers is independent of a specific model class. Similarly, the array of observers is static as it needs to be
accessible from every model class.

The notifyObservers() function is used to notify all observers that have been attached to the class.
This function simply iteratates over the list and calls a static function, observerTableRow() within the
observer class. The observer can then use the information about what the event is and the data from the model
to perform whatever action is necessary. In this case, we will update the search index.
Zend_Db_Table_Row_Abstract provides a number of hook functions that allow us to perform processing
before and after the database row is inserted, updated or deleted. We use those functions to call
notifyObservers(); the ones we need for updating the search index are _postInsert(), _postUpdate() and
_postDelete(). Each function is the same as _postInsert() is shown in Listing 8.5.

Listing 8.4: Notifying the observer after an insert
class Places_Db_Table_Row_Observerable extends Zend_Db_Table_Row_Abstract
{
 protected function _postInsert()
 {
 self::notifyObservers('post-insert'); A
 }
}
A Pass the event type to the observer as a string

Let’s look now at the observer class. This class is called SearchIndexer and, as it is a model, is stored in
application/models. The code to register it with the observerable class is in the bootstrap and and looks like
this:

SearchIndexer::setIndexDirectory(ROOT_DIR . '/var/search_index');
Places_Db_Table_Row_Observerable::attachObserver('SearchIndexer');

As you can see, it’s simply a case of setting the directory to store the search index files and then attaching

the class to the Places_Db_Table_Row_Observerable using the name of the class. There are three main
functions in SearchIndexer and these are shown in Listings 8.5, 8.6 and 8.7.

Listing 8.5: SearchIndexer::observeTableRow(): the notification hook function
class SearchIndexer
{
 public static function observeTableRow($event, $row)
 {
 switch ($event) {
 case 'post-insert': A
 case 'post-update': A
 $doc = self::getDocument($row); 1
 if ($doc !== false) {
 self::_addToIndex($doc); 2
 }
 break;
 }

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

 }
A Only add to index for certain events
1 Retrieve the data from the model
2 Update the search index

The notification hook function, observeTableRow() checks the event type and if the event indicates

that new data has been written to the database, then a it retrieves the data from the model (#1) and then updates
the search index files (#2). All that’s left to do is to retrieve the data from the Model

Adding the model’s data to the index
The process of retrieving the data from the model is a separate function as it will be used when re-indexing

the entire database and is shown in listing 8.6.

Listing 8.6: SearchIndexer::getDocument() retrieves the field information
class SearchIndexer
{
 // ...
 public static function getDocument($row)
 {
 if(method_exists($row, 'getSearchIndexFields')) { 1
 $fields = $row->getSearchIndexFields($row); 2
 $doc = new Places_Search_Lucene_Document(3
 $fields['class'], $fields['key'],
 $fields['title'], $fields['contents'],
 $fields['summary'], $fields['createdBy'],
 $fields['dateCreated']);
 return $doc;
 }
 return false;

 }
 // ...
1 Does a data retrieval function exist?
2 Get the the data in search index format from the model
3 Crate a new Zend_Search_Lucene_Document document

The SearchIndexer is only interested in models that need to be searched. As the observation system can be

used for many observers, it is possible that some models may be sending out notifications that are not relevant
to the SearchIndexer. To test for this we see if the model implements the function getSearchIndexFields() (#1).
If it does, then we call the function (#2) to retrieve the data from the model in format that is suitable for our
search index and then we create the document ready to be added to the index (#3).

Listing 8.7: SearchIndexer::_addToIndex() add to the search index
class SearchIndexer
{
 // ...
 protected static function _addToIndex($doc)
 {
 $dir = self::$_indexDirectory; 1
 $index = Zend_Search_Lucene::open($dir); |1

 $index->addDocument($doc); 2
 $index->commit(); |2
 }
1 Open the search index
3. Add the document and store

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

Adding the document to the index is really easy. All we need to do is open the index using the directory

that was set up in the bootstrap(#1) and then add the document (#2). Note that we need to commit the index to
ensure that it is saved for searching on. This isn’t needed if you add lots of documents as there is an automatic
commit system that will sort it out for you.

One problem is that Zend_Search_Lucene doesn’t handle updating a document. If you want to update a
document, then you need to delete it and then re-add it. We don’t want to ever end up with the same document
in the index twice, and so we will create Places_Search_Lucene as an extension of Zend_Search_Lucene and
override addDocument() to do a delete first if required. The code for Places_Search_Lucene is shown in
Listing 8.8.

Listing 8.8: Deleting a document before adding it
class Places_Search_Lucene extends Zend_Search_Lucene
{
 public function addDocument(Zend_Search_Lucene_Document $document)
 {
 $docRef = $document->docRef; A

 $term = new Zend_Search_Lucene_Index_Term(
 $docRef, 'docRef');
 $query = new Zend_Search_Lucene_Search_Query_Term($term);
 $results = $this->find($query); B

 if(count($results) > 0) { C
 foreach($results as $result) C
 { C
 $this->delete($result->id); C
 } C
 } C

 return parent::addDocument($document); D
 }

A docRef is unique in the index
B Find the document
C Delete current documents from index
D Add new document to index

This function works very well and does exactly what we need, however, it doesn’t get called until we

change the static function as Zend_Search_Lucene::open() as this creates an instance of Zend_Search_Lucene,
not Places_Search_Lucene. Therefore we need to override the open() and create() function too as shown in
listing 8.9.

Listing 8.8: Overriding open() so that it all works
class Places_Search_Lucene extends Zend_Search_Lucene
{
 public static function create($directory)
 {
 return new Zend_Search_Lucene_Proxy(
 new Places_Search_Lucene($directory, true)); A
 }

 public static function open($directory)
 {
 return new Zend_Search_Lucene_Proxy(
 new Places_Search_Lucene($directory, false));
 }

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

// continue class...

A instantiate an instance of Places_Search_Lucene

The create() and open() functions in Listing 8.8 are very simple but also very necessary and now

everything works as expected once we have updated SearchIndexer::_addToIndex() to reference
Places_Search_Lucene. This is shown in Listing 8.9.

Listing 8.9: Correcting SearchIndexer::_addToIndex()
 protected static function _addToIndex($doc)
 {
 $dir = self::$_indexDirectory;
 $index = Places_Search_Lucene::open($dir); 1

 $index->addDocument($doc); 2
 $index->commit();
 }

1 open the index using Places_Search_Lucene
2. add the document removing duplicates

The function in listing 8.9 is the same as that in listing 8.7, with the exception of calling

Places_Search_Lucene::open() (#1). This means that the call to addDocument() (#2) now calls our newly
written function so that we can be sure that there are no duplicate pages in the search index. We now have a
working system for adding updated content to our search index. We now need to implement the search system
on the front end do that our users can find what they are looking for.

Re-indexing the entire site
Now we have the ability to update the index as new content is added, we can utilize all the code we have
written to easily enable re-indexing all the data in the site. This is useful for supporting bulk inserting of data
and also as a recovery strategy if the index is damaged or accidentally deleted. The easiest way to support re-
indexing is to create a controller action, search/reindex which is shown in listing 8.10.

Listing 8.9: The re-indexing controller
public function reindexAction()
{
 $index = Places_Search_Lucene::create(A
 SearchIndexer::getIndexDirectory());

 $places = new Places(); B
 $allPlaces = $places->fetchAll();
 foreach($allPlaces as $place) { C
 $doc = SearchIndexer::getDocument($place); C
 $index->addDocument($doc); C
 }
}
A Create a new index, wiping the old one
B Only the Places model has data to index
C Add each document in turn

The reindex action is very simple and uses Zend_Search_Lucene’s create() function to start a

new index, effectively overwriting any current index. To add each document, we take advantage of the

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

SearchIndexer’s getDocument() function that creates a document using the model’s
getSearchIndexFields() function, hence reusing the code and making this function very simple.

We now have complete control over creating search indexes within the Places website and can now look at
creating a search form to allow the user to search and then view the results.

8.3.2 Creating the search form and displaying the results
The search form for Places is very simple as it consists only of a single input text field and a Go button. This
form is available on every page and so the HTML for it is contained in the site template located in
application/views/scripts/site.phtml as shown in listing 8.10.

Listing 8.10: Asimple search form in HTML
<h3>Search:</h3>
<form method="get" action="<?php echo $this->baseUrl;?>/search">
 <input type="text" name="q" value=""> 1
 <input type="submit" name="search" value="Go"> 2
</form>
</div>
1 Text field for search terms
2 Go button to initiate search

The search form’s action field is the index action in the search controller which is where the actual

searching takes places. As Places follows the MVC pattern, the searching takes place in the
SearchController::indexAction() function and the display of the search results is separated into the
associated view file, views/scripts/search/index.phtml. Let’s look at the controller first.

Processing a search request in the controller
This function performs the search and assigns the results to the view. It also validates and filters the user’s
input to ensure that we don’t accidentally introduce cross-site security holes. The controller action is shown in
Listing 8.11.

Listing 8.11: Filtering and Validation for the search form
public function indexAction()
{
 $this->view->title = 'Search Results';

 $filters = array('q' => array('StringTrim' , 'StripTags')); 1
 $validators = array('q' => array('presence' => 'required')); 2
 $input = new Zend_Filter_Input($filters, $validators, $_GET);
 if ($input->isValid()) { 3
 $this->view->messages = '';
 $q = $input->getEscaped('q');
 $this->view->q = $q;

 // do search
 $index = Places_Search_Lucene::open(4
 SearchIndexer::getIndexDirectory()); 4

 $results = $index->find($q); 5
 $this->view->results = $results;

 } else {
 $this->view->messages = $input->getMessages(); 7
 }
}

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

In order to use data provided by a user, we first have to ensure that it is safe to do so. The
Zend_Filter_Input component provides both filtering and validation functionality. We use filtering (#1)
to remove any whitespace padding on the search term and also to remove any HTML with the StripTags
filter. The only validation we do on the search term is to ensure that the user has provided it (#2) as searching
for an empty string will not return useful results! Zend_Filter_Input’s isValid() function (#3) filters the data
and then checks that the validation passes. On success, we collect the search query and reassign to the view to
display.

Having checked that the data provided by the user is okay to use, we can now perform the search. As
usual, with Zend_Search_Lucene, firstly we open the index (#4) and then call the find() function to do the
work. In this case, we can use the built in string query parser as the user can provide a very simple search
query (such as “zoo” to find all zoos, or a more complicated one such as “warwickshire -zoo” to find all
attractions in Warwickshire except zoos.

If the validation fails, we collect the reason from Zend_Filter_Input using getMessages() (#7)
and assign to the view. Now that we have either generated a result set or failed validation, we need to display
this information to the user in the view.

Displaying the search results in the view
The view has two responsibilities: display any failure messages to the user and to display the search results. To
display the error messages, we simply iterate over the list and echo within a list. This is shown in Listing 8.12.

Listing 8.12: Displaying error messages from Zend_Filter_Input
<?php if ($this->messages) : ?>
<div id="error"> A
 There was a problem:

 <?php foreach ($this->messages['q'] as $msg) : ?> B
 <?php echo $msg; ?>
 <?php endforeach; ?>

</div>
A id is used to CSS styling
B Iterate over all messages for ‘q’

This is very straightforward and the only thing to note is that we only iterate over the ‘q’ array within

messages as we know that there is only one form field in this form. For a more complicated search form,
we’d have to iterate over all the form fields. The second half of the view script displays the search results. The
fields we have available are limited to those we set up in Places_Search_Lucene_Document back in listing 8.2
and this is shown in listing 8.13.
Listing 8.12: Displaying error messages from Zend_Filter_Input
<p>You searched for <?php echo $this->escape($this->q); ?>. A
<?php echo count($this->results);?> results found.
</p>

<?php foreach ($this->results as $result) : ?>
<a href="<?php echo $this->getSearchResultUrl(B

$result->class, $result->id); ?>"> B
 <?php echo $this->escape($result->title);?>
 <div class="summary">
 <?php echo $this->escape($result->summary);?>
 <!-- (<?php echo $result->score;?>) --> C
 </div>

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Please post comments or corrections to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forumID=329

<?php endforeach; ?>
A escape() to handle special characters
B View helper to retrieve the URL
C Mainly for interest! The user doesn’t care

As with any response to a user action, we provide important feedback about what the user searched for and

how many results were found. We then iterate over the results array displaying each item’s information within
an unsigned list. The search results do not contain the url to the page containing the result, so we need to work
it out from the class and key fields that we do have in the search index. This is outsourced to a view helper,
getSearchResultUrl(), to keep the code contained which is shown in listing 8.13. The results are ordered
by the score field which shows the weighting of each result. The user is not interested in this, but I was, so I
included it as a comment so that I could inspect it using the view source command whilst investigating various
search queries. Obviously, this can be removed from a production application.

Listing 8.12: Displaying error messages from Zend_Filter_Input
function getSearchResultUrl($class, $id)
{
 $baseUrl = $this->_view->baseUrl;
 $id = (int)$id; A
 $class = strtolower($class); A
 $url = $baseUrl . "/$class/index/id/$id";
 return $url;

}
A Ensure the parameters are “sane”

The initial version of getSearchResultUrl() is very simple as there is a one-to-one mapping from the

model’s class name to controller action. That is, for a model called Places, the controller used is places/index.
It is likely that this would change as more models are introduced into the application. As this happens the
complexity of mapping from model to the URL will increase and be completely contained within the view
helper. This will help make long term maintenance that much easier.

8.5 Summary
This chapter has introduced one of the exceptional components of the Zend Framework. Zend_Search_Lucene
is a very comprehensive full text search engine written entirely in PHP and easily enables a developer to add a
search facility to a website. We have looked in detail at the way Zend_Search_Lucene works and how to
queries can be either a simple string in the same manner as a Google search or programmatically constructed
using the rich API provided to allow for very complex queries to be performed.

To put Zend_Search_Lucene in context, we have also integrated search into the Places community
website. As a worked example, Places is relatively simplistic as it only as one model that requires indexing.
However, we have future-proofed our code using the Observer pattern to separate the search indexing from the
models where the data is stored. The result is a search engine that performs a ranked search algorithm which
helps your users find the information they are looking for quickly with all the benefits that this brings to your
website.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.manning-sandbox.com/forum.jspa?forumID=329

Zend Framework in Action (Ch010) Manning Publications Co. 1

9

Email
While waiting to meet my kids off the school bus, I was chatting to a neighbour who commented that the kind
of work I was doing was the "way of the future". As I pondered over that comment, I realised an irony in the
fact that amongst the technologies of the future is one that, at around forty years old, is actually older than I
am!

PHP has a reasonably diverse range of functions for dealing with mail, from its mail() function, which
most all PHP programmers of any level are sure to be familiar with, to its IMAP, POP3 and NNTP functions.
Unfortunately the latter need to be specifically compiled into the PHP installation which means they may not
be available for some users. In contrast Zend_Mail is a fairly complete implementation of mail functionality
that does not require any specific PHP configuration aside from the general requirements of the Zend
Framework itself.

We will start the chapter with some general information about how email actually works before going into
more detail about the construction of an email message with Zend_Mail. From there we will expand on your
practical knowledge by building a simple support tracker.

9.1 Background on email
Whenever I need to describe technology to clients I start by looking for comparable real world examples and
this is particularly appropriate when explaining email as it is actually modelled after the process of physical
mail. In the next section we will give an overview of how email works and at the same time demonstrate the
part Zend_Mail plays in the process.

9.1.1 Email simplified
Just as the complex routing process of physical mail can be reduced to simply dropping a letter in the mailbox
and waiting for it to arrive in the letterbox of its addressee, so it is with email, albeit many times faster. In the
following example, illustrated in figure 9.1, we will cover a fairly typical use of email in a web application
where our user, Bert, sends a message inviting his friend, Ernie, to sign up on this fantastic new website he has
just found.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 2

Figure 9.1 A simplified illustration of the processes involved in sending an email from an HTML form to its recipient’s email client.

 Bert starts by writing his message in the form and once satisfied, clicks "Submit" which sends the contents
to the server in a POST, or occasionally a GET, HTTP request method. Zend_Mail then composes this
information into email format and forwards it on to the mail transfer agent (MTA). Since Zend_Mail defaults
to using Zend_Mail_Transport_Sendmail, which is a wrapper for PHP's own mail() function, the expected mail
transfer agent is sendmail.

Having accepted the email, the mail transfer agent routes any local mail to local mailboxes (e.g. mail for
domains with a DNS entry on the same machine) or, in the case of this email for Ernie, places it in its queue to
be forwarded on. Once it clears the queue and is sent, the email will be bounced from server to server before
finally landing in the receiving mail server where it awaits collection. From there all that is needed is for Ernie
to hit "Get New Mail" and his mail client (Mail User Agent) will collect the mail using, in this instance, the
Post Office Protocol (POP3).

9.1.2 Dissecting an email address
To go into a bit more detail about the routing of email we need to look at its key component, the email address.
The simplest way to do this is to compare it to a physical address. Of course we're not going to attempt to go
into any great detail about how real world postal addressing operates but when you look at table 9.1 it is much
easier to see how the two compare. While Bert's physical location is indicated by an increasingly widening, or
narrowing depending on how you read it, geographic description, his email address uses a series of suffixes to
identify his network location.
Table 9.1 Comparing a physical address with an email address

Physical Address Email Address

Addressee Name: Bert Account Name: bert@

Address 10 Some Street,
Sydney, NSW 2000

Account Domain: bertsblog

Generic Top-Level Domain .com

Country Australia Country Code Top-Level
Domain

.au

Just as the responsibility for relaying physical mail lies with the sending parts of the various postal

mechanisms and postal workers, so to do the sending mail transfer agents handle the transfer of email. By
constant referrals to the Domain Name System (DNS) the mail transfer agents work backwards through the

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 3

email address until they arrive at the local domain. At each stage the actual path taken is determined by the
availability of servers, successfully passing firewalls, spam and virus filters.

So far we've only gone through an overview of the workings of email and there are still more details we
need to cover, but at this point it's a good time to start looking at the main reason we're here; Zend_Mail. As
well as going into some of its features, from this point on we will focus on some of the details of email that
Zend_Mail can take care of.

9.2 Introducing Zend_Mail
While the previous section portrayed Zend_Mail as having a fairly minor role in the overall process it is
nonetheless a pivotal one. Not only can Zend_Mail be used to send mail via sendmail or SMTP, it can also
compose them, add attachments, send HTML formatted email and even read mail messages.

9.2.1 Creating emails with Zend_Mail
The very least an email needs to have for Zend_Mail to send it is a sender, a recipient and a message body. In
Listing 9.1 we can see how that bare minimum, plus a subject header, is perfectly adequate for Bert to get his
invite sent to Ernie. All those familiar with PHP's own mail function will immediately appreciate the way
Zend_Mail encapsulates the mail composition in a much more pleasing interface.
Listing 9.1 A simple Zend_Mail example
<?php
require_once 'Zend/Mail.php';
$mail = new Zend_Mail();
$mail->setFrom('welcome@greatnewsite.com', 'Support');
$mail->addTo('bert@bertsblog.com.au', 'Bert');
$mail->setSubject('An Invite to a great new site!');
$mail->setBodyText('Hi Bert, Here is an invitation to a great new website.');
$mail->send();

Now that we're looking at the composition of our email the first thing worth mentioning is that the email
produced by listing 9.1 is simple enough that it sits comfortably within the specification for email, otherwise
known as RFC 2822. The specifications for email are handled by the official internet body; the Internet
Engineering Task Force (IETF) and it is worth being a little familiar with some of this information as you will
see reference to it elsewhere. For example the manual currently states that one of the validation classes
"Zend_Validate_EmailAddress will match any valid email address according to RFC 2822".

Unfortunately RFC 2822 is a fairly limited specification and had Bert wanted to send an invite to his
friends in non-English speaking countries he would have had problems if it wasn't for the Multipurpose
Internet Mail Extensions (MIME). MIME is really just a collective name for a series of RFC (request for
comment) documents that add additional functionality to the basic email specification such as character
encoding, attachments, and more. Zend_Mime provides the MIME functionality in Zend_Mail and can also be
used as a component on its own.

All our code in Listing 9.1 really does is to define a few headers followed by the body and then sends the
email and in table 9.2 we compare the role that those headers and body have to a physical letter.
Table 9.2 Comparing a physical letter with an email

Physical Mail Email

Envelope Recipient and address Headers Fields using the field name: field body syntax that
include information about the email such as
sender, recipient, and more.

Letter The written contents Body The text of the message being sent

Licensed to Menshu You <dollequatki@gmail.com>

mailto:welcome@greatnewsite.com�
mailto:bert@bertsblog.com.au�
mailto:welcome@greatnewsite.com
mailto:bert@bertsblog.com.au

Zend Framework in Action (Ch010) Manning Publications Co. 4

Just as you may want to add a picture of your kids in a physical letter, so can you add images as
attachments with Zend_Mail by using:
$mail->createAttachment($pictureOfKids);

Having dropped in that important picture, you then write a note on the envelope with the officious looking
warning "Photographs - Do NOT Bend" and with Zend_Mail we could theoretically do the same thing by
adding additional headers:
$mail->addHeader('PhotoWarningNote', 'Photographs - Do NOT Bend');

Of course, just as the note on the envelope will likely be ignored and your picture will arrive complete
with crease line, so too will that header be ignored as PhotoWarningNote is not a header recognised by any
mail user agents!

Adding additional headers with PHP’s mail() function is something a developer needs to take care with as
if you are not careful it is possible for a malicious user to add headers such as further recipients. This is known
as email header injection and you will be relieved to know that Zend_Mail does filter all headers to prevent
such an attack.

Having gone into some detail about the creation of our email it is now time to look at the options available
when sending it.

9.2.2 Sending emails with Zend_Mail
 In Zend_Mail there are currently two ways to send mail; using Sendmail or SMTP. Why you would choose
one over another and what options are available with each is the subject of this section.

Sending via Sendmail
It was mentioned earlier in this chapter that Zend_Mail defaults to using Zend_Mail_Transport_Sendmail
which itself uses PHP's mail() function. What that means is that, unless you decide otherwise, your emails are
simply being composed and passed on to PHP’s mail() function and from there on to the local sendmail (or
variation of) mailserver which handles the actual transfer of the mail.

To illustrate more clearly how this works we will make use of PHP mail()’s option of passing additional
parameters in the command sent to the mailserver. In this case we will use it to set a header in the constructor
of Zend_Mail_Transport_Sendmail like so:
$transportWithHeader = new Zend_Mail_Transport_Sendmail(
 '-fwelcome@greatnewsite.com'
);
Zend_Mail::setDefaultTransport($transportWithHeader);

What that does is pass on '-fwelcome@greatnewsite.com' as the fourth parameter in the mail() function
which then sends it in the following command which sets the sender address of the email:
sendmail -f welcome@greatnewsite.com

Since all we are doing is sending a command, this method should be fast and incur little latency, however,
that is dependant on the setup of the machines on which it is being called and run from. Also, as this is a *nix
command, it is not even an option on Windows based servers which will default to using SMTP anyway.

Sending via SMTP
There are occasions when you do not want to burden the local mailserver with sending your mail. A good
example would be when sending large volumes of mail in an environment where there may be restrictions on
the amount of mail your local mailserver can send. In this case it is possible to pass on the mail via SMTP to
another service provider.

Because SMTP (Simple Mail Transfer Protocol) is the standard by which all mail is sent across the
internet even if we use sendmail our email is ultimately sent using SMTP. When we say "sending via SMTP"

Licensed to Menshu You <dollequatki@gmail.com>

mailto:-fwelcome@greatnewsite.com�
mailto:welcome@greatnewsite.com�
mailto:'-fwelcome@greatnewsite.com
mailto:'-fwelcome@greatnewsite.com
mailto:'-fwelcome@greatnewsite.com
mailto:'-fwelcome@greatnewsite.com

Zend Framework in Action (Ch010) Manning Publications Co. 5

in this case we are meaning, more specifically, sending through a specified outgoing SMTP server in much the
same way that we set-up our email clients to send our mail. In Listing 9.2 we are setting up Zend_Mail to send
via SMTP using the authentication required by the service provider and through a secure connection.
Listing 9.2 Setting up Zend_Mail to use an SMTP connection
<?php
require_once 'Zend/Mail/Transport/Smtp.php';
$authDetails = array(
 'ssl' => 'tls', A
 'port' => 25, A
 'auth' => 'login', B
 'username' => 'myusername', B
 'password' => 'mypassword' B
);
$transport = new Zend_Mail_Transport_Smtp(C
 'mail.our-smtp-server.com', $authDetails C
);
Zend_Mail::setDefaultTransport($transport); D
A Optional settings for the secure transport layer
B Optional Authentication details for the SMTP server
C Server and authentication details passed to the constructor
D SMTP is set as the default transport method

Having setup Zend_Mail to use the SMTP connection we are ready to use it and since we mentioned
sending large volumes of email we’ll start with sending multiple emails.

Sending multiple emails via SMTP
There are occasions when we may need to send several emails out in one go, such as for example when
sending a newsletter to multiple users. However, in the PHP manual the mail() function has the following note:

It is worth noting that the mail() function is not suitable for larger volumes of email in a loop. This function
opens and closes an SMTP socket for each email, which is not very efficient.

In contrast, when using Zend_Mail_Transport_Smtp, the SMTP connection is maintained by default until
the object stops being used. Therefore it is more suitable than mail() for sending larger volumes of email such
as in the following example:
foreach ($users as $user) { A
 $mail->addTo($user->email, $user->full_name);
 $mail->setBodyText('Hi ' . $user->first_name . ',
 Welcome to our first newsletter.');
 $mail->send();
}

In case you’re wondering why anyone would want to send such an uninteresting newsletter, you’re
probably ready for the next section where we will begin to use Zend_Mail in an actual application and
make better use of the email body.

9.3 Building a support tracker for Places
The more you work on a project the more you build up lists of bugs, issues, feature ideas. On top of that these
lists end up all over the place; spread across emails, jotted down after phone conversations, frantic notes from a
meeting that are almost illegible. There are existing options available like bug trackers and project
management applications but they are often overkill for clients use and besides that would be too easy! Instead
we are going to build a solution and since the key to good support is communication our support tracker is sure
to be doing a lot of mailing.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 6

9.3.1 Designing the application
After a brainstorming session we decide that our support tracker has the following requirements:

1. Simple enough that we’ll want to use it rather than just email.
2. Update-able, e.g. changing the status of a bug.
3. Integrates with current user data. No new usernames and passwords.
4. Notification by email to all concerned.
5. Ability to add attachments, e.g. screenshots, and have them sent with notification emails.
6. Formatted emails for quick scanning.
The second requirement makes it clear that we are going to need to store this data and figure 9.2 shows the

initial table structure of our application. Since we will have many support issues to a user this is reflected in
the one-to-many relationship of the schema.

Figure 9.2 The initial database structure of our support tracker requiring the addition of a single “support” table alongside our
existing “users” table

If you’ve read chapter 5 you should already be familiar with the use of Zend_Db_Table relationships and
recognise the model that follows in listing 9.4. By specifying the $_dependentTables and $_referenceMap we
are defining the relationship between the existing Users class from our Places application and our new Support
class.
Listing 9.4: One-to-many relationship using Zend_Db_Table
class Users extends Zend_Db_Table_Abstract
{
 protected $_name = 'users';
 protected $_dependentTables = array('Support');
}

class Support extends Zend_Db_Table_Abstract
{
 protected $_name = 'support';
 protected $_rowClass = 'SupportTicket’;
 protected $_referenceMap = array(
 'Support' => array(
 'columns' => array('user_id'),

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 7

 'refTableClass' => 'Users',
 'refColumns' => array('id')
)
);
}

Linking these two classes fulfills the third requirement of having the current Places user data integrated
with the support tracker. Users will be able to submit support tickets without having to login to a separate
system.

In order to add support tickets the least we are going to need is a submission form and the
functionality to create the entry in the databases. Listing 9.6 reflects these needs with an editAction and
createAction in our SupportController action controller class.
Listing 9.5: Our SupportController class
class SupportController extends Zend_Controller_Action
{
 public function editAction() {} A

 public function createAction()
 {
 $filterInt = new Zend_Filter_Int; B
 $filterStripTags = new Zend_Filter_StripTags;
 $filterFormat = new Zend_Filter;
 $filterFormat->addFilter(new Zend_Filter_StripTags)
 ->addFilter(new Places_Filter_Markdown); C

 $support = new Support;
 $newSupport = $support->createNew(); D

 $newSupport->user_id = Zend_Auth::getInstance() E
 ->getIdentity()->id;
 $newSupport->type = $filterStripTags->filter(
 $this->_getParam('type'));
 $newSupport->priority = $filterInt->filter(
 $this->_getParam('priority'));
 $newSupport->status = $filterStripTags->filter(
 $this->_getParam('status'));
 $newSupport->title = $filterStripTags->filter(
 $this->_getParam('title'));
 $newSupport->date_created = date('Y-m-d H:i:s');
 $newSupport->body = $filterStripTags->filter(
 $this->_getParam('body'));
 $newSupport->body_formatted = $filterFormat->filter(
 $this->_getParam('body'));

 $id = $newSupport->save(); F

 $this->_forward('form', 'support', null, array('id' => $id)); G
 }
}
A The action method for the support ticket submission form
B Instantiating the objects used to filter submitted data
C A custom filter that converts plain text to HTML using Markdown
D Create a new non-database row
E Get the current user id from Zend_Auth
F Calling the save() method here will trigger the email being sent
G Forward to the ticket submission form

The editAction() is empty as it currently doesn’t require any more than having the view rendered
which is taken care of by the ViewRenderer action helper. Of course it does require a view script in
views/scripts/edit/index.phtml which we can see rendered in figure 9.3.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 8

Figure 9.3 The support tracker submission form used to send bug or feature requests to the development team.

Having done that we can then move on to the fourth requirement which is to notify support team members
when support tickets are added and updated. Conveniently, this also brings us back on to the topic of this
chapter; email.

9.3.2 Integrating Zend_Mail into the application
You’ll probably have noticed that there is no mail functionality in our SupportController and all createAction
()does is filter the input and create the database row. Rather than add unnecessary bulk to the controller action
method it makes more sense to attach the email notification to the save() process which is ultimately handled
by Zend_Db_Table_Row::save(). Since Zend_Db_Table_Row::save() can be used for updating existing rows
as well as creating new ones it is a good point to trigger the mail to the support team members.

Another thing you may have noticed was the line in our Support Zend_Db_Table subclass that set the row
class to use:
protected $_rowClass = 'SupportTicket’;

In listing 9.6 you can see the contents of that row class and how our save() method overrides the parent
class save() method and adds the notification email to the support team.
Listing 9.6: Overriding save() in our SupportTicket subclass to trigger email
class SupportTicket extends Zend_Db_Table_Row_Abstract
{
 public function save()
 {
 parent::save(); A
 $mail = new Zend_Mail(); B
 $mail->setBodyText($this->body);
 $mail->setFrom('system@example.com', 'The System');
 $mail->addTo('support@example.com', 'Support Team');
 $mail->setSubject(strtoupper($this->type) . ': ' . $this->title); C
 $mail->send();
 }
}
A Call the parent class save() method
B Instantiate Zend_Mail, set-up headers and send

Licensed to Menshu You <dollequatki@gmail.com>

mailto:system@example.com
mailto:support@example.com

Zend Framework in Action (Ch010) Manning Publications Co. 9

Now, whenever a call is made to the save() method, an email will be sent to the support team with the
support ticket information in the body of the email.

It isn’t hard to see however that the code is far from optimal and later when, for example, we want to
send a copy to the submitter, add an attachment, format the body, our save() method will have bloated
beyond its purpose. With that in mind let’s refactor out the mailing code from the save() method and
create a SupportMailer class which can focus on that task.

Listing 9.6: Overriding save() in our SupportTicket subclass to trigger email
class SupportMailer
{
 public function send(Zend_Db_Table_Row_Abstract $supportTicket) A
 {
 $mail = new Zend_Mail();
 $mail->setBodyText($supportTicket->body);
 $mail->setFrom('system@example.com', 'The System');
 $mail->addTo('support@example.com', 'Support Team');
 $mail->setSubject(
 strtoupper($supportTicket->type) . ': '
 . $supportTicket->title);
 $mail->send();
 }
}
A The supportTicket is passed to the send function

The SupportTicket::save() method in listing 9.6 can now call our new mailing class and pass itself as
a parameter like so:
$id = parent::save();
SupportMailer::send($this);

With that done we can add some more of the functionality to the mail class itself.

9.3.3 Adding headers to the support email
The fourth requirement in our application specification was that an email be sent to “all concerned”. It turns
out this does not mean just the support team at support@example.com. In fact what is needed is that all admin
users of the system are to be emailed and the submitter is to be cc’d a copy as well. We also get the additional
request to add a priority indication that email clients like Outlook and Apple’s Mail can recognise. Luckily
both of these are relatively easy and simply require working with email headers.

Adding recipients
For the sake of simplicity in this case our application is storing the role of users as a single field in the

Users table so to retrieve all admin users we make the following query:
$users = new Users;
$where = array(
 'role = ?' => Zend_Auth::getInstance()->getIdentity()->id,
 'user_id != ?' => 'admin'
);
$rows = $users->fetchAll($where);

You’ll notice the additional term in the argument to fetchAll() to filter out cases where if, as is quite likely,
the submitter is also an admin user. This prevents them receiving an additional and unnecessary admin email
on top of the CC (carbon copy) version they’d receive as a submitter. In some cases you may actually prefer to
send a different version to the submitter from the one sent to the support team so this is largely an
implementation preference.

Having retrieved all admin users we can now loop over them and add them to the mail with a “To” header
like so:

Licensed to Menshu You <dollequatki@gmail.com>

mailto:system@example.com
mailto:support@example.com
mailto:support@example.com

Zend Framework in Action (Ch010) Manning Publications Co. 10

foreach ($rows as $adminUser) {
 $mail->addTo($adminUser->email, $adminUser->name);
}

Next we’ll retrieve the email details for the submitter using their id from Zend_Auth and add them to the
mail with a CC header:
$users->find(Zend_Auth::getInstance()->getIdentity()->id);
$submitter = $users->current();
$mail->addCC($submitter->email, $submitter->name);

We also have the option of adding users with a BCC (blind carbon copy) header using
Zend_Mail::addBcc() but don’t need it in this case.

Adding additional headers
The addHeader() method can be used to set additional headers with its first two arguments being the name and
value pair of the header and a third boolean argument to indicate whether there will be multiple vaues for the
header. The requested priority indication is an additional header that appears in the email as a name:value pair
like so:
X-Priority: 2

We were clever enough to have preempted this requirement and designed our database field to contain an
integer to correspond with the value of the priority. Adding this value as a header is now simple enough:
$mail->addHeader('X-Priority', $supportIssue->current()->priority, false);

The arguments now specify that we are adding a header with the name ‘X-Priority’, the priority value
chosen for the current support ticket and that it is just a single value. The received email should then have an
“at-a-glance” indication of its priority depending on whether the email client used recognises the priority
header or not.

9.3.4 Adding attachments to the support email
It would be a safe bet to say that there won’t be a single developer reading this book that hasn’t had bug
reports with descriptions as vague as “it’s broken” or “it’s not working” and narrowing down the actual
problem can occasionally be more frustrating than actually fixing it. In such cases a screenshot of the
offending page can be a great help and that is the reason why adding attachments to the support email is the
fifth requirement of our application.

We have already added a file input field to the support ticket submission form which the user will use to
browse for their screenshot file and have it uploaded on submission of the form. The process of actually
dealing with the uploaded file isn’t something we can do justice to in this chapter but let us imagine it is
something along the lines of:
move_uploaded_file(
 $_FILES[‘attachment’]['tmp_name'],
 realpath(getcwd()) . '/support/' . $id . '/'
);

This moves the uploaded file, which we will call error-screenshot.jpg, to a sub-directory of /support/ using
the support ticket id as its directory name.

Now that we have the file in place we can attach it to the email with the code shown in listing 9.7
Listing 9.7: Attaching the screenshot file to the support email
$file = "/home/places/public_html/support/67/error-screenshot.jpg"; A
$fileBody = file_get_contents($file); A
$fileName = basename($file); A
$fileType = mime_content_type($file); A

$at = $mail->addAttachment($fileBody); B
$at->filename = $fileName; C
$at->type = $fileType; C

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 11

$at->disposition = Zend_Mime::DISPOSITION_INLINE; C
$at->encoding = Zend_Mime::ENCODING_BASE64; C
A Getting the general information about the file
B Adding the attachment to the email
C Optional settings for the attachment

The optional settings in listing 9.7 are only really needed if your attachment deviates from the default
which is a binary object transferred with base64 encoding, and handled as an attachment. In our case we’ve
specified that the attachment be displayed inline in the email just so we don’t have to open the file separately
to view it. As mentioned early in the chapter settings like this are handled by Zend_Mime so you will need to
look at its section of the Zend Framework manual for more information.

With the fifth requirement taken care of that leaves the sixth and final requirement which is to format the
emails so they can be quickly and easily read by the busy admin team.

9.3.5 Formatting the email
The subject of whether to send text or HTML email is a contentious issue that is debated at almost every
opportunity. Whatever your personal preference, as a developer you still need to know how to send either one,
though ironically, Zend_Mail makes the process easier than the choice.

Sending HTML formatted mail
As part of the input filtering in the createAction() method of our SupportController action, the body text is
formatted as HTML using the PHP Markdown conversion tool written by Michel Fortin and based on John
Gruber’s original code. The formatted body is then saved in a separate field alongside the original giving us
two versions of the body to use in our email.

First we have the original body that we have been using up to now as the plain text version:
$mail->setBodyText($supportTicket->body);

Now we can use the formatted body as the HTML version of our email:
$mail->setBodyHtml($supportTicket->body_formatted);

And that is it! Well actually not quite. It’s important to remember that if you are going to be sending an
HTML version of your email that you also send a plain text version for those who cannot or do not want to
view the HTML version.

Formatting with Zend_View
We now know how to send pre-formatted mail in plain text or HTML versions, but what if we want to do some
formatting to the email body before it is sent? Earlier, while adding recipients, we mentioned that you may
prefer to send a separate email to the support ticket submitter from the one sent to the support team. This
submitter email is the example we will use to demonstrate how Zend_View can be used to render an email
from the same kind of view script as used in our HTML pages.

What we have decided to do is send an email to the submitter that notifies them of the support ticket
number, includes the body of their submission, gives a brief description of what will happen next and then
thanks them. Listing 9.8 shows the plain text version.
Listing 9.8: The plain text version of the support ticket submitter email in text-email.phtml
Hello <?php echo $user->name; ?>,

Your support ticket number is <?php echo $supportTicket->id; ?>
Your message was:

<?php echo $supportTicket->body; ?>

We will attend to this issue as soon as possible and if we have any further questions will
contact you. You will be sent a notification email when this issue is updated.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 12

Thanks for helping us improve Places,

The Places Support team.

Unless you’ve jumped straight into this chapter, that should look very familiar by now as it is much the
same as the view scripts you’ll have seen in previous chapters, although the HTML version in listing 9.10 is
probably even more so.
Listing 9.10: The HTML version of the support ticket submitter email in html-email.phtml
<p>Hello <?php echo $user->name; ?>,</p>

<p>Your support ticket number is <?php echo $supportTicket->id; ?></p>

<p>Your message was:</p>

<?php echo $supportTicket->body_formatted; ?>

<p>We will attend to this issue as soon as possible and if we have any further questions will
contact you. You will be sent a notification email when this issue is updated.</p>

<p>Thanks for helping us improve Places,</p>

<p>The Places Support team.</p>

All that is needed to turn those view scripts into something we can use in our email is to have Zend_View
render them like so:
$mail->setBodyText($this->view->render('support/text-email.phtml'));
$mail->setBodyHtml($this->view->render('support/html-email.phtml'));

The following figure 9.4 shows the output of the above in the resulting emails.

Figure 9.4 Side-by-side comparison of the output of our plain text (left) and html (right) support ticket notification emails.

Clearly this is incredibly useful and simple, largely because it is the same process used for any view script
making it flexible enough to be used for anything from a lost password email to a more involved HTML
newsletter.

Having completed the final requirement of our support tracker we have now also covered the composition
and sending features of Zend_Mail. This leaves us with the final link in the email chain; reading mail and
Zend_Mail has thoughtfully provided functionality to do that.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 13

9.4 Reading email
Our support tracker now has a web form as a means for issues to be recorded and the support team notified,
however it is very likely that issues will be coming from other sources such as sent or forwarded in an email.
In order to deal with this we are going to take advantage of Zend_Mail’s ability to read mail messages by
monitoring a support email account and add issues to the support tracker.

Before we look at the requirements for this new feature in our application let’s take a short look at some of
the components of collecting and storing email.

9.4.1 Email collection and storage
In our earlier background on email we noted that Ernie collected his invite from Bert using POP3 however he
could have just as likely used the other main email collection protocol IMAP (Internet Message Access
Protocol). Since Zend_Mail can work with both we’ll take a look at the differences between the two.

POP3 and IMAP
Our two characters Bert and Ernie both make use of these two protocols to access their mail and in figure 9.5
we can see a the basic difference between Bert’s use of IMAP to get his mail and Ernie’s use of POP3. As
Ernie works out of a home office and rarely needs to access his mail from anywhere else, he uses POP3 while
Bert, who is always on the move, relies on his mail to be available wherever he is, so he uses IMAP.

Figure 9.5 Comparing the main difference in email collection between POP3, which works on a simple connect, collect, disconnect
relationship, and the more capable IMAP.

POP3 could be seen as the older and dumber of the two protocols and works on a connect, collect,
disconnect relationship with the mail user agent (email client) having most of the responsibility. On the other
hand the fact that it is so simple, widely supported and makes minimal use of server resources is the reason it is
so widely used.

IMAP, in comparison, is a more capable protocol and has more responsibility in the relationship with the
email client. Mail is kept on the server and the email client just requests a copy which it will cache locally.
Among some of the features that IMAP has over POP3 include; it allows an ongoing connection with the
server, multiple client access to the same mailbox, email folders, server-side searches, partial mail retrieval and
more.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 14

If you, like Bert, were needing to access your mail from multiple locations and/or from multiple devices
such as a PDA, mobile phone, laptop then IMAP would be a better solution because each device would simply
be accessing the mail rather than collecting it.

Email storage
In contrast to the official internet standards we have described so far, such as the email format outlined in RFC
2822, MIME, SMTP, POP3 and IMAP, the file format for email storage is not standardised. Instead it is a
decision left to the developers of email clients.

Zend_Mail currently supports the Mbox and Maildir formats and the key difference between the two is the
former requires application-level file locking to maintain the integrity of the message. Aside from that there
isn’t much benefit going into great detail about the formats which means we can now get back to working on
our application.

9.4.2 Reading email with our application
Just as we did with the earlier stages in the development of our support tracker, we will again jot down a few
requirements for this additional work before we start. This list makes it easier to see exactly what we are trying
to achieve and how Zend_Mail helps us to accomplish it. So far the requirements we have put together are:

3. Periodically read mail from a designated mail account and store it in the support table.
4. Include some details about the reporter.
5. Save the original email as a file attachment.

Opening a connection
Before we can do anything with the stored mail the first thing we need to do is connect to it. For our support
tracker it’s probably likely that we’d use a local storage location and access it with either
Zend_Mail_Storage_Maildir or as in the following example with Zend_Mail_Storage_Mbox:
$mail = new Zend_Mail_Storage_Mbox(
 array('filename' => '/home/places/mail/inbox')
);

If we needed to access a remote storage location we’d do so using Zend_Mail_Storage_Imap or
Zend_Mail_Storage_Pop3. We’ll chose the latter as it’s the one most readers will have access to and can start
using right away with minimal setup. In our case we’ll connect using:
$mail = new Zend_Mail_Storage_Pop3(array('host' => 'example.com'
 'user' => 'support',
 'password' => 'support123'));

Our mail object now has a connection open and we can start fetching messages.

Fetching and storing the support messages
Because Zend_Mail_Storage_Abstract implements one of the standard PHP library iterator classes it can be
iterated over easily so let’s start with the first requirement of our application and look at storing the messages
in our support table. Listing 9.11 shows the first implementation without filtering.
Listing 9.11: Turning the support email into a row in the support table
foreach ($mail as $messageNum => $message) {
 $newSupport = $this->_supportTable->createRow();

 $newSupport->priority = isset($message->xPriority) ? A
 $message->xPriority : 3; A
 $newSupport->status = 'open';
 $newSupport->title = $message->subject; B

Licensed to Menshu You <dollequatki@gmail.com>

http://en.wikipedia.org/wiki/File_locking�

Zend Framework in Action (Ch010) Manning Publications Co. 15

 $newSupport->date_created = date('Y-m-d H:i:s');
 $newSupport->body = $message->getContent(); C
 $id = $newSupport->save();
}
A Using the x-priority header as the priority setting
B Using the email subject as the issue title
C Using the email body as the issue body

Combine the above with some way to run it periodically, such as with cron, and we’ve pretty well covered
the first requirement. There are a few points to mention however, the first being that the we’ve not done
anything about the body_formatted field of our support table.

When we entered the body information with the web form it was put through the text to HTML markup
filter Markdown. In this case however the body of the email could be plain text or HTML or both, which is
referred to as multipart. If we enter an HTML or multipart email body directly into the body field it is going to
be a mess so in listing 9.12 we will check for that and reduce the body down to just the plain text content.
Listing 9.12: Reducting a multipart email down to its plain text component
$part = $message;
while ($part->isMultipart()) { A
 $part = $message->getPart(1); B
}

if (strtok($part->contentType, ';') == 'text/plain') { C
 $plainTextContent = $part->getContent(); D
}
A This loops as long as the Content-Type header of $part contains the text multipart/
B Reassigning the first part of the multipart message to the $part variable
C The first part is usually plain text but we’ll do a check anyway
D Assigning the plain text content to a variable

In theory we could also insert any HTML part into the body_formatted field of our support table, however,
we’d then need to do some careful filtering of the data and even after doing so we’d then have to deal with all
the varieties of HTML markup from the various email clients. Instead, let’s just use the text to html markup
tool Markdown as we previously did just to give it some basic but clean formatting. This leaves us with the
following adjustment and addition to the code in listing 9.11:
$newSupport->body = $plainTextContent;
$newSupport->body_formatted = $filterFormat->filter($plainTextContent);

As it is quite possible that even if we store a well formatted version of the support email body text that the
issue itself may still not provide us with all the information we need. For that reason we will also store the
sender of the email so we can contact them for any further clarification.

In Figure 9.6 we’ve added a “reported_by” field in our support table to hold this information and adding
the sender to the code in listing 9.11 is accomplished with this addition:
$newSupport->reported_by = $message->from;

We could spend a bit more time breaking up that sender string into its sender’s name and email address if
we needed to but for now it’s sufficient for our needs.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 16

Figure 9.6 The support table to which the reported_by field has been added, allowing us to record the details of the sender of the
support email.

Our support table can now have tickets inserted that have been sent via email, however, as one last
measure we’re going to save the email as a file attachment just in case we need to refer to it for whatever
reason.

Saving the fetched mail to file
As we loop through the support mail messages in listing 9.11 we have all the information we need in the
$message variable to write out to a file. Listing 9.13 shows how we’ll fulfil the third requirement by storing it
as the original email.
Listing 9.13: Writing the message out to a file
$messageString = '';
foreach ($message->getHeaders() as $name => $value) { A
 $messageString .= $name . ': ' . $value . "\n";
}
$messageString .= "\n" . $message->getContent(); B
file_put_contents(getcwd() . '/support/' . $id . '/email.txt', C
 $messageString
);
A Loop over the headers and append to $messageString
B Append the message content to $messageString
C Store in file in a directory named with the support ticket id

The next point is a security one; the email content could just as easily contain malicious code as any form
submission could so before we insert it into the database we we will need to add some filtering.

Filtering the email content
Just to wrap up properly in listing 9.14 we’ll bring together all the code we’ve done so far and add in some

basic data filtering using Zend_Filter.
Listing 9.14: Adding filtering to our support email processing code
$filterStripTags = new Zend_Filter_StripTags;
$filterFormat = new Zend_Filter;
$filterFormat->addFilter(new Zend_Filter_StripTags)
 ->addFilter(new Places_Filter_Markdown);

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch010) Manning Publications Co. 17

foreach ($mail as $messageNum => $message) {
 $part = $message;
 while ($part->isMultipart()) {
 $part = $message->getPart(1);
 }

 if (strtok($part->contentType, ';') == 'text/plain') {
 $plainTextContent = $filterStripTags->filter(
 $part->getContent());
 }

 $newSupport = $this->_supportTable->createRow();

 $newSupport->priority = isset($message->xPriority) ?
 $message->xPriority : 3;
 $newSupport->status = 'open';
 $newSupport->title = $filterStripTags->filter(
 $message->subject);
 $newSupport->date_created = date('Y-m-d H:i:s');
 $newSupport->body = $plainTextContent;
 $newSupport->body_formatted = $filterFormat->filter(
 $plainTextContent);
 $newSupport->reported_by = $filterStripTags->filter(
 $message->from);
 $id = $newSupport->save();

 $messageString = '';
 foreach ($message->getHeaders() as $name => $value) {
 $messageString .= $name . ': ' . $value . "\n";
 }
 $messageString .= "\n" . $message->getContent();
 file_put_contents(getcwd() . '/support/' . $id . '/email.txt',
 $messageString
);
}

Having satisfied all three requirements of our support tracker feature addition we have now also given a
short practical demonstration of some of Zend_Mail’s read functionality.

9.5 Summary
Having gone through this chapter you may well have discovered that email is a lot deeper subject than you had
anticipated. Since almost all web applications use email to one degree or another we’ve attempted to give
enough background to the technicalities of email so that you will come away with not only a better
understanding of Zend_Mail itself, but of how it fits into the bigger picture.

Adding Zend_Mail to the components we’ve covered in previous chapters also provides us with a good
basic toolset with which to build web applications. Before we continue adding to our arsenal however, we will
take a detour into some practices that will improve the way we develop such applications in our next chapter
on deployment.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 1

10

Deployment
Along with the ability to develop web applications rapidly using PHP and the Zend Framework, lurks the
temptation to cut corners while developing. Many readers will have experienced that sudden cold sweat after
having accidentally deleted an important part of some code and frantically trying to fix a live site before
anyone notices! In this chapter we'll run through some development and deployment methods that can be used
to ensure quality work without curbing enthusiasm in the process. By providing a kind of safety net the
following practices aim to allow more freedom and confidence in the way you approach your work.

10.1 Server setup
We will kick off this chapter by looking at the setup of the environment under which development will
progress to the final deployment. Just as the rehearsal stages of any theatrical performance are intended to
prevent problems occurring in the final live production, so can we follow the same careful preparation through
the setup of our server environment.

 In table 10.1 we outline the setup of the typical development, staging and production environment, which
it's worth noting, may well be on the same physical machine or spread across several. For single developers
and very small teams using a development server to make local changes before committing to a production
server would be a minimal set-up. Changes made and tested on the development server are only uploaded to
the production server when all tests have been passed. Larger teams needing to co-ordinate local changes by
several developers before moving to a the live production server would likely require a staging server.
Table 10.1 The stages of a typical development environment.
Development This is the rehearsal stage in which the application is developed, changes are made, tested and the final

production is shaped. Depending on the preferences of the individual developers this may include one or several
machines. Different configurations of development machines may also have the advantage of showing up bugs
that may otherwise have been missed.

Staging Like a dress rehearsal, this stage should mimic the final production as closely as possible. No development takes
place on this server so any changes still need to be done on the development server and moved across to
staging. This version is accessible only by the development team and anyone else concerned with moderating the
release of the application.

Production This is the live public performance, accessible via the internet. No development takes place on this server as it
would not only potentially break a live site but also the chain of quality control.

It's worth stressing that what is "best practice" is dependent on the requirements of the team and the
project. Each stage can add extra administration that could stretch the resources of small teams and add to the
complexity of low budget projects. Blindly following suggestions of the ideal development environment will
be of little consolation when a project is delayed due to internal reasons. Keeping that in mind we'll work
through an example based on how we worked with some of the code for this book and urge you to take from it
what you see as relevant to your particular needs.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 2

10.1.1 Designing for different environments
One of the goals for any kind of application is the ability to move between different environments and work
with minimal reconfiguration. Other than requiring PHP 5.1.4 or greater the Zend Framework itself has few
specific requirements so it is largely a matter of careful design as to how much we need to vary our own
application.

Most of the differences between one application and another occur during initialisation where the
configuration settings are read in. In a Zend Framework application this most commonly occurs in the
“bootstrap” file. We are actually going to separate the bootstrapping into its own class to which we can pass
the deployment environment as a parameter from the index.php file in the web root as shown in listing 10.1.
Listing 10.1 The contents of our index.php file which will live in the web root.
<?php

set_include_path(get_include_path() . PATH_SEPARATOR
 . '/path/to/zf-working-copy/trunk/incubator/library/'); A
set_include_path(get_include_path() . PATH_SEPARATOR
 . '/path/to/zf-working-copy/trunk/library/'); A
include '../application/bootstrap.php'; B
$bootstrap = new Bootstrap('nick-dev');
$bootstrap->run(); C
A Set paths specific to the environment under which the application is running
B Include our bootstrap file and instantiate it with the configuration section to use
C Run the application
You'll notice that an additional benefit of this is that it allows us to set any environment specific paths, such as
in this case to a local working copy of the latest Zend Framework core components as well as the “incubator"
components.

In listing 10.1 we specified that the configuration section to use is 'nick-dev' by passing it as a parameter
to the Bootstrap constructor before the call to run. Listing 10.2 shows a stripped down version of bootstrap.php
to highlight how the deployment environment is set and used when calling the configuration settings.
Listing 10.2 A stripped down version of the Bootstrap class in bootstrap.php
<?php
class Bootstrap
{
 protected $_deploymentEnvironment;

 public function __construct($deploymentEnvironment) A
 {
 $this->_deploymentEnvironment = $deploymentEnvironment;
 }

 public function run() B
 {
 $config = new Zend_Config_Ini(
 'configuration/config.ini',
 $this->_deploymentEnvironment); C
A The environment parameter which we had set as being “nick-dev” in our index.php file
B The run() method which initialises and starts our application
C Zend_Config_Ini is sent the section 'nick-dev' as its second parameter

The second parameter passed to Zend_Config_Ini in listing 10.2 specifies that the section to be read from
our config.ini file is the one passed from index.php, i.e. 'nick-dev'. Zend_Config_Ini not only supports ini
sections but also implements inheritance from one section to another. An inheriting sections can also override
values inherited from its parents. Looking for the 'nick-dev' section in our config file in listing 10.3 we can see
that it inherits from the 'general' settings as indicated by the [child : parent] syntax of the ini file and therefore
the database settings are being reset to those of a local development database.
Listing 10.3 The contents of our config.ini file
[general] A

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 3

database.type = PDO_MYSQL
database.host = localhost

[production : general] B
database.username = production
database.password = production123
database.dbname = production_main

[rob-dev : general] C
database.username = rob
database.password = roballen123
database.dbname = robs_dev

[nick-dev : general] D
database.username = nick
database.password = nicklo123
database.dbname = nicks_dev
A The general ini section from which all other sections inherit
B Settings for the final production server
C Settings for Rob's development server
B The nick-dev section with database settings used in our example

What we have managed to do so far is to contain the implementation changes within the index.php file and
the configuration file. Even better, we've managed to do it in a way that allows us to move those files around
without having to change the files themselves. To demonstrate this a little further let's take a look at Rob's
index.php file which never needs to move from his local machine:
$bootstrap = new Bootstrap('rob-dev');
$bootstrap->run();

Finally on the production server lies the untouched index.php with its own setting:
$bootstrap = new Bootstrap('production');
$bootstrap->run();

Having set all that up, the only file that moves between the environments is config.ini which, because it
contains the varying sections, can be the same file in use by all stages. Containing our application in this way
simplifies the moving of files between servers whether that be synchronising using your favourite FTP client
or a scripted deployment.

10.1.2 Using virtual hosts for development
Having outlined the use of separated hosting environments for the stages of development it's worth going
through an example of how the hosting itself can be setup to accommodate this. In this section I'll cover a brief
example assuming the use of the Apache web server in a Unix based machine on a small local network.

Virtual hosting is a method of serving multiple web sites from a single machine. The use of a single
machine reduces not only the cost of hardware but also the time required to support and maintain that machine.
The two main variations of virtual hosts are name-based virtual hosts that share the same IP address and IP-
based in which each virtual host has its own IP address. For the sake of simplicity we are using name-based
hosting. Once setup we should be able to access our separate development stages with URL's like http://places-
dev/ and http://places-stage/.

As an aside, Zend Framework uses mod_rewrite to direct all requests via the front controller file. Combine
that with its routing functionality and you increase the possibilities of errors resulting from path issues. Setting
up virtual hosts is one way to reduce the time wasted on path problems as http://127.0.0.1/~places-dev
becomes http://places-dev/

Licensed to Menshu You <dollequatki@gmail.com>

http://places-dev/and
http://places-dev/and
http://places-dev/and
http://places-stage/
http://127.0.0.1/~places-dev
http://places-dev/

Zend Framework in Action (Ch01) Manning Publications Co. 4

Setting up the hosts file
The hosts file stores the information that maps the hostname to an IP address. As mentioned above name-based
hosting uses a single address for multiple names so looking at the hosts file in /etc/hosts we have the following
entry:
127.0.0.1 places-dev
127.0.0.1 places-stage

The names places-dev and places-stage are both being mapped to the localhost IP address 127.0.0.1
meaning that any requests this machine gets for those names will be directed to its own web server. Rather
than attempt to configure a full domain name system (DNS), we're also going to configure the hosts file of one
of the networked machines to point the same names to the IP address of the host machine:
192.1610.1.100 places-dev
192.1610.1.100 places-stage

Configuring Apache
Having set-up the hosts file we now need to configure the virtual hosts in Apache's configuration file
httpd.conf as shown in the example in listing 10.4.
Listing 10.4 Our virtual host settings in Apache's httpd.conf file
NameVirtualHost *:100 A

<Directory "/path/to/Sites"> B
Options Indexes MultiViews
AllowOverride All C
Order allow,deny
Allow from all
</Directory>

<VirtualHost *:100> D
DocumentRoot /path/to/Sites/places-dev/web_root
ServerName places-dev
</VirtualHost>

<VirtualHost *:100> E
DocumentRoot /path/to/Sites/places-stage/web_root
ServerName places-stage
</VirtualHost>
A Setting the IP address and port on which the server will receive requests
B Some default settings for all directories to which Apache has access
C The AllowOverride setting is important to allow the use of .htaccess settings needed by the Zend Framework
D Settings for our development host
E Settings for our staging host

In listing 10.4 we can see that the NameVirtualHost directive specifies that anything coming in on port
100 will receive requests for the name-based virtual hosts.

The directory section defines a few general settings for all virtual host directories, one to note in particular
is the AllowOverride setting which allows directories to override certain server settings using .htaccess files.
This is a requirement for Zend Framework based sites as mod_rewrite is used to direct all incoming requests
through the file index.php.

Each VirtualHost section defines the full path to the the web root and the name of the server.
Having specified the DocumentRoot in httpd.conf we then need to create those directories:

$ cd Sites/
$ mkdir -p places-dev/web-root
$ mkdir -p places-stage/web-root

Restart Apache to allow it to pick up the new settings:
$ sudo apachectl graceful

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 5

If all went well, pointing our web browser at http://places-dev from either of the two machines whose host
files we edited should end up at whatever files are located in /path/to/Sites/places-dev/web_root on the hosting
machine. Of course at this point there are no files in the hosting space. To get those we will need to check them
out of the version control repository.

10.2 Version control
With Rob being in the United Kingdom and my being in Australia, working collaboratively on the code for
this book wasn't as simple as shouting across a desk. In order to keep up with our changes we needed to have
some kind of version control system. There are many different version control systems with varying
functionality and the one we will use for this project is the same one used in the development of the Zend
Framework; Subversion. Subversion is an open-source system that will sort, store and record changes to your
files and directories over time, whilst also managing the collaborative use of that data over a network. Getting
acquainted with the process of version control and with Subversion in particular, will not only allow you to
work a little more closely with the framework's repository, but also introduce you to a workflow that will
further improve your deployment practices.

10.2.1 Working with Subversion
In the following section we are going to run through some of the day-to-day uses of version control using
Subversion. The intention is to give you an overview of the process and leave you with the confidence to
investigate further. To try some of the examples out for yourself you will, of course, need to have access to a
subversion host. This is admittedly a bit of a chicken and egg situation, unfortunately setting up a subversion
server is beyond the scope of this chapter. We will therefore presume you have access and focus on setting up
and working with a project in Subversion.Creating the repository
To store projects in Subversion, first we need to create a repository. Because creating a repository on a
network drive is not supported this must be done locally to a drive on the same machine. To create the
repository for places we need to type the following command:
svnadmin create /path/to/repository/places/

The subversion project officially recommends setting up three directories, trunk/, tags/ and branches/
under any number of project roots. The trunk is fairly obviously the main directory where the bulk of the
action takes place. The tag directory holds meaningfully "tagged" copies such as for example if we decided to
mark a stage in the development of places in the context of the writing of this book:
$ svn copy http://svn.example.com/svn/places/trunk \
http://svn.example.com/svn/places/tags/chapter-04 \
-m "Tagging places as snapshot of development at chapter 4."

The branches/ directory holds "branched" copies of the filesystem such as those created if we decided we
needed to experiment with a significant change to the architecture of "places". We'll cover branching in a little
more detail further on in this chapter.

Since we are setting these directories up locally and we want them to be under version control we'll do so
using the svn mkdir command:
$ cd /path/to/svn/places/
$ svn mkdir trunk
$ svn mkdir tags
$ svn mkdir branches

Having created the relevant directories we can then import the partial project we had started:
$ svn import /path/to/places file:////path/to/svn/places/trunk/ \
-m "Initial import"
Adding places/web_root/index.php
Adding places/web_root/.htaccess

Licensed to Menshu You <dollequatki@gmail.com>

http://places-dev
http://svn.example.com/svn/places/trunk
http://svn.example.com/svn/places/tags/chapter-04
file:////path/to/svn/places/trunk/

Zend Framework in Action (Ch01) Manning Publications Co. 6

Adding places/application

Committed revision 1

Having created those directories and imported the start of our project into the svn repository we are ready
to start using it for development. Figure 10.1 shows the svn directory structure after the first commit.

Figure 10.1 The places SVN repository after the first commit

Checkout the latest code from the repository
Having set-up the project repository to this stage we then decide to finish up for the day and leave Rob, whose
day has just begun, to add his work. By the time morning comes we can see in listing 10.5 that the repository is
bursting at the seams with new files, ready for us to checkout a working copy into our local virtual host setup
machine.
Listing 10.5 Checking out the latest work from the repository
$ svn checkout http://www.example.com/svn/places/trunk/ places/ A
A places/web_root
A places/web_root/css
... B
A places/db
A places/db/test_data.sql
Checked out revision 2.
A Note the second directory which specifies to checkout the places/trunk directory to a local places directory
B Output condensed for brevity

Commit some changes to the repository
At this point it is worth starting to develop some good commit habits, the main one being to try and keep the
purpose of the changes as focused as possible. Just think of the other members of your team having to check
out one big commit that includes a multitude of scattered changes and you quickly understand what that
means. You'll also notice any lack of focus when your commit messages start becoming unclear and difficult to
write. Whether formal or informal, most teams will have some commit guidelines such as including issue
tracker reference numbers in the commit message for example.

Going through our new working copy the first thing we notice is the need to edit the config.ini file to use
our local database. For now we can just make a copy which we call config.ini.default and use the original to
get the local application working. Ultimately we'll set the config file up more consistently but for now let's
commit config.ini.default as shown in listing 10.6, so that any further commits won't be writing over our
individual config files.
Listing 10.6 Committing our changes to the repository
$ cd ~/Sites/places
$ svn status | A
? application/configuration/config.ini.default A

Licensed to Menshu You <dollequatki@gmail.com>

http://www.example.com/svn/places/trunk/

Zend Framework in Action (Ch01) Manning Publications Co. 7

$ svn add application/configuration/config.ini.default B
A application/configuration/config.ini.default
$ svn status
A application/configuration/config.ini.default
$ svn commit -m "Added .default config file." C
Adding application/configuration/config.ini.default
Transmitting file data
Committed revision 3.
A The status command gives feedback on the status of the working copy. In this case it points out that config.ini.default is not under
version control
B The file is added putting it under version control indicated by the A after a second status check
C Once the working copy is ready it is commited to the repository

In the code in listing 10.6 you may have noticed the repeated status checks. To be sure that your working
copy is as you expect it's a good idea to get into the habit of checking its status before performing any further
action.Updating a local working copy
At each stage of development we need to be checking on the status of our working copy and making sure that
it is up to date with the repository. Not surprisingly, the svn update command takes care of updating a local
working copy with the latest changes and those changes are indicated by the output of the command. In listing
10.7 we perform an update on our working copy.
Listing 10.7 Updating our working copy from the repository
$ cd ~/Sites/places
$ svn status A
$ svn update B
A application/classes
A application/classes/Places
A application/classes/Places/Controller
A application/classes/Places/Controller/Action
A application/classes/Places/Controller/Action/Helper
A application/classes/Places/Controller/Action/Helper/ViewRenderer.php
Updated to revision 4.
A Notice the status check on our working copy before proceeding
B The update command which initiates the update action

As indicated by the A preceding each output line we can see in listing 10.7 that the file ViewRenderer.php
has been added together with its parent directories. This has been a simple update with no changes conflicting
with our working copy however when conflicts do occur we need to be able to deal with them.Dealing
with conflicts

Subversion is able to manage changes even when two people have edited the same file at the same time,
by simply combining changes as needed. In some cases however, conflicts may arise, if, for example, changes
have been made to the same lines of a file. In this instance a later update results in a conflict with the file
bootstrap.php as indicated by the C preceding the file information:
$ svn update
C application/bootstrap.php
Updated to revision 5.

In figure 10.2 we can see that the update produced four variations of the conflicting file;
bootstrap.php.r1100 is the original before our local modification, bootstrap.php.r1102 is the version that Rob
commited to the repository, bootstrap.php.mine is the modified version in our local working copy and finally,
bootstrap.php contains the diff of both versions.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 8

Figure 10.2 The four variations of the conflicting files after svn update

Taking a look inside bootstrap.php we can see the following conflicting lines:
<<<<<<< .mine
Zend_Controller_Action_HelperBroker::addPrefix('Places_Controller_Action_Helper');
=======
Zend_Controller_Action_HelperBroker::addPrefix('Zend_Controller_Action_Helper_');
>>>>>>> .r1102

Which is roughly the equivalent to the output generated if we were to run the command:
diff bootstrap.php.mine bootstrap.php.r1102

From this we can see that our edit, .mine, removed the underscore from the end of the parameter string
"Places_Controller_Action_Helper" while Rob's edit was to change the start of the parameter name to "Zend_"
instead of "Places_". After a quick discussion with Rob we decide that neither of our changes is needed and we
should revert back to the version before either of our changes. This is a simple fix for which we could either
edit bootstrap.php or copy bootstrap.php.r1100 over bootstrap.php. For the sake of the example let's edit
bootstrap.php to contain only the single line:
Zend_Controller_Action_HelperBroker::addPrefix('Places_Controller_Action_Helper_');

Having done that a quick status check indicates that while we've corrected the file, the svn conflict still
exists:
$ svn status
C application/bootstrap.php

Since we've decided that out of the four variations bootstrap.php is now the file we want to use we need to
tell subversion that the issue has been resolved and which file to go with:
$ svn resolved application/bootstrap.php
Resolved conflicted state of 'application/bootstrap.php'

Having done that another svn status check indicates that the file is now marked as modified
$ svn status
M application/bootstrap.php

The other three files have also been removed as part of the resolve process, leaving only the bootstrap.php
file
$ ls
bootstrap.php config.ini controllers views
classes configuration models

The final step is to commit the changes back to the repository together with a message noting the
resolution:
$ svn commit -m "Resolved change conflict with bootstrap.php"
Sending application/bootstrap.php
Transmitting file data .
Committed revision 6.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 9

Having given an overview of some of the common day-to-day tasks while using subversion there remain a
few topics that are worthy of a mention.

Getting a clean copy from the repository
Subversion stores its information in its own .svn directories inside each directory in the repository. Those .svn
directories are necessary while keeping content under version control but you may not want them in the final
release, such as, for example if you are going to ftp the contents to a server. Listing 10.8 shows the use of the
export command to get a copy cleaned of all those hidden directories from the repository.
Listing 10.8 Using the export command to get a clean working copy
$ svn export http://www.example.com/svn/places/trunk/ places_export/ A
A places_export
A places_export/web_root
... B
A places_export/db
A places_export/db/test_data.sql
Exported revision 7.
A Note the second path indicating a location for the cleaned working copy
B Output condensed for brevity

Note that having performed the export in listing 10.8, we are left with the same files as we would have had
if we had done a checkout, but since they do not contain the .svn directories they are not under version control.

10.2.2 Externals
While we are moving files between working copies and the repository there is one element that has not been
accounted for; what about the Zend Framework code? We can avoid having to deal with that by mapping one
of our local directories to the external URL of the Zend Framework repository:
svn propedit svn:externals .
application/library/Zend \
http://framework.zend.com/svn/framework/trunk/library/Zend/

Now any checkout of the repository that includes that local directory will also will also checkout the Zend
Framework code.

10.2.3 Branches
We gave an example of how tagging could be used for marking the repository at specific points in the

progress of the chapters of this book but what about a bigger occasion such as when we actually finish it? That
would be an occasion to use the branching capabilities of Subversion:
$ svn copy http://www.example.com/svn/places/trunk/ \
http://svn.example.com/places/branches/its-finished \
-m "Woohoo, we've finished the book!"

Committed revision 200.

As the name suggests and figure 10.3 illustrates, branching creates a line of history independent of the
main trunk. There are numerous reasons why we may decide to branch our code, Zend Framework branches on
each official release, but we could as equally decide to branch based on a need for a custom version of the
main code or an experimental version.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.example.com/svn/places/trunk/
http://framework.zend.com/svn/framework/trunk/library/Zend/
http://www.example.com/svn/places/trunk/
http://svn.example.com/places/branches/its-finished

Zend Framework in Action (Ch01) Manning Publications Co. 10

Figure 10.3 Branches in an SVN repository

The subject of branching is the topic of a whole chapter into itself so this brief mention is really just to
indicate its use and hope that you the reader follow it up with your own research.

10.3 Functional testing
Throughout the chapters of this book we have made a point of unit testing the code we have been working on.
The combination of the thorough code coverage of Zend Framework's unit tests with any application specific
unit tests should, from the programmer's perspective, provide ongoing feedback that the code is performing as
expected. However, even a system with all unit tests passing successfully may fall short in other areas such as
how the system functions when in actual use. To test this we need to move onto what what can be somewhat
broadly referred to as "functional testing".

While testing the functionality of the system can be narrowed into more specific areas such as its usability,
security, performance, etc, in this case we're going to outline more general methods of testing the system from
the perspective of the end user, that is, we will be attempting to test what the user can do with the system.
These methods can then be applied more specifically as needed, for example, in security testing we could test
whether a user that is not logged-in is able to access a restricted area.

10.3.1 Functional testing with Selenium
Selenium is a tool for testing web applications the same way you do; with a web browser. Anyone familiar
with recording a macro will recognise that, at its simplest, Selenium IDE is a tool to record, edit and playback
actions. Once recorded you can run, walk or step through actions with or without start points and breakpoints.

What makes Selenium particularly useful is the fact that the unit testing tool PHPUnit used by the Zend
Framework has a Selenium RC extension which means we can integrate the Selenium tests into our overall
testing procedure.Installing Selenium IDE
Since Selenium IDE is an add-on for the Firefox web browser you need to have downloaded and installed
Firefox from http://www.mozilla.com/firefox/ before you can install the extension.

Selenium IDE can be downloaded from the Firefox add-ons page at https://addons.mozilla.org/firefox or
from the project's own download page at http://www.openqa.org/selenium-ide/download.action. The easiest
method of installing the extension is to click the links to the .xpi files from within Firefox and allow Firefox to
handle the download and install.

Recording a Selenium test
We start by choosing Selenium IDE from the Firefox tools menu which sets it automatically in recording
mode. Next we simply interact with the web pages as usual. For this example let's record a very simple test that
queries Google for "zend framework" then follows the links to the Zend Framework manual page.

7. Navigate to google.com.au
8. Enter "zend framework" in the search field and click the "Google Search" button.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.mozilla.com/firefox/
https://addons.mozilla.org/firefox
http://www.openqa.org/selenium-ide/download.action

Zend Framework in Action (Ch01) Manning Publications Co. 11

9. After the list of results appear follow the link to http://framework.zend.com
10. On the Zend Framework home page follow the link to the manual
Once we've finished performing those steps we can stop recording and if all went well Selenium IDE will

have the recorded actions visible in its "Table" view shown in figure 10.4.

Figure 10.4 Selenium IDE in Table view with the results of our recording

Editing the test
If you're following this so far you'll probably notice that "Downloads" was accidentally clicked on in the Zend
Framework home page. Since this was not the aim of our test we want to edit out that step and we can do so by
switching to the "Source" view of the Selenium IDE window which will display the HTML shown in Figure
10.5.

Figure 10.5 Selenium IDE in Source view with the results of our recording

The offending lines that we need to remove from the above source are of course these which can be edited
directly in the "Source" view:
<tr>
 <td>clickAndWait</td>
 <td>link=Download</td>
 <td></td>
</tr>

Having removed those lines we can give it a quick run through by clicking the play button and if it
performs as expected we can save it for future use.Saving the test
Having recorded and edited our test we can now save it for later use. With Selenium IDE active choosing File
from the menu bar presents several options for saving tests. In this instance we will choose "Save Test As..."

Licensed to Menshu You <dollequatki@gmail.com>

http://framework.zend.com

Zend Framework in Action (Ch01) Manning Publications Co. 12

which will save the test in the default HTML format we saw above. It can then be opened later and the test
repeated as needed.

10.3.2 Automating Selenium tests
In the previous example we recorded a single test and ran it completely inside the browser under what is called
Selenium's "test runner" mode. This is fine for single tests but to make ourselves truly productive, we need to
use Selenium RC which allows us to run multiple Selenium tests written in a programming language.

One of the supported languages is of course PHP which is available as "PHP - Selenium RC" when
choosing "Export Test As..." from Selenium IDE. Unfortunately, at the time of writing, the resulting
 exported file contains code that is not only a little wordy but does not make use of the newer
PHPUnit extension PHPUnit_Extensions_SeleniumTestCase. Listing 10.9 shows a more efficient
rewrite of the our Selenium test as a PHPUnit test case.
Listing 10.9 Our Selenium test as a PHPUnit test case
<?php
require_once 'PHPUnit/Extensions/SeleniumTestCase.php';

class seleniumExampleTest extends PHPUnit_Extensions_SeleniumTestCase
{
 protected function setUp() A
 {
 $this->setBrowser('*firefox');
 $this->setBrowserUrl('http://www.google.com.au/');
 }

 function testMyTestCase() B
 {
 $this->open('http://www.google.com.au/');
 $this->type('q', 'zend framework');
 $this->click('btnG');
 $this->waitForPageToLoad('30000');
 try {
 $this->assertTrue($this->isTextPresent('framework.zend.com/'));
 } catch (PHPUnit_Framework_AssertionFailedError $e) {
 array_push($this->verificationErrors, $e->toString());
 }
 }
}
A Setting up the default settings such as the browser to use and the domain name to work under
B Our test case which replicates the test we did in Selenium IDE

If you are being observant you'll notice that our test case is actually missing the part of the test we made
with Selenium IDE which operates within the zend.com domain. Because Selenium RC runs partly outside the
browser we run into issues with the "same origin policy" which prevents a document or script "loaded from
one origin from getting or setting properties of a document from a different origin." The original test we
recorded with Selenium IDE worked because it was running completely inside the browser as an extension.
Selenium RC runs pages through a proxy which partly circumvents the same origin issue however support for
switching domains is currently experimental.

Having written our test we are almost ready to run it, however since it relies on the Selenium RC Server
that needs to be downloaded from http://www.openqa.org/selenium-rc/download.action and started using:
java -jar /path/to/server/selenium-server.jar

Once the server is running successfully, we are ready to run our test

Licensed to Menshu You <dollequatki@gmail.com>

http://www.google.com.au/
http://www.google.com.au/
http://www.openqa.org/selenium-rc/download.action

Zend Framework in Action (Ch01) Manning Publications Co. 13

Figure 10.6 Running our Selenium example unit test

Great! It passed. Now that our selenium test is written as a PHPUnit unit test we can continue adding tests
and incorporating them as part of an overall test suite that can be run from a single command.

10.3.3 Functional testing with Zend_Http
As the manual states "Zend_Http_Client provides an easy interface for performing Hyper-Text Transfer
Protocol (HTTP) requests." At its most basic level that is what a web browser like Firefox is and with that in
mind listing 10.10 shows an example of the tests we did with Selenium rewritten to use Zend_Http_Client.
Listing 10.10 Our Selenium test rewritten to use Zend_Http
<?php

set_include_path(get_include_path() . PATH_SEPARATOR . '/path/to/zend/library/');
include_once 'Zend/Http/Client.php';

class ZendHttpTest extends PHPUnit_Framework_TestCase
{
 public function testLoadGoogle()
 {
 $client = new Zend_Http_Client('http://www.google.com.au/'); A
 $response = $client->request(); A
 $this->assertContains('</from>', $response->getBody()); A
 }

 public function testQueryGoogle()
 {
 $client = new Zend_Http_Client(
 'http://www.google.com.au/search?q=zend+framework'); B
 $response = $client->request(); B
 $this->assertContains('framework.zend.com/',
 $response->getBody()); B
 }
}
A Test makes a request to Google and then makes sure it contains some html
B Test makes a search query request to Google and makes sure a string appears in the results

The similarities between the code for this and the previous Selenium test are pretty evident so there really
isn't any need to do much more than run the test. We can see the results in figure 10.7.

Figure 10.7 One failure on the first run of our unit test.
One failure due to the typo "</from>" instead of "</form>", so after correcting that let's check the results of running
the test again in figure 10.8

.
Figure 10.8 The final unit test is successful.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.google.com.au/
http://www.google.com.au/search?q=zend+framework

Zend Framework in Action (Ch01) Manning Publications Co. 14

Great that passed and just like the Selenium based tests it can be easily incorporated into a test suite.
Zend_Http does not currently have all the capabilities that Selenium has, such as for example the ability to test
javascript, however, as we can see it is a relatively simple way to make functional tests.

10.4 Scripting the deployment
We briefly mentioned using the svn export command to get a clean version of an SVN repository which we
could transfer via FTP to a production server. That solution would be useful if, for example, you are working
with a client's production server over which you have no control. If you did have control over the server there
is no reason why the production server could not also be under version control and updated with the svn update
command. Since we've already spent a lot of time discussing methods of automating tests the natural follow on
would be to automate the testing and deployment of your code between the different environments.

Unfortunately, as with svn branching, scripting your deployment is not only too deep a topic for a few
paragraphs of this chapter but also one quite specific to each team's work requirements. We can, however,
point you to the Zend Framework build-tools/Makefile for inspiration. This file contains a series of shell
scripts which export from the repository, generate the documentation and generate the zip and tarball archives
that can be downloaded from the Zend Framework download page. Another option in the process would be to
run all automated tests and only continue with the deployment if all tests pass. Even the triggering of the
running of these deployment scripts can be automated, perhaps on a scheduled basis, resulting in a form of
"continuous integration".

10.5 Summary
This chapter has presented a bit of a whirlwind tour of deployment practices and as a result has probably raised
more questions than provided answers. Our reason for including a chapter on the topic of deployment was to
illustrate that producing a quality product does not stop with just writing quality code.

We also wanted to demonstrate the use of some of the Zend Framework components in the process. How
much of these practices you decide to implement is dependent not only on your working environment but also
on the needs of the projects you are working on. Ultimately, if any part of it has inspired you to investigate the
topic further armed with a clearer overview of the process then it will have done its job.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 15

11

Talking with Other Applications
While working on this chapter I was flicking through some of the XML and PHP books I picked up several
years ago and noted that despite being around five years old they are still in almost perfect condition. The truth
is that while I read them from cover to cover, I never really needed to use them the same way I have my dog-
eared book on design patterns. Like any idiot with a new piece of technology I made the mistake of trying to
use XML at every possible and often inappropriate opportunity. However, once over that initial burst of
enthusiasm I settled on using it in much more measured ways, such as, for example, using RSS feeds to
supplement a directory site with news from the websites of its listings.

This chapter will cover the use of various components of the Zend Framework that can be loosely lumped
together under the term “web services”, which the World Wide Web Consortium (W3C) defines as “a software
system designed to support interoperable machine-to-machine interaction over a network”. For the sake of
simplicity we will base our use of the term web services in this chapter on that definition rather than the more
specific W3C focus on it being a combination of SOAP and WSDL (Web Services Description Language).

Part of that interoperation includes the use of XML, hence my exploring the books mentioned above,
however one of the benefits of using these components is that we don’t need to focus on XML itself. Zend
Framework provides a series of tools that take care of the formatting and protocol of the interaction, leaving
you the developer to focus on the logic using only PHP. If you were to pause and make a list of all the formats
available just for web newsfeeds the benefits of not having to deal with that range and rate of change would be
clearly illustrated.

Before we get into using the Zend Framework components we’ll take a look at the how’s and why’s of
integrating applications using web services.

11.1 Integrating Applications Together
It is interesting just how much web services have become a part of our offline and online existence. Every time
I start up my computer my newsreader fires up and digests a list of XML formatted news from sites that I
could never have been able to keep up with otherwise. Recently my wife sold some of the clutter from our
garage using GarageSale, a Mac OS X desktop application that talks to eBay using its XML based API
(Application Programming Interface) over HTTP. The key to all of these actions is the exchange of
information across a network and the distribution of the computing.

11.1.1 Exchanging structured data
XML stands for Extensible Markup Language and originates from Standard Generalized Markup

Language (SGML) which is one of the many markup languages whose role is simply to describe text. Probably
the most well know is HTML (HyperText Markup Language) which describes text documents that are
intended to be transmitted by HTTP.

Data does not need to be marked up in order to exchange it however, but in most all cases it does need to
have some kind of structure. Whether that be comma/tab separated values (csv or tsv) structured text which

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 16

bases its structure on a regular sequence of data separated by consistent delimiters, or serialized data such as
created by PHP’s own serialize() function, or other formats like Javascript Object Notation (JSON) which can
be used as an alternative to XML in AJAX (and incidentally is accommodated for in the Zend Framework by
Zend_Json).

Little of this information should be new to readers of this book but the fact to take away is that what we
are trying to achieve is the passing of information from one system to another such that the recipient system
knows how to handle that data.

Figure 11.1 Mac OS X desktop application GarageSale which converses with eBay’s XML based API.

If we take a look in Figure 11.1 at the application GarageSale that was mentioned earlier, it is clearly a
fairly complex application whose data could not be exchanged unless it was suitably structured in order for
eBay to process it and carry out whatever request it makes, such as creating a new item for auction.

Having looked at the language involved in this discussion between applications the next question is how
the applications talk to each other.

11.1.2 Producing and consuming structured data
The earlier chapter on email serves as a good example of how applications talk to each other using a structured
data format (Internet e-mail format) that is produced at one end, sent by a mail server (Mail Transfer Agent)
and consumed by the receiving email client (Mail User Agent) at the other. The application conversations in
this chapter take that basic concept a step further by using that exchange to trigger actions at either end,
through what is known as a remote procedure call (RPC).

Later in this chapter we’ll be covering Zend_XmlRpc which uses Zend_XmlRpc_Server to send and
receive XML encoded remote procedure calls over HTTP. Originally created by Dave Winer, XML-RPC is a
surprisingly simple and flexible specification which allows it to be used in a wide variety of situations.

As functionality was added, XML-RPC evolved into SOAP (originally an acronym but now just a word in
itself) and has been adopted by the World Wide Web Consortium. However, you don’t need to look too hard to
find complaints about how this added functionality also added a lot more complexity, which partly explains

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 17

why XML-RPC is still in use despite the official W3C adoption of SOAP. In some ways SOAP is itself being
superseded by other protocols like ATOM. You can see the status of these protocols reflected in Zend
Framework itself with the fact that at the time of writing Zend_Soap is still in the incubator while XML-RPC
and ATOM are both included in the core.

11.1.3 How web services work
To illustrate how web services work let’s follow the steps of an imaginary XML-RPC example in which a

desktop application needs to get the updated price of a particular item from an online service as illustrated in
figure 11.2:

Figure 11.2 The basic transaction between one system and another using XML-RPC

11. The desktop application gathers the data required to make a procedure call that includes the id of the
requested item and the remote procedure which gets the prices for items.

7. 2. The XML-RPC client component of the desktop application encodes this remote procedure call into
XML format and sends it to the online service like so:

<?xml version="1.0"?>
<methodCall>
 <methodName>onlineStore.getPriceForItem</methodName>
 <params>
 <param>
 <value><i4>123</i4></value>
 </param>
 </params>
 </methodCall>

6. The XML-RPC server of the online service receives the XML encoded procedure call and decodes it
into a format that the system code can process, e.g. $store->getPriceForItem(123).
7. The system code returns the requested price to its XML-RPC server which encodes that as an XML
response and sends it back to the requesting desktop application:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><double>19.95</double></value>
 </param>
 </params>
 </methodResponse>

8. The desktop application receives the response and decodes it into a format it can process and updates
the price for item 123 to $19.95.

11.1.4 Why do we need web services?
The simple answer to this question is also the most ironic; we need web services so that applications running
on different platforms and/or frameworks can talk to each other in standard way. This chapter has already

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 18

started to point out the irony in that concept by, in all likelihood, confusing you with what is only a small
selection of the variations in the protocols that make up these “standards”.

Pushing this cynicism aside however and returning to the example of our desktop application fetching
updated prices from the online service, you’ll notice that there was little detail about how each end of the
transaction actually performed their procedure calls and the reason was that it didn’t matter. It didn’t matter
because as long as each application was able to convert its internal processes into a standard form of
communication, the XML-RPC protocol, then the transaction could be completed.

Clearly this can lead to some very powerful interactions such as the one between GarageSale and eBay.
We will continue this chapter and the next with a look into some examples of how the Zend Framework
components can bypass some of the complexities of web services to take advantage of such interaction. We’ll
start by one that almost all readers are probably most familiar with; web feeds and the benefits of using
Zend_Feed to produce and consume them.

11.2 Zend_Feed
The Zend Framework manual describes Zend_Feed as providing “functionality for consuming RSS and Atom
feeds.” However, we are going to start from the opposite end of that transaction by showing how it can also be
used to produce RSS and ATOM feeds. We’ll then show some examples of consuming web feeds.

11.2.1 Producing a feed
If you took up the challenge mentioned at the start of this chapter to list all the formats available for web feeds
you’d have started with the RDF or RSS 1.* branch that includes RSS 0.9, 1.0 and 1.1 then moved to the RSS
2.* which includes RSS 0.91, 0.92 and RSS 2.0.1 then you’d have followed that to the ATOM syndication
format. If you did that while under the pressure of a deadline and realised that all of those formats are
potentially in use amongst the millions of syndicated sites you’d have probably sat down in a cold sweat!

Of course, once you calmed down, you’d likely realise that all you need do is to pick the latest and greatest
formats and concentrate on outputting those. Thankfully, even that isn’t needed as Zend_Feed can take care of
the format for you leaving you to simply pass it the data it needs for your feed. In listing 11.1 we demonstrate a
very simple controller action that produces an RSS (2.0) or ATOM feed.
Listing 11.1 A feed producing controller action
require_once 'Zend/Feed.php';
require_once 'models/ArticleTable.php';

class FeedController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $format = $this->_request->getParam('format');
 $format = in_array($format,
 array('rss', 'atom')) ? $format : 'rss'; A

 $articlesTable = new ArticleTable(); B
 $rowset = $articlesTable->fetchAll(); B

 $channel = array(C
 'title' => 'Places',
 'link' => 'http://places/',
 'description' => 'All the latest articles',
 'charset' => 'UTF-8',
 'entries' => array()
);

Licensed to Menshu You <dollequatki@gmail.com>

http://places/

Zend Framework in Action (Ch01) Manning Publications Co. 19

 foreach ($rowset as $item) { D
 $channel['entries'][] = array(
 'title' => $item->title,
 'link' => 'http://places/article/index/id/'
 . $item->id . '/',
 'description' => $item->body
);
 }
 $feed = Zend_Feed::importArray($channel, $format); E
 $feed->send(); F
 $this->_helper->viewRenderer->setNoRender(); G
 $this->_helper->layout()->disableLayout();
 }
}
A If neither choice of RSS or ATOM feed format is requested default to RSS
B Grab a selection of articles from the database to insert into the feed (this would likely be limited but is simplified for this example)
C Build up the required <channel> elements into an array
D Build up each <item> from the rowset retrieved from the Articles table with some minimal elements within the above array
E Import the array into Zend_Feed along with the format in which it is to be encoded
F Set the content type of the HTTP header string and output the feed
H Disable the view and layout rendering as this is is not an HTML page.

What we’ve done in listing 11.1 is to retrieve some data from the database, put it into a multidimensional
array, then used that array to build either an RSS or ATOM feed which is then output as an XML string ready
to be digested by a newsfeed reader or aggregator. Note that in our example we use the send() method which
sets the content type of the HTTP header string for us to something like this:
Content-Type: text/xml; charset=UTF-8

 If we were using the feed in some other way we could just use the following to get the XML string
without the HTTP headers:
$feed->saveXml()

Figure 11.3 The feed we produced as it appears in the Firefox web browser together with the XML source.

In figure 11.3 we can see that Firefox recognises this as a web feed, shows its parsed content and asks if
we’d like to subscribe to it through its Live Bookmarks. It should be noted, however, that the feed we’ve
produced is a little too minimal and would likely need further elements added for it to work with other readers
and aggregators. We have kept it simple for the sake of clarity.

Licensed to Menshu You <dollequatki@gmail.com>

http://places/article/index/id/

Zend Framework in Action (Ch01) Manning Publications Co. 20

11.2.2 Consuming a feed
Earlier in this chapter we gave an example of the consumption of web feeds retrieved from the websites of
listings in an online directory. In that particular case each listing had the URL of its feed stored along with its
other data. If that site had been built using Zend Framework storing the specific feed URL would have been
unnecessary as Zend_Feed is able to parse any HTML page searching for the same link elements that modern
browsers use to indicate the presence of a feed:
<link rel="alternate" type="application/rss+xml"
 title="Places RSS Feed" href="/feed/index/format/rss/" />
<link rel="alternate" type="application/atom+xml"
 title="Places Atom Feed" href="/feed/index/format/atom/" />

All that is required is a single line of code:
$feedArray = Zend_Feed::findFeeds('http://places/');

In the current case we do know the URL for the feed we produced earlier and the code to consume that
feed is straightforward as it imports directly from the URL:
$this->view->feed = Zend_Feed::import('http://places/feed/index/format/rss/');

The elements of that feed could then be presented in a view like so:
<h1>
 <a href=”<?php echo $this->feed->link(); ?>
 <?php echo $this->feed->title(); ?>
</h1>
<div class=”channeldesc”><?php echo $this->feed->description(); ?></div>
<?php foreach ($this->feed as $item): ?>
 <h2>
 <a href=”<?php echo $item->link; ?>”><?php echo $item->title(); ?>
 </h2>
 <div class=”itemdesc”><?php echo $item->description(); ?></div>
<?php endif; ?>

While we’re covering the methods of consuming feeds it would be remiss not to mention the remaining
methods which include importing from a text file:
$cachedFeed = Zend_Feed::importFile('cache/feed.xml');

Importing from a PHP string variable:
$placesFeed = Zend_Feed::importString($placesFeedString);

That covers some of the basic features of Zend_Feed and of course there is more that we could have
covered if it weren’t for the limitations of chapter size and the fact that we’re eager to move onto the next
section on Zend_XmlRpc.

11.3 Zend_XmlRpc
We already described how XML-RPC makes XML encoded remote procedure calls through HTTP requests
and responses. The relative youth of XML might suggest this is yet another new technology being thrust upon
us by marketing departments, but remote procedure calls are not a new concept. Written over thirty years ago,
the memo RFC 707: “A High-Level Framework for Network-Based Resource Sharing”, describes the RPC
protocol in a slightly quaint way:

“Given such a protocol, the various remote resources upon which a user might wish to draw
can indeed be made to appear as a single, coherent workshop by interposing between him and
them a command language interpreter that transforms his commands into the appropriate
protocol utterances”
RFC# 707: A High-Level Framework for Network-Based Resource Sharing, 14th Jan 1976

 The start of that document makes an interesting challenge to ARPANET, the predecessor to today’s
internet, in the the sentence beginning “This paper outlines an alternative to the approach that ARPANET
system builders have been taking”. While it is interesting to consider how the internet would be now had that

Licensed to Menshu You <dollequatki@gmail.com>

http://places/
http://places/feed/index/format/rss/

Zend Framework in Action (Ch01) Manning Publications Co. 21

alternative approach been taken, the key point is that RPC is one solution among many, including the internet
itself, to the need to have disparate applications talking to each other.

Just as a further note, because RPC mediates between one application and another, it can be classified
under the term middleware, which, partly due to the fact that it sounds like marketing-speak, isn’t particularly
interesting until you notice that amongst the others in that classification is SQL.

Clearly XML-RPC has therefore enough credentials to add to any proposal: It is based on technology
established over thirty years ago, which was partly proposed as an alternative to today’s internet and shares the
same problem solving area as the language through which we converse with databases. Thus having
determined that XML-RPC has a suitable lineage and with the addition of XML, enough youth to keep it
vibrant, we can move on to actually using Zend Framework’s implementation.

The example we are going to work through is an implementation of the various blog application
programming interfaces (API) that allow blog editors an alternative method of adding, editing and deleting
blog entries using desktop or other remote applications. We will start by setting up an XML-RPC server using
Zend_XmlRpc_Server.

11.3.1 Zend_XmlRpc_Server
Zend_XmlRpc_Server is used to implement the single point of entry for XML-RPC requests and in that
respect acts in much the same way that Zend Framework’s Front Controller does. In fact you can make your
XML-RPC server a controller action that receives its request via the front controller but that would involve a
lot of unnecessary processing overhead. Instead we’re going to separate out the bootstrapping process a little.

Setting up the bootstrapping
If you’ve read previous chapters, you’ll already be aware that the Zend Framework MVC structure relies

on mod_rewrite settings in a .htaccess file to pass all requests via a front controller file like index.php. Since
our XML-RPC server has its own single point of entry we need to exclude it from that rewrite rule. In listing
11.2 we do that by adding a rewrite condition that excludes any requests for /xmlrpc from the final rewrite rule
that passes requests to index.php.
Listing 11.2 Rewrite rules modified to allow requests through to the XML-RPC server
RewriteEngine on
RewriteCond %{REQUEST_URI} !^/css
RewriteCond %{REQUEST_URI} !^/img
RewriteCond %{REQUEST_URI} !^/js
RewriteCond %{REQUEST_URI} !^/xmlrpc A
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1
A The rewrite condition that excludes the /xmlrpc/ directory from the final rewrite rule

Alternatively, in figure 11.4 we have illustrated a solution which you will appreciate if, like me, you are a
coward when it comes to the mystical art of mod_rewrite.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 22

Figure 11.4 The directory structure with our xmlrpc controller file

What we’ve done is added a .htaccess file with one line within our xmlrpc directory:
RewriteEngine off

This means we can drop our xmlrpc directory into any of the applications we are working on and any
requests to /xmlrpc/ will go to our xmlrpc/index.php file. This means that we don’t have to tamper with what
could be a finely tuned .htaccess file belonging to the main application or several applications each with
potentially varying rewrite settings.

Now that requests are successfully getting to index.php we can add the code to forward those requests on
to the bootstrap file in our application directory. Readers of the previous chapter will already be familiar with
this setup and note the call to a new method; runXmlRpc() shown in listing 11.3.
Listing 11.3 The contents of our xmlrpc/index.php
include '../../application/bootstrap.php';
$bootstrap = new Bootstrap('general'); A
$bootstrap->runXmlRpc(); B
A Set the configuration section to use
B Run the xmlrpc function in the bootstrap

Having got all that together we’re now finally able to get to the main topic of this section; using
Zend_XmlRpc_Server. Listing 11.4 shows a stripped down version of the contents of the bootstrap file which
includes the runXmlRpc() method that was called from our index.php file.
Listing 11.4 Zend_XmlRpc_Server used in our bootstrap file
class Bootstrap
{
 public function __construct($deploymentEnvironment)
 {
 // Set up any configuration settings here A
 }

 public function runXmlRpc()
 {
 $server = new Zend_XmlRpc_Server(); B

 require_once 'Blogger.php'; C
 require_once 'Metaweblog.php';
 require_once 'MovableType.php';

 $server->setClass('Blogger', 'blogger'); D
 $server->setClass('Metaweblog', 'metaWeblog');
 $server->setClass('MovableType', 'mt');

 $response = $server->handle(); E
 $response->setEncoding('UTF-8'); F
 header('Content-Type: text/xml; charset=UTF-8');
 echo $response; G
 }
}
A Application initialisation occurs here
B Initialise the XML-RPC server
C Include any class files that will be attached to the server
D Attach class methods as XMLRPC method handlers together with their namespaces
E Handle the remote procedure call
F Set the character encoding of the response and echo that when setting the HTTP header string
G Output the response

We’ve intentionally left out the contents of the constructor in this example but have included the method
to show where things like introducing configuration settings, setting include paths, establishing a database
connection and any other application specific initialisation would occur. Setting up the server is then a fairly
straightforward process of instantiating the server object, supplying that server with the class methods that will
become its method handlers, handling the XML remote procedure call and echoing back the response.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 23

One thing that you might notice is when we set the method handlers we also passed in a namespace string.
The example classes that we are working with demonstrate exactly why this is important, as both the Blogger
and Metaweblog classes contain an editPost() method which would clash without the ability to namespace
them as

metaWeblog.editPost and blogger.editPost.
With the server setup and ready to go we can now elaborate on the class methods that the server will be

using.

Creating the XML-RPC method handlers

Since the purpose of our XML-RPC server is to receive remote procedure calls, our next step is to create those
procedures. As already mentioned, we will be implementing some of the API’s (Application Programming
Interfaces) for several of the various weblog applications so that a desktop application can work with articles
on our Places application.

 First let’s take a look at the application we will be working with; Ecto, which describes itself as “a
feature-rich desktop blogging client for MacOSX and Windows, supporting a wide range of weblog systems”.
The main reason we chose Ecto was because it has a “console” which makes it very useful when debugging
our XML-RPC transactions, however most of what we discuss in this section is applicable to other similar
applications. In Figure 11.5 we can see Ecto’s main window on the left, with a list of Places articles and its
editing window on the right.

Figure 11.5 Ecto, the desktop blogging client we will be using to make XML-RPC requests, shown editing some Places content

After setting up the connection details and selecting the API we want to connect to, Ecto runs through a series
of method calls to establish the account. In our case we have chosen to use the MovableType API, however
doing so still involves calls to methods that belong to other API’s, such as blogger.getUsersBlogs and
blogger.getUserInfo which belong to the Blogger API or metaWeblog.editPost which belongs to the
MetaWeblog API. For this reason we’re obligated to provide those methods for our XML-RPC server.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 24

Creating the interfaces
In order to work with any of the API’s already mentioned, our application must implement the methods
required by those API’s. If we pick an example method like metaWeblog.editPost the requirement is that it
returns a boolean value and consumes the following parameters:
metaWeblog.editPost (postid, username, password, struct, publish)

How our application actually carries out the processing of this request is dependant on the application
itself, but the fact that it must implement the required methods clearly indicates an appropriate use for object
interfaces. According to the PHP manual “object interfaces allow you to create code which specifies which
methods a class must implement, without having to define how these methods are handled”. Listing 11.5
shows one of our interfaces establishing all the methods of the Metaweblog API.
Listing 11.5 Our interface for the MetaWeblog API
interface Places_Service_Metaweblog_Interface
{
 public function newPost($blogid, $username, $password, $content, $publish);
 public function editPost($postid, $username, $password, $content, $publish);
 public function getPost($postid, $username, $password);
 public function newMediaObject ($blogid, $username, $password, $struct);
 public function getCategories($blogid, $username, $password);
 public function getRecentPosts($blogid, $username, $password, $numposts);
}

We should note that this interface was quite straightforward to set up as it’s clearly detailed in the
MetaWeblog spec. The XML-RPC Blogger API and Movable Type API’s are a bit more fiddly as they have
actually been deprecated despite still being used in many current web and desktop applications.

Having set up an example interface we can then use it in our concrete classes where it will ensure that
those classes will adhere to the requirements of the original API.

Creating the concrete classes
Since our original shot of Ecto in figure 11.5 showed us editing an article on Places we’ll continue that theme
and use the MetaWeblog editPost() method to demonstrate both the use of our interface and how methods need
to be set up so Zend_XmlRpc_Server can use them.

Listing 11.6 shows a stripped down version of the Metaweblog class which resides in our models/
directory. The final version would, of course, have to include all the methods in the interface it implements,
but for the sake of space they have not been included here.
Listing 11.6 Our MetaWeblog model implementing the interface from listing 11.4
include_once 'ArticleTable.php';
include_once 'ServiceAuth.php';

class Metaweblog implements Places_Service_Metaweblog_Interface A
{
 protected $_auth;
 protected $_articleTable;

 public function __construct()
 {
 $this->_auth = new ServiceAuth; B
 $this->_articleTable = new ArticleTable();
 // Full version would have further code here...
 }

 /**
 * Changes the articles of a given post
 * Optionally, publishes after changing the post
 *
 * @param string $postid Unique identifier of the post to be changed C
 * @param string $username Login for a user who has permission to edit

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 25

 * the given post (either the original creator or an admin of the blog)
 * @param string $password Password for said username
 * @param struct $struct New content of the post
 * @param boolean $publish If true, the blog will be published
 * immediately after the post is made
 * @return boolean D
 */
 public function editPost($postid, $username, $password, $struct, $publish) E
 {
 $identity = $this->_auth->authenticate($username, $password); F
 if(false === $identity) {
 throw new Exception('Authentication Failed');
 }

 // Set up filters
 $filterInt = new Zend_Filter_Int; G
 $filterStripTags = new Zend_Filter_StripTags;

 $id = $filterInt->filter($postid);

 $data = array(H
 'publish' => $filterInt->filter($struct['publish']),
 'title' => $filterStripTags->filter($struct['title']),
 'body' => $struct['description']
);

 $where = $this->_articleTable->getAdapter()->quoteInto('id = ?', $id);
 $rows_affected = $this->_articleTable->update($data, $where); I

 if(0 == $rows_affected) {
 throw new Exception('Somehow your post failed to be updated');
 }

 return true; J
 }
 // Add all the other required methods here... K
}
A This model class implements our Metaweblog interface
B Instantiating the objects we will need for our editPost method. Note the full version of this class would do more here.
C Establishing the method parameters.
Docblocks are the key to getting methods working with Zend_XmlRpc_Server. We’ll go into more detail in
this section but their key role is to to determine the method help text and method signatures. In our example
you can see they indicate the type, variable name and description of each parameter.
D The docblock return value is also a requirement.
E The parameters must match our interface and the docblocks above.
F Here we are doing some rudimentary security checks with a custom auth class and throwing an exception if they fail.
G Filtering the data is important for security as it is in most cases.
H The $struct array is used to build the data to be used in the update query.
I The post is updated
J As specified in the return value of the dockblock we return a boolean on success.
K The full version would be required to implement all methods in the interface.

After a simple authentication check using the username and password passed in the parameters this
editPost() method filters and formats an array from the received data and updates the database row that
corresponds with the provided id. On success it returns the required boolean and on failure an exception is
thrown that will be handled by Zend_XmlRpc_Server.

You’ll notice that the editPost() method is really only minimally different from any standard method in
that it has the docblock parameter data type “struct”, which isn’t a native PHP data type. The reason for this is
that when you use Zend_XmlRpc_Server::setClass() or Zend_XmlRpc_Server::addFunction(),
Zend_Server_Reflection checks all methods or functions and determines their method help text and signatures
using the docblocks.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 26

Referring to table 11.1 we can see that in the case of the @param $struct the datatype has been set to the
XML-RPC type “struct” that corresponds with the PHP type “associative array” which is processed using the
Zend_XmlRpc_Value object Zend_XmlRpc_Value_Struct.

Using these mappings we can at any time call on an Zend_XmlRpc_Value object to prepare values for
XML-RPC such as is often needed when preparing values in an array, for example:
array('dateCreated' => new Zend_XmlRpc_Value_DateTime(
 $row->date_created, Zend_XmlRpc_Value::XMLRPC_TYPE_DATETIME);

The above example formats a date from a database table row into the ISO8601 format required by XML-
RPC. The second parameter refers to the class constant XMLRPC_TYPE_DATETIME which is
unsurprisingly defined as “dateTime.iso8601”.

PHP Native Type XML-RPC Type Zend_XmlRpc_Value Object
boolean <boolean> Zend_XmlRpc_Value_Boolean
integer <int> or <i4> Zend_XmlRpc_Value_Integer

double <double> Zend_XmlRpc_Value_Double

string <string> (the default type) Zend_XmlRpc_Value_String

dateTime.iso8601 <dateTime.iso8601> Zend_XmlRpc_Value_DateTime

base64 <base64> Zend_XmlRpc_Value_Base64

array <array> Zend_XmlRpc_Value_Array

associative array <struct> Zend_XmlRpc_Value_Struct

Table 11.1 Mapping PHP native types against their XML-RPC Type and the corresponding Zend_XmlRpc_Value object

If you are thinking that all this introspection by Zend_Server_Reflection must come at a price then you
would be right, particularly when a lot of classes or functions are attached to the server. Thankfully there is a
solution in the form of Zend_XmlRpc_Server_Cache which, as the name implies, can be used to cache the
information gathered by Zend_Server_Reflection. We don’t need to vary too much from the example given in
the Zend Framework manual as its use is really very simple as we can see in listing 11.7.
Listing 11.7 Our Zend_XmlRpc_Server with caching implemented
$cacheFile = ROOT_DIR . '/cache/xmlrpc.cache'; A
$server = new Zend_XmlRpc_Server();

if (!Zend_XmlRpc_Server_Cache::get($cacheFile, $server)) { B
 require_once 'Blogger.php';
 require_once 'Metaweblog.php';
 require_once 'MovableType.php';

 $server->setClass('Blogger', 'blogger');
 $server->setClass('Metaweblog', 'metaWeblog');
 $server->setClass('MovableType', 'mt');

 Zend_XmlRpc_Server_Cache::save($cacheFile, $server); C
}
A The file to use to store the cached information
B Checking for the presence of a cache file before attaching classes
C If there was no cache file a new one is saved with the introspection information

With Zend_XmlRpc_Server_Cache in place we can cut out all that resource intensive introspection and as
long as we don’t need to change the attached classes we can leave it as it is. If we do change any of those
classes we need only delete the cache file so that a new version can be rewritten that reflects the changes.

Now that we’ve set-up our XML-RPC server we can look at the client side of the exchange with
Zend_XmlRpc_Client.

11.3.4 Zend_XmlRpc_Client
For our Places application our intention was to set-up an XML-RPC server so that we could remotely edit
articles with any of the desktop applications that support the weblog API’s. In doing so we have covered a lot

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 27

of the functionality of Zend_XmlRpc already. In this section we’ll demonstrate those a little further by
simulating a client request to the editPost() method we demonstrated in listing 11.6 using
Zend_XmlRpc_Client.

Unlike Zend_XmlRpc_Server which was used within its own front controller we are using
Zend_XmlRpc_Client within a controller action as shown in listing 11.8.
Listing 11.8 Zend_XmlRpc_Client used within a controller action
public function editPostAction()
{
 $xmlRpcServer = 'http://places/xmlrpc/'; A
 $client = new Zend_XmlRpc_Client($xmlRpcServer); B

 // Set up filters
 $filterInt = new Zend_Filter_Int; C
 $filterStripTags = new Zend_Filter_StripTags;

 $id = $filterInt->filter($_POST['id']);
 $publish = (bool) $_POST['publish'];

 $structData = array(D
 'title' => $filterStripTags->filter($_POST['title']),
 'dateCreated' => new Zend_XmlRpc_Value_DateTime(time(),
 Zend_XmlRpc_Value::XMLRPC_TYPE_DATETIME),
 'description' => $filterStripTags->filter($_POST['body']
);
 $client->call('metaWeblog.editPost',
 array($id,'myusername','mypassword', $structData, $publish)); E
}
A Assign the URL of the XML-RPC server that the client will send its requests to
B Instantiate the client object with the server URL
C Filter input from the HTML form
D Setup the data that will become an XML-RPC struct
E Make the remote procedure call with the assembled data

In this example we are filtering the data from an HTML form and preparing it for use by the client that has
been set-up with the URL of the XML-RPC server we will be sending requests to. The
Zend_XmlRpc_Client::call() method then handles the rest by compiling the XML encoded request and sending
it via HTTP to the XML-RPC server it was instantiated with.

Figure 11.6 Demonstrating the editPost() method call with the response on the left, the updated article in the middle and the
response returned from the XML-RPC server on the right.

Licensed to Menshu You <dollequatki@gmail.com>

http://places/xmlrpc/

Zend Framework in Action (Ch01) Manning Publications Co. 28

Borrowing Ecto’s console window we can illustrate the process a little more thoroughly in figure 11.6.
There we can see the XML encoded request in the left hand console window, which is processed by the XML-
RPC server and if successful will update the article in the middle and return an XML encoded response with
the boolean value true, back to the client.

Not all XML-RPC requests are successful of course and for that reason Zend_XmlRpc_Client has the
ability to handle HTTP and XML-RPC errors through exceptions. In listing 11.9 we add some error handling
to the editPost procedure call from listing 11.8.
Listing 11.9 Adding error handling to our XML-RPC client
try {
 client->call('metaWeblog.editPost', A
 array($id,'myusername','mypassword', $structData, $publish));
} catch (Zend_XmlRpc_HttpException $e) { B
 // echo $e->getCode() . ': ' . $e->getMessage() . "\n";
} catch (Zend_XmlRpc_FaultException $e) { C
 // echo $e->getCode() . ': ' . $e->getMessage() . "\n";
}
A First we try the remote procedure call
B If the call fails we handle any HTTP request error
B If the error was not an HTTP error we handle any XML-RPC error

Our client will now attempt to make the remote procedure call and on failure will be able to handle HTTP
and XML-RPC errors respectively. Note that since we’re not actually using the client in our Places application
we’ve not gone into any detail about what we’d do with those error messages.

As we’ve hopefully demonstrated in this section, XML-RPC is really quite straightforward to set-up and
use and Zend_XmlRpc makes it even easier. However, like any technology, XML-RPC has its critics and in
the next section we will look at another approach to web services with Zend Rest.

11.4 Zend_Rest
At the start of this chapter we mentioned that the various Zend Framework components we’d be working with
would include XML but that we wouldn’t be needing to deal with it directly. The Zend_Rest section of the
manual opens by saying “REST Web Services use service-specific XML formats” which is true, but needs a
little clarification as REST web services don’t actually care whether they use XML or not. Zend_Rest, does
use XML as its format of choice but it is possible to circumvent this if you dig around a bit which we’ll do
after looking at REST in a bit more detail.

11.4.1 What is REST?
REST stands for Representational State Transfer and was originally outlined in “Architectural Styles and the
Design of Network-based Software Architectures” by Roy Fielding, whose role as “primary architect of the
current Hypertext Transfer Protocol” explains some of the background to REST. With regards to the use of
XML; “REST ignores the details of component implementation and protocol syntax in order to focus on the
roles of components, the constraints upon their interaction with other components, and their interpretation of
significant data elements.”. An “A-ha!” moment came for me when I read the line in the document that says
“the motivation for developing REST was to create an architectural model for how the Web should work, such
that it could serve as the guiding framework for the Web protocol standards”. In other words, every time we
make an HTTP request we are using a transfer protocol based on the REST concept.

While the key element of RPC is the command, usually accessed via a single point of entry, the key
element in REST is the resource, an example of which could be Places login page whose resource identifier is
the URL http://places/auth/login/. Resources can change over time, for example our login page could have
interface updates, but their resource identifiers should remain valid.

Licensed to Menshu You <dollequatki@gmail.com>

http://places/auth/login/

Zend Framework in Action (Ch01) Manning Publications Co. 29

Of course having a lot of resources doesn’t hold a great deal of value unless we can actually do something
with them and in the case of web services we have the HTTP methods. To illustrate the value that such
apparently simple operations have Table 11.2 compares the HTTP methods POST, GET, PUT and DELETE
with the common generic database operations; Create, Read, Update and Delete (CRUD).
HTTP Methods Database Operations
POST Create
GET Read

PUT Update

DELETE Delete

Table 11.2 Comparing the HTTP Methods used in REST with the common generic database operations

All readers of this book will be familiar with the POST and GET HTTP request methods whereas PUT and
DELETE are less well known, partly as they are not often implemented by all HTTP servers. This limitation is
reflected in Zend_Rest with the fact that Zend_Rest_Client is able to send all of these request methods while
Zend_Rest_Server will only respond to GET and POST.

Presuming that readers will already have enough knowledge of HTTP to be able to “join the dots” on the
fundamentals, we have kept this introduction to REST intentionally brief. Hopefully, as we start to explore
some of the REST components of the Zend Framework, things will become clearer. That exploration will start
with Zend_Rest_Client

11.4.1 Zend_Rest_Client
The start of this section mentioned that Zend_Rest uses XML to serialize the data it processes in the body of
the HTTP request or response, however, not all RESTful web services use XML. One example is the Akismet
spam filtering service which we’ll use to demonstrate the various ways of accessing REST based web services.
Figure 11.6 shows a good example of where we could use the service to check the reviews submitted by users
of our Places application.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 30

Figure 11.6 The reviews in our Places application which we could filter using the Akismet spam filter service

Another reason we’ve chosen Akismet is that Zend Framework has a Zend_Service_Akismet component
which means readers won’t be left with a partially implemented solution but will hopefully be able to
understand how that component works a little more.
Resource Identifier Description
rest.akismet.com/1.1/verify-key Verify the required API key
api-key.rest.akismet.com/1.1/comment-check Identify the submitted comment is spam or not
api-key.rest.akismet.com/1.1/submit-spam Submitting missed spam
api-key.rest.akismet.com/1.1/submit-ham Submitting content incorrectly marked as spam

Table 11.3 The resource provided by the Akismet API

The Akismet API provides a small choice of resources, shown in table 11.3, from which we will choose
the resource to verify that the API key obtained from Wordpress.com is valid. The first thing we will do is
attempt to use Zend_Rest to access this resource in the method demonstrated in the manual as we have in
listing 11.10.
Listing 11.10 A REST request to Akismet using Zend_Http_Client

$client = new Zend_Rest_Client('http://rest.akismet.com/1.1/verify-key'); A
echo $client->key('f6k3apik3y') B
 ->blog('http://places/') C
 ->post(); D
A Instantiate the client with the URL of the resource
B Set the key ‘key’ to the value of the API key

Licensed to Menshu You <dollequatki@gmail.com>

http://rest.akismet.com/1.1/verify-key'�
http://places/'�
http://rest.akismet.com/1.1/verify-key

Zend Framework in Action (Ch01) Manning Publications Co. 31

C Set the key ‘blog’ to the URL of the blog
D Send the request as an HTTP POST

In this example we construct our client with the URL of the verify key resource then, using the fluent
interface that is common in many Zend Framework components, we set the two required variables “key” and
“blog” using the built in magic methods, finally we send them via an HTTP POST request. Unfortunately,
despite the pleasing simplicity of this code the resulting request will fail because Akismet doesn’t return the
XML response that is expected by Zend_Rest_Client when used this way.

Since all Akismet needs is a simple HTTP request and Zend_Rest itself uses Zend_Http_Client why then
can’t we just use Zend_Http_Client in the first place? The answer, as demonstrated in listing 11.11, is that we
can.
Listing 11.11 A REST request to Akismet using Zend_Http_Client
$client = new Zend_Http_Client('http://rest.akismet.com/1.1/verify-key'); A
$data = array(B
 'key' => 'f6k3apik3y',
 'blog' => 'http://places/'
);

$client->setParameterPost($data); C

try {
 $response = $client->request(Zend_Http_Client::POST); D
 var_dump($response);
} catch (Zend_Http_Client_Exception $e) {
 echo $e->getCode() . ': ' . $e->getMessage() . "\n";
}
A Instantiate the client with the URL of the resource
B Build an array with the data required for the verify key request
C Format the data into an HTTP POST
D Make the request (wrapped in a try/catch exception block)

Zend_Http_Client will not attempt to parse the returned response from Akismet as if it was XML and we
will receive the plain text response “valid” or “invalid” depending on whether our data is verified successfully
or not, respectively.

If Zend_Http_Client can successfully make the request surely there is a way that Zend_Rest can do the
same? Of course there is and in listing 11.12, which should be looking familiar by now, we bypass having
Akismet’s plain text response parsed as XML by calling the restPost() method directly. Unlike our first attempt
this method returns the body of the HTTP response rather than sending it through Zend_Rest_Client_Result.
Listing 11.12 A REST request to Akismet using Zend_Rest
$client = new Zend_Rest_Client('http://rest.akismet.com'); A
$data = array(B
 'key' => 'f6k3apik3y',
 'blog' => 'http://places/'
);
try {
 $response = $client->restPost('/1.1/verify-key', $data); C
 var_dump($response);
} catch (Zend_Rest_Client_Exception $e) {
 echo $e->getCode() . ': ' . $e->getMessage() . "\n";
}
A Instantiate the client with the URL to make requests to
B Build an array with the data required for the verify key request
C Make the HTTP POST request with the path of the resource and data to verify

Having solved the problem we were having with Akismet’s service we now know we can use
Zend_Rest_Client with plain text and XML based RESTful web services. If we wanted to work with the rest of
Akismet’s resources it would obviously make more sense to use Zend_Service_Akismet, but if there was not a
pre-built Zend Framework component we are now aware of several options. One of those is the option to
interact with REST based web services provided by our own application server using Zend_Rest_Server.

Licensed to Menshu You <dollequatki@gmail.com>

http://rest.akismet.com/1.1/verify-key'�
http://rest.akismet.com/�
http://rest.akismet.com/1.1/verify-key
http://places/
http://rest.akismet.com
http://places/

Zend Framework in Action (Ch01) Manning Publications Co. 32

11.4.1 Zend_Rest_Server
Let’s imagine that we’ve convinced one of the advertisers on Places; Edinburgh Zoo, to take part a joint
promotion that will be hosted separately from both of our sites. The idea is to make a short lifespan “mash-up”
site based on content from Places, Edinburgh Zoo and other interested sites.

As we did with our XML-RPC server earlier we will start by making a simple interface to make sure our
server has a consistent API. Listing 11.13 shows our interface with two methods; one to get a place and one to
get the reviews for a place.
Listing 11.13 Our Places service application interface
interface Places_Service_Place_Interface
{
 public function getPlace($id);
 public function getReviews($id);
}

Next in listing 11.14 we make a concrete implement of our interface using queries similar to those from
our Zend_Db chapter. Note that the database results are returned as an array rather than the default objects
which would have failed when processed by Zend_Rest_Server. Another thing that you may notice is that
unlike Zend_XmlRpc_Server, Zend_Rest_Server does not require parameters and return values specified in
docblocks.
Listing 11.14 Our Places service concrete class
class ServicePlaces implements Places_Service_Place_Interface
{
 public function getPlace($id)
 {
 $placesFinder = new Places();
 $place = $placesFinder->find($id);
 return $place->current()->toArray(); A
 }

 public function getReviews($id)
 {
 $reviewsFinder = new Reviews();
 $rowset = $reviewsFinder->fetchByPlaceId($id);
 return $rowset->toArray(); A
 }
}
A Note that we change the query results from an object to an array as Zend_Rest_Server will not process the object

Now that we have the concrete class we can attach it to Zend_Rest_Server with the same approach that we
covered with Zend_XmlRpc_Server.
Listing 11.15 Our REST server
class RestController extends Zend_Controller_Action
{
 protected $_server;

 public function init()
 {
 $this->_server = new Zend_Rest_Server();
 $this->_helper->viewRenderer->setNoRender();
 }

 public function indexAction()
 {
 require_once 'ServicePlaces.php';
 $this->_server->setClass('ServicePlaces');
 $this->_server->handle();
 }
}

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 33

Listing 11.15 shows our REST server set-up within an action controller and accessible via an HTTP GET
or POST that must supply the name of the service method you wish to invoke. Figure 11.7 shows the XML
formatted results of some example GET requests to the resources http://places/rest/?method=getPlace&id=6
(on the left) and http://places/rest/?method=getReviews&id=6 (on the right) using Firefox.

Figure 11.7 The results of our REST server query; getPlace on the left and getReviews on the right

All our mashup site needs to do is use Zend_Rest_Client to make requests like the following:
$client = new Zend_Rest_Client('http://places/rest/?method=getPlace');
$response = $client->id('6')->get();

Which will return a Zend_Rest_Client_Result object that allows us to access the elements of the response
as properties that can be used in our site like so:
echo $response->name; // Outputs “Edinburgh Zoo”

Having worked through the implementation of Zend_XmlRpc_Server, itself relatively simple when
compared to say SOAP, you will hopefully have found Zend_Rest_Server very easy to follow. As with any
brief introduction there is a lot that has been left untouched such as PUT and DELETE HTTP requests which
are not handled by Zend_Rest_Server and authentication for example. However, what we have set-up is a
REST server whose strength lies in the relationship between Zend_Rest_Server and Zend_Rest_Client and the
simplicity of implementation.

11.5 Summary
This chapter has been quite a concentrated look at some of the web service components of the Zend
Framework. The emphasis has been on the client/server relationships which we set up first through using
Zend_Feed to generate a newsfeed of our Places articles and then consume that newsfeed. Next we set-up
Zend_XmlRpc_Server to allow remote editing of Places articles through the weblog API’s and followed that
with an example of how Zend_XmlRpc_Client can make the remote procedure calls to that server. Finally we
covered Zend_Rest; first to filter comments through Akismet’s REST based spam filtering service using
Zend_Rest_Client and then to provide our own API to Places content with Zend_Rest_Server.

Hopefully you should leave this chapter with a decent understanding of how web services work and be
able to implement useful services using the various Zend Framework components. You should also be well
prepared for the next chapter where we will use the more specific components with some of the publicly
available web services.

Licensed to Menshu You <dollequatki@gmail.com>

http://places/rest/?method=getPlace&id=6�
http://places/rest/?method=getPlace&id=6�
http://places/rest/?method=getReviews'�
http://places/rest/?method=getPlace

Zend Framework in Action (Ch01) Manning Publications Co. 34

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 35

14

Internationalization & Localization
Most websites are written in a single language for a single country and this makes life easier for both the
designers and developers. Some projects however require more than this. For instance, some countries have
more than one language (e.g. in Wales, both English and Welsh are used) and some websites are intended to
target all the countries that the company operates in. To create a website targeted at different countries and
cultures, significant changes to the application are required in terms of supporting this and also the different
formats of dates, times, currency, etc. which each country uses.

We are going to look at what needs to be done to make a multi-lingual website and then show how the
Zend_Locale and Zend_Translate components of the Zend Framework help to make the process easier.
Finally we will implement a second language into the Places website to show how to practically achieve a
localized application.

14.1 What do we need to do?
Before making a multi-lingual website, we first need to look at what needs to be done. There are two main
areas to consider: language and customs. Intuitively, most people think about changing the language when they
consider supporting another country on their website; clearly we need to display all the text in the correct
language. However, for some locales, there are cultural issues to consider too. The most common are the
formatting of dates and currency. For dates, the most infamous issue is that the US uses mm/dd/yy whereas the
UK uses dd/mm/yy and hence it gets tricky to determine what date 02/03/08 actually is. Is it the 2nd March or
the 3rd February? Similarly, for currency, in France, they use the comma where the UK uses a decimal place
and they use a decimal place where we would use a comma. To make a French user feel at home, €1,234.56
should be displayed as €1 234,56.

The key controller on a computer system for this is called the locale. The locale is a string that defines the
current language and region used by the user. For example, the locale “en_GB” means English language, in the
GB region. Similarly, “es_PR” is Spanish language in Puerto Rico. Generally, for language localization, the
first part of the locale is used as it is rare to find a website that provides both US and UK English.

14.1.1 Translating languages
Translation of languages involves changes to both the HTML design and build of the website site and to the
PHP code that runs it. The most obvious change that’s required is that every string displayed to the user has to
be in the correct language and so correct sizing of areas for text in the design is required. This also includes
any text that is embedded in a graphical image and so in order to provide for multiple languages, the image
files need to be separated out into generic and language specific if text is used in images.

There are multiple methods of doing the actual translation but they all boil down to the same thing. Every
string displayed on the site needs to be mapped to a string in the target language. It follows that it is important
that the strings are rewritten using a professional translator as there is rarely a one-to-one mapping from one
language to the next. Industry standard systems such as gettext() have many tools available dedicated to

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 36

making it simple for a translator to perform the translation of phrases used in the application without having to
know anything about programming.

14.1.2 Translating idioms
The most obvious idioms that need translation are the formatting of currency and dates. PHP has locale support
built in that is set using the setlocale() function. Once the locale is set, then all the locale-aware functions
will use it. This means that strftime() will use the correct language for the months of the year and
money_format() will use the comma and period characters in the right place for the language involved. One
gotcha is that setlocale() is not thread-safe and the strings you need to set are inconsistent across
operating systems, so care must be taken using it. Also, some functions like money_format() aren’t available
on all operating systems, for example Windows. The Zend_Locale component is intended to mitigate these
issues and also provides additional functionality like normalization.

Now that we know a little about what localization and internationalization is, let’s look at what the Zend
Framework provides to make the process of creating an international website easier. We will start by looking
at Zend_Locale’s ability to convert numbers and dates before moving on to investigate Zend_Translate’s
functionality for providing translated text.

14.2 Using Zend_Locale and Zend_Translate
Zend_Locale and Zend_Translate are the key components of the Zend Framework for providing a multi-
lingual worldwide website. Other components that are aware of localization are Zend_Date, Zend_Calendar
and Zend_Currency. Let’s look at Zend_Locale first.

14.2.1 Zend_Locale
To select the correct locale is as easy as:

$locale = new Zend_Locale('en_GB');

This will create a locale object for the English language, GB region. We can also create a Zend_Locale
object for the locale of the user’s browser using:

$locale = new Zend_Locale();

The locale object can then be used for translating lists of common strings such as countries, units of

measurement and time information such as month names and days of the week. We can also retrieve the
language and region using:

$language = $locale->getLanguage();
$region = $locale->getRegion();

Clearly, we can then use this information to provide websites in the correct language with the right

formatting of dates, times and currencies which will make our user feel right at home. Let’s look at numbers
first.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 37

Dealing with numbers
The most significant regional problem with numbers are that some countries use the comma to separate out the
decimal places from the whole number and some countries use the point character. If your website allows the
user to enter a number, then you may have to convert appropriately. This is known as normalization. For
example, consider a form that asks someone to enter their monthly insurance costs in order to try and provide a
cheaper quotation. A German user may type in the number 3.637,34 (three thousand, six hundred and thirty
seven Euros and thirty four cents) which you need normalize to 3637.34. This is achieved using the code
shown in listing 14.1.

Listing 14.1: Number normalization with Zend_Locale
$locale = new Zend_Locale('de_DE'); A
$number = Zend_Locale_Format::getNumber('3.637,34',

'locale' => $locale));

print $number; B

A German locale
B Prints the number “3637.34”

We can then process the number as appropriate and may need to display a number to the user. In this case,

again we need to format the number appropriately for the user’s location and we can use Zend_Locale’s
toNumber() function as shown in listing 14.2..

Listing 14.2: Number localization with Zend_Locale
$locale = new Zend_Locale('de_DE'); A
$number = Zend_Locale_Format::toNumber(2435.837,
array('precision' => 2, B
'locale' => $locale));

print $number; C

A German locale
B Round to 2 decimal places
C Prints the number “2.435,84”

The precision parameter is optional and is used to round the provided number to the given number of

decimal places. This covers the basics of what Zend_Locale can do with numbers. However, Zend_Locale
provides complete number handling though including translation of numbers between different numeral
systems, for example from Arabic to Latin. There is also support for integer and floating point number
normalization and localization. The manual gives full information on these functions.

Date and Time with Zend_Locale
Handling the formatting of dates and times is also within the province of Zend_Locale. This class operates in
conjunction with Zend_Date to provide comprehensive support for reading and writing dates. Let’s start by
looking at normalizing dates because, like numbers, different regions of the world write their dates in
difference formats and obviously, use their local language for the names of the months and days of the week.

Consider, the date 2nd March 2007. In the UK, this may be written as 2/3/1007 whereas in the USA it
would be writer 3/2/2007. To use the date supplied by our users, we need to normalize it and getDate() is the
function to use as shown in listing 14.3..

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 38

Listing 14.3: Date normalization with Zend_Locale
$locale = new Zend_Locale('en_US'); A
$date = Zend_Locale_Format::getDate('3/2/2007',
 array('locale' => $locale));

print $date['month']; B

A USA locale
B Prints “3” for March

As usual, we create a locale object for the correct language and region and then us it with the getDate()

function. We have used the en_US locale for the USA and so getDate() correctly determines that the month is
March. If we changed the locale to en_GB, then the month would be February. Similarly, we can use
checkDateFormat() to ensure that the date string received is valid for the locale and obviously, once we have
the date information separated into its components, we can manipulate it in any way we like.

Now that we know the basics of using Zend_Locale to help our international visitors feel at home, let’s
have a look at Zend_Translate’s ability to help us present our site in different languages.

14.2.2 Zend_Translate
As we have already seen, the basics of website translation is to take a every string and provide a translated
version. The most common way to do this is gettext(), which is powerful but fairly complicated.
Zend_Translate supports the gettext() format, but also supports other popular formats such as CSV, TBX, Qt
and Xliff. Zend_Translate is also thread-safe which can be very helpful if you are running a multi-threaded
webserver such as IIS.

Zend Translate supports multiple input formats using an adapter system. This approach is very common in
the Zend Framework and allows for easy additions of further adapters as required. We will look at the CSV
adapter first as that is a very simple format and hence very quick to use. Possibly the biggest benefit to CSV
input files is that it is easy for the client to provide such a file using a text editor or a spreadsheet program like
Excel. One downside is that support for UTF8 is quite patchy with text editors

Using Zend_Translate is simple enough. In Listing 14.4, we output some text using pretty ordinary PHP
and then repeat the exercise in Listing 14.5 using Zend_Translate’s array adapter In this case, we make life
easier by “translating” to upper case, but we could equally have translated to German, if I knew enough!

Listing 14.4: Standard PHP output
print "Welcome\n"; A
print "=======\n";
print "Today's date is " . date("d/m/Y") . "\n"; B

A Standard PHP print statement
B UK format date

Listing 14.4. is a very simple piece of code that displays three lines of text, maybe for a command line

script. To provide a translation we need to create an array of translation date for the target language. The array
consists of identifying keys mapped against the actual text to be displayed. The keys can be anything, but it
makes it easier if it is essentially the same as the source language.

Listing 14.5: Translated version of Listing 14.4
$data = array(); A

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 39

$data['hello'] = 'WELCOME'; A
$data['today %1$s'] = 'TODAY\'S DATE IS %1$s'; A

$translate = new Zend_Translate('array', $data, 'en'); B

print $translate->_("hello")."\n"; 1
print "=======\n";
printf($translate->_('today %1$s')."\n", date('d/m/Y')); 2

A Translation array
B Create an instance of Zend_Translate
C Print the “hello” translation text
C printf() palceholders also work

In this example, we use the _() function to do the translation (1). This is a very common function name in
multiple languages and frameworks for translation as it is a very frequently used function and it is less
distracting in the source code if it is short. As you can see in (2)m the _() function also supports the use of
printf() placeholders so that you can embed some dynamic text in the correct place. The current date is a good
example as in English we say “Today’s date is {date}” whereas in another language, the idiom may be “{date}
is today’s date”. By using printf() placeholders, we are able to move the dynamic data to the correct place for
the language construct used.

The array adapter is mainly useful for very small projects. For a large project, the gettext() format or csv
format is much more useful. For gettext(), the translation text is stored in .po files which are best managed
using a specialized editor, such as the open source poEdit application.. These applications provide a list of the
source language strings and next to each one, the translator can type the target language equivalent string. This
makes creating translation files relatively easy and completely independent of the website source code.

The process of using gettext() source files with Zend_Translate is as simple as picking a different adapter
as shown in listing 14.6.

Listing 14.6: Zend_Translate using the gettext() adapter

$filename = 'translations/uppercase.po'; A
$translate = new Zend_Translate(gettect, $filename, 'en'); A

print $translate->_("hello")."\n"; B
print "=======\n"; B
printf($translate->_('today %1$s')."\n", date('d/m/Y')); B

A Change the adapter to gettext
B Everything else is the same

As you can see, the use of the translation object is exactly the same, regardless of the translation source
adapter used. Let’s look at integrating what we have learnt into a real application. We will use our Places
application and adapt it to support two languages.

14.3 Adding a second language to Places
The initial goal for making Places multi-lingual is to present the user interface in the language of the

viewer. We will use the same view templates for all languages, and ensure that all phrases are translated
appropriately. Each language will have its own translation file stored, in our case using the array adapter to
kept things simple and if the user requests a language for which we do not have a translation, then we will use
English. The result can be seen in Figure 14.1 which shows the German version of Places. (Note that the
translation was done using Google translate – a human translator would do a much better job of it!)

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 40

Figure 14.1 The text on the German version of Places is translated, but the same view templates are used to ensure that adding
additional languages does not require too much work.

The key steps we will be taking to make Places multi-lingual are:
 Change the default router to support a language element.
 Create an Action Helper to create the Zend_Translate object and load the correct language file.
 Update the controllers and views to translate all text.
We will start by looking at how to make the Front Controller’s router multi-language aware so that the

user can select a language.

14.3.1 Selecting the language
The first decision that needs to be made is how to determine the user’s language choice. The easiest

solution is to ask the web browser using Zend_Locale’s getLanguage() function and then store this into the
session. This has a few problems that need to be considered. Firstly, sessions rely on cookies and so the user
would have to have cookies enabled in order to view the site in another language. Related to this, creating a
session for every user involves overhead that we may not want to bear. The final problem is that search
engines like Google would only see the English version of the site.

To solve these problems, the code for the language of choice should be held within the URL and there are
two places we can put it: the domain or the path. To use the domain, we would need to buy the relevant
domains, such as placestotakethekids.de and placestotakethekids.fr etc. These country specific domains are a
very easy solution and for a commercial operation can show your customers that you are serious about doing
business in their country. Problems that may arise are the domain name may not be available for the country of
choice (e.g. apple.co.uk is not owned by Apple Inc.) and also for some country specific domains you need to
have proof of business incorporation within that country in order to purchase the domain name.. The
alternative is to have the language code as part of the path, such as www.placestotakethekids.com/fr for French
and www.placestotakethekids.com/de for the German language. We shall use this approach.

Licensed to Menshu You <dollequatki@gmail.com>

http://www.placestotakethekids.com/fr
http://www.placestotakethekids.com/de

Zend Framework in Action (Ch01) Manning Publications Co. 41

As we wish to use full locales for each language code we need to map from the language code used in the
URL to the full locale code. For example, /en will be mapped to en_GB, /fr to fr_FR, and so on for all
supported languages. We will use our configuration INI file to store this as shown in listing 14.7.

Listing 14.7: Setting locale information in config.ini

languages.en = en_GB A
languages.fr = fr_FR A
languages.de = de_DE A

A The short form text is the key to the full locale

The list of valid language codes and their associated locales are now available in the $config object that is

loaded in the bootstrap and then stored in the Registry. We can retrieve the list of supported language codes
using:
$languages = array_keys($config->languages->toArray());

To allow the user of the language codes within the address, we need to alter the routing system to account

for the additional parameter. The standard router interprets paths of the form:
/{controller}/{action}/{other_parameters} or
/{module}/{controller}/{action}/{other_parameters}. A typical path for Places is:
/place/index/id/4 which calls the index action of the place controller with the id parameter set to 4. For
our multi-lingual site, we need to introduce the language as the first parameter, so that the path now looks like:
/{language}/{controller}/{action}/{other_parameters}. We’ll use the standard two
character forms for the language, so that a typical path for the German language version of Places is
/de/place/index/id/4.

To change this, we need to implement a new routing rule and then replace the default route with it. The
Front Controller will then be able to do its magic and ensure that the correct controller and action are called.
This is done in the bootstrap part of the code as shown in listing 14.8.

Listing 14.8: Implementing a new routing rule for language support

$languages = array_keys($config->languages->toArray()); A
$zl = new Zend_Locale();
$lang = in_array($zl->getLanguage(), $languages) B
 ? $zl->getLanguage() : 'en'; B

// add language to default route
$route = new Zend_Controller_Router_Route(1
 ':lang/:controller/:action/*', 1
 array('controller'=>'index', 1
 'action' => 'index', 1
 'module'=>'default', 1
 'lang'=>$lang)); 1

$router = $frontController->getRouter(); C
$router->addRoute('default', $route); C
$frontController->setRouter($router); C

A Load the list of allowed language codes from the config
B Use the browser’s language code if it is in the allowed list
1 Create new route
C Update the router with the new route

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 42

We use Zend_Controller_Router_Route to define the route (#1) using the : character to define the variable
parts with language first, then controller, then action and then the asterisk meaning “all other parameters”. We
also define the defaults for each part of the route for when it is missing. As we are replacing the default route
with our new route, we keep the same defaults so that the index action of the index controller is called for an
empty address. We set the default language to the browser’s default language as determined by Zend_Locale’s
getLanguage() function. However, as we set this as a default, it means that if the user chooses a specific
language, the choice will take precedence. This allows for people using a Spannish browser to view the site in
English, for instance.

Now that we have routing working, we need load the translation files. We need to do this after routing has
happened, but before we get to the action function. An action helper is the ideal vehicle for this.

14.3.2 The language action helper
An action helper has a number of different hooks into the various stages of the dispatch process. In our

case, we are interested in the init() hook as we want to load the language files after routing has happened and
we only need it to be called once per request. Our action helper, Language will be stored in the Places library
and in order to take advantage of Zend_Loader, the class is called Places_Controller_Action_Helper_Language
and so lives in library/Places/Controller/Action/Helper/Language.php. The main functionality that it performs
is:

 Load language file containing array of translations
 Instantiate Zend_Translate object for the selected language
 Assign language string and Zend_Translate object to the controller and view.

All this is done in the init() function, however we need to ensure that the action helper knows the directory

where the language files are stored and also the list of languages available. This information is known in the
bootstrap file and so we pass it to the action helper using the constructor. This is shown in listing 14.9.

Listing 14.9: Language action helper to load Zend_Translate object

class Places_Controller_Action_Helper_Language
 extends Zend_Controller_Action_Helper_Abstract
{
 protected $_languages;
 protected $_directory;

 public function __construct($languages, $directory)
 {
 $this->_dir = $directory; A
 $this->_languages = $languages; B
 }

 public function init()
 {
 // actual work done here
 }
}

A Translation files are stored here
B List of languages available

The action helper is loaded in the bootstrap in just the same way as the ACL helper in chapter 6, only this
time we need to pass in the list of languages and the directory where the translation files are stored. For Places,

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 43

we are using php files stored in the application/configuration/translations directory. The code the load the
action helper is therefore just:

$languageHelper = new Places_Controller_Action_Helper_Language($languages,
 ROOT_DIR . '/application/configuration/translations');
Zend_Controller_Action_HelperBroker::addHelper($languageHelper);

The $languages array has already been loaded in listing 14.7 and we take advantage of the ROOT_DIR

define to absolutely specify the translations directory. Now that we have loaded the action helper with the
required data, we can write the init() function that loads the language strings. This is shown in listing 14.10.

Listing 14.10: Places_Controller_Action_Helper_Language::init()

public function init()
{
 $lang = $this->getRequest()->getParam('lang');

 if(!in_array($lang, array_keys($this->_languages))) { 1
 $lang = 'en'; 1
 } 1

 $localeString = $this->_languages[$lang]; A

 // setup translate object
 $file = $this->_dir . '/'. $lang . '.php'; 2
 if(file_exists($file)) 2
 { 2
 include $file; 2
 } else { 2
 include $this->_dir . '/en.php'; 2
 } 2

 if(!isset($translationStrings)) {
 throw new Exception('Missing $translationStrings');
 }

 $translate = new Zend_Translate('array', 3
 $translationStrings, $lang); 3

 $this->_actionController->_localeString = $localeString; C
 $this->_actionController->_translate = $translate; C

 $viewRenderer = Zend_Controller_Action_HelperBroker D
 ::getStaticHelper('viewRenderer'); D
 $viewRenderer->view->localeString = $localeString; D
 $viewRenderer->view->translate = $translate; D
};

1 Ensure that language chosen is allowed
A Collect the locales string from the config
2 Load translation file or English one if file missing
3 Create Zend_Translate object
C Assign to action controller
D Assign to view

The code in init() consists of as much error checking as actual code which is not uncommon. Before we

load a language file, we first check that the selected language is available (#1) as the user could, in theory, type
any text within the language element of the address path. As we only have a limited number of language files

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 44

in the translations directory, we check that the choice of the user is available. If not, then we pick English
instead. Similarly, although the language is valid, we double check that the file actually exists (2) in order to
avoid errors later and load the file using a simple include statement. An assumption is made that the language
file contains an array called $translationStrings which contains the actual translations and so we throw an
exception if this array doesn’t exist. Having completed our error checking, we then instantiate a new
Zend_Translate object (#3) and assign it to the action controller and the view for use within the rest of the
application.

As we discovered when we looked at Zend_Translate, the system supports multiple adapters to allow for a
variety of input sources for the translation strings. For Places, we have chosen arrays as they are the simplest
to get going, however if the site grows significantly, then moving to gettext would be easy to do and would
require changes to just this init() function. The next stage is to use the translate object to translate our website

14.3.3 Translating the view
For our website to be multi-lingual, we need every piece of English text on every page to be changed to

run through the _() function of Zend_Translate. We have already assigned the translate object to the view, so
we can change the original <h2>Recent reviews</h2> on the home page to <?php echo $this-
>translate->_(‘Recent reviews’); ?>. That’s quite a lot of typing though, so we will create a view
helper called _() to reduce our typing and make the view templates a little clearer. The “_” view helper is
shown in listing 14.11.

Listing 14.11: The _() view helper

class Zend_View_Helper__
{
 protected $_view;

 function setView($view)
 {
 $this->_view = $view;
 }

 public function _($string)
 {
 return $this->_view->translate->_($string); A
 }
}

A Call through to the translate object’s function

The oddest thing about this class is its name; due to the naming convention, it looks like it isn’t finished!

However, other than that, this helper is very simple as it exists solely to reduce typing. Let’s look at it in use on
the home page. Listing 14.12 shows the top part of the index.phtml view template for the home page before
localization.

Listing 14.12: Top part of the non-localized index.phtml

<h1><?php echo $this->escape($this->title);?></h1>

<p>Welcome to Places to take the kids! This site will
help you to plan a good day out for you and your children. Every
place featured on this site has been reviewed by people like you,
so you'll be able to make informed decisions with no marketing
waffle!</p>

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 45

<h2>Recent reviews</h2>

As you can see, with the exception of the title, all the text in the view template is hard coded directly and
so we have to change this as shown in listing 14.13.

Listing 14.13: Localized version of index.phtml

<h1><?php echo $this->escape($this->title);?></h1>
<p><?php echo $this->_('welcome-text'); ?></p> 1

<h2><?php echo $this->_('Recent reviews'); ?></h2>

1 use a simple key for the long text

With the localized template, every string is passed through the _() view helper. For the very long body of

text, we have simplified to a simple key (#1) in order to make the template easier to understand and the
language file simpler. The language files for English and German are shown in Listing 14.14.

Listing 14.14: English translation file, en.php

<?php
$translationStrings = array(
 'welcome'=>'Welcome to <i>Places to take the kids</i>! This site will help you to plan a good
day out for you and your children. Every place featured on this site has been reviewed by people
like you, so you\'ll be able to make informed decisions with no marketing waffle!',
 'Recent reviews' => 'Recent reviews',
);

And the equivalent file in German is shown in listing 14.15.

Listing 14.15: English translation file, en.php

<?php
$translationStrings = array(
 'welcome'=>'Willkommen bei <i>Places to take the kids</i>! Diese Website wird Ihnen helfen,
zu planen ein guter Tag für Sie und Ihre Kinder. Jedem Ort auf dieser Website wurde vom Menschen
wie Sie, damit Sie in der Lage, fundierte Entscheidungen treffen können, ohne Marketing Waffel!',
 'Recent reviews' => 'Jüngste Bewertungen',
);

Unfortunately, I can’t vouch for the actual translation as I asked Google’s translate system for it and I
doubt that it is as good as a human translator would have done. It is quite clear, when looking at listings 14.12
and 14.13 how easy array based translations are to create.

Similarly, we have access to the Zend_Translate object from within the action controller and so we can
translate those strings that are created at that level. This is most commonly used for the title string as this is
used in the outer site template, site.phtml and changes per action. Listing 14.16 shows how the About page’s
title is created within the IndexController’s aboutAction() function.

Listing 14.16: Translating within action controllers

public function aboutAction()
{
 $this->view->title = $this->_translate->_('About'); A
}

A Translate the title string

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 46

The final area we need to look at it creation of links from one page to another. Fortunately,

Zend_Framework provides a url builder for us in the shape of the url() view helper. This is shown in listing
14.17.

Listing 14.17: Creating urls using the url() view helper

<a href="<?php echo $this->url(array(
 'lang'=>$this->localeString, A
 'module'=>'default' B
 'controller'=>'review', B
 'action'=>'add', B
 'placeId'=>$this->place->id B
), null, true);?>">
 Add review

A Set the language parameter
B Set the other parameters forouting

As can be seen in listing 14.16, creating a url is simplified using the url() view helper. It can be further

simplified by not passing true as the last parameter ($reset) in which case the helper will “remember” the
state of any parameters you do not override. As the lang parameter would never be overridden, it only has to be
specified if the $reset parameter is set to true.

We have now provided comprehensive support for all aspects of translation using Zend_Translate and
adding additional languages can be done very easily by adding the language to the config.ini and writing a
translation file. It is traditional to provide a mechanism for allowing users to choose the language that they
wish to view the site in. One common mechanism is the flag as it works in all languages, although can annoy
UK citizens when they see the USA flag indicating English. Another alternative is to use text in each language,
but that can be quite hard to integrate into a site’s design.

To complete our conversion of Places into a multi-lingual website and make our visitors feel a home, we
need to ensure that we need to translate the dates displayed throughout the site using Zend_Locale.

14.3.4 Tidying up with Zend_Locale
If you look closely at Figure 14.1, you will notice that the dates are in the wrong format and are displaying the
English month name rather than the German one. This is due to our view helper, displayDate() which is not
correctly localized. As a reminder, the code to display dates is shown in Listing 14.18.

Listing 14.18: Naïve localization of dates

class Zend_View_Helper_displayDate
{
 function displayDate($timestamp, $format='%d %B %Y')
 {
 return strftime($format, strtotime($timestamp)); A
 }
}

A strftime() is locale aware

We are using strftime() in listing 14.17 which, according to the PHP manual is locale aware. Unfortunately,
whilst we know which locale we want, strftime() uses the locale of the server unless you tell it otherwise.
There are two solutions: use setlocale() or Zend_Date.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 47

At first glance, using setlocale() is very tempting; we just need to add setlocale(LC_TIME,
$lang); to our Language action helper. However it doesn’t work as expected. The first problem with
setlocale() is that it is not thread-safe. This means that If you are using a threaded webserver, then you need to
call setlocale() before every use of a locale-aware PHP function. The second issue is that on Windows, the
string that is passed to the setlocale() function is not the same as the string we are using in our config.ini file.
That is, we are using “de” for German, however the Windows version of setlocale() expects “deu”. Zend_Date,
as a member of the Zend Framework works more predictably for us.

Zend_Date is a class that comprehensively handles date and time manipulation and display. It is also
locale-aware and if you pass it a Zend_Locale object, it will use it to translate all date and time related strings.
Our immediate requirement is simply to retrieve dates in the correct format for the user, so we use
Zend_Date’s get() function as shown in listing 14.19

Listing 14.19: Localization of dates using Zend_Date

class Zend_View_Helper_displayDate
{
 protected $_view;
 protected $_locale;

 function setView($view)
 {
 $this->_view = $view;
 $this->_locale = new Zend_Locale($view->localeString); 1
 }

 function displayDate($dateString, $format = Zend_Date::DATE_LONG)
 {
 $date = new Zend_Date($dateString, null, $this->_locale); 2

 return $date->get($format); 3
 }
}

1 Create and store the locale
2 Created Zend_Date object
3 Get the date as a formatted string

As we already know, if a view helper has a setView() function, then the view will call it before calling the
view helper’s main function. The setView() function is also only called once and so is ideal for creating a
Zend_Locale object from the language string and storing as a variable in the class(#1). Display of a locale-
aware date is a case of creating the Zend_Date object (#2) from the date to be displayed and then calling get()
(#3). The get() function takes a format parameter that can be a string or a Zend_Date constant. These constants
are locale aware so that DATE_LONG will display the month name in the correct language. Similarly,
Zend_Date::DATE_SHORT knows that the format of the short date is dd/mm/yy in the UK and mm/dd/yy in
the USA. In general, I recommend staying away from short dates though as they can lead to confusion by users
who aren’t used to locale aware websites.
 The German version of Places, including localized dates can be seen in Figure 14.2.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 48

Figure 14.2 Using the locale-aware Zend_Date, we can display the date in the correct language

14.4 Summary
Zend_Locale and Zend_Translate help in making a multi-lingual, locale aware website much easier. Of course,
creating a website in multiple languages is not easy as care needs to be taken to ensure that the text fits in the
spaces provided and of course, you need to do translations that work!

Zend_Locale is the heart of localization with the Zend_Framework. It allows for normalizing numbers and
dates written in different formats so that they can be stored consistently and so used within the application.
Zend_Translate is used for translating text into a different language using the _() function. It supports multiple
input formats, including the widespread gettext() format, so that you can choose the most appropriate format
for your project. Small projects will use array and csv formats, whereas larger projects are more likely to use
gettext, Tmx or XmlTm. Through the flexibility of the Zend_Translate’s adapter system, migrating from a
simpler system to a more robust one does not affect the main code base at all.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 49

17

Stuff you (should) already know
This is the chapter where you can catch up on your knowledge of those bits of PHP that you haven’t had a
chance to deal with until now. The Zend Framework is written in PHP5 and is fully Object Oriented and you
need to have a reasonable amount of knowledge about object oriented programming in PHP to make sense of
it. This chapter is no substitute for a full book, such as PHP in Action, but it should help you enough to get
going with the Framework.

We shall also look at some software design patterns. A design pattern is an approach used by many people
to the same problem. I use the word approach deliberately, as the actual code used to solve the problem is
usually different but all solutions share the same design. Design patterns give us a vocabulary to be able to
share solutions with one another and to also understand each other. They also have the benefit of having been
tested in real applications and so you can be sure that the design pattern is a good solution to the class of
problems that it helps to solve.

Let’s dive right in and look at object orientation.

17.1 Object Orientation in PHP
Object oriented programming is a way to group related functions and variables together so that they don’t get
lost. The fundamental goal is to produce more maintainable code – that is, code that doesn’t accidentally break
when you are working on something else.

17.1.1 Classes, objects and inheritance
In order to understand object oriented programming, you need to understand classes and objects. While we are
here, we’ll also look at interfaces which are closely related. A class is just the code that groups functions and
variables together. That’s all. It’s not scary! Figure 17.1 shows a simple class.

Figure 17.1 A simple class

class ZFiA_Person A
{ B
 B
} B

A “class” keyword defines the grouping of functions and variables
B All code for this class is between the braces

As you can see, the keyword class is used to declare the class and it is followed by its name,

“ZFiA_Person”, in this case. The name of the class has to be unique across all your files, so it is a good idea to
prefix every class name with a unique identifier. In our case, we’ll use the prefix “ZFiA” and while this
introduces a modicum of hassle when writing the code, the benefits down the line when you need to integrate
your code with someone else’s far outweighs any initial pain.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 50

An object is a runtime instantiation of a class. This means that it has a name and is created using the new
keyword:

$rob = new ZFiA_Person();

The variable $rob is an object and it follows that you can have many objects of the same type. For

instance, I can create a $nick object using the same syntax:

$nick = new ZFiA_Person();

I now have two objects that are of the same class. That is, you only have one class, but can have many

instance objects of it.

Constructing and destructing
Usually an object needs to set up its internal state; that is, set the initial values of its member variables. To do
this, a special function, called a constructor is used, which has the name __construct(). This function is
called automatically when a new object is instantiated. It is very common for a class to have a contructor and
usually one or more function parameters are used in order to set the object’s internal state. This is shown in
listing 17.2.

At the opposite end of the object’s lifetime, another function is called, __destruct(), just as the object
is about to be deleted. This function is called the destructor and is rarely used in PHP scripts intended for the
web due to the “set-up and tear-down every request” nature of PHP.
Figure 17.2 Adding a constructor

<?php

class ZFiA_Person
{
 private $_firstName; 1
 private $_lastName; 1

 public __construct($firstName, $lastName) 2
 {
 $this->_firstName = $firstName; 3
 $this->_lastName = $lastName; 3
 }
}

1 Member variables, only visible to this class
2 Constructor function
3 Assign function parameters to member variables

Listing 17.2 introduces the private and public keywords that control visibility of functions and variables

within a class. These are discussed in a little more depth in the next section. As you can see, from Listing 17.2,
we have created two member variables (1) which are set to their initial values using the constructor (3).

Public, protected and private visibility
As we have noted, a class can have functions and variables. This grouping is useful in its own right to help
organize code, but really comes into its own when we add information hiding to the mix. Information hiding is
the ability to mark class functions and variables as invisible outside the class boundary. This leads to more

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 51

maintainable code as each class “publishes” an API for other classes to use, but is free to implement that API
however it would like to.

There are three keywords involved: public, protected and private and follow the same usage as other
Object Oriented languages such as C++, Java or C#:

 public: available from any scope
 protected: only available from with the class or any of its children
 private: only available within the class itself
The final keyword is similar to the public keywords, except that child classes cannot override it. Let’s

look at this in use and flesh out the ZFiA_Person class in listing 17.3.
Listing 17.3 A simple class

<?php

class ZFiA_Person
{
 protected $_firstName; A
 protected $_lastName; A

 public __construct($firstName, $lastName) B
 {
 $this->_firstName = $firstName; C
 $this->_lastName = $lastName; C
 }

 public fullName() D
 { D
 return $this->_firstName . ' ' . $this->_lastName; D
 } D
}

A Variables only visible to class and its children
B Constructor class called on new
C Assign to member variables
D Public function used by consumers of class

17.1.3 Extending classes
Extending classes is extremely powerful and can save you a lot of time by facilitating code reuse. When one
class extends another it will inherit the properties and methods of the class it extends provided they are not
“private”. The class being extended is called the parent and the class that is extending the parent is called the
child. When you extend another class, you are creating an “is a” relationship. That is your child class “is a”
parent class with additional functionality. For example, we could create a ZFiA_Author class that extends
ZFiA_Person which means that an Author is a Person. This is shown in Listing 17.4.

Listing 17.4 Extending ZFiA_Person to create ZFiA_Author

class ZFiA_Author extends ZFiA_Person A
{
 protected $_title; 1

 public function setTitle($title) 2
 { 2
 $this->_title = $title; 2
 } 2

}
A extends is used to inherit functionality

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 52

1 This variable is only available in ZFiA_Author
2 Member function

The ZFiA_Author class inherits all the properties and methods of the ZFiA_Person class. It can also have
its own properties (#1) and functions (#2). You can overwrite the methods by creating new methods with the
same name in the child class, or you can use the methods of the parent class simply by calling them, you do not
need to redefine them.

17.1.4 Abstract classes and interfaces
Two new features of PHP5 are interfaces and abstract classes. Some classes are designed purely to be extended
by other classes. These classes are known as abstract classes and act as a skeleton implementation of a concept
that is then fleshed out by child classes. Abstract classes contain their own member variables and functions
along with declarations of functions that must be defined by the concrete child classes. For instance, we could
make ZFiA_Person an abstract class where we determine that all people will have a first name and surname,
but leave the definition of how to present their formal name to the child classes, as shown in listing 17.6.
Listing 17.5 An Abstract class contains undefined functions that must be implemented by child classes.
abstract class ZFiA_Person A
{
 protected $_firstName;
 protected $_lastName;

 public __construct($firstName, $lastName) B
 {
 $this->_firstName = $firstName;
 $this->_lastName = $lastName;
 }

 abstract public function fullName(); C

}
A Abstract keyword in class definition
B Standard member function
C Abstract function is not defined in this class
As ZFiA_Person is now declared as an abstract class, it can no longer be instantiated directly using new; it
must be extended the child class instantiated. As the function fullName() is defined as abstract, all child classes
(that are not themselves declared as abstract) must provide an implementation of this function. We can
therefore provide an implementation of ZFiA_Author in listing 17.6.
Listing 17.6 An Abstract class contains undefined functions that must be implemented by child classes.

class ZFiA_Author extends ZFiA_Person
{

public function fullName()
{
 $name = $this->_firstName . ' ' . $this->lastName;
 $name .= ', Author';
 return $name;
}

}

As you can see, the ZFiA_Author class provides a specific implementation of fullName() that is not
appropriate to any other child class of ZFiA_Person.

One limitation of the PHP object model is that a class may only inherit from one parent class. There are
lots of good reasons for this, but it does mean that another mechanism is required to enable a class to conform
to more than one “template”. This is achieved using interfaces.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 53

Interfaces
Interfaces are a mechanism for defining a template for classes that implement the interface, that is, an API or
contract that the class satisfies. In practical terms, this means that an interface is a list of functions that must be
defined by implementing classes. Interfaces are used to allow a class to be used by a function that is depending
upon the class having certain functionality implemented. If we were to make ZFiA_Person an interface, it
would be declared as shown in listing 17.7.
Listing 17.7 An interface is a class template defining which functions must be defined.
interface ZFiA_Person
{
 public function fullName();
}

class ZFiA_Author implements ZFiA_Person
{
 protected $_firstName; A
 protected $_lastName; A

 public __construct($firstName, $lastName) B
 {
 $this->_firstName = $firstName; C
 $this->_lastName = $lastName; C
 }

 public fullName() D
 { D
 return $this->_firstName . ' ' . $this->_lastName; D
 } D
}

If the fullName method is not defined in ZFiA_Author it will result in a fatal error. As PHP is not a statically
typed language, Interfaces are a convenience mechanism for the programmer to help prevent logical errors.
This is helped by using type hinting in functions. Type hinting is used to tell the PHP interpreter information
about the parameters passed to a function. Consider the function in listing 17.8.
Listing 17.8 Type hinting provides information about function parameters

function displayPerson(ZFiA_Person $person) 1
{
 echo $person->fullName();
}

1 Provide ZFiA_Person type hint in function declaration

To create a type hint, all we need to do is include the type of the function parameter, ZFiA_Person in this
case (#1). If we try to pass any other kind of object to this function then we get this error message:

Catchable fatal error: Argument 1 passed to displayPerson() must be an instance of ZFiA_Person, string
given, called in type_hinting.php on line 18 and defined in type_hinting.php on line 11

As should be obvious, interfaces are not required for PHP coding as PHP is not a statically typed language
and will do the right thing in the majority of cases. The main benefit of interfaces is for the programmer as it
helps make code self-documenting.

Another feature of PHP 5 that is used by the Zend Framework to make programmers’ lives easier is the so-
called “magic methods”. These are special methods that PHP calls automatically when required, allowing the
programmer to provide a cleaner interface to the class.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 54

17.1.5 Magic methods
Magic methods are special methods used by PHP in certain circumstances. Any method beginning with “__”
are considered reserved by PHP and so all magic methods are prefixed with __. The most common method is
the constructor, __construct, which we have looked at “Constructing and Deconstructing” earlier. Table 17.1
shows all the available magic methods that you can use in your class.
Table 17.1 PHP5’s magic methods are automatically called by PHP when required
Method name Prototype When called
__construct void __construct() Object is instantiated
__destruct void __destruct() Object is cleaned up and removed from memory
__call mixed __call(string $name, array $arguments) Member function does not exist. Used to implement

method handling that depends on the function name.
__get mixed __get (string $name) Member variable does not exist when retrieving.
__set void __set (string $name, mixed $value) Member variable does not exist when setting.
__isset bool __isset (string $name) Member variable does not exist when testing if it is set
__unset void __unset (string $name) Member variable does not exist when unsetting
__sleep void __sleep() Object about to be serialized. Used to commit any pending

data that the object may be holding.
__wakeup void __wakeup() Object has been unserialized. Used to reconnect to external

resources (e.g. a database).
__toString void __toString() Object is converted to a string. Used to output something

sensible on echo().
__set_state static void __set_state(array $properties) var_export() has been called on the object. Used to enable

recreation of an object using eval().
__clone void __clone() Object is being copied. Usually used to ensure that the copy

of the object handles references.
__autoload void __autoload($class_name) Class cannot be found when instantiating. Used to load the

class using include() by mapping the class’s name to a file
on disk.

Let’s look at one use of __set() and __get within Zend_Config. Zend_Config stores all of its variables within a
protected member variable called $data and using the magic __set() and __get() to provide public access to the
information as shown in listing 17.9
Listing 17.9 Zend_Config’s use of __get() and __set()
class Zend_Config implements Countable, Iterator A
{
 protected $_data; B

 public function get($name, $default = null) 1
 {
 $result = $default;
 if (array_key_exists($name, $this->_data)) {
 $result = $this->_data[$name];
 }
 return $result;
 }

 public function __get($name) 2
 {
 return $this->get($name);
 }

 public function __set($name, $value) 3
 {
 if ($this->_allowModifications) {
 if (is_array($value)) {
 $this->_data[$name] = new Zend_Config($value, true);
 } else {
 $this->_data[$name] = $value;
 }

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 55

 $this->_count = count($this->_data);
 } else {
 throw new Zend_Config_Exception('Zend_Config is read only');
 }
 }
}

A Uses interfaces
B data stored in a protected array
1 Function to retrieve data value
2 Call through to get()
3 Special conditions on setting a variable

As you can see, Zend_Config has a public function, get(), that is used to retrieve a variable and provides
for a default if the variable is not set (#1). The magic function __get() uses the get() function that’s already
written (#2) and so allows for accessing a variable as if it was a native member variable. For example:

$adminEmail = $config->adminEmail

This is identical to calling:

$adminEmail = $config->get('adminEmail');

except that the first way is “eleaner” and easier to remember!

Similarly, __set() is used for setting a variable (#3). This function implements private business logic to
only allow a variable to be set if the object has its __allowModifications variable set. If the object has been
created as read-only, then an exception is thrown instead.

This concludes our whistle-stop tour through the highlights of objects in PHP. For more in depth
information, I recommend reading chapters 2 through 6 of PHP in Action by Dagfinn Reiersøl. Another area of
PHP 5 that is used by the Zend Framework is the Standard PHP Library, known as the SPL.

17.2 The SPL
The Standard PHP Library, aka SPL, is a library of useful interfaces designed to make data access easier. The
SPL provides the following categories of interfaces:

 Iterators – for looping over elements in a collection, files, directories or XML.
 Array Access – for making objects act like arrays
 Counting – to allow objects to work with count()
 Observer – an implementation of the Observer software design pattern

17.2.1 Iterators
Iterators are objects that loop (or traverse) a structure such as an array, database result set or a directory listing.
You need an iterator for each type of structure that you wish to iterate over and the most common (arrays,
directories) are built into PHP and the SPL directly. A common use-case is to read a directory and this is done
using the SPL’s DirectoryIterator object as shown in listing 17.10.
Listing 17.10 Iteration over a directory listing using DirectoryIterator

$dirList = new DirectoryIterator('/'); 1
foreach ($dirList as $item) { A
 echo $item . "\n";

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 56

}
1 Create iterator
A Use iterator in foreach() to loop

As you can see, using an iterator is as easy as using a foreach() loop and that’s the whole point! Iterators
make accessing collections of data very very easy and they come into their own when used with custom
classes. This can be seen within the Zend Framework in the Zend_Db_Table_Rowset_Abstract class and is
used to allow traversal over all the results returned from a quiery. Let’s look at some highlights of the
implementation. Firstly, we use Zend_Db_Table_Rowset as shown in listing 17.11.
Listing 17.11 Using iteration with Zend_Db_Table_Rowset

class Users extends Zend_Db_Table {} A

$users = new Users();
$userRowset = $users->fetchAll(); B

foreach ($userRowset as $user) { C
 echo $user->name . "\n";
}

A Gateway to the Users database table
B Get Rowset
C Iterator over the Rowset class

As we expect, using a Rowset is as easy as using an array. This is made possible because
Zend_Db_Table_Rowset_Abstract implements the Iterator SPL interface as shown in listing 17.12.
Listing 17.12 Iterator implementation within Zend_Db_Table_Rowset_Abstract

abstract class Zend_Db_Table_Rowset_Abstract implements Iterator, Countable�
{
 protected $_rows = array(); A

 public function current() 1
 {
 if ($this->valid() === false) {
 return null; B
 }

 return $this->_rows[$this->_pointer];
 }

 public function key() 2
 {
 return $this->_pointer;
 }

 public function next() 3
 {
 ++$this->_pointer;
 }

 public function rewind() 4
 {
 $this->_pointer = 0;
 }

 public function valid() 5
 {
 return $this->_pointer < $this->_count;
 }
}

A Private array of Rows created by select function

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 57

1 Iterator’s current() returns current item
B return null at the end to break out of a foreach() or while()
2 Iterator’s key() returns a point to the current item
3 Iterator’s next() moves the pointer forward by one item
4 Iterator’s rewind() resets the pointer to the start
5 Iterator’s valid() checks that the pointer is valid

Zend_Db_Table_Rowset_Abstract holds its data in an array called _rows and holds the count of how
many items are in the array in _count. We also need to keep track of where we are in the array as the foreach()
is progressing and the _pointer member variable is used for this. To implement Iterator, a class needs to
provide 5 functions, current(), key(), next(), rewind() and valid(). These functions are very simple as you can
see in listing 17.12 as they simply manipulate the _pointer variable as required and return the correct data in
current().

One limitation of Iterator is that it is forward traversal of the data and does not allow for random access of
the data. That is, you cannot do:

$aUser = $userRowset[4];

with an instance of Zend_Db_Table_Rowset_Abstract. This is by design as the underlying technology

behind the class is a database that may not allow random access to a dataset. Other type of objects may require
this though and for these cases, the ArrayAccess Interface is used.

17.2.2 Array Access and Countable
The ArrayAccess iterator allows a class to behave like an array. This means that a user of the class can
randomly access any element within the collection using the [] notation like this:

$element = $objectArray[4];

In a similar manner to Iterator, this is achieved using a set of functions that must be implemented by the

class. In this case the functions are: offsetExists(), offsetGet(), offsetSet() and offsetUnset(). The names are
self-explanatory and, as shown in listing 17.13, allow for the following array operations to be carried out:
Listing 17.13 Array operations with an ArrayAccess capable class
if(isset($rob['firstName']) { A
 echo $rob['firstName']; B
 $rob['firstName'] = 'R.'; C
}
unset($rob['firstName']); D

A calls offsetExists()
B calls offsetGet()
C calls offsetSet()
D calls offsetUnset()

The only other array based functionality that is useful to implement in the context of an object is the

count() function. This is done via the Countable interface which contains just one method, count(). As you
would expect, this function needs to return the number of items in the collection and then we have all the tools
to make a class behave like an array.

The SPL has many other iterators and other interfaces available for more complicated requirements;
however they are not, yet at least, used by the Zend Framework.

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 58

17.3 PHP4
By now, everyone should be using PHP 5 as it is over three years old and PHP4 will be unsupported after
August 2008. If your first steps into PHP 5 are with the Zend Framework then you really should read the
excellent migration guide available on the PHP website at http://www.php.net/manual/en/migration5.php.

17.4 Software design patterns
After producing software for a while you soon discover that you encounter similar problems to ones you have
encountered in the past. As a result, you probably solved them with similar approaches. It turns out that this
happens across the whole gamut of software development and there tends to be a best practice solution to
certain classes of problems that appear regularly. In order to make it easier to discuss these approaches to
solving problems, the term design pattern has been coined and catalogues of design patterns are available to
help you solve software design problems.

The key thing to understand about design patterns is that they are not about the code and they are all about
guidelines on how to solve the problem. Let’s look at a couple of the common patterns to see how it works in
practice.

17.4.1 The Singleton pattern
The Singleton design pattern is a very simple pattern that is intended to ensure that only one instance of an
object may exist. This is used by the Zend Framework’s Zend_Controller_Front front controller to ensure that
there is only one front controller in existence for the duration of the request. Let’s look at the code:
Listing 17.14 The Singleton as implemented by Zend_Controller_Front
class Zend_Controller_Front
{
 protected static $_instance = null; 1

 private function __construct() 2
 {
 $this->_plugins = new Zend_Controller_Plugin_Broker();
 }

 public static function getInstance() 3
 {
 if (null === self::$_instance) { 4
 self::$_instance = new self(); 4
 } 4

 return self::$_instance; 5
 }
}

1 Static variable holds the one instance of this object
2 private constructor
3 method to allow creation
4 create one instance if not already created
5 return instance to user

There are three pieces in the Singleton jigsaw as implemented by Zend_Controller_Front, although every
other implementation is similar. A static variable is used to store the instance of the front controller (#1). This
is protected to prevent anyone outside of this class (or its descendants) from accessing it directly. To prevent
use of the new keyword, the constructor is private (#2) and so the only way to create an instance of this class is
to call the static function getInstance() (#3). getInstance() is static as we don’t have an instance of the class

Licensed to Menshu You <dollequatki@gmail.com>

http://www.php.net/manual/en/migration5.php

Zend Framework in Action (Ch01) Manning Publications Co. 59

when we call it; it returns an instance to us. Within getInstance() we only instantiate the class once (#4),
otherwise we just return the previously created instance (#5).

The net result is that the code to access the front controller is:

$frontController = Zend_Controller_Front::getInstance();

This code will work wherever it is required and will create a front controller for us if we don’t have one,

otherwise, it returns a reference to the one that has already be created. Whilst the Singleton is easy to
implement, there is a rather large caveat with it: it’s a global variable by the back door. As the Singleton has a
static function that returns a reference to the object, it can be called anywhere and so if used unwisely can
introduce coupling between disparate sections of a program.

Coupling
Coupling is the term used when two sections of code are linked in some way. More coupling makes it
harder to track down bugs there are more places where the code could have been changed from.

As a result, care should be taken when designing a class to be a singleton and also when choosing to use

the getInstance() function elsewhere in the code. Usually, it is better to pass an object around so that it is easier
to control access to it than to access the Singleton directly. An example of where we can do this is within the
action controller class: Zend_Controller_Action provides a member variable _request which is a reference
to the Request object and this member variable should be used in preference to
Zend_Controller_Front::getInstance()->getRequest().

Having said that, it is not uncommon to need to access commonly used information from multiple places,
for example configuration data. To help control this, the Registry pattern provides the tool to ensure that
managing such data works well.

17.4.2 The Registry pattern
The registry pattern allows us to take any object and treat it as a Singleton and also allows us to centrally
manage an object. The biggest improvement over the Singleton is that is possible to have two instances of an
object if required. A typical scenario is a database connection object. Usually, you connect to one database for
the duration of the request and so it is tempting to make the object as a Singleton. However, you may need to
connect to a second database every so often, such as for an export or import and for those times only you need
two instances of the database connection object. A Singleton will not allow this, but using a Registry will give
you the benefits of the easily accessible object without the drawbacks. This problem is so common that the
Zend Framework provides the Zend_Registry class that implements the Registry pattern. For simple access,
there are three main functions that form the basic API of Zend_Registry and usage is shown in listings 17.15
and 17.16.
Listing 17.15 Storing an object to the Zend_Registry
// bookstrap class

$config = $this->loadConfig();
Zend_Registry::set('config', $config); A
A Static function for easy usage

Listing 17.16 Retrieving an object from the Zend_Registry
// bookstrap class

$config = Zend_Registry::get('config'); A
A Retrieve via key name: 'config'

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 60

The only complication to be aware of with Zend_Registry is that you must ensure that you a unique key
when you store the object into the registry, otherwise you will overwrite the previously stored object of the
same name. Other than that, as Zend_Registry provides a pair of static functions that makes using a registry
easier than modifying a class to make it a Singleton. The key components of the implementation are shown in
listing 17.17. Let’s examine it.
Listing 17.17 The Registry as implemented by Zend_Registry

class Zend_Registry extends ArrayObject
{
 public static function getInstance() 1
 {
 if (self::$_registry === null) {
 self::init();
 }

 return self::$_registry;
 }

 public static function set($index, $value)
 {
 $instance = self::getInstance();
 $instance->offsetSet($index, $value); 2
 }

 public static function get($index)
 {
 $instance = self::getInstance();

 if (!$instance->offsetExists($index)) { A
 require_once 'Zend/Exception.php'; A
 throw new Zend_Exception("No entry is [CA] A
 registered for key '$index'"); A
 }

 return $instance->offsetGet($index); 3
 }
}
1 Internally, a Singleton is used
2 Set element via ArrayObject insterface
A Check that key exists in ArrayObject
3 Retrieve and return

Internally, the Zend_Registry uses a Singleton-like function, getInstance() to retrieve an instance of itself

(#1). This is used in both get() and set() and ensures that both functions are using the same registry when
setting and retrieving items. Zend_Registry implements ArrayObject which means that you can treat an
instance of it as if it was an array and so iterate over it or directly set and get elements. As such, the class
implements the functions required by the interface, including offsetGet(), offsetSet() and offsetExists() which
are the same as the ArrayAccess functions we looked at in section 17.2.2. The static functions set() and get()

Licensed to Menshu You <dollequatki@gmail.com>

Zend Framework in Action (Ch01) Manning Publications Co. 61

need to perform the same actions and so set called offsetSet() to set an item into the registry (#2) and offsetGet
is used to retrieve an item from the registry(#3).

Note that by using offsetGet/Set, the code is oblivious of the underlying storage mechanism used to hold
the items. This future-proofing allows for the storage mechanism to be changed if required and this code will
not need to be updated.

We’ve looked at two of the common design patterns used in web applications and as I’ve said, there are
many others. The Zend Framework itself implements more too and so is a good code-base for studying them.
Other patterns in use include:

 Model-View-Controller in the Zend_Controller family of functions
 Table Gateway in Zend_Db_Table
 Row Gateway in Zend_Db_Table_Row
 Strategy in Zend_Layout_Controller_Action_Helper_Layout
 Observer in Zend_XmlRpc_Server_Fault

There are a lot of patterns out there and I recommend a read of Patterns of Enterprise Application Architecture
by Martin Fowler and php|architect’s Guide to PHP Design Patterns by Jason Sweat for further information
on many of the common web-oriented patterns. Also, you picked up Dagfinn Reiersøl’s PHP in Action a very
accessible introduction into the finer points of using design patterns with PHP.

17.5 Summary
This concludes our look at the PHP knowledge required to understand the Zend Framework. The Zend
Framework is a modern PHP5 framework and, as such, takes advantage of all the new goodies that PHP5
provides. Every part of the Framework is written in Object Oriented PHP with careful use of the SPL
interfaces such as ArrayAccess and its sibling ArrayObject, Countable and Iterator. In this chapter we briefly
looked at how PHP handles Object Oriented programming and also looked at how the SPL can be used to
provide interfaces to classes to make them behave more like native PHP arrays. Software design patterns are
an important part of modern web development and we have covered what they are and looked at how the Zend
Framework uses the Singleton and Registry patterns.
 This chapter only provided an overview and for more information, I strongly recommend looking at other
books that cover these topics in depth. Having said that, armed with the knowledge gleaned here, you are well
placed to dive head first into the Zend Framework.

	1 Introducing the Zend Framework
	1.1 Introducing structure to PHP websites
	1.2 Why use the Zend Framework?
	1.2.1 Everything in the box
	1.2.2 Modern design
	1.2.3 Easy to learn
	1.2.4 Full documentation
	1.2.5 Simpler development
	1.2.6 Rapid Development
	1.2.7 Structured code is easy to maintain

	1.3 What is the Zend Framework?
	1.3.1 Where did it come from?
	1.3.2 What’s in it?
	The Core Components
	Authentication and Access Components
	Internationalization Components
	Http Components
	Inter-application Communication Components
	Web Services Components
	Advanced Components
	Email Components

	1.4 Zend Framework design philosophy
	1.4.1 Provide high quality components
	1.4.2 Simple as possible
	1.4.3 Clean IP
	1.4.4 Supported by Zend Technologies

	1.5 Alternative PHP frameworks
	1.6 Summary

	2 Hello Zend Framework!
	2.1 The Model-View-Controller Design Pattern
	2.1.1 The Model
	2.1.2 The View
	2.1.3 The Controller

	2.2 The Anatomy of a Zend Framework Application
	2.2.1 The application directory
	2.2.2 The library directory
	2.2.3 The tests directory
	2.2.4 The web_root directory

	2.5 Hello World: File by File
	2.5.1 Bootstrapping
	2.5.2 Apache .htaccess
	2.5.3 Index Controller
	View Template

	2.6 How MVC Applies to the Zend Framework
	2.6.1 The Zend Framework’s Controller
	Request
	Routing
	Dispatching
	The Action
	The Response
	Front Controller Plug-ins

	2.6.2 Understanding Zend_View
	Assigning data to the view
	The view template
	View Helper Functions
	Security considerations

	2.6.3 The Model in M-V-C
	Database abstraction with Zend_Db

	2.6.4 Security issues with databases
	Higher level interaction with Zend_Db_Table

	2.7 Summary

	3 Building a web site with the Zend Framework
	3.1 Initial planning of a website
	3.1.1 The site’s goals
	Main functionality
	Testing

	3.1.2 Designing the User Interface
	UI features
	Page layout
	Accessibility
	Images
	Menus and navigation

	3.1.3 Planning the code

	3.2 Initial Coding
	3.2.1 The initial directory structure
	3.2.2 Bootstrap
	3.2.3 Automatically loading classes
	3.2.4 Configuration with Zend_Config
	The Places configuration file
	Zend_Registry

	3.2.5 Database initialization

	3.3 Two-Step View
	3.4 The Home Page
	3.4.1 The initial models
	3.4.2 Testing our Code
	3.4.3 The home page controller
	3.4.4 Using the view to display the home page
	3.4.5 Site.phtml: The master layout template
	3.4.6 Index.phtml: The action view template
	The DisplayDate View Helper

	3.5 Summary

	4 Ajax
	4.1 Introducing Ajax
	4.1.1 Defining Ajax
	Asynchronous
	JavaScript
	XML

	4.1.2 Using Ajax in enterprise applications
	Form validation
	Form Helpers: Autocompletion and drop down lists
	Dragging and Dropping

	4.2 A Simple Ajax Example
	4.3 Ajax Client Libraries
	4.3.1 Prototype and Script.aculo.us
	4.3.2 The YUI library from Yahoo!

	4.4 Using Ajax with the Zend Framework
	4.4.1 The server-side of an Ajax request
	The controller

	4.4.2 The client site of an Ajax request
	The view

	4.5 Integrating into a Zend Framework Application
	4.5.1 Adding HTML to the View Templates
	4.5.2 Adding JavaScript to the View Templates
	4.5.3 The server code

	4.6 Summary

	5 Managing the Database
	5.1 Database abstraction with Zend_Db_Adapter
	5.1.1 Creating an Zend_Db_Adapater
	5.1.2 Querying the database
	Zend_Db_Select

	5.1.3 Inserting, Updating and Deleting
	5.1.4 Handling database specific differences

	5.2 Table Abstraction: Zend_Db_Table
	5.2.1 What is the Table Data Gateway Pattern?
	5.2.2 Using Zend_Db_Table
	5.2.3 Inserting and updating with Zend_Db_Table
	Similarities between inserting and updating

	5.2.4 Deleting records with Zend_Db_Table

	5.3 Using Zend_Db_Table as a Model
	5.3.1 Testing the Model
	Setting up and tearing down
	Testing the Users table gatway

	5.3.2 Table Relationships with Zend_Db_Table
	One-to-Many relationships
	Many-to-Many Relationships

	5.4 Summary

	6 User Authentication and Authorisation
	6.1 Introducing Authentication and Authorisation
	6.1.1 What is authentication?
	6.1.2 What is authorisation?

	6.2 Implementing authentication
	6.2.1 Introducing Zend_Auth
	6.2.2 Logging in using HTTP authentication

	6.3 Using Zend_Auth within a real application
	6.3.1 Logging in
	6.3.3 A view helper welcome message
	6.3.4 Logging out

	6.4 Implementing Authorisation
	6.4.1 Introducing Zend_Acl
	Zend_Acl_Role
	Zend_Acl_Resource
	Setting up Zend_Acl’s Permissions

	6.4.2 Configuring a Zend_Acl Object
	6.4.3 Checking the Zend_Acl Object

	6.5 Summary

	8 Searching
	8.1 Benefits of search
	8.1.1 Key usability issue for users
	8.1.2 Ranking results is important

	8.2 Introducing Zend_Search_Lucene
	8.2.1 A separate search index for your website
	8.2.2 Powerful queries
	String queries
	Programmatically creating search queries

	8.2.3 Best practices

	8.3 Adding search to Places
	8.3.1 Updating the index as new content is added
	Designing the index
	Using the Observer Pattern to decouple indexing from the model
	Adding the model’s data to the index
	Re-indexing the entire site

	8.3.2 Creating the search form and displaying the results
	Processing a search request in the controller
	Displaying the search results in the view

	8.5 Summary

	9 Email
	9.1 Background on email
	9.1.1 Email simplified
	9.1.2 Dissecting an email address

	9.2 Introducing Zend_Mail
	9.2.1 Creating emails with Zend_Mail
	9.2.2 Sending emails with Zend_Mail
	Sending via Sendmail
	Sending via SMTP
	Sending multiple emails via SMTP

	9.3 Building a support tracker for Places
	9.3.1 Designing the application
	9.3.2 Integrating Zend_Mail into the application
	9.3.3 Adding headers to the support email
	Adding recipients
	Adding additional headers

	9.3.4 Adding attachments to the support email
	9.3.5 Formatting the email
	Sending HTML formatted mail
	Formatting with Zend_View

	9.4 Reading email
	9.4.1 Email collection and storage
	POP3 and IMAP
	Email storage

	9.4.2 Reading email with our application
	Opening a connection
	Fetching and storing the support messages
	Saving the fetched mail to file
	Filtering the email content

	9.5 Summary

	10 Deployment
	10.1 Server setup
	10.1.1 Designing for different environments
	10.1.2 Using virtual hosts for development
	Setting up the hosts file
	Configuring Apache

	10.2 Version control
	10.2.1 Working with Subversion
	Creating the repository
	Checkout the latest code from the repository
	Commit some changes to the repository
	Updating a local working copy
	Dealing with conflicts
	Getting a clean copy from the repository

	10.2.2 Externals
	10.2.3 Branches

	10.3 Functional testing
	10.3.1 Functional testing with Selenium
	Installing Selenium IDE
	Recording a Selenium test
	Editing the test
	Saving the test

	10.3.2 Automating Selenium tests
	10.3.3 Functional testing with Zend_Http

	10.4 Scripting the deployment
	10.5 Summary

	11 Talking with Other Applications
	11.1 Integrating Applications Together
	11.1.1 Exchanging structured data
	11.1.2 Producing and consuming structured data
	11.1.3 How web services work
	11.1.4 Why do we need web services?

	11.2 Zend_Feed
	11.2.1 Producing a feed
	11.2.2 Consuming a feed

	11.3 Zend_XmlRpc
	11.3.1 Zend_XmlRpc_Server
	Setting up the bootstrapping
	Creating the XML-RPC method handlers
	Creating the interfaces
	Creating the concrete classes

	11.3.4 Zend_XmlRpc_Client

	11.4 Zend_Rest
	11.4.1 What is REST?
	11.4.1 Zend_Rest_Client
	11.4.1 Zend_Rest_Server

	11.5 Summary

	14 Internationalization & Localization
	14.1 What do we need to do?
	14.1.1 Translating languages
	14.1.2 Translating idioms

	14.2 Using Zend_Locale and Zend_Translate
	14.2.1 Zend_Locale
	Dealing with numbers
	Date and Time with Zend_Locale

	14.2.2 Zend_Translate

	14.3 Adding a second language to Places
	14.3.1 Selecting the language
	14.3.2 The language action helper
	14.3.3 Translating the view

	14.3.4 Tidying up with Zend_Locale
	14.4 Summary

	17 Stuff you (should) already know
	17.1 Object Orientation in PHP
	17.1.1 Classes, objects and inheritance
	Constructing and destructing
	Public, protected and private visibility

	17.1.3 Extending classes
	17.1.4 Abstract classes and interfaces
	Interfaces

	17.1.5 Magic methods

	17.2 The SPL
	17.2.1 Iterators
	17.2.2 Array Access and Countable

	17.3 PHP4
	17.4 Software design patterns
	17.4.1 The Singleton pattern
	17.4.2 The Registry pattern

	17.5 Summary

