
www.allitebooks.com

http://www.allitebooks.org

ASP.NET 3.5 Social Networking

An expert guide to building enterprise-ready social
networking and community applications with
ASP.NET 3.5

Andrew Siemer

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

ASP.NET 3.5 Social Networking

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2008

Production Reference: 1051208

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-78-7

www.packtpub.com

Cover Image by Vinayak Chittar (www.visionwt.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Andrew Siemer

Reviewer

Steven M. Swafford

Senior Acquisition Editor

David Barnes

Development Editor

Swapna Verlekar

Technical Editor

Gaurav Datar

Copy Editor

Sumathi Sridhar

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Leena Purkait

Indexer

Monica Ajmera

Proofreader

Laura Booth

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew Siemer is the co-founder of the .NET user group VirtualDNUG.com, and
is currently an architect/engineer at OTX Research. He has worked as a software
engineer, architect, trainer, and author since 1998 when he left the Army. Andrew
has provided consultancy to many companies on the topics of ecommerce, social
networking, and business systems. He has worked with eUniverse (AllYouCanInk.
com), PointVantage (MyInks.com), Callaway Golf (CallawayConnect.com), Guidance
Software (GuidanceSoftware.com), Intermix Media (FlowGo.com, Grab.com), and FOX
Interactive (AmericanIdol.com, FoxSports.com) to name a few. In addition to his daily
duties, he also conducts classes in .NET, C#, and other web technologies, blogs on
numerous topics (blog.andrewsiemer.com, socialnetworkingin.net to name a couple), and
works on fun new communities such as Fisharoo.com and GymEd.com.

I would like to first thank my wife Jessica Siemer. Without her love
and understanding this project and all the others before it would not
have been able to get off the ground, let alone get anywhere near
completion! For this book project in particular though Jess gave me
everything I needed to make it through to the end. My day to day
successes in life would be nothing without you.

I would also like to thank Brian Loesgen from Neudesic for getting
me started down the book writing path. He has been there for me
time and time again keeping me headed in the right direction. And
to the friends I made while at Intermix Media, Adam Wolkov and
David Higbee. This book was inspired by our many early morning
coffee and juice brain storming sessions. Thank you for igniting the
initial spark to get this project started.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Steven M. Swafford began developing software in 1995 while serving
in the United States Air Force (USAF). Upon leaving the USAF, he continued
developing leading edge solutions in support of the America’s war fighters as
part of the original USAF enterprise portal development team. His roots are now
in central Alabama where he works as a software engineer developing Java
and .NET based applications and web services. Steven’s blog is located at
http://aspadvice.com/blogs/sswafford/.

Steven credits his wife Su Ok and daughter Sarah for supporting
and inspiring his ongoing passion for software development and the
resultant challenges of life near the bleeding edge. He would like to
thank Tim Stewart and Edward Habal who were his professional
mentors and to this day remain close friends.

www.allitebooks.com

http://www.allitebooks.org

I would like to dedicate this book to my wonderful wife and my six monsters.
They are my motivation to get up every morning and continue soldiering on.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Social Networking 7

What makes this topic so important 7
Large communities 7
Niche communities 8

Once I have my own social network, then what? 11
Customer service 12
Content moderation 12
Growing infrastructure requirements 12

Our social network—Fisharoo 13
This book's approach 15

Problem 15
Design 15
Solution 15

Features of our social network 15
Accounts 15
Profiles 16
Friends 17
Messaging 18
Media galleries 19
Blogging 21
Message boards 22
Groups 22
Comments 23
Tags 23
Ratings 24
Framework 25
Scaling up 26

Summary 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: An Enterprise Approach to our
Community Framework 27

A layered architecture versus a non-layered architecture 27
Layers 28

Domain-driven Design 29
Ubiquitous language 29
Entities 29
Value objects 30
Services 30
Modules 31
Aggregates 31
Factories 33
Repositories 33

Model View Presenter pattern 34
Model 34
View 34
Presenter 35
How it works 35

Factory pattern using StructureMap 36
Repository pattern and LINQ 38
Wrappers for everything! 44

Configuration 44
Cache 47
Session 54
Redirection 56
Email 57

Error handling and logging 62
Error handling 62
Logging 64

Summary 75
Chapter 3: User Accounts 77

Problem 78
Design 79

Registration 79
Accounts 79
Password strength 80
Terms and conditions 81
CAPTCHA 81
Email confirmation and verification 82

Security 82
Permissions 83
Password encryption/decryption 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Logging in 84
Password reminder 84
Manage account 84

Solution 85
Implementing the database 85

The Accounts table 85
The Permissions table 86
The AccountPermissions table 86
The Terms table 87
Creating the relationships 87

Implementing the data access layer 87
Setting up LINQ for the first time 88
A DataContext wrapper 93
Building repositories 94
The other repositories 101

Implementing the services/application layer 106
Extension methods 110

Implementing the business/domain layer 111
Implementing the presentation layer 113

Model view presenter 113
Registration page 120
Email verification 132
Password recovery 135
Edit account 139
Implementing security 143

Summary 152
Chapter 4: User Profiles 153

Problem 155
Design 158

Profile 158
Manage profile 159

Avatar 160
Custom avatars 160
Gravatar 160

Public profile 160
Custom homepage 161

Privacy 161
News feed 162

Solution 162
Implementing the database 163

The Profiles table 163
Level of Experience 164
The Attributes table 164
The Privacy table 165
The Alerts table 166
Creating the relationships 166

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Setting up the data access layer 167
Building repositories 168

Implementing the services/application layer 168
ProfileService 168
Account service 170
Privacy service 171
Alert service 173
Profile Attribute Service 174

Implementing the presentation layer 174
Privacy 175
Manage profile 181
Avatar 185
Public profile 191
News feed 195

Summary 196
Chapter 5: Friends 197

Problem 198
Design 202

Friends 202
Finding Friends 203

Searching for a Friend 203
Inviting a Friend 203
Importing Friends from External Sources 204
Sending an Invitation 204
Adding Friend Alerts to The Filter 205

Interacting With Your Friends 205
Viewing Your Friends 205
Managing your friends 205
Following Your Friends 205
Providing Status Updates to Your Friends 206

Solution 206
Implementing the Database 206

The Friends Table 206
Friend Invitations 207
Status Updates 208
Creating the Relationships 209

Setting Up the Data Access Layer 210
Building Repositories 210

Implementing the Services/Application Layer 214
FriendService 215
AlertService 217
PrivacyService 219

Implementing the Presentation Layer 220
Searching for Friends 220
Invite Your Friends 227
Outlook CSV Importer 232

Table of Contents

[v]

Confirm Friendship 238
Show Friends 241
Friends on Profile 243
Status Updates 244

Summary 247
Chapter 6: Messaging 249

Problem 250
Design 251

Messages 251
Recipients 252

Solution 252
Implementing the database 253

Messages 253
MessageRecipients 254
Creating the relationships 255

Setting up the data access layer 256
Building repositories 257

Implementing the services/application layer 260
MessageService 260
Email 263
AlertService 263
FriendService 264

Implementing the presentation layer 265
New message 265
Default (or Inbox) 270
Read message 274

Summary 276
Chapter 7: Media Galleries 277

Problem 278
Design 280

Files 281
Folders 281
File upload 282
File system management 283
Data management screens 283

Solution 284
Implementing the database 284

Files 284
File system folders 285
File types 285
Folders 286
Folder types 286
Account folders 286
Account files 287

Table of Contents

[vi]

Folder files 287
Creating the relationships 287

Setting up the data access layer 288
Building repositories 289

Implementing the services/application layer 294
FolderService 294

Implementing the presentation layer 295
File upload 295
Photo albums 307

Summary 313
Chapter 8: Blogs 315

Problem 315
Design 318

Blogs 318
Solution 318

Implementing the database 318
Blogs 319
Creating the relationships 319

Setting up the data access layer 319
Building repositories 320

Implementing the services/application layer 323
AlertService 323

Implementing the presentation layer 325
Latest blog posts 326
My blog posts 328
Fancy URL support 328
View post 331
Create or edit post 331

Summary 334
Chapter 9: Message Boards 335

Problem 335
Design 337
Categories 338

Forums 338
Threads and Posts 339
Friendly URLs 339
Alerts 340

Solution 340
Implementing the Database 340

Categories 340
Forums 342
Posts 342
Creating the Relationships 343

Setting Up the Data Access Layer 343

Table of Contents

[vii]

Building Repositories 344
Implementing the Services/Application layer 349

BoardService 349
AlertService 350

Implementing the Presentation Layer 351
Default.aspx 352
Redirector 355
UrlRewrite 355
ViewForum.aspx 358
ViewPost.aspx 359
Post.aspx 361

Summary 364
Chapter 10: Groups 365

Problem 366
Design 370

Groups 370
GroupMembers 371
GroupTypes 372
GroupForums 372
Schema 373

Solution 374
Implementing the database 374

Groups 374
GroupMembers 375
GroupTypes 375
GroupForums 376
Creating the relationships 376

Setting up the data access layer 377
Building repositories 378
GroupRepository 378
GroupToGroupTypeRepository 381
GroupForumRepository 383
GroupMemberRepository 383
GroupTypeRepository 385
AccountRepository 385
GetAccountsToApproveByGroupID 386

Implementing the services/application layer 387
GroupService 387
AlertService 389
Redirector 390
WebContext 391

Implementing the presentation layer 392
ManageGroup 392
Members 395
Default 397
UrlRewrite 398

Table of Contents

[viii]

ViewGroup 398
MyGroups 401
Forum enhancements 403

Summary 405
Chapter 11: Comments, Tags, and Ratings 407

Problem 408
Ratings 409
Tagging 410
Commenting 413

Design 414
Ratings 414
Tags 415
Comments 416

Solution 417
Implementing the database 417

SystemObjects 417
Ratings 418
System object rating options 418
Tags 419
System object tags 419
Comments 420
Creating the relationships 420

Setting up the data access layer 421
Building repositories 422
RatingRepository 422
SystemObjectRatingOptionRepository 424
TagRepository 425
SystemObjectTagRepository 427
CommentRepository 431

Implementing the services/application layer 431
TagService 432
Extensions 435
WebContext 436
Configuration 438

Implementing the presentation layer 438
Comments Page 439
Ratings Page 442
Tags Page 449
Installing the new user controls 454
UrlRewrite.cs 456
Tags page 457

Summary 461
Chapter 12: Moderation 463

Problem 463
Community moderation 464

Table of Contents

[ix]

Gagging users 465
Dynamic filter 465

Cross-site scripting (XSS) 467
Design 467

Moderation 468
Gags 469
Filtering 469

Solution 470
Implementing the database 471

Moderations 471
Gags 472
ContentFilters 472
Creating the relationships 473

Setting up the data access layer 473
Building repositories 474

Implementing the services/application layer 479
ContentFilterService 480
Extensions 480

Implementing the presentation layer 481
Moderation 481
Gagging 487
Filtering 488

Summary 489
Chapter 13: Scaling Up 491

Problem 491
Design 492

Database optimization 492
Flagged for delete 492
Indexing 493
Partitioning 493

Web farming 494
Caching 494
Searching 494
Email 495

Solution 495
Database optimization 495

Indexing 496
Partitioning 498
Gotchas 500

Web farming 501
Caching 508

The server 509
The client 509
Using the client 511

Table of Contents

[x]

Starting the cache layer 514
Where do I start? 517

Searching 517
Getting Lucene.NET 518
Building indexes 518
Building the search 524

Email 528
Creating services to send email 528
The database 531
Services 534
Serializing email 536
Connecting the new DBMailQueueService 540
The queue 540
Processing the queue 542

Summary 545
Index 547

Preface
Social networking has become a driving force on the Internet. Many people are
part of at least one social network, while more often people are members of many
different communities. For this reason many business people are trying to capitalize
on this movement and are in a rush to put up their own social network. As the
growth of social networks continues, we have started to see more and more niche
communities popping up all over in favor of the larger, all-encompassing networks
in an attempt to capture a sliver of the market.

In this book, we will discuss the many aspects and features of what makes up the
majority of today's social networks or online communities. Not only will we discuss
the features, their purpose, and how to go about building them, but we will also take
a look at the construction of these features from a large scale enterprise perspective.
The goal is to discuss the creation of a community in a scalable fashion.

What This Book Covers
Chapter 1 gives you an overall structure of this book, that is, what a reader can expect
from this book.

Chapter 2 helps you create an enterprise framework to handle the needs of most web
applications. It discusses design patterns, best practices, and certain tools to make
things easier. It also covers error handling and logging.

Chapter 3 covers registration process by means of an email verification system
and a permission system to ensure security. It also touches upon password
encryption/decryption techniques.

Chapter 4 covers the creation of a user's profile and an avatar in a manner that is
flexible enough for all systems to use. In this chapter, we also implement some form
of privacy to allow users to hide parts of their profile that they don't want to share
with others.

Preface

[2]

Chapter 5 shows you how to implement friends, how to search for them, find them in
the site's listings, and import your contacts into the site to find your friends.

Chapter 6 helps you create a full blown messaging system that will resemble a
web-based email application similar to Hotmail or Gmail. We will also learn how to
implement the Xinha WYSIWYG editor in a way that can be re-used easily across the
site for complex inputs.

Chapter 7 covers details on how to build a generic media management system that
will allow you to host video, photos, resumes, or any number of physical files with
minimal tweaking. It also addresses the issue of multi-file uploads—one of the
biggest limitations of many web programming environments.

Chapter 8 is all about Blogging. With search engines, users, and security in mind,
we invest a part of this chapter to address an issue that plagues many dynamic
websites—query string data being used to determine page output.

Chapter 9 discusses the creation of the core features of a message board—categories,
forums, threads, and posts. Along with these features, the chapter also implements
friendly URLs to make our content more suitable for search engine optimization.

Chapter 10 covers the concept of Groups. It focuses on how groups can be used to
bring many different systems together in a way to start creation of sub-communities.

Chapter 11 helps us build three controls to allow our users to express their opinions
about various content areas of our site—tagging, rating and commenting. Tagging
control allows us to take in tag keywords as well as display all the tags for various
levels of our site from specific records. Rating control allows us to configure many
options per system object for individual ratings. And commenting control helps
users to express very specific opinions regarding our content items.

Chapter 12 focuses on Moderation, that is, the means to manage community providedcommunity provided
content using a very simple flagging tool. It also covers methods such as Gagging to
deal with habitual rule breakers. Finally, it takes a look at what Cross-site scripting
(CSS) is, and some measures that can be taken to address it.

Chapter 13 discusses some concepts to help you support a large number of users on
your social network. It starts by looking at some key concepts of web farming. Then
it goes on to discuss ways to create and search indexed data, methods to optimize
data retrieval and content creation, and finally some mail queuing concepts.

Appendix A covers version control and ways to set up your database. It then moves
on to various third-party and open source tools such as StructureMap, NAnt,
ReSharper, and so on, which will help you create a stable development platform.

Preface

[3]

Appendix B discusses unit testing. It starts with NUnit and how it helps in the
creation of unit tests. It then moves to NAnt and how it helps automate your
building and testing processes. Finally, it explains CruiseControl.NET, and how it
can help you finish off the automation aspects.

Appendix C contains entire SQL code from the book.

The appendices A, B, and C are not part of the actual book, but you can download
them from Packt's website.

Appendix A is available at //www.packtpub.com/files/4787-Appendix-A-
Setting-Up-Your-Development-Environment.pdf.

Appendix B is available at //www.packtpub.com/files/4787-Appendix-B-TDD-
and-Continuous-Integration.pdf.

Appendix C is available at
//www.packtpub.com/files/4787-Appendix-C-SQL.pdf.

What You Need for This Book
This book describes how to build a Social Network using ASP.NET, C#, and SQL
Server. To use this book effectively, you will need access to a version of Visual Studio
and SQL Server. Most of this book can be used with the various Express editions
of Visual Studio and SQL Express, but you will find that having the Professional
edition of Visual Studio will make your work flow more efficient. As we are not
just discussing ASP.NET, but are instead more interested in what is needed for the
features of social networking, there may be times when we turn to an open source
solution. All the examples in this book will clearly point out where to get the needed
software, and how to configure that software as we work through our examples.

Who is This Book For
This book is written for ASP.NET and C# developers who want to build an
enterprise-grade Social Network, either for their own business purposes or as a
contract job for another company. The book assumes you have prior experience of
developing web applications using ASP.NET 3.5, C# 3.0, SQL Server 2005/2008, and
Visual Studio .NET 2008; it focuses on topics that will be of interest to existing
developers—not on providing step-by-step examples for each detail.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Create a new class in the Core.Impl
directory called ProfileService."

A block of code will be set as follows:

if (profile != null && profile.ProfileID > 0)
 {
 attributes = _profileAttributeService.
 GetProfileAttributesByProfileID
 (profile.ProfileID);
 levelOfExperienceType =
 _levelOfExperienceTypeRepository.
 GetLevelOfExperienceTypeByID
 (profile.LevelOfExperienceTypeID);

 profile.Attributes = attributes;
 profile.LevelOfExperienceType = levelOfExperienceType;
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

Account account = _accountRepository.GetAccountByID(AccountID);
Profile profile = _profileService.LoadProfileByAccountID(AccountID);
if(profile != null)
{
 account.Profile = profile;
}

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:

Preface

[5]

"Click theClick the Test Connection button to see if your settings are acceptable.""

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/0956_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support. And also
take a look at the author supported site www.socialnetworkingin.net for follow
up discussions and help regarding this book.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet,
please provide the location address or website name immediately so we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Social Networking
This book, as you might have guessed, is all about how to build a social networking
site or a community site. In this book, we will take a look at a few well-known social
networks and some not-so-well-known networks to get an idea of what features are
popular out there. Then we will discuss the community that we will be building in
this book. Once we have an idea of what others are doing and what our community
will look like, we will dive right in to start building our own demo community.

What makes this topic so important
Social networking is all about developing connections or ties between friends and
associates. While people have always networked with one another, the Internet has
allowed us to do this in a global manner. Some great examples of popular social
networks are Digg, LinkedIn, Facebook, and Twitter. Most people have heard of
these services and many use them on a daily basis. These communities are able to
generate income from advertising and additional paid services.

Large communities
Digg.com is an aggregator of information from other sites. They allow people to post
links to interesting videos, blogs, news feeds, and other forms of media and content.
This posting is then pushed to the top of their site based on how many others on the
site also enjoy that post. Eventually, the posting will fall below the fold and fade into
oblivion. The key with their site is that you are not actually viewing the body of the
content on their site. This service is essentially a dynamic link farm times ten.

Social Networking

[8]

LinkedIn.com has taken the concept of a social network and polished it with a
professional touch. With this service you can build a professional profile, connect
with recruiters, connect with other professionals in your area, and most importantly,
connect with everyone with whom they are connected. LinkedIn has really latched
onto the power of the extended network concept.

Facebook.com originally started at Harvard University. This site was essentially
a digital version of the book that the school gave to its incoming students so that
everyone could get to know one another. This site is very much about building
profiles and linking those profiles through an eavesdropping feature that Facebook
calls “the wall”. This feature essentially catches all the activity that your friends are
performing on the site. The wall is another form of aggregation. Facebook is also
well-known for its extensibility features in that it allows developers to create and
host applications directly in the Facebook environment.

Twitter.com is what most would call a microblog. This site allows you to post very
small blurbs to your blog which are then fed out to your subscribers (friends). This
service is largely used for letting people know what you are up to. A great use of this
feature is posting: “I am at such and such coffee shop. If anyone is nearby feel free to
stop by and have a cup with me.”

Niche communities
Communities listed in the previous section were some examples of large, very
accomplished sites. There are far more examples of successful community sites that
operate on a much smaller scale. Some of these include Rockero.com, AnimeDates.
com, and Ning.com. While not as large or as well-known, these are very active
communities that are able to generate a living by means of advertisements on
their community.

Rocker.com (created by Jose Nava) is a community that is all about the Latino
rock-and-roll scene. This site hosts news, articles, forums, and videos that are all
about rock and roll! It has a fairly large following and is an excellent example of a
niche site.

Chapter 1

[9]

Social Networking

[10]

AnimeDates.com (created by Adam and Adrianne Wolkov) is a community that
brings anime (Japanese cartoons) lovers together. This site puts a twist on the
concept of dating in that it tries to bring anime followers together in an intimate way.
They have actually had several from their community find the love of their life and
get married as a result!

During the writing of this book, AnimeDates.com was acquired by Mania.
com. Congratulations Adam and Adrianne!

Chapter 1

[11]

Ning.com is a community that allows you to build your own community in less
than five minutes. This community by itself is large in that its users can create
sub-communities that may also be large. But the point of this site is all about creating
niche networks. An example of this is http://userinterfacedesign.ning.com/.
This community allows its users to discuss the topic of user interface design.

Once I have my own social network,
then what?
Everyone of my customers is gung ho about having his/her own social network. The
customers think they have a better idea and can do a better job than the next guy.
What they rarely consider though is that an even moderately successful community
site is a lot of work. Some of the unknown requirements for any social network are
listed here.

Social Networking

[12]

Customer service
In order to keep your site successful you must pay attention to your community.
You need to keep your users happy by addressing their needs and by continuously
making your site better. A social network is no different from any other business
from your customers' perspective. They expect service of some kind or another. The
better the service, the more your users will turn to you instead of the next guy.

If you have 5,000 users, you will have a fairly steady flow of communication between
them and you. A user might report a broken feature on your site. They may want to
shoot the breeze with you. They may need to report another user. They may want to
suggest a feature. You need to stay responsive to your users.

It is said that a happy customer will tell a few of his/her friends about the good
experience he/she had with your company. An unhappy customer, on the other
hand, will tell everyone they know about the bad experience they had with your
company. Keep this in mind! The more the users, the more this becomes important.

Content moderation
If you have a lot of users, you (or someone else) will have to manage their activities.
They will be adding content to your site on a regular basis. You will need to protect
your users from inappropriate content. This means keeping an eye on all of the
content in your site. Also as your users will be able to interact with one another
through your site, you will need to ensure that there are features that at the very
least allow users to protect themselves from other users. If you don't have this sort of
feature then you will need a way for your users to report other users to you so that
you can deal with it.

If you don't do this, you could end up with at least two problems. You might have a
user uploading adult content. This content might offend some of your users. These
users could easily take you to court and create havoc for you (even if your terms
clearly say that you are not responsible...blah blah blah). The other possible problem
is that if a user is offended, he/she may not come back to your site. This may not
sound bad, but a social network is all about its users after all!

Growing infrastructure requirements
With any successful site—and not just social networks—it is very important that you
keep your infrastructure two steps ahead of your users' needs. If your site is all about
video feeds, then you will be required to keep a watchful eye on your bandwidth
capabilities and disk space. If either of these starts to fail, the user experience of your
site will start to diminish or cease altogether.

Chapter 1

[13]

If your site has a large number of users regardless of your topic, you will need to
watch your web server's usage. You may be required to have your site hosted on
many servers. Or you may need to upgrade the overall robustness of your servers to
support the heavier demand.

If you are not capable of infrastructure management, it is certainly well worth your
will to find someone who can take care of this for you. If you only need part-time
care, you might turn to someone like www.geeksontime.com. They provide on
and offsite care for infrastructure administration. And don't forget to backup all
your data. If this is also not your thing, turn to an automated service such as
www.carbonite.com.

Our social network—Fisharoo
In this book, we will discuss many of the common features that are required
for a social network or community to succeed. We will discuss these features as
they pertain to a community that I have long wanted to put up about salt water
aquariums, their care, and about the people who are so invested in this hobby.

Unlike many books, we will not just discuss core concepts with demos in the form
of snippets. We will build an entire working site from the ground up. And we will
build our site in such a way that if by chance you become the founder of the next
MySpace, you have a site that will form a great foundation for your community.
With that in mind, this book will follow a common problem, design, and solution
approach to building the site.

When I tell the story of how and why I want to build a community around the salt
water aquarium world, I usually start by saying that salt water enthusiasts are very
much like golfers. It is not a hobby where you buy a set of clubs and a few golf balls
and then never return to buy anything else. You don't just take your new gear out to
the course and proclaim yourself as being a golfer. Generally speaking, people buy a
set of clubs, a funny hat and pants, some shoes, some balls, a glove or two. And work
at golf a bit. Then they return to the local pro shop to find a better club, a funnier
looking hat, perhaps different shoes, better balls, and so on. This repeats until they
get to a point where they feel comfortable in their game and can call themselves
golfers. Once they have reached this point, they still go to the pro shop forever in
search of game improvements.

www.allitebooks.com

http://www.allitebooks.org

Social Networking

[14]

The salt water enthusiast is very much like a golfer. They buy their first salt water
tank as a package with what they think is everything they need to set up a tank. They
go home and set up their tank only to find out that the filter they bought was not big
enough for their tank. Their lighting is not appropriate for their coral. Their filtration
system is not appropriate for their fish. The live rock that they purchased contained
a crab, which then started to eat all of their fish. And once the salt water tank is set
up in a fashion that it is fairly self-sustaining (they are now a golfer so to speak) the
owner wants to add new fish, maybe more fishes, have a bigger tank, and so on.

This social network will focus on helping new and old owners of salt water
aquariums set up and take care of their salt water tanks. It will also help them to
choose the right fish combinations. And, as it is a community, it will give them a
place to go to give advice as well as receive it.

Chapter 1

[15]

This book's approach
In each chapter I will attempt to follow a pattern to build a feature or set of features.
We will start with the problem that the chapter addresses. We will then attempt to
figure out a design that addresses the feature that we need to build. Finally, we will
discuss what is needed to meet the design requirements.

Problem
In the problem section we will outline exactly what we need to do to achieve success
for the chapter's topic. I will show you some screenshots of the finished product. And
I will cover any major gotchas for building out the features.

Design
This section of each chapter is about defining what exactly we want from a feature or
features. Here we will decide on and write down the physical requirements so that in
the next section we can start to build out the feature set. Here we will start to look at
what the database might look like, whether or not we need to make a page or two, or
if a user control might work better, and if an open source tool might help us address
our needs.

Solution
In the solution section of our chapters we will discuss how to implement all the
requirements for each feature. This section will go deep into the actual code for
implementing the feature from the database, out to the user interface. At the end of
this section, you should have something that you can play with.

Features of our social network
Following are the desirable features that our social networking site will possess:

Accounts
I think that this section of the book is pretty much given on any data-driven site
where you have users who are contributing to the site. If you need to know who
your users are, then you need some way of tracking their accounts. Instead of
showing you accounts from the pure ASP.NET way, this section will show you how
to build your own accounting system from scratch.

Social Networking

[16]

This will include looking at the registration process where our users create their
initial accounts. To make sure that we block bots and other programs from creating
accounts in an automated manner, we will implement a CAPTCHA system and
discuss some other options that are out there for this. We will implement an email
verification system to make sure that our users actually are what they claim to be.
With all this in place we will also discuss setting up a permissions system that we
can build onto over time. And no chapter on account creation is complete until we
discuss password encryptions (an often missed topic).

Profiles
A user's profile is really just an extension of his/her account. The difference being
that the account holds the login information and the profile holds all the personal
identifiers. It holds the description of the user, the user's attributes, and their photo
(avatar). We will discuss creating a user's profile in a way that is flexible enough for
all systems to use. We will also discuss how to handle creating an avatar in such a
way that a user can upload a picture, and select from that picture only the part
that they want to include in their avatar. As the profile contains a great deal
of information about the user, we will also implement some forms of privacy to
allow them to hide some bits and show others. Finally, we will discuss the creation
of a personal page for our user that will allow them to have a vanity URL
(www.site.com/AndrewSiemer) to send to their friends.

Chapter 1

[17]

Friends
The concept of having friends in a community is the glue that keeps people coming
back to your site. A friend is a user whom you have stated, whom you trust and
allow seeing information about you, and about whom you are generally interested
in knowing. Think of a friend as a connection, a colleague, and so on. Different terms
describe the same concept for different community topics.

Social Networking

[18]

In this section, we will not only show you how to implement friends, but will also
discuss how to search for them, find them in the site's listings, and import your
contacts into the site to find your friends. We will also implement a microblog in
the form of allowing your users to provide a status about where they are and what
they are currently doing. This status will then show up on your microblog and your
friend's microblog as an alert.

Messaging
Messaging is essential to any community site as it allows users to communicate with
one another directly. This can come in many forms. You can send a message to a
user, which is sent directly to the user via email. Or you can allow your user to send
a message via the site, which is then stored in the recipient's inbox. A notification is
then sent out to the recipient. This last form will be easier for you to manage as a
site administrator.

Chapter 1

[19]

In this section we will create a full blown messaging system that will resemble a
web-based email application similar to Hotmail or Gmail. As part of our interface
we will show a list of existing friends to send messages to. And we will learn how to
implement the Xinha WYSIWYG editor in a way that can be re-used easily across the
site for complex input.

Media galleries
There are many communities that are very dependent upon media galleries. Some
samples of this are YouTube or something similar. This is frequently the feature
that can draw the largest percentage of your community back to your site. For
that reason, it is very important to understand how to build a media system rather
than an image gallery, video gallery, and so on. We will build a generic media
management system that will allow you to host video, photos, resumes, or any
number of physical files with a limited additional tweaking.

Social Networking

[20]

In addition to the media management system, we will take a look at addressing
one of the biggest limitations of many web programming environments—multifile
upload. ASP.NET is great at handling one file at a time. But when managing a photo
gallery, for instance, you will find that you frequently have a handful or hundreds of
photos to upload. Rather than create a Java-based or Active-X-based control, which
may require some additional installations to your users' systems, we will look at a
Flash-based implementation. The Flash player has a pretty large adoption rate, so
our tool should load up with little or no problem. With this we will be able to browse
to a directory and upload as many files as we want.

Chapter 1

[21]

Blogging
Blogging is often a major feature in any community site as it gives those who enjoy
speaking to the world a tool to do just that. On the other hand though, the output
of your blog generates free content for those who are more on the voyeuristic
side to read up and follow along with your blogs. One of the biggest benefits for
a community with active bloggers is that you are acquiring a large amount of free
content to feed the various search engine spiders with. This in turn will help you get
your search ranking up, which will drive more traffic to your site, and will in turn
grow your community.

With search engines, users, and security in mind, we will invest time to address
an issue that plagues many dynamic websites—query string data being used to
determine page output. Let's face it, from a user's point of view, seeing a bunch of
variable names in the query string with random auto-generated record IDs and 32
character GUIDs is just not that user friendly and at times downright confusing.
Add to this that search engines these days seem to be able to navigate some of this
query string mumbo jumbo. But we are losing a key opportunity to optimize our site
for keywords by spoofing URLs as though our keywords were directories. We will
continue from our profile's example and extend our vanity URL support so that we
can have something along the lines of www.sitename.com/blogs/andrewsiemer/
3may2008/my-article-name.aspx (something of this nature).

Social Networking

[22]

Message boards
Everyone is well aware of what a message board or a forum is. For a social network,
it is a disconnected form of communication where people can post something to
discuss and others can happen across the posted item over time to add their two
cents. Frequently in the developer world, you will have a community that is 100%
focused around this sort of feature in the form of a technical help forum. For our site
which centers on helping others figure out how to run a salt water aquarium, we will
find this feature useful.

Groups
Groups to me are a form of containers for like-minded individuals. It allows a
community to pool its resources. A group could comprise people who are interested
in the same topic, people for or against a certain presidential candidate, or people
representing a company. The common focus for a group is that when someone
who is part of the group posts content to the site, all the members of that group
are notified. If a user sends a message to a group, then all the members become
recipients of that message.

Chapter 1

[23]

In our site, we will support common concepts such as public and private groups. For
private groups you will have to request a membership and should be granted access
prior to getting into the group. We will also extend the group concept and provide
all our groups with a private forum.

Comments
Commenting is just another way of allowing your users to interact with the content
and other members of your social network. There isn't a lot that is special about the
commenting concept. We will build out a custom user control to handle commenting
any physical object in our system that has a supporting table behind it. This means
that we can have comments on anything such as photos, videos, profiles, forum
postings, blogs, and so on. To sum up, anything can have a comment!

Tags
Tags are very important to the navigation of your community. A tag is usually one
or two keywords attached to some content or item in your site. This keyword may
be attached to one or many items in the site by one or many users of the site. The
more frequently the tag is applied, the larger its subscription base becomes. We can
then show the tag in a cloud of other tags. This cloud would be sorted with the most
frequently used keywords. Again, the more the keywords used, the larger they get
displayed in the cloud.

Social Networking

[24]

We can then place a tag cloud in various places of our site such as the homepage,
on a user's profile, or on a group's homepage. This will then act as a jumping off
point for all of their most frequently tagged content. Usually, this promotes clicking
around on the site. The more people move around on the site, the more likely they
are to add tags of their own or some other form of content. This will give some
activity to your community. We will build our tagging and tag cloud feature as
another user control that can be attached to any object with a handful of different
display types.

Ratings
Ratings are often a very important part of any community-supplied content site. This
allows the whole community to be in charge of what content takes precedence on the
site. While the ASP.NET AJAX Toolkit provides us with a rating tool, we will look
at creating a custom rating tool. Our rating tool will not only use the AJAX rating
tool but will also extend so that rather than apply a rating directly to an item, we can
rate individual attributes of an item. All those ratings will then be rolled up, and that
score will be the rating that is displayed for the actual item.

This feature will have the ability to be attached to any item in the site as well. Once
built, this feature will really help us get the right content for our community. It also
provides our users with the sense of belonging as they are now able to provide their
opinion on just about anything.

Chapter 1

[25]

Framework
Anyone can build a mom and pop community site with the features that we
discussed. However, if you want to build a site that can grow with your community,
we will want to start building it in a certain way from the beginning. For that reason
we will follow a few design patterns and concepts upfront. We will use an n-tiered
approach to build our site using Domain-driven Design, Test Driven Design, Model
View Presenter, Factory Pattern, and Repository Pattern. We will also make use of
the new LINQ to SQL tools that Microsoft has recently provided for us as well as a
few great open source tool sets such as Lucene.NET, MemCached, StructureMap,
and NUnit to name a few.

Social Networking

[26]

Scaling up
Once we have our core community built out, we will begin discussing some concepts
to help you support a large number of users on your social network. We will start
our discussion by looking at some key concepts to web farming. We will then discuss
how to create and search indexed data with Lucene.NET. Next, we will cover how to
optimize your data retrieval and content creation by implementing a caching farm
inside your web farm using the new MemCached Win32 server. Then we can look
at optimizing our email communications by implementing some form of mail
queuing concepts.

Summary
We have taken a look at some of the features that constitute a social networking site.
We also looked at some examples of successful community sites and what their niche
is. Next, we discussed the community that we will build and why we want to do it.
Finally, we discussed what features we will build through the course of this book.

An Enterprise Approach to
our Community Framework

We have all worked on a project that was supposed to be thrown together just to
meet a current need. There wasn't ever supposed to be a need in the future for this
application. It was meant to be just a simple down and dirty fix until you could get
the next major version in place. Then you found yourself constantly adding features
to this application. It continued to grow and grow uncontrollably. Had you known
that this application was going to be so important and was going to be used so
extensively, you would probably have built it differently. It is most likely that you
would have designed your application with extensibility in mind rather than just
hurrying to get the project finished and out the door!

A layered architecture versus a
non-layered architecture
Not every application needs to be built in a heavily layered manner. Not every
application needs to be overly extensible. Some applications need to be built quickly
and simply for the sole purpose of getting them out the door. However, be careful
not to build something simple when something flexible should have been built in its
place. While you can easily grow an application that was built with growth in mind,
extending an application that was built without growth in mind can be difficult, if
not near impossible.

Knowing that our application is going to be a large undertaking that should last
for some time, we need to design something that can be easily extended as the
need arises. For that we will try to design this application with extensibility in mind.
The easiest way to do that is to follow the general rule of maintaining "separation
of concerns".

An Enterprise Approach to our Community Framework

[28]

Separation of concerns (SoC) is the process of breaking down your
application into specific units of functionality in such a way that each
unit only addresses the need of one concern with as little overlap as
possible with other units in terms of functionality. Look here for more
information regarding this topic: http://en.wikipedia.org/wiki/
Separation_of_concerns

Layers
The easiest way to maintain SoC is to first break major areas of your application
into layers. In most applications, this might be broken down into the presentation,
business logic, and data access layers.

Presentation: This layer would normally hold anything pertaining to the user
interface of your application—the buttons, links, and other controls that a
user would click on and interact with while using your application.
Business Logic: This is where the rules of your application would live. This
could be as simple as formatting the currency of a price in your product
catalog to something more complex such as enforcing rules regarding
data input.
Data Access: The data access layer is responsible for connecting to a data
source and interacting with the data that is stored in that location. This could
be a database, some XML files, text files, or even a web service.

There is a common argument amongst enterprise developers regarding
the use of layers. It says something along the lines of "the more the objects
in use, the more the resources in use". This is of course a true statement.
However, the use of more resources in this case does come with a benefit
in the form of greater flexibility in your application. Layers promote SoC
as well, which directly benefits the developer as the physical code is easier
to understand and work with.

I used to think that just these three layers were good enough and used them in
several applications. However, I always found myself wanting more control in my
application. Recently I worked on a project that expanded on these very common
layers (into more layers of course) with the use of Domain-driven Design.

•

•

•

Chapter 2

[29]

Domain-driven Design
Domain-driven Design (DDD) is not a methodology, framework, or technology,
but more of a way of thinking practically. It is geared towards making software
development move at a faster pace. It puts the focus on the domain and domain
logic as it is truly the center of any application. Having a robust application and
infrastructure wrapped around poorly designed domain logic is a problem waiting
to happen.

The topic of Domain-driven Design is a vast one. To get you started in understanding
the high-level concepts, I will outline the basics here. As we continue to build our
framework and application, you will find some of the following principles applied.

For more information about Domain-driven Design check out this
website: http://www.domaindrivendesign.org.

Ubiquitous language
The concept of ubiquitous language is a simple one. It basically states that all
individuals involved with a software development project—business owners,
project managers, developers, that is, just about everyone—use the same language
to describe the aspects of the software being developed. This reduces the confusion,
which in turn increases the speed of overall development.

This concept is not just for discussion purposes. It extends to the actual naming of
classes, methods, and more. Once this occurs all discussions will sound similar no
matter who is involved with the discussion. When this is followed, and everyone is
speaking the same language in all conversations, confusion is totally removed and
there are no longer islands of expertise.

In the end, the domain and domain logic become more refined. The application
is better for it!

Entities
An entity is an object in your application that maintains its state for the life of your
application. This means that it can be rehydrated from an XML file, saved to a
database, later loaded from that database instance, serialized, and sent across the
network— resulting in the same object in all the cases. This is performed with the
use of a unique ID. This could be anything from an auto-incrementing numeric ID, a
GUID, a Social Security number (SSN), including anything that would be unique in
your system.

An Enterprise Approach to our Community Framework

[30]

An example would be a person in the US. In this case, we could use a person's SSN
and each resulting person would be unique. When we look at all the people in the
world, the SSN would no longer be considered a good form of unique ID as not
all people in the world have one. So in this case, we would probably have to start
looking at multiple properties of a person to define their uniqueness. We could take
their birth date, last name, country/state, city, and so on. A combination of this
information should result in a unique entity in your system. Entities are the most
important objects of your domain.

Do all objects in an application need to be unique? Are all objects necessarily entities?
Well, the answer is 'No'. In the next section, we will look at value objects as the
answer to these questions.

Value objects
A value object is less important than an entity. It does not require an identity, and
hence it can be easily created without being concerned to determine its uniqueness.
We are more interested in what the item is rather than who it is. A value object
should be immutable. If you need to modify the value object, toss it, and create a new
one. But if you find that the object is not immutable, or can't exist without its own
identity, it is most likely to be an Entity object.

To extend our person example from the Entities section further, we could make an
"address" value object rather than have a person with properties of state, city, zip
code, street or any other information pertaining to the address. The value object
would then store information about state, city, zip code, street, and so on. This
address object could then be part of a person. So you could say person.Address.
City. Technically, this address could be shared for all the people in the same house.
We don't care so much for the address itself, but for the fact that it is attached to a
specific person.

Why do we need value objects? Value objects are important. They are not only a way
of grouping bits of information as you saw in the above example. Being "lightweight"
objects, they reduce the amount of resources used in an application. They also
simplify an application in that value objects don't require uniqueness.

Services
As we discuss our application using the Ubiquitous Language (discussed previously
in a separate section), we will quickly end up with a vocabulary of nouns (entities
and value objects) and verbs (methods of those objects). However, not all the verbs
that we end up with will easily fit into our defined entities and value objects. What
do we do with these equally important but homeless verbs? They are obviously

Chapter 2

[31]

needed by the application. Do we stick them into one of our existing objects for lack
of a better place to put them? Doing that would create clutter and confuse the objects
making them difficult to use. So, the answer to the previous questions is 'No'. We
would rather create a service.

A service is not an entity or a value object. Having said that, we have to create an
object of some kind or another considering the fact that we are using an OOP-based
language! So we create a service-based object that provides the needed action (verb)
for our application. Take an e-commerce application for example. We might have
a customer and a vendor wherein one of them needs to contact the other via email.
Would it be appropriate to add a method to the customer object to send them email
from the vendor to the customer? Would it be appropriate to add this method to
the vendor object? It doesn't quite seem right in either object. So we could create an
email service. Now when our customer needs to contact the vendor, or the vendor
needs to contact the customer, either one can use the service to take care of
the communication.

Modules
Even if you have never heard of or worked with Domain-driven Design, you
will easily understand what a module is. A module is a group of features and
functionality in your application. Modules are a way of organizing large and
complex domain logic into smaller and more understandable units.

In this application, we will have accounts, blogs, picture galleries, and many other
features. While we could easily create one vast library of code to cover all these
features, it would be easier for us to create smaller units of code that specifically
describe the features of each module separately. Obviously, we will have some
overlap among modules as an account is used in both galleries and blogs. It would
also be possible for blogs to reference an image in an image gallery. As you can
see, not only do modules make your code easier to understand, they also help keep
things decoupled as you have further refined your code into yet another container!

Aggregates
Up to this point we have discussed the idea that we must use a ubiquitous language
to define our application's vocabulary. From that definition we will draw out entities
and value objects. Where methods don't fit our entities or value objects, we can create
services. And all these items can be grouped into modules. Now we are going to
move on to how these items can be managed, created, and stored using aggregation,
factories, and repositories.

An Enterprise Approach to our Community Framework

[32]

With a complex application, we will have lots of objects to deal with. So far we
have tried to reduce complexity by keeping things easy to understand by way of a
well-defined vocabulary and by grouping that vocabulary into smaller containers.
Also, we have tried to reduce complexity by stating that some objects need to be able
to maintain the state across the application, while others do not.

What we have not yet discussed is how to maintain an object's life cycle. We know
that they will be created, stored, passed around, and so on. But what about when it
is time to completely erase one of these objects from the system? If we do not closely
manage the usage of our objects, we could end up with objects randomly floating
about our system for no reason at all. This in turn could create issues for us in the
form of memory leaks resulting in a system crash.

For this reason, it is important that we plan for simplicity in how our objects interact
with one another. Rather than have objects spin one another up haphazardly, it
would be nice to have gatekeepers that we have to go through to gain access to other
objects. For example, the only way for object Z to gain access to object B is through
object A. This way when object Z is done using object A and object B, we can simply
remove object A, and object B will go too.

An aggregation is a boundary that we can use with our objects. We discussed that
our person object was an entity object, and that the address information was a
value object. Let's extend this example to say that we would also have an object that
handles the person's contact information, which could be phone numbers, email
addresses, and so on. This too would be a value object. Rather than letting external
objects directly access the address and contact information, we could force them to
go through the entity object to read this data. Also, if an external object wanted to
add a phone number to the list of phone numbers for a person, we could enforce that
the only way to do this is through the person object rather than through the contact
information object.

Following through with this concept further simplifies our domain logic in the form
of breaking our class structure down into even smaller buckets of code. It is not only
easier to work from a development point of view, but also simpler to manage how
objects come and go in our application.

Chapter 2

[33]

Factories
With all the simplicity that we are striving to achieve in our design, how can we limit
the complexity that is involved in the creation of an object? It doesn't make sense to
store that logic in the object that we are trying to create. It is one thing to put some
simple logic in the constructor of an object and let the object make itself, but quite
another when that object is an entity and itself has several value objects as part of its
make up (an aggregate). In this case, we would want to stash the creation logic into
something called a factory.

As we strive to keep the objects focused on their single concern it makes sense to
have a person factory that would create a person, the person's address information,
and contact information rather than have the person object know how to do these
tasks, as well as how to be a person. To grasp the concept better, take the example
of buying a TV. If you wanted a new TV, you would go to the local electronics store
and purchase one. You wouldn't expect the vendor to give you a screen, a box, some
electronics, a few cables, some plastic, a handful of buttons, and the directions to
assemble your TV. You would walk down an aisle, pick a TV, purchase a box with
a working TV in it, and go home. We should keep our objects working in the same
order. Think of a factory as the electronics store, and your objects as the assembled
TV. Your object should do what it does best, act like a person, and not worry about
how to read genetic code and assemble cells.

Repositories
Now as we have understood that a factory's sole purpose is the creation of objects,
what about the hydration of an already existing object? Perhaps we have a list of
people stored in a data store. Should a factory be responsible for retrieving these
people? In DDD, it is stated that this is the role of the Repository.

A Repository is an object whose purpose is specific to a single Entity object. For our
purposes, we will have a PersonRepository object. This object would know how to
get a person (or many people) based on certain well-defined parameters. It would
also know how to persist person objects to a data store.

Note that I use 'data store', and not 'database'. A repository works closely with your
application's infrastructure code. It should know how to work with all sorts of data
stores that your application might know to work with. This could be a database, a
web service, a collection of XML files, or any other data store. While your repository
is intelligent enough to work with infrastructure code, the interfaces that it presents
to other domain objects should be domain oriented and should be simple for the
other domain objects to use.

www.allitebooks.com

http://www.allitebooks.org

An Enterprise Approach to our Community Framework

[34]

Some examples can be passing in a social security number to hydrate a person
object, or passing in a whole person object to be persisted to the appropriate data
store. The clients of your repository should not be required to know anything about
infrastructure code at all!

Model View Presenter pattern
I plan to follow a Test-Driven Development approach, that is, TDD (see Appendix
B) while building this application. It is very easy to test our domain logic. It is not
that easy to test the presentation layer of our web application if we stick with the
simple .aspx/.cs approach that Microsoft gives us by default in Visual Studio. For
that reason, we need to settle on a design that will allow us to test the presentation
layer in as close to the same way as we would test any of our domain logic.

At the time of writing this, Microsoft released its new Model View
Controller (MVC) framework. While it is truly cutting edge, I couldn't
introduce an unproven framework into this project at that time. Also,
the way that the framework is set up would require more than simply
learning about MVC for TDD purposes.

I have been using the Model View Presenter (MVP) pattern (also called Supervising
Controller) to allow me to perform testing on my presentation layer for quite a while
now. While I still find it a bit clunky, it is the best thing I have come across so far that
allows me to perform my testing in an automated fashion. This pattern breaks down
the presentation layer into three parts—model, view, and presentation. Each part has
a specific responsibility.

Model
The model is a direct reference to your domain logic—the business logic layer so to
speak. There is nothing more to be said! Think business layer!

View
The view is made up of the .aspx and .cs files of your webpage. These files are
responsible for defining the physical items that a user interacts with in your website.
They are also responsible for receiving the various events that a user raises while
navigating through your site. The handled events should be immediately passed
to the presenter rather than being handled in the view. It is the responsibility of the
presenter to decide how to handle each event. The view is required to pass itself
(by reference) to the presenter giving the presenter total control over the view.

Chapter 2

[35]

This is where the topic of Inversion of control (IoC) comes up. We will
discuss this more when we get into StructureMap. If you need more
information about this topic now, look here: http://en.wikipedia.
org/wiki/Inversion_of_control.

Presenter
The presenter is a separate class file. There should be one presenter file per webpage.
The presenter is ultimately responsible for indirectly handling events fired by
the view and directly controlling what the view displays. It is the only part of the
presentation layer that can communicate with the domain objects (or the model).

Tests can be wrapped around the presenter object. While this is not a full test of
the UI, it is a full test of the logic that the UI interacts with. This can get tedious
sometimes. To make these tests go smoothly, plan on using a lot of mocked
objects either with the NUnit framework, or with the RhinoMocks framework,
or something similar.

Look to Selenium (open source automation tool for executing scenarios
against web applications) to provide full tests of your UI. It records
physical interactions with your website and replays them in an automated
fashion. I find this tool to be very useful for fairly static sites. If your
site structure changes frequently, your tests will have to be updated
frequently. At this point the value of this test suite may be lost!
To find more about Selenium, go to http://www.openqa.org/
selenium-rc/.

How it works
To quickly describe how this works from a programmatic point of view, let's think
about loading a list of people. The view would contain something like a GridView
or some other form of Repeater. On loading, the view would instantiate its presenter
and pass a reference of itself to that presenter. This passes the control of the view
to the presenter. The view then calls an init method in the presenter (which you
define—call it what you like). The presenter is now responsible for initializing the
page (loading the initial state of the page). The presenter works with our domain
objects (the model) to get a list of people. The presenter then calls methods provided
by the view and passes them to its newly acquired list of people. The view then
attaches the list of people to the data source of a repeater and asks the repeater to
bind on that list.

An Enterprise Approach to our Community Framework

[36]

If someone were to click on a person in that list, the process would be repeated up
through the view, into the presenter, over some domain objects, and back down to
the view. This allows us to wrap our tests around the presenter, which is part of
every interaction with the view and the model. As the presenter is removed from the
page itself, it is easy to get to and interact with the outside web environment!

Read more about Test Driven Design in the Appendix B at the end of this book to
understand its principles better.

Factory pattern using StructureMap
We discussed the factory pattern (under the Factories section) to help us in our
efforts for loosely coupled objects of our application. We have also said that we plan
to use a Test- Driven Development process. In order to achieve both of these easily,
we will be using a framework called StructureMap. Get more information on
http://structuremap.sourceforge.net/Default.htm. StructureMap is a
dependency injection framework. Its primary goal is to help us to reduce the
mechanical costs of good object-oriented design. It also helps us to have a more
flexible application for testing purposes.

StructureMap is very easy to use. I have mostly covered how to get it set up in
Appendix A at the end of the book. But if you don't want to read that now, I will give
you a down and dirty here. Once you have downloaded the StructureMap files,
add them to your bin directory. Then add a reference to the StructureMap in your
projects. Add an XML file to your solution and share it amongst your projects calling
it StructureMap.config. In that file, enter the following:

<?xml version="1.0" encoding="utf-8" ?>
<StructureMap>
 <Assembly Name="Fisharoo.FisharooWeb" />
 <Assembly Name="Fisharoo.FisharooCore" />
</StructureMap>

Now for every class that you create, add an attribute just above the class that looks
something like this:

[Pluggable("Default")]

Once you have defined your class, you can define the interface that the class inherits
from, open your interface, and add the following attribute.

[PluginFamily("Default")]

Chapter 2

[37]

Once you have this in place, you can then write something along the following lines
when instantiating a class:

IPerson person = ObjectFactory.GetInstance<IPerson>();

Using interfaces like this is a good design regardless of other
technologies such as StructureMap. It really helps to create a loosely
coupled environment. Having said that, StructureMap relies heavily
on the use of interfaces to define a PluginFamily. All members of the
same PluginFamily are located through the process of reflection and
grouped by the interfaces that they inherit from (example: person and
PersonStub would both inherit IPerson and would therefore be part
of the same PluginFamily). So in the interest of saving some space in this
book, you can safely assume that for every class that has a pluggable
attribute, you will need to create a simple interface that defines the default
class. I will point out the interface usage, but will not discuss
them in detail.

This instantiation says a lot. We no longer have a direct coupling between the
person object and the client code using the person object. Instead, we have told
StructureMap to go and load the default instance of a person object whatever that
may be at the time we asked for it.

This decoupling is very nice. But once we have StructureMap woven into our
application and we start writing our tests, we can now also tell StuctureMap which
version of an object we would like to use at a specified time. For testing purposes, it
is not always best to use our production objects. Perhaps the person object requires
too many resources, or perhaps it relies on several other objects to perform its tasks.
In that case, we may want to create a PersonStub class. This would be a lightweight
class. It would of course conform to the IPerson interface in the same way that
the production person does. The only major difference as far as StructureMap is
concerned is that the attribute at the top of the class might look something like this:

[Pluggable("Stubbed")]

We have two ways to let StructureMap know that we want to use the Stubbed
person rather than the Default person. We can programmatically specify it say
while running tests. Or in case we have stubbed out a class for our development
environment, to use something closely represents what we would have access to in
production, we can specify what to use in the StructureMap.config file.

In the case of programmatic control, we can simply use the methods that are
provided by the ObjectFactory class. We can use the InjectStub method to
override the class to be used the next time it is called.

ObjectFactory.InjectStub(typeof (IPerson), new PersonStub());

An Enterprise Approach to our Community Framework

[38]

The next time an IPerson is loaded by the ObjectFactory class, StructureMap will
use the PersonStub class instead of the standard Person class.

That's great! But how do I revert StructureMap back to using the Person class once
my testing is completed?

ObjectFactory.ResetDefaults();

This works well for testing purposes. But what about swapping something out in a
more permanent way? In order to specify which class to use in the configuration file,
you would enter something as shown in the following code snippet. Note that the
DefaultKey has the Stubbed description.

<PluginFamily Assembly="Fisharoo.FisharooCore" Type="Fisharoo.
FisharooCore.Core.Impl.Person"
 DefaultKey="Stubbed" />
<!-- Default, Stubbed -->

Note that at the bottom, I have added a comment that defines the possible classes
that can be specified.

The default key name doesn't have to be the word "Default", something that you are
entirely in control of. You could use a different default tag for each class. We could
have just as easily used PersonDefault or just Person. It is all in how you set it up.
The interface's PluginFamily attribute defines the default key.

Repository pattern and LINQ
Earlier we had a high-level discussion on repositories. Now we are ready to dig
in a little deeper. We know that repositories are all about providing a way for our
domain logic to access resources in the outside world. We know that they can be
used for web services, XML files, and just about anything else. In our case, we will
discuss how to access data in a database using the new LINQ to SQL framework.

We haven't really touched upon anything related to the Fisharoo application so far,
which means that we don't really have anything in the database for us to play with
just yet. For that reason, I created a simple Person table for us to work with. It has
the following fields: PersonID, FirstName, LastName, and Email. I then created four
entries in the database for us to work with.

CREATE TABLE [dbo].[Person](
 [PersonID] [int] IDENTITY(1,1) NOT NULL,
 [FirstName] [varchar](30) NULL,
 [LastName] [varchar](30) NULL,
 [Email] [varchar](150) NULL
) ON [PRIMARY]

Chapter 2

[39]

Next, I opened the web.config file and added a database connection to the
connectionStrings section.

 <connectionStrings>
 <add name="Fisharoo" connectionString="Server=localhost\\
sqlexpress;Initial Catalog=Fisharoo;User=USERNAME;Password=PASSWORD"
providerName="System.Data.SqlClient" />
 </connectionStrings>

I then created a data connection in Visual Studio. This is done by opening the
Server Explorer window (View | Server Explorer) and right-clicking on the Data
Connections node, and then selecting Add Connection.

In the Add Connection window, type in your server name and configure your login
credentials (I used SQL Server Authentication).

An Enterprise Approach to our Community Framework

[40]

Once you have all your information entered as you think it should be, click the Test
Connection button to check the connections status.

Once your connection reports that it was successful, click OK to continue. Click
OK again.

Now expand your new data connection until you see the tables. If you have created
a Person table as I had described earlier, you should be able to see it under the
Tables node.

Once you have your Person table situated, let's start building our data access layer.
Navigate to FisharooCore | Core and create a folder named DataAccess. In that
folder, create another folder called Impl (short for Implementation which is a bit
wordy!). In your Impl folder, we will create two classes and one dbml file. The first
class will be our Connection object (named Connection.cs), and the second file will
be called PersonRepository.cs. Once you have those class files created, add a new
LINQ to SQL Classes file. Call it Fisharoo.dbml.

Chapter 2

[41]

With the Fisharoo.dbml file still open, go back into your Data Connections and
drag your Person table on to the design surface. Save that file.

Once you have your table on the Fisharoo.dbml design surface, and
you hit Save, Visual Studio creates a FisharooDataContext class and
one class for every table that you have on the design surface. Each class
that represents a table will have all the columns of the tables represented
as fields and properties for that class. This will come in handy when you
are using LINQ to perform your queries!

Once you save your .dbml file, you will have corresponding classes created for you.
You can see them in the Class View (View | Class View).

This takes care of the base framework for some demonstrations. Now, let's dig into
those two class files that we have created. If you don't already have them open, open
the Connection.cs file and the PersonRepository.cs file.

The Connection class gives us a way to encapsulate our DataContext creation. It
has one method that returns the FisharooDataContext object. If we have other
DataContexts to work with down the road, they could go here too.

using System.Configuration;
using System.Linq;
using System.Data.Linq;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 public class Connection
 {
 public static FisharooDataContext GetContext()
 {

An Enterprise Approach to our Community Framework

[42]

 FisharooDataContext fdc = new FisharooDataContext
 (ConfigurationManager.ConnectionStrings
 ["Fisharoo"].ToString());
 return fdc;
 }
 }
}

There isn't much that is too fancy to explain here. Do you notice that we have
references to Linq and Data.Linq? Without these in place, the repository that we
are creating won't work. Also note that we are spinning up a new instance of our
FisharooDataContext class with a reference to our connection string that we had
put in the web.config file earlier.

Now, let's move over to the Person Repository. As the Person table that we created
earlier is only for demonstration purposes, so is the repository. Here is that class.

using System.Linq;
using System.Data.Linq;
using System.Collections.Generic;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 [Pluggable("Default")]
 public class PersonRepository : IPersonRepository
 {
 public List<string> GetAllNames()
 {
 List<string> names = new List<string>();
 FisharooDataContext dc = Connection.GetContext();
 var persons = from p in dc.Persons
 select p;
 foreach (Person p in persons)
 {
 names.Add(p.FirstName + " " + p.LastName);
 }
 return names;
 }
 }
}

Note that it has a StructureMap attribute so that we can swap it out later if we need
to. As with all StructureMap classes (and for good design reasons) we have also
inherited from an IPersonRepository interface, which clearly defines this class.

Chapter 2

[43]

There is only one method in our repository now. It is responsible for simply selecting
all the people in the Person table and returning a list of the first and the last names
of those people. We have a list of type strings for the names collection, which will
be returned at the end of the method. We then fetch our DataContext for our query.
Once we have the DataContext defined, we can perform our query.

We declare a local variable with the var keyword. This allows us to declare a
variable with a dynamic type. In this case, we will be selecting a collection of our
Person classes. But we don't really know that for sure! Nor do we really need to
know that. Let's look at the query.

var persons = from p in dc.Persons
 select p;

What this says is that we would like to select all the people from the Person table
and return a collection of those people. It is very much like SQL. However, the
reason we have specified from prior to anything else is so that Visual Studio
Intellisense can be used. If we were to select the properties first, Visual Studio
wouldn't really help us!

Technically speaking, this query is very much like a SELECT * FROM table type SQL
query, which is just as bad in this environment as it is in the SQL environment! As
this is only for demo purposes, I wanted to use the simplest query.

Once the query is executed, the persons variable is of type IEnumerable, which will
allow us to iterate over it in a loop.

foreach (Person p in persons)
{
 names.Add(p.FirstName + " " + p.LastName);
}

In this loop, we will concatenate the first name and last name of each person and
add them to our names collection. Once this is completed, we simply return that
collection back to the user of this method.

The demonstration given here is very simple, as I didn't want to overwhelm you. It
would get the idea across as to how the Repositories will work in this application,
also touching upon the basics of LINQ.

An Enterprise Approach to our Community Framework

[44]

Wrappers for everything!
In order to continue down the path of heavily abstracting all our objects, it is
important to consider how coupled your application is to the .NET framework, or
other frameworks, or third-party tools that you don't have control over. This may not
seem important initially, but you will eventually find yourself in a place where the
framework that Microsoft provides you with may not cut the mustard any more.

A quick example of this might be the caching objects that are provided. While these
work great out of the box, they don't really scale well. What happens when you build
a site that becomes so popular that you need to do everything possible to eek out that
last bit of performance? The first response is usually to just go to a web farm. The
next response is to add more boxes to the farm. The third response is to add more
boxes to the farm…huh?

How often can adding more hardware to address performance issues be a standard
response? At some point in time you will have to improve your application. If you
could achieve a huge performance gain by swapping out the caching object, would
you be able to? If you have references to the caching object scattered all over your
code, you would have to go in and swap it out for your new third-party caching
object. While this can be done, it would be tedious and error prone. A better option
would be to stick to the principle of wrapping anything you don't personally control.
If you create a cache wrapper that wraps the .NET cache object, you could easily and
quickly swap out the MS cache object for something like MemCached.

I learned a saying in the Army that has served me well, and applies here too:

"It is better to have and not need, than need and not have!"

Here, it is better to have wrappers around everything and not need to swap anything
out, than need to swap everything out and have wrappers around nothing.

Configuration
For the configuration wrapper, we want to create something that is capable of
returning a strongly typed item out of our configuration source. Of course, this
configuration source will initially be the standard web.config. As the web.config
only holds string values, our configuration object will be responsible for casting out
the appropriate type.

using System;
using System.Configuration;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.Impl

Chapter 2

[45]

{
 [Pluggable("Default")]
 public class Configuration : IConfiguration
 {
 private static object getAppSetting(Type expectedType,
 string key)
 {
 string value = ConfigurationManager.AppSettings.Get(key);
 if (value == null)
 {
 throw new Exception(string.Format("AppSetting: {0} is
 not configured.", key));
 }
 try
 {
 if (expectedType.Equals(typeof(int)))
 {
 return int.Parse(value);
 }
 if (expectedType.Equals(typeof(string)))
 {
 return value;
 }

 throw new Exception("Type not supported.");
 }
 catch (Exception ex)
 {
 throw new Exception(string.Format("Config key:{0}
 was expected to be of type {1} but was not.",
 key, expectedType), ex);
 }
 }
 }
}

As you can see, from the start I have included a StructureMap attribute so that we
can easily swap out this object for a stub if needed.

 [Pluggable("Default")]

Directly after that, you will notice that we have inherited from a Configuration
interface. As this class doesn't currently have any public methods, this interface
is currently empty! The goal of this class is to provide methods that can be called,
which in turn will call the static getAppSetting() method. As we don't yet have
any items in our configuration file, we don't have any public methods yet.

An Enterprise Approach to our Community Framework

[46]

If we did have something to get to, we would make a method that looked similar
to this:

 public virtual int GetAuthCookieTimeoutInMinutes()
 {
 int value = (int) getAppSetting(typeof (int),
 "AuthCookieTimeoutInMinutes");
 return value;
 }

This method is basically providing a clean way for our domain objects to get to a
configuration value as a specified type. Internally, the method calls getAppSetting,
specifying the type expected and the name of the key to be fetched. It then casts the
return value to that expected type and returns the value.

The getAppSetting() method itself currently communicates with the config file
using the ConfigurationManager and gets the string value that was specified by the
key that was passed in.

string value = ConfigurationManager.AppSettings.Get(key);

It then tests whether the retrieved value is null, and throws an error if it is.

if (value == null)
{
 throw new Exception(string.Format("AppSetting: {0} is not
 configured.", key));
}

We then try to return the expected type. It is currently testing for an int or string
value. If the expected type is int, then we attempt to use int.Parse on the value
and return it. Otherwise, we try to return the string value.

try
{
 if (expectedType.Equals(typeof(int)))
 {
 return int.Parse(value);
 }

 if (expectedType.Equals(typeof(string)))
 {
 return value;
 }

 throw new Exception("Type not supported.");
 }

Chapter 2

[47]

If the expected type is not int or string, then we throw an error stating that the
requested type is not supported. If anything in the initial try statement goes wrong,
we throw an error stating that the key was not of the expected type.

catch (Exception ex)
{
 throw new Exception (string.Format("Config key:{0} was expected
 to be of type {1} but was.not.",
 key, expectedType),.ex);
}

As our application grows and we add items to our configuration file, we will extend
this file and its interface to include one method per entry in the configuration file.

Cache
I like to have a cache wrapper so that we can immediately plan to cache items in our
site. However, I know that down the road, the basic .NET cache implementation
will not work in a high-traffic environment. I would prefer to use something like
MemCached or something similar. However, we will discuss wrapping the basic
HttpContext Cache object for now.

To get started, we need to add a reference to System.Web in our FisharooCore project
(as it is an assembly project, which doesn't have that reference by default!). To do
this, right-click on the project root, and select add reference. It may take a while,
but eventually, the Add Reference window should pop up. Select the .NET tab,
and scroll down till you encounter System.Web. Select that item and then click the
OK button.

An Enterprise Approach to our Community Framework

[48]

That will allow us to access the cache object in our assembly. Now, let's add a
settings file so that we can set the default cache time out.

I prefer that we add a settings file for this rather than make entries to our
config file. The reason is that we can specify the type of each entry and
programmatically access them via the Settings object.

In order to add this Settings.settings file, navigate to the FisharooCore project
in Windows Explorer (not in Visual Studio). There, you should have a Properties
folder. In this folder, create a new XML file called Settings.settings. Back in your
Visual Studio environment, navigate to your FisharooCore project. Then, click the
show all files button at the top of the Solution Explorer window .

You should now see your Settings.settings file. Right-click on that file and
select include in project. Now click the show all files button again. The Settings.
settings file should now be included and visible in your project. Double-click the
file to open it in Visual Studio. You should see a window that somewhat resembles a
spreadsheet! Type in the following information as you see it here:

Once you have done this, click Save. You should now have a functioning
Settings class to work with! Let's build our Cache wrapper now. Here is the
code in its entirety.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Web;
using System.Web.Caching;
using Fisahroo.FisharooCore.Properties;
namespace Fisharoo.FisharooCore.Core.Impl
{
 public class Cache
 {
 private static System.Web.Caching.Cache cache;

Chapter 2

[49]

 private static TimeSpan timeSpan = new TimeSpan(
 Settings.Default.DefaultCacheDuration_Days,
 Settings.Default.DefaultCacheDuration_Hours,
 Settings.Default.DefaultCacheDuration_Minutes, 0);
 static Cache()
 {
 cache = HttpContext.Current.Cache;
 }
 public static object Get(string cache_key)
 {
 return cache.Get(cache_key);
 }
 public static List<string> GetCacheKeys()
 {
 List<string> keys = new List<string>();
 IDictionaryEnumerator ca = cache.GetEnumerator();
 while (ca.MoveNext())
 {
 keys.Add(ca.Key.ToString());
 }
 return keys;
 }
 public static void Set(string cache_key, object cache_object)
 {
 Set(cache_key, cache_object, timeSpan);
 }
 public static void Set(string cache_key, object cache_object,
 DateTime expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }
 public static void Set(string cache_key, object cache_object,
 TimeSpan expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }
 public static void Set(string cache_key, object cache_object,
 DateTime expiration,
 CacheItemPriority priority)
 {
 cache.Insert(cache_key, cache_object, null, expiration,
 System.Web.Caching.Cache.NoSlidingExpiration,
 priority, null);

An Enterprise Approach to our Community Framework

[50]

 }
 public static void Set(string cache_key, object cache_object,
 TimeSpan expiration,
 CacheItemPriority priority)
 {
 cache.Insert(cache_key, cache_object, null,
 System.Web.Caching.Cache.NoAbsoluteExpiration,
 expiration, priority, null);
 }
 public static void Delete(string cache_key)
 {
 if (Exists(cache_key))
 cache.Remove(cache_key);
 }
 public static bool Exists(string cache_key)
 {
 if (cache[cache_key] != null)
 return true;
 else
 return false;
 }
 public static void Flush()
 {
 foreach (string s in GetCacheKeys())
 {
 Delete(s);
 }
 }
 }
}

To get started, note that at the top we have several namespace references.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Web;
using System.Web.Caching;
using Fisahroo.FisharooCore.Properties;

The most important ones to notice are the System.Web.Caching and the Fisharoo.
FisharooCore.Properties. The System.Web.Caching provides us with the object
that we are wrapping with this file. The Fisharoo.FisharooCore.Properties is
what gives us access to our newly created settings file.

Chapter 2

[51]

The next thing to notice is that we have two static variables declared—cache and
timeSpan. The cache object is a reference to thecache object is a reference to the object is a reference to the HttpContext.Current.Cache object.
This is where we will be storing all of our cached items. The timeSpan variable is a
defined TimeSpan, which will be used for the methods that don't provide a TimeSpan
declaration, a default TimeSpan so to speak.

We then define a static constructor for our cache object. This basically means that our
cache object is refreshed prior to any cache object being created. The exact time can't
be determined but can possibly be done at the time that the assembly is loaded.

 static Cache()
 {
 cache = HttpContext.Current.Cache;
 }

Now, we can get into our method definitions. We define a way to get something
from the cache, get a list of keys currently in the cache, several ways to add items
to the cache, a way to delete items from the cache, a way to see if a key is currently
present in the cache, and a way to totally flush the cache. Let's look at each of these.

To get something from the cache we have a Get() method. This method simply
requires a key value to be passed to it. We then use the cache implementation ofcache implementation of implementation of
Get() and return the value. Keep in mind that this could return the cached item or a
NULL value.

 public static object Get(string cache_key)
 {
 return cache.Get(cache_key);
 }

We then have a definition for getting a list of all the key values currently residing
in the cache. This method returns a generic list of type string. The way it works is
that we first define a keys List that we can add our keys to. We then declare an
IDictionaryEnumerator and assign the cache.GetEnumerator() values to it. Once
we have the Enumeration defined, we iterate through each item in the collection by
checking the ca.MoveNext() method. With each iteration, we add the key value to
our keys collection. We then return the keys collection.

public static List<string> GetCacheKeys()
{
 List<string> keys = new List<string>();
 IDictionaryEnumerator ca = cache.GetEnumerator();
 while (ca.MoveNext())
 {
 keys.Add(ca.Key.ToString());
 }
 return keys;
}

An Enterprise Approach to our Community Framework

[52]

We then define several Set methods. This allows us to add items to the cache. Each
method is a simple wrapper for all the Set methods that the cache object provides.
All these methods require that a string key be provided along with the object that is
to be cached. Some of them allow for various time-outs to be specified. Others allow
you to additionally provide a priority for the cached items expiration. Here are the
method declarations:

public static void Set(string cache_key, object cache_object)
 {
 Set(cache_key, cache_object, timeSpan);
 }

public static void Set(string cache_key, object cache_object,
 DateTime expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }

public static void Set(string cache_key, object cache_object,
 TimeSpan expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }

public static void Set(string cache_key, object cache_object,
 DateTime expiration,
 CacheItemPriority priority)
 {
 cache.Insert(cache_key, cache_object, null, expiration,
 System.Web.Caching.Cache.NoSlidingExpiration,
 priority, null);
 }

public static void Set(string cache_key, object cache_object,
 TimeSpan expiration,
 CacheItemPriority priority)
 {
 cache.Insert(cache_key, cache_object, null,
 System.Web.Caching.Cache.NoAbsoluteExpiration,
 expiration, priority, null);
 }

Chapter 2

[53]

We then move to another simple method wrapper. This one provides a way to delete
a cached item. It accepts the key to be deleted. The method then checks to see if the
key exists and removes the key from the cache collection.

public static void Delete(string cache_key)
 {
 if (Exists(cache_key))
 cache.Remove(cache_key);
 }

The Exists method simply checks to see if an item is still in the cache collection. The
reason for this method is that while items can be freely added to the cache collection,
you can never count on them being there when you try accessing them the next time.
The item could be removed or may not exist for several reasons:

The item may have timed out and been removed
It may have been pushed out of the collection due to the presence of many
other new items added to the collection
The collection may have been re-initialized intentionally, or due to some
glitch in the system

This method returns a true or false value based on whether the key that is being
checked exists in the collection or not. This only checks whether the key exists. It
does not pull the item out of the collection and cast it to the appropriate type. The
key value may exist while the item may not. For this reason, always check that your
casted item is not null before using it!

public static bool Exists(string cache_key)
 {
 if (cache[cache_key] != null)
 return true;
 else
 return false;
 }

Now that we have all these nifty ways to add items, get items, and delete items,
we need a way to clear the entire cache collection. This is easily accomplished by
iterating through all the keys in the collection and calling Delete on each of them.

public static void Flush()
 {
 foreach (string s in GetCacheKeys())
 {
 Delete(s);
 }
 }

•

•

•

An Enterprise Approach to our Community Framework

[54]

Session
The session object is another item that is frequently used in most web applications.
That being said, it is also something that we can squeeze performance out of down
the road. Even if performance wasn't an issue, the session object by itself does not
really conform to the most basic of OOP principles. Rather than trying to cast an item
out of thin air—or the HttpContext.Current.Session—it would be much better
if we could call an object that returned the appropriate object for us. Here is the
basic wrapper:

using System.Web;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.Impl
{
 [Pluggable("Default")]
 public class WebContext : IWebContext
 {
 public void ClearSession()
 {
 HttpContext.Current.Session.Clear();
 }
 public bool ContainsInSession(string key)
 {
 return HttpContext.Current.Session[key] != null;
 }
 public void RemoveFromSession(string key)
 {
 HttpContext.Current.Session.Remove(key);
 }
 private string GetQueryStringValue(string key)
 {
 return HttpContext.Current.Request.QueryString.Get(key);
 }
 private void SetInSession(string key, object value)
 {
 if (HttpContext.Current == null ||
 HttpContext.Current.Session == null)
 {
 return;
 }
 HttpContext.Current.Session[key] = value;
 }
 private object GetFromSession(string key)
 {
 if (HttpContext.Current == null ||

Chapter 2

[55]

 HttpContext.Current.Session == null)
 {
 return null;
 }
 return HttpContext.Current.Session[key];
 }
 private void UpdateInSession(string key, object value)
 {
 HttpContext.Current.Session[key] = value;
 }
 }
}

Keep in mind that much like the cache object that was shown earlier, we would
continue to extend this object to have specific methods that could handle some of the
dirty work. Say we stored a person in the session as the current user. We could have
a GetCurrentUserFromSession() method defined that would interact with our
wrapper methods. It would retrieve the user and cast the object as a person. This is
much better OOP-wise. Let's look at the wrapper.

Of course, the first thing to notice—as you will notice in most of our classes—is
that this method is part of the StructureMap framework and has a Pluggable
attribute defined.

 [Pluggable("Default")]

You will then notice that the class inherits from IWebContext. This is so that we can
use StructureMap to retrieve the appropriate class for us.

After that we jump right into the public method definitions. These are all pretty
easy to understand and primarily work with the HttpContext object. We have
a ClearSession() method that simply resets the session. After that, we have a
ContainsInSession() method that takes a key value. It checks whether that key is
present in the session and returns true or false. Next is the RemoveFromSession()
method that takes in a key and attempts to remove that key from the session.

After our public methods, we have a few private methods left to build,
namely, GetQueryStringValue(), SetInSession(), GetFromSession(), and
UpdateInSession(). Before we discuss these methods, I need you to understand
why they are private. We could make all of these public and they would work just
fine. However, making them public would also mean that we would scatter the
code about our application that directly interacts with the session. My preference
is that we extend this object to provide more specific methods that work with these
private methods, which in turn work with the session. This provides us a bit more
encapsulation regarding the session interaction.

An Enterprise Approach to our Community Framework

[56]

Let's have a look at these methods. The GetQueryStringValue() method takes in a
key value and retrieves the item from the query string. The SetInSession() method
allows you to pass in a key and an object. The object is then stored in the session
under that key name. GetFromSession() does just that—it takes a key and retrieves
that corresponding object. UpdateInSession() is very similar to SetInSession()
with the exception that it assumes that a key already exists and updates the value
that is currently stored there. This method will throw an error if a key does not exist.
Therefore prior to using this method, you should check that your key exists in the
session collection!

Redirection
From an OOP point of view, Response.Redirect is about as useful as the session
object is (I'm starting to see a trend here). It simply provides a way of sending you
from one place to another. It would be nice if we could work with it using methods.
It would be even better if we could hide some logic in those methods if need be. Our
initial wrapper is very easy.

using System.Web;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.Impl
{
 [Pluggable("Default")]
 public class Redirector : IRedirector
 {
 public void GoToHomePage()
 {
 Redirect("~/Default.aspx");
 }
 private void Redirect(string path)
 {
 HttpContext.Current.Response.Redirect(path);
 }
 }
}

This class, like the others, uses StructureMap so that it can be used for stubbed out
for testing later. Currently there are two methods—one an example, and another
handling redirection. Let's look at the Redirect() method. It takes a path parameter
and then uses the HttpContext object to redirect the user to the appropriate location.
An example is the GoToHomePage() method. It asks the Redirect() method to send
the user to the homepage.

Chapter 2

[57]

Of course, this class can be expanded with as many new methods as needed to
redirect for any purpose. We can extend this object to be a bit more versatile too. We
can also perform all sorts of logic inside these methods prior to using the redirection,
obviously without degrading the overall design and where
actually required.

Email
Sending emails is one task that every website has to be capable of. How many emails
you plan to send should certainly determine how you go about sending that email.
As we do not yet know how many emails we plan to send, we will initially rely upon
the tools that are provided in the .NET framework to send our email. Our wrapper
looks like this:

using System.Net.Mail;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.Impl
{
 [Pluggable("Default")]
 public class Email : IEmail
 {
 const string TO_EMAIL_ADDRESS = "website@fisharoo.com";
 const string FROM_EMAIL_ADDRESS = "website@fisharoo.com";
 public void SendEmail(string From, string Subject, string
 Message)
 {
 MailMessage mm = new MailMessage(From,TO_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 Send(mm);
 }
 public void SendEmail(string To, string CC, string BCC,
 string Subject, string Message)
 {
 MailMessage mm = new MailMessage(FROM_EMAIL_ADDRESS,To);
 mm.CC.Add(CC);
 mm.Bcc.Add(BCC);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }

 public void SendEmail(string[] To, string[] CC, string[] BCC,
 string Subject, string Message)

An Enterprise Approach to our Community Framework

[58]

 {
 MailMessage mm = new MailMessage();
 foreach (string to in To)
 {
 mm.To.Add(to);
 }
 foreach (string cc in CC)
 {
 mm.CC.Add(cc);
 }
 foreach (string bcc in BCC)
 {
 mm.Bcc.Add(bcc);
 }
 mm.From = new MailAddress(FROM_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }
 public void SendIndividualEmailsPerRecipient(string[]
 To, string Subject, string Message)
 {
 foreach (string to in To)
 {
 MailMessage mm = new
 MailMessage(FROM_EMAIL_ADDRESS,to);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }
 }
 private void Send(MailMessage Message)
 {
 SmtpClient smtp = new SmtpClient();
 smtp.Send(Message);
 }
 }
}

Chapter 2

[59]

As with all our objects, we have the StructureMap attribute in place that makes this
a Pluggable class. The class itself inherits from our IEmail interface. Then, you will
see a couple of constants declared—one for the websites receiving the email account
and another for the websites sending the email account. (We could have used one
variable for both, but a little flexibility never hurt anyone!) We then jump into our
first method:

public void SendEmail(string From, string Subject, string Message)
 {
 MailMessage mm = new
 MailMessage(From,TO_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 Send(mm);
 }

This method is one of the overrides for the SendEmail() method. This one is a bit
different from the others in that it is used for the site to send email to another site
rather than to a user. In that case, the user of this method will provide the email
address that the message is from, the subject and the message. This method would be
used in a 'Contact Us' page or a similar mail form. At the bottom of this method, you
will see a Send() method call. This method spins up an SmtpClient and sends the
email message as do each of the following methods.

The remaining SendEmail() methods are used in various ways for the site to send
email to the users of the site. The first one allows single email addresses to be passed
in for the To, CC, and BCC inputs.

public void SendEmail(string To, string CC, string BCC, string
 Subject, string Message)
 {
 MailMessage mm = new MailMessage(FROM_EMAIL_ADDRESS,To);
 mm.CC.Add(CC);
 mm.Bcc.Add(BCC);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }

An Enterprise Approach to our Community Framework

[60]

The second method allows you to pass in an array for each email address input to
specify multiple recipients.

 public void SendEmail(string[] To, string[] CC, string[] BCC,
 string Subject, string Message)
 {
 MailMessage mm = new MailMessage();
 foreach (string to in To)
 {
 mm.To.Add(to);
 }
 foreach (string cc in CC)
 {
 mm.CC.Add(cc);
 }
 foreach (string bcc in BCC)
 {
 mm.Bcc.Add(bcc);
 }
 mm.From = new MailAddress(FROM_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }

The next to last method allows us to iterate through each of the recipients and send
one email to each recipient rather than have them all in one of the recipient lines.

 public void SendIndividualEmailsPerRecipient(string[]
 To, string Subject, string Message)
 {
 foreach (string to in To)
 {
 MailMessage mm = new
 MailMessage(FROM_EMAIL_ADDRESS,to);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 Send(mm);
 }
 }

Chapter 2

[61]

Finally, we get to the Send() method that is used by all of the other methods. This
method is responsible for actually sending the emails. But before this method
performs any action, we need to add the following section to our web config just
after the configuration tag. It is responsible for telling the .NET framework how to
connect to our mail server.

 <system.net>
 <mailSettings>
 <smtp>
 <network
 host="serverHostName"
 port="portnumber"
 userName="username"
 password="password" />
 </smtp>
 </mailSettings>
 </system.net>

Now, we can define the last method Send() as:

 private void Send(MailMessage Message)
 {
 SmtpClient smtp = new SmtpClient();
 smtp.Send(Message);
 }

This configuration is very flexible in how it sends email. However, it still requires
that the webpage be responsible for sending emails directly. This creates a page with
lots of overheads given that there could be a lot of recipients to process, or a lot of
network lag involved in the transactions.

The nice thing about having this wrapper is that we can easily create another class
that implements the IEmail interface but uses a mail queue instead of requiring the
page to send the email. This would allow the website to just create mail messages
and put them in the queue, which is much faster than actually processing and
sending the emails. We could then have a queue processor somewhere that would be
responsible for sending our emails.

While I am sure that there will be other items that might need a wrapper, which we
will come across, this small library should be good enough to get us started!

An Enterprise Approach to our Community Framework

[62]

Error handling and logging
I don't think any "enterprise application" can truly be called "enterprise" if it doesn't
handle errors well and notify someone to address them. In an ASP.NET site, there
are basically two forms of errors—errors that you have caught, and the ones you
couldn't. Pretty simple, right? Well, not so fast! Whether you have trapped an
error or not, the user of your application is still going to end up with some form
of disruption in their surfing experience. So we need a way to not only provide
users with a smooth disruption but also to fix the disruption so that it doesn't
happen again.

Error handling is the act of doing your best to trap expected or possible errors. It is
also the act of not allowing ugly error messages to get in front of your customers.
Logging is what we do with these errors so that we can fix them down the road.

Error handling
I am pretty sure that most of you are aware of how to catch an error using the
familiar try/catch/finally syntax. To those of you who are not, it looks something
like this:

try
{
 //code to run
}

catch (Exception e)
{
 //code to run when an error occurs
}

finally
{
 //code to run after the try or catch statement is complete
 // ** this code is always executed no matter what
}

But what about errors those occur outside of the environment? What do you do then
to prevent users from seeing some crazy geeked out error message? The easiest thing
to do in a web environment is to tap into the Application_Error event handler
using the Global.asax file.

Chapter 2

[63]

To implement this, let's first add a Global.asax file to our FisharooWeb project.
Right-click on the FisharooWeb project and select Add | New Item and select the
Global Application Class item (leave the default name of Global.asax). Once this
is added, we will want to take a look at the Application_Error method. This is the
event that is raised when an unhandled error occurs. We want to do two things in
this method:

We first want to log what happened so that we can fix it
Then we want to redirect the user to a friendly error page

We have not yet built the Log class, so for now, we will utilize the Redirector class
that we built earlier.

To get started, make sure that you are in the Global.asax.cs file. At the top of this
file ensure that you have at least these three using statements:

using System;
using Fisharoo.FisharooCore.Core;
using StructureMap;

Then, navigate to the already created Application_Error method and enter the
following code:

protected void Application_Error(object sender, EventArgs e)
{

//TODO: Add logging logic here.

IRedirector redir = ObjectFactory.GetInstance<IRedirector>();

 redir.GoToErrorPage();
}

Note that I have entered a placeholder to remind us that we need to come back
and add some logic for logging our errors somewhere. Then I used StructureMap
to get an instance of IRedirector. As we currently have defined only one class, it
will return the Redirector class. Earlier, we defined a GoToHomePage() method
that simply sends users to the homepage (see the Wrap Everything section covered
earlier for more on the Redirector). Now let's define the GoToErrorPage() method to
handle this new redirection.

Open the Redirector.cs file and add the following method:

public void GoToErrorPage()
 {
 Redirect("~/Error.aspx");
 }

•

•

An Enterprise Approach to our Community Framework

[64]

Don't forget to also add a method definition (void
GoToErrorPage();) to the IRedirector interface!

As we are providing a way to send a user to an error page, we should also create an
error page. Add a webform to the root of the FisharooWeb project named Error.
aspx. For now, I have included a simple message in the body of the page. We can
modify this later to something more explanatory.

<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
AutoEventWireup="true" CodeBehind="Error.aspx.cs" Inherits="Fisahroo.
FisharooWeb.Error" %>

<asp:Content ContentPlaceHolderID="Content" runat="server">
An error has occured!
</asp:Content>

Now, let's move on to how we can handle the logging section of error handling!

Logging
Logging can either be overly complex, or really easy. As I don't have loads of time
on my hands, I usually opt not to reinvent the wheel whenever possible! So in this
case, I will be using the log4net framework that provides an extensive set of tools for
various forms of logging.

For more information regarding the log4net project look here:
http://logging.apache.org/log4net/

To get log4net working, you will need to copy the log4net dll and the log4net.
xml files into your bin directory in the FisharooCore project. Once it is there, add a
reference to log4net. Then you will need to create a log4net.config file in the root
of your FisharooWeb project or in the bin directory of the FisharooWeb project. Here
is what our config file looks like:

For more information aboutinformation about log4net configuration, look here
http://logging.apache.org/log4net/release/config-
examples.html

<?xml version="1.0" encoding="utf-8"?>
<log4net debug="false">
 <appender name="RollingFileAppender" type="log4net.Appender.
RollingFileAppender">
 <file value="Logs/log4net.log" />

Chapter 2

[65]

 <appendToFile value="true" />
 <rollingStyle value="Size" />
 <maxSizeRollBackups value="10" />
 <maximumFileSize value="1000KB" />
 <staticLogFileName value="true" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d [%t] %-5p %c - %m%n" />
 </layout>
 </appender>
 <appender name="ConsoleAppender" type="log4net.Appender.
ConsoleAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d [%t] %-5p %c - %m%n" />
 </layout>
 </appender>
 <appender name="OutputDebugStringAppender"
 type="log4net.Appender.OutputDebugStringAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%-5p %m - %c -%n" />
 </layout>
 </appender>
 <appender name="TraceAppender" type="log4net.Appender.
TraceAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d [%t] %-5p %c - %m%n" />
 </layout>
 </appender>
 <appender name="AspNetTraceAppender" type="log4net.Appender.
AspNetTraceAppender">
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%d [%t] %-5p %c - %m%n" />
 </layout>
 </appender>
 <root>
 <level value="DEBUG" />
 <appender-ref ref="RollingFileAppender" />
 <appender-ref ref="OutputDebugStringAppender" />
 <appender-ref ref="ConsoleAppender" />
 <appender-ref ref="TraceAppender" />
 <appender-ref ref="AspNetTraceAppender" />
 </root>
 <logger name="StructureMap" additivity="false">
 <level value="WARN"/>
 appender-ref ref="OutputDebugStringAppender" />
 <appender-ref ref="ConsoleAppender" />
 </logger>
 <logger name="NHibernate" additivity="false">

An Enterprise Approach to our Community Framework

[66]

 <level value="INFO"/>
 <appender-ref ref="AspNetTraceAppender" />
 </logger>
</log4net>

Now, we can create a class to help us interact with what log4net provides us. Here
is the entire listing. It's a big one!

using System;
using System.Collections.Generic;
using System.IO;
using log4net;
using log4net.Appender;
using log4net.Config;
using log4net.Layout;
namespace Fisharoo.FisharooCore.Core.Impl
{
 public static class Log
 {
 private static Dictionary<Type, ILog> _loggers = new
 Dictionary<Type, ILog>();
 private static bool _logInitialized = false;
 private static object _lock = new object();
 public static string SerializeException(Exception e)
 {
 return SerializeException(e, string.Empty);
 }
 private static string SerializeException(Exception e, string
 exceptionMessage)
 {
 if (e == null) return string.Empty;
 exceptionMessage = string.Format(
 "{0}{1}{2}\n{3}",
 exceptionMessage,
 (exceptionMessage == string.Empty) ? string.Empty :
 "\n\n",
 e.Message,
 e.StackTrace);
 if (e.InnerException != null)
 exceptionMessage =
 SerializeException(e.InnerException,
 exceptionMessage);
 return exceptionMessage;
 }
 private static ILog getLogger(Type source)

Chapter 2

[67]

 {
 lock (_lock)
 {
 if (_loggers.ContainsKey(source))
 {
 return _loggers[source];
 }
 else
 {
 ILog logger = LogManager.GetLogger(source);
 _loggers.Add(source, logger);
 return logger;
 }
 }
 }
 /* Log a message object */
 public static void Debug(object source, object message)
 {
 Debug(source.GetType(), message);
 }
 public static void Debug(Type source, object message)
 {
 getLogger(source).Debug(message);
 }
 public static void Info(object source, object message)
 {
 Info(source.GetType(), message);
 }
 public static void Info(Type source, object message)
 {
 getLogger(source).Info(message);
 }
 public static void Warn(object source, object message)
 {
 Warn(source.GetType(), message);
 }
 public static void Warn(Type source, object message)
 {
 getLogger(source).Warn(message);
 }

 public static void Error(object source, object message)
 {
 Error(source.GetType(), message);

An Enterprise Approach to our Community Framework

[68]

 }
 public static void Error(Type source, object message)
 {
 getLogger(source).Error(message);
 }
 public static void Fatal(object source, object message)
 {
 Fatal(source.GetType(), message);
 }
 public static void Fatal(Type source, object message)
 {
 getLogger(source).Fatal(message);
 }
 /* Log a message object and exception */
 public static void Debug(object source, object message,
 Exception exception)
 {
 Debug(source.GetType(), message, exception);
 }
 public static void Debug(Type source, object message,
 Exception exception)
 {
 getLogger(source).Debug(message, exception);
 }
 public static void Info(object source, object message,
 Exception exception)
 {
 Info(source.GetType(), message, exception);
 }
 public static void Info(Type source, object message,
 Exception exception)
 {
 getLogger(source).Info(message, exception);
 }
 public static void Warn(object source, object message,
 Exception exception)
 {
 Warn(source.GetType(), message, exception);
 }
 public static void Warn(Type source, object message,
 Exception exception)
 {
 getLogger(source).Warn(message, exception);
 }

Chapter 2

[69]

 public static void Error(object source, object message,
 Exception exception)
 {
 Error(source.GetType(), message, exception);
 }
 public static void Error(Type source, object message,
 Exception exception)
 {
 getLogger(source).Error(message, exception);
 }
 public static void Fatal(object source, object message,
 Exception exception)
 {
 Fatal(source.GetType(), message, exception);
 }
 public static void Fatal(Type source, object message,
 Exception exception)
 {
 getLogger(source).Fatal(message, exception);
 }
 private static void initialize()
 {
 string logFilePath =
 Path.Combine(AppDomain.CurrentDomain.BaseDirectory,
 "Log4Net.config");
 if (!File.Exists(logFilePath))
 {
 logFilePath =
 Path.Combine(AppDomain.CurrentDomain.BaseDirectory,
 @"bin\Log4Net.config");
 }
 XmlConfigurator.ConfigureAndWatch(new
 FileInfo(logFilePath));
 }
 public static void EnsureInitialized()
 {
 if (!_logInitialized)
 {
 initialize();
 _logInitialized = true;
 }
 }
 public static void EnsureInitializedForTesting()
 {
 if (!_logInitialized)

An Enterprise Approach to our Community Framework

[70]

 {
 OutputDebugStringAppender appender1 = new
 OutputDebugStringAppender();
 appender1.Layout = new PatternLayout("%-5p %m - %c –
 %n");
 BasicConfigurator.Configure(appender1);
 TraceAppender appender2 = new TraceAppender();
 appender2.Layout = new PatternLayout("%d [%t] %-5p %c
 - %m%n");
 BasicConfigurator.Configure(appender2);
 _logInitialized = true;
 }
 }
 }
}

This class is mostly bloated with overrides for logging messages in various ways.
You will see Debug, Info, Warn, Error, and Fatal methods for logging both
message objects and exceptions. Let's quickly step through this class to understand it.

Initially, you will notice several using statements. The most important are the IO,
and the log4net references. One way of logging to the file system is to include the
IO reference. Everything else is so that log4net will work appropriately.

using System;
using System.Collections.Generic;
using System.IO;
using log4net;
using log4net.Appender;
using log4net.Config;
using log4net.Layout;

The SerializeException() method provides a way to convert an Exception into
a string. This has overrides that allow you to pass in an Exception or an Exception
and a message. Both return the exception as a string.

 public static string SerializeException(Exception e)
 {
 return SerializeException(e, string.Empty);
 }
 private static string SerializeException(Exception e, string
 exceptionMessage)
 {
 if (e == null) return string.Empty;
 exceptionMessage = string.Format(
 "{0}{1}{2}\n{3}",

Chapter 2

[71]

 exceptionMessage,
 (exceptionMessage == string.Empty) ? string.Empty :
 "\n\n",
 e.Message,
 e.StackTrace);
 if (e.InnerException != null)
 exceptionMessage =
 SerializeException(e.InnerException,
 exceptionMessage);
 return exceptionMessage;
 }

The next method we will look at is the getLogger method. It's responsible for
spinning up the log for you. It takes the type of the caller and returns the appropriate
log. You will see that most of the following methods use this method.

 private static ILog getLogger(Type source)
 {
 lock (_lock)
 {
 if (_loggers.ContainsKey(source))
 {
 return _loggers[source];
 }
 else
 {
 ILog logger = LogManager.GetLogger(source);
 _loggers.Add(source, logger);
 return logger;
 }
 }
 }

The next set of methods allows you to log a message object. There are two overrides
for each method name. One method allows you to pass an unspecified object and
a message while another requires a specific type and its message. You will see that
the first method simply does some dirty work to determine the type of object passed
in, and then calls the second version of itself. All these methods append to the log
through the getLogger method.

 public static void Debug(object source, object message)
 {
 Debug(source.GetType(), message);
 }
 public static void Debug(Type source, object message)
 {

An Enterprise Approach to our Community Framework

[72]

 getLogger(source).Debug(message);
 }
 public static void Info(object source, object message)
 {
 Info(source.GetType(), message);
 }
 public static void Info(Type source, object message)
 {
 getLogger(source).Info(message);
 }
 public static void Warn(object source, object message)
 {
 Warn(source.GetType(), message);
 }
 public static void Warn(Type source, object message)
 {
 getLogger(source).Warn(message);
 }
 public static void Error(object source, object message)
 {
 Error(source.GetType(), message);
 }
 public static void Error(Type source, object message)
 {
 getLogger(source).Error(message);
 }
 public static void Fatal(object source, object message)
 {
 Fatal(source.GetType(), message);
 }
 public static void Fatal(Type source, object message)
 {
 getLogger(source).Fatal(message);
 }

The next set of methods is the same as the first set with the exception that they
provide us with additional overrides that allow an exception to be passed in as well.

 public static void Debug(object source, object message,
 Exception exception)
 {
 Debug(source.GetType(), message, exception);
 }
 public static void Debug(Type source, object message,
 Exception exception)

Chapter 2

[73]

 {
 getLogger(source).Debug(message, exception);
 }
 public static void Info(object source, object message,
 Exception exception)
 {
 Info(source.GetType(), message, exception);
 }
 public static void Info(Type source, object message,
 Exception exception)
 {
 getLogger(source).Info(message, exception);
 }
 public static void Warn(object source, object message,
 Exception exception)
 {
 Warn(source.GetType(), message, exception);
 }
 public static void Warn(Type source, object message,
 Exception exception)
 {
 getLogger(source).Warn(message, exception);
 }
 public static void Error(object source, object message,
 Exception exception)
 {
 Error(source.GetType(), message, exception);
 }
 public static void Error(Type source, object message,
 Exception exception)
 {
 getLogger(source).Error(message, exception);
 }
 public static void Fatal(object source, object message,
 Exception exception)
 {
 Fatal(source.GetType(), message, exception);
 }
 public static void Fatal(Type source, object message,
 Exception exception)
 {
 getLogger(source).Fatal(message, exception);
 }

www.allitebooks.com

http://www.allitebooks.org

An Enterprise Approach to our Community Framework

[74]

Now we get to the initialize() method. This code is responsible for making
sure that the logger is ready to go. First, it looks in the root of the website for the
log4net.config file. If it doesn't find it there, then it checks in the bin directory for
the file. The method then spins up the XmlConfiguration class. Here is that code:

private static void initialize()
 {
 string logFilePath =
 Path.Combine(AppDomain.CurrentDomain.BaseDirectory,
 "Log4Net.config");
 if (!File.Exists(logFilePath))
 {
 logFilePath =
 Path.Combine(AppDomain.CurrentDomain.BaseDirectory,
 @"bin\Log4Net.config");
 }
 XmlConfigurator.ConfigureAndWatch(new
 FileInfo(logFilePath));
 }

The initialize() method is called by the EnsureInitialized() method.

 public static void EnsureInitialized()
 {
 if (!_logInitialized)
 {
 initialize();
 _logInitialized = true;
 }
 }

The EnsureInitialized() method first checks to see if the log has already been
initialized by checking the _logInitialized flag. If the log has not be initialized, it
calls the initialize() method and sets the _logInitialized flag to true thereby
making sure to initialize() the log only once for every application startup.

Let's add this to our newly created Global.asax file in the Application_Start()
method so that each time the application starts up we run through this
initialization process.

 protected void Application_Start(object sender, EventArgs e)
 {
 Log.EnsureInitialized();
 }

Chapter 2

[75]

This basically states that when the application is first loaded, we want to make sure
that our logging feature is set up and initialized correctly. If not, the application itself
should fail entirely!

Now that the log4net wrapper is complete, all we have to do is send something to
the log, which requires us to write the following code:

Log.Debug(this,"oops, something failed!");

Let's not forget to go back to our //TODO: in the Global.asax.cs file. Add this line
where our //TODO: currently is:

Log.Error(sender,"Error caught by the Global.asax: " + e.ToString());

That should take care of our error handling and logging needs!

Summary
In this chapter, we have gone over creating an enterprise framework to handle the
essential needs of most web applications. We have discussed design patterns, best
practices, and some tools to make things easier. We also worked through some
code to create wrappers for the basic framework classes that we will be using in our
application. We discussed how we will approach our data access using some new
technologies and existing patterns. Finally, we wrapped things up with a discussion
on error handling and logging. This chapter should provide you with a solid
foundation on top of which we can now begin to build our application.

User Accounts
Without people, your community doesn't exist!

For any community site to be considered successful, it must first have a group of
dedicated users. The larger the community's population, the more successful it is
considered to be. It would make sense then that we create a way for users to come to
our site, create an account, and become a part of our community.

User Accounts

[78]

In this chapter, we will discuss many of the common features that are related to
user accounts. This will include handling registration, authentication, permissions,
and password security. We will also go over some basic tools such as password
reminders, account administration, and CAPTCHA. This chapter will provide the
foundation for our users upon which we will be able to build all of our other features.

Problem
With most sites these days, regardless of their purpose, you need to know who your
users are. You might need to know this so that you can restrict where the users go
on your site. Or you might need this information so that you can provide a dynamic
experience to your user. No matter what your reason is to know who your users are,
the task of identifying and controlling them has a few basic requirements.

In order to get to know our users, we will need a way to register them on our site.
This would give us a footprint for that user, which we can use each time the user
returns. The registration process is fairly straightforward most of the time. We need
to capture the data that we are interested in (such as username, password, email,
and so on). We need to make sure that we store their password properly so that
their identification is safe not only from the other users of the site but also from the
administrators and staff of the site. Also, given the amount of fraud and spam on
the Internet these days, we need to equip our site with some form of intelligence
to guard it from automated registrations. In another attempt to protect the site, we
need to make sure that our users are providing us with valid information. We can do
this by validating the email provided by them to check if it is a functioning account
under their control. As part of the registration process, we also need to inform the
user about our current terms and conditions so that they know the rules of our
site up-front.

When I refer to automated registrations, I am really describing the act of
a bot (or program) that is used to create accounts with the sole purpose
of posting advertisements to public areas such as message boards, blogs,
and so on.

Once a user has successfully registered, we will need to provide them with tools so
that they can identify themselves to us each time they return. Rather than require
the users to authenticate themselves to us at each and every page view, we should
provide a centralized login screen. Upon successful authentication, we can track
that user through the site. Knowing that users frequently forget the information that
they provided us with, we will need to offer tools to remind the users how to get
into our site with a password reminder feature. After the users have authenticated
themselves, we would need to define where a user can go and what they can do on
our site with some kind of permissions based system.

Chapter 3

[79]

Once the users are registered and authenticated, we will need to provide them
with a way to administer their account data. In addition to the users being able to
administer their own data, the staff that runs the site will also need tools to manage
all the users and their data. In addition to managing user data, administrators should
be able to control the users' permissions and update the terms and conditions.

Design
In this section, we will discuss the various aspects that are required to implement
our new features. Once we are finished, we should have a good idea of what will be
required from each area.

Registration
Registration includes the task of acquiring user information, allowing them to pick
a username, password, and email verification. In addition, we will require that our
users agree to our terms and provide verification that they are human and not a bot
by reading our CAPTCHA image. Once we have all this information, we will create
the user account and assign appropriate permissions to the account.

Accounts
While ASP.NET provides various pre-built tools for handling your users via the
membership controls, I have decided to explore a custom way to handle our users
with regards to logging them in, encrypting their passwords, and so on. You may ask
why I decided to go this route. It's simple really; everyone has contributed a number
of webpages and blog posts to the Internet as well as written a number of books
regarding this topic. It seemed reasonable to me then that perhaps people might like
to see if they can do it on their own. It's not that difficult really! Also, with custom
logic comes more control.

User Accounts

[80]

To begin with, we need a way to describe our accounts. From the database point of
view, it will be fairly simple. All we need is an "Accounts" table where we can hold
a username, password, and a few other bits of information. This will look something
like this:

PK AccountID
Accounts

FirstName
LastName
Email

Zip
Username
Password
BirthDate
CreateDate
LastUpdateDate

AgreedToTermsDate

EmailVerified

Timestamp
TermIDFk1

While most of this information looks fairly normal (FirstName,
LastName, Email, and so on), there are a few columns that may not make
sense at first. You will see that I have added a Timestamp field to just
about every table. This is important for smoothening your interaction
with LINQ. While it is not required by LINQ, I find that LINQ works
much better with it in place, when tracking changes across disconnected
data contexts.

Password strength
Password strength is not only an issue for the account's security but also for the site
owner. The weaker your user's password is, the more likely that someone performs
a brute force attack on your site. If an account with a high-level permission (such as
Administrator) is compromised due to a weak password, you will look pretty silly! It
doesn't make much sense on your part to create a secure site in every other way and
then allow your users to bypass all your efforts!

Having said that, forcing your users to have a strong password can become an
inconvenience to your users. Believe it or not, there are many users who would
prefer to have a password of "password". While I am not for letting your users
become lazy, you do need to be aware that there is a chance that you will lose
signups due to this requirement. It is up to you to decide how important a secure
site is!

Chapter 3

[81]

Terms and conditions
While terms and conditions are not a necessary requirement for a good site, this
section is the place to cover the concept! We will create a simple way to manage
your terms and conditions. Terms and Conditions are a legal thing. The legal aspect
is not my strong suite, but building a system to house them is! Knowing that terms
and conditions can change over time, it is important that you track which version
of terms and conditions your users last agreed to. It is also important that you track
when they agreed to them.

The database will look something like this:

PK AccountID
Accounts

FirstName
LastName
Email

Zip
Username
Password
BirthDate
CreateDate
LastUpdateDate

AgreedToTermsDate

EmailVerified

Timestamp
TermIDFK1

PK TermID

Terms
CreateDate
Timestamp

Terms

CAPTCHA
CAPTCHA, or Completely Automated Public Turing test to tell Computers and
Humans Apart, is a form of challenge-response test to determine if the user of your
site is a computer or human. Increasingly we are finding that people are writing bots
to inject advertisements and other forms of SPAM into community sites to capitalize
on the traffic of those sites. The bots sign up for an account, verify their emails, and
start posting ads to our forums, blog comments, and so on. Hence we need a way to
determine if the person registering for an account is a computer or a real human.

A CAPTCHA system does a fairly good job of determining this. These systems
generate an image with an imbedded string that the registrant needs to read and
copy into a text field. As there are currently no good algorithms for reading the
obfuscated text out of the distorted image, we can feel pretty confident that the entity
that is registering for an account is a human.

User Accounts

[82]

Here is an example of an image that will be generated by our system:

While our system could be very complicated, we will stick to a simple random
number for our CAPTCHA string. Some systems use a table of words and present
two words randomly paired. Either of these ways will work well enough, and
random numbers are easily handled by .NET already.

Email confirmation and verification
There are several reasons to use email communications in our community. For
example, this chapter will require registration confirmation and email validation.

When a user signs up at our site, we need to be able to let him/her know that the
registration was completed successfully. This email will usually welcome a user to
the site. It may also provide them with some frequently asked questions, a list of
benefits received upon registration, and any other pertinent information that a user
may need prior to using your site.

In addition to the registration receipt, we need a way to check whether the email
address that the user has provided is a valid account (that it actually exists), and one
to which the user actually has access. We will validate this by embedding a link in
the email that the user will have to click. Once this link is clicked, we will assume
that the email address is valid!

Security
Security is obviously one of the most important aspects of building a site. Not only
should you be able to provide access to certain areas of your site to specific people,
but more importantly, also be able to deny access to various people of your site. All
sites have areas that need to be locked down. For example, one of the most important
areas could be the administration section of your site, or paid areas of your site.
Therefore, it is very important to make sure that you have some form of security.

Chapter 3

[83]

Permissions
There are a number of ways to handle permissions. We could make something
really complex by implementing a permission based system using permissions,
roles, groups, and so on. We could even make it as complex as Microsoft's Active
Directory system. However, I find that keeping something only as complex as your
current requirement is the best thing to do. We can always add to the system as our
needs increase.

Our permissions system will simply encompass a name (Administrator, Editor,
Restricted, and so on). This permission name will then be statically mapped to each
page (using the Sitemap file that .NET provides us!). As long as we keep our pages
to serve a single functionality, this should always suit our needs. As this is a good
design practice anyway, we shouldn't have any problems here. Of course, a user
can have many permissions tied to their accounts so that they can traverse various
sections of our site. Once this is in place, all we need to do is have a system that
checks a user's permissions upon entering each page to ensure that they have the
permission that the page requires.

The database structure for this will look like this:

PK AccountID
Accounts

FirstName
LastName
Email

Zip
Username
Password
BirthDate
CreateDate
LastUpdateDate

AgreedToTermsDate

EmailVerified

Timestamp
TermIDFk1

PK PK apid

AccountID
PermissionID
TImestamp

FK1
FK2

PermissionID

Name
Timestamp

Permissions AcountPermissions

We will have a Permissions table, which relates to the Accounts table through the
AccountPermissions table. This is a pretty straightforward and simple design.

User Accounts

[84]

Password encryption/decryption
While we could easily store a user's password in our database as plain text, it would
not be a very responsible thing to do! Having a password stored in plain text not
only leaves your user accounts open to someone who might hack into your system or
database but also leaves them open to a possible attack from a disgruntled employee.
These are good enough reasons to encrypt passwords prior to storing them in
the database.

There is still an issue to discuss though. Do we have one way encryption, or do
we also provide a way to decrypt our encrypted passwords? If we don't provide
decryption facilities, then we won't be able to send reminder emails to our users who
have their passwords. If we were creating a banking system, sending passwords via
email would not be acceptable. However, as we are creating something slightly
less confidential, the convenience for users to be able to retrieve their passwords
without too much hassle is a great reason for decrypting the password and sending
it to the user.

Logging in
Once a user has created an account, it is important for them to be able to re-identify
themselves to us. For this reason, we will need to provide a way for them to do this.
This will come in the form of a page that accepts a username and a password. Once
they have authenticated themselves to us, we will need to make sure that they are
still allowed to get into our site (if they are valid users).

Password reminder
A user will inevitably forget his/her password. As we require a strong password,
and a fair number of users would rather not have a password at all, or would like to
use the word "password' as their password, it is highly possible that they forget what
they registered with. Not a problem! As we decided to use a two-way encryption,
we will be able to decrypt their chosen password and email it to them. This way, our
user will never be locked out for too long!

Manage account
In order to keep customer service calls to a minimum, we will need a way for our
customers to manage their own accounts. Our customers will need a way to update
most of the information they provide us. While we will not allow them to change
their username, we will allow them to edit the rest. And when we allow them to
change their email address we need to make sure that we force them to validate
their new address.

Chapter 3

[85]

Solution
Now, let's take a look at how we can go about implementing all the new features.

Implementing the database
We will start by implementing our database, and we will work our way up
from there.

The Accounts table
The Accounts table will store all the base information for a user. Most of this is easy
to figure out as they have indicative names (a sign of good design).

User Accounts

[86]

However, there are a few columns that may not be 100% clear at first glance. I will
explain those here.

EmailVerified This is a bit flag to let us know if a user's email address has been
verified or not.

CreateDate This is the date on which the record was created. It has a default
value of GetDate().

LastUpdateDate This is similar to the CreateDate with the exception that we
should update it every time we update the record. This could be
done with a trigger, or done programmatically.

Timestamp As stated before, LINQ requires us to have a Timestamp so that
we can easily use the Attach() method for persisting data
to the database. There are other methods, but this requires the
least amount of fuss.

AgreedToTermsDate This is used to track the date on which the user agreed to the
terms and conditions.

Here is the SQL that is needed to create this table. Be aware of the constraints that are
added for the IDs and the various date fields.

The Permissions table
The Permissions table primarily acts as a lookup table for the various types of
permissions. It holds the name of each permission with a unique ID.

The AccountPermissions table
The AccountPermissions table allows us to create a many-to-many type of
relationship between our Permissions and our Accounts. It simply holds a reference
to a record at each end of the relationship.

Chapter 3

[87]

The Terms table
The Terms table is a lookup for our terms and conditions. Also, it provides us with a
historical view of the terms our customers have agreed to in the past.

Creating the relationships
First, while you could work in a database without any enforced relationships, I
wouldn't advise it. Secondly, you don't have all your database constraints clearly
defined. So you might find yourself working with polluted data.

Database constraints come in many forms. This could be a field-level
constraint where you want to say that a date field must have today's date.
Or it could come in the form that in order to have a Profile record you
must have an already existing Account record. This is normally done with
the use of a primary and a foreign key.

Also, LINQ prefers that the relationships are defined. In our architecture though, we
won't be relying on LINQ in this manner. LINQ is not yet perfect with respect to
this feature.

For this set of tables we have relationships between the following tables:

Accounts and AccountPermissions
Permissions and AccountPermissions
Accounts and Terms

Implementing the data access layer
Now that we have our database defined for all the features required by this chapter,
let's take a look at how we go about accessing that data! Keep in mind that this
chapter will have a step that the other chapters won't have—we will actually be
telling LINQ how to connect to our database so that it can generate Entity classes for
us based on our table structure.

•

•

•

User Accounts

[88]

Setting up LINQ for the first time
In our FisharooCore project in Visual Studio, navigate to our Core directory. Once
there, create a new folder and call it Domain. Let's add a file to the Domain folder
by right-clicking on the folder and selecting Add New Item. The Add New Item
window should pop up. Locate the LINQ to SQL Classes file and select it. Name
this file Fisharoo.dbml. Click the Add button.

Once you have done this, you should have the Object Relational Designer open.
This is a design surface that you can drag your database entities to. You can drag
your stored procedures or tables to this surface from which LINQ will generate the
appropriate classes.

In our case, we want LINQ to generate a class for each of the new tables that we have
just created. To do that though, we first need to tell Visual Studio where our database
is. Let's start this process by opening the Server Explorer. This is located in the View
menu under Server Explorer. In this window, right-click Data Connections and
select Add Connection. The Choose Data Source window should pop up.

Chapter 3

[89]

Select Microsoft SQL Server and click Continue.

Depending on how your machine is set up, your configuration may be a bit
different from mine. Make sure to enter the appropriate data into the Server name
text field, which should be localhost\sqlexpress on a local development box
provided that you used default settings when you installed SQL Express. Then
choose the appropriate method for logging in to your server. I am using Windows
authentication. You could also use an SQL Account. Finally, you can either enter the
database name Fisharoo in the Select or enter a database name text field. You can
also use the drop-down (which will use your previous entries to try and connect to
your server to retrieve a list of databases).

User Accounts

[90]

Click the Test Connection button to see if your settings are acceptable. If your
configuration is good, you should see an alert box pop up.

Click OK on the alert box and then once more to close this window.

You should now have your local Fisharoo database in your Data Connections
window. You can open this database and expand the tables section to see our newly
created tables.

Once you have this connection configured and you can see your tables, you should
be able to simply select all the tables and drag them on to your Fisharoo.dbml
design surface.

Once you have dragged the tables to the design surface, you should see your four
tables and the relationships between them defined.

Chapter 3

[91]

As we plan to manage the relationships between our data directly in our application
rather than trying to get LINQ to do it, let's remove the relationships that have been
defined for us. This will make working with LINQ a lot easier.

User Accounts

[92]

Why would you want to remove the relationships? Isn't LINQ supposed
to handle the persistence of data based on the relationships defined here?
Well, as it turns out LINQ to SQL is not 100% complete in the way that
we would like it to be. Out of the box, it doesn't really work well in an
n-Tier/disconnected architecture. But through several hacks here and
there we are able to make it work the way we would like. I find that the
easiest way to work with LINQ currently is to remove the need for LINQ
to manage what is changed and where, as it pertains to objects and their
children. We will touch upon this more as we start to use LINQ.

To remove the relationships, simply select all your relationships, right-click on one of
them, and select delete. Your tables should now look something like this.

Once you save the Fisharoo.dbml file, Visual Studio will generate your Entity
classes for you. You won't see these classes as files in your project. But we can see
them in the class viewer. Open your class viewer by going into the View menu and
selecting Class View. Then expand the FisharooCore project. Then open up the
Fisharoo.FisharooCore.Core.Domain namespace. Here you should see a
few things.

Chapter 3

[93]

To start with, you should see a class for each table you put on the Fisharoo.dbml
design surface. These are partial classes that you can extend by making an additional
partial class of the same name in the same namespace (we will do this in a while).
Do not edit the generated classes directly as your additions will get lost the next time
you generate them!

The only other item here that you should see other than the classes that represent
your tables is FisharooDataContext.This class handles all the LINQ facilities for
your tables and classes. It tracks what changes you have made to your objects,
what objects can be worked with, how you can query those objects, and so on.
Any time we work with our LINQ classes or data, we will be going through the
FisharooDataContext class.

A DataContext wrapper
Now that we know FisharooDataContext is used by LINQ extensively, let's look
at how we can work with this DataContext wrapper in a way that fits our overall
design by limiting the knowledge required to use the FisharooDataContext. We
will create a Connection wrapper that will return the FisharooDataContext to the
caller without requiring the caller to know what goes into its actual creation.

Start by creating a new class file in the FisharooCore project in the Core |
DataAccess| Impl folder and call it Connection.cs. Here is how the class will look:

//FisharooCore/Core/DataAccess/Impl/Connection.cs
using System;
using System.Configuration;
using System.Linq;
using System.Data.Linq;
using System.Xml;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooCore.Properties;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 public class Connection
 {
 public FisharooDataContext GetContext()
 {
 string connString = "";
 //logic to retrieve your connectionString
 FisharooDataContext fdc = new
 FisharooDataContext(connString);
 return fdc;
 }
 }
}

User Accounts

[94]

This class is very simple. It is essentially just a wrapper to hide where you get
your connection string as well as how the FisharooDataContext is spun up with
the connection string that then returns a FisharooDataContext object. I did not
show the logic for the retrieval of your connection string as that could be done any
number of ways. You could use the ConfigurationManager class, store it in this file
statically, and so on. The logic that I am using is more specific to my automated build
process than it is directly to this project (you can see what I did though by opening
this file in the code included with this book!).

Building repositories
Once we have a way to get to our DataContext, we can begin to look at how we
work with the objects and data stored behind that DataContext. While we could
just access our objects and the power of LINQ directly in our code, it would be very
helpful down the road if we continued our layered approach by adding a Repository
layer. A Repository provides us with a single place to go for our data (which doesn't
necessarily have to be a database). Here are the layers that we currently have.

R
ep

os
ito

rie
s

C
on

ne
ct

io
n

D
at

aC
on

te
xt

S
Q
L

The repository layer is responsible for performing data access and data persistence.
Each repository will be responsible for data related to a particular entity.

Normally, when speaking in terms of Domain-driven Design, an Entity is
considered to be something very important to the system. Unfortunately,
as far as LINQ to SQL is concerned, every class that is derived from a
table in your database is an Entity. While this is not true DDD, it is an
unwritten law of LINQ currently! This does not mean that we are going
to create a repository for something like the AccountPermission class
that LINQ generated for us. That object is not a true entity in our design!
It is simply a way for us to see related permissions for a given account.

Chapter 3

[95]

So let's start creating our first repository by looking at the AccountRepository.
Navigate to your FisharooCore project. Then open Core | DataAccess | Impl and
create a new class there called AccountRepository.cs. Here is the code that goes
into this file:

//FisharooCore/Core/DataAccess/Impl/AccountRepository.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using StructureMap;
using Fisharoo.FisharooCore.Core.Domain;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 [Pluggable("Default")]
 public class AccountRepository : IAccountRepository
 {
 private Connection conn;
 public AccountRepository()
 {
 conn = new Connection();
 }
 public Account GetAccountByID(int AccountID)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.AccountID == AccountID
 select a).First();
 }
 return account;
 }
 public Account GetAccountByEmail(string Email)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.Email == Email
 select a).First();
 }
 return account;
 }

User Accounts

[96]

 public Account GetAccountByUsername(string Username)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.Username == Username
 select a).First();
 }
 return account;
 }
 public void SaveAccount(Account account)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 if(account.AccountID > 0)
 {
 dc.Accounts.Attach(account, true);
 }
 else
 {
 dc.Accounts.InsertOnSubmit(account);
 }
 dc.SubmitChanges();
 }
 }
 public void DeleteAccount(Account account)
 {
 using (FisharooDataContext dc = conn.GetContext())
 {
 dc.Accounts.DeleteOnSubmit(account);
 dc.SubmitChanges();
 }
 }
 }
}

The first thing you will notice here is the references and attributes of StructureMap
as well as the IAccountRepository interface. As we may want to swap this
repository out during testing, these are important. Also, don't forget that the use of
StructureMap allows us to easily ensure that coupling is reduced once we start using
the Repository. This means that we could technically swap out the entire repository
without requiring a change to our code.

Chapter 3

[97]

For more on StructureMap, refer to the appendixes at the end of the book!

Then we have the declaration of the Connection class and a constructor for the
AccountRepository, which initializes that Connection object for use throughout the
rest of the AccountRepository class.

 private Connection conn;
 public AccountRepository()
 {
 conn = new Connection();
 }

Selecting accounts
Once our Connection object is ready for use, we can look at any of the methods
from a generic point of view. Let's start with the first method defined in this
class-GetAccountByID

 public Account GetAccountByID(int AccountID)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.AccountID == AccountID
 select a).First();
 }
 return account;
 }

This method is set up to retrieve an account with an ID. We first start out by defining
our return variable (account in this case) outside the using statement.

Account account = null;

We then retrieve a FisharooDataContext inside a using statement (which ensures
that the DataContext is disposed of once we are through with it).

using (FisharooDataContext dc = conn.GetContext())
{
...
}

We then move to the LINQ query itself inside the using statement.

account = (from a in dc.Accounts
 where a.AccountID == AccountID
 select a).First();

User Accounts

[98]

This looks very much like a standard SQL SELECT statement with a twist. We have
to define the from statement first so that Intellisense can interrogate the collection we
are working with. This allows us to work with our query as though we were working
with any other collection of objects using dot syntax. We then define a where clause
to restrict what is returned. Finally, we select the object that we want to use.

You will then notice that the entire query is wrapped in parenthesis. This allows
me to chain methods on top of the result set. In this case, I am calling the First()
function. This restricts my dataset to the first record returned by the query. As
I know that there can only be one account associated with an ID, this should be
acceptable here!

We could use var as the query result (inside the using statement) if we
didn't know what to expect back from our query.
var account = [your LINQ query here];

var allows us to work with objects without having to know what they are
and without having to declare them prior to using them. This is called an
anonymous type. It is another widget used heavily by LINQ. The caveat
to using an anonymous type is that it can only be used locally. So if your
intent is to use the queried objects outside of the scope from which they
were retrieved, you will have to do some form of casting, looping, or
otherwise, to move them away from their anonymous status.

The GetAccountByEmail() and GetAccountByUsername()
methods are almost identical in the way they function. So I am not
going to explain them in detail.

Saving an account
Now that we have a way to select Account objects out of the database in various
ways, we now need to consider how we are going to get the data into the database.
This brings us to our SaveAccount() method.

 public void SaveAccount(Account account)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 if(account.AccountID > 0)
 {
 dc.Accounts.Attach(account, true);
 }
 else
 {
 dc.Accounts.InsertOnSubmit(account);

Chapter 3

[99]

 }
 dc.SubmitChanges();
 }
 }

Now, we could have created two methods out of this one method. We could have
had an Insert() and an Update() method. However, the only difference is in the
one line of code between those two methods. So I chose to roll these two methods up
and replace them with the Save() method.

As you will see, with all our Repository methods, we have wrapped the acquisition
of the FisharooDataContext in a using statement. This makes our clean up
automatic! (Technically speaking, that is!). Once we have our DataContext to
work with, we interrogate the object that was passed in to see if it already has an
AccountID. If the object does have an AccountID, it can't be new. If it doesn't have an
AccountID, it must be new.

A new object is easy to work with. We simply call the DataContext.
CollectionOfObjects.InsertOnSubmit(ObjectToAdd) method. In our case, it
would be the dc.Accounts.InsertOnSubmit(account) statement. Then you
will see a call to dc.SubmitChanges(). This tells the DataContext that it needs to
persist all the changed data into the database—in our case it needs to save that new
Account record.

Our code makes updating data look almost as easy as inserting new data. However,
know that this is a simple example of updating data. Also know that this is only
as simple as it is because we have removed some of the relationships from the
DataContext! As far as LINQ is concerned, we are not supposed to attach old objects
to a new DataContext. While this can be achieved, you have to remove all the child
objects of the object you want to attach, attach the parent to the DataContext, then
re-attach the children to the parent, and then call SubmitChanges(). And even then
the persistence may not always work the way you would want it to!

So, our update logic seems very easy because we have implicitly made it so by
removing the relationships in our DataContext. We are indirectly telling LINQ to
SQL that it doesn't need to worry about complex relationships. It only needs to
worry about locating the one object that is already in the DataContext and updating
it with our new disconnected object.

One of the three overrides for the Attach() method allows us to attach our
disconnected Account object to the Accounts collection in the DataContext and force
it to update the object already in the collection with the new object.

User Accounts

[100]

This is achieved by telling the DataContext that the object that is being passed in is
the modified version of the current original.

Again, after the DataContext knows what you want it to do with the data, we should
call dc.SubmitChanges();.

Deleting an account
Now that we have a way to add accounts into the system it only makes sense that
we would also want to know a way to delete an account, which is achieved with
this method:

public void DeleteAccount(Account account)
 {
 using (FisharooDataContext dc = conn.GetContext())
 {
 dc.Accounts.DeleteOnSubmit(account);
 dc.SubmitChanges();
 }
 }

I think deleting an object from the DataContext is one of the easiest things to do!
Simply locate the collection that you want the object to delete from, pass the object to
be deleted to the DeleteOnSubmit() method, and then call dc.SubmitChanges(). It
doesn't get any easier than that!

Adding permissions to an account
Adding a Permission? Shouldn't this go in a Permission repository or something?
No, not really. In reality, we are not really adding a permission. We are creating
a record in the non-entity table, AccountPermissions, to link a Permission to an
Account. Recall that I had stated that we will not create non-entity repositories so
that we can at least try and stick to DDD. So this leaves us to add permissions to
accounts in the Permissions repository or in the Accounts repository. Adding
permissions to the Accounts repository makes more sense to me!

The code is also pretty simple (you will find that this is a recurring statement!):

public void AddPermission(Account account, Permission permission)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 AccountPermission ap = new AccountPermission();
 ap.AccountID = account.AccountID;
 ap.PermissionID = permission.PermissionID;
 dc.AccountPermissions.InsertOnSubmit(ap);

Chapter 3

[101]

 dc.SubmitChanges();
 }
 }

This method is going to simply link an Account object to a Permission object. To
do this, it expects an Account and Permission object to be passed in. It then creates
a new AccountPermission object and assigns the AccountID and PermissionID
properties based on the objects that were passed in. This new AccountPermission
object is then inserted into the AccountPermissions collection in the DataContext.
Finally, the SubmitChanges() method is called.

If you think back to our DDD discussions (covered in the Appendices), Entity objects
are important enough to recreate and track with a unique ID. Value objects are less
important and can't (or shouldn't) exist without a parent Entity object. In this case,
the value object, AccountPermission, can exist with Permission or an Account as its
parent. While this is a true statement, the overall design can be simplified by stating
that Accounts can have AccountPermissions and that Permissions can't. This makes
keeping track of the objects easier when they only have one entry point into
the world.

Now, having said that, I can think of a scenario where we might need to be able to
say: "For this permission, show me all the related accounts." This might be useful
in an Administration console. We will see that when we get there. We could just as
easily run a query that says: "Show me all the accounts with this permission."

The other repositories
Now that we have had a fairly detailed look at the AccountRepository, I am going
to quickly cover the remaining repositories. I will discuss some interesting points
here and there, but for the most part, once you have seen one repository, you have
seen them all!

Permissions repository
//FisharooCore/Core/DataAccess/Impl/PermissionRepository.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Fisharoo.FisharooCore.Core.Domain;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 [Pluggable("Default")]
 public class PermissionRepository : IPermissionRepository

User Accounts

[102]

 {
 private Connection conn;
 public PermissionRepository()
 {
 conn = new Connection();
 }
 public List<Permission> GetPermissionsByAccountID(Int32
 AccountID)
 {
 List<Permission> returnPermissions = new
 List<Permission>();
 using (FisharooDataContext dc = conn.GetContext())
 {
 var permissions = from p in dc.Permissions
 join ap in
 dc.AccountPermissions on
 p.PermissionID equals
 ap.PermissionID
 join a in dc.Accounts on
 ap.AccountID equals
 a.AccountID
 where a.AccountID == 1
 select p;
 foreach (Permission permission in permissions)
 {
 returnPermissions.Add(permission);
 }
 }
 return returnPermissions;
 }
 public List<Permission> GetPermissionByName(string Name)
 {
 List<Permission> returnPermissions = new
 List<Permission>();
 using (FisharooDataContext dc = conn.GetContext())
 {
 var permissions = from p in dc.Permissions
 where p.Name == Name
 select p;
 foreach (Permission permission in permissions)
 {
 returnPermissions.Add(permission);
 }
 }

Chapter 3

[103]

 return returnPermissions;
 }
 public List<Permission> GetPermissionByID(Int32 PermissionID)
 {
 List<Permission> returnPermissions = new
 List<Permission>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 var permissions = from p in dc.Permissions
 where p.PermissionID == PermissionID
 select p;
 foreach (Permission permission in permissions)
 {
 returnPermissions.Add(permission);
 }
 }
 return returnPermissions;
 }
 public void SavePermission(Permission permission)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 if(permission.PermissionID > 0)
 {
 dc.Permissions.Attach(permission,true);
 }
 else
 {
 dc.Permissions.InsertOnSubmit(permission);
 }
 dc.SubmitChanges();
 }
 }
 public void DeletePermission(Permission permission)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 dc.Permissions.DeleteOnSubmit(permission);
 dc.SubmitChanges();
 }
 }
 }
}

User Accounts

[104]

In the GetPermissionsByAccountID() method of this repository, you will see an
interesting LINQ query.

var permissions = from p in dc.Permissions
 join ap in dc.AccountPermissions on
 p.PermissionID equals ap.PermissionID
 join a in dc.Accounts on
 ap.AccountID equals a.AccountID
 where a.AccountID == 1
 select p;

This query introduces the concept of joining one set of objects with another set of
objects exactly like you would do in SQL. In this case, we need to create a variable to
reference each collection of objects.

For all you SQL people out there, think of this as a table alias.

Examples of this would be p in dc.Permissions, ap in dc.AccountPermissions,
and a in dc.Accounts. Once you have your collections to work with, you can then
define the join parameters with on p.PermissionID equals ap.PermissionID.
This query basically says, "Give me all the Permissions related to these
AccountPermissions, related to these Accounts, where the AccountID equals
the passed in AccountID."

Terms repository
//FisharooCore/Core/DataAccess/Impl/TermRepository.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Fisharoo.FisharooCore.Core.Domain;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.DataAccess.Impl
{
 [Pluggable("Default")]
 public class TermRepository : ITermRepository
 {
 private Connection conn;
 public TermRepository()
 {
 conn = new Connection();
 }

Chapter 3

[105]

 public Term GetCurrentTerm()
 {
 Term returnTerm = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 var terms = (from t in dc.Terms
 orderby t.CreateDate descending
 select t).Take(1);
 foreach (Term term in terms)
 {
 returnTerm = term;
 }
 }
 return returnTerm;
 }
 public void SaveTerm(Term term)
 {
 using (FisharooDataContext dc = conn.GetContext())
 {
 if (term.TermID > 0)
 {
 dc.Terms.Attach(term);
 }
 else
 {
 dc.Terms.InsertOnSubmit(term);
 }
 dc.SubmitChanges();
 }
 }
 public void DeleteTerm(Term term)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 dc.Terms.DeleteOnSubmit(term);
 dc.SubmitChanges();
 }
 }
 }
}

User Accounts

[106]

In the GetCurrentTerm() method of the TermRepository(), there is a new LINQ
query statement item added.

 var terms = (from t in dc.Terms
 orderby t.CreateDate descending
 select t).Take(1);

Here, you will see that we have an orderby clause introduced as well as a
descending keyword. This allows us to take all the terms ever created and put the
most recent ones at the top of the stack. We then introduce Take(), a new LINQ
method. The Take() method takes a number in and essentially acts like the TOP
statement in SQL. If you were to look at the SQL generated from this statement, you
would actually see a TOP statement created.

Implementing the services/application layer
Some call this layer the Services layer. Others call it the "application" layer. They
are one and the same. This layer should be relatively thin and lightweight. It is not
supposed to hold any business logic or data access logic. It is more of a working layer
that is responsible for keeping the business layer easier and cleaner to use. Often, it
will combine several items from the business layer and several methods from the
data layer to present an easy-to-use interface for a complex task.

Here is what our current layers look like with the addition of the Services layer:

S
er

vi
ce

s

R
ep

os
ito

rie
s

C
on

ne
ct

io
n

D
at

aC
on

te
xt

Domain

other
datasources

S
Q
L

An example of this would be our AccountService. The AccountService provides a
few simple methods that utilize several of our more infrastructure-oriented classes.
Here is the code:

//FisharooCore/Core/Impl/AccountService.cs
using System;
using System.Collections.Generic;
using System.Linq;

Chapter 3

[107]

using System.Text;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Domain;
using StructureMap;
namespace Fisharoo.FisharooCore.Core.Impl
{
 [Pluggable("Default")]
 public class AccountService : IAccountService
 {
 private IAccountRepository _accountRepository;
 private IPermissionRepository _permissionRepository;
 private IUserSession _userSession;
 private IRedirector _redirector;
 private IEmail _email;
 public AccountService()
 {
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 _permissionRepository =
 ObjectFactory.GetInstance<IPermissionRepository>();
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 _email = ObjectFactory.GetInstance<IEmail>();
 }
 public bool UsernameInUse(string Username)
 {
 Account account =
 _accountRepository.GetAccountByUsername(Username);
 if(account != null)
 return true;
 return false;
 }
 public bool EmailInUse(string Email)
 {
 Account account =
 _accountRepository.GetAccountByEmail(Email);
 if (account != null)
 return true;
 return false;
 }
 public void Logout()
 {
 _userSession.LoggedIn = false;
 _userSession.CurrentUser = null;
 _userSession.Username = "";
 _redirector.GoToAccountLoginPage();
 }

User Accounts

[108]

 public string Login(string Username, string Password)
 {
 Password = Password.Encrypt(Username);
 Account account =
 _accountRepository.GetAccountByUsername(Username);

 //if there is only one account returned - good
 if(account != null)
 {
 //password matches
 if(account.Password == Password)
 {
 if (account.EmailVerified)
 {
 _userSession.LoggedIn = true;
 _userSession.Username = Username;
 _userSession.CurrentUser =
 GetAccountByID(account.AccountID);
 _redirector.GoToHomePage();
 }
 else
 {
 _email.SendEmailAddressVerificationEmail(
 account.Username, account.Email);
 return @"The login information you provided
 was correct
 but your email address has not yet
 been verified.
 We just sent another email
 verification email to you.
 Please follow the instructions in
 that email.";
 }
 }
 else
 {
 return "We were unable to log you in with that
 information!";
 }
 }
 return "We were unable to log you in with that
 information!";
 }
 public Account GetAccountByID(Int32 AccountID)

Chapter 3

[109]

 {
 Account account =
 _accountRepository.GetAccountByID(AccountID);
 List<Permission> permissions =
 _permissionRepository.GetPermissionsByAccountID(AccountID);
 foreach (Permission permission in permissions)
 {
 account.AddPermission(permission);
 }
 return account;
 }
 }
}

An example of this simplification comes in the form of the Login() method.

 public string Login(string Username, string Password)
 {
 Password = Password.Encrypt(Username);
 List<Account> accounts =
 _accountRepository.GetAccountByUsername(Username);

 //if there is only one account returned - good
 if(accounts.Count == 1)
 {
 //password matches
 if(accounts[0].Password == Password)
 {
 if (accounts[0].EmailVerified)
 {
 _userSession.LoggedIn = true;
 _userSession.Username = Username;
 _userSession.CurrentUser =
 GetAccountByID(accounts[0].AccountID);
 _redirector.GoToHomePage();
 }
 else
 {
 _email.SendEmailAddressVerificationEmail(
 accounts[0].Username,accounts[0].Email);
 return @"The login information you provided
 was correct
 but your email address has not yet
 been verified.
 We just sent another email

User Accounts

[110]

 verification email to you.
 Please follow the instructions in
 that email.";
 }
 }
 else
 {
 return "We were unable to log you in with that
 information!";
 }
 }
 else if(accounts.Count > 1)
 {
 throw new Exception("Account data corruption has
 occured. There is more than one
 account with the username: " +
 Username + ".");
 }
 return "We were unable to log you in with that
 information!";
 }

It expects a username and a password. From there it fetches the users' accounts by
their usernames. It makes sure that the password that was provided matches what
we have on the file for that account. It then makes sure that the user has verified their
email address, and finally logs the user in.

This method can be extended further to use additional repositories or other services
for future needs. The signature of the method could still be just as simple without
muddying up the design.

Extension methods
As you probably noticed in the Login() method just seen, we had our first
introduction to the Cryptography class. However, this method is called directly from
a string. How does that work?

The subject of Cryptography is an extensive one, and is beyond the scope
of this book. However, the Cryptography class that is included in
this project is heavily commented if you want to understand System.
Security.Cryptography.Rijndael a bit better! You can find that
class here: FisharooCore | Core | Impl | Cryptography.

Chapter 3

[111]

To start let's look at how we were able to call Encrypt() from a string variable. To
achieve this is actually very simple. Although the string class is sealed, meaning
that we can't technically extend it in any way that we are used too, we can use a new
feature of .NET called "extension methods".

//FisharooCore/Core/Impl/Extensions.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Fisharoo.FisharooCore.Core.Impl
{
 public static class Extensions
 {
 public static string Encrypt(this string s, string key)
 {
 return Cryptography.Encrypt(s, key);
 }
 public static string Decrypt(this string s, string key)
 {
 return Cryptography.Decrypt(s, key);
 }
 }
}

An extension method allows us to extend a class without affecting the way that
it would normally work. The way to do this is by defining a static method in a
static class. The thing to notice is that the first parameter of the method starts
with the target type, a string in this case. Therefore we have effectively defined
an Encrypt() and Decrypt() method for the string class. Note that the only
difference between this method and one you would normally write is the this
reference preceding the first parameter.

public static string Encrypt(this string s, string key)

It's that simple!

Implementing the business/domain layer
As we are using the LINQ to SQL facilities that are now part of the .NET framework,
our business layer has been greatly simplified for us. I can recall in previous
applications different sorts of data access layers that required me to spend a great
deal of time writing SQL in the database, connection logic, providers, and hydration
and persistence logic for my objects. In addition to all that, I would still need to
define my business objects. Of those objects, 95% of the logic was simply to shuttle
data around in a more manageable manner.

User Accounts

[112]

Here is what our layers look like now:

S
er

vi
ce

s

R
ep

os
ito

rie
s

C
on

ne
ct

io
n

D
at

aC
on

te
xt

Domain

other
datasources

S
Q
L

With LINQ to SQL so much of this has gone away! We now have fully generated
classes that take care of shuttling our data around. But what happens if we need
custom logic?

While we could simply add logic to the generated classes, this would not be the best
route. The next time we make a change we will have to regenerate our classes. This
would resort in the loss of all that custom functionality.

Fortunately for us the classes that are generated are partial classes. This means that
we can make a new partial class file of the same name within the same namespace
and extend our generated classes.

Here is our custom Account object, which extends the generated Account object.

//FisharooCore/Core/Domain/Account.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooCore.Core.Impl;
namespace Fisharoo.FisharooCore.Core.Domain
{
 public partial class Account
 {
 private List<Permission> _permissions = new
 List<Permission>();
 public List<Permission> Permissions
 {
 get{ return _permissions; }
 }
 public void AddPermission(Permission permission)

Chapter 3

[113]

 {
 _permissions.Add(permission);
 }
 public bool HasPermission(string Name)
 {
 foreach (Permission p in _permissions)
 {
 if (p.Name == Name)
 return true;
 }
 return false;
 }
 }
}

With this new partial class, we can now extend our existing generated Account
class. I have added a few important features to the Account class. We now have
methods for adding and checking permissions. We also have a property that returns
a list of permissions.

This can easily be done for any partial class in our project!

Implementing the presentation layer
Most of the presentation layer is made up of very standard ASP.NET tools and
principles. As this book isn't so much about how a button or label works, I will be
focusing more on the nonstandard features of our site. We will look at building a
scalable UI using the MVP pattern.

Model view presenter
To start with, let's discuss the overall architecture of our presentation layer. We have
decided to use the MVP pattern. Information about this pattern can also be found
under the separated names of Supervising Controller and Passive View.

The basic reason for this pattern is so that at the end of the day you can wrap a large
percentage of your front end code with testing. It also allows you to easily swap out
your UI without having to rewrite every aspect of the front end of your application.
You will also find that this pattern significantly breaks up and compartmentalizesificantly breaks up and compartmentalizesficantly breaks up and compartmentalizes
your logic, which makes working on the front end of your application more
straightforward.

User Accounts

[114]

The MVP pattern in the ASP.NET world basically requires you to have four files (five
if you are working in a web application project).

The design or .aspx file
Your code behind or .cs file
An interface that defines the code behind (another .cs file)
And a class (.cs) file called the presenter, which actually controls everything

Of course, the model portion of this pattern is generally referring to your domain
objects that will constitute many other files!

The design file of course holds all your display logic such as a repeater, buttons,
labels, and so on. It shouldn't have any server-side logic.

The code behind (or the view) is responsible for handling events from the page such
as button clicks. It is also allowed to take care of simple display issues. The view
also provides methods to the presenter to toggle the state of the various display
items. When the page first starts up (generally on page load), the view initializes the
presenter and passes a reference to itself, to the presenter. For every event that is
triggered on the page, the view is simply responsible for informing the presenter so
that it can decide what to do with the event.

The View passes a reference of itself to the presenter by way of the interface that
defines the view. Using the interface for the type that the presenter expects, provides
us with a decoupled structure. This is what allows us to easily swap out our UI if
we so choose. As long as the UI implements the interface appropriately it can use
the presenter.

The presenter is the acting controller in this scenario. Once it is spun up and has a
reference to the code behind, it can actively decide how to handle events in the front
end. The presenter is also the only part of our front end that is capable of interacting
with our domain logic (or model).

Here is how MVP fits into our layers' representation:

D
es

ig
ne

r
(a

sp
x)

S
er

vi
ce

s

R
ep

os
ito

rie
s

C
on

ne
ct

io
n

D
at

aC
on

te
xt

Domain

other
datasources

S
Q
L

M
od

el

P
re

se
nt

er

C
od

e
B

eh
in

d
(a

sp
x.

cs
)

Vi
ew

•
•
•
•

Chapter 3

[115]

In the following sections, we will discuss the login process. This is more to
illustrate how the MVP pattern works and less about ASP.NET, as the code itself
is very simple.

View
We will start with the front end ASP.NET code. It basically defines a username and
password text box and a button to click for login. It also has two buttons for simple
navigational tasks—one to go to the recover password page and another to take you
to the registration page.

//FisharooWeb/Account/Login.aspx
<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
AutoEventWireup="true" CodeBehind="Login.aspx.cs" Inherits="Fisharoo.
FisharooWeb.Account.Login" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
<div class="divContainer">
 <div class="divContainerRow">
 <div class="divContainerTitle">
 Please log in.
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">
 Username:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtUsername"
 runat="server"></asp:TextBox>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">
 Password:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">

 </div>
 <div class="divContainerCell">

User Accounts

[116]

 <asp:Button ID="btnLogin" OnClick="btnLogin_Click"
 runat="server" Text="Log In" />

 <asp:Label runat="server" ID="lblMessage"
 ForeColor="Red"></asp:Label>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">

 </div>
 <div class="divContainerCell">
 <asp:LinkButton ID="lbRecoverPassword" runat="server"
 Text="Forgot Password?" OnClick="lbRecoverPa
 ssword_Click"></asp:LinkButton>

 <asp:LinkButton ID="lbRegister" runat="server"
 Text="Register" OnClick="lbRegister_Click">
 </asp:LinkButton>
 </div>
 </div>
</div>
</asp:Content>

Normally I would not show you the interfaces in our application as they are very
simple. But as the interface is very important to this pattern, we will make an
exception this time! This interface is what the code behind has to conform to in order
to be able to interact with the presenter.

//FisharooWeb/Account/Interface
namespace Fisharoo.FisharooWeb.Account.Interface
{
 public interface ILogin
 {
 void DisplayMessage(string Message);
 }
}

Here is the code behind for our application. Notice that it only handles display
logic. It does not actually make any decisions. It defers all decision making to
the presenter.

//FisharooWeb/Account/Login.aspx.cs
using System;
using System.Collections;
using System.Configuration;
using System.Data;

Chapter 3

[117]

using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooWeb.Account.Interface;
using Fisharoo.FisharooWeb.Account.Presenter;
namespace Fisharoo.FisharooWeb.Account
{
 public partial class Login : System.Web.UI.Page, ILogin
 {
 private LoginPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new LoginPresenter();
 _presenter.Init(this);
 }
 protected void btnLogin_Click(object sender, EventArgs e)
 {
 _presenter.Login(txtUsername.Text, txtPassword.Text);
 }
 protected void lbRecoverPassword_Click(object sender,
 EventArgs e)
 {
 _presenter.GoToRecoverPassword();
 }
 protected void lbRegister_Click(object sender, EventArgs e)
 {
 _presenter.GoToRegister();
 }
 public void DisplayMessage(string Message)
 {
 lblMessage.Text = Message;
 }
 }
}

User Accounts

[118]

You will notice above that in the Page_Load() we initialize our presenter. Once we
have the presenter spun up, we immediately pass a reference of the code behind to
the presenter in the _presenter.Init(this) method call. You should also notice
that there is a button-click event captured by the code behind. But all that this
method does is notify the presenter that it needs to perform the Login() method
and passes up the raw username and password values. Lastly, notice that the code
behind does implement the interface with its DisplayMessage() method. As the
presenter has access to the code behind class, it will be able to utilize any public
method as it needs to.

Presenter
Here is the presenter code:

//FisharooWeb/Account/Presenter/LoginPresenter.cs
using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.Impl;
using Fisharoo.FisharooWeb.Account.Interface;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account.Presenter
{
 public class LoginPresenter
 {
 private ILogin _view;
 private IAccountService _accountService;
 private IRedirector _redirector;
 public void Init(ILogin view)
 {
 _view = view;
 _accountService =
 ObjectFactory.GetInstance<IAccountService>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 }
 public void Login(string username, string password)

Chapter 3

[119]

 {
 string message = _accountService.Login(username,
 password);
 _view.DisplayMessage(message);
 }
 public void GoToRegister()
 {
 _redirector.GoToAccountRegisterPage();
 }
 public void GoToRecoverPassword()
 {
 _redirector.GoToAccountRecoverPasswordPage();
 }
 }
}

Model
Note that the presenter doesn't take any time to connect to the domain layer or the
model side of the house. In the Init() method it immediately sets up the objects
that it needs to get its job done. If a page needs to display data on its initial load,
this is where it would happen. Beyond the initialization of the presenter, you will
notice that the presenter has three other methods: Login(), GoToRegister(), and
GoToRecoverPassword().

The Login() method handles the button-click event that the View passes to it.
Note that even here we do not have a lot of logic to manage. The presenter is
quick to pass off the responsibility of logging the user in to the AccountService
object that we discussed earlier. It simply expects a friendly message back from the
AccountService to describe how the login process went. As we know, if it gets a
message back, it means that the login failed, otherwise the AccountService will
redirect the user appropriately. Once the login is complete, the presenter uses the
view's DisplayMessage() method to inform the user of its status.

The GoToRegister() and GoToRecoverPassword() methods simply utilize the
Redirector object to send the user to the appropriate page on the site. While this
may seem a bit extreme, remember that it follows the good design principles. If you
follow this across your entire site, you will reap the following three benefits:

1. You can easily swap out the UI and expect the same results with
minimum efforts.

2. As your redirection code is in one place, when several links use the same
method to redirect to a location, you can change this redirection in that place
and impact all the links across your site.

3. This aids the testability of your site!

User Accounts

[120]

Here are the added Redirector methods:

//FisharooCore/Core/Impl/Redirector.cs
...
 public void GoToAccountRegisterPage()
 {
 Redirect("~/Account/Register.aspx");
 }
...
 public void GoToAccountRecoverPasswordPage()
 {
 Redirect("~/Account/RecoverPassword.aspx");
 }
...

I hope you are noticing that as each file is responsible for a very specific
set of tasks, each file is also short and sweet. While this is a complex way
of thinking about things, it is very nice to work with!

Registration page
I will admit that using the standard .NET controls to create an account is so much
easier! Having said that, it was quite a bit of fun creating the registration page
for this site. I ended up using a wizard control to display the various steps of the
registration process. Our steps are as follows:

1 I always start by grabbing the email, username, and password of the users.
There is validation in place for all of these. We want to validate their email
addresses for their authenticity. We also want to make sure that their
username conforms to some length rules. Then we allow them to enter their
password and require them to re-enter their password to verify that what
they have entered is what they meant to enter. And of course, all these fields
are required!

 //FisharooWeb/Account/Register.aspx
 <asp:WizardStep Title="Create Account" runat="server" ID=
 "wsUsernameAndPassword">
 <div class="divContainerRow">
 <div class="divContainerTitle">
 Creating an account with us is a quick process! Let's
 get started by creating your login.
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">

Chapter 3

[121]

 Email:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator
 ID="valRequiredEmail"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtEmail"
 ErrorMessage="Please provide your email
 address!">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator
 ID="RegularExpressionValidator2"
 runat="server"
 ForeColor="Red"
 ErrorMessage="This does not appear to be a valid
 email address!"
 ControlToValidate="txtEmail"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-
 .]\w+)*\.\w+([-.]\w+)*">
 *</asp:RegularExpressionValidator>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Username:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtUsername"
 runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator
 ID="valRequiredUsername"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtUsername"
 ErrorMessage="Please provide a
 username!">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator
 ID="valUsernameValidation"
 runat="server"
 ForeColor="Red"
 ErrorMessage="Your username must be at least 6
 letters or numbers and no more than 30."
 ControlToValidate="txtUsername"
 ValidationExpression="^[a-zA-Z0-

User Accounts

[122]

 9.]{6,30}">*</asp:RegularExpressionValidator>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Password:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtPassword" TextMode="Password"
 runat="server"></asp:TextBox>
 <asp:RegularExpressionValidator
 ID="RegularExpressionValidator1"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtPassword"
 ValidationExpression="(?=^.{5,}$)(?=.*\d)(?=.*\
 W+)(?![.\n]).*$"
 Display="Dynamic"
 ErrorMessage="Your password must be at least 8
 characters long and contain at
 least one upper case letter, one lower case letter,
 one number, and one special character">*</asp:
 RegularExpressionValidator>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Verify Password:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtVerifyPassword" TextMode="Password"
 runat="server"></asp:TextBox>
 <asp:CompareValidator
 ID="valComparePasswords"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtPassword"
 ControlToCompare="txtVerifyPassword"
 ErrorMessage="The passwords you entered do no match!"
 Display="Dynamic">*</asp:CompareValidator>
 </div>
 </div>
</asp:WizardStep>

Chapter 3

[123]

2. The next step is to try and get some descriptive information about the users
such as their first names and last names. When building a community site
of any type, it is usually important that you also harvest their birthday and
zip code or postal code. This lets you know what is appropriate for them and
where in the world they are. There is validation in place to make sure that the
date of birth they enter is a valid date and that the zip code is a valid format
(for US). All these fields are also required fields.

 //FisharooWeb/Account/Register.aspx
 <asp:WizardStep Title="About You" runat="server" ID="wsWhoYouAre">
 <div class="divContainerRow">
 <div class="divContainerTitle">
 Tell us a little bit about yourself!
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 First Name:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtFirstName"
 runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator
 ID="valRequireFirstName"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtFirstName"
 ErrorMessage="Please provide your first
 name!">*</asp:RequiredFieldValidator>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Last Name:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtLastName"
 runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator
 ID="valRequiredLastName"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtLastName"
 ErrorMessage="Please provide your last
 name!">*</asp:RequiredFieldValidator>

User Accounts

[124]

 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Birthday:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtBirthday" runat="server"
 Text=""></asp:TextBox>
 <asp:CompareValidator
 ID="valDate"
 runat="server"
 ForeColor="Red"
 ControlToValidate="txtBirthday"
 Type="Date"
 Operator="DataTypeCheck"
 ErrorMessage="Please enter a valid
 date!">*</asp:CompareValidator>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell divContainerCellHeader">
 Zipcode:
 </div>
 <div class="divContainerCell">
 <asp:TextBox ID="txtZipcode" runat="server"
 Text=""></asp:TextBox>
 <asp:RegularExpressionValidator
 ID="valZipcode" ControlToValidate="txtZipcode"
 runat="server"
 ForeColor="Red"
 ErrorMessage="This must be a valid US zip code!"
 ValidationExpression="^(\d{5}-
 \d{4}|\d{5}|\d{9})$|^([a-zA-Z]\d[a-zA-Z] \d[a-zA-
 Z]\d)$">*</asp:RegularExpressionValidator>
 </div>
 </div>
</asp:WizardStep>

3. The third step presents the terms and conditions. This is the one step that
requires you to fetch some data for display. This data is retrieved from the
TermRepository.GetCurrentTerm() (which we covered earlier). All the
user needs to do here is read the terms (most of your users won't do this of
course!) and check the box indicating that they agree with your terms.

Chapter 3

[125]

 //FisharooWeb/Account/Register.aspx
 <asp:WizardStep>
 <div class="divContainerRow">
 <div class="divContainerCell">
 <asp:TextBox TextMode="MultiLine" Columns="40" Rows="10"
 ID="txtTerms" runat="server">
 </asp:TextBox>

 <asp:CheckBox ID="chkAgreeWithTerms" runat="server"
 Text="I agree with the terms" />
 <asp:Label ID="lblTermID" runat="server"
 Visible="false"></asp:Label>
 </div>
 </div>
 </asp:WizardStep>

4. Finally, you should present some form of CAPTCHA so that we can make
sure that the person signing up is a person and not a spam bot! You will
notice that this appears to be very simple on the front end. The Image tag is
simply calling JpegImage.aspx as its source. Here is the WizardStep. After
that is the source code for the JpegImage.aspx page.

 //FisharooWeb/Account/Register.aspx
 <asp:WizardStep Title="CAPTCHA" ID="wsCaptcha" runat="server">
 <div class="divContainerRow">
 <div class="divContainerTitle">
 CAPTCHA - Completely Automated Turing Test To Tell
 Computers and Humans Apart
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell">
 <asp:Image runat="server"
 ImageUrl="~/images/CaptchaImage/
 JpegImage.aspx" />
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerTitle">
 Please copy what you see in the image above into the
 box below.
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCell">
 <asp:TextBox ID="txtCaptcha"
 runat="server"></asp:TextBox>
 </div>
 </div>
</asp:WizardStep>

User Accounts

[126]

You will notice that the JpegImage page is using the Captcha and WebContext
objects. This page generates a random number, which it then stores in WebContext.
CaptchaImageText. It then instantiates and configures the Captcha object. The page
then flushes its output and changes its content type to that of an image (image/jpeg).
The page then saves the image to the output stream so that the image tag can render
the image to the user.

//FisharooWeb/Images/CaptchaImage/JpegImage.aspx.cs
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.Impl;
using StructureMap;
public partial class JpegImage : System.Web.UI.Page
{
 private Random random = new Random();
 private IWebContext _webContext;
 private void Page_Load(object sender, System.EventArgs e)
 {
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _webContext.CaptchaImageText = GenerateRandomCode();
 ICaptcha ci = ObjectFactory.GetInstance<ICaptcha>();
 ci.Text = _webContext.CaptchaImageText;
 ci.Width = 200;
 ci.Height = 50;
 ci.FamilyName = "Century Schoobook";
 Response.Clear();
 Response.ContentType = "image/jpeg";
 ci.Image.Save(Response.OutputStream, ImageFormat.Jpeg);
 ci.Dispose();
 }
 private string GenerateRandomCode()
 {
 string s = "";
 for (int i = 0; i < 6; i++)

Chapter 3

[127]

 s = String.Concat(s, this.random.Next(10).ToString());
 return s;
 }
 override protected void OnInit(EventArgs e)
 {
 InitializeComponent();
 base.OnInit(e);
 }
 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
}

Knowing that the code behind is really just a middle man responsible for passing
data to and from the presenter, I am going to show you the code (because I hate not
having all the code to look at!) but won't spend any time going over it.

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooWeb.Account.Presenter;
namespace Fisharoo.FisharooWeb.Account
{
 public partial class Register : System.Web.UI.Page, IRegister
 {
 private RegisterPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new RegisterPresenter();
 _presenter.Init(this);
 }
 protected void wizRegister_ActiveStepChanged(object sender,
 EventArgs e)
 {

User Accounts

[128]

 if(wizRegister.ActiveStepIndex == 1)
 {
 ViewState.Add("password",txtPassword.Text);
 }
 }
 protected void wizRegister_FinishButtonClicked(object sender,
 EventArgs e)
 {
 _presenter.Register(
 txtUsername.Text,ViewState["password"].ToString(),
 txtFirstName.Text,txtLastName.Text,txtEmail.Text,
 txtZipcode.Text,Convert.ToDateTime(txtBirthday.Text),
 txtCaptcha.Text, chkAgreeWithTerms.Checked,
 Convert.ToInt32(lblTermID.Text));
 }
 protected void lbLogin_Click(object sender, EventArgs e)
 {
 _presenter.LoginLinkClicked();
 }
 protected void wizRegister_NextButtonClick(object sender,
 EventArgs e)
 {
 lblErrorMessage.Text = "";
 }
 public void ShowErrorMessage(string Message)
 {
 lblErrorMessage.Text = Message;
 }
 public void ToggleWizardIndex(int index)
 {
 wizRegister.ActiveStepIndex = index;
 }
 public void ShowAccountCreatedPanel()
 {
 pnlAccountCreated.Visible = true;
 pnlCreateAccount.Visible = false;
 }
 public void ShowCreateAccountPanel()
 {
 pnlAccountCreated.Visible = false;
 pnlCreateAccount.Visible = true;
 }
 public void LoadTerms(Term term)
 {
 if (term != null)

Chapter 3

[129]

 {
 lblTermID.Text = term.TermID.ToString();
 txtTerms.Text = term.Terms;
 }
 }
 }
}

Now we get to the meat and potatoes of this page. Once we have gathered all the
data, we need to process it. Enter the presenter (that was fun to say!).

using System;
using System.Collections.Generic;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooCore.Core.Impl;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account.Presenter
{
 public class RegisterPresenter
 {
 private IRegister _view;
 private IAccountRepository _accountRepository;
 private IPermissionRepository _permissionRepository;
 private ITermRepository _termRepository;
 private IAccountService _accountService;
 private IWebContext _webContext;
 private IEmail _email;
 private IConfiguration _configuration;
 public void Init(IRegister View)
 {
 _view = View;
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();

User Accounts

[130]

 _permissionRepository =
 ObjectFactory.GetInstance<IPermissionRepository>();
 _termRepository =
 ObjectFactory.GetInstance<ITermRepository>();
 _accountService =
 ObjectFactory.GetInstance<IAccountService>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _email = ObjectFactory.GetInstance<IEmail>();
 _configuration =
 ObjectFactory.GetInstance<IConfiguration>();
 _view.LoadTerms(_termRepository.GetCurrentTerm());
 }
 public void LoginLinkClicked()
 {
 IRedirector redirector =
 ObjectFactory.GetInstance<IRedirector>();
 redirector.GoToAccountLoginPage();
 }
 public void Register(string Username, string Password,
 string FirstName, string LastName, string Email,
 string Zip, DateTime BirthDate, string Captcha, bool
 AgreesWithTerms, Int32 TermID)
 {
 if (AgreesWithTerms)
 {
 if (Captcha == _webContext.CaptchaImageText)
 {
 FisharooCore.Core.Domain.Account a =
 new FisharooCore.Core.Domain.Account();
 a.FirstName = FirstName;
 a.LastName = LastName;
 a.Email = Email;
 a.BirthDate = BirthDate;
 a.Zip = Zip;
 a.Username = Username;
 a.Password = Cryptography.Encrypt(Password,
 Username);
 a.TermID = TermID;
 if (_accountService.EmailInUse(Email))
 {
 _view.ShowErrorMessage("This email is already
 in use!");
 _view.ToggleWizardIndex(0);
 }
 else if (_accountService.UsernameInUse(Username))

Chapter 3

[131]

 {
 _view.ShowErrorMessage("This username is
 already in use!");
 _view.ToggleWizardIndex(0);
 }
 else
 {
 _accountRepository.SaveAccount(a);
 List<Permission> permissions =
 _permissionRepository.GetPermissionByName("PUBLIC");
 List<FisharooCore.Core.Domain.Account>
 newAccounts = _accountRepository.
 GetAccountByEmail(Email);
 if(permissions.Count > 0 && newAccounts.Count
 > 0)
 {
 _accountRepository.AddPermission(
 newAccounts[0], permissions[0]);
 }
 _email.SendEmailAddressVerificationEmail(
 a.Username,a.Email);
 _view.ShowAccountCreatedPanel();
 }
 }
 else
 {
 _view.ShowErrorMessage("Your entry doesn't match
 the CAPTCHA image. Please try again.");
 }
 }
 else
 {
 _view.ToggleWizardIndex(2);
 _view.ShowErrorMessage("You can't create an account
 on this site if you don't agree with our terms!");
 }
 }
 }
}

You will notice that most of this code is just more validation or navigation logic
such as "did they agree with the terms?", or "did they enter the correct CAPTCHA?".
Nothing fancy here!

User Accounts

[132]

The new thing here, which is somewhat interesting, is the mention of the Email
object. You may recall when we built the Email object a while back. It provides us
with the facilities to send an email in various ways. What we have done here is to
extend the Email object so that it also encapsulates the messages that are sent by the
system. Here is the new code for the Email object that allows us to send an email
verification of the validity and ownership of an email address.

//FisharooCore/Core/Impl/Email.cs
 public void SendEmailAddressVerificationEmail(string
 Username, string To)
 {
 string msg = "Please click on the link below or paste it
 into a browser to verify your email account.

" +
 "<a href=\"" + _configuration.RootURL +
 "Account/VerifyEmail.aspx?a=" +
 Cryptography.Encrypt(Username, "verify")
 + "\">" +
 _configuration.RootURL +
 "Account/VerifyEmail.aspx?a=" +
 Cryptography.Encrypt(Username, "verify")
 + "";
 SendEmail(To, "", "", "Account created! Email
 verification required.", msg);
 }

Also notice that the link that is embedded here encrypts the registrants' username
with a salt of "verify". This way we know who we are dealing with after they receive
the email and follow the link back to our site (more about this in the next section).

In the Wizard's stepped environment, it is very easy to present small chunks of data
like this without having too much coding overhead. While it is not as easy as the
.NET membership widgets, I think it is quite a bit more flexible. Also, we can easily
test this whole process now.

Email verification
We lightly touched upon this subject in the previous section. Basically, the
registration process triggers an email to be sent to the newly registered user asking
them to verify their email address. This process usually sends an email to the email
address that the user provided us when they signed up. If the user can receive the
email on their end, then we know that the email address is valid. If they can click on
the link that is embedded in the email, then we know that they have access to the
email as well. This doesn't necessarily mean that they own the account, but we can't
really verify that, and hence we can't really worry about it.

Chapter 3

[133]

The item we didn't cover above is the page that receives the click from the link in
the email. This series of code is relatively simple. So to start, I am going to list all of
the files in order of use (design, code behind, interface, and presenter). Then we
can discuss it.

//FisharooWeb/Account/VerifyEmail.aspx
<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
AutoEventWireup="true" CodeBehind="VerifyEmail.aspx.cs"
Inherits="Fisharoo.FisharooWeb.Account.VerifyEmail" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
 <asp:Label ID="lblMsg" runat="server" ForeColor="Red"></asp:Label>
</asp:Content>
//FisharooWeb/Account/VerifyEmail.aspx.cs
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooWeb.Account.Interface;
using Fisharoo.FisharooWeb.Account.Presenter;
namespace Fisharoo.FisharooWeb.Account
{
 public partial class VerifyEmail : System.Web.UI.Page,
 IVerifyEmail
 {
 private VerifyEmailPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new VerifyEmailPresenter();
 _presenter.Init(this);
 }
 public void ShowMessage(string Message)
 {
 lblMsg.Text = Message;
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

User Accounts

[134]

//FisharooWeb/Account/Interface/IVerifyEmail.cs
namespace Fisharoo.FisharooWeb.Account.Interface
{
 public interface IVerifyEmail
 {
 void ShowMessage(string Message);
 }
}

//FisharooWeb/Account/Presenter/VerifyEmailPresenter.cs
using System;
using System.Collections.Generic;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Impl;
using Fisharoo.FisharooWeb.Account.Interface;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account.Presenter
{
 public class VerifyEmailPresenter
 {
 private IWebContext _webContext;
 private IAccountRepository _accountRepository;
 public void Init(IVerifyEmail _view)
 {
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 string username =
 Cryptography.Decrypt(_webContext.
 UsernameToVerify, "verify");
 List<FisharooCore.Core.Domain.Account> accounts =
 _accountRepository.GetAccountByUsername(username);
 if(accounts.Count == 1)
 {

Chapter 3

[135]

 accounts[0].EmailVerified = true;
 _accountRepository.SaveAccount(accounts[0]);
 _view.ShowMessage("Your email address has been
 successfully verified!");
 }
 else
 {
 _view.ShowMessage("There appears to be something wrong
with your verification link! Please try again. If you are having
issues by clicking on the link, please try copying the URL from your
email and pasting it into your browser window.");
 }
 }
 }
}

The reason that I listed out the code this way was to show you that all the logic is
pretty much lodged in the presenter (as it should be!). Notice that we attempt to get
the username from the WebContext (query string in this case) and decrypt it with
our "verify" salt. Once we have this username, we attempt to retrieve the Account
using AccountRepository.GetAccountByUsername(). If we got an account back,
we toggle the Account.EmailVerified property to true and save it back into
the repository.

Password recovery
This is another simple page that I can quickly show you the code for.

//FisharooWeb/Account/RecoverPassword.aspx
<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
AutoEventWireup="true" CodeBehind="RecoverPassword.aspx.cs"
Inherits="Fisharoo.FisharooWeb.Account.RecoverPassword" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
 <asp:Panel ID="pnlRecoverPassword" runat="server">
 <div class="divContainer">
 <div class="divContainerRow">
 <div class="divContainerTitle">
 Please enter your email address below
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">
 Email:
 </div>
 <div class="divContainerCell">

User Accounts

[136]

 <asp:TextBox ID="txtEmail"
 runat="server"></asp:TextBox>
 </div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">

 </div>
 <div class="divContainerCell">
 <asp:Button ID="btnRecoverPassword" Text="Recover
 Password" runat="server"
 OnClick="btnRecoverPassword_Click" />
 </div>
 </div>
 </div>
 </asp:Panel>
 <div class="divContainer">
 <div class="divContainerRow">
 <div class="divContainerCell">
 <asp:Label ID="lblMessage" runat="server"
 ForeColor="Red"></asp:Label>
 </div>
 </div>
 </div>
</asp:Content>

//FisharooWeb/Account/RecoverPassword.aspx.cs
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooWeb.Account.Interface;
using Fisharoo.FisharooWeb.Account.Presenter;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account

Chapter 3

[137]

{
 public partial class RecoverPassword : System.Web.UI.Page,
 IRecoverPassword
 {
 private RecoverPasswordPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new RecoverPasswordPresenter();
 _presenter.Init(this);
 }
 protected void btnRecoverPassword_Click(object sender,
 EventArgs e)
 {
 _presenter.RecoverPassword(txtEmail.Text);
 }
 public void ShowMessage(string Message)
 {
 lblMessage.Text = Message;
 }
 public void ShowRecoverPasswordPanel(bool Value)
 {
 pnlRecoverPassword.Visible = Value;
 }
 }
}

//FisharooWeb/Account/Interface/IRecoverPassword.cs
namespace Fisharoo.FisharooWeb.Account.Interface
{
 public interface IRecoverPassword
 {
 void ShowMessage(string Message);
 void ShowRecoverPasswordPanel(bool Value);
 }
}

//FisharooWeb/Account/Presenter/RecoverPasswordPresenter.cs
using System;
using System.Collections.Generic;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;

User Accounts

[138]

using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Impl;
using Fisharoo.FisharooWeb.Account.Interface;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account.Presenter
{
 public class RecoverPasswordPresenter
 {
 private IRecoverPassword _view;
 private IEmail _email;
 private IAccountRepository _accountRepository;
 public RecoverPasswordPresenter()
 {
 _email = ObjectFactory.GetInstance<IEmail>();
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 }
 public void Init(IRecoverPassword View)
 {
 _view = View;
 }
 public void RecoverPassword(string Email)
 {
 List<FisharooCore.Core.Domain.Account> accounts = new
 List<FisharooCore.Core.Domain.Account>();
 accounts = _accountRepository.GetAccountByEmail(Email);
 if(accounts.Count == 1)
 {
 _email.SendPasswordReminderEmail(accounts[0].Email,
 accounts[0].Password, accounts[0].Username);
 _view.ShowRecoverPasswordPanel(false);
 _view.ShowMessage("An email was sent to your
 account!");
 }
 else
 {
 _view.ShowRecoverPasswordPanel(true);
 _view.ShowMessage("We couldn't find the account you
 requested.");
 }

 }
 }
}

Chapter 3

[139]

This page asks the user to provide their email address. It then looks up the
account with that email address. If it finds the account it then uses the Email.
SendPasswordReminderEmail() method to send the user's decrypted password to
their email account.

The SendPasswordReminderEmail() method looks like this.

//FisharooCore/Core/Impl/Email.cs
 public void SendPasswordReminderEmail(string To,
 string EncryptedPassword, string Username)
 {
 string Message = "Here is the password you requested: " +
 Cryptography.Decrypt(EncryptedPassword, Username);
 SendEmail(To, "", "", "Password Reminder", Message);
 }

Edit account
To save a bit of space I am going to forgo showing you the design portion of this
code. It is just a basic form with text boxes and the like, and has the same validation
requirements as the registration form did. There are a couple of anomalies however
in the presenter logic in that if users don't change their password, we wouldn't want
to save an empty string as their password. And if they do change their email address,
we want to resend the email validation email.

//FisharooWeb/Account/EditAccount.aspx
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooWeb.Account.Interface;
using Fisharoo.FisharooWeb.Account.Presenter;
namespace Fisharoo.FisharooWeb.Account
{
 public partial class EditAccount : System.Web.UI.Page,
 IEditAccount

User Accounts

[140]

 {
 private EditAccountPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new EditAccountPresenter();
 _presenter.Init(this, IsPostBack);
 }
 protected void btnSave_Click(object sender, EventArgs e)
 {
 _presenter.UpdateAccount(txtOldPassword.
 Text,txtNewPassword.Text,lblUsername.Text, txtFirstName.Text,
 txtLastName.Text, txtEmail.Text,
 txtZipCode.Text,Convert.
 ToDateTime(txtBirthDate.Text));
 }
 public void ShowMessage(string Message)
 {
 lblMessage.Text = Message;
 }
 public void
 LoadCurrentInformation
 (FisharooCore.Core.Domain.Account account)
 {
 txtBirthDate.Text =
 String.Format("{0:d}",account.BirthDate);
 txtEmail.Text = account.Email;
 txtFirstName.Text = account.FirstName;
 txtLastName.Text = account.LastName;
 txtZipCode.Text = account.Zip;
 lblUsername.Text = account.Username;
 }
 }
}

//FisharooWeb/Account/Interface/IEditAccount
namespace Fisharoo.FisharooWeb.Account.Interface
{
 public interface IEditAccount
 {
 void ShowMessage(string Message);
 void LoadCurrentInformation(FisharooCore.Core.Domain.Account
 account);
 }
}

Chapter 3

[141]

//FisharooWeb/Account/Presenter/EditAccountPresenter.cs
using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Impl;
using Fisharoo.FisharooWeb.Account.Interface;
using StructureMap;
namespace Fisharoo.FisharooWeb.Account.Presenter
{
 public class EditAccountPresenter
 {
 private IEditAccount _view;
 private IUserSession _userSession;
 private IAccountService _accountService;
 private IAccountRepository _accountRepository;
 private FisharooCore.Core.Domain.Account account;
 private IRedirector _redirector;
 private IEmail _email;
 public EditAccountPresenter()
 {
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 _accountService =
 ObjectFactory.GetInstance<IAccountService>();
 _email = ObjectFactory.GetInstance<IEmail>();
 }
 public void Init(IEditAccount View, bool IsPostBack)
 {
 _view = View;
 if (_userSession.CurrentUser != null)
 account = _userSession.CurrentUser;
 else

User Accounts

[142]

 _redirector.GoToAccountLoginPage();
 if(!IsPostBack)
 LoadCurrentUser();
 }
 private void LoadCurrentUser()
 {
_view.LoadCurrentInformation(_userSession.CurrentUser);
 }
 public void UpdateAccount(string OldPassword, string
 NewPassword, string Username,
 string FirstName, string LastName, string Email,
 string ZipCode, DateTime BirthDate)
 {
 //verify that this user is the same as the logged in user
 if(Cryptography.Encrypt(OldPassword,Username) ==
 account.Password)
 {
 if (Email != _userSession.CurrentUser.Email)
 {
 if (!_accountService.EmailInUse(Email))
 {
 account.Email = Email;
 account.EmailVerified = false;
 _email.SendEmailAddressVerificationEmail(
 account.Username, Email);
 }
 else
 {
 _view.ShowMessage("The email your entered is
 already in our system!");
 return;
 }
 }
 if(!string.IsNullOrEmpty(NewPassword))
 account.Password =
 Cryptography.Encrypt(NewPassword, Username);

 account.FirstName = FirstName;
 account.LastName = LastName;
 account.Zip = ZipCode;
 account.BirthDate = BirthDate;
 _accountRepository.SaveAccount(account);
 _view.ShowMessage("Your account has been updated!");
 }
 else

Chapter 3

[143]

 {
 _view.ShowMessage("The password you entered doesn't
 match your current password!
 Please try again.");
 }
 }
 }
}

One thing to notice with the presenter is that when it is first initialized, it loads an
account and passes that data to the view for initial display. Then once the user edits
their data, there are several validation steps that occur. The most important is that of
the password and the email.

If the password is not changed, we want to make sure that we do not store an empty
value to the system!

For the email, if a user changes it, we want to make sure that we resend the
verification email again and flag the account as not having a validated email address.

Beyond that we are simply updating the account object via the AccountRepository.
Save() method.

Implementing security
Now that we have all of our plumbing in place, we are at a point that we can lock
down our site. Up until now someone could go wherever they wanted to on the site
and we would not be able to stop them at all!

SiteMap
The primary .NET widget that we will use to lock down our site is the ASP.NET
sitemap. This is a wonderful tool that can be used not only for security but also
to display breadcrumb trails, your primary navigation, and many other useful
page/file oriented tasks.

A sitemap file is made up of several siteMapNodes. Each node contains things such
as URL, title, description, and roles by default. You can also add your own custom
attributes. In our site we will use attributes for identifying links that belong in the
topnav, the footer nav, as well as allowing the siteMap to help us with each page's
title. Our current siteMap looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/
 SiteMap-File-1.0" >
 <siteMapNode url="default.aspx" title="Home" description="Home

User Accounts

[144]

 page" pageTitle="Welcome to Fisharoo.com!"
 roles="PUBLIC">
<!-- TOP NAV NODES -->
 <siteMapNode url="/account/default.aspx" title="My Account"
 description="" pageTitle="" roles="PUBLIC">
 <siteMapNode url="/account/EditAccount.aspx" title="Edit
 Account" description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/Login.aspx" title="Login"
 description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/RecoverPassword.aspx"
 title="Recover Password" description="Recover Your
 Password" pageTitle="Recover your password"
 roles="PUBLIC" />
 <siteMapNode url="/account/Register.aspx" title="Register"
 description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/VerifyEmail.aspx" title="Verify
 Email" description="Verify your email address"
 pageTitle="Email Verification" roles="PUBLIC" />
 <siteMapNode url="/account/AccessDenied.aspx" title="Access
 Denied" description="Access Denied"
 pageTitle="Access Denied" roles="PUBLIC" />
 </siteMapNode>
 <siteMapNode url="/profile/default.aspx" title="Profile"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/friends/default.aspx" title="Friends"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/mail/default.aspx" title="Mail"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/galleries/default.aspx" title="Galleries"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/groups/default.aspx" title="Groups"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/virtualtanks/default.aspx" title="Virtual
 Tanks" description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/forum/default.aspx" title="Forum"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/blogs/default.aspx" title="Blogs"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /TOP NAV NODES -->

Chapter 3

[145]

<!-- FOOTER NODES -->
 <siteMapNode url="AboutUs.aspx" title="About Us"
 description="About Us" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Advertisers.aspx" title="Advertisers"
 description="Click here to learn more about
 advertising on our site" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Help.aspx" title="Help" description="Click
 here to enter our help section" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Privacy.aspx" title="Privacy"
 description="Click here to learn about our
 privacy policy" footernav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Terms.aspx" title="Terms" description="Click
 here to learn about our terms and conditions"
 footernav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /FOOTER NODES-->
<!-- NONE NAVIGATION NODES -->
 <siteMapNode url="Search.aspx" title="Search"
 description="Click here to perform a site
 search" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Error.aspx" title="Error" description="An
 error has occured" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /NONE NAVIGATION NODES -->
 </siteMapNode>
</siteMap>

SiteMap wrapper
As with all of the other controls and classes that .NET exposes to us, it is a good
idea to wrap the SiteMap class. I did this by creating a Navigation class. It not only
exposes all the properties that SiteMap does, but it also adds a bit more control to the
way we interact with our nodes.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web;
using Fisharoo.FisharooCore.Core.Domain;
using StructureMap;

User Accounts

[146]

namespace Fisharoo.FisharooCore.Core.Impl
{
 [Pluggable("Default")]
 public class Navigation : INavigation
 {
 private IUserSession _userSession;
 private IRedirector _redirector;
 private Account _account;
 public Navigation()
 {
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 _account = _userSession.CurrentUser;
 }

 public List<SiteMapNode> AllNodes()
 {
 List<SiteMapNode> nodes = new List<SiteMapNode>();
 nodes.Add(SiteMap.RootNode);
 foreach (SiteMapNode node in SiteMap.RootNode.ChildNodes)
 {
 nodes.Add(node);
 }
 return nodes;
 }
 public List<SiteMapNode> PrimaryNodes()
 {
 List<SiteMapNode> primaryNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["topnav"] != null &&
 CheckAccessForNode(node))
 primaryNodes.Add(node);
 }
 return primaryNodes;
 }
 public List<SiteMapNode> FooterNodes()
 {
 List<SiteMapNode> footerNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["footernav"] != null &&
 CheckAccessForNode(node))
 footerNodes.Add(node);

Chapter 3

[147]

 }
 return footerNodes;
 }
 private bool CheckAccessForNode(SiteMapNode node)
 {
 if (!node.Roles.Contains("PUBLIC"))
 {
 if (_account != null && _account.Permissions != null
 && _account.Permissions.Count > 0)
 {
 foreach (string role in node.Roles)
 {
 if (!_account.HasPermission(role))
 return false;
 }
 return true;
 }
 else
 return false;
 }
 return true;
 }
 public void CheckAccessForCurrentNode()
 {
 bool result = CheckAccessForNode(CurrentNode);
 if(result)
 return;
 else
 _redirector.GoToAccountAccessDenied();
 }
 public SiteMapNode RootNode
 {
 get { return SiteMap.RootNode; }
 }
 public SiteMapNode CurrentNode
 {
 get
 {
 return SiteMap.CurrentNode;
 }
 }
 }
}

User Accounts

[148]

All nodes
By default the SiteMap class doesn't return all nodes so to speak. It provides you
with a call to the RootNode and a call to its children. As you can see in our first
method, we simply created an AllNodes() call that returns "all nodes".

 public List<SiteMapNode> AllNodes()
 {
 List<SiteMapNode> nodes = new List<SiteMapNode>();
 nodes.Add(SiteMap.RootNode);
 foreach (SiteMapNode node in SiteMap.RootNode.ChildNodes)
 {
 nodes.Add(node);
 }
 return nodes;
 }

Navigation
Our site will have several navigation sections. Here we have:

Top navigation
Primary navigation
Secondary navigation
Left navigation
Footer navigation

If we had to dig through all of the navigation collections, each time we needed them
we may find it quite cumbersome. Instead we will add methods to the classes that
produce the required sub-selection of nodes.

The PrimaryNodes() method is the first example of such a method. It produces a list
of nodes that go in the primary navigation section by iterating through all the nodes
returned by the AllNodes() method looking for each node with a custom topnav
attribute. You will notice a special filter though in addition to this. With each topnav
node that is found, a security check is performed to see if the current user should
have access to this node. If not, the node is not displayed.

 public List<SiteMapNode> PrimaryNodes()
 {
 List<SiteMapNode> primaryNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["topnav"] != null &&
 CheckAccessForNode(node))

•

•

•

•

•

Chapter 3

[149]

 primaryNodes.Add(node);
 }
 return primaryNodes;
 }

The FooterNodes() method is exactly the same as the PrimaryNodes() method
with the exception that it looks for a footernav attribute. This method also checks to
make sure that the user has access to a specified collection of nodes.

 public List<SiteMapNode> FooterNodes()
 {
 List<SiteMapNode> footerNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["footernav"] != null &&
 CheckAccessForNode(node))
 footerNodes.Add(node);
 }
 return footerNodes;
 }

Checking access
This brings us to the CheckAccessToNode() method, which we are using in our
other methods. This method looks at the passed in node and checks its Roles
collection. It first checks to see if the PUBLIC role is specified. If so, all remaining
checks are not performed. We then move to see if there is an account present, that
is, whether any user has logged in. If there is a user, we check their permissions
property. If that exists, we check to see if there are any permissions in the permission
list. We then iterate through each role specified in the node and check to make
sure that the account has that permission. If the account doesn't contain any of the
specified permissions we return false. If all the permissions are valid then we
return true.

 private bool CheckAccessForNode(SiteMapNode node)
 {
 if (!node.Roles.Contains("PUBLIC"))
 {
 if (_account != null && _account.Permissions != null
 && _account.Permissions.Count > 0)
 {
 foreach (string role in node.Roles)
 {
 if (!_account.HasPermission(role))
 return false;
 }

User Accounts

[150]

 return true;
 }
 else
 return false;
 }
 return true;
 }

Security
Up until now we have discussed navigational aspects of this class. But seeing
how security is rolled into this so deeply, it makes sense that we would also have
something to check the current node for security reasons rather than just displaying
links. This brings us to the CheckAccessForCurrentNode() method.

The CheckAccessForCurrentNode() method wraps the CheckAccessForNode()
method and passes in the current SiteMap node. If there is sufficient access to the
current node, no action is performed. However, if access to the current node is
denied, then the user is automatically redirected to the access denied page by way of
the Redirector class.

 public void CheckAccessForCurrentNode()
 {
 bool result = CheckAccessForNode(CurrentNode);
 if(result)
 return;
 else
 _redirector.GoToAccountAccessDenied();
 }

Implementing navigation and security
With this wrapper in place we now have a way to easily restrict where our users go
and what forms of navigation they see. All we have to do is make calls into this class
to get a list of nodes for the appropriate navigation section. We also need to make a
call into the CheckAccessForCurrentNode() method at some global point.

In our case these calls will be made from our master page as it controls both global
access and navigational display. So the first thing we will do is add a call to the
CheckAccessForCurrentNode() in the Page_Load() method of the SiteMaster.
Master page.

 protected void Page_Load(object sender, EventArgs e)
 {
 _navigation.CheckAccessForCurrentNode();
 ...

Chapter 3

[151]

For navigational purposes (not really covered too much to this point) we have a
simple repeater that will iterate over SiteMapNodes. In the design view we have a
repeater that looks like this:

<asp:Repeater ID="repPrimaryNav" OnItemDataBound="repPrimaryNav_
ItemDataBound" runat="server">
 <ItemTemplate>
 <asp:HyperLink ID="linkPrimaryNav" CssClass="PrimaryNavLink"
 runat="server"></asp:HyperLink>
 </ItemTemplate>
</asp:Repeater>

Then for the Page_Load() method, we have the following binding code in the
Master page's code behind:

repPrimaryNav.DataSource = _navigation.PrimaryNodes();
repPrimaryNav.DataBind();

If we only had this code, we wouldn't have any navigation. This is where the
OnItemDataBound="repPrimaryNav_ItemDataBound" property comes in handy.
It basically states that the repPrimaryNav_ItemDataBound() method will be our
OnItemDataBound event handler.

This method will be responsible for displaying all the links. It also takes care of
formatting the links to properly show which section you are in.

protected void repPrimaryNav_ItemDataBound(object sender,
RepeaterItemEventArgs e)
{
 HyperLink linkPrimaryNav = e.Item.FindControl("linkPrimaryNav")
 as HyperLink;
 SiteMapNode node = (SiteMapNode) e.Item.DataItem;
 linkPrimaryNav.Text = node.Title;
 linkPrimaryNav.NavigateUrl = node.Url;
 if (node == _navigation.CurrentNode || node ==
 _navigation.CurrentNode.ParentNode)
 {
 linkPrimaryNav.CssClass = "PrimaryNavLinkActive";
 }
}

User Accounts

[152]

Summary
In this chapter we implemented user registration. This allowed us to gather data
about our users so that they could become a member of our community. In addition
to gathering the data, we briefly covered the ways to store some of the more
important information. We also created a CAPTCHA tool to reduce the amount of
spam our community would have to deal with. We also provided some tools
for the newly registered users so that they could remind themselves of their
passwords and edit their account data. Once the registration tools were put in
place, we then discussed and implemented an easy way to manage sitewide
navigation and security.

With the account creation and management tools in place, we can now move on
to other chapters. It was important to get this chapter under our belts as all the
following chapters will use many of the features we created here.

User Profiles
While user accounts are a requirement for the system to work, user profiles are a
must for your community to work. A user profile allows your users to share all sorts
of details about themselves. It should be very flexible so that you can easily extend
the capabilities of your users' profiles as your community matures and morphs
over time.

In this chapter we will discuss the basics of setting up a user profile. This will include
collecting various personal tidbits about your users, some contact information, and
so on. We will also go over the concept of allowing your users to upload an avatar
(an icon or image associated with a user's profile) as well as integrating with a
third-party avatar service, Gravatar. Part of the uploading of a custom avatar will
take us into some image manipulation so that all avatars are of equal size and shape
on our site!

With this out of the way we can move on to putting the users' public profile together
and discuss how that profile can be accessed with a custom homepage or fancy URL.
Once we have collected some data about our users—for other users of our site to
see—we will need to discuss giving our users control of their privacy settings and
allowing them to lock down the display of that data.

User Profiles

[154]

The last part of this chapter will get into the creation of a news feed, which keeps
track of what our users are doing. This will be a very important feature once the
concept of Friends comes into play in the following chapter.

Chapter 4

[155]

Problem
I am not going to discuss the profiles capability of .NET for the same reason that I
chose not to write about the membership capabilities of .NET. This topic is widely
covered in many books and on many of the top blog sites. I thought it might be more
interesting to discuss a custom implementation of creating a profile and dynamic
attributes so that a member's profile could be expanded with time. Also, this will
get us a bit deeper into LINQ and how our framework works.

Another interesting topic that must be discussed absolutely while building profiles is
avatars. An avatar is a small icon or image that is associated with each user's profile.
This allows you to visually pick a profile out of the group with ease. Generally, an
avatar is displayed next to just about everything a user does or interacts with. This
could be their blog posts, forum posts, comments, and so on. It provides a sort of
virtual face-to-face feeling. Here are some example avatars:

Of course, we could take a weak approach and not allow our users to create
custom avatars—certain communities do this. We could just provide a gallery of
canned avatars for a user to associate with their profile. But the biggest draw to any
community site is its ability for the users to have as much free expression as possible.
For this reason, we will discuss the other end of the spectrum when it comes to
custom avatars.

User Profiles

[156]

We need a way for the users to upload their own pictures of just about any size
(though we will have a file size constraint! No 10MB images to process please!).
Knowing that an avatar is usually closer to the size of an icon rather than a poster,
we will need to tackle resizing an image. Also, as we know that images can come in
just about any shape, it would be really cool if we could figure out a UI that allows
the user to select a specific section of the uploaded image and constrain that selection
to a specific shape. We would prefer a square shape as it is the easiest to work with.

Chapter 4

[157]

In addition to custom avatars, there are many services available these days that
provide centralized avatars. This allows a user to upload and manage their avatars
in one place and have them automatically feed out to all the sites that they are a
member of. We will take a look at how to use one of the largest and most popular
services, Gravatar.

Once we have all the data collection and profile configuration utilities out of the way,
we will tackle the issue of displaying that data to our community. A good feature to
take on here is the concept of a fancy URL, which will allow our users to have their
own personal homepage within our community. A sample page would look like this:
www.fisharoo.com/andrewsiemer.

User Profiles

[158]

A very popular feature that Facebook has is the concept of a continuous feed about
you, your friends, and activities in the community. This sort of feature has become
so popular that MySpace has recently implemented a version. I think that this has
to be one of my favorite features as it gives me something new to look at on a near
daily basis. The more friends you are tracking (covered in Chapter 6), the more the
entries you will have to follow. As these feeds or alerts (we will call ours The Filter)
generally go on a user's private homepage, and as it is a major subsystem that many
other features will dump into, we should address the underlying framework for this
now rather than later.

Design
Let's take a look at what the design for these features would look like.

Profile
Our profiles will collect basic data about a user. Some items that we will collect are:

Various IM (Instant Messaging) IDs
The users' post/comments
Some basic fish related information such as how many fish tanks they have
and how many fishes they have

In addition to this we will allow our profiles to have dynamic attributes. While
these could be dynamic from a user's point of view, we will currently restrict this
feature to allow only an administrator of the site to add additional attributes.
Some examples of dynamic attributes are "about you", "occupation", and "your
(reef/aquarium) setup".

•

•

•

Chapter 4

[159]

The image will look like this:

This structure basically allows a profile to have as many extended attributes as the
site administrator wants to collect data for.

Manage profile
As we will have several bits of data to manage, we need to consider how best to
present this to the user. Also, we don't want to create a bunch of different screens to
manage this as it will become a nightmare for us. So I am thinking that we will use a
simple step-by-step Wizard type interface so that we can break the data collection/
management process into logical steps. This should not only be easier for the user to
work with but also to give us a one stop development shop with regards to building
this feature.

User Profiles

[160]

Avatar
There are many ways to manage images in a system. The top two methods that have
been debated heavily over the years is storing the images in the database or storing
them on the file system. For every day image galleries, I am all for storing them on
the file system. However, something that is used as frequently as an avatar (given the
diminutive size of an avatar) can be stored directly with the profiles in the database
(look at the Profiles table in the previous image—Avatar and AvatarMimeType).

Custom avatars
Most of us would think that uploading an image or a file is simple. However,
resizing an image in a way that it doesn't look all distorted is indeed a challenge.
Moreover, we want to upsize and/or crop the image so that it is a perfect square. But
we can't squish the user's image into a square. Also we can't just pick out a square
portion of the uploaded picture at random! The avatar could end up having just the
nose rather than the head. So we need to either create a UI (or find one) that allows
the user to specify which section of the uploaded image to use.

Gravatar
Gravatar.com and other similar sites have another interesting idea. They allow
you to store an avatar in one centralized location and reference it from other sites.
This way, if you ever wanted to change your avatar, you could simply go to one
location, make the change, and your avatar would be changed across all the sites that
reference it. I felt this was something that we could easily implement—so why not
include it? There is hardly a reason not to give your users additional flexibility.

Public profile
One of the major drivers for a community site is the voyeuristic nature of a majority
of the human population. So to appease this drive, it is very important to present a
public area for our users to express and share with the world. This will be a major
launching pad for our other features in the following chapters. It is one of the
primary places where friends will meet, new messages will be created, and so on.

Chapter 4

[161]

Custom homepage
Most users of the Internet are used to seeing a URL that looks something like this:
http://www.domain.com/somepage.aspx?id=asduiw892lslcm&t=89889. While
computers can read this easily, it is absolutely meaningless to a human. So, as we
already have a public profile page for each of our users, why not allow an easy way
for curious folk to locate that page. More importantly why not provide an easy way
for our users to share their public profile. Instead of the previous URL, we will make
a URL that looks more like http://www.fisharoo.com/YourUsername.

Privacy
Once we have provided our users with all these tools to enter their personal data, it
is very important that we provide them with a way to manage who sees that data. In
this chapter, we will focus on creating the base system that we can later extend upon
in the following chapters. In this chapter we will look at how to keep the user's data
either public or private. The system that we will create should be flexible enough to
allow us to protect a single piece of data, or an entire section of data. An example
could be that we want to protect a user's social security data individually (we won't
store socials though!) and protect all the users' IM accounts with one flag.

We will use the following image for our privacy settings:

Here the flags are the actual user settings. The flag types are the specific data or areas
of data to be protected. As this will be statically defined in the system, this data need
not be directly manageable. The visibility level boils down to public, private, and
friends-only. With this structure, the end user will be able to configure each flag
type independently.

User Profiles

[162]

News feed
As I had mentioned earlier, the news feed section is one of my favorite features on
any community. I think if this area is created correctly, it will have the most activity
and possibly the most value for the users. It essentially allows a user to keep track of
other users.

There are several ways in which we can execute this type of functionality. We could
keep the data scattered about for all the various types of notifications that we want
to track. Or we could centralize it and disconnect it from the relational model. I
am opting to keep things simple (as usual). So in our case, when a notification is
generated it will be stored in a simple structure that will allow us to be more efficient
with regards to getting this data quickly to our users.

The image will look like this:

Alerts are generated by each user. All these alerts will show up in a user's homepage
so that he/she can see what they are up to chronologically. Again, as we have not
yet covered the concept of a Friend, now we can't build much that is friend-specific.
But in the next chapter, we will see how with this system friends can subscribe to one
another's news feed.

Solution
Now, let's take a look at how we can go about implementing these new features.

Chapter 4

[163]

Implementing the database
We will start by implementing our database and work our way up from there.

The Profiles table
Before we can really put an interface together, we need to discuss how the data for a
profile will be stored. Here is the profiles table:

So let's discuss some of the fields that are somewhat less than normal. In this case,
I am referring to the varbinary(MAX) field for the Avatar storage. With the MAX
size constraint (not much of a constraint!), a person could technically store a DVD in
this field. This of course would be ridiculous, so we need to make sure that there are
some constraints on the front end so that file storage size is kept to a minimum. As
you will see later, this field is essentially a character array!

User Profiles

[164]

Level of Experience
Once we have our base profile container in place, we can create some of the
surrounding tables. The easiest of which is the level of experience system. This will
be used as other features of the site are built. Initially, a user can come in and set up
his/her profile and claim a level of experience. Then as the user adds posts to the
forum, creates new blog entries, or interacts with our community in any other way,
we can adjust the user's level of experience dynamically.

The Attributes table
The next easiest portion of the profile system is the dynamic attributes system. Recall
that this will allow the site administrator to easily extend the data that is collected
for each user. There are two tables. The first one shows user entered attributes
as follows:

And the next one shows attribute types:

Chapter 4

[165]

The Privacy table
Now we can discuss the privacy system. This is simply a one-to-many relationship
system with some configuration/lookup tables on the child side of the relationship.
We have PrivacyFlags for storing the user created values.

We then have PrivacyFlagTypes to define what the flag is protecting.

And finally, we have the VisibilityLevels, which defines who can see the
protected data.

User Profiles

[166]

The Alerts table
Now, we are on to the tables that will support our news feed or "Filter" concept on
the profile page. This includes the Alerts table.

And the AlertTypes table.

An interesting field to discuss here is the IsHidden field. We will use this later so
that a user can hide an alert from his/her news feed. We can also use it so that the
user can hide a whole set of alerts based on its alert type.

Creating the relationships
Once all the tables are completed, we can create all the relationships.

For this set of tables, we have relationships between the following tables:

Profiles and LevelOfExperienceTypes
Profiles and ProfileAttributes
Profiles and PrivacyFlags
Profiles and Accounts
ProfileAttributes and ProfileAttributeTypes
PrivacyFlags and PrivacyFlagTypes
PrivacyFlags and VisibilityLevels
Accounts and Alerts
Alerts and AlertTypes

•

•

•

•

•

•

•

•

•

Chapter 4

[167]

Setting up the data access layer
Unlike in the last chapter, our data access layer will be much less involved. All the
ground work has already been completed. So from now on, when we speak about
setting up the data access layer, all we are really speaking about is opening up the
Fisharoo.dbml file and dragging our new tables on to the design surface.

So let's do that now through the following steps:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connect.
Expand your tables. If you don't see your new tables, try hitting the Refresh
icon or right-click on tables and click Refresh.
Then drag your new tables onto the design surface.

•
•
•
•

•

User Profiles

[168]

Keep in mind that we are not letting LINQ to track our relationships. So go
ahead and delete them from the design surface. Your design surface should
have all the items as seen in the previous screenshot (though perhaps in a
different arrangement!).

Hit Save and you should now have a longer list of domain objects to play with!

Building repositories
With the addition of new tables will come the addition of new repositories to get to
the data stored in the tables. We will be creating the following repositories to support
our profile needs.

ProfileRepository

ProfileAttributeRepository

PrivacyRepository

LevelOfExperienceTypeRepository

AlertRepository

Each of our repositories will have a method for selecting on the basis of the ID,
selecting on the basis of the parent ID, for save and delete. Once you have seen
one repository, you have pretty much seen them all. Review previous chapters,
appendices, or the included code for examples of a repository.

Implementing the services/application layer
Once all the repositories are built for single-serving purposes, we can begin to create
the services layer. Again, this layer is responsible for assembling aggregates and
performing complex actions with our entities. We will create the following services:

ProfileService

PrivacyService

AlertService

ProfileAttributeService

In addition to the above services, we will also need to modify a couple of services.

ProfileService
Our profile entity is fairly simple now. But as we continue to build new features,
our profile entity will continue to become more and more complex. Currently, a
profile only has a list of its extended attributes. Down the road, we will eventually
be adding many other lists of children to it.

•

•

•

•

•

•

•

•

•

Chapter 4

[169]

Let's extend our profile object so that it is aware of its attribute children. Navigate to
your domain folder and create a new partial Profile class. In this class, let's add a
property for the list of ProfileAttributes.

public List<ProfileAttribute> Attributes { get; set;}

While we are here, let's also add a property to hold the LevelOfExperienceType for
this profile.

public LevelOfExperienceType LevelOfExperienceType { get; set; }

Now we can look at building our ProfileService. Create a new class in the
Core.Impl directory called ProfileService. This service will be responsible for
assembling a profile by an AccountID and disassembling a profile to save it. Let's
start with the assembly process:

public Profile LoadProfileByAccountID(Int32 AccountID)
{
 Profile profile = _profileRepository.GetProfileByAccountID(Accoun
tID);
 List<ProfileAttribute> attributes = new List<ProfileAttribute>();
 LevelOfExperienceType levelOfExperienceType;
 if (profile != null && profile.ProfileID > 0)
 {
 attributes = _profileAttributeService.
 GetProfileAttributesByProfileID
 (profile.ProfileID);
 levelOfExperienceType =
 _levelOfExperienceTypeRepository.
 GetLevelOfExperienceTypeByID
 (profile.LevelOfExperienceTypeID);

 profile.Attributes = attributes;
 profile.LevelOfExperienceType = levelOfExperienceType;
 }
 return profile;
}

As you can see, this method is responsible for getting a profile and all of its
children objects by an AccountID. It starts by attempting to retrieve the profile.
If the profile is not null, it then attempts to get a list of profile attributes and the
LevelOfExperienceType for that profile. The method then adds those retrieved
values to the profile and returns the profile.

User Profiles

[170]

A service is solely responsible for making complex tasks easy to work with and
re-usable as you can see in the LoadProfileByAccountID method we have just seen:

Now let's look at what we need to do to save a profile with an equally
complex structure:

public void SaveProfile(Profile profile)
{
 Int32 profileID;
 profileID = _profileRepository.SaveProfile(profile);
 foreach (ProfileAttribute attribute in profile.Attributes)
 {
 attribute.ProfileID = profileID;
 _profileAttributeRepository.SaveProfileAttribute(attribute);
 }

 _userSession.CurrentUser.Profile =
 LoadProfileByAccountID
 (_userSession.CurrentUser.AccountID);
}

With this method, we take in a profile. We quickly toss the profile to the profile
repository, which knows how to deal with that simple entity. We then strip out each
attached profile attribute and toss it to the profile attribute repository and save it. As
we store the LevelOfExperienceTypeID with the profile, we don't have to worry
about stripping the LevelOfExperienceType out of the profile object to save it!

Account service
Now that we have our ProfileService created, let's extend our AccountService to
take advantage of our new features.

Open the AccountService.cs file. Navigate down to the GetAccountByID method.
Right after the loading of an Account object, add the following code:

Account account = _accountRepository.GetAccountByID(AccountID);
Profile profile = _profileService.LoadProfileByAccountID(AccountID);
if(profile != null)
{
 account.Profile = profile;
}

List<Permission> permissions =
 _permissionRepository.
 GetPermissionsByAccountID(AccountID);
 foreach (Permission permission
 in permissions)
{
 account.AddPermission(permission);
}

Chapter 4

[171]

This method now returns an Account object with its fully hydrated Profile attached
to it.

Now, let's extend our Login method in the same AccountService.cs file. When the
user attempts to login, we get their account with the method that we just extended
(GetAccountByID). This means that we now have their profile as well! We can now
make a decision as to whether we have a user with a fully created profile or not and
redirect them accordingly. Let's update the AccountService.cs Login() method
with the following code:

if (account.EmailVerified)
{
 _userSession.LoggedIn = true;
 _userSession.Username = Username;
 _userSession.CurrentUser = GetAccountByID(account.AccountID);
 if(_userSession.CurrentUser.Profile != null &&
 _userSession.CurrentUser.Profile.ProfileID > 0)

 _redirector.GoToProfilesDefault();

 else

 _redirector.GoToProfilesManageProfile();

}

Of course, this means that we need to add these new methods to our Redirector
class! Here is the code:

public void GoToProfilesProfile()
{
 Redirect("~/Profiles/Profile.aspx");
}

public void GoToProfilesDefault()
{
 Redirect("~/Profiles/Default.aspx");
}

Privacy service
The privacy service is currently solely responsible for determining if a piece of data
or a section that displays multiple types of data can be displayed or not. It has a
method named ShouldShow() that returns a boolean value.

public bool ShouldShow(Int32 PrivacyFlagTypeID,
 Account AccountBeingViewed,
 Account Account,
 List<PrivacyFlag> Flags)
{

User Profiles

[172]

 bool result;

 //CHAPTER 5 - come back to this when we start friends
 bool isFriend = false;
 //flag marked as private test
 if(Flags.Where(f => f.PrivacyFlagTypeID == PrivacyFlagTypeID &&
f.VisibilityLevelID == (int)VisibilityLevel.VisibilityLevels.Private).
FirstOrDefault() != null)
 result = false;
 //flag marked as friends only test
 else if (Flags.Where(f => f.PrivacyFlagTypeID ==
 PrivacyFlagTypeID && f.VisibilityLevelID ==
 (int)VisibilityLevel.VisibilityLevels
 Friends).
 FirstOrDefault() != null && isFriend)
 result = true;
 else if (Flags.Where(f => f.PrivacyFlagTypeID ==
 PrivacyFlagTypeID && f.VisibilityLevelID ==
 (int)VisibilityLevel.VisibilityLevels.Public)
 .FirstOrDefault() != null)
 result = true;
 else
 result = false;
 return result;
}

Note that we are using enum rather than record numbers to test against. In order to
use these enum values represented by the VisibilityLevel.VisibilityLevels,
we will have to create a new partial VisibilityLevel class. Navigate to Core.
Domain and create a new class file named VisibilityLevel. In there, enter the
following code:

public enum VisibilityLevels
{
 Private = 1,
 Friends = 2,
 Public = 3
}

On to the ShouldShow method! This method may look complex but is really just
checking many different relationships. This method takes into mind the account that
is being viewed, the account doing the viewing, the PrivacyFlagType that is being
viewed, and a list of PrivacyFlags for the account being viewed.

Chapter 4

[173]

The method then checks to see if the data is flagged as private, in which case no
one but the owner can see it. It then checks to see if the account being viewed and
the account doing the viewing are friends, and whether or not the data is marked
viewable by friends. As we have not yet implemented Friends, I left a note so that we
can come back and rework this section when we get to this concept in Chapter 6.

//CHAPTER 5 - come back to this when we start friends

And finally, we check to see if the data is marked as public in which case everyone
can view it.

Alert service
The AlertService boils down to a wrapper for saving alerts into the
system and getting them back out again. Rather than having the client code
format a new alert message, we will add new custom alert wrappers such as
AddAccountModifiedAlert(). This will not only give us a place to manage how
alerts are formatted and stored in our system, but it will also give us a place to
modify when we want to extend the system to handle new concepts such as the
ability for Friends to get subscribed to your alerts.

//Core/Impl/AlertService.cs
private void Init()
{
 account = _userSession.CurrentUser;
 alert = new Alert();
 alert.AccountID = account.AccountID;
 alert.CreateDate = DateTime.Now;
}
...
public void AddAccountModifiedAlert()
{
 Init();
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileUrl(account.Username) +
 " modified their account.</div>";
 alert.Message = alertMessage;
 alert.AlertTypeID = (int) AlertType.AlertTypes.AccountModified;
 SaveAlert(alert);
}
...
private void SaveAlert(Alert alert)
{
 _alertRepository.SaveAlert(alert);
}

User Profiles

[174]

Profile Attribute Service
This service is responsible for assembling a ProfileAttribute with its
corresponding ProfileAttributeType based on the ProfileAttributeTypeID that
is stored with the ProfileAttribute. This is pretty straightforward to implement
as it simply makes a call into the ProfileAttributeRepository to get a list of
ProfileAttributes by the specified ProfileID. It then iterates through each
ProfileAttribute and determines its ProfileAttributeType via another call into
the ProfileAttributeRepository.

Keep in mind that this multitrip approach is not the best way to do things
with regards to performance. All these round trips could end up being
quite costly. However, I have plans to implement a cache layer in the
last chapter of this book that you can wrap around all the repositories.
Once this is completed, we will be fetching frequently used items out of
memory in which case all the round trips won't hurt us.

public List<ProfileAttribute> GetProfileAttributesByProfileID(Int32
ProfileID)
{
 List<ProfileAttribute> attributes =
 profileAttributeRepository.
 GetProfileAttributesByProfileID
 (ProfileID);
 foreach (ProfileAttribute attribute in attributes)
 {
 attribute.ProfileAttributeType =
 profileAttributeRepository.
 GetProfileAttributeTypeByID
 (attribute.ProfileAttributeTypeID);
 }
 return attributes;
}

Implementing the presentation layer
Now that the entire backend is created and ready to go, let's move on to discussing
how we will make the presentation work for us. While the privacy features could just
as easily be implemented after everything else, I think it will be easiest if we get it
ready first. Then as we build the other areas out, we can sew in our privacy checking
where it is needed.

Chapter 4

[175]

Privacy
Now, let's implement the privacy feature.

Manage privacy
As with all the other types of data we will be collecting from our users, we need to
provide a way for our users to manage their privacy—which is not really about data
entry though. In this case, we will be providing a way for our user to check who
can see a certain section of their data, and who has access to their entire data. We
will create a page that is dynamically built based on the PrivacyFlagTypes that are
defined in the database.

As the view always gets us started, let's take a look at the code there first. As a
good chunk of this page is built on the fly, the mark-up for this page is relatively
simple. It consists of some instructions explaining what each visibility type is, and a
placeholder for our dynamic form elements.

//Profiles/ManagePrivacy.aspx
<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
AutoEventWireup="true" CodeBehind="ManagePrivacy.aspx.cs"
Inherits="Fisharoo.FisharooWeb.Profiles.ManagePrivacy" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
 <div class="divContainer">
 <div class="divContainerTitle">Set the visibility of each
 section below:</div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">Private:</div>
 <div class="divContainerCell">Only you can see it</div>
 </div>
 <div class="divContainerRow">

User Profiles

[176]

 <div class="divContainerCellHeader">Friends Only:</div>
 <div class="divContainerCell">Only you and your friends
 can see it</div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">Public:</div>
 <div class="divContainerCell">Everyone can see it</div>
 </div>
 <div class="divContainerRow"> </div>
 <div class="divContainerRow">
 <asp:PlaceHolder ID="phPrivacyFlagTypes"
 runat="server"></asp:PlaceHolder>
 </div>
 <div class="divContainerFooter">
 <asp:Label ID="lblMessage" runat="server"
 ForeColor="Red"></asp:Label>
 <asp:Button ID="btnSave" runat="server" Text="Save
 Privacy Settings" OnClick="btnSave_Click" />
 </div>
 </div>
</asp:Content>

This then brings us to our code behind. Of course, it inherits from an interface so that
we can pass a reference from this page to our ManagePrivacyPresenter class. As
with most Model View Presenter (MVP) pages, we have to new up our presenter file.
To get started we pass a reference of this page to the presenter. The thing that is a bit
different here is that we are doing this within an overridden OnInit() method rather
than in the Page_Load() method. This is done so that our dynamically rendered
controls will exist in ViewState. The Page_Load() method occurs after ViewState
is already established. This means that if our dynamic controls were added in
Page_Load(). we would not have access to their toggled values after the
first postback.

//Profiles/ManagePrivacy.aspx.cs
public partial class ManagePrivacy : System.Web.UI.Page,
IManagePrivacy
 {
 private ManagePrivacyPresenter _presenter;
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 _presenter = new ManagePrivacyPresenter();
 _presenter.Init(this);

 }

Chapter 4

[177]

 public void ShowPrivacyTypes(List<PrivacyFlagType>
 PrivacyFlagTypes,
 List<VisibilityLevel>
 VisibilityLevels,
 List<PrivacyFlag> PrivacyFlags)
 {
 foreach (PrivacyFlagType type in PrivacyFlagTypes)
 {
 //Add the field name to the display
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("<div class=\
 "divContainerRow\">"));
 //start container
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("<div class=\
 "divContainerCellHeader\">"));
 //start cell header
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl(type.
 FieldName + ":"));
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("</div>"));
 //end cell header
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("<div class=\
 "divContainerCell\">"));
 //start cell
 //Create the visibility drop down
 DropDownList ddlVisibility = new DropDownList();
 ddlVisibility.ID = "ddlVisibility" +
 type.PrivacyFlagTypeID.ToString();
 foreach (VisibilityLevel level in VisibilityLevels)
 {
 ListItem li = new
 ListItem(level.Name,level.
 VisibilityLevelID.ToString());
 if(!IsPostBack)
 li.Selected =
 _presenter.IsFlagSelected
 (type.PrivacyFlagTypeID,
 level.VisibilityLevelID,
 PrivacyFlags);
 ddlVisibility.Items.Add(li);
 }
 phPrivacyFlagTypes.Controls.Add(ddlVisibility);
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("</div>"));

User Profiles

[178]

 //end cell
 phPrivacyFlagTypes.Controls.Add(new
 LiteralControl("</div>"));
 //end container
 }
 }
 protected void btnSave_Click(object sender, EventArgs e)
 {
 lblMessage.Text = "";
 foreach (PrivacyFlagType type in
 _presenter.GetPrivacyFlagTypes())
 {
 DropDownList ddlVisibility =
 phPrivacyFlagTypes.FindControl("ddlVisibility" +
 type.PrivacyFlagTypeID.
 ToString())as DropDownList;
 if(ddlVisibility != null)
 _presenter.SavePrivacyFlag(type.PrivacyFlagTypeID,
 Convert.ToInt32(ddlVisibility.SelectedValue));
 }
 lblMessage.Text = "Your privacy settings were saved
 successfully!";
 }
 public void ShowMessage(string Message)
 {
 lblMessage.Text += Message;
 }
 }

The thing to note here is that as with all presenter controlled pages, the view calls an
Init() method, which is a method in the presenter responsible for loading the page.
The presenter calls into the ShowPrivacyTypes() method in the view passing in
what is needed to dynamically build the UI. The ShowPrivacyTypes() method then
iterates through all the values of the passed in lists to add drop-downs to the place
holder in the .aspx page. While loading the UI, it also attempts to locate the current
value for each menu to load.

We then have the btnSave_Click() event handler btnSave_Click(). This method
is responsible for extracting the current selections and passing those values upstream
to the presenter to persist the data to the database.

Next, we have a ShowMessage() method, which allows the presenter to pass
messages back to the user of this page.

Chapter 4

[179]

The presenter, ManagePrivacyPresenter, provides us with various methods to load
and handle events from the ManagePrivacy page. Here is the code:

public class ManagePrivacyPresenter
 {
 private IPrivacyRepository _privacyRepository;
 private IProfileService _profileService;
 private Profile profile;
 private IUserSession _userSession;
 private Account account;
 private List<PrivacyFlagType> privacyFlagTypes;
 private List<VisibilityLevel> visibilityLevels;
 private List<PrivacyFlag> privacyFlags;
 private IManagePrivacy _view;
 public ManagePrivacyPresenter()
 {
 _privacyRepository =
 ObjectFactory.GetInstance<IPrivacyRepository>();
 _profileService =
 ObjectFactory.GetInstance<IProfileService>();
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 account = _userSession.CurrentUser;
 profile =
 _profileService.LoadProfileByAccountID(account.AccountID);
 }
 public void Init(IManagePrivacy View)
 {
 _view = View;
 LoadPrivacyTypes();
 }
 private void LoadPrivacyTypes()
 {
 privacyFlagTypes =
 _privacyRepository.GetPrivacyFlagTypes();
 visibilityLevels =
 _privacyRepository.GetVisibilityLevels();
 privacyFlags =
 _privacyRepository.GetPrivacyFlagsByProfileID
 (profile.ProfileID);
 _view.ShowPrivacyTypes(privacyFlagTypes,visibilityLevels,
 privacyFlags);
 }
 public List<PrivacyFlagType> GetPrivacyFlagTypes()
 {
 return privacyFlagTypes;

User Profiles

[180]

 }
 public void SavePrivacyFlag(Int32 PrivacyFlagTypeID, Int32
 VisibilityLevelID)
 {
 foreach (PrivacyFlag flag in privacyFlags)
 {
 if (flag.PrivacyFlagTypeID == PrivacyFlagTypeID)
 {
 flag.VisibilityLevelID = VisibilityLevelID;
 _privacyRepository.SavePrivacyFlag(flag);
 return;
 }
 }
 //not in collection? Add a new one
 PrivacyFlag newFlag = new PrivacyFlag();
 newFlag.PrivacyFlagTypeID = PrivacyFlagTypeID;
 newFlag.VisibilityLevelID = VisibilityLevelID;
 newFlag.ProfileID = profile.ProfileID;
 newFlag.CreateDate = DateTime.Now;
 privacyFlags.Add(newFlag);
 _privacyRepository.SavePrivacyFlag(newFlag);
 }
 public bool IsFlagSelected(Int32 PrivacyFlagTypeID, Int32
 VisibilityLevelID, List
 <PrivacyFlag> PrivacyFlags)
 {
 List<PrivacyFlag> result = PrivacyFlags.Where(pf =>
 pf.PrivacyFlagTypeID ==
 PrivacyFlagTypeID &&
 pf.VisibilityLevelID ==
 VisibilityLevelID).ToList();
 if (result.Count > 0)
 {
 return true;
 }
 return false;
 }
 }

The constructor for this class asks StructureMap to load up all the repositories and
services that are needed for this page to function. In addition to the toolsets, we also
create an account and profile to interact with during the life of the presenter.

Chapter 4

[181]

We then have the Init() method, which simply captures the view reference. It then
calls the LoadPrivacyTypes() to initialize the calling page's UI. This method gets a
list of privacy flag types, visibility levels, and the current privacy flags for the current
user. The ShowPrivacyTypes() is then called in the view to display the UI.

The GetPrivacyFlagTypes() method is called from the view when saving the data
so that we can iterate over the UI in the same way that we built it. We use a list of
PrivacyFlagTypes to build the UI so it is only fitting that we also use it to destruct
the UI !

This then brings us to the SavePrivacyFlag() method, which is responsible for
interacting with the save button click event in the view. This method simply iterates
over the passed in PrivacyFlags and saves them to the database.

The IsFlagSelected() method is used by the view to determine which item in each
privacy type list was selected previously.

With all this done, we are now free to call into the PrivacyService class to see
if an area should be shown or not. Although we have privacy data to work with,
determining if we should show something or shouldn't, won't currently do us
any good as there is no way to add profile data at this time! Let's add a profile
management page.

Manage profile
As I know that this area has a big chance of growing and expanding as the site
grows, I have decided to build this page using a series of wizard steps. The code for
the UI is not difficult by any means, but it is longer than I want to show here in the
text! So I will show you the steps.

Here, we collect some attributes about the user's fish tank as shown in the screenshot:

User Profiles

[182]

Then, we gather the user's signature (which we can use for any postings to the forum
or other features).

Next we collect all of the user's methods to communicate with other users in the site.
We focus on collecting their Instant Messenging client IDs here.

Then, we have some attributes about the user that we can display on their
profile page.

Chapter 4

[183]

The only steps that are a bit different from the norm are the first and the last steps.
The first step's level of experience menu and all the inputs in the last step are
dynamically generated. In order to do this, we have to load them in the OnInit()
method rather than in the Page_Load() method.

//Profiles/ManageProfile.aspx.cs
protected override void OnInit(EventArgs e)
{
 _presenter = new ManageProfilePresenter();
 _presenter.Init(this,IsPostBack);
}

This calls into the presenter, which initiates the UI with a couple of previously
discussed repository methods.

//Profiles/Presenter/ManageProfilePresenter.cs
public void Init(IManageProfile view, bool IsPostback)
{
 _view = view;

_view.LoadLevelOfExperienceTypes(_levelOfExperienceTypeRepository.Get
 AllLevelOfExperienceTypes());
 _view.LoadProfileAttributeTypes(_profileAttributeRepository.
GetProfil
 eAttributeTypes());
}

The presenter then feeds the data back to the UI to dynamically create the required
controls, appropriately format them, and finally display the output. As this was done
via the OnInit() method, all these controls will exist in ViewState and be made
accessible as normal.

//Profiles/ManageProfile.aspx.cs
public void LoadLevelOfExperienceTypes(List<LevelOfExperienceType>
 types)
{
 foreach (LevelOfExperienceType type in types)
 {
 ListItem li = new
 ListItem(type.LevelOfExperience,type.
 LevelOfExperienceTypeID.ToString());
 ddlLevelOfExperience.Items.Add(li);
 }
}
...
public void LoadProfileAttributeTypes(List<ProfileAttributeType>
 types)

User Profiles

[184]

{
 foreach (ProfileAttributeType type in types)
 {
 Label lbl = new Label();
 lbl.ID = "lblAttribute" +
 type.ProfileAttributeTypeID.ToString();
 lbl.Text = type.AttributeType;
 Label lblAttributeTypeID = new Label();
 lblAttributeTypeID.ID = "lblAttributeTypeID" +
 type.ProfileAttributeTypeID.ToString();
 lblAttributeTypeID.Text =
 type.ProfileAttributeTypeID.ToString();
 lblAttributeTypeID.Visible = false;
 Label lblProfileAttributeID = new Label();
 lblProfileAttributeID.ID = "lblProfileAttributeID" +
 type.ProfileAttributeTypeID.ToString();
 lblProfileAttributeID.Visible = false;
 Label lblProfileAttributeTimestamp = new Label();
 lblProfileAttributeTimestamp.ID =
 "lblProfileAttributeTimestamp" +
 type.ProfileAttributeTypeID.ToString();
 lblProfileAttributeTimestamp.Visible = false;

 TextBox tb = new TextBox();
 tb.ID = "txtProfileAttribute" +
 type.ProfileAttributeTypeID.ToString();
 tb.TextMode = TextBoxMode.MultiLine;
 tb.Columns = 20;
 tb.Rows = 3;
 CustomValidator cv = new CustomValidator();
 cv.ControlToValidate = "txtProfileAttribute" +
 type.ProfileAttributeTypeID.ToString();
 cv.ClientValidationFunction = "MaxLength2000";
 cv.ErrorMessage = "This field can only be 2000 characters
 long!";
 cv.Text = "*";
 cv.ForeColor = System.Drawing.Color.Red;
 phAttributes.Controls.Add(lblAttributeTypeID);
 phAttributes.Controls.Add(lblProfileAttributeID);
 phAttributes.Controls.Add(lblProfileAttributeTimestamp);
 phAttributes.Controls.Add(lbl);
 phAttributes.Controls.Add(new LiteralControl("
"));
 phAttributes.Controls.Add(tb);
 phAttributes.Controls.Add(cv);
 phAttributes.Controls.Add(new LiteralControl("
"));
 }
}

Chapter 4

[185]

Once the UI is created, the rest is a simple matter of plumbing and UI upkeep. In the
Page_Load() method, we get the active profile if there is one and populate the UI
with the profile data. Each time someone clicks the Next button, we clear the error
message label. And when the Finish button is clicked, we extract the data from the
UI and pass it to the presenter to be saved to the database.

Avatar
Now let's look at creating the user's Avatar, which will be displayed next to all
his/her interactions with the site.

Upload avatar
Pretty much all the work for this feature occurs in the presenter. The UI presents a
file upload box with a standard browse button and an additional button to submit
the selected file. When the submit button is clicked, the view passes the PostedFile
to the UploadFile() method of the presenter.

//Profiles/Presenter/UploadAvatarPresenter.cs
public void UploadFile(HttpPostedFile File)
{
 string extension = Path.GetExtension(File.FileName).ToLower();
 string mimetype;
 byte[] uploadedImage = new byte[File.InputStream.Length];
 switch (extension)
 {
 case ".png":
 case ".jpg":
 case ".gif":
 mimetype = File.ContentType;
 break;
 default:
 _view.ShowMessage("We only accept .png, .jpg, and
 .gif!");
 return;
 break;
 }
 if (File.ContentLength / 1000 < 1000)
 {
 File.InputStream.Read(uploadedImage, 0,
 uploadedImage.Length);
 profile.Avatar = uploadedImage;
 profile.AvatarMimeType = mimetype;
 profile.UseGravatar = 0;
 _profileRepository.SaveProfile(profile);

User Profiles

[186]

 _view.ShowCropPanel();
 }
 else
 {
 _view.ShowMessage("The file you uploaded is larger than the
 1mb limit. Please reduce the size
 of your file and try again.");
 }
}

This method is responsible for receiving the file and performing some basic checks
on the file. We first get the extension of the file being uploaded and check to make
sure that the file that was uploaded is an image that we support. If not, we show a
message stating the issue.

Once we make it past that check, we check to make sure that the file size is not too
large. If the file is in an acceptable size, we read the file into the uploadedImage byte
array. We then pass the byte array into the current profile's Avatar property along
with its mimetype (we also set the UseGravatar flag to 0, which we will discuss
shortly). Finally, we save this data to the user's profile and update the display to
show the cropping UI. Alternatively, if the file size was too large, we show an
error message.

Image manipulation
To start with, the entire UI for this image cropping tool is located here: http://www.
defusion.org.uk/code/javascript-image-cropper-ui-using-prototype-
scriptaculous/. This is an open source JavaScript tool that provides us with
all the fancy interface options that can be dragged and resized. It uses prototype
(http://www.prototypejs.org/), scriptaculous (http://script.aculo.us/),
and some fancy foot work from Dave Spurr. To implement this script, download the
source from the defusion site above (leave a donation if you like it!) and include the
references to the prototype, scriptaculous, and cropper files.

<script type="text/javascript" src="/js/cropper/lib/prototype.js"
 language="javascript"></script>
<script type="text/javascript"
 src="/js/cropper/lib/scriptaculous.js?
 load=builder,dragdrop" language="javascript"></script>
<script type="text/javascript" src="/js/cropper/cropper.js"
 language="javascript"></script>

Chapter 4

[187]

Once you have the JavaScript side plugged in, we need to add some items to our
ASPX page to get this widget factory working. To start with, we need to add an
image control that will load the image that we want to operate on.

<asp:Image ImageUrl="~/images/ProfileAvatar/ProfileImage.aspx"
id="imgCropImage" runat="server"/>

Note that this Image control has an ImageUrl reference to a page rather
than an image. The images/ProfileAvatar/ProfileImage.aspx
page displays a user's avatar depending on the current configuration of
his/her profile. If it doesn't have an avatar, it shows a default avatar. If it
is decided to use the Gravatar service instead (discussed shortly) it shows
the avatar stored on Gravatar. On the other hand, if the profile has an
avatar, it is displayed.

This is optional, but the cropper script provides us with a preview of what we are
doing. To implement this, we need to have a location for the preview to output in the
form of a div tag.

<div id="previewWrap"></div>

We then need to add a JavaScript function that hooks up the cropper scripts to our
UI. This script sets some of the basic properties such as what the image's ID is, where
to stash the output for the preview, the minimum height and width, a fixed ratio
(forcing the cropper to be a square in our case), and what to do when the cropping
is complete.

<script type="text/javascript" language="javascript">
 Event.observe(window, 'load', function() {
 new Cropper.ImgWithPreview(
 'ctl00_Content_imgCropImage',
 {
 previewWrap: 'previewWrap',
 minWidth: 100,
 minHeight: 100,
 ratioDim: {x: 100,y: 100},
 displayOnInit: true,
 onEndCrop: onEndCrop
 }
);
 });
</script>

User Profiles

[188]

We want the cropper to store some of the data that is captured in some hidden
fields so that we can work with it on the server side. To do that, we will add some
HiddenField controls to the inside of the crop panel.

<asp:HiddenField ID="hidX1" runat="server" />
<asp:HiddenField ID="hidY1" runat="server" />
<asp:HiddenField ID="hidX2" runat="server" />
<asp:HiddenField ID="hidY2" runat="server" />
<asp:HiddenField ID="hidWidth" runat="server" />
<asp:HiddenField ID="hidHeight" runat="server" />

We then need to add a function that handles the onEndCrop event that is fired off by
the cropper. This will actually handle storing the data into the HiddenField controls.

<script type="text/javascript">
function onEndCrop(coords, dimensions)
{
 $('ctl00_Content_hidX1').value = coords.x1;
 $('ctl00_Content_hidY1').value = coords.y1;
 $('ctl00_Content_hidX2').value = coords.x2;
 $('ctl00_Content_hidY2').value = coords.y2;
 $('ctl00_Content_hidWidth').value = dimensions.width;
 $('ctl00_Content_hidHeight').value = dimensions.height;
}
</script>

Now, once a user has selected the area of the image that he/she would like to use for
the avatar and submits that selection to the server, we have what we need to perform
an image crop. The presenter's CropFile() method will handle this task.

//Profiles/Presenter/UploadAvatarPresenter.cs
public void CropFile(Int32 X, Int32 Y, Int32 Width, Int32 Height)
{
 byte[] imageBytes = profile.Avatar.ToArray();
 using (MemoryStream ms = new MemoryStream(imageBytes, 0,
 imageBytes.Length))
 {
 ms.Write(imageBytes, 0, imageBytes.Length);
 System.Drawing.Image img =
 System.Drawing.Image.FromStream(ms, true);
 Bitmap bmpCropped = new Bitmap(200, 200);
 Graphics g = Graphics.FromImage(bmpCropped);
 Rectangle rectDestination = new Rectangle(0, 0,
 bmpCropped.Width, bmpCropped.Height);
 Rectangle rectCropArea = new Rectangle(X,Y,Width,Height);

Chapter 4

[189]

 g.DrawImage(img, rectDestination, rectCropArea,
 GraphicsUnit.Pixel);
 g.Dispose();
 MemoryStream stream = new MemoryStream();
 bmpCropped.Save(stream,
 System.Drawing.Imaging.ImageFormat.Jpeg);
 Byte[] bytes = stream.ToArray();
 profile.Avatar = bytes;
 _profileRepository.SaveProfile(profile);
 }
 _view.ShowApprovePanel();
}

This method expects the X and Y coordinates of where the crop is to start as well as
the width and height of the crop. This gives us the location of the square that we plan
to extract from our uploaded image.

We then load the image that is currently stored in the profile into the imageBytes
byte array. Once we have the data stored in the array, we load it into memory.
Note that we perform this task inside a using statement. This ensures that all the
resources are released once we are complete with our operation.

We then load the memory stream into an Image. Now, we create a new Bitmap
object, bmpCropped with the size of the avatar that we wish to achieve. This will store
our completed avatar. We then create a Graphics object, g, which will actually carry
out the cropping on the bmpCropped Bitmap.

Now we are ready to actually perform the surgery on our image! We will start by
creating two rectangles—one rectangle to hold our final image, and the other to hold
the image to be cropped from our original image. We then call the DrawImage()
method on our Graphics object and pass in our Image, the destination coordinates,
the crop coordinates, and the unit of measure—pixels in this case. This results in
the bmpCropped image having the appropriately cropped portion of our originally
uploaded image.

Now, we pass that new image back into memory. We then convert it into a byte
array, and finally save it back to our profile.

Gravatar
As we have discussed earlier, Gravatar is a service that allows you to store your
avatars in a central place. It allows you to associate an avatar to your email address
so that other sites (like ours) can reference it later. This is great for a user who has
profiles scattered all over the Internet!

User Profiles

[190]

In order for our users to use the Gravatar service, all they have to do is check the
box on the initial page of the upload avatar screen. When they hit submit, we
set the UseGravatar property of their Profile to 1. Then whenever we call the
ProfileImage.aspx page to display the avatar, we must use the Gravatar instead of
the locally stored avatar.

In order to make a call into the Gravatar service, we have to create a URL with a
properly formatted email address in the form of a hexadecimal MD5 hash. I created a
method in our Cryptography class to perform this conversion for us.

public static string CreateMD5Hash(string StringToHash)
{
 MD5 md5Hasher = MD5.Create();
 byte[] data =
 md5Hasher.ComputeHash(Encoding.Default.GetBytes(StringToHash));
 StringBuilder sBuilder = new StringBuilder();
 for (int i = 0; i < data.Length; i++)
 {
 sBuilder.Append(data[i].ToString("x2"));
 }
 return sBuilder.ToString();
}

I then created a simple extension method that handles the conversion for us in a
more simplified manner than calling into the Cryptography suite directly.

public static string ToMD5Hash(this string s)
{
 return Cryptography.CreateMD5Hash(s);
}

Now we have enough background to see the method in the ProfileImage.aspx.cs
file that loads the Gravatar.

public string GetGravatarURL()
{
 defaultAvatar = Server.UrlPathEncode(_webContext.RootUrl +
 "/images/ProfileAvatar/Male.jpg");
 gravatarURL = "http://www.gravatar.com/avatar.php?";
 gravatarURL += "gravatar_id=" + account.Email.ToMD5Hash();
 gravatarURL += "&rating=r";
 gravatarURL += "&size=80";
 gravatarURL += "&default=" + defaultAvatar;
 return gravatarURL;
}

Chapter 4

[191]

The properties that we discussed are fairly easy to figure out. However,
you can get a full listing of how to work with the Gravatar service here:
http://site.gravatar.com/site/implement#section_1_1

Public profile
Now that we have:

Privacy figured out
Have provided a way for our users to manage their profile data
Allowed them to upload and appropriately format their avatar

We need to provide our users with a page that displays all their data.

For the most part this is simply another "plumbing page", meaning that we are just
displaying data here. Nothing overly complex! So I will skip most of the leg work
and get right to the nitty gritty, which is how our privacy stuff is handled.

In the ASPX page, I have stored everything within panels such as this:

<asp:Panel ID="pnlPrivacyAccountInfo" runat="server">
 <div class="divContainerTitle">Account Info</div>
 <div class="divInnerRowHeader">Email:</div>
 <div class="divInnerRowCell"><asp:Literal ID="litEmail"
runat="server"></asp:Literal> </div>
 <div class="divInnerRowHeader">Zip:</div>
 <div class="divInnerRowCell"><asp:Literal ID="litZip"
runat="server"></asp:Literal> </div>
 <div class="divInnerRowHeader">Birthday:</div>
 <div class="divInnerRowCell"><asp:Literal ID="litBirthDate"
runat="server"></asp:Literal> </div>
 <div class="divInnerRowHeader">Updated:</div>
 <div class="divInnerRowCell"><asp:Literal ID="litLastUpdateDate"
runat="server"></asp:Literal> </div>

</asp:Panel>

This allows me to easily lock down an area of data where I need to. In the presenter
for this page, I have a TogglePrivacy() method.

private void TogglePrivacy()
{
 _view.pnlPrivacyIMVisible(_privacyService.ShouldShow((int)Pri
vacyFlagType.PrivacyFlagTypes.IM,_accountBeingViewed, _account, _
privacyFlags));
 _view.pnlPrivacyAccountInfoVisible(_privacyService.ShouldShow((int
)PrivacyFlagType.PrivacyFlagTypes.AccountInfo,_accountBeingViewed,

•

•

•

User Profiles

[192]

_account, _privacyFlags));
 _view.pnlPrivacyTankInfoVisible(_privacyService.ShouldShow((int)Pr
ivacyFlagType.PrivacyFlagTypes.TankInfo,_accountBeingViewed, _account,
_privacyFlags));
}

This method makes a call to the PrivacyService.ShouldShow() method, which
returns a Boolean value of whether or not the item should be displayed. This Boolean
value is directly set to the Panel.Visible property in the view that effectively
shows or hides the data in question.

Custom homepage
When I say "custom homepage", I am really referring to the public profile
page in an easy to get to manner. This is really a fancy URL, something like
http://www.fisharoo.com/asiemer. We could even take it as far as
http://asiemer.fisharoo.com or something along those lines! We will
stick with the first example in our case.

To implement this, we need to do a couple of quick and easy steps. First, we need
to create a new HttpModule. HTTP modules are executed in the ASP.NET pipeline
prior to HTTP handlers. They have full control over the request and can modify it in
any way that they see fit. Once all the modules in the pipeline have had their chance
to interact with the request, the HTTP handlers in the pipeline get their chance to
interact with the request. The HTTP handlers then pass the result back through the
HTTP modules. It looks something like this:

Module 1

Module 2

Module 3

Module 4

Handler 1 Handler 2 Handler n

Chapter 4

[193]

What we want to do is allow the users to specify their username as a directory on our
site. So we will create a module that will check to see if the specified file exists. If it
doesn't, we will add an additional check to see if the specified directory is actually a
username. If we find that the directory is a username, then we will redirect the user's
request to the Profile.aspx page and load the specified profile.

public class UrlRewrite : IHttpModule
{
 private IAccountRepository _accountRepository;
 public UrlRewrite()
 {
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 }
 public void Init(HttpApplication application)
 {
 //let's register our event handler
 application.PostResolveRequestCache +=
 (new EventHandler(this.Application_OnAfterProcess));
 }
 public void Dispose()
 {

 }
 private void Application_OnAfterProcess(object source,
 EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;
 string[] extensionsToExclude = { ".axd", ".jpg", ".gif",
 ".png", ".xml", ".config", ".css", "
 .js", ".aspx", ".htm", ".html" };
 foreach (string s in extensionsToExclude)
 {
 if
 (application.Request.PhysicalPath.ToLower().Contains(s))
 return;
 }
 if (!File.Exists(application.Request.PhysicalPath))
 {
 string username = application.Request.Path.Replace("/",
 "");
 Account account =
 _accountRepository.GetAccountByUsername(username);
 if (account != null)

User Profiles

[194]

 {
 string UserURL = "~/Profiles/profile.aspx?AccountID="
 + account.AccountID.ToString();
 context.Response.Redirect(UserURL); }
 else
 {
 context.Response.Redirect("~/PageNotFound.aspx");
 }
 }
 }
}

First, notice that this class inherits the IHttpModule interface. This ensures that
the code that we plan to plug into the ASP.NET pipeline conforms to what is
expected by that pipeline. This interface expects us to have the Init() and
Dispose() methods.

Then in the constructor we load our AccountRepository. We do this to perform our
username lookup with the extracted entry.

We then get to our Init() method, which hooks up our Application_
OnAfterProcess() event handler to the HttpApplication.
PostResolveRequestCache event. This allows our module to handle the events and
interact with the pipeline.

In the Application_OnAfterProcess() method, we load up instances of the
HttpApplication and HttpContext objects so that we can work with the current
request. Next, we have a string array that holds all the extensions of all the file types
that we don't want to process. This is important as there are some types of files that
can't be processed by our file system checking (such as .axd) and some files that we
don't want to process simply because of the resources that are used by this method.

Once we have made it past our checks and balances, we can finally check the
file system to see if the resource exists. If it doesn't, then we can extract the path
of the file requested, which essentially gives us the requested username. We then
attempt to load an Account object with that username. If the Account is null, we
send the requester to the PageNotFound.aspx page. If an Account was found,
we then redirect the requester to the Profile.aspx page where we load the
appropriate profile.

Chapter 4

[195]

One last step before any of this will work! We need to plug our custom module
into the web.config file so that it is actually loaded into the pipeline when the
application is launched. Add the following entry to the web.config file in the
<httpModules> section:

<add type="Fisharoo.FisharooWeb.Handlers.UrlRewrite, Fisharoo.
FisharooWeb" name="UrlRewrite" />

News feed
The last concept that we will cover in our discussion about building profiles is news
feed. A news feed allows us to see what we have been doing with our account,
friends, our photos, and any other changes in the system. More importantly, it will
allow us to see what our friends have been doing with all their data such as when
they add a new photo.

This system will be built on the alerts system that we have already discussed. Any
time we want to add a new alert to the system based on an action performed by
our user or the system, we simply make a call into the AlertService and select the
appropriate method such as AddNewAvatarAlert(). Once the site is peppered with
the addition of alerts to the system, we will have a fairly active news feed to follow.
Now, we just need a place to read this feed!

Knowing that this news feed will easily be one of the most active pages on our site,
we should put it on the users' homepage so that they can see it as soon as they
log in.

To implement this, all we need is a repeater on the homepage, which we can hook up
to a list of alerts for the current user.

<asp:Repeater ID="repFilter" runat="server">
 <ItemTemplate>
 <asp:Label ID="lblMessage" runat="server" Text='<%#
 ((Alert)Container.DataItem).Message %>'></asp:Label>
 </ItemTemplate>
 <SeparatorTemplate>
 <div class="AlertSeparator"></div>
 </SeparatorTemplate>
</asp:Repeater>

Then from the presenter, we need to pass the view, the appropriate data to bind to.

private void ShowDisplay()
{
_view.ShowAlerts(_alertService.GetAlertsByAccountID(_userSession.Curr
 entUser.AccountID));
}

User Profiles

[196]

Once we get into the concept of Friends, this page will be much more active as users
can see their alerts as well as their friends!

Summary
We have covered a lot of ground in this chapter. We have discussed the concept of
a profile and a way for our users to manage their data. We have also built a way for
our users to manage their privacy regarding their profile data. We have also created
tools for our users to manage a custom avatar as well as a way to hook up to their
centrally stored Gravatar. With all of these features out of the way, we have created
a public profile for our users. And finally, we also created a default landing page for
users where they can see their alerts.

Friends
The subject of this chapter is the key to the success of any community. Your friend
features will be the main reason for people to interact with your community. It is also
the biggest drive for your users to advertise for you. "Hey Peter, come and check this
out. I love it, so will you!"—a friend in a community site, like in life, is someone who
you have something in common with, enjoy the company of, or turn to when you
have something to discuss. A circle of friends can be thought of as a sub-community
within a community.

This chapter will show you how to take advantage of people's nature to congregate
around things that they enjoy, find useful, or that intrigue them. We will start this
chapter by extending the framework to allow for relationships to be built between
our users. We will then add some features that allow our users to locate all of their
existing friends, as well as make new friends. Then we will have a discussion about
providing real time status updates in the form of a micro blog to feed the voyeuristic
nature of our friends. Once we have these aspects in place, we will update our alerts
system so that all of our friends can stay in touch with everything we are doing.

Friends

[198]

Problem
There are many aspects to building relationships in any community—real or virtual.
First and foremost is initiating contact with the people whom you will eventually call
your friends. The easiest way to locate someone who you might want to call a friend
is to directly invite the people whom you already know as a friend. We will do this
in a few ways.

First, we will provide a way for our users to search the site for friends who
are also members.

Second, we will create a form that allows you to enter your friends' email IDs
and invite them directly.

•

•

Chapter 5

[199]

Third, we will create a form that allows you to import all of your contacts
from Outlook.

All of these methods of inviting a friend into the system would of course generate
an email invite (and eventually a system based message—see next chapter). The user
would have the ability to then follow the link into the system and either sign up or
log in to accept the request.

The preceding screenshot shows a sample email that the user would receive in
their inbox.

And following is the message that would be seen:

•

Friends

[200]

Once the user has clicked on the link in their email, he/she will be taken to a page
displaying the request.

Once we have a way for our users to attach friends to their profile, we need to start
integrating the concept of friends into the fabric of our site. We will need a way for
our users to view all of their friends. We will also need a way for our users to remove
the relationships (for those users who are no longer friends!).

Then we will need to add friends to our user's public profile.

Chapter 5

[201]

While this is a good first pass at integrating the concept of friends into our site, there
are a couple more steps for true integration. We need to add friend request and
friend confirm alerts. We also need to modify the alert system so that when users
modify their profile, change their avatar, or any other alert that is triggered by users
of our system, all of their friends are notified on The Filter.

Once this is done we have one final topic to cover—which sort of fits in the realm of
friends—the concept of Status Updates. This is a form of a micro blog. It allows users
to post something about:

What they are currently doing
Where they are or
What they are thinking about

This is then added to their profile and sent out to their friends' filters.

The box in the preceding screenshot is where the user can enter his/her
Status Updates.

•

•

•

Friends

[202]

Each of these updates will also be shown on the updates view and in their
filter views.

This really helps to keep The Filter busy and helps people feel involved with
their friends.

Twitter.com is this concept to the max. Their whole site is centered
around the concept of the micro blog. I have seen cases where someone
will post to Twitter—"I am going to such and such bar. If you are in the
area, meet me for a drink!" As you can hook your cell phone up to their
site, people get immediate notification regarding the post. This is the
ultimate form of community, in my mind, in that if you have hundreds of
friends someone is bound to be in your area. Very cool!!

Design
Now let's talk about the design of these features.

Friends
This chapter is an attempt to throw light on the infrastructure needs and more
heavily focused on the UI side for creating and managing relationships. That being
said, there is always some form of groundwork that has to be in place prior to adding
new features.

In this case we need to add the concept of a friend prior to having the ability to
create friendships. This concept is a relatively simple one as it is really only defining
a relationship between two accounts. We have the account that requested the
relationship and the account that accepted the relationship.

Chapter 5

[203]

This allows an account to be linked to as many other accounts as they wish.

Finding Friends
Like in life, it is very difficult to create friends without first locating and meeting
people. For that reason the various ways to locate and invite someone to be your
friend is our first topic.

Searching for a Friend
The easiest way to locate friends who might be interested in the same site that you
are is to search through the existing user base. For that reason we will need to create
a simple keyword search box that is accessible from any page on the site. This search
feature should take a look at several fields of data pertaining to an account and
return all possible users. From the search results page we should be able to initiate a
friend request.

Inviting a Friend
The next best thing to locating friends who are already members of the site is to
invite people who you know out of the site. The quickest way to implement this is
to allow a user to manually enter an email address or many email addresses, type
a message, and then submit. This would be implemented with a simple form that
generates a quick email to the recipient list. In the body of the email will be a link
that allows the recipients to come in to our site.

Friends

[204]

Importing Friends from External Sources
An obvious extension of the last topic is to somehow automate the importing process
of contacts from an email management tool. We will create a toolset that allows the
user to export their contacts from Outlook and import them via a web form. The user
should then be able to select the contacts that they want to invite.

Sending an Invitation
With all the three of the above methods we will end up sending out an invitation
email. We could simply send out an email with a link to the site. However, we need
to maintain:

Who has been invited
Who initiated the invitation and
When this occurred

Then in the email, rather than just invite people in, we want to assign the user a key
so that we can easily identify them on their way in. We will use a system generated
GUID to do this. In the case of inviting an existing user, we will allow him/her to
log in to acknowledge the new friendship. In the case of a non-member user who
was invited, we will allow him/her to create a new account. In both cases we will
populate the invitation with the invited user's Account ID so that we have some
history about the relationship.

•

•

•

Chapter 5

[205]

Adding Friend Alerts to The Filter
Once we have the framework in place for inviting and accepting friendship requests,
we need to extend our existing system with alerts. These alerts should show up on
existing user's Filters to show that they sent an invitation. We should also have alerts
showing that a user has been invited. Once a user has accepted a friendship we
should also have an alert.

Interacting With Your Friends
Now let's discuss some of the features that we need to interact with our friends.

Viewing Your Friends
Friends are only good if a user can interact with them. The first stop along this
train of thought is to provide a page that allows a user to see all the friends he/she
has. This is a jumping off point for a user to view the profile of friends. Also, as the
concept of a user's profile grows, more data can be shown about each friend in an
at-a-glance format.

In addition to an all Friends page, we can add friends' views to a user's public profile
so that other users can see the relationships.

Managing your friends
Now that we can see into all the relationships we can finally provide the users with
the ability to remove a relationship. In our initial pass this will be a permanent
deletion of the relationship.

Following Your Friends
Now, we can extend the alert system so that when alerts are generated for a common
user, such as updating their profile information, uploading a new photo, or any other
user specific task, all the user's friends are automatically notified via their Filter.

Friends

[206]

Providing Status Updates to Your Friends
Somewhat related to friend-oriented relationships and The Filter is the concept of
micro blogs. We need to add a way for a user to send a quick blurb about what they
are doing, what they are thinking, and so on. This would also show up on the Filters
of all the user's friends. This feature creates a lot of dynamic content on an end user's
homepage, which keeps things interesting.

Solution
Now let's look at our solution.

Implementing the Database
Let's look at the tables that are needed to support these new features.

The Friends Table
As the concept of friends is our base discussion for this chapter, we will immediately
dive in and start creating the tables around this subject. As you have seen previously
this is very straightforward table structure that simply links one account to the other.

Chapter 5

[207]

All these fields should be totally understandable. Here's the SQL:

CREATE TABLE [dbo].[Friends](
 [FriendID] [int] IDENTITY(1,1) NOT NULL,
 [AccountID] [int] NOT NULL,
 [MyFriendsAccountID] [int] NOT NULL,
 [CreateDate] [smalldatetime] NOT NULL CONSTRAINT
 [DF_Friends_CreateDate] DEFAULT (getdate()),
 [Timestamp] [timestamp] NOT NULL,
 CONSTRAINT [PK_Friends] PRIMARY KEY CLUSTERED
(
 [FriendID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS
 = ON) ON [PRIMARY]
) ON [PRIMARY]

Friend Invitations
This table is responsible for keeping track of who has been invited to the site, by
whom, and when. It also holds the key (GUID) that is sent to the friends so that they
can get back into the system under the appropriate invitation. Once a friend has
accepted the relationship, their AccountID is stored here too, so that we can see how
relationships were created in the past.

Here is that SQL:

CREATE TABLE [dbo].[FriendInvitations](
 [InvitationID] [int] IDENTITY(1,1) NOT NULL,
 [AccountID] [int] NOT NULL,
 [Email] [varchar](200) NOT NULL,
 [GUID] [uniqueidentifier] NOT NULL,
 [CreateDate] [smalldatetime] NOT NULL CONSTRAINT
 [DF_Invitations_CreateDate] DEFAULT (getdate()),

Friends

[208]

 [BecameAccountID] [int] NOT NULL CONSTRAINT
 [DF_FriendInvitations_BecameAccountID] DEFAULT ((0)),
 [Timestamp] [timestamp] NOT NULL,
 CONSTRAINT [PK_Invitations] PRIMARY KEY CLUSTERED
(
 [InvitationID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS
 = ON) ON [PRIMARY]
) ON [PRIMARY]

Status Updates
Status Updates allow a user to tell their friends what they are doing at that time.
This is a micro blog so to speak.

A micro blog allows a user to write small blurbs about anything.
Examples of this are Twitter and Yammer. For more information take a
look here: http://en.wikipedia.org/wiki/Micro-blogging.

The table needed for this is also simple. It tracks who said what, what was said,
and when.

Here is that SQL code for that table:

CREATE TABLE [dbo].[StatusUpdates](
[StatusUpdateID] [bigint] IDENTITY(1,1) NOT NULL,
 [CreateDate] [smalldatetime] NOT NULL CONSTRAINT
 [DF_StatusUpdates_CreateDate] DEFAULT (getdate()),
 [Status] [varchar](250) NULL,
 [AccountID] [int] NULL,
 [Timestamp] [timestamp] NOT NULL,
 CONSTRAINT [PK_StatusUpdates] PRIMARY KEY CLUSTERED
(
 [StatusUpdateID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

Chapter 5

[209]

 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS
 = ON) ON [PRIMARY]
) ON [PRIMARY]

Creating the Relationships
Here are the relationships that we need for the tables we just discussed:

Friends and Accounts via the owning account
Friends and Accounts via the friends account
FriendInvitations and Accounts
StatusUpdates andand Accounts

Friends Constraints
ALTER TABLE [dbo].[Friends] WITH CHECK ADD CONSTRAINT [FK_Friends_
Accounts] FOREIGN KEY([AccountID])
REFERENCES [dbo].[Accounts] ([AccountID])
GO
ALTER TABLE [dbo].[Friends] CHECK CONSTRAINT [FK_Friends_Accounts]
GO
ALTER TABLE [dbo].[Friends] WITH CHECK ADD CONSTRAINT [FK_Friends_
Accounts1] FOREIGN KEY([MyFriendsAccountID])
REFERENCES [dbo].[Accounts] ([AccountID])
GO
ALTER TABLE [dbo].[Friends] CHECK CONSTRAINT [FK_Friends_Accounts1]

FriendInvitations constraints
ALTER TABLE [dbo].[FriendInvitations] WITH CHECK ADD CONSTRAINT [FK_
FriendInvitations_Accounts] FOREIGN KEY([AccountID])
REFERENCES [dbo].[Accounts] ([AccountID])
GO
ALTER TABLE [dbo].[FriendInvitations] CHECK CONSTRAINT [FK_
FriendInvitations_Accounts]

StatusUpdates constraints
ALTER TABLE [dbo].[StatusUpdates] WITH CHECK ADD CONSTRAINT [FK_
StatusUpdates_Accounts] FOREIGN KEY([AccountID])
REFERENCES [dbo].[Accounts] ([AccountID])
GO
ALTER TABLE [dbo].[StatusUpdates] CHECK CONSTRAINT [FK_StatusUpdates_
Accounts]

•

•

•

•

Friends

[210]

Setting Up the Data Access Layer
Let's extend the data access layer now to handle these new tables. Open your
Fisharoo.dbml file and drag in these three new tables.

Recall from the past chapters that we are not allowing LINQ to manage these
relationships for us. So go ahead and remove the relationships from the surrounding
tables. Once you hit Save we should have three new classes to work with!

Building Repositories
As always, with these new tables will come new repositories. The following
repositories will be created:

FriendRepository

FriendInvitationRepository

StatusUpdateRepository

In addition to the creation of the above repositories, we will also need to modify the
AccountRepository.

FriendRepository
Most of our repositories will always follow the same design. They provide a way to
get at one record, many records by a parent ID, save a record, and delete a record.

This repository differs slightly from the norm when it is time to retrieve a list of
friends in that it has two sides of the relationship to look at—on one side where it
is the owning Account of the Friend relationship, and on the other side where the
relationship is owned by another account. Here is that method:

•

•

•

Chapter 5

[211]

public List<Friend> GetFriendsByAccountID(Int32 AccountID)
{
 List<Friend> result = new List<Friend>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 //Get my friends direct relationship
 IEnumerable<Friend> friends = (from f in dc.Friends
 where f.AccountID == AccountID
 &&
 f.MyFriendsAccountID AccountID
 select f).Distinct();
 result = friends.ToList();
 //Getmy friends indirect relationship
 var friends2 = (from f in dc.Friends
 where f.MyFriendsAccountID == AccountID &&
 f.AccountID != AccountID
 select new
 {
 FriendID = f.FriendID,
 AccountID = f.MyFriendsAccountID,
 MyFriendsAccountID = f.AccountID,
 CreateDate = f.CreateDate,
 Timestamp = f.Timestamp
 }).Distinct();
 foreach (object o in friends2)
 {
 Friend friend = o as Friend;
 if(friend != null)
 result.Add(friend);
 }
 }
 return result;
}

This method queries for all friends that are owned by this account. It then queries
for the reverse relationship where this account is owned by another account. Then it
adds the second query to the first and returns that result.

Here is the method that gets the Accounts of our Friends.

public List<Account> GetFriendsAccountsByAccountID(Int32 AccountID)
{
 List<Friend> friends = GetFriendsByAccountID(AccountID);
 List<int> accountIDs = new List<int>();
 foreach (Friend friend in friends)

Friends

[212]

 {
 accountIDs.Add(friend.MyFriendsAccountID);
 }
 List<Account> result = new List<Account>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<Account> accounts = from a in dc.Accounts
 where
 accountIDs.Contains(a.AccountID)
 select a;
 result = accounts.ToList();
 }
 return result;
}

This method first gathers all the friends (via the first method we discussed) and then
queries for all the related accounts. It then returns the result.

FriendInvitationRepository
Like the other repositories this one has the standard methods. In addition to those
we also need to be able to retrieve an invitation by GUID or the invitation key that
was sent to the friend.

public FriendInvitation GetFriendInvitationByGUID(Guid guid)
{
 FriendInvitation friendInvitation;
 using(FisharooDataContext dc = conn.GetContext())
 {
 friendInvitation = dc.FriendInvitations.Where(fi => fi.GUID
 == guid).FirstOrDefault();
 }
 return friendInvitation;
}

This is a very straightforward query matching the GUID values.

In addition to the above method we will also need a way for invitations
to be cleaned up. For this reason we will also have a method named
CleanUpFriendInvitations().

//removes multiple requests by the same account to the same email
account
public void CleanUpFriendInvitationsForThisEmail(FriendInvitation
 friendInvitation)
{

Chapter 5

[213]

 using (FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<FriendInvitation> friendInvitations = from fi in
 dc.FriendInvitations
 where fi.Email ==
 friendInvitation.Email &&

 fi.BecameAccountID == 0 &&

 fi.AccountID == friendInvitation.AccountID
 select fi;
 foreach (FriendInvitation invitation in friendInvitations)
 {
 dc.FriendInvitations.DeleteOnSubmit(invitation);
 }
 dc.SubmitChanges();
 }
}

This method is responsible for clearing out any invitations in the system that are
sent from account A to account B and have not been activated (account B never did
anything with the invite). Rather than checking if the invitation already exists when
it is created, we will allow them to be created time and again (checking each invite
during the import process of 500 contacts could really slow things down!). When
account B finally accepts one of the invitations all of the others will be cleared. Also,
in case account B never does anything with the invites, we will need a database
process that periodically cleans out old invitations.

StatusUpdateRepository
Other than the norm, this repository has a method that gets topN StatusUpdates
for use on the profile page.

public List<StatusUpdate> GetTopNStatusUpdatesByAccountID(Int32
AccountID, Int32 Number)
{
 List<StatusUpdate> result = new List<StatusUpdate>();
 using (FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<StatusUpdate> statusUpdates = (from su in
 dc.StatusUpdates
 where su.AccountID ==
 AccountID
 orderby su.CreateDate descending
 select
 su).Take(Number);

Friends

[214]

 result = statusUpdates.ToList();
 }
 return result;
}

This is done with a standard query with the addition of the Take() method, which
translates into a TOP statement in the resulting SQL.

AccountRepository
With the addition of our search capabilities we will require a new method in our
AccountRepository. This method will be the key for searching accounts.

public List<Account> SearchAccounts(string SearchText)
{
 List<Account> result = new List<Account>();
 using (FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<Account> accounts = from a in dc.Accounts
 where(a.FirstName + " " +
 a.LastName).Contains(SearchText) ||
 a.Email.Contains(SearchText) ||
 a.Username.Contains(SearchText)
 select a;
 result = accounts.ToList();
 }
 return result;
}

This method currently searches through a user's first name, last name, email address,
and username. This could of course be extended to their profile data and many other
data points (all in good time!).

Implementing the Services/Application Layer
Now that we have the repositories in place we can begin to create the services that sit
on top of those repositories. We will be creating the following services:

FriendService

In addition to that we will also be extending these services:

AlertService

PrivacyService

•

•

•

Chapter 5

[215]

FriendService
The FriendService currently has a couple of duties. We will need it to tell us
whether or not a user is a Friend or not so that we can extend the PrivacyService
to consider friends (recall that we currently only understand public and private
settings!). In addition to that we need our FriendService to be able to handle
creating Friends from a FriendInvitation.

public bool IsFriend(Account account, Account accountBeingViewed)
{
 if(account == null)
 return false;
 if(accountBeingViewed == null)
 return false;
 if(account.AccountID == accountBeingViewed.AccountID)
 return true;
 else
 {
 Friend friend =
 _friendRepository.GetFriendsByAccountID
 (accountBeingViewed.AccountID).
 Where(f => f.MyFriendsAccountID ==
 account.AccountID).FirstOrDefault();
 if(friend != null)
 return true;
 }
 return false;
}

This method needs to know who is making the request as well as who it is making
the request about. It then verifies that both accounts are not null so that we can use
them down the road and returns false if either of them are null. We then check
to see if the user that is doing the viewing is the same user as is being viewed. If
so we can safely return true. Then comes the fun part—currently we are using
the GetFriendsByAccountID method found in the FriendRepository. We iterate
through that list to see if our friend is there in the list or not. If we locate it, we return
true. Otherwise the whole method has failed to locate a result and returns false.

Friends

[216]

Keep in mind that this way of doing things could quickly become a major
performance issue. If you are checking security around several data
points frequently in the same page, this is a large query and moves a lot of
data around. If someone had 500 friends this would not be acceptable. As
our goal is for people to have lots of friends, we generally would not want
to follow this way. Your best bet then is to create a LINQ query in the
FriendsRepository to handle this logic directly only returning true
or false. However, I know that I am going to be caching the results of
this query (and many others) down the road, so I am less likely to feel the
pain from this query and am thereby keeping my repository free of an
additional method.

Now comes our CreateFriendFromFriendInvitation method, which as the name
suggests (drum role please) creates a friend from a friend invitation! I love names
that are human readable without any other prompts.

public void CreateFriendFromFriendInvitation(Guid InvitationKey,
Account InvitationTo)
{
 //update friend invitation request
 FriendInvitation friendInvitation =
 _friendInvitationRepository.
 GetFriendInvitationByGUID(InvitationKey);
 friendInvitation.BecameAccountID = InvitationTo.AccountID;
 _friendInvitationRepository.SaveFriendInvitation(
 friendInvitation);
 _friendInvitationRepository.CleanUpFriendInvitationsForThisEmail(
 friendInvitation);
 //create friendship
 Friend friend = new Friend();
 friend.AccountID = friendInvitation.AccountID;
 friend.MyFriendsAccountID = InvitationTo.AccountID;
 _friendRepository.SaveFriend(friend);
 Account InvitationFrom =
 _accountRepository.GetAccountByID
 (friendInvitation.AccountID);
 _alertService.AddFriendAddedAlert(InvitationFrom, InvitationTo);
 //CHAPTER 6
 //TODO: MESSAGING - Add message to inbox regarding new
 friendship!
}

Chapter 5

[217]

This method expects the InvitationKey (in the form of a system generated
GUID) and the Account that is wishing to create the relationship. It then gets the
FriendInvitation and updates the BecameAccountID property of the new friend.
We then make a call to flush any other friend invites between these two users.
Once we have everything cleaned up we add a new alert to the system (covered
shortly) letting the account that initiated this invitation know that the invitation
was accepted.

Notice that we will also need to add something here to send a message via the
messaging system (covered in the next chapter!).

AlertService
The alert service is essentially a wrapper to post an alert to the user's profile on The
Filter. All the plumbing for this was covered in a previous chapter. So the additional
methods that we have added are very similar to what was done previously. I will
post these methods here so you can see them—but I don't think they really require
too much explanation.

public void AddStatusUpdateAlert(StatusUpdate statusUpdate)
{
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = _userSession.CurrentUser.AccountID;
 alert.AlertTypeID = (int)AlertType.AlertTypes.StatusUpdate;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(_userSession.CurrentUser.AccountID)
 + GetProfileUrl(_userSession.CurrentUser.Username) + "
 " + statusUpdate.Status + "</div>";
 alert.Message = alertMessage;
 SaveAlert(alert);
 SendAlertToFriends(alert);
}
public void AddFriendRequestAlert(Account FriendRequestFrom, Account
 FriendRequestTo, Guid requestGuid, string Message)
{
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = FriendRequestTo.AccountID;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(FriendRequestFrom.AccountID) +
 GetProfileUrl(FriendRequestFrom.Username)
 + " would like to be
 friends!</div>";
 alertMessage += "<div class=\"AlertRow\">";

Friends

[218]

 alertMessage += FriendRequestFrom.FirstName + " " +
 FriendRequestFrom.LastName +
 " would like to be friends with you! Click this
 link to add this user as a friend: ";
 alertMessage += "<a href=\"" + _configuration.RootURL +
 "Friends/ConfirmFriendshipRequest.aspx?InvitationKey=" +
 requestGuid.ToString() + "\">" + _configuration.RootURL +
 "Friends/ConfirmFriendshipRequest.aspx?InvitationKey=" +
 requestGuid.ToString() + "<HR>" + Message + "</div>";
 alert.Message = alertMessage;
 alert.AlertTypeID = (int) AlertType.AlertTypes.FriendRequest;
 SaveAlert(alert);
}
public void AddFriendAddedAlert(Account FriendRequestFrom, Account
FriendRequestTo)
{
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = FriendRequestFrom.AccountID;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(FriendRequestTo.AccountID) +
 GetProfileUrl(FriendRequestTo.Username) + " is now
 your friend!</div>";
 alertMessage += "<div class=\"AlertRow\">" +
 GetSendMessageUrl(FriendRequestTo.AccountID) + "</div>";
 alert.Message = alertMessage;
 alert.AlertTypeID = (int)AlertType.AlertTypes.FriendAdded;
 SaveAlert(alert);
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = FriendRequestTo.AccountID;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(FriendRequestFrom.AccountID) +
 GetProfileUrl(FriendRequestFrom.Username) + " is
 now your friend!</div>";
 alertMessage += "<div class=\"AlertRow\">" +
 GetSendMessageUrl(FriendRequestFrom.AccountID) + "</div>";
 alert.Message = alertMessage;
 alert.AlertTypeID = (int)AlertType.AlertTypes.FriendAdded;
 SaveAlert(alert);
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AlertTypeID = (int) AlertType.AlertTypes.FriendAdded;
 alertMessage = "<div class=\"AlertHeader\">" + GetProfileUrl(Frien
dRequestFrom.Username) + " and " +

Chapter 5

[219]

 GetProfileUrl(FriendRequestTo.Username) + " are
 now friends!</div>";
 alert.Message = alertMessage;
 alert.AccountID = FriendRequestFrom.AccountID;
 SendAlertToFriends(alert);
 alert.AccountID = FriendRequestTo.AccountID;
 SendAlertToFriends(alert);
}

PrivacyService
Now that we have a method to check if two people are friends or not we can finally
extend our PrivacyService to account for friends. Remember that up to this point
we are only interrogating whether something is marked as private or public. Friends
is marked false by default!

public bool ShouldShow(Int32 PrivacyFlagTypeID,
 Account AccountBeingViewed,
 Account Account,
 List<PrivacyFlag> Flags)
{
 bool result;

 bool isFriend = _friendService.IsFriend(
 Account,AccountBeingViewed);

 //flag marked as private test
 if(Flags.Where(f => f.PrivacyFlagTypeID == PrivacyFlagTypeID &&
 f.VisibilityLevelID ==
 (int)VisibilityLevel.VisibilityLevels.Private)
 .FirstOrDefault() != null)
 result = false;
 //flag marked as friends only test
 else if (Flags.Where(f => f.PrivacyFlagTypeID ==
 PrivacyFlagTypeID && f.VisibilityLevelID ==
 (int)VisibilityLevel.VisibilityLevels.Friends)
 .FirstOrDefault() != null && isFriend)
 result = true;
 else if (Flags.Where(f => f.PrivacyFlagTypeID ==
 PrivacyFlagTypeID && f.VisibilityLevelID ==
 (int)VisibilityLevel.VisibilityLevels.Public)
 .FirstOrDefault() != null)
 result = true;
 else
 result = false;
 return result;
}

Friends

[220]

All we did here is point the isFriend variable at the result of the new IsFriend()
method in the FriendService. Everything else was handled previously!

Implementing the Presentation Layer
Now that we have the base framework in place we can start to discuss what it will
take to put it all together. Like I said earlier, this chapter is less about framework and
more about the UI that utilizes the new and existing framework!

Searching for Friends
Let's see what it takes to implement a search for friends.

SiteMaster
Let's begin with searching for friends. We haven't covered too much regarding the
actual UI and nothing regarding the master page of this site. I don't want this to be
about design! So I will simply say that we have added a text box and a button to the
master page to take in a search phrase.

When the button is clicked this method in the MasterPage code behind is fired.

protected void ibSearch_Click(object sender, EventArgs e)
{
 _redirector.GoToSearch(txtSearch.Text);
}

As you can see it simply calls the Redirector class and routes the user to the
Search.aspx page passing in the value of txtSearch (as a query string parameter in
this case).

public void GoToSearch(string SearchText)
{
 Redirect("~/Search.aspx?s=" + SearchText);
}

Search
The Search.aspx page has no interface. It expects a value to be passed in from the
previously discussed text box in the master page. With this text phrase we hit our
AccountRepository and perform a search using the Contains() operator. The
returned list of Accounts is then displayed on the page.

Chapter 5

[221]

For the most part, this page is all about MVP plumbing. If we weren't using MVP it
would all be very straightforward. I am going to assume that you are up to speed
with MVP from this point on and stick to the fun stuff from here on. Here is the
repeater that displays all our data.

<%@ Register Src="~/UserControls/ProfileDisplay.ascx"
TagPrefix="Fisharoo" TagName="ProfileDisplay" %>
...
<asp:Repeater ID="repAccounts" runat="server"
 OnItemDataBound="repAccounts_ItemDataBound">
 <ItemTemplate>
 <Fisharoo:ProfileDisplay ShowDeleteButton="false"
 ID="pdProfileDisplay" runat="server">
 </Fisharoo:ProfileDisplay>
 </ItemTemplate>
</asp:Repeater>

The fun stuff in this case comes in the form of the ProfileDisplay user control that
was created so that we have an easy way to display profile data in various places
with one chunk of reusable code that will allow us to make global changes.

If you have not used user controls before I will quickly explain how they work.
Basically, a user control is like a small self-contained page that you can then insert
into your page (or master page). It has its own UI and it has its own code behind
(so make sure it also gets its own MVP plumbing!). Also, like a page, it is at the end
of the day a simple object, which means that it can have properties, methods, and
everything else that you might think to use.

Friends

[222]

Once you have defined a user control you can use it in a few ways. You can
programmatically load it using the LoadControl() method and then use it like you
would use any other object in a page environment. Or like we did here, you can add
a page declaration that registers the control for use in that page. You will notice that
we specified where the source for this control lives. Then we gave it a tag prefix and
a tag name (similar to using asp:Control). From that point onwards we can refer to
our control in the same way that we can declare a TextBox!

You should see that we have <Fisharoo:ProfileDisplay ... />. You will also
notice that our tag has custom properties that are set in the tag definition. In this case
you see ShowDeleteButton="false".

Here is the user control code in order of display, code behind, and the presenter
(omitting the interface of the view as usual).

//UserControls/ProfileDisplay.ascx
<%@ Import namespace="Fisharoo.FisharooCore.Core.Domain"%>
<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="ProfileDisplay.ascx.cs" Inherits="Fisharoo.
FisharooWeb.UserControls.ProfileDisplay" %>
<div style="float:left;">
 <div style="height:130px;float:left;">
 <a href="/Profiles/Profile.aspx?AccountID=<asp:Literal
 id='litAccountID' runat='server'></asp:Literal>">
 <asp:Image style="padding:5px;width:100px;height:100px;"
 ImageAlign="Left" Width="100"
 Height="100" ID="imgAvatar"
 ImageUrl="~/images/ProfileAvatar/ProfileImage.aspx"
 runat="server" />
 <asp:ImageButton ImageAlign="AbsMiddle" ID="ibInviteFriend"
 runat="server" Text="Become Friends"
 OnClick="lbInviteFriend_Click"
 ImageUrl="~/images/icon_friends.gif"></asp:ImageButton>
 <asp:ImageButton ImageAlign="AbsMiddle" ID="ibDelete"
 runat="server" OnClick="ibDelete_Click"
 ImageUrl="~/images/icon_close.gif" />

 <asp:Label ID="lblUsername" runat="server"></asp:Label>

 <asp:Label ID="lblFirstName" runat="server"></asp:Label>
 <asp:Label ID="lblLastName" runat="server"></asp:Label>

 Since: <asp:Label ID="lblCreateDate"
 runat="server"></asp:Label>

 <asp:Label ID="lblFriendID" runat="server"
 Visible="false"></asp:Label>
 </div>
</div>
//UserControls/ProfileDisplay.ascx.cs

Chapter 5

[223]

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooWeb.UserControls.Interfaces;
using Fisharoo.FisharooWeb.UserControls.Presenters;
namespace Fisharoo.FisharooWeb.UserControls
{
 public partial class ProfileDisplay : System.Web.UI.UserControl,
 IProfileDisplay
 {
 private ProfileDisplayPresenter _presenter;
 protected Account _account;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new ProfileDisplayPresenter();
 _presenter.Init(this);
 ibDelete.Attributes.Add("onclick","javascript:return
 confirm(‘Are you sure you want
 to delete this friend?')");
 }

 public bool ShowDeleteButton
 {
 set
 {
 ibDelete.Visible = value;
 }
 }

 public bool ShowFriendRequestButton
 {
 set
 {
 ibInviteFriend.Visible = value;
 }

Friends

[224]

 }

 public void LoadDisplay(Account account)
 {
 _account = account;
 ibInviteFriend.Attributes.Add("FriendsID",
 _account.AccountID.ToString());
 ibDelete.Attributes.Add("FriendsID",
 _account.AccountID.ToString());
 litAccountID.Text = account.AccountID.ToString();
 lblLastName.Text = account.LastName;
 lblFirstName.Text = account.FirstName;
 lblCreateDate.Text = account.CreateDate.ToString();
 imgAvatar.ImageUrl += "?AccountID=" +
 account.AccountID.ToString();
 lblUsername.Text = account.Username;
 lblFriendID.Text = account.AccountID.ToString();
 }

 protected void lbInviteFriend_Click(object sender,
 EventArgs e)
 {
 _presenter = new ProfileDisplayPresenter();
 _presenter.Init(this);
 _presenter.SendFriendRequest(Convert.ToInt32(
 lblFriendID.Text));
 }

 protected void ibDelete_Click(object sender, EventArgs e)
 {
 _presenter = new ProfileDisplayPresenter();
 _presenter.Init(this);
 _presenter.DeleteFriend(Convert.ToInt32(
 lblFriendID.Text));
 }
 }
}
//UserControls/Presenter/ProfileDisplayPresenter.cs
using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;

Chapter 5

[225]

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooWeb.UserControls.Interfaces;
using StructureMap;
namespace Fisharoo.FisharooWeb.UserControls.Presenters
{
 public class ProfileDisplayPresenter
 {
 private IProfileDisplay _view;
 private IRedirector _redirector;
 private IFriendRepository _friendRepository;
 private IUserSession _userSession;
 public ProfileDisplayPresenter()
 {
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 _friendRepository =
 ObjectFactory.GetInstance<IFriendRepository>();
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 }
 public void Init(IProfileDisplay view)
 {
 _view = view;
 }
 public void SendFriendRequest(Int32 AccountIdToInvite)
 {
 _redirector.GoToFriendsInviteFriends(AccountIdToInvite);
 }
 public void DeleteFriend(Int32 FriendID)
 {
 if (_userSession.CurrentUser != null)
 {
 _friendRepository.DeleteFriendByID(
 _userSession.CurrentUser.AccountID, FriendID);
 HttpContext.Current.Response.Redirect(HttpContext.
 Current.Request.RawUrl);
 }
 }
 }
}

Friends

[226]

All this logic and display is very standard. You have the MVP plumbing, which
makes up most of it. Outside of that you will notice that the ProfileDisplay control
has a LoadDisplay() method responsible for loading the UI for that control. In the
Search page this is done in the repAccounts_ItemDataBound() method.

protected void repAccounts_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 ProfileDisplay pd = e.Item.FindControl("pdProfileDisplay") as
 ProfileDisplay;
 pd.LoadDisplay((Account)e.Item.DataItem);
 if(_webContext.CurrentUser == null)
 pd.ShowFriendRequestButton = false;
 }
}

The ProfileDisplay control also has a couple of properties—one to show/hide
the delete friend button and the other to show/hide the invite friend button. These
buttons are not appropriate for every page that the control is used in. In the search
results page we want to hide the Delete button as the results are not necessarily
friends. We would want to be able to invite them in that view. However, in a list of
our friends the Invite button (to invite a friend) would no longer be appropriate as
each of these users would already be a friend. The Delete button in this case would
now be more appropriate.

Clicking on the Invite button makes a call to the Redirector class and routes the
user to the InviteFriends page.

//UserControls/ProfileDisplay.ascx.cs
public void SendFriendRequest(Int32 AccountIdToInvite)
{
 _redirector.GoToFriendsInviteFriends(AccountIdToInvite);
}

//Core/Impl/Redirector.cs
public void GoToFriendsInviteFriends(Int32 AccoundIdToInvite)
{
 Redirect("~/Friends/InviteFriends.aspx?AccountIdToInvite=" +
 AccoundIdToInvite.ToString());
}

Chapter 5

[227]

Invite Your Friends
This page allows us to manually enter email addresses of friends that we want to
invite. It is a standard From, To, Message format where the system specifies the
sender (you), you specify who to send to and the message that you want to send.

//Friends/InviteFriends.aspx
<%@ Page Language="C#" MasterPageFile="~/SiteMaster.Master"
 AutoEventWireup="true" CodeBehind="InviteFriends.aspx.cs"
 Inherits="Fisharoo.FisharooWeb.Friends.InviteFriends" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
 <div class="divContainer">
 <div class="divContainerBox">
 <div class="divContainerTitle">Invite Your Friends</div>
 <asp:Panel ID="pnlInvite" runat="server">
 <div class="divContainerRow">
 <div class="divContainerCellHeader">From:</div>
 <div class="divContainerCell"><asp:Label
 ID="lblFrom" runat="server"></asp:Label></div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">To:
<div
 class="divContainerHelpText">(use commas
 to
separate emails)</div></div>
 <div class="divContainerCell"><asp:TextBox
 ID="txtTo" runat="server"
 TextMode="MultiLine" Columns="40"
 Rows="5"></asp:TextBox></div>
 </div>
 <div class="divContainerRow">
 <div
 class="divContainerCellHeader">Message:</div>
 <div class="divContainerCell"><asp:TextBox
 ID="txtMessage" runat="server"
 TextMode="MultiLine" Columns="40"
 Rows="10"></asp:TextBox></div>
 </div>
 <div class="divContainerFooter">
 <asp:Button ID="btnInvite" runat="server"
 Text="Invite" OnClick="btnInvite_Click" />
 </div>
 </asp:Panel>
 <div class="divContainerRow">
 <div class="divContainerCell">
<asp:Label
 ID="lblMessage" runat="server">
 </asp:Label>

</div>

Friends

[228]

 </div>
 </div>
 </div>
</asp:Content>

Running the code will display the following:

This is a simple page so the majority of the code for it is MVP plumbing. The most
important part to notice here is that when the Invite button is clicked the presenter is
notified to send the invitation.

//Friends/InviteFriends.aspx.cs
using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooWeb.Friends.Interface;

Chapter 5

[229]

using Fisharoo.FisharooWeb.Friends.Presenter;
namespace Fisharoo.FisharooWeb.Friends
{
 public partial class InviteFriends : System.Web.UI.Page,
 IInviteFriends
 {
 private InviteFriendsPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new InviteFriendsPresenter();
 _presenter.Init(this);
 }

 protected void btnInvite_Click(object sender, EventArgs e)
 {
 _presenter.SendInvitation(txtTo.Text,txtMessage.Text);
 }

 public void DisplayToData(string To)
 {
 lblFrom.Text = To;
 }

 public void TogglePnlInvite(bool IsVisible)
 {
 pnlInvite.Visible = IsVisible;
 }

 public void ShowMessage(string Message)
 {
 lblMessage.Text = Message;
 }

 public void ResetUI()
 {
 txtMessage.Text = "";
 txtTo.Text = "";
 }
 }
}

Once this call is made we leap across to the presenter (more plumbing!).

//Friends/Presenter/InviteFriendsPresenter.cs
using System;
using System.Data;
using System.Configuration;

Friends

[230]

using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;
using Fisharoo.FisharooCore.Core;
using Fisharoo.FisharooCore.Core.DataAccess;
using Fisharoo.FisharooCore.Core.Domain;
using Fisharoo.FisharooWeb.Friends.Interface;
using StructureMap;
namespace Fisharoo.FisharooWeb.Friends.Presenter
{
 public class InviteFriendsPresenter
 {
 private IInviteFriends _view;
 private IUserSession _userSession;
 private IEmail _email;
 private IFriendInvitationRepository
 _friendInvitationRepository;
 private IAccountRepository _accountRepository;
 private IWebContext _webContext;
 private Account _account;
 private Account _accountToInvite;

 public void Init(IInviteFriends view)
 {
 _view = view;
 _userSession = ObjectFactory.GetInstance<IUserSession>();
 _email = ObjectFactory.GetInstance<IEmail>();
 _friendInvitationRepository =
 ObjectFactory.GetInstance<
 IFriendInvitationRepository>();
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _account = _userSession.CurrentUser;
 if (_account != null)
 {
 _view.DisplayToData(_account.FirstName + " " +
 _account.LastName + " <" +
 _account.Email + ">");
 if (_webContext.AccoundIdToInvite > 0)

Chapter 5

[231]

 {
 _accountToInvite =
 _accountRepository.GetAccountByID
 (_webContext.AccoundIdToInvite);
 if (_accountToInvite != null)
 {
 SendInvitation(_accountToInvite.Email,
 _account.FirstName + " " +
 _account.LastName + " would like
 to be your friend!");
 _view.ShowMessage(_accountToInvite.Username +
 " has been sent a friend request!");
 _view.TogglePnlInvite(false);
 }
 }
 }
 }

 public void SendInvitation(string ToEmailArray, string
 Message)
 {
 string resultMessage = "Invitations sent to the following
 recipients:
";
 resultMessage +=
 _email.SendInvitations
 (_userSession.CurrentUser,ToEmailArray, Message);
 _view.ShowMessage(resultMessage);
 _view.ResetUI();
 }
 }
}

The interesting thing here is the SendInvitation() method, which takes in a
comma delimited array of emails and the message to be sent in the invitation. It then
makes a call to the Email.SendInvitations() method.

//Core/Impl/Email.cs
public string SendInvitations(Account sender, string ToEmailArray,
 string Message)
{
 string resultMessage = Message;
 foreach (string s in ToEmailArray.Split(‘,'))
 {
 FriendInvitation friendInvitation = new FriendInvitation();
 friendInvitation.AccountID = sender.AccountID;
 friendInvitation.Email = s;

Friends

[232]

 friendInvitation.GUID = Guid.NewGuid();
 friendInvitation.BecameAccountID = 0;
 _friendInvitationRepository.SaveFriendInvitation(
 friendInvitation);
 //add alert to existing users alerts
 Account account = _accountRepository.GetAccountByEmail(s);
 if(account != null)
 {
 _alertService.AddFriendRequestAlert(_userSession.
 CurrentUser, account, friendInvitation.GUID, Message);
 }
 //CHAPTER 6
 //TODO: MESSAGING - if this email is already in our system
 add a message through messaging system
 //if(email in system)
 //{
 // add message to messaging system
 //}
 //else
 //{
 // send email
 SendFriendInvitation(s, sender.FirstName, sender.LastName,
 friendInvitation.GUID.ToString(), Message);
 //}
 resultMessage += "• " + s + "
";
 }
 return resultMessage;
}

This method is responsible for parsing out all the emails, creating a new
FriendInvitation, and sending the request via email to the person who was
invited. It then adds an alert to the invited user if they have an Account. And finally
we have to add a notification to the messaging system once it is built.

Outlook CSV Importer
The Import Contacts page is responsible for allowing our users to upload an
exported contacts file from MS Outlook into our system. Once they have imported
their contacts the user is allowed to select which email addresses are actually invited
into our system.

Chapter 5

[233]

Importing Contacts
As this page is made up of a couple of views, let's begin with the initial view.

//Friends/OutlookCsvImporter.aspx
<asp:Panel ID="pnlUpload" runat="server">
 <div class="divContainerTitle">Import Contacts</div>
 <div class="divContainerRow">
 <div class="divContainerCellHeader">Contacts File:</div>
 <div class="divContainerCell"><asp:FileUpload ID="fuContacts"
 runat="server" /></div>
 </div>
 <div class="divContainerRow">
 <div class="divContainerFooter"><asp:Button ID="btnUpload"
 Text="Upload & Preview Contacts" runat=
 "server" OnClick="btnUpload_Click" /></div>
 </div>

 <div class="divContainerRow">
 <div class="divContainerTitle">How do I export my contacts
 from Outlook?</div>
 <div class="divContainerCell">

 Open Outlook

 In the File menu choose Import and Export

 Choose export to a file and click next

 Choose comma seperated values and click next

 Select your contacts and click next

 Browse to the location you want to save your
 contacts file

 Click finish

Friends

[234]

 </div>
 </div>
</asp:Panel>

As you can see from the code we are working in panels here. This panel is
responsible for allowing a user to upload their Contacts CSV File. It also gives some
directions to the user as to how to go about exporting contacts from Outlook.

This view has a file upload box that allows the user to browse for their CSV file, and
a button to tell us when they are ready for the upload.

There is a method in our presenter that handles the button click from the view.

//Friends/Presenter/OutlookCsvImporterPresenter.cs
public void ParseEmails(HttpPostedFile file)
{
 using (Stream s = file.InputStream)
 {
 StreamReader sr = new StreamReader(s);
 string contacts = sr.ReadToEnd();
 _view.ShowParsedEmail(_email.ParseEmailsFromText(contacts));
 }
}

This method is responsible for handling the upload process of the HttpPostedFile.
It puts the file reference into a StreamReader and then reads the stream into a string
variable named contacts. Once we have the entire list of contacts we can then call
into our Email class and parse all the emails out.

Chapter 5

[235]

//Core/Impl/Email.cs
public List<string> ParseEmailsFromText(string text)
{
 List<string> emails = new List<string>();
 string strRegex = @"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*";
 Regex re = new Regex(strRegex, RegexOptions.Multiline);
 foreach (Match m in re.Matches(text))
 {
 string email = m.ToString();
 if(!emails.Contains(email))
 emails.Add(email);
 }
 return emails;
}

This method expects a string that contains some email addresses that we want to
parse. It then parses the emails using a regular expression (which we won't go into
details about!). We then iterate through all the matches in the Regex and add the
found email addresses to our list provided they aren't already present. Once we have
found all the email addresses, we will return the list of unique email addresses.

The presenter then passes that list of parsed emails to the view.

Selecting Contacts
Once we have handled the upload process and parsed out the emails, we then need
to display all the emails to the user so that they can select which ones they want
to invite.

Now you could do several sneaky things here. Technically the user has
uploaded all of their email addresses to you. You have them. You could
store them. You could invite every single address regardless of what the
user wants. And while this might benefit your community over the short
run, your users would eventually find out about your sneaky practice and
your community would start to dwindle. Don't take advantage of your
user's trust!

The code for this display looks like this:

//Friends/OutlookCsvImporter.aspx
<asp:Panel visible="false" ID="pnlEmails" runat="server">
 <div class="divContainerTitle">Select Contacts</div>
 <div class="divContainerFooter"><asp:Button
 ID="btnInviteContacts1" runat="server"
 OnClick="btnInviteContacts_Click"
 Text="Invite Selected Contacts"
 /></div>

Friends

[236]

 <div class="divContainerCell" style="text-align:left;">
 <asp:CheckBoxList ID="cblEmails" RepeatColumns="2"
 runat="server"></asp:CheckBoxList>
 </div>
 <div class="divContainerFooter"><asp:Button
 ID="btnInviteContacts2" runat="server"
 OnClick="btnInviteContacts_Click"
 Text="Invite Selected Contacts" /></div>
</asp:Panel>

Notice that we have a checkbox list in our panel. This checkbox list is bound to the
returned list of email addresses.

public void ShowParsedEmail(List<string> Emails)
{
 pnlUpload.Visible = false;
 pnlResult.Visible = false;
 pnlEmails.Visible = true;
 cblEmails.DataSource = Emails;
 cblEmails.DataBind();
}

The output so far looks like this:

Now the user has a list of all the email addresses that they uploaded, which they can
then go through selecting the ones that they want to invite into our system. Once
they are through selecting the emails that they want to invite, they can click on the
Invite button.

Chapter 5

[237]

We then iterate through all the items in the checkbox list to locate the selected items.

protected void btnInviteContacts_Click(object sender, EventArgs e)
{
 string emails = "";
 foreach (ListItem li in cblEmails.Items)
 {
 if(li != null && li.Selected)
 emails += li.Text + ",";
 }
 emails = emails.Substring(0, emails.Length - 1);
 _presenter.InviteContacts(emails);
}

Once we have gathered all the selected emails we pass them to the presenter to run
the invitation process.

public void InviteContacts(string ToEmailArray)
{
 string result = _email.SendInvitations(_userSession.CurrentUser,
 ToEmailArray, "");
 _view.ShowInvitationResult(result);
}

The presenter promptly passes the selected items to the Email class to handle the
invitations. This is the same method that we used in the last section to invite users.

//Core/Impl/Email.cs
public string SendInvitations(Account sender, string ToEmailArray,
 string Message)
{
...
}

We then output the result of the emails that we invited into the third display.

<asp:Panel ID="pnlResult" runat="server" Visible="false">
 <div class="divContainerTitle">Invitations Sent!</div>
 <div class="divContainerCell">
 Invitations were sent to the following emails:

 <asp:Label ID="lblMessage" runat="server"></asp:Label>
 </div>
</asp:Panel>

Friends

[238]

Confirm Friendship
Having covered all these ways to invite someone into our site, we now need to look
at what the invited user sees in the invitation. Let's start with what they would see in
their inbox.

The user gets an email in their inbox telling them that so and so has invited them to
come to Fisharoo.

Once they open that email they can see the request again as well as the link that they
can follow to the site to take advantage of the invitation.

As you can see this link brings them to server/Friends/
ConfirmFriendshipRequest.aspx with a GUID for an invitation key. There are twowith a GUID for an invitation key. There are two
screens that the user might see after this point.

The first screen is for the users who are already members. It asks them to log in again
to confirm the friendship.

Chapter 5

[239]

The other screen is for the users who aren't members, or the users who aren't
logged in.

The only real logic in the ConfirmFriendshipRequest.aspx page is to check the
GUID that is passed in to make sure that it is valid. This happens in the presenter of
this page.

public void Init(IConfirmFriendshipRequest view)
{
 _view = view;
 if (!string.IsNullOrEmpty(_webContext.FriendshipRequest))
 {
 FriendInvitation friendInvitation =
 _friendInvitationRepository.GetFriendInvitationByGUID(new
 Guid(_webContext.FriendshipRequest));
 if(friendInvitation != null)
 {
 if (_webContext.CurrentUser != null)
 LoginClick();

 Account account =
 _accountRepository.GetAccountByID
 (friendInvitation.AccountID);
 _view.ShowConfirmPanel(true);
 _view.LoadDisplay(_webContext.FriendshipRequest,
 account.AccountID, account.FirstName,
 account.LastName, _configuration.SiteName);
 }
 else
 {
 _view.ShowConfirmPanel(false);
 _view.ShowMessage("There was an error validating your
 invitation.");
 }
 }
}

Friends

[240]

Either we can load a friendInvitation from the GUID or not. If we can, then we
check to see if the user is already a member of the system and logged in. If they are
logged in we automatically redirect them to the login screen. Otherwise we prompt
them to log in or create an account.

If the friendInvitaiton can't be loaded properly then we show an error
explaining that.

Where the real magic occurs for the invitation process is in the login and
registration pages.

Login
In the login presenter we have added some logic to the Init method to recognize if
we have a friendship request or not.

//Accounts/Presenter/LoginPresenter.cs
public void Init(ILogin view)
{
 _view = view;
 _accountService = ObjectFactory.GetInstance<IAccountService>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 if(!string.IsNullOrEmpty(_webContext.FriendshipRequest))

 _view.DisplayMessage("Login to add this friend!");

}

This logic lets the user know that by logging in they will be accepting the
friend request.

Then in the AccountService.cs file we have added some additional logic. If the
login is a success and there is a friend request, we confirm the request and make
these two users friends, via the FriendService we discussed earlier.

//Core/Impl/AccountService.cs
public string Login(string Username, string Password)
{
 ...
 if (account.EmailVerified)
 {
 _userSession.LoggedIn = true;
 _userSession.Username = Username;
 _userSession.CurrentUser =
 GetAccountByID(account.AccountID);
 if(!string.IsNullOrEmpty(_webContext.
 FriendshipRequest))

Chapter 5

[241]

 {

 _friendService.CreateFriendFromFriendInvitation(
 new Guid(_webContext.FriendshipRequest),
 _userSession.CurrentUser);

 }

 ...
}

Registration
If the invited friend is not already a user of the site, then we allow them to walk
through the registration site as normal. Once the registration is complete, we not
only register them but we also create the friendship.

//Accounts/Presenter/RegisterPresenter.cs
public void Register(string Username, string Password,
 string FirstName, string LastName, string Email,
 string Zip, DateTime BirthDate, string Captcha,
 bool AgreesWithTerms, Int32 TermID)
{
 ...
 //if this registration came via a friend request...

 if(friendInvitation != null)

 {

 _friendService.CreateFriendFromFriendInvitation(ne
w Guid(_webContext.FriendshipRequest),newAccount);

 }

...
}

Show Friends
Now that we have everything we need to invite and accept a friend, we need the
ability to see our friends. For this we will add to our Friends section landing page
(Default.aspx) a list of all our friends. This will actually be quite easy as we will use
our ProfileDisplay user control that we created earlier for our Search page.

This page will simply consist of a repeater with our ProfileDisplay control. We set
the ShowFriendRequestButton to false as these are already our friends.

<asp:Repeater ID="repFriends" runat="server"
 OnItemDataBound="repFriends_ItemDataBound">
 <ItemTemplate>
 <div class="divContainerRow" style="height:110px;">
 <div class="divContainerCell">

Friends

[242]

 <Fisharoo:ProfileDisplay
 ShowFriendRequestButton="false"
 ID="pdProfileDisplay" runat="server" />
 </div>
 </div>
 </ItemTemplate>
</asp:Repeater>

Our presenter then loads the display with all the current user's friends by calling into
the FriendRepository.GetFriendsAccountsByAccountID() method and passing
that collection down to the view.

public void LoadDisplay()
{
 _view.LoadDisplay(_friendRepository.GetFriendsAccountsByAccountID
 (_userSession.CurrentUser.AccountID));
}

The view then hooks up the repeater's data source. On each ItemDataBound of the
repeater we spin up the ProfileDisplay user control

protected void repFriends_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 ProfileDisplay pdProfileDisplay =
 e.Item.FindControl("pdProfileDisplay") as ProfileDisplay;
 pdProfileDisplay.LoadDisplay(((Account)e.Item.DataItem));
 }
}

We then end up with this output:

Chapter 5

[243]

I have not done it yet, but down the road we are most likely to have some form of
pagination implemented here too!

Friends on Profile
After having a page that shows all of our friends, it should be easy to update our
public profile to show a handful of friends. To do this we will open the Profile.
aspx page and add to it a bit.

We are simply going to add the same sort of repeater to the profile page as we did in
the case of the Friends/Default.aspx page.

<asp:Repeater ID="repFriends" runat="server"
 OnItemDataBound="repFriends_ItemDataBound">
 <ItemTemplate>
 <Fisharoo:ProfileDisplay ShowFriendRequestButton="false"
 ShowDeleteButton="false" ID="pdProfileDisplay"
 runat="server" />
 </ItemTemplate>
</asp:Repeater>

Then in our ProfilePresenter.cs file we have added a line that loads that repeater.
public void Init(IProfile View)
{
 _view = View;
 _view.SetAvatar(_accountBeingViewed.AccountID);
 _view.DisplayInfo(_accountBeingViewed);
 _view.LoadFriends(_friendRepository.GetFriendsAccountsByAccountID(_
accountBeingViewed.AccountID));
 _view.LoadStatusUpdates(_statusUpdateRepository.
GetTopNStatusUpdatesB
 yAccountID(_accountBeingViewed.AccountID,5));
 TogglePrivacy();
}

And in the Profile.aspx.cs file we have added an event handler for repFriends_
ItemDataBound() that takes care of loading each ProfileDisplay control.

protected void repFriends_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 ProfileDisplay pdProfileDisplay =
 e.Item.FindControl("pdProfileDisplay") as ProfileDisplay;
 pdProfileDisplay.LoadDisplay(((Account)e.Item.DataItem));
 }
}

Friends

[244]

Status Updates
Status updates (our micro blog) are very simple to implement at this point. We will
need to open the master page and add a small section to take in and display a top
listing of these updates.

In our master page we will add a panel to our global display. It will be responsible
for taking in new updates as well as displaying the most recent updates.

//SiteMaster.master
<asp:Panel ID="pnlStatusUpdate" runat="server">
 <div class="divContainer">
 <div class="divContainerBox">
 <div class="divContainerTitle">Status Updates</div>
 <div class="divContainerCell">
 <asp:TextBox Width="85" style="font-size:9px;
 padding-left:0px;padding-right:0px;"
 id="txtStatusUpdate" runat="server"></asp:TextBox>
 <asp:Button style="font-size:9px;
 padding-left:0px;padding-right:0px;"
 ID="btnAddStatus" runat="server" Text=
 "Add" OnClick="btnAddStatus_Click" />

 <asp:Repeater runat="server" ID="repStatus">
 <ItemTemplate>
 <asp:Label ID="Label1" Text='
 <%# ((StatusUpdate)Container.DataItem).
 CreateDate.ToString() %>'
 runat="server" style="font-size:9px;"></asp:Label> -
 <asp:Label ID="Label2" Text='
 <%# ((StatusUpdate)Container.DataItem).
 Status %>' runat="server"
 style="font-size:9px;"></asp:Label>
 </ItemTemplate>
 <SeparatorTemplate>
 <div class="divContainerSeparator"></div>
 </SeparatorTemplate>
 </asp:Repeater>

 <asp:Button ID="btnShowAllStatusUpdates"
 runat="server" Text="View All" OnClick=
 "btnShowAllStatusUpdates_Click" />
 </div>
 </div></div>
</asp:Panel>

Chapter 5

[245]

Once the display is in place, we need to add a method to capture our button clicks so
that we can add new updates.

//SiteMaster.master.cs
protected void btnAddStatus_Click(object sender, EventArgs e)
{
 StatusUpdate su = new StatusUpdate();
 su.CreateDate = DateTime.Now;
 su.AccountID = _userSession.CurrentUser.AccountID;
 su.Status = txtStatusUpdate.Text;
 _statusRepository.SaveStatusUpdate(su);
 _alertService.AddStatusUpdateAlert(su);
 _redirector.GoToHomePage();
}

This method spins up a new StatusUpdate and adds it to the
StatusUpdateRepository. While we are here we need to add another method to
handle the button click to show all status updates.

//SiteMaster.master.cs
protected void btnShowAllStatusUpdates_Click(object sender,
 EventArgs e)
{
 _redirector.GoToProfilesStatusUpdates();
}

As you can see, this method simply redirects via the Redirector class to the
Profiles/StatusUpdates.aspx page.

This then takes us to displaying our top StatusUpdates in the master page. To do
this we need to add the method that gets the top N StatusUpdates.

//SiteMaster.master.cs
protected void LoadStatus()
{
 repStatus.DataSource =
 statusRepository.GetTopNStatusUpdatesByAccountID(
 userSession.CurrentUser.AccountID, 5);
 repStatus.DataBind();
}

Friends

[246]

With this in place we need to update the Page_Load() method of the master page so
that the status updates are loaded when there is a user logs into the site.

//SiteMaster.master.cs
protected void Page_Load(object sender, EventArgs e)
{
 ...
 if (_userSession.CurrentUser != null)

 {

 LoadStatus();

 pnlStatusUpdate.Visible = true;

 }

 else

 pnlStatusUpdate.Visible = false;

}

Now that we have a way to capture new status updates as well as a way to display
the most recent updates, we need to provide a way for our user to see all of their
updates. We will do this with a page dedicated to showing this data.

//Friends/StatusUpdates.aspx
<asp:Repeater ID="repStatusUpdates" runat="server">
 <ItemTemplate>
 <%# ((StatusUpdate)Container.DataItem).CreateDate.ToString()
 %> -
 <%# ((StatusUpdate)Container.DataItem).Status %>
 </ItemTemplate>
 <SeparatorTemplate>
 <div class="divContainerSeparator"></div>
 </SeparatorTemplate>
</asp:Repeater>

Chapter 5

[247]

This page of course has the same plumbing issues as do the others. But it basically
boils down to calling into the StatusUpdateRepository and get all StatusUpdates
for a given Account. The only difference between this and showing the TopN
StatusUpdates, as we did on the master page, is that we will show all the
updates here.

This is another page that will eventually benefit from having pagination implemented.

Summary
This chapter was certainly less about building the framework and more about
reworking some existing items so that they could be more friends-oriented. We have
provided various methods to locate and invite friends to join us. We also extended
some systems so that our friends could stay in touch with us and what we are doing
on the site in the form of alerts and status updates. We now have a site that allows us
to connect with and interact with others. This is the first among the many chapters
that has really helped us put the community feeling into our community.

Messaging
Given that our site's focus is to gather people together so that they can interact
with each other, we need a way for them to interact. The primary way for people to
interact with one another is through direct communication. We will build a system
to perform this communication in a way that is similar to sending an email from a
standard email client such as Outlook or Hotmail.

We will provide a way for our users to create and send messages via the Xinha
WYSIWYG editor.

Messaging

[250]

Once a user can create and send messages, we will then create a way for other users
to receive and read those messages.

The emails will queue up in their inbox, and from there they will be able to read
their messages.

And of course, once we have this messaging subsystem in place we can hook our
other features up in a way that they too can send messages—such as when a user
accepts a friend request we can show the acceptance of that request in their Inbox.

Problem
A messaging system can be a very complex topic as there are many facets to be
covered. The basic system, though, should be able to manage messages, senders and
recipients, folders to contain the messages, and email notifications. In our case, we
are going to try and keep things simple where it makes sense to do so. But in one
area, we will do things in a more complicated approach simply because it will result
in less wear and tear on the overall system.

Rather than follow a standard email messaging system where each person gets a
physical copy of a message, we are going to build our system in the same way that
the MS Exchange server works. We are going to make one copy of a message and
subscribe users to that message. So rather than have 50 messages for 50 recipients,
we will have one message and 50 recipient subscriptions.

Chapter 6

[251]

The next complexity (although not that complex) lies in building a WYSIWYG (what
you see is what you get) messaging editor. For this feature, there are many open
source WYSIWYG editors; we will use one of those to save us a bit of time. We will
be using the most popular editor—XINHA. This editor can be downloaded for free
here at http://xinha.webfactional.com/. You may have seen this editor already.
It is widely used across many popular community sites.

Design
Let's take a look at the design of these features.

Messages
Messages are the core of any messaging system. Generally, a message would contain
details on the sender of the message, receiver of the message, and other metadata
about the message, subject, and body. In our case, the message will be more
simplistic. Our messages will contain the sender, subject, body, and the data sent. It
will also contain details of the type of message (message, friend request, and so on).

We will need to create a page that allows a user to compose a new message. This
interface should also allow a user to add his/her friends easily rather than force
them to remember everyone. Also, this interface should allow a user to quickly
snap together some HTML without ever having to look at HTML. This can be
accomplished with a WYSIWYG editor.

Messaging

[252]

Recipients
As we have already discussed that we are going to move some of the complexity
away from the message, following a subscription model instead, you will find that
most of the complexity of this system lies around the recipient concepts.

In this case, the recipient subscription is what will be contained in a folder and will
have a read status. With this design, we can remove some of the burden from our
database. The overhead of doing this of course means that we now need to manage
our data more smartly as it is kept in many pieces.

A more simple design that would result in more copies of data to be managed would
be to create one message for each recipient. This is easier as each message can easily
be deleted and moved around without having to worry about the copies of that
message of the other recipients. Having said that, if the message is quite large, and
more importantly if we were to allow file attachments, most of the copy would be
identical for each recipient. This would quickly bloat your database!

Solution
Now let's take a look at our solution.

Chapter 6

[253]

Implementing the database
First let's take a look at what tables are needed:

Messages
A message will primarily be made up of the subject and its body. In addition to
that we will need to know what type of message we are sending so that we can do
some more fancy things in the UI down the road. In addition to this, we are going to
maintain who owns the message or created the message at this level.

There aren't really any major complexities to note here other than the fact that the
Body is made up of a varchar(MAX) data type. If you feel this is too large for your
system, feel free to make it anything you are comfortable with. Note that we have a
Timestamp with this table, as with other chapters. This allows LINQ to do its magicers. This allows LINQ to do its magicrs. This allows LINQ to do its magic
with regards to our data layer.

MessageTypes
Message Types allows us to assign a type to our messages. This is purely a lookup
table that will allow us to know what the types are during queries. We will keep a
list of enums in the code to make the lookups easier from that end.

Messaging

[254]

MessageRecipients
A message recipient is simply the receiving party to the message. But as we try to
minimize the data that we manage in our system, the message recipient is also a very
important part of the message. In our case, it is the receiving party as well as all the
things that the receiving party does with their subscription of that message. We will
use this subscription to denote which folder the receiver is keeping the message in,
and whether the receiver has read the message or not. Also, if the receiver chooses to
delete the message, he/she can just delete the subscription to a message (unless they
are the last subscription, in which case we will delete the message as well).

The SQL for this subscription is actually quite straightforward. It tracks a
relationship to the message, a relationship to the receiver, which folder the
subscription is currently in, and the status of the message for this receiver.

MessageRecipientTypes
The message recipient type allows us to track the receiver of this message addressed
in the TO, CC, or BCC fields. Initially, our interface will only have a TO field. I
figure that we should add this bit of metadata though just in case we want to expand
our capabilities down the road! This is another example of a lookup table that we
might need to use in the SQL queries. In our case, we will have an enum defined that
maintains this lookup for us on the code side.

MessageStatusTypes
MessageStatusTypes allows us to track what a recipient is doing with his/her copy
of the message, whether they have read the message, replied to the message, and so
on. This is primarily so that we can change the UI to reflect its status to the recipient.
However, we could also create a dashboard down the road for the senders of the
messages to know whether their message was read or not and by whom (think of all
the big brother things one could do...but probably should not do!).

Chapter 6

[255]

MessageFolders
MessageFolders in our first round of implementation will simply hold copies of
new messages in the Inbox and copies of sent messages in the Sent folder. We will
also have a trash folder and a spam folder. That said, I always wanted to build a
system with the future in mind if it doesn't require a lot of extra work, and so we
have also baked in the concept of a user being able to create and manage his/her
own folders.

Therefore, rather than just see the MessageFolders table as another lookup table,
you will see that there is an IsSystem flag to denote which folders are to be seen
system-wide. And you will see an AccountID column for custom folders so that we
know who owns which folders.

Creating the relationships
Once all the tables are created, we can create the relationships.

For this set of tables, we have relationships between the following tables:

Messages and MessageRecipients
Messages and Accounts
Messages and MessageTypes
MessageRecipients and MessageRecipientTypes
MessageRecipients and MessageFolders
MessageRecipients and MessageStatusTypes

•

•

•

•

•

•

Messaging

[256]

Setting up the data access layer
The data access layer in this case is very straightforward. Open up your Fisharoo.
dbml file and drag all of your new messaging oriented tables.

Remember that we are not letting LINQ track our relationships at this point (to avoid
built in concurrency management issues). So be sure to remove all the relationships
that pop up as you drag your tables on to the design surface. Once you save this, you
should now have a list of new domain objects in your arsenal.

Chapter 6

[257]

Building repositories
With these new tables come some additional repositories. We will create the
following repositories.

MessageRepository

MessageRecipientRepository

MessageFolderRepository

As we have gone over the creation of repositories in the previous chapters, we will
not cover all the details again. We will create a method for selecting a single entity by
ID, a group of entities by their parents, saving entities, and deleting entities.

Having said that, there are a couple of methods that have something special in the
set of repositories. As we are using message subscriptions, we don't necessarily
want to delete recipients haphazardly. We may want to delete a recipient, and if that
recipient is the last recipient with a subscription to a message, we may also want to
delete the message. On the other end of the spectrum, if we do delete a message, we
may also want to remove all the recipient subscriptions.

In addition to these different ways of deleting data, we will also run into a scenario
where selecting a single entity from our repositories won't be quite good enough. So
in this case, we have created an aggregate class that will allow us to select several
entities out at once for use in our inbox scenarios.

MessageRepository
When we think of a standard inbox, we know that we need to see the messages
that we have, who sent them, when they were sent, and at least the subject of their
message. In this case, we have discussed two different entities here. When we think
about the fact that we also need to know who they were sent to, we have added a
third entity. While we could run three separate queries for this data, it would be
better for us to run one query (as we would have done in the old days) and return
the data that we need in one shot.

Having said that, we know that LINQ can only return one entity or a list of single
entities. What do we do? In this case, we need to create an aggregate. This is a class
that contains other entities. We will therefore create a MessageWithRecipient class
that will contain the sender's account info, the message, and the recipient. This
should provide us with enough data to represent messages in our inbox view later.

Before we write any queries, we first need to create the aggregate.

//Core/Domain/MessageWithRecipient.cs
namespace Fisharoo.FisharooCore.Core.Domain
{

•

•

•

Messaging

[258]

 public class MessageWithRecipient
 {
 public Account Sender { get; set; }
 public Message Message { get; set; }
 public MessageRecipient MessageRecipient{ get; set; }
 }
}

With this aggregate in place we can now turn our attention to the repository that will
get all this data for us.

//Core/DataAccess/Impl/MessageRepository.cs
public List<MessageWithRecipient> GetMessagesByAccountID(Int32
 AccountID, Int32 PageNumber, MessageFolders Folder)
{
 List<MessageWithRecipient> result = new
 List<MessageWithRecipient>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<MessageWithRecipient> messages =
 (from r in dc.MessageRecipients
 join m in dc.Messages on r.MessageID equals
 m.MessageID
 join a in dc.Accounts on m.SentByAccountID equals
 a.AccountID
 where r.AccountID == AccountID && r.MessageFolderID ==
 (int)Folder
 orderby m.CreateDate descending
 select new MessageWithRecipient()
 {
 Sender = a,
 Message = m,
 MessageRecipient = r
 }).Skip((PageNumber - 1)*10).Take(10);
 result = messages.ToList();
 }
 return result;
}

This is a fun method! This method involves selecting a list of our
MessageWithRecipient aggregate objects. The LINQ query is joining all the tables
that we need and selecting a new instance of the MessageWithRecipient aggregate,
which is then populated with the three classes that we need in the aggregate.
Additionally, we have introduced some paging logic with the .Skip and .Take
methods to produce a subset of the MessageWithRecipient objects.

Chapter 6

[259]

In addition to the selection method above, we also need to discuss the delete
method for this repository. As we have data holding a subscription to our message
data, it is important that we first remove all the subscriptions prior to removing the
message itself.

//Core/DataAccess/Impl/MessageRepository.cs
public void DeleteMessage(Message message)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<MessageRecipient> recipients =
 dc.MessageRecipients.Where(mr => mr.MessageID ==
 message.MessageID);
 foreach(MessageRecipient mr in recipients)
 {
 dc.MessageRecipients.DeleteOnSubmit(mr);
 }
 dc.SubmitChanges();
 dc.Messages.DeleteOnSubmit(message);
 dc.SubmitChanges();
 }
}

This is easily accomplished by opening a new instance of the data context. We then
get a list of recipients for this message. Once we have the list, we iterate over each
recipient adding it to the context for deletion. Finally, we call SubmitChanges()
to delete all the subscriptions effectively. We then delete the message as we
normally would!

MessageRecipientRepository
The message recipient repository is considerably easier. It simply has an altered
delete statement to adjust for the fact that if we delete the last subscription to a
message, it will amount to deleting the message.

//Core/DataAccess/Impl/MessageRecipientRepository.cs
public void DeleteMessageRecipient(MessageRecipient messageRecipient)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 dc.MessageRecipients.Attach(messageRecipient,true);
 dc.MessageRecipients.DeleteOnSubmit(messageRecipient);
 dc.SubmitChanges();
 //if the last recipient was deleted
 //...also delete the message
 int RemainingRecipientCount =

Messaging

[260]

 dc.MessageRecipients.Where(mr => mr.MessageID ==
 messageRecipient.MessageID).Count();
 if (RemainingRecipientCount == 0)
 {
 dc.Messages.DeleteOnSubmit(
 dc.Messages.Where(m => m.MessageID ==
 messageRecipient.MessageID).FirstOrDefault());
 dc.SubmitChanges();
 }
 }
}

In this method, we delete the recipient in question. We then get a count of the
remaining recipients for the message , which has the last recipient removed. If that
count is zero, then there are no more recipients remaining for that message. In that
case we perform a delete on that message and remove it from the system as well.

Implementing the services/application layer
Once all the repositories are built for single serving, we can begin to create the
services layer. Again, this layer is responsible for assembling aggregates and
performing complex actions with our entities. We will create only one service for this
chapter. We will also extend a couple of services.

MessageService

Email

AlertService

FriendService

MessageService
The MessageService will help us in one way—sending messages. Keep in
mind that to send a message, we will need to create a Message, then create
a MessageRecipient for the sender's copy, and then create one-to-many
MessageRecipients for the receivers of the message. While this is not a complex
task really, it is a very appropriate series of tasks for a service object!

//Core/Impl/MessageService.cs
public void SendMessage(string Body, string Subject, string[] To)
{
 Message m = new Message();
 m.Body = Body;
 m.Subject = Subject;
 m.CreateDate = DateTime.Now;

•

•

•

•

Chapter 6

[261]

 m.MessageTypeID = (int)MessageTypes.Message;
 m.SentByAccountID = _userSession.CurrentUser.AccountID;
 Int64 messageID = _messageRepository.SaveMessage(m);
 //create a copy in the sent items folder for this user
 MessageRecipient sendermr = new MessageRecipient();
 sendermr.AccountID = _userSession.CurrentUser.AccountID;
 sendermr.MessageFolderID = (int) MessageFolders.Sent;
 sendermr.MessageRecipientTypeID = (int) MessageRecipientTypes.TO;
 sendermr.MessageID = messageID;
 sendermr.MessageStatusTypeID = (int)MessageStatusTypes.Unread;
 _messageRecipientRepository.SaveMessageRecipient(sendermr);
 //send to people in the To field
 foreach (string s in To)
 {
 Account toAccount = null;
 if (s.Contains("@"))
 toAccount = _accountRepository.GetAccountByEmail(s);
 else
 toAccount = _accountRepository.GetAccountByUsername(s);
 if(toAccount != null)
 {
 MessageRecipient mr = new MessageRecipient();
 mr.AccountID = toAccount.AccountID;
 mr.MessageFolderID = (int)MessageFolders.Inbox;
 mr.MessageID = messageID;
 mr.MessageRecipientTypeID = (int)
 MessageRecipientTypes.TO;
 _messageRecipientRepository.SaveMessageRecipient(mr);
 _email.SendNewMessageNotification(_userSession.
 CurrentUser,toAccount.Email);
 }
 }
}

This should be very straightforward to follow. The first thing we do is to spin
up a new instance of the Message that we are sending. We then save it via the
MessageRepository and get back the new MessageID to work with down the line.

The next task is to make sure that we paste a copy of the message in the sender's
Sent Items folder. We do this by creating a MessageRecipient object and tying it
to the sender's account. You will notice that we have assigned it to the Sent Items
folder using an enum named MessageFolders, which has IDs that map to the
MessageFolders lookup table. This enum is stored next to a new domain object
named MessageFolder and looks like this:

Messaging

[262]

//Core/Domain/MessageFolder.cs
namespace Fisharoo.FisharooCore.Core.Domain
{
 public enum MessageFolders
 {
 Inbox = 1,
 Sent = 2,
 Trash = 3,
 Spam = 4
 }
 public partial class MessageFolder
 {
 }
}

The next item in the MessageService is assigning the MessageRecipientTypeID to
the sender's copy. The MessageRecipientType is to let the display know whether
to show the MessageRecipient as a TO, CC, or BCC recipient. This is another enum
value that maps back to a lookup table in the database and looks like this:

//Core/Domain/MessageRecipientType.cs
namespace Fisharoo.FisharooCore.Core.Domain
{
 public enum MessageRecipientTypes
 {
 TO = 1,
 CC = 2,
 BCC = 3
 }
 public partial class MessageRecipientType
 {

 }
}

We then move into a foreach loop in the MessageService, which is responsible
for determining whether we are looking up a recipient via an email address or a
username. It does this by testing the To value of the MessageRecipients to see if it
has an ampersand or not, which would correspond to an email address.

Depending on whether the TO value is an email address or a username, we get a
copy of an Account object. Once we have a valid Account object to work with,
we move on to creating a new MessageRecipient for that Account. You should
note that in this implementation of the MessageRecipient, we are placing the
Message subscription into the Inbox instead of the Sent Items folder. This
MessageRecipient is also of MessageRecipientType TO.

Chapter 6

[263]

Email
Once the MessageRecipient is successfully created and persisted to the database,
we then move on to sending an email notification to the MessageRecipient.
The most important thing to note about the additional method of
SendNewMessageNotification() is that we are sending a notification—not
the whole message!

I mention this because I feel it is important to note that one of the quickest
ways to get your sites' IP addresses banned is to be determined to be a
sender of spam. Since you are entirely responsible for the content that go
out in your messages, you can't directly control what your users type in a
message. So don't risk your reputation by sending the entire contents of
their messages!

public void SendNewMessageNotification(Account sender, string ToEmail)
{
 foreach (string s in ToEmail.Split(new char[] {',',';'}))
 {
 string message = sender.FirstName + " " + sender.LastName +
 " has sent you a message on " + _configuration.SiteName + "!
 Please log in at " + _configuration.SiteName +
 " to view the message.<HR>";
 SendEmail(s, "", "", sender.FirstName + " " + sender.LastName
 +
 " has sent you a message on " +
 _configuration.SiteName + "!", message);
 }
}

This method breaks down all the TO recipients and creates a new email notification
using our existing subsystem telling the recipients that they have a new message
waiting for them in their Inbox.

AlertService
We created a placeholder in one of the previous chapters in our AlertService to
allow us to insert a URL in our alerts that would allow the receiver of an alert to
easily click into sending a message to the sender of that alert. At the time we created
this, it was purely a placeholder as we didn't have any tools to send from. We will
now create these tools, so that we can fill this placeholder out.

//TODO: MESSAGING - point to send message URL
private string GetSendMessageUrl(Int32 AccountID)
{

 return "<a href=\"[rootUrl]/mail/newmessage.aspx?AccountID=" +
 AccountID.ToString() + "\">Click here to send message";

}

Messaging

[264]

This method is simply responsible for creating a link to the new message page
passing in the user you want to send a message to. This method is already called
from several of our existing AlertService methods.

FriendService
We now need to extend our FriendService.
CreateFriendFromFriendInvitation() method. Remember that this method is
responsible for creating a friend from an accepted invitation. We now want to add
some logic to this that when a friend request is accepted, we send a new Message to
the creator of that friend request letting them know that their request was accepted.

public void CreateFriendFromFriendInvitation(Guid InvitationKey,
Account InvitationTo)
{
 ...

 //CHAPTER 6

 //add a message to the inbox regarding the new friendship!

 Message m = new Message();

 m.Subject = "You and " + InvitationTo.Username + " are now
 friends!";

 m.Body = "You and <a href=\"" + _webContext.RootUrl +
 InvitationTo.Username + "\">" + InvitationTo.Username + " are

 now friends!";

 m.CreateDate = DateTime.Now;

 m.MessageTypeID = (int)MessageTypes.FriendConfirm;

 m.SentByAccountID = InvitationFrom.AccountID;

 Int64 messageID = _messageRepository.SaveMessage(m);

 MessageRecipient mr = new MessageRecipient();

 mr.AccountID = InvitationTo.AccountID;

 mr.MessageFolderID = (int)MessageFolders.Inbox;

 mr.MessageID = messageID;

 mr.MessageRecipientTypeID = (int) MessageRecipientTypes.TO;

 mr.MessageStatusTypeID = (int) MessageStatusTypes.Unread;

 _messageRecipientRepository.SaveMessageRecipient(mr);

}

This additional code is going through the motions of creating a new message and
a recipient for that message. In this case though, we are giving this message the
MessageTypeID of MessageTypes.FriendConfirm (or a friend confirmation). Other
than that, this code is straightforward.

Chapter 6

[265]

Implementing the presentation layer
Now that our framework has been updated to handle the new concept of messaging,
let's start creating some UI features so that we can use our new tools. We are going
to need at least three pages to really utilize our messaging features. We will need a
way to create and send a new message, a way to receive and view the messages, and
a way to read an individual message. In addition to the creation of a message, we
will need a way to easily choose from our list of friends, the recipients of our new
messages. Also, while viewing our list of messages, we will need a way of drilling
into different folders of messages. Let's get started!

New message
The UI for the new message page is relatively trivial. It consists of a To field, a
Subject field, a message field, and a button to signify that we are ready to send
the message. Where things are significantly different is in the use of the Xinha
WYSIWYG editor! This is a JavaScript library that allows you to transform a
multiline text box into a full-featured editor.

To get started with the integration of Xinha, we will first need to get the latest
code base. This can be acquired from the code base of this book or by going to
http://xinha.webfactional.com/wiki/DownloadsPage. Install this code base
into a new Xinha directory off the root of the site.

Messaging

[266]

Then open the SiteMaster.Master page. Directly after the body add the
following JavaScript.

<script type="text/javascript">
 xinha_editors = null;
 xinha_editors = xinha_editors ? xinha_editors : [];
</script>

This code is not part of the standard install process. What it does is allow us to spin
up multiple instances of the editor all throughout a single page. You will see
this later.

Then further down in our master page, just before the ending body tag, we will
insert another huge blob of JavaScript. This is a very large blob that could just as
easily be inserted into an external .js file. I am not going to show it here. Please
open the existing master page from this chapter to see it.

You will see that this blog is responsible for setting the vast amount of configuration
options that Xinha exposes. This code is heavily commented and so should be
understandable. Also, the configuration of this package is covered extensively on
the net!

The only thing, but definitely the special one, I added to in this configuration is the
very first line that sets the base URL of the site. In this case, I changed it to use a call
into the WebContext.RootUrl property.

...
_editor_url = "<%= _webContext.RootUrl %>Xinha/";
...

This brings us back to our NewMessage.aspx page. Now that we have Xinha
installed, we can add a line below our page UI that effectively ties our multiline text
box control to the Xinha library. This is done with a snippet of JavaScript.

<script type="text/javascript">
 xinha_editors[xinha_editors.length] = 'ctl00_Content_txtMessage';
</script>

Note that this is using the same xinha_editors variable that we defined initially in
the Master page! What we have done here is to insert this new control into an array
of Xinha editors. Note that we are using the full ClientID of the text box that we
want associated as an editor.

Chapter 6

[267]

Now, we will move on to the presenter of this page. This page has three
primary tasks:

To send a message
To preload a recipient of a message (if linked to from an Alert) and
To send a reply to a message

This is really the same thing with the exception that to send a reply to a message, we
would first have to load that reply. We will get to that down the road!

To send a message, we have to bubble up the button click event through our code
behind and into our presenter. As I have covered this concept extensively, I will not
cover it here. So, in the presenter, we have added a method called SendMessage(),
which takes in the Subject, Message, and an array of To entries.

public void SendMessage(string Subject, string Message, string[] To)
{
 _messageService.SendMessage(Message,Subject,To);
}

This method then calls into the MessageService.SendMessage() method and sends
the message.

The preloading of a recipient is handled in the Init() method of the presenter.
It checks to see if we have an AccountID in the QueryString (via our WebContext
wrapper). If so, it gets the Accounts Username property and adds that to the To field
in the UI.

Loading a reply message into the UI is very similar to loading a username. The
Init() method checks the WebContext to see if we have a MessageID in the
QueryString and loads the previous Message details into the UI.

//Mail/Presenter/NewMessagePresenter.cs
public void Init(INewMessage view)
{
 _view = view;
 if(_webContext.MessageID != 0)
 _view.LoadReply(_messageRepository.GetMessageByMessageID(_
 webContext.MessageID,_userSession.CurrentUser.AccountID));
 if(_webContext.AccountID != 0)
 _view.LoadTo(_accountRepository.GetAccountByID(
 _webContext.AccountID).Username);
}

•

•

•

Messaging

[268]

Friends control
The other important feature that we have as part of the NewMessage.aspx page
is the ability to easily select a friend from a list of friends as the recipient of a
message—similar to the idea of a contacts book. To achieve this, we will create
a user control that lists our friends.

The UI for this control is just a simple Repeater object that outputs a friend's
username. So let's take a look at what populates the UI. In the Init() method
in the FriendPresenter.cs file, we have a call into the FriendRepository.
GetFriendsAccountsByAccountID() method, which loads all the users' friends.
This is bound to the repeater control in the UI.

//Mail/UserControls/Presenter/FriendsPresenter.cs
public void Init(IFriends view)
{
 _view = view;
 _view.LoadFriends(_friendRepository.
GetFriendsAccountsByAccountID(_us
 erSession.CurrentUser.AccountID));
}

Chapter 6

[269]

In the code behind for our friend control, we insert a snippet of JavaScript to
allow us to click on a friend and carry his/her username into our To field in our
NewMessage UI.

//Mail/UserControls/Friends.aspx.cs
public void repFriends_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 HyperLink linkFriend = e.Item.FindControl("linkFriend") as
 HyperLink;
 linkFriend.Attributes.Add("OnClick",
 "javascript:document.forms[0].
 ctl00_Content_txtTo.value += '" +
 ((Account)e.Item.DataItem).Username + ";';");
 }
}

Note that we are adding an attribute for the OnClick event of our link that will call a
JavaScript to move the username to our To field with a semicolon delimiter.

This gives us a list of friends, but how do we tie that back into our UI? Open the
NewMessage.aspx page. We will need to register the new control in the page and
then add a reference to it in the page.

Just below the Page directive add the following code:

<%@ Register Src="~/Mail/UserControls/Friends.ascx"
 TagPrefix="Fisharoo" TagName="Friends" %>

Then add a new Content section to our page where the friends control will live:

<asp:Content ContentPlaceHolderID="LeftNavTop" runat="server">
 <Fisharoo:Friends ID="friends1" runat="server" />
</asp:Content>

This inserts the friends control into the top of our left nav!

Messaging

[270]

Default (or Inbox)
Now that we can successfully send a message, we need a way to receive those
messages. This is done in folder view of our messages. This is really just a page
that shows a list of messages, who sent them, and when. We can either click on the
sender to go to their profile page, or can click on the message to view it. We can also
navigate through pages of messages with a list of page navigation links. And we will
have the ability to delete one or many selected messages. Additionally, we will create
a Folders control that will allow us to navigate through our various folders to see
the messages in those containers.

The UI for this page is very simple. It is just a repeater that iterates through the
MessageWithRecipient collection that is passed to it. So let's take a look at
the presenter, which actually populates our list of messages. As always this is
accomplished in the Init() method of the presenter.

public void Init(IDefault view)
{
 _view = view;
 if (_userSession.CurrentUser != null)
 {
 _view.LoadMessages(_messageRepository.GetMessagesByAccountID(
 _userSession.CurrentUser.AccountID,
 _webContext.Page,
 (MessageFolders) _webContext.FolderID));

Chapter 6

[271]

 _view.DisplayPageNavigation(
 _messageRepository.GetPageCount((MessageFolders)
 _webContext.FolderID,
 _userSession.CurrentUser.AccountID),
 (MessageFolders) _webContext.FolderID, _webContext.Page);
 }
}

We first check to see that the user of the page is actually logged in. We then make a
call into the MessageRepository to get a list of messages by the user's AccountID.
We also make a call into MessageRepository to get a page count (the number of
pages of messages that we have to navigate through).

Loading messages into the UI is simply a matter of binding the DataSource to
the repeater.

public void LoadMessages(List<MessageWithRecipient> Messages)
{
 repMessages.DataSource = Messages;
 repMessages.DataBind();
}

As this requires no explanation, let's jump right into how we go about building our
page navigation. Recall that in the Init() of our presenter we had a call into the
view of DisplayPageNavigation(),which received the PageCount of the folder we
were working with, and the current page we were viewing. Here is that method:

public void DisplayPageNavigation(Int32 PageCount, MessageFolders
folder, Int32 CurrentPage)
{
 if(PageCount == CurrentPage)
 linkNext.Visible = false;
 if (CurrentPage == 1)
 linkPrevious.Visible = false;
 linkNext.NavigateUrl = "~/mail/default.aspx?folder=" + ((int)
 folder).ToString() + "&page=" +
 (CurrentPage + 1).ToString();
 linkPrevious.NavigateUrl = "~/mail/default.aspx?folder=" + ((int)
 folder).ToString() + "&page=" +
 (CurrentPage - 1).ToString();
 for(int i = 1; i<=PageCount;i++)
 {
 HyperLink link = new HyperLink();
 link.Text = i.ToString();
 link.NavigateUrl = "~/mail/default.aspx?folder=" +
 ((int)folder).ToString() + "&page=" + i.ToString();
 phPages.Controls.Add(link);
 phPages.Controls.Add(new LiteralControl(" "));
 }
}

Messaging

[272]

This chunk of code interacts with three controls in our UI—two hyperlinks, one that
displays Previous and one displaying Next, and a PlaceHolder control that will
hold the individual page numbers of all the pages for this data set.

This method initially determines if we should show the Next or Previous links
based on our current page and our total page count. We then hook up the navigation
property of each of those links to take us to the next page or the previous page of
data. After that we use a for loop to iterate through all the possible pages, from 1 to
PageCount, making a new hyperlink for each iteration that contains the location of
that page.

The other feature of this page is the ability to delete messages—as many or as few as
we like. This is primarily achieved with a helper function in the code behind of the
view that extracts all the messages that are selected, which can be called from within
the presenter. This allows the presenter to remain in control!

public List<Int32> ExtractSelectedMessages()
{
 List<Int32> result = new List<Int32>();
 foreach (RepeaterItem item in repMessages.Items)
 {
 if(item.ItemType == ListItemType.Item || item.ItemType ==
 ListItemType.AlternatingItem)
 {
 CheckBox chkMessage = item.FindControl("chkMessage") as
 CheckBox;
 Int32 messageID =
 Convert.ToInt32(chkMessage.Attributes["MessageID"]);
 if(chkMessage.Checked)
 result.Add(messageID);
 }
 }
 return result;
}

This method iterates through all the check boxes to see if they are selected or not. If
they are, then it extracts the MessageID from an attribute that was created when we
loaded the display. A collection of MessageIDs is then returned to the caller.

This then brings us to the Delete method in the presenter. It is called from a button
click event that is bubbled up to the presenter, which then calls into the view to get
a list of selected MessageIDs. Then using the MessageRepository we get a copy of
that message. With the copy, we then call into the MessageRecipientRepository.
DeleteMessageRecipient() method and delete each selected MessageRecipient.

Chapter 6

[273]

Folders
I hate to sound like a broken record but I find myself saying that this UI is also
simple. Well...it is! This UI is also made up of a Repeater that displays the bound
data. In this case, we are displaying folders as hyperlinks, which then link to the
same Default.aspx page, but additionally pass in the folder that we are interested
in viewing.

I am going to jump right in to the presenter so that we can see the DataSource for
our data.

public void Init(IFolders view)
{
 _view = view;
 _view.LoadFolders(_messageFolderRepository.
GetMessageFoldersByAccountID(_userSession.CurrentUser.AccountID));
}

In this case, we are calling into the MessageFolderRepository to get a list of folders
for this user. We bind that directly to the UI through our view. The view then iterates
through the data in our repeater. In our ItemDataBound method—in the code behind
of the view—we update each hyperlink in the UI.

protected void repFolders_ItemDataBound(object sender,
RepeaterItemEventArgs e)
{
 if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 HyperLink linkFolder = e.Item.FindControl("linkFolder") as
 HyperLink;
 linkFolder.Text =
 ((MessageFolder)e.Item.DataItem).FolderName;

Messaging

[274]

 linkFolder.NavigateUrl = "~/Mail/Default.aspx?folder=" +
 ((MessageFolder) e.Item.DataItem).MessageFolderID.ToString();
 linkFolder.Attributes.Add("FolderID",
 ((MessageFolder)e.Item.DataItem).
 MessageFolderID.ToString());
 }
}

This creates a list of folders for us in a control. But how do we get it into our UI? To
do this, we have to go back to our Default.aspx page. This will be done exactly the
same way we did for our friends control in our new message page. Open the default
page so that we can add the Folders control.

<%@ Register Src="~/Mail/UserControls/Folders.ascx"
 TagPrefix="Fisharoo" TagName="Folders" %>
<asp:Content ContentPlaceHolderID="LeftNavTop" runat="server">
 <Fisharoo:Folders id="Folders1"
 runat="server"></Fisharoo:Folders>
</asp:Content>

Read message
Reading a message is not that difficult at all. We are just loading a message into a
static UI based on the MessageID that is passed into the page. Let's first discuss the
UI (which could easily be made more complex down the road!). This UI will consist
of a From Label, a Subject Label, a Message Label, and a Reply button.

Here is the message view:

Chapter 6

[275]

And here is what will be seen when replying to the message:

As usual, as all the leg work is done in the presenter, let's jump straight to it.

public void Init(IReadMessage view)
{
 _view = view;
 _view.LoadMessage(_messageRepository.GetMessageByMessageID(_
webContex
 t.MessageID,_userSession.CurrentUser.AccountID));
}

As you can see here, we are populating the UI based on a call into the
MessageRepository.GetMessageByMessageID() method. This method sends a
MessageWithRecipient into the view, which then loads the message for display.
Now that is simple!

For the Reply button, we will bubble up the click event into the presenter. The
presenter then makes a call to the Redirector class that passes the current
MessageID to the NewMessage page. Simple again!

public void Reply()
{
 _redirector.GoToMailNewMessage(_webContext.MessageID);
}

Messaging

[276]

Summary
In this chapter, we have built an entire messaging facility. This section has gone over
extending the framework to allow for the creation and retrieval of messages and all
the related items of a message. We then covered creating a UI to allow users to create
and send messages to the other users of the system. Next, we covered how to receive
and read those messages.

This chapter will not only allow our users to create messages to send to each
other but also provide our system with a way to communicate with our user base
efficiently. This is not only a good feature to have in your community site but also a
base requirement for it.

Media Galleries
In this chapter we will go over the concept of allowing people to share files. We will
specifically be focused on sharing images, but will build the system so that we can
easily set it up to share videos, audio files, resume, or any other type of binary file. In
addition to that we will build the concept of having user-specific sets of files as well
as content that can be shared among many users.

In order to create the file management software for our website, we need to consider
topics such as a single or multi-file upload, file system management, and image
manipulation in the case of photos. In addition to this we will cover creation of pages
for displaying the user's photo albums, their friends' photo albums, as well as a few
data management pages. This chapter will create a basic framework from which you
can easily grow to suit the file management needs of just about any community site.

Media Galleries

[278]

Problem
Apart from the standard infrastructure issues that we have to consider when
building a system such as this, one of the core issues in any web-based file
management system is file upload. As we all know, most server side technologies
allow only one file to be uploaded at a time. ASP.NET is no different here. And while
we could easily buy a third-party plug-in to handle multiple files at once, I figured
we could dig into creating a multi-file upload system using a little client side script
(Flash in our case) in order to fool our backend.

Once we get our file upload process working we are only one-third of the way
there! As we are going to be mostly concerned with uploading images, we need
to consider that we will need to provide some image manipulation. With each file
that is uploaded to our system we need to create a handful of different sizes of each
image to be used in various scenarios across our site. To start with, we will create a
thumbnail, small, medium, large, and original size photos.

Chapter 7

[279]

Now while creating different size files is technically working with the file storage
system, I wanted to take an extra breath with regards to the file storage concepts. As
we had discussed in the earlier chapters, we could choose to store the files on the
file system or in a database. For avatars it made sense to store each with the profile
data whereas for image galleries it makes more sense to store the file on the file
system. While storing files to the file system we need to be very cautious as to how
the file structure is defined and where and how the individual files are stored. In
our case we will use system-generated GUIDs as our file names with extensions to
define the different sizes that we are storing. We will dig into this more as we start to
understand the details of this system.

Media Galleries

[280]

Once we have uploaded the files to the server and they are ready for our use across
the system, we will take up the concept of user files versus system files. If we build
the system with some forethought regarding this topic we can have a very generic
file management system that can be extended for future use. We will build a personal
system in this chapter. But as you will see with some flags in just the right places, we
could just as easily build a system file manager or a group file manager.

Design
Let's take a look at the design for this feature.

Chapter 7

[281]

Files
In this case, as we are not storing our files in the database, we need to take a closer
look at what actually needs to be managed in the database so as to keep track of
what is going on in the file system. In addition to standard file metadata, we need to
keep a close eye on where the file actually lives—specifically which file system folder
the file will reside in. We also need to be able to maintain which accounts own which
files, or in the case of system files, which files can be viewed by anyone.

Folders
You may be wondering why I have a separate section regarding folders when we just
touched upon the fact that we will be managing which file system folder we will be
storing files in. In this section we are going to discuss folder management from a site
perspective rather than a file system perspective—user folders or virtual folders if
you desire.

Media Galleries

[282]

Very similar to file storage, we will be storing various metadata about each folder.
We will also have to keep track of who owns which folder, who can see which
folder, or in the case of system folders whether everyone can see that folder. And
of course as each folder is a virtual container for a file, we will have to maintain the
relationship between folders and files.

File upload
The file upload process will be handled by a Flash client. While this is not really a
book about Flash I will show you how simple it is to create this Flash client, which
is really just providing a way to store many files that need to be uploaded, and then
uploading them one at a time in a way that the server can handle each file.

Chapter 7

[283]

File system management
Managing the file system may seem like a non-issue. However, keep in mind that
for a community site to be successful we will need at least 10,000 or so unique users.
Given that sharing photos and other files is such a popular feature of most of today's
community sites, this could easily translate into a lot of uploaded files.

While you could technically store a large number of files in one directory on your
web server, you will find that over time your application becomes more and more
sluggish. You might also run into files being uploaded with the same name using
this approach. Also, you may find that you will have storage issues and need to split
some of your files off to another disk or another server.

Many of these issues are easily handled if we think about and address them up front.
In our case we will use a unique file name for each uploaded file. We will store each
file in subdirectories that are also uniquely named based on the year and month in
which the file was uploaded. If you find that you have a high volume of files being
uploaded each day, you may want to store your files in a folder with the year and
month in the name of the folder and then in another subdirectory for each day of
that month.

In addition to a good naming convention on the file system, we will store the root
directory for each file in the database. Initially you may only have one root for
your photos, one for videos, and so on. But storing it now will allow you to have
multiple roots for your file storage—one root location per file. This gives you a lot of
extensibility points over time meaning that you could easily relocate entire sections
of your file gallery to a separate disk or even a separate server.

Data management screens
Once we have all of the infrastructure in place we will need to discuss all the data
management screens that will be needed—everything from the UI for uploading
files to the screens for managing file metadata, to screens for creating new albums.
Then we will need to tie into the rest of the framework and allow users to view their
friends' uploaded file albums.

Media Galleries

[284]

Solution
Let's take a look at our solution.

Implementing the database
First let's take a look at the tables required for these features.

Files
The most important thing to consider storing in the database first is of course our
primary interest files. As with most other conversations regarding a physical binary
file we always have to consider if we want to store the file in the database or on the
file system. In this case I think it makes sense to store the file (and in the case of a
photo, its various generated sizes) on the file system. This means that we will only be
storing metadata about each file in our database.

The most important field here to discuss is the FileSystemName. As you can see this
is a GUID value. We will be renaming uploaded files to GUIDs in addition to the
original extension. This allows us to ensure that all the files in any given folder are
uniquely named. This removes the need for us to have to worry about overwriting
other files.

Then we see the FileSystemFolderID. This is a reference to the FileSystemFolders
table, which lets us know the root folder location where the file is stored.

Next on our list of items to discuss is the IsPublicResource flag. By its name it is
quite clear that this flag will set a file as public or private and can therefore be seen
by all or by its owner (AccountID).

Chapter 7

[285]

We then come to a field that may be somewhat confusing: DefaultFolderID. This has
nothing to do with the file system folders. This is a user created folder. When files are
uploaded initially they are put in a virtual folder. That initial virtual folder becomes
the file's permanent home. This doesn't mean that it is the file's only home. As you
will see later we have the concept that files can live in many virtual folders by way of
subscription to the other folders.

File system folders
As mentioned previously, the FileSystemFolders table is responsible for letting us
know where our file's root directory is. This allows us to expand our system down
the road to have multiple roots, which could live on the same server but different
disks, or on totally different servers.

There is nothing super important here to see. Simply a key, the Path (URL), and a
Timestamp for LINQ to work with.

File types
The FileTypes table will help us to keep track of what sort of files we are storing
and working with. This is a simple lookup table that tells us the extension of a
given file.

This is simply the name of the file type being specified.

Media Galleries

[286]

Folders
Folders are virtual in this case. They provide us with a way to specify a container of
files. In our case we will be containing photos, in which case folders will act as
photo albums.

There isn't much here that can't be understood by its name. Do note though that we
have another flag, IsPublicResource, which allows us to specify whether a folder
and its resources are public or private, that is, viewable by all or viewable only by
the owner.

Folder types
The FolderTypes table allows us a way to specify the type of folder. Currently this
will simply be Name, photos, movies, and so on. However, down the road you may
want to specify an icon for each folder type in which case this is the place where you
would want to assign that specification.

Account folders
In the AccountFolders table we are able to specify additional ownership of a folder.
So in the case that a folder is a public resource and external resources can own
folders, we simply create the new ownership relationship here. This is not permanent
ownership. It is still specified with the Folders table's AccountID. This is temporary
ownership across many Accounts.

Chapter 7

[287]

As you can see in the screenshot we have the owner (AccountID) and the folder that
is to be owned (FolderID).

Account files
Similar to the AccountFolders table, the AccountFiles table allows someone
to subscribe to a specific file. This could be used for purposes of Favorites or
similar concepts.

The makeup of this table is identical to AccountFolders. You have the owner and
the file being owned.

Folder files
The FolderFiles table allows an Account to not only subscribe to a file, similar to
the Favorites concept, but it also allows a user to take one of my files and put it into
one of their folders as though the file itself belonged to them.

As you can see in the screenshot, this is primarily a table that holds the keys to the
other tables. We have the FolderID, FileID, and AccountID for each file. This clearly
specifies who is taking ownership of what and where they want it to be placed.

Creating the relationships
Once all the tables are created we can then create all the relationships.

For this set of tables we have relationships between the following tables:

Files and FileSystemFolders
Files and FileTypes
Files and Folders
Files and Accounts

•

•

•

•

Media Galleries

[288]

Folders and Accounts
Folders and FolderTypes
AccountFolders and Accounts
AccountFolders and Folders
AccountFiles and Accounts
AccountFiles and Files
FolderFiles and Accounts
FolderFiles and Folders
FolderFiles and Files

Setting up the data access layer
To set up the data access layer follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.
Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on tables and clicking Refresh.
Then drag your new tables onto the design surface.
Hit Save and you should now have the domain objects shown in the
following screenshot to work with!

•

•

•

•

•

•

•

•

•

•
•
•
•

•
•

Chapter 7

[289]

Keep in mind that we are not letting LINQ track our relationships. So go ahead and
delete them from the design surface. Your design surface should have the same items
that you see in the screenshot (though perhaps in a different arrangement!).

Building repositories
With the addition of new tables will come the addition of new repositories so that
we can get at the data stored in those tables. We will be creating the following
repositories to support our needs.

FileRepository

FolderRepository

Each of our repositories will generally have a method for select by ID, select all by
parent ID, save, and delete. Once you have seen one repository you have pretty
much seen them all. Review previous chapters, the appendices, or the included code
for examples of a standard repository. However, I will discuss anything that varies
from standard!

FileRepository
Other than the normal methods that all the XRepository classes have, the
FileRepository also has a couple of additional more interesting methods.

UpdateDescriptions

DeleteFilesInFolder

DeleteFileFromFileSystem

The UpdateDescriptions() method is an interesting concept. This method is the
first example of performing multiple updates all at once rather than doing them one
a time. This obviously will be much more performance oriented than individual
update executions.

public void UpdateDescriptions(Dictionary<int,string>
fileDescriptions)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 List<Int64> fileIDs = fileDescriptions.Select(f =>
 Convert.ToInt64(f.Key)).Distinct().ToList();
 IEnumerable<File> files = dc.Files.Where(f =>
 fileIDs.Contains(f.FileID));
 foreach (File file in files)
 {
 file.Description =
 fileDescriptions.Where(f=>f.Key==file.FileID)
 .Select(f=>f.Value).ToString();

•
•

•
•
•

Media Galleries

[290]

 }
 dc.SubmitChanges();
 }
}

As you can see, this method accepts a Dictionary collection, which contains a list
of FileIDs and fileDescriptions. We then open up the DataContext. Then off
the Dictionary collection I get a list of unique FileIDs. We then make one trip to
the database to get all of the File objects we need using the Contains() method
of the FileID collection. With the collection of appropriate files in hand we can
then iterate through each of them setting the description to the value passed in
via the Dictionary collection. Once all this leg work is done, we can call the
SubmitChanges method. Keep in mind that we have one working DataContext for
this entire operation. It is why this method of updation works!

The next method that is not a normal Repository method is the
DeleteFilesInFolder. This method takes in a Folder object. With this folder
object in hand we get a collection of related files. We then iterate over each file and
call the DeleteFileFromFileSystem method. We then attach all the files to the
current DataContext and then call the DeleteAllOnSubmit method to delete all the
File records. We then call SubmitChanges to execute the changes.

Having mentioned the DeleteFileFromFileSystem, you probably understand
what that method is responsible for. Essentially, it is responsible for removing the
physical files that are stored on the file system. This is important as we have just
allowed the data to be deleted, so we could end up with huge file stores of random
unwanted files.

private void DeleteFileFromFileSystem(Folder folder, File file)
{
 string path = "";
 switch (file.FileTypeID)
 {
 case 1:
 case 2:
 case 7:
 path = "Photos\\";
 break;
 case 3:
 case 4:
 path = "Audios\\";
 break;
 case 5:
 case 8:
 case 6:

Chapter 7

[291]

 path = "Videos\\";
 break;
 }
 string fullPath = _webContext.FilePath + "Files\\" + path +
 folder.CreateDate.Year.ToString() +
 folder.CreateDate.Month.ToString() + "\\";

 if (Directory.Exists(fullPath))
 {
 if (System.IO.File.Exists(fullPath + file.FileSystemName +
"__o." + file.Extension))
 System.IO.File.Delete(fullPath + file.FileSystemName +
"__o." + file.Extension);
 if (System.IO.File.Exists(fullPath + file.FileSystemName +
"__t." + file.Extension))
 System.IO.File.Delete(fullPath + file.FileSystemName +
"__t." + file.Extension);
 if (System.IO.File.Exists(fullPath + file.FileSystemName +
"__s." + file.Extension))
 System.IO.File.Delete(fullPath + file.FileSystemName +
"__s." + file.Extension);
 if (System.IO.File.Exists(fullPath + file.FileSystemName +
"__m." + file.Extension))
 System.IO.File.Delete(fullPath + file.FileSystemName +
"__m." + file.Extension);
 if (System.IO.File.Exists(fullPath + file.FileSystemName +
"__l." + file.Extension))
 System.IO.File.Delete(fullPath + file.FileSystemName +
"__l." + file.Extension);

 if(Directory.GetFiles(fullPath).Count() == 0)
 Directory.Delete(fullPath);
 }
}

This method starts off first by attempting to identify the FileType that we are
dealing with, which gets us the root folder for that type of file.

Keep in mind that if you want to store files in multiple locations and use
the FileSystemFolders, then this will need to be tweaked a bit. The
concept shown here is for a single root file folder!

Media Galleries

[292]

With the root path identified we then create the fullPath. This variable is created
by making a call into our WebContext class, which determines the root path on the
server. We then add Files, which is the files' root folder. Then comes the path that
we just configured. The next portion may seem odd at the moment. When we upload
files (coming later) we upload to a directory with the name of the folder's creation
date, year, and month.

With the fullPath configured appropriately we then check to make sure that the
directory actually exists. Now we can step through each file that we created. We
check to see if the file exists at the specified location and then call System.IO.File.
Delete. We do this for each type of file we create in our upload process. Keep in
mind that the upload and delete processes are fairly tied at the hip. So if we change
something on one end we need to make changes to the other end too!

With the files deleted we take the file system beautification one step further. We need
to check to see if the folder is now empty. If it is, then we delete the folder too!

FolderRepository
There are a couple of methods in the FolderRepository that are worth covering.

GetFoldersByAccountID

GetFriendsFolders

The GetFoldersByAccountID does just what it says! It takes in an AccountID and
performs a search to get all the folders by the passed in AccountID. It does go a bit
beyond that. It then iterates through each folder in the resulting list and generates
the file system path for the folder's cover image. This determination is then assigned
to the FullPathToCoverImage. If there is no cover image found then the default
image is assigned. Once we have this taken care of, we return the list of folders.

public List<Folder> GetFoldersByAccountID(Int32 AccountID)
{
 List<Folder> result = new List<Folder>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 var account = dc.Accounts.Where(a => a.AccountID ==
 AccountID).FirstOrDefault();
 IEnumerable<Folder> folders = (from f in dc.Folders
 where f.AccountID == AccountID
 orderby f.CreateDate
 descending
 select f);
 foreach (Folder folder in folders)
 {
 var fullPath = (from f in dc.Files
 join ft in dc.FileTypes on

•

•

Chapter 7

[293]

 f.FileTypeID equals ft.FileTypeID
 where f.DefaultFolderID ==
 folder.FolderID
 select new {
 FullPathToCoverImage =
 f.CreateDate.Year.ToString() +
 f.CreateDate.Month.ToString() +
 "/" + f.FileSystemName + "__S." +
 ft.Name}).FirstOrDefault();
 if(fullPath != null)
 folder.FullPathToCoverImage =
 fullPath.FullPathToCoverImage;
 else
 folder.FullPathToCoverImage = "default.jpg";
 if(account != null)
 folder.Username = account.Username;
 }
 result = folders.ToList();
 }
 return result;
}

The next interesting method in this repository is the GetFriendsFolders. This
method introduces a new LINQ to SQL concept—Union. The Union takes all the
items from one collection and merges it with another collection of items. The items
that are the same in both lists are merged so that the resulting list of items is unique.

public List<Folder> GetFriendsFolders(List<Friend> Friends)
{
 List<Folder> result = new List<Folder>();
 foreach (Friend friend in Friends)
 {
 if (result.Count < 50)
 {
 List<Folder> folders =
 GetFoldersByAccountID(friend.MyFriendsAccountID);
 IEnumerable<Folder> result2 = result.Union(folders);
 result = result2.ToList();
 }
 else
 break;
 }
 return result;
}

Media Galleries

[294]

In our method we take in a list of our Friends. We then iterate over this collection
and with each pass we check to see if we have less than 50 folders (a random number
of items I chose to show on our album homepage). If we have less than 50, then we
get all the folders for the current friend and merge it into our result list using the
Union method. We continue to do this until we are either out of Friends or have
50 folders to show on the homepage.

This method could be made better in a couple of ways. Firstly we could move the 50
to a configuration file or administration panel. Also, this method should return the
folders that are the latest, or contain the latest files from our friends. And if we really
want to be flexible this method should take into account that the user may have more
friends than the current limitation. In this case we should really create pagination
functionality allowing our user to see all their friends and their friends' folders. We
can do that later though!

Now that we have a place for our data and ways to interact with it, let's move out
one more layer closer to the UI. We will now discuss the services' layer to help us get
the data out to the front of the application.

Implementing the services/application layer
Once all the repositories are built for a single serving purpose, we can begin to create
the services' layer. Again, this layer is responsible for assembling aggregates and
performing complex actions with our entities. We will create the following services.

FolderService

FolderService
This service is fairly simple actually. It's sole responsibility for the time being is to
interact with various repositories to get the list of Friend's folders for display on the
album homepage for our users.

public List<Folder> GetFriendsFolders(Int32 AccountID)
{
 List<Friend> friends =
 _friendRepository.GetFriendsByAccountID(AccountID);
 List<Folder> folders =
 _folderRepository.GetFriendsFolders(friends);
 folders.OrderBy(f => f.CreateDate).Reverse();
 return folders;
}

•

Chapter 7

[295]

This method calls into the FriendRepository to produce a list of the user's friends.
With that in hand we can then call into the FolderRepository to get all the folders
for all of those friends. We then order the folders by their CreateDate. We then
reverse the order so that the latest folder is on top.

That's it! We move on to the presentation layer.

Implementing the presentation layer
With the entire backend created and ready to go let's turn our attention to getting
the presentation up and running. We will get started with building the file upload
section first as it will be difficult to get the other sections to run successfully without
uploaded files.

File upload
As you may already know ASP.NET is very handy at browsing to a file, selecting
it, then uploading it. There are very few modifications that need to be made to your
application to enable this functionality. Simply put your need to alter the form to
include enctype="multipart/form-data", add a file browse box to your page, and
handle the uploaded file. Done!

What ASP.NET doesn't do well—or doesn't do at all—is handle multiple file uploads
at once. There are many third-party providers that offer plug-ins to do this either in
Java or Active-X. But this is not a good solution if we don't want to spend the money
(though some are only a few hundred bucks!).

To get around the multi-file upload issue in ASP.NET we are going to build a simple
Flash-based client. This client will be responsible for selecting a group of files on the
local file system. It will then pass the files one at a time to our server side receiving
page. When we discuss photo files (jpg, gif, and so on) we will also look at some
basic image processing concepts.

Receiving files
Our file receiver will be able to receive multiple files at a time. In our case we will be
primarily concerned with receiving image files. But we will set it up to receive other
files as well. The receiver in our case will be housed inside a webpage in our Files
directory. The beginning of our receiver will be responsible for spinning up some
variables and objects.

public string ImageFolder = "";
Dictionary<string,int> sizesToMake = new Dictionary<string,int>();
private int sizeTiny = 50;
private int sizeSmall = 200;

Media Galleries

[296]

private int sizeMedium = 500;
private int sizeLarge = 1000;
private IUserSession _userSession;
private IWebContext _webContext;
private IFileRepository _fileRepository;
private IAccountRepository _accountRepository;
int NewWidth = 0;
int NewHeight = 0;
string saveToFolder = "files";

The most interesting thing to note here is the sizesToMake collection. This will hold
all the sizes, which we will generate further down the line. If we want to add an
additional size or modify one of our existing sizes we would do that here.

We then step into the Page_Load() method and finish the initialization of our objects
and our sizes collection.

protected void Page_Load(object sender, System.EventArgs e)
{
_userSession = ObjectFactory.GetInstance<IUserSession>();
_webContext = ObjectFactory.GetInstance<IWebContext>();
_fileRepository = ObjectFactory.GetInstance<IFileRepository>();
_accountRepository = ObjectFactory.GetInstance<IAccountRepository>();
sizesToMake.Add("T",sizeTiny);
sizesToMake.Add("S",sizeSmall);
sizesToMake.Add("M",sizeMedium);
sizesToMake.Add("L",sizeLarge);

We then interrogate a query string value to see what sort of file we are dealing
with. In our case we will be working with photos, but we might deal with something
else later.

//determine save to folder
switch (_webContext.FileTypeID)
{
 case 1:
 saveToFolder = "Photos/";
 break;
 case 2:
 saveToFolder = "Videos/";
 break;
 case 3:
 saveToFolder = "Audios/";
 break;
}

Chapter 7

[297]

Once we have decided which folder we are working with, we would then need to
check to make sure that that folder is actually on the file system. If not, then we may
want to create it.

//make sure the directory is ready for use
saveToFolder += DateTime.Now.Year.ToString() +
 DateTime.Now.Month.ToString() + "/";
if (!Directory.Exists(Server.MapPath(saveToFolder)))
 Directory.CreateDirectory(Server.MapPath(saveToFolder));

We then have a few other variables that we want to set up. We need to get the
Account that we are working with. We also need to receive the uploaded files. And
finally we will need to get the full path to the folder that we are saving our files to.

Account account =
 _accountRepository.GetAccountByID(_webContext.AccountID);
HttpFileCollection uploadedFiles = Request.Files;
string Path = Server.MapPath(saveToFolder);

Now that we have a collection of uploaded files we need to work with each file one
at a time. To do this we will start a for loop. At the top of each iteration we will need
to get a single file that we want to process.

for(int i = 0 ; i < uploadedFiles.Count ; i++)
{
 HttpPostedFile F = uploadedFiles[i];

We then need to initialize some more variables to be set up where we will store the
files and how we will do it. We will get the folder ID from the query string. Notice
that I am currently assuming that we are playing with image files with a static
fileType of 1. If we were to create another page to upload say audio files, we would
want to pass in the fileType. Next we attempt to get the uploadedFileName by
parsing the end of the file name of the uploaded file. Once we have the file name we
get the file extension. As we will be saving the files to the file system, we run the risk
of overwriting files if we do not ensure that the file has a unique name. To do this,
we create a new GUID string that will act as our file system's file name. With all this
data in place we then have enough to create the final file name. We then create the
domain object file.

string folderID = _webContext.AlbumID.ToString();
string fileType = "1";
string uploadedFileName =
 F.FileName.Substring(F.FileName.LastIndexOf("\\") + 1);
string extension =
 uploadedFileName.Substring(uploadedFileName.LastIndexOf(".") + 1);
Guid guidName = Guid.NewGuid();

Media Galleries

[298]

string fullFileName = Path + "/" + guidName.ToString() + "__O." +
 extension;
bool goodFile = true;
//create the file
File file = new File();

Next, we look at the fileType that was set and determine the File object's
FileTypeID. This is an enum that was set up in the File's partial class. Note that
at the end of each inner switch statement we are setting a flag for goodFile to
determine if we have successfully found our FileTypeID.

#region "Determine file type"
switch (fileType)
{
 case "1":
 file.FileSystemFolderID =
 (int)FileSystemFolder.Paths.Pictures;
 switch (extension.ToLower())
 {
 case "jpg":
 file.FileTypeID = (int)File.Types.JPG;
 break;
 case "gif":
 file.FileTypeID = (int)File.Types.GIF;
 break;
 case "jpeg":
 file.FileTypeID = (int)File.Types.JPEG;
 break;
 default:
 goodFile = false;
 break;
 }
 break;
 case "2":
 file.FileSystemFolderID = (int)FileSystemFolder.Paths.Videos;
 switch (extension.ToLower())
 {
 case "wmv":
 file.FileTypeID = (int)File.Types.WMV;
 break;
 case "flv":
 file.FileTypeID = (int)File.Types.FLV;
 break;
 case "swf":
 file.FileTypeID = (int)File.Types.SWF;

Chapter 7

[299]

 break;
 default:
 goodFile = false;
 break;
 }
 break;
 case "3":
 file.FileSystemFolderID = (int)FileSystemFolder.Paths.Audios;
 switch (extension.ToLower())
 {
 case "wav":
 file.FileTypeID = (int)File.Types.WAV;
 break;
 case "mp3":
 file.FileTypeID = (int)File.Types.MP3;
 break;
 case "flv":
 file.FileTypeID = (int)File.Types.FLV;
 break;
 default:
 goodFile = false;
 break;
 }
 break;
}

Next, we attempt to populate the domain File object with all its properties such as
the size of the uploaded file, the account that it belongs to, its file system name, and
so on.

file.Size = F.ContentLength;
file.AccountID = account.AccountID;
file.DefaultFolderID = Convert.ToInt32(folderID);
file.FileName = uploadedFileName;
file.FileSystemName = guidName;
file.Description = "";
file.IsPublicResource = false;

Media Galleries

[300]

Now we are ready to start the work. If the goodFile flag is still true then we can
commit our file object to the database. We then save the actual uploaded file to the
file system with its new file name. And finally if the fileType is a Picture, we scrub
the file against our Resize() method to generate the various sizes of files we want to
end up with.

if (goodFile)
{
 _fileRepository.SaveFile(file);
 F.SaveAs(fullFileName);
 if(Convert.ToInt32(fileType) == ((int)Folder.Types.Picture))
 {
 Resize(F,saveToFolder,guidName,extension);
 }
}

To get into the Resize() method we have to pass in the uploaded file that we are
working with, the folder that we want to save the files to, the generated GUID for
the file system name, and the extension of the uploaded file. Once in the Resize()
method, we can create all the size variations that we need for our uploaded photo.
We start off by setting up a foreach loop that will iterate through the dictionary in
the class wide sizesToMake collection.

public void Resize(HttpPostedFile F, string SaveToFolder, Guid
 SystemFileNamePrefix, string Extension)
{
 //Makes all the different sizes in the sizesToMake collection
 foreach (KeyValuePair<string, int> pair in sizesToMake)
 {

Inside of our loop we will start up a new System.Drawing.Image and we will
initialize it from the uploaded files input stream. We then move to creating a new
Bitmap that is initialized from the newly created Image. With the Bitmap we can
then create new variations on the size of that uploaded Image. First we look to see if
the file that was uploaded is longer on the top or on the side so that we know how to
appropriately determine the ratio of the image's height and width.

using(System.Drawing.Image image =
 System.Drawing.Image.FromStream(F.InputStream))
//determine the thumbnail sizes
using(Bitmap bitmap = new Bitmap(image))
{
 decimal Ratio;
 if(bitmap.Width > bitmap.Height)
 {
 Ratio = (decimal) pair.Value / bitmap.Width;

Chapter 7

[301]

 NewWidth = pair.Value;
 decimal Temp = bitmap.Height * Ratio;
 NewHeight = (int)Temp;
 }
 else
 {
 Ratio = (decimal) pair.Value / bitmap.Height;
 NewHeight = pair.Value;
 decimal Temp = bitmap.Width * Ratio;
 NewWidth = (int)Temp;
 }
}

Once we have our sizes determined we can resize it and save it to the file system.
We do this by again setting a reference to the uploaded file and reconstructing a new
Bitmap. With this in hand we can then save the bitmap to the file system with its new
dimensions. Do note though that in this case when we save the file to the file system,
we are not adding a section to the name using the key name from the dictionary. This
results in a file name that is made up of {GUID}__{key}.{extension}. This means
that every file will be unique and will have uniquely named files of various sizes.

using(System.Drawing.Image image =
 System.Drawing.Image.FromStream(F.InputStream))
using(Bitmap bitmap = new Bitmap(image, NewWidth, NewHeight))
{
 bitmap.Save(Server.MapPath(SaveToFolder + "/" +
 SystemFileNamePrefix.ToString() + "__"
 + pair.Key + "." + Extension),
 image.RawFormat);
}

We continue to loop through all the different file sizes in our dictionary creating new
files for each one. Once complete we will move to the next file that was uploaded.
Let's now write a test page to test our receiving page.

Testing our receiver
Now that we have seriously cool uploading capabilities we need to write a test
harness to make sure that it works. It is very good to have a simple way of testing
complex logic. Remember that we are working with many aspects here. We could
run into issues such as server-based security when we go on to save a file to the file
system. We could run into configuration issues when we attempt to upload large
files. Having a utility such as this will save you a lot of time down the road when
you go to move your application out to a production box.

Media Galleries

[302]

Let's get started by creating the super simple UI. To do this we will need to have a
form. In the form we need to modify the enctype to a multipart/form-data and set
the action path to point to our RecieveFiles.aspx file. Next we add a file input box
so that we can browse out for a file. We will then add a simple HTML button to post
a file to our receiver page.

<form method="post" action="ReceiveFiles.aspx?AccountID=1&AlbumID=1&F
ileType=1"
 enctype="multipart/form-data">
<div>
 <input type="file" class="stdInput" id="file2" runat="server"
 NAME="file2"/>
</div>
<input type="submit" value="test" />
</form>

This posting of a file to your receiver page will either put a file in the right location
or it won't! It is quite likely that the first time you attempt to upload a file, you will
get an error regarding file-level security—something along the lines of ASP.NET or
Network service, which do not have rights to write a file to the specified location. To
fix this you simply need to add those groups to the folder you are trying to write to
with write access.

Another common configuration issue that you might come across is encountered
when you attempt to upload large files. By default ASP.NET can only handle a
4MB file. Many images from today's digital cameras are much larger than that.
To get around this limitation we can simply add a few lines to the web.config
file. Either locate or add the following section to your web.config file. In the
maxRequestLength property, change the 4MB limitation to whatever you like.
I have an 8MB limitation defined here.

<httpRuntime
 executionTimeout="90"
 maxRequestLength="8192"
 useFullyQualifiedRedirectUrl="false"
 minFreeThreads="8"
 minLocalRequestFreeThreads="4"
 appRequestQueueLimit="100"
 />

Multi-file upload
Now that we have a way of receiving uploaded files and we have a way to test to be
sure that our uploader works, let's create the UI to upload a handful of files. This is a
Flash-based UI. You can either download a trial copy of Flash or look at alternatives
in a product such as Swish or Flex.

Chapter 7

[303]

As this is not so much a Flash book as it is an ASP.NET book, I will have to skim over
this topic quickly. We will create a simple Flash UI that has a browse box, a couple of
dynamic text boxes, and some labels.

We will build the entire UI on one frame.

My UI looks something like this:

On the first layer we will add some action script that hooks up our UI and our
ReceiveFiles page. The following code looks very much like C# code and should
be fairly readable.

import flash.net.FileReferenceList;
import flash.net.FileReference;
stop();
//keep track of how many were loaded vs. uploaded
var fileLoadedCounter = 0;
var fileUpLoadedCounter = 0;
var listener:Object = new Object();
listener.onSelect = function(fileRefList:FileReferenceList) {
 status.text = "";

Media Galleries

[304]

 uploaded.text = "";
 myTF = new TextFormat();
 myTF.color = 0x000000;
 status.setTextFormat(myTF);
 txtUploadCounter.text = "0";
 fileLoadedCounter = 0;
 fileUpLoadedCounter = 0;

 trace("onSelect");
 var list:Array = fileRefList.fileList;
 var item:FileReference;
 for(var i:Number = 0; i < list.length; i++) {
 //increment counter
 fileLoadedCounter ++;
 trace("fileLoadedCounter: " + fileLoadedCounter);
 item = list[i];
 trace("name: " + item.name);
 //sometext.text = "name: " + item.name + "\n" + sometext.text;
 AddToStatus("name: " + item.name);
 trace(item.addListener(this));
 //item.upload("http://localhost:56472/Files/ReceiveFiles.aspx?Al
 bumID=1&FileTypeID=1&AccountID=1");
 item.upload(_root.SiteRoot+"Files/ReceiveFiles.aspx?AlbumID="+
 _root.AlbumID+"&FileTypeID="+_root.FileType+"&AccountID="+
 _root.AccountID);
 }
 trace("all done!");
}
listener.onCancel = function():Void {
 trace("onCancel");
}
listener.onOpen = function(file:FileReference):Void {
 trace("onOpen: " + file.name);
 //AddToStatus("onOpen: " + file.name);
}
listener.onProgress = function(file:FileReference,
 bytesLoaded:Number, bytesTotal:Number):Void {
 trace("onProgress with bytesLoaded: " + bytesLoaded + "
 bytesTotal: " + bytesTotal);
 AddToStatus("Bytes Loaded: " + bytesLoaded + " of Total: " +
 bytesTotal);
}
listener.onComplete = function(file:FileReference):Void {
 trace("onComplete: " + file.name);
 AddToUploaded(file.name);

Chapter 7

[305]

 //increment uploaded counter
 fileUpLoadedCounter ++;
 txtUploadCounter.text = fileUpLoadedCounter;
 trace("fileUpLoadedCounter: " + fileUpLoadedCounter);
 //did all files get uploaded?
 if(fileLoadedCounter == fileUpLoadedCounter)
 {
 status.text = "Upload Completed!";
 myTF = new TextFormat();
 myTF.color = 0xFF0000;
 status.setTextFormat(myTF);
 }
}
listener.onHTTPError = function(file:FileReference,
 httpError:Number):Void {
 trace("onHTTPError: " + file.name + " httpError: " + httpError);
 AddToStatus("** The upload of " + file.name + " failed **");
}
listener.onIOError = function(file:FileReference):Void {
 trace("onIOError: " + file.name);
 AddToStatus("onIOError: " + file.name);
}
listener.onSecurityError = function(file:FileReference,
 errorString:String):Void {
 trace("onSecurityError: " + file.name + " errorString: " +
 errorString);
 AddToStatus("onSecurityError: " + file.name + " errorString: " +
 errorString);
}
var fileRef:FileReferenceList = new FileReferenceList();
fileRef.addListener(listener);
Browse_btn.addEventListener("click", doBrowse);
function AddToUploaded(msg:String)
{
 uploaded.text = msg + "\n" + uploaded.text;
}
function AddToStatus(msg:String)
{
 status.text = msg + "\n" + status.text;
}
function doBrowse()
{
 fileRef.browse();
}

Media Galleries

[306]

Once you have all this plugged in and working (or you can use the source from the
books files), we will need to plug the Flash uploader onto a page. To do this, we will
need to add the following code on a page that will house the uploader.

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=8,0,0,0" width="550" height="400" id="FileUpload"
align="middle">
 <param name="allowScriptAccess" value="sameDomain" />
 <param name="movie" value="../Files/FileUpload.
swf?SiteRoot=<%Response.Write(_webContext.RootUrl);%>&Al
bumID=<%Response.Write(_webContext.AlbumID.ToString());
%>&FileType=<%Response.Write(((int)Folder.Types.Picture).ToString());
%>&AccountID=<%Response.Write(_webContext.CurrentUser.AccountID.
ToString()); %>" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#ffffff" />
 <embed src="../Files/FileUpload.swf?SiteRoot=<%Response.Write(_
webContext.RootUrl);%>&AlbumID=<%Response.Write(_webContext.AlbumID.
ToString()); %>&FileType=<%Response.Write(((int)Folder.Types.Picture).
ToString()); %>&AccountID=<%Response.Write(_webContext.CurrentUser.
AccountID.ToString()); %>"
 quality="high"
 bgcolor="#ffffff"
 width="550"
 height="220"
 name="FileUpload"
 align="middle"
 allowScriptAccess="sameDomain"
 type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/go/getflashplayer" />
</object>

Most of this code is generated for you in Flash by going to the File menu and down
to Publish. Open the resulting HTML file from the publishing process, and you are
ready to go. Though in our file we are passing in (the names here are important and
should match) some data to spin up the location of the upload appropriately. This is
done with server-side script and some inline variables.

Once you have the UI showing on our upload page and have the appropriate
variables plugged in you should be good to go. If for some reason you are not
uploading files then make sure that your test script is working first. Make sure that
your paths are appropriate and that there are no errors. If the Flash UI doesn't work,
you can also run it in debug mode.

Chapter 7

[307]

Now that we are uploading files, let's move on to discussing the display of
those photos.

Photo albums
There are many things we can do now as we have files uploaded to the server in
various sizes! I am going to show you the MyPhotos page, which will list all the
galleries for the logged in account and link to the ViewAlbum page. This should
demonstrate how to work with the photo albums and the photos. You can look at
the other pages that are in the code to see how to create albums, link to the file
uploader, and so on—basically all the data management tasks that surround the
photo album concepts.

MyPhotos
In this page we will display all the photo albums that an account has. We will use
a ListView to do this. In case you have not used a ListView before, we will cover
some of the basics here.

<asp:ListView id="lvAlbums" runat="server"
 OnItemDataBound="lbAlbums_ItemDataBound">
 <LayoutTemplate>
 <ul class="albumsList">
 <asp:PlaceHolder ID="itemPlaceholder"
 runat="server"></asp:PlaceHolder>

 </LayoutTemplate>

 <ItemTemplate>

 <asp:HyperLink CssClass="albumsActionLink"
 ID="linkEditAlbum" NavigateUrl="
 ~/Photos/EditAlbum.aspx" Text="Edit"
 runat="server"></asp:HyperLink>
 <asp:HyperLink CssClass="albumsActionLink"
 ID="linkViewAlbum" NavigateUrl=
 "~/Photos/ViewAlbum.aspx" Text="View"
 runat="server"></asp:HyperLink>
 <asp:LinkButton CssClass="albumsActionLink"
 ID="linkDeleteAlbum" Text="Delete"
 OnClick="linkDeleteAlbum_Click"
 runat="server"></asp:LinkButton>

 <asp:Label CssClass="albumsTitle" ID="lblName"
 Text='<%#((Folder)Container.DataItem).Name %>'
 runat="server"></asp:Label>

 <img src="<%#_webContext.RootUrl

Media Galleries

[308]

 %>files/photos/<%#((Folder)
 Container.DataItem).FullPathToCoverImage %>" />

 <asp:Label CssClass="albumsLocation" Text="in - "
 runat="server"></asp:Label>
 <asp:Label CssClass="albumsLocation" ID="lblLocation"
 Text='<%#((Folder)Container.DataItem).Location %>'
 runat="server"></asp:Label>

 <asp:Label CssClass="albumsDescription"
 ID="lblDescription" Text='<%#
 ((Folder)Container.DataItem).Description %>'
 runat="server"></asp:Label>
 <asp:Literal Visible="false" ID="litFolderID"
 Text='<%#((Folder)Container.DataItem)
. FolderID.ToString() %>'
 runat="server"></asp:Literal>

 </ItemTemplate>

 <EmptyDataTemplate>
 Sorry, you don't seem to have any albums at this time!
 </EmptyDataTemplate>
</asp:ListView>

Note that the ListView has an OnItemDataBound="lbAlbums_ItemDataBound"
event hooked up. This will become important later on as it controls how we handle
each item that is bound to the ListView.

The first item you will see inside of the ListView is the LayoutTemplate. This
template defines the iterating items. In our case I have chosen to use an unordered
list to display our albums. With some CSS we have full control over how each list
item is rendered.

Inside the list you will see that we have a PlaceHolder defined with an ID of
itemPlaceholder. You must use this ID as you see it here! This PlaceHolder is
responsible for holding everything in the ItemTemplate as we do our iteration.

The next section you will see is the ItemTemplate. This template actually defines
what goes into each item of our list. In our case we have some metadata about each
album, the default image for the album, and some link to other functionalities.

Finally we have the EmptyDataTemplate. This template is responsible for showing
something when there is no data to iterate through. In our case we are displaying a
message stating that there are no albums to be displayed.

Chapter 7

[309]

We can now turn to the code behind of this page (keep in mind that we are still using
the MVP pattern). Most of our code behind is driven by our presenter file. In our
code behind we have the LoadUI method, which is passed a list of Folder (Albums).
This is the key DataSource for our ListView control.

public void LoadUI(List<Folder> folders)
{
 if (!IsPostBack)
 {
 lvAlbums.DataSource = folders;
 lvAlbums.DataBind();
 }
}

Next we have the lbAlbums_ItemDataBound. This is the method that we hooked
up to in the ListView to handle each item as it is bound to our ListView. In this
method we are referencing the controls in our ItemTemplate so that we can work
with them. We make sure that the Album's description is not too long. If it is, we
concatenate it to fit our current display. Then we are constructing our links so that
they work as expected for each Album that we are binding.

protected void lbAlbums_ItemDataBound(object sender,
 ListViewItemEventArgs e)
{
 if (e.Item.ItemType == ListViewItemType.DataItem)
 {
 HyperLink linkEditAlbum = e.Item.FindControl("linkEditAlbum")
 as HyperLink;
 LinkButton linkDeleteAlbum =
 e.Item.FindControl("linkDeleteAlbum") as LinkButton;
 HyperLink linkViewAlbum = e.Item.FindControl("linkViewAlbum")
| as HyperLink;
 Literal litFolderID = e.Item.FindControl("litFolderID") as
 Literal;
 Label lblDescription = e.Item.FindControl("lblDescription")
 as Label;
 if (lblDescription.Text.Length > 150)
 {
 lblDescription.Text = lblDescription.Text.Substring(0,
 149);
 lblDescription.Text += "...";
 }
 linkEditAlbum.NavigateUrl += "?AlbumID=" + litFolderID.Text;
 linkDeleteAlbum.Attributes.Add("OnClick","javascript:
return(confirm(‘Are you sure you want to delete this album?'));");
 linkDeleteAlbum.Attributes.Add("FolderID",litFolderID.Text);
 linkViewAlbum.NavigateUrl += "?AlbumID=" + litFolderID.Text;
 }
}

Media Galleries

[310]

And finally, we have a method to handle our delete link's click event. This method
calls into our presenter to handle the deletion of an Album.

protected void linkDeleteAlbum_Click(object sender, EventArgs e)
{
 LinkButton linkDeleteAlbum = sender as LinkButton;
 _presenter.DeleteFolder(Convert.ToInt64(linkDeleteAlbum.Attributes
 ["FolderID"]));
}

ViewAlbum
The ViewAlbum page is exactly the same as the MyPhotos page in that it uses the
ListView to handle its rendering of the data.

<asp:ListView ID="lvGallery" runat="server"
 OnItemDataBound="lvAlbum_ItemDataBound">
 <LayoutTemplate>
 <ul class="albumsList">
 <asp:PlaceHolder ID="itemPlaceholder"
 runat="server"></asp:PlaceHolder>

 </LayoutTemplate>
 <ItemTemplate>

 <asp:Label style="font-weight:bold;" ID="lblFileName"
 Text='<%#((File)Container.DataItem).FileName
 %>' runat="server"></asp:Label>
 <asp:HyperLink ID="linkImage"
 NavigateUrl='<%#((File)Container.DataItem)
. CreateDate.Year.ToString() +
 ((File)Container.DataItem).
 CreateDate.Month.ToString() %>'
 runat="server"></asp:HyperLink>
 <asp:Literal Visible="false" ID="litImageName"
 runat="server" Text='<%#((File)Container.
DataItem).FileSystemName.ToString()
 %>'></asp:Literal>
 <asp:Literal Visible="false" ID="litFileExtension"
 runat="server" Text='<%# ((File)Container.
DataItem).Extension.ToString() %>'></asp:Literal>

 <asp:Label ID="lblDescription" runat="server"
 Text='<%#((File)Container.DataItem).
 Description %>'></asp:Label>

 </ItemTemplate>

Chapter 7

[311]

 <EmptyItemTemplate>
 There are no photos in this gallery!
 <asp:HyperLink ID="linkAddPhotos" runat="server" Text="Click
 here to add photos"></asp:HyperLink>.
 </EmptyItemTemplate>
</asp:ListView>

In the ListView there is a declaration for the OnItemDataBound so that we can
handle each bit of data as it is bound. We then have the LayoutTemplate with
its PlaceHolder named itemPlaceholder. There is also the ItemTemplate with
its various controls (to show images in the Album in this case). And we have our
EmptyItemTemplate to display a message when we have no data.

In the code behind we have a similar layout as the MyPhotos code behind. We load
the photos for the given album. We also load some details about the album itself so
that we can show things like the album's description and the like. There are a few
controls that we have events hooked to so that we can handle things like navigation.

protected void lvAlbum_ItemDataBound(object sender,
 ListViewItemEventArgs e)
{
 if(e.Item.ItemType == ListViewItemType.DataItem)
 {
 HyperLink linkImage = e.Item.FindControl("linkImage") as
 HyperLink;
 Literal litImageName = e.Item.FindControl("litImageName") as
 Literal;
 Literal litFileExtension =
 e.Item.FindControl("litFileExtension") as Literal;
 string pathToImage = "~/files/photos/" +
 linkImage.NavigateUrl + "/" + litImageName.Text;
 linkImage.NavigateUrl = pathToImage + "__o." +
 litFileExtension.Text;
 linkImage.ImageUrl = pathToImage + "__s." +
 litFileExtension.Text;
 }
 if(e.Item.ItemType == ListViewItemType.EmptyItem)
 {
 HyperLink linkAddPhotos = e.Item.FindControl("linkAddPhotos")
 as HyperLink;
 linkAddPhotos.NavigateUrl =
 "~/photos/AddPhotos.aspx?AlbumID=" +
 _webContext.AlbumID.ToString();
 }
}

public void LoadAlbumDetails(Folder folder)

Media Galleries

[312]

{
 lblAlbumName.Text = folder.Name;
 lblLocation.Text = folder.Location;
 lblDescription.Text = folder.Description;
 lblCreateDate.Text = folder.CreateDate.ToString();
 if(folder.AccountID != _userSession.CurrentUser.AccountID)
 {
 btnEditPhotos.Visible = false;
 btnEditAlbum.Visible = false;
 btnAddPhotos.Visible = false;
 }
}

public void LoadPhotos(List<File> files)
{
 lvGallery.DataSource = files;
 lvGallery.DataBind();
}

protected void lbEditPhotos_Click(object sender, EventArgs e)
{
 _redirector.GoToPhotosEditPhotos(_webContext.AlbumID);
}

protected void lbEditAlbum_Click(object sender, EventArgs e)
{
 _redirector.GoToPhotosEditAlbum(_webContext.AlbumID);
}

protected void btnAddPhotos_Click(object sender, EventArgs e)
{
 _redirector.GoToPhotosAddPhotos(_webContext.AlbumID);
}

Take a look in the photos folder of the website project. There are many other
pages for editing photos, editing albums, and so on that demonstrate additional
functionality with regards to interacting with our files and photo album data.

Chapter 7

[313]

Summary
In this chapter we looked at the infrastructure and decisions that go into a media
management application. We focused heavily on processing and storing images.
But most of the principles that we looked at apply to all sorts of different files. The
only real part that would need to be tweaked is how the file is processed once it is
stored on the server. In the case of audio and video files you would most likely want
to transfer them to a Flash format from a WAV or WMV format so that they become
more accessible to your web users.

This chapter has added the ability to create photo albums. We then discussed the
ability to upload and manipulate photos. We also discussed how to handle multiple
file uploads and the most appropriate way to store them on the file system. Finally,
we created a way for our users to interact with their albums and uploaded files.

Blogs
People join a community to either look for or provide information on a pre-specified
topic. Often times this is performed by way of a blog. A blog allows people to freely
express themselves by way of providing stories, articles, or quick blurbs generally on
any topic with the community.

Building this key feature into your community is actually one of the easiest things to
do. Having built so many features to this point, snapping in the blog module and its
required components will go quite smoothly. We will cover not only creating a blog
but also how to add friendly URLs to our blog posts. Once this is in place we will
follow it up by attaching our blogging system to our alerts system.

Problem
In this chapter we will add the blogging feature to our site. This will handle creating
and managing a post. It will also handle sending alerts to your friends' filter page.
And finally we will handle creating a friendly URL for your blog posts.

Blogs

[316]

Here we are making our first post to our blog.

Once our post is created, we will then see it on the Blogs homepage and the My
Posts section. From here we can edit the post or delete the post. Also, we can click
into the post to view what we have seen so far.

Chapter 8

[317]

The following screenshot shows what one will see when he/she clicks on the post:

I have the blog post set up to show the poster's avatar. This is a feature that you can
easily add to or remove. Most of your users want to be able to see who the author is
that they are currently reading!

Also, we will add a friendly URL to our blog post's pages.

Blogs

[318]

Design
The design of this application is actually quite simple. We will only need one
table to hold our blog posts. After that we need to hook our blog system into our
existing infrastructure.

Blogs
In order for us to store our blog, we will need one simple table. This table will handle
all the standard attributes of a normal blog post to include the title, subject, page
name, and the post itself. It has only one relationship out to the Accounts table so
that we know who owns the post down the road. That's it!

Solution
Let's take a look at the solution for these set of features.

Implementing the database
Let's take a look at the tables required by our solution.

Chapter 8

[319]

Blogs
The blogs table is super simple. We discussed most of this under the Blogs section.

The one thing that is interesting here is the Post column. Notice that I have this set
to a varchar(MAX) field. This may be too big for your community, so feel free to
change it down the road. For my community I am not overly worried. I can always
add a UI restriction down the road without impacting my database design using a
validation control. After that we will look at the IsPublished flag. This flag tells the
system whether or not to show the post in the public domain. Next to that we will
also be interested in the PageName column. This column is what we will display
in the browser's address bar. As it will be displayed in the address bar, we need to
make sure that the input is clean so that we don't have parsing issues (responsible for
causing data type exceptions) down the road. We will handle that on the input side
in our presenter later.

Creating the relationships
Once all the tables are created we can then create all the relationships.

For this set of tables we have relationships between the following tables:

Blogs and Accounts

Setting up the data access layer
To set up the data access layer follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.

•

•

•

•

Blogs

[320]

Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on tables and clicking Refresh.
Then drag your new tables onto the design surface.
Hit Save and you should now have the following domain objects to
work with!

Keep in mind that we are not letting LINQ track our relationships, so go ahead and
delete them from the design surface. Your design surface should have all the same
items as you see in the screenshot (though perhaps in a different arrangement!).

Building repositories
With the addition of new tables will come the addition of new repositories so that we
can get at the data stored in those tables. We will be creating the following repository
to support our needs.

BlogRepository

Our repository will generally have a method for select by ID, select all by parent
ID, save, and delete. Once you have seen one repository you have pretty much
seen them all. Review previous chapters, the appendices, or the included code for
examples of a standard repository. I will discuss anything that varies from what is
considered standard!

We will start with a method that will allow us to get at a blog by its page name that
we can capture from the browser's address bar.

public Blog GetBlogByPageName(string PageName, Int32 AccountID)
{
 Blog result = new Blog();
 using(FisharooDataContext dc = _conn.GetContext())

•

•

•

•

Chapter 8

[321]

 {
 result = dc.Blogs.Where(b => b.PageName == PageName &&
 b.AccountID == AccountID).FirstOrDefault();
 }
 return result;
}

Notice that for this system to work we can only have one blog with one unique
page name. If we forced our entire community to use unique page names across the
community, we would eventually have some upset users. We want to make sure to
enforce unique page names across users only for this purpose. To do this, we require
that an AccountID be passed in with the page name, which gives our users more
flexibility with their page name overlaps! I will show you how we get the AccountID
later. Other than that we are performing a simple lambda expression to select the
appropriate blog out of the collection of blogs in the data context.

Next we will discuss a method to get all the latest blog posts via the
GetLatestBlogs() method. This method will also get and attach the appropriate
Account for each blog. Before we dive into this method we will need to extend the
Blog class to have an Account property.

To extend the Blog class we will need to create a public partial class in the
Domain folder.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace Fisharoo.FisharooCore.Core.Domain
{
 public partial class Blog
 {
 public Account Account { get; set; }
 }
}

Now we can look at the GetLatestBlogs() method.

public List<Blog> GetLatestBlogs()
{
 List<Blog> result = new List<Blog>();
 using(FisharooDataContext dc = _conn.GetContext())
 {
 IEnumerable<Blog> blogs = (from b in dc.Blogs
 where b.IsPublished
 orderby b.UpdateDate descending
 select b).Take(30);
 IEnumerable<Account> accounts =

Blogs

[322]

 dc.Accounts.Where(a => blogs.Select(b =>
 b.AccountID).Distinct().Contains(a.AccountID));
 foreach (Blog blog in blogs)
 {
 blog.Account = accounts.Where(a => a.AccountID ==
 blog.AccountID).FirstOrDefault();
 }
 result = blogs.ToList();
 result.Reverse();
 }
 return result;
}

The first expression in this method gets the top N blogs ordered by their UpdateDate
in descending order. This gets us the newest entries. We then add a where clause
looking for only blogs that are published.

We then move to getting a list of Accounts that are associated with our previously
selected blogs. We do this by selecting a list of AccountIDs from our blog list and
then doing a Contains search against our Accounts table. This gives us a list of
accounts that belong to all the blogs that we have in hand.

With these two collections in hand we can iterate through our list of blogs and
attach the appropriate Account to each blog. This gives us a full listing of blogs
with accounts.

As we discussed earlier, it is very important for us to make sure that we keep the
page names unique on a per user basis. To do this we need to have a method that
allows our UI to determine if a page name is unique or not. To do this we will have
the CheckPageNameIsUnique() method.

public bool CheckPageNameIsUnique(Blog blog)
{
 blog = CleanPageName(blog);
 bool result = true;
 using(FisharooDataContext dc = _conn.GetContext())
 {
 int count = dc.Blogs.Where(b => b.PageName == blog.PageName
 && b.AccountID == blog.AccountID).Count();
 if(count > 0)
 result = false;
 }
 return result;
}

Chapter 8

[323]

This method looks at all the blog entries except itself to determine if there are other
blog posts with the same page name that are also by the same Account. This allows
us to effectively lock down our users from creating duplicate page names. This will
be important down the road when we start to discuss our pretty URLs.

Next, we will look at a private method that will help us clean up these page name
inputs. Keep in mind that these page names will be displayed in the browser's
address bar and therefore need not have any characters in them that the browser
would want to encode. While we can decode the URL easily this conversation is
more about keeping the URL pretty so that the user and search engine spiders can
easily read where they are at. When we have characters in the URL that are encoded,
we will end up with something like %20 where %20 is the equivelant to a space. But
to read my%20blog%20post is not that easy. It is much easier to ready my-blog-post.
So we will strip out all of our so called special characters and replace all spaces with
hyphens. This method will be the CleanPageName() method.

private Blog CleanPageName(Blog blog)
{
 blog.PageName = blog.PageName.Replace(" ", "-").Replace("!", "")
 .Replace("&", "").Replace("?", "").Replace(",", "");
 return blog;
}

You can add to this as many filters as you like. For the time being I am replacing the
handful of special characters that we have just seen in the code.

Next, we will get into the service layers that we will use to handle our interactions
with the system. Unlike other chapters this chapter will not introduce any new
service layers—we will add to the existing one.

Implementing the services/application layer
Once all the repositories are built for single serving purposes we can begin to create
the services layer. Again, this layer is responsible for assembling aggregates and
performing complex actions with our entities. We will not be creating any new
services for this component but will need to add to the following existing service:

AlertService

AlertService
The AlertService as we know from past chapters is responsible for sending out
notifications to our users via their filter page. This is the page that shows new
activity amongst your profile and your friends' profiles.

•

Blogs

[324]

For blogs we added two methods to our AlertService class—one method to send
out alerts for new blog posts and the other for alerts while updating our blog posts.

public void AddNewBlogPostAlert(Blog blog)
{
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = _userSession.CurrentUser.AccountID;
 alert.AlertTypeID = (int)AlertType.AlertTypes.NewBlogPost;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(_userSession.CurrentUser.AccountID)
 + GetProfileUrl(_userSession.CurrentUser.Username)
 + " has just added a new blog post: " +
 blog.Title + "</div>";
 alert.Message = alertMessage;
 SaveAlert(alert);
 SendAlertToFriends(alert);
}

If you have already read the chapter that included the AlertService you will know
what goes into adding alerts. For those who are not aware, we will quickly take a
look at this AddNewBlogPostAlert() method.

This method will take in the new Blog that was posted so that we can use some
information about it in our alert. As soon as we get into the body of our method,
we want to initialize a new Alert. We will then fill out some of the initial properties.

One of the properties that we will need to extend is the AlertType class that has
the AlertTypes property. You will see that this AlertTypes property is really a
representation of the record IDs we have stored in the AlertTypes table in the
database. Open up the AlertType class and add a couple of new entries for the
NewBlogPost and UpdatedBlogPost.

public partial class AlertType
{
 public enum AlertTypes
 {
 AccountCreated = 1,
 ProfileCreated = 2,
 AccountModified = 3,
 ProfileModified = 4,
 NewAvatar = 5,
 AddedFriend = 6,
 AddedPicture = 7,
 FriendAdded = 8,
 FriendRequest = 9,

Chapter 8

[325]

 StatusUpdate = 10,
 NewBlogPost = 11,

 UpdatedBlogPost = 12

 }
}

Then go into the AlertTypes table and create two new records NewBlogPost and
UpdatedBlogPost. If the record IDs that are generated do not correspond to the
numbers you see above, update the numbers you see in the enum to the ones that
were created in the table.

Now we can look at the message that we want to show in our alert. This can consist
of any standard HTML as it will be displayed on the alerts page or "the filter" as
we will call it. Once the Alert is fully configured we can then save the Alert to the
database. And in this case (but not all cases) we want this alert to show up on all of
our friends' filters as well, to let them know that a new blog post was just created.

Here is the method for the updated blog post, which is almost identical to the one
seen for updating the blog post:

public void AddUpdatedBlogPostAlert(Blog blog)
{
 alert = new Alert();
 alert.CreateDate = DateTime.Now;
 alert.AccountID = _userSession.CurrentUser.AccountID;
 alert.AlertTypeID = (int)AlertType.AlertTypes.NewBlogPost;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(_userSession.CurrentUser.AccountID)
 + GetProfileUrl(_userSession.CurrentUser.Username)
 + " has updated the " + blog.Title +
 " blog post!</div>";
 alert.Message = alertMessage;
 SaveAlert(alert);
 SendAlertToFriends(alert);
}

With the repository and service layers completed we can now take a look at our UI.

Implementing the presentation layer
The presentation for this chapter is almost as simple as the infrastructure is. We will
have a Blog link in the top navigation. When you click on this link you will be taken
to a page where you see a list of the latest blog posts. From the Blog section you can
then choose to either view a blog from the latest blogs page or you can choose to
view your blogs or create a new blog. In addition to these four pages we will also
address how fancy URLs come into play in the view post page.

Blogs

[326]

Latest blog posts
Viewing the latest blog posts is a single call to the BlogRepository. In order for our
UI to get to any repository though, it first has to hand off its control of all display
interactions. It does this by initializing an instance of the DefaultPresenter and
then passing a reference to itself into the Init() method of the presenter. Once in the
Init() method of the presenter we can then make the call into the repository to get
the latest blogs.

public class DefaultPresenter
{
 private IDefault _view;
 private IBlogRepository _blogRepository;
 public DefaultPresenter()
 {
 _blogRepository =
 ObjectFactory.GetInstance<IBlogRepository>();
 }
 public void Init(IDefault View)
 {
 _view = View;
 _view.LoadBlogs(_blogRepository.GetLatestBlogs());
 }
}

With the latest blogs in hand we are then able to pass them into the UI's code behind
where the blogs are bound to a list view control in the Default.aspx page.

public partial class Default : System.Web.UI.Page, IDefault
{
 private DefaultPresenter _presenter;
 public Default()
 {
 _presenter = new DefaultPresenter();
 }
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Init(this);
 }
 public void LoadBlogs(List<Blog> Blogs)
 {
 lvBlogs.DataSource = Blogs;
 lvBlogs.DataBind();
 }
 public void lvBlogs_ItemDataBound(object sender,
 ListViewItemEventArgs e)
 {
 Literal litBlogID = e.Item.FindControl("litBlogID") as
 Literal;

Chapter 8

[327]

 HyperLink linkTitle = e.Item.FindControl("linkTitle") as
 HyperLink;
 Literal litPageName = e.Item.FindControl("litPageName") as
 Literal;
 Literal litUsername = e.Item.FindControl("litUsername") as
 Literal;
 //linkTitle.NavigateUrl = "~/Blogs/ViewPost.aspx?BlogID=" +
 litBlogID.Text;
 linkTitle.NavigateUrl = "~/Blogs/" + litUsername.Text + "/" +
 litPageName.Text + ".aspx";
 }
}

Also note that we have a ItemDataBound() method to handle each item that is
bound. This will allow us to configure all the controls in the UI for each set of objects.
Notice in particular that at the very end of our ItemDataBound() method, that we are
configuring the NavigateUrl property to display fancy URLs! This will be important
to remember when we start our discussion about the ViewPost.aspx page.

Out in the UI side we can see how all the data sections are bound to the container's
blog items.

<asp:ListView ID="lvBlogs" runat="server"
 OnItemDataBound="lvBlogs_ItemDataBound">
 <LayoutTemplate>
 <ul class="blogsList">
 <asp:PlaceHolder ID="itemPlaceholder"
 runat="server"></asp:PlaceHolder>

 </LayoutTemplate>

 <ItemTemplate>

 <h2 class="blogsTitle"><asp:HyperLink ID="linkTitle"
 runat="server" Text='<%#((Blog)
 Container.DataItem).Title %>'>
 </asp:HyperLink></h2>
 <p class="blogsDescription">
 Created: <%#((Blog)Container.DataItem).CreateDate %> By:
 <%#((Blog)Container.DataItem).
 Account.Username %>

 <%#((Blog)Container.DataItem).Subject %><asp:Literal
 ID="litBlogID" runat="server" Text='<%#((
 Blog)Container.DataItem).BlogID %>'></asp:Literal>
 <asp:Literal ID="litPageName" runat="server"
 Visible="false" Text='<%#((Blog)
 Container.DataItem).PageName %>'></asp:Literal>

Blogs

[328]

 <asp:Literal ID="litUsername" runat="server"
 Visible="false" Text='<%#((Blog)
 Container.DataItem).Account.Username
 %>'></asp:Literal>
 </p>

 </ItemTemplate>

 <EmptyDataTemplate>
 Sorry, there are no blogs posted yet!
 </EmptyDataTemplate>
</asp:ListView>

If we had data in the system we would now see a list of the latest blogs!

My blog posts
The My Blog Posts section is 99.999% identical to the latest blogs post with
the exception that they load their list of Blog objects via a different call into
the same BlogRepository. In this case we get a list of Blogs by calling the
GetBlogsByAccountID() method.

This method will get a list of our blog posts sorted by their create date.

Other than that they are identical.

Fancy URL support
Now that we have both the recent blog posts and the my posts pages created and
out of the way we need to discuss handling the pretty URLs that we have our UIs
currently displaying. At the moment we are sending people to domain.com/blogs/
username/pagename. As you may have guessed, this is a path to a resource that does
not actually exist. In order to handle the unknown resources we will have to extend
the UrlRewrite class that we have in the Handler's directory.

public class UrlRewrite : IHttpModule
{
 private IAccountRepository _accountRepository;

 private IBlogRepository _blogRepository;

 public UrlRewrite()
 {
 _accountRepository =
 ObjectFactory.GetInstance<IAccountRepository>();

 _blogRepository =
 ObjectFactory.GetInstance<IBlogRepository>();

Chapter 8

[329]

 }

 public void Init(HttpApplication application)
 {
 //let's register our event handler
 application.PostResolveRequestCache +=
 (new EventHandler(this.Application_OnAfterProcess));
 }

 public void Dispose()
 {

 }

 private void Application_OnAfterProcess(object source,
 EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;

 string[] extensionsToExclude = { ".axd", ".jpg", ".gif",
 ".png", ".xml", ".config", ".css", ".
 js", ".aspx", ".htm", ".html" };

 foreach (string s in extensionsToExclude)
 {
 if
 (application.Request.PhysicalPath.ToLower().Contains(s))
 return;
 }
 if (!System.IO.File.Exists(application.Request.PhysicalPath))
 {

 if
 (application.Request.PhysicalPath.
 ToLower().Contains("blogs"))

 {

 string[] arr =
 application.Request.PhysicalPath.
 ToLower().Split(‘\\');

 string blogPageName = arr[arr.Length - 1];

 string blogUserName = arr[arr.Length - 2];

 blogPageName = blogPageName.Replace(".aspx", "");

 if (blogPageName.ToLower() != "profileimage" &&
 blogUserName.ToLower() != "profileavatar")

 {

 Account account =
 _accountRepository.
 GetAccountByUsername(blogUserName);

Blogs

[330]

 Blog blog =
 _blogRepository.GetBlogByPageName
 (blogPageName, account.AccountID);
 context.RewritePath("~/blogs/ViewPost.aspx?BlogID=" +
 blog.BlogID.ToString());
 }
 else
 {
 return;
 }
 }
 else
 {
 string username =
 application.Request.Path.Replace("/", "");
 Account account =
 _accountRepository.GetAccountByUsername(username);
 if (account != null)
 {
 string UserURL =
 "~/Profiles/profile.aspx?AccountID="
 + account.AccountID.ToString();
 context.Response.Redirect(UserURL);
 }
 else
 {
 context.Response.Redirect("~/PageNotFound.aspx");
 }

 }
 }
 }
}

In the UrlRewrite class just seen notice that I added a reference to the
BlogRepository so that we can get the blog in question if that is indeed what
this rewrite is for. Next, notice that I removed the .aspx extension from the list of
extensions to exclude it from processing. This is because we want our pages to look
like real pages even though they are actually dynamic (read non-existent) resources.

After that we test to see if we are working with a blog redirection. If we are, then we
extract the user's username and the page name from the URL. With this information
in hand we can locate the Blog that we need. From there we can easily do a
redirection to the page as though the user had no idea. To them the pretty URL
stays intact just as it was when they entered it or followed it.

Chapter 8

[331]

Now when rewriting the URL on the server side you have to be aware that the local
path "~" identifier may no longer work as expected. In my case it makes all images
load as though the blog directory is the root directory. So for this reason you will
notice that the ViewPost.aspx page has items in its UI with root level mappings in
the standard HTML fashion /images/resource rather than ~/images/resource.
This fixes the issue without any problem. Everything else should work as expected.

View post
The ViewPost.aspx page is an amazingly straightforward page to build. It is
extracting the page to be viewed from the URL by way of the rewritten URL, which
contains the BlogID behind the scenes. The ViewPostPresenter gets to the BlogID
through the WebContext.BlogID property.

_view.LoadPost(_blogRepository.GetBlogByBlogID(_webContext.BlogID));

Here is the UI that we are loading:

<h2><asp:Label ID="lblTitle" runat="server"></asp:Label></h2>
<asp:HyperLink ID="linkProfile" runat="server">
<asp:Image style="padding-bottom:5px;float:left;" Width="200"
 Height="200" ID="imgAvatar" runat="server" ImageUrl="/
images/profileavatar/profileimage.aspx" />
</asp:HyperLink>
Created: <asp:Label ID="lblCreated" runat="server"></asp:Label>
Updated: <asp:Label ID="lblUpdated" runat="server"></asp:Label>

<asp:Label ID="lblPost" runat="server"></asp:Label>

The thing to be pay attention to, as I mentioned before, is that all the paths are in a
fixed format off the root of the site. This way no matter where we are at, we know
where to go to gain access to the specified resource.

Create or edit post
With all of this work out of our way we can now turn our attention to the dirty work
of creating the actual blog post. This page will actually serve two purposes. We need
to use it to create our blog post. But we will also repurpose the UI to edit already
existing posts as well. Let's look at the presenter for this page.

public void Init(IPost View)
{
 _view = View;
 if(_webContext.BlogID > 0)
 {
 _view.LoadPost(_blogRepository.GetBlogByBlogID(
 _webContext.BlogID));

Blogs

[332]

 }
}
public void SavePost(Blog blog)
{
 bool result = _blogRepository.CheckPageNameIsUnique(blog);
 if (result)
 {
 blog.AccountID = _webContext.CurrentUser.AccountID;
 _blogRepository.SaveBlog(blog);
 }
 else
 {
 _view.ShowError("The page name you have chosen is in use.
 Please choose a different page name!");
 }
}

In the first section of the Init method we are checking the WebContext.BlogID
property to see if we have something to work with. If we do then we load the UI
with the appropriate blog. The next item you see is the SavePost method that takes
care of passing a loaded blog into the BlogRepository to be saved.

Next, we will take a look at the code behind that the presenter works with. Here we
will see the LoadPost and btnSave_Click methods. There is nothing fancy to follow
here. But the one aspect to pay attention to is that we keep track of the BlogID in the
page so that we know what we are working with later.

protected void btnSave_Click(object sender, EventArgs e)
{
 Blog blog = new Blog();
 if (litBlogID.Text != "")
 blog.BlogID = Convert.ToInt64(litBlogID.Text);
 blog.IsPublished = chkIsPublished.Checked;
 blog.PageName = txtPageName.Text;
 blog.Post = txtPost.Text;
 blog.Subject = txtSubject.Text;
 blog.Title = txtTitle.Text;
 _presenter.SavePost(blog);
}
public void LoadPost(Blog blog)
{
 txtTitle.Text = blog.Title;
 txtSubject.Text = blog.Subject;
 txtPost.Text = blog.Post;
 txtPageName.Text = blog.PageName;
 chkIsPublished.Checked = blog.IsPublished;
 litBlogID.Text = blog.BlogID.ToString();
}

Chapter 8

[333]

This takes care of the little details of data inputs and outputs. However, let's now
take a look at what we need to do make the UI somewhat useable. You may recall
that we used the Xinha WYSIWYG editor before. We will use it here too. All that is
required to hook this up is a multiline text box control and a single line of JavaScript.

...
<asp:TextBox TextMode="MultiLine" ID="txtPost"
 runat="server"></asp:TextBox>
...
<script type="text/javascript">
 xinha_editors[xinha_editors.length] = ‘ctl00_Content_txtPost';
</script>
...

With this in place we should be ready to create a blog post!

Blogs

[334]

Summary
We now have a great way for our community members to share information with
one another. This content will serve several purposes. It will not only provide a
large repository of information for our community members to see value in our
relationship but also a food source for our search engine spiders.

In this chapter we covered the creation of blog posts. We also went over the pages
that are needed for people to see other users' posts as well as their own. And of
course we provided a page to actually read a post. In addition to this we covered
the concept of fancy or pretty URLs that are more user as well as search engine
friendly. Finally, we added a touch more usability to our UI in the form of the
Xinha WYSIWYG.

Message Boards
In this chapter we will be discussing message boards. A message board is a place
where users can post messages to the community in a way that all the responses will
be viewable no matter how much time passes between each post—think of it as a
long running conversation. As the threads or topics and their posts get older, newer
content will start to bury the older content. This makes this section of the site a very
dynamic area that many users will want to watch. This is considered a somewhat
sticky feature! Given the topic of our community—salt water fish—a message board
is a perfect feature for our site. It will allow a user to post an issue that they are
having with their aquarium in a way that the entire community can then read and
interact with that user's issue. Over time your community will bubble up certain
users as subject matter experts on specific topics. And eventually (you hope) your
site's forum will become the place to go for your specific type of information. If
nothing else, our dear friend Google will lead people your way.

Problem
To get started we should first discuss some proper terminology. A message board
is really a set of containers for sorting data. On our board we will have the ability to
first create categories. A category is the highest level of container and therefore will
have a very generic topic. Each category can hold as many forums as is needed. The
forum is related to the top level category's subject but is slightly more specific. In
each forum we can have a number of threads. Each thread is a very specific subject
that users can discuss. The discussion is performed with posts that are simply replies
to the containing thread or a post on the thread.

Message Boards

[336]

Here is our message board landing page, which lists each category and its forums:

Here is our forum page, which lists all of the available threads for that forum:

Chapter 9

[337]

Here is a thread that would also have a list of its posts:

As you may have guessed, the topic of a message board is a very large one. We will
go over the basics of creating a message board with the ability to create categories,
forums, threads, and posts. Each of these sections will be able to keep count of how
much data lives beneath it. And all of the content will have the ability to be linked
to in an SEO friendly manner (meaning we will support friendly URLs). Friendly
URLs are also easier for our users to remember and work with. We will also tie in the
ability to add alerts to our filters and our friends' filters so that they know when we
have new content available.

SEO (Search Engine Optimization) is generally defined as the process
that optimizes organic search traffic. This generally translates to building
your site in a search engine friendly manner that presents your site and
its content in a way that makes the search engine's job easier to index
your pages. Generally a long ugly query string such as default.
aspx?userid=324568 is less friendly than domain.com/asiemer
would be. More information can be found on the topic here: http://
en.wikipedia.org/wiki/Search_engine_optimization.

Obviously there are many features that are not yet supported by our application such
as hot topics, private threads, ratings, and moderation. We will focus on building a
solid framework in this chapter to which we can add these other features down
the road.

Design
Let's take a look at the design for this feature.

Message Boards

[338]

Categories
Categories are the highest level container of board posts that we have in our system.
It is responsible for grouping forums together in such a way that makes it easy for a
user to locate what they are most interested in. At this level we will keep a count of
how many threads and posts we have as well as who made the last post and when.
The reason that we maintain counts at this level is to remove the need for us to
perform the count each time we display the category data.

Forums
A forum is a container of threads. It is responsible for grouping together a more
specific set of posts. This too keeps a count of thread and post counts so that we can
see at this level how much data lies within, again without needing to sum the actual
post and thread counts.

Chapter 9

[339]

Threads and Posts
Threads and posts are technically identical with the exception that a post is not a
container of anything. A thread is the next level container of data below a forum. It is
a post that is marked as a thread and will act as the parent to many other posts. For
the same performance reasons we will keep a reply count and a view count. Notice
that we have a reference from ThreadID to PostID. All the posts in the system will
have a parent post, which we will refer to as a Thread.

Friendly URLs
If you paid close attention to the previous tables, you must have noticed that there
is a PageName in each table. In this system we will implement heavy use of friendly
URLs. This will allow people to find the information not only in each post but also
from the surrounding site as well. In addition to this it makes sharing information
easier too.

Message Boards

[340]

Here are all the relationships:

Alerts
Finally, we will extend our system to use our pre-existing alert system so that each
time someone makes a post or creates a new thread, we will see an alert on both the
creator's filter as well as one on the friends'. This will help us to promote the new
content across the site.

Solution
Let's take a look at our solution.

Implementing the Database
Let's start our solution by first discussing the implementation of our database.

Categories
As we discussed before, the concept of a category is our top level container of data.
Let's take a look at the table structure for categories:

Chapter 9

[341]

The SortOrder field is in charge of setting the display order in case we have multiple
categories on one page. We already discussed the count fields earlier. The last X
fields are to control who made the last post and when. PageName controls the
friendly URLs that our system will use later.

Some of you may notice that the name of this table is BoardCategorys
instead of BoardCategories. I have noticed that while dragging some
spellings into the LINQ to SQL designer I get odd spellings for my object
names. Where I could go in and rename the objects for each table I find
that it is easier to just work with the issue in a way that LINQ to SQL will
generate what I want in the first place. This way if I have to refresh the
table later, I won't need to remember to rename it appropriately as well.
As we get more and more tables in our system we are more prone to
forgetting issues such as this.

Message Boards

[342]

Forums
Forums are the next level container that holds our entire individual user
created threads.

Similar to categories we maintain the counts of our low level posts and threads. We
also maintain who created the last post and when. Notice that we have a foreign key
reference to the BoardCategorys table.

Posts
As I stated earlier, the BoardPosts table is really a dual purpose table containing
both posts and threads. I did this primarily because for most part each item has the
same data in it with the exception of the parent ThreadID column.

Chapter 9

[343]

The field to note here is the IsThread field. This is the easiest way to know when
a post is also a Thread. In addition to that we have the ThreadID, which also
denotes the difference between a post and a thread in that a thread won't have a
ThreadID—a thread is never part of a thread (at least not yet!). Also notice here
that we have a foreign key for the forum that this thread is part of in the way of the
ForumID foreign key. For threads, we also store the number of times it was viewed
as well as how many replies it has.

A nice side effect to this post/thread structure is that any run-of-the-mill post can
easily be moved off and treated as its own thread. Often times a moderator will find
that a post within a thread is generating more traffic than the initial thread itself. In
this case that post can easily be promoted to a thread in its own right!

Creating the Relationships
Once all the tables are created we can then create all the relationships.

For this set of tables we have relationships between the following tables:

BoardForums and BoardCategorys
BoardPosts and Accounts
BoardPosts and BoardForums
BoardPosts and BoardPosts (for post to thread reference)

Setting Up the Data Access Layer
To set up the data access layer follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.
Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on tables and clicking Refresh.

•

•

•

•

•

•

•

•

Message Boards

[344]

Then drag your new tables onto the design surface.
Hit Save and you should now have the following domain objects to
work with!

Keep in mind that we are not letting LINQ track our relationships, so go ahead andnot letting LINQ track our relationships, so go ahead andot letting LINQ track our relationships, so go ahead and
delete them from the design surface. Your design surface should have all the same
items as you see in the screenshot (though perhaps in a different arrangement!).

Building Repositories
With the addition of new tables will come the addition of new repositories so that
we can get at the data stored in those tables. We will be creating the following
repositories to support our needs.

BoardCategoryRepository

BoardForumRepository

BoardPostRepository

Each of our repositories will generally have a method for select by ID, select all by
parent ID, save, and delete. Once you have seen one repository you have pretty
much seen them all. Review previous chapters, the appendices, or the included code
for examples of a standard repository. I will, however, discuss anything that varies
from what is standard!

•

•

•

•

•

Chapter 9

[345]

BoardCategoryRepository
One of the most important features of our message board that may be a bit different
from other message boards is that it is very important for us to support friendly
URLs. This means that we will need a method in each of our repositories to get the
object by page name. Here is the method for this repository:

public BoardCategory GetCategoryByPageName(string PageName)
{
 BoardCategory category;
 using(FisharooDataContext dc = _conn.GetContext())
 {
 category = dc.BoardCategories.Where(bc => bc.PageName ==
 PageName).FirstOrDefault();
 }
 return category;
}

This is a fairly straightforward method that gets a board category by its page name.
Nothing we haven't already covered here from a LINQ point of view!

BoardForumRepository
The BoardForumRepository also has a GetForumByPageName method but it is
exactly the same as the previous method. Sorry!! nothing fun here to cover.

BoardPostRepository
Now this repository is full of interesting items to cover! To start, as our users will
be creating posts and threads whereas they will not be allowed to create forums or
categories, we need to be able to make sure that they don't create page names that
are not unique. It is no good to try to get a thread by its name and end up getting
several different threads instead of just the one we expected.

public bool CheckPostPageNameIsUnique(string PageName)
{
 bool result;
 using(FisharooDataContext dc = _conn.GetContext())
 {
 BoardPost bp = dc.BoardPosts.Where(p => p.PageName ==
 PageName).FirstOrDefault();
 if(bp != null)
 result = false;
 else
 result = true;
 }
 return result;
}

Message Boards

[346]

In this method we attempt to load a post by the PageName that was specified. If we
return a null object then we know that the PageName is unique and we can return a
true response. Otherwise we have to return a false result. Not fancy but it gets the
job done.

The next method is responsible for getting all the posts for a given thread. This by
itself is not that interesting. But as we know that we are only using this method on
the page where a thread is viewed, we can insert some logic to increment the amount
of times that a thread has been viewed.

Keep in mind that this method will only be appropriate if we only use
it for getting posts for a given thread and then displaying them. If we
start to use this method for other tasks then our view count will be
totally skewed!

public List<BoardPost> GetPostsByThreadID(Int64 ThreadID)
{
 List<BoardPost> result;
 using(FisharooDataContext dc = _conn.GetContext())
 {
 //increment the view count for this thread
 BoardPost thread = dc.BoardPosts.Where(p => p.PostID ==
 ThreadID).FirstOrDefault();
 if (thread != null)
 thread.ViewCount += 1;
 dc.SubmitChanges();
 IEnumerable<BoardPost> posts = dc.BoardPosts.Where(p =>
 p.ThreadID == ThreadID && !p.IsThread)
 .OrderBy(p=>p.CreateDate);
 result = posts.ToList();
 }
 return result;
}

We perform this task by getting the thread (really a board post) by its ID and then
simply increment its ViewCount property. We then submit the changes on the
DataContext to make sure that it is pushed back to the database.

We then move to get all the posts for that thread by its ID.

The next method, SavePost, is not only responsible for saving new posts and
updating existing posts but also for taking care of incrementing counts at both the
Forum and Category levels.

public Int64 SavePost(BoardPost boardPost)
{
 using(FisharooDataContext dc = _conn.GetContext())
 {

Chapter 9

[347]

 if(boardPost.PostID > 0)
 {
 dc.BoardPosts.Attach(boardPost, true);
 }
 else
 {
 //get the parent containers when a new post is created
 // to update their post counts
 BoardCategory bc = (from c in dc.BoardCategories
 join f in dc.BoardForums on
 c.CategoryID equals f.CategoryID
 where f.ForumID == boardPost.ForumID
 select c).FirstOrDefault();
 BoardForum bf = (from f in dc.BoardForums
 where f.ForumID == boardPost.ForumID
 select f).FirstOrDefault();
 //update the thread count
 if(boardPost.IsThread)
 {
 bc.ThreadCount = bc.ThreadCount + 1;
 bf.ThreadCount = bf.ThreadCount + 1;
 }
 //update the post count
 else
 {
 bc.PostCount = bc.PostCount + 1;
 bf.PostCount = bf.PostCount + 1;
 //update post count on thread
 BoardPost bThread = null;
 if (boardPost.ThreadID != 0)
 {
 bThread = (from p in dc.BoardPosts
 where p.PostID == boardPost.ThreadID
 select p).FirstOrDefault();
 }
 if (bThread != null)
 {
 bThread.ReplyCount = bThread.ReplyCount + 1;
 }
 }
 dc.BoardPosts.InsertOnSubmit(boardPost);
 }
 dc.SubmitChanges();
 }
 return boardPost.PostID;
}

Message Boards

[348]

Notice that the first part of this method is just like every other save method. If the
ID of the object being saved is greater than zero, we reattach the object to the data
context as a new version of that object. We then call the SubmitChanges() method
and persist it back to the database.

This is where everything else changes. If the item is a new post or thread then we
have a whole bunch of things to do. The first thing that we want to do is get the
parent objects. We get the BoardCategory and BoardForum off the post's related
ForumID. We then check to see if the new post is also a thread. If it is, then we update
the ThreadCount for our parent objects.

If the post is just a post then we update the PostCount for the parent objects. We also
get that post's parent Thread. With the parent Thread in hand we update the reply
count. We then perform the task that we are used to and insert the object. Finally we
call the SubmitChanges method on the data context.

Finally we come to the DeletePost method. How could this be interesting?
Remember that a post can also be a thread which means that it can have children. We
can't delete a thread that has children as this will create a referential integrity issue
(also called dirty data) for us.

public void DeletePost(BoardPost boardPost)
{
 using(FisharooDataContext dc = _conn.GetContext())
 {
 dc.BoardPosts.Attach(boardPost, true);
 //if this is a thread then we need to delete all of it's
 children
 if(boardPost.IsThread)
 dc.BoardPosts.DeleteAllOnSubmit(dc.BoardPosts.
 Where(bp=>bp.ThreadID == boardPost.PostID));
 dc.BoardPosts.DeleteOnSubmit(boardPost);
 dc.SubmitChanges();
 }
}

So, in order for us to address this issue we have to test the post that is up for
deletion to see if it is also a thread with its IsThread property. If it is, then we
also delete all of its children by passing a query that produces a list of items to the
DeleteAllOnSubmit() method of the BoardPosts collection. Everything is business
as usual from that point on!

Chapter 9

[349]

Implementing the Services/Application layer
Once all the repositories are built for single serving purposes we can begin to create
the services layer. Again, this layer is responsible for assembling aggregates and
performing complex actions with our entities. We will create the following services:

BoardService

AlertService

BoardService
Our BoardService is actually not complex at all. It is responsible for providing us
a way to get out the BoardCategory with an already hydrated list of BoardForum
items. Before we look at the BoardService, we need to extend the BoardCategory
object to contain a list of BoardForum objects. We do this by adding a BoardCategory
class to our Domain directory. Then make this class a public partial class. And finally
add a generic list of BoardForum objects.

public partial class BoardCategory
{
 public List<BoardForum> Forums { get; set; }
}

With this class extended we can now look at the BoardService.

[Pluggable("Default")]
public class BoardService : IBoardService
{
 private IBoardCategoryRepository _categoryRepository;
 private IBoardForumRepository _forumRepository;

 public BoardService()
 {
 _categoryRepository =
 ObjectFactory.GetInstance<IBoardCategoryRepository>();
 _forumRepository =
 ObjectFactory.GetInstance<IBoardForumRepository>();
 }
 public List<BoardCategory> GetCategoriesWithForums()
 {
 List<BoardCategory> categories =
 _categoryRepository.GetAllCategories();
 List<BoardForum> forums = _forumRepository.GetAllForums();
 for(int i = 0;i<categories.Count();i++)
 {

•

•

Message Boards

[350]

 categories[i].Forums = forums.Where(f => f.CategoryID ==
 categories[i].CategoryID).ToList();
 }
 return categories;
 }
}

The first thing to notice is that this class, like all others in our solution, is marked
up with attributes for StructureMap (Inversion of Control). Next, we declare our
BoardCategoryRepository and BoardForumRepository. In the constructor for this
class we then spin up instances of the two repositories.

This then brings us to the GetCategoriesWithForums() method. This is an
optimized method that our message board homepage calls to get a list of categories
and their forums. We are then able to iterate through each list and its child list
without making a bunch of separate calls.

This method first gets a list of all Categories. It then gets a list of all the forums in
the system. The method then iterates through all the Categories and selects a list of
forums from the primary list of forums into the BoardCategory.Forums collection. It
then returns the complete list of categories.

This would be a great method to add to caching as both categories and
forums are going to be a fairly static list of data in your site!

AlertService
The account service is pretty much complete from an infrastructure point of
view. It is simply a matter of adding new service messages as we need additional
functionality. In this case we want to post alerts when a new post or thread is
created. Both of the methods that we want to add are very similar in that they
initialize an alert, set the alert type, create a message, save the alert to the alert
repository, and finally send the alert off to all of the user's friends.

public void AddNewBoardPostAlert(BoardCategory category, BoardForum
 forum, BoardPost post, BoardPost thread)
{
 Init();
 alert.AlertTypeID = (int) AlertType.AlertTypes.NewBoardPost;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(_userSession.CurrentUser.AccountID) +
 GetProfileUrl(_userSession.CurrentUser.Username) +
 " has just added a new post: " +
 post.Name + "</div>";

Chapter 9

[351]

 alertMessage += "<div class=\"AlertRow\"><a href=\"" +
 _webContext.RootUrl + "forums/" + category.PageName +
 "/" + forum.PageName + "/" + thread.PageName +
 ".aspx" + "\">" + _webContext.RootUrl +
 "forums/" + category.PageName + "/" +
 forum.PageName + "/" + thread.PageName +
 ".aspx</div>";
 alert.Message = alertMessage;
 SaveAlert(alert);
 SendAlertToFriends(alert);
}

public void AddNewBoardThreadAlert(BoardCategory category, BoardForum
 forum, BoardPost post)
{
 Init();
 alert.AlertTypeID = (int)AlertType.AlertTypes.NewBoardThread;
 alertMessage = "<div class=\"AlertHeader\">" +
 GetProfileImage(_userSession.CurrentUser.AccountID) +
 GetProfileUrl(_userSession.CurrentUser.Username) +
 " has just added a new thread on the board: " +
 post.Name + "</div>";
 alertMessage += "<div class=\"AlertRow\"><a href=\"" +
 _webContext.RootUrl + "forums/" + category.PageName +
 "/" + forum.PageName + "/" + post.PageName +
 ".aspx" + "\">" + _webContext.RootUrl +
 "forums/" + category.PageName + "/" +
 forum.PageName + "/" + post.PageName +
 ".aspx</div>";
 alert.Message = alertMessage;
 SaveAlert(alert);
 SendAlertToFriends(alert);
}

Implementing the Presentation Layer
Now let's discuss the implementation of our presentation layer.

Message Boards

[352]

Default.aspx
With the entire infrastructure completed we can now move on to the more
interesting part—displaying the data. We will start by looking at the homepage of
the message board. This page will be responsible for displaying all of the categories
and all of the forums for each category.

Other than the normal plumbing that is required by the model view presenter
(MVP) pattern, this page is primarily made up of two repeaters—the first repeater
displaying all the categories in the list of categories and the inner one displaying all
the forums for each category.

The list of categories starts in the presenter for this page.

public class DefaultPresenter
{
 private IBoardService _boardService;
 private IDefault _view;
 private IRedirector _redirector;
 private IBoardForumRepository _forumRepository;
 private IBoardCategoryRepository _categoryRepository;
 public DefaultPresenter()
 {
 _boardService = ObjectFactory.GetInstance<IBoardService>();
 _forumRepository =
 ObjectFactory.GetInstance<IBoardForumRepository>();
 _categoryRepository =
 ObjectFactory.GetInstance<IBoardCategoryRepository>();
 _redirector = ObjectFactory.GetInstance<IRedirector>();
 }

Chapter 9

[353]

 public void Init(IDefault View)
 {
 _view = View;
 _view.LoadCategories(_boardService.GetCategoriesWithForums());
 }

 public void GoToForum(string ForumPageName)
 {
 BoardForum forum =
 _forumRepository.GetForumByPageName(ForumPageName);
 BoardCategory category =
 _categoryRepository.GetCategoryByCategoryID
 (forum.CategoryID);
 _redirector.GoToForumsForumView(forum.PageName,
 category.PageName);
 }
}

Once the page's code behind passes control from itself to the presenter by way
of calling the presenter's init method, the presenter then passes a list of
categories and forums (from the BoardService) back to the code behind via the
LoadCategories method.

The code behind then loads the data source of the first repeater and binds it.

public partial class Default : System.Web.UI.Page, IDefault
{
 private DefaultPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new DefaultPresenter();
 _presenter.Init(this);
 }

 public void LoadCategories(List<BoardCategory> Categories)
 {
 repCategories.DataSource = Categories;
 repCategories.DataBind();
 }

 public void repCategories_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
 {
 if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType
 == ListItemType.AlternatingItem)
 {
 if (((BoardCategory) e.Item.DataItem).Forums != null)

Message Boards

[354]

 {
 Repeater repForums = e.Item.FindControl("repForums")
 as Repeater;
 repForums.DataSource = ((BoardCategory)
 e.Item.DataItem).Forums;
 repForums.DataBind();
 }
 }
 }
 public void repForums_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
 {
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 Literal litPageName = e.Item.FindControl("litPageName")
 as Literal;
 LinkButton lbForum = e.Item.FindControl("lbForum") as
 LinkButton;
 lbForum.Attributes.Add("ForumPageName",litPageName.Text);
 }
 }
 public void lbForum_Click(object sender, EventArgs e)
 {
 LinkButton lbForum = sender as LinkButton;
 _presenter.GoToForum(lbForum.Attributes["ForumPageName"]);
 }
}

In each iteration of the repCategories_ItemDataBound method, we then load the
repForums repeater with the list of forums for the given category and bind it. This
continues until the list of categories and forums is thrown on the page.

Also notice that when each forum item is bound, we also stuff the PageName into
our link button on the main page. This comes in handy when the user clicks a link
to navigate to the selected forum. Speaking of clicking the link!

Notice that we have a method lbForum_Click for the LinkButton click event.
In this method we are passing control again to the presenter and passing in the
PageName that we stored earlier in the LinkButton's attribute collection.

This takes us back to the GoToForum method of our presenter. With the selected
forum's page name we are able to load both a BoardForum object and then a
BoardCategory object. With this information we are then able to use our redirector
to relocate our user.

Chapter 9

[355]

Redirector
We are about to use the redirector class to relocate our user. Before we do this we
need to add a method that will take us from our message board homepage to the
selected forum. Rather than simply redirecting the person using a record ID, we will
be using the category and forum page names.

public void GoToForumsForumView(string ForumPageName, string
 CategoryPageName)
{
 Redirect("~/Forums/" + CategoryPageName + "/" + ForumPageName +
 ".aspx");
}

With the forum and category page name in hand we can construct a fictitious URL,
which uses the category page name as a folder and the forum page name as a
webpage. As this doesn't actually take the user anywhere, we will need to update
our UrlRewrite handler.

But before we do that, and with the redirector file open, let's add one more method.
This method will handle redirecting our user to view a post from the selected forum.

public void GoToForumsViewPost(string ForumPageName, string
 CategoryPageName, string PostPageName)
{
 Redirect("~/Forums/" + CategoryPageName + "/" + ForumPageName +
 "/" + PostPageName + ".aspx");
}

This method effectively performs the same task with the exception that it also
expects the post's page name (well, the thread's page name).

UrlRewrite
In order to support our fancy or pretty URLs (http://www.domain.com/
categoryname/forumname.aspx) we will need to modify our UrlRewrite class to
handle the additional functionality. Our additional code will be inserted between the
blog's and profile's code.

...
else if (application.Request.PhysicalPath.ToLower().
Contains("forums"))
{
 string[] arr =
 application.Request.PhysicalPath.ToLower().Split(‘\\');
 int forumsPosition = 0;
 int itemsAfterForums = 0;

Message Boards

[356]

 string categoryPageName = "";
 string forumPageName = "";
 string postPageName = "";
 for (int i = 0; i < arr.Length;i++)
 {
 if(arr[i].ToLower() == "forums")
 {
 forumsPosition = i;
 break;
 }
 }
 itemsAfterForums = (arr.Length - 1) - forumsPosition;
 if (itemsAfterForums == 2)
 {
 categoryPageName = arr[arr.Length - 2];
 forumPageName = arr[arr.Length - 1];
 forumPageName = forumPageName.Replace(".aspx", "");
 BoardForum forum =
 _forumRepository.GetForumByPageName(forumPageName);
 context.RewritePath("/forums/ViewForum.aspx?ForumID=" +
 forum.ForumID.ToString() +
 "&CategoryPageName=" + categoryPageName +
 "&ForumPageName=" + forumPageName, true);
 }
 else if (itemsAfterForums == 3)
 {
 categoryPageName = arr[arr.Length - 3];
 forumPageName = arr[arr.Length - 2];
 postPageName = arr[arr.Length - 1];
 postPageName = postPageName.Replace(".aspx", "");
 BoardPost post =
 _postRepository.GetPostByPageName(postPageName);
 context.RewritePath("/forums/ViewPost.aspx?PostID=" +
 post.PostID.ToString(), true);
 }
}
...

The very first thing we have to do is test to see if we are dealing with a forum's URL
or not. If we are then we will work in this section of code. Next, we need to create
an array of strings that is the result of splitting the PhysicalPath of the application
on its back slashes. This produces an ordered array of items from front to back. So,
in the case of http://www.domain.com/forums/category/forum/post we will
get a collection of items that start with the drive letter and work their way through
the directory tree including the directories that don't actually exist. The following
screenshot shows an example of a working collection of items:

Chapter 9

[357]

We then declare some items that we will use later on.

In the for loop, we will iterate through our collection of directories/folders to locate
the position of the forum's item. With this in hand we can then determine how
many items are left behind it. This will help us to determine if we are working with
a category and forum or a category, forum, and thread. The difference is we have
either two or three items in hand.

From there we test to see what we are working with based on the number of items
behind the forum's item. We are now able to get the category page name and the
forum page name (notice that we prune off the .aspx extension from our page
name). We then load the BoardForum object for this request and rewrite the path to
the ViewForum.aspx page passing in the requested forum's ForumID. We also pass
along the category and forum page name for later use.

In the next segment we are working with three items, which means that a thread is
being requested. Once again we load the category and forum page name as well as
the post page name (again pruning off the .aspx extension). With this information
we are able to load the board post and rewrite the path to the ViewPost.aspx page
passing in the PostID.

Message Boards

[358]

ViewForum.aspx
The view forum page is responsible for displaying a single forum and all of
its threads.

The view forum page is very similar to the homepage in that it accepts a collection
of data from its presenter. With this collection in hand it then populates the display
of the page. Upon each iteration of a forum the repTopics_ItemDataBound method
loads the NavigateUrl property of the linkNewThread HyperLink control with the
path to the post.aspx page. Part of this path is the IsThread=1 variable. The reason
for this is that this is a dual purpose page for both creating a post and a thread.

public void LoadDisplay(List<BoardPost> Threads, string
 CategoryPageName, string ForumPageName, Int32 ForumID)
{
 litCategoryPageName.Text = CategoryPageName;
 litForumPageName.Text = ForumPageName;
 linkNewThread.NavigateUrl =
 "/forums/post.aspx?IsThread=1&ForumID=" + ForumID.ToString();
 repTopics.DataSource = Threads;
 repTopics.DataBind();
}
protected void repTopics_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{

Chapter 9

[359]

 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 HyperLink linkViewTopic = e.Item.FindControl("linkViewTopic")
 as HyperLink;
 linkViewTopic.NavigateUrl = "/forums/" +
 litCategoryPageName.Text + "/"
 + litForumPageName.Text + "/" +
 ((BoardPost)
 e.Item.DataItem).
 PageName + ".aspx";
 }
}

Something that you might not expect this page to do is that it loads the
navigation for each thread's HyperLink directly. This is one HyperLink
that we do not pass through the Redirector class. The reason for
this is that I would normally use a LinkButton. When you click the
LinkButton, it would cause a post back, and in the Click method, we
would make our call to the Redirector. Unfortunately as we got to this
page through a rewritten URL, the post back doesn't go to the right place
and causes us some pain. It is difficult to capture correctly. So I elect to
use a real HyperLink and link directly to my fictitious fancy URL.

ViewPost.aspx
The view post page is most likely the easiest of all the pages. It expects a ThreadID
and displays the thread and all of its posts.

Message Boards

[360]

This too is done through a fancy URL something like forums/reef-tank-care/
salt-water-filtration/my-third-test-thread.aspx.

We have already covered the translation of this in our section on the
UrlRewrite.

This page is also handled by its presenter and is passed the Thread object and a list
of Posts. With this data in hand the code behind is able to loads its UI and bind its list
of posts. Both the posts and the thread are loaded identically.

public void LoadData(BoardPost Thread, List<BoardPost> Posts)
{
 linkUsername.Text = Thread.Username;
 linkUsername.NavigateUrl = "~/" + Thread.Username;
 lblUpdateDate.Text = Thread.UpdateDate.ToShortDateString();
 lblCreateDate.Text = Thread.CreateDate.ToShortDateString();
 lblSubject.Text = Thread.Name;
 lblDescription.Text = Thread.Post;
 imgProfile.ImageUrl =
 "/images/profileavatar/profileimage.aspx?AccountID="
 + Thread.AccountID.ToString();
 linkReply.Text = "Reply";
 linkReply.NavigateUrl = "/forums/post.aspx?PostID=" +
 Thread.PostID.ToString();
 repPosts.DataSource = Posts;
 repPosts.DataBind();
}

public void repPosts_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {

 }
}

Notice that we also have a reply link next to everything. In our implementation they
all do the same thing—navigating the user to the Post.aspx page to create a post or
a reply. In later versions you might want to put the text that the user is replying to in
the post editor as well.

Chapter 9

[361]

Post.aspx
The post page is the one page that the message board actually requires you to be
logged in so that you can interact with it. Once logged in you are able to create a new
thread or reply to an existing thread or post.

The only thing you might miss about this page is that it is dual purpose. This means
that we need to be able to handle creating threads and posts. The difference here is
that a post does not have a page name. So if the URL states that this post is to be a
thread, the page name text box is enabled. If it is a post, then it is disabled.

The next feature to understand (covered many times before) is the WYSIWYG editor.
This is mostly handled in the master page with a Xinha WYSIWYG editor. To get it to
come to life though you need to have a text box with its TextMode set to MultiLine.
You also need a snippet of JavaScript.

<script type="text/javascript">
 xinha_editors[xinha_editors.length] =
 ‘ctl00_Content_txtPost';
</script>

Message Boards

[362]

Once all of the UI is functioning correctly we then need to wire up the Save button.
This is done to some degree in the code behind with the btnSubmit_Click method
where we capture all the data from the UI. We then attempt to pass the data in the
form of a BoardPost to the presenter to actually persist the data into the database.

protected void btnSubmit_Click(object sender, EventArgs e)
{
 BoardPost post = new BoardPost();
 post.Name = txtName.Text;
 post.PageName = txtPageName.Text;
 post.Post = txtPost.Text;
 _presenter.Save(post);
}

Now the Save method in the presenter is something a bit heftier than the rest of this
code has been.

public void Save(BoardPost post)
{
 //is new thread
 if(_webContext.ForumID > 0)
 {
 post.ForumID = _webContext.ForumID;
 post.IsThread = _webContext.IsThread;
 if(!_postRepository.CheckPostPageNameIsUnique(post.PageName))
 {
 _view.SetErrorMessage("The page name you are trying to
 use is already in use!");
 }
 }
 //is reply post
 else
 {
 BoardPost postToReplyToo =
 _postRepository.GetPostByID(_webContext.PostID);
 if (postToReplyToo.IsThread)
 post.ThreadID = postToReplyToo.PostID;
 else
 post.ThreadID = postToReplyToo.ThreadID;
 post.ForumID = postToReplyToo.ForumID;
 }
 post.CreateDate = DateTime.Now;
 post.UpdateDate = DateTime.Now;
 post.AccountID = _webContext.CurrentUser.AccountID;
 post.Username = _webContext.CurrentUser.Username;

Chapter 9

[363]

 post.ReplyCount = 0;
 post.ViewCount = 0;

 post.PostID = _postRepository.SavePost(post);
 BoardForum forum = _forumRepository.GetForumByID(post.ForumID);
 BoardCategory category =
 _categoryRepository.GetCategoryByCategoryID
 (forum.CategoryID);
 BoardPost thread;
 if(post.IsThread)
 thread = _postRepository.GetPostByID(post.PostID);
 else
 thread = _postRepository.GetPostByID((long)post.ThreadID);
 //add an alert to the filter
 if(post.IsThread)
 _alertService.AddNewBoardThreadAlert(category,forum,thread);
 else
 _alertService.AddNewBoardPostAlert(category, forum, post,
 thread);
 _redirector.GoToForumsViewPost(forum.PageName,category.PageName,
 thread.PageName);
}

This method initially looks to determine if we are working with a post or a thread.
If we are working with a new thread then we have to set the ForumID and IsThread
properties. We then check to see if the page name that was provided is unique or not.
If not we send out an error message to the UI and stop the Save processing.

If we are working with a post instead of a thread, then we get the post that we are
replying to. With this in hand we check to see if it is a thread or itself is just a simple
post as well. If it is a thread then we set our new post's ThreadID property to that
post's PostID. Otherwise we set our post's ThreadID to that post's ThreadID. We
also set the ForumID from the postToReplyToo's ForumID property.

With these determinations made and initial values set, we can then continue setting
additional properties such as the create date, update date, accounted, and so on. We
finally save the post and get the newly-created post's PostID.

With the post created, we then need to determine what type of alert to send out to
our friends. If it is a thread then we send out a new thread alert. Otherwise we send
out a new post alert.

Finally we can redirect the user to see their new post using the Redirector.
GoToForumsViewPost()

Summary
In this chapter we created the core features of a message board—categories, forums,
threads, and posts. Along with these features we have also heavily implemented
friendly URLs to help our content be more SEO friendly. This should feed the
various search engine spiders effectively. In order to spread the word about our new
content we have also integrated our message board section into our alert service.
This takes each new post and broadcasts its arrival to homepages of friends of each
of the posting user.

As discussed earlier, the subject of message boards is a large one. While we
implemented a great foundation this section is by no means feature complete. If you
look at the many options for forums and message boards on the market you will
quickly notice that there are many other features that you could implement on top of
what we built. This is a great start though!

Groups
What are Groups? In the social network context, Groups allow users of your
community to interact with each other around a common topic. Groups start
bringing together our other, already created concepts. Items such as forums, blogs,
images, and many other features can be better utilized from the group point of view.

Take forums for example. As a user of our community you can interact with the
pre-created forums and you are able to post topics or replies to any public forum in
the system. You hope that other users who have similar interests as you, or those
who have an answer for your posted question, will stumble upon your post. Many
people will see your post, some will reply. There is no guarantee that the right
person will see it and even less guarantee that the right person will give you the
response that you are seeking. If you are able to post your topic to a forum that is
somewhat related to your interest, then your chances go up a bit.

On the other hand, with a group-owned forum you know that there is a specific
community, within the global community, paying extra close attention to your forum
posts. In addition to that, when you post to a group-owned forum, you know that
the entire user base of that group will be made aware of your post. This increases
your odds of getting to the information that you are seeking. And you know that the
majority of people looking at your post most likely have or know someone who has
the information you are interested in.

Think of groups as sub-communities with special interests. Because they are
sub-communities, they have the same life as a user in the system with the exception
that they act on behalf of many users. By becoming part of a group you have taken
on many new friends with common interests. You gain access to special interest
forums and you could get to see the hidden image galleries!

Groups

[366]

Here is an example of what we will be building:

Problem
Given that there are so many features in our example site it is impossible for us to
integrate them all with our group feature. Having said that, when you read through
this chapter, keep in mind that just about anything that applies to a person in our
community can be morphed to apply to a group of people. In this chapter, we will
focus on creating the core framework for a group.

The framework we are building will allow us to create a group that will have both
public and private presence in our site. A group will also be able to have a dedicated
group page.

Chapter 10

[367]

Here is the interface that will be built for group creation:

Groups

[368]

As we will have the concept of private groups, we will need to provide a way for
people to join a group and be approved by the owner of the group. We will have a
Request Membership link as shown in the following screenshot:.

In addition to a membership to a group, we will provide a way to have some of those
members be considered owners or administrators of a group.

Chapter 10

[369]

Once the foundation is in place, we will start to connect to some of our other
features. We will allow each group to have its own forum.

This forum will have some differences in that when a user posts to the forum, the
forum will not send alerts to their friends, but instead will send alerts to all the
members of that group.

Down the road, we could also extend the group feature to have its own filter to catch
user alerts to an account in a similar manner. We could also have related blog posts
show up on the homepage of the group. We could also show the latest forum posts
on the groups homepage. We could show the latest uploaded images. And many
other things could be done off the group foundation.

Groups

[370]

Design
Let's take a look at the design for this feature.

Groups
In the same way that the Accounts table is the core hub for many items in our
system, the Groups table could be built out to be an additional hub. For that reason,
we will address the creation of this feature first. The table structure for a group is not
overly complex.

You are probably getting used to seeing the counts bubbled up at the parent level.
I will explain again that we are doing this to remove the need to run aggregate
queries. Instead, when we load the object we will automagically have the count in
hand already.

Something else that you are probably used to seeing is the concept of a page name.
As the group page will become a major center of information, we want to make sure
that as far as Google or other search engine spiders are concerned, that this is a true
page rather than some server-generated page. We do this in the hope of getting those
cherished SEO points. Also it is much easier for the user to know where they are
and it allows our user to send a human readable URL to their friends, which
promotes sharing!

Chapter 10

[371]

The last thing of importance to note is the IsPublic flag that we have in our group
entry. This will be the key to tell us whether or not anyone can gain access to this
group or only group members. We will touch upon this requirement a bit more
down the road.

GroupMembers
Generally in a group there is more than one user who will help operate the group.
We will therefore have an AccountID in the group, which will help us identify the
owner of the group. But we will also need a method to track all the members of the
group as well as the members who are also administrators.

You can see from the structure in the screenshot that we are going to track the
GroupID and the AccountID to create the relationship between Groups and
Accounts. In addition to that information, we are also going to keep track of when
the member requested membership, whether they are approved or not (IsApproved)
and whether the account is also an administrator (IsAdmin). This gives us everything
we need to create members for our groups.

Groups

[372]

GroupTypes
We will eventually have many different groups in our system. As an added feature
we want an easy way for our users to locate groups that they may have some interest
in. In order to provide this functionality, we will have a system to track the type a
group is. Down the road we could use this system for searching groups or grouping
them. Also this system will allow us to make the statement: "If you like this group
you might also be interested in these related groups."

As you can see from the relationships in the screenshot, groups can be associated
with many group types (and vice versa). The structure itself is very straightforward.

GroupForums
As we have covered earlier, when a user creates a group they also get a
group-owned forum. In order to accomplish this, we have to create a link
between the group and a new forum.

Chapter 10

[373]

This is a simple many-to-many relationship that allows us to technically have many
forums and many groups related to one another. I don't like to introduce limitations. I don't like to introduce limitations
by design though. So just in case we need to have multiple forums for a group or one
group with many forums, we can.

Schema
To see the bigger picture with regards to groups and the surrounding features, here
is the groups schema:

Groups

[374]

Solution
Now let's take a look at our solution.

Implementing the database
Let's take a look at what we need to implement the database.

Groups
Here is the Groups table structure:

The majority of this table is self-explanatory. However, one thing to be very
aware of is the Body field, which is varchar(MAX) here. This means that people
could technically put any amount of text that they want here. If this is not the
functionality that you want to provide, either make this field smaller or put some
form of client-side validation on this field to restrict its size.

You may also be wondering why we have a large Description field and an even
larger Body field. The primary reason for this is so that we have public and private
fields of text. A description could simply be the first paragraph of the Groups' page
text, or it could be a brief synopsis. This totally depends on how you structure your
output. I have set it up so that the description and body show up together, with the
description on top.

Chapter 10

[375]

Another item worth noting is that we are tracking a FileID with each group. This
reference will allow us to upload a photo to the system to be used as the group's
avatar or logo.

GroupMembers
The GroupMembers table allows us to define who can be our group members.
In addition to defining membership, this table will allow us to accept or reject
members. Once we have members, we can also use this structure to define additional
administrators in the group.

The structure is very simple and self-explanatory:

GroupTypes
This table allows us to define the different group types that we want provided by
our system. If you wanted to allow your users to provide their own group type,
you could add an additional field to define whether it should be system-defined
or user-defined. I would probably call this flag IsSystemType. This will help us to
define our initial library.

Groups

[376]

Once we have the GroupTypes table created, we can then turn our attention to
capturing relationships between groups and their type(s). Keep in mind that the
users will be able to associate their groups with more than one type, if appropriate.

This is a simple many-to-many relationship definition table that tracks both the
GroupID and GroupTypeID.

GroupForums
This table, like many of the others described earlier, is simply a many-to-many
relationship table. This table allows each of our groups to also have a forum. We do
this by tracking the GroupID and the ForumID.

Creating the relationships
Once all the tables are created, we can then create all the relationships.

For this set of tables, we have relationships between the following tables:

Groups to Accounts
GroupMembers and Accounts
GroupMembers and Groups
GroupToGroupTypes and Groups
GroupToGroupTypes and GroupTypes
BoardForums and GroupForums
GroupForums and Groups

•

•

•

•

•

•

•

Chapter 10

[377]

Setting up the data access layer
Follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.
Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on the tables and clicking Refresh.
Then drag your new tables onto the design surface.
Hit Save and you should now have the domain objects to work with as
shown in the following screenshot:

•

•

•

•

•

•

Groups

[378]

Keep in mind that we are not letting LINQ track our relationships, so go ahead and
delete them from the design surface. Your design surface should have all the same
items that you see in the screenshot (though perhaps in a different arrangement!).

Building repositories
With the addition of new tables will come the addition of new repositories so that
we can get to the data stored in those tables. We will be creating or modifying the
following repositories to support our needs:

GroupRepository

GroupToGroupTypeRepository

GroupMemberRepository

GroupForumRepository

GroupTypeRepository

AccountRepository

Each of our repositories will generally have a method for select by ID, select all by
parent ID, save, and delete. Once you have seen one repository you have pretty
much seen them all. Review previous chapters, the appendices, or the included
code, for example, of a standard repository. However, in this chapter, I will discuss
anything that varies from standard!

GroupRepository
The GroupRepository is possibly one of our largest repositories so far in the number
of methods it provides. Here is the list of methods that we have to implement in this
repository (extracted from this repositories interface definition).

bool CheckIfGroupPageNameExists(string PageName);

List<Group> GetGroupsAccountIsMemberOf(Int32 AccountID);

List<Group> GetGroupsOwnedByAccount(Int32 AccountID);

Group GetGroupByID(Int32 GroupID);

Group GetGroupByPageName(string PageName);

Int32 SaveGroup(Group group);

void DeleteGroup(Group group);

List<Group> GetLatestGroups();

bool IsOwner(int AccountID, int GroupID);

Group GetGroupByForumID(int ForumID);

void DeleteGroup(int GroupID);

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 10

[379]

For the most part, all these method names are pretty much self-explanatory. And as
simple as the functionality is the fact that the names described there isn't any magic
performed by this repository. I will pick a couple of example methods though they
demonstrate common tasks.

GetGroupByForumID
This group is responsible for going through the linking table GroupForums to get
a Group by the passed in ForumID. This is performed by joining the Groups and
GroupForums table on the GroupID field in each table. We then perform a where
clause to get the appropriate group for this Forum.

public Group GetGroupByForumID(int ForumID)
{
 Group result = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 result = (from g in dc.Groups
 join f in dc.GroupForums on g.GroupID equals
 f.GroupID
 where f.ForumID == ForumID
 select g).FirstOrDefault();
 }
 return result;
}

Considering that our table structure technically allows multiple groups for multiple
forums, you may need to pay attention if you add the logic that allows the user
to create many relationships. The interface that we will create will allow only one
forum to be created when a group is initially created. The restriction is strictly
enforced through the limitation of the UI. If you intend to use the many-to-many
structure on purpose, you will want to change the return type of this method to a
List<Group>.

IsOwner
The IsOwner method is responsible for determining if the passed in AccountID is the
owner of the group that is associated with the passed in GroupID. This is performed
on the DataContext groups collection with a where clause to determine if we have
ownership. If the item returned is not null, then we know that the user is indeed an
owner; otherwise he/she is not.

public bool IsOwner(int AccountID, int GroupID)
{
 bool result = false;
 using(FisharooDataContext dc = conn.GetContext())

Groups

[380]

 {
 if (dc.Groups.Where(g => g.AccountID == AccountID &&
 g.GroupID == GroupID).FirstOrDefault() != null)
 result = true;
 }
 return result;
}

CheckIfGroupPageNameExists
This method, while being almost identical to the method we just discussed, is very
important as it determines if a Group's page name is in use yet or not.

public bool CheckIfGroupPageNameExists(string PageName)
{
 bool result = false;
 using (FisharooDataContext dc = conn.GetContext())
 {
 Group group = dc.Groups.Where(g => g.PageName ==
 PageName).FirstOrDefault();
 if(group == null)
 result = false;
 }
 return result;
}

DeleteGroup
In general, I would say that the DeleteGroup method is nothing fancy. However,
in this method's case we have never performed a delete in this specific manner.
Up to this point, so far we have passed in full objects for deletion using all LINQ
to SQL concepts. We are not straying from that concept too much here—this is just
a different way of doing the same thing. In a web world this may work better for
you, as we don't tend to keep objects lying around, while we do almost always have
object IDs in hand at all times.

public void DeleteGroup(int GroupID)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 Group group = dc.Groups.Where(g => g.GroupID ==
 GroupID).FirstOrDefault();
 dc.Groups.DeleteOnSubmit(group);
 dc.SubmitChanges();
 }
}

Chapter 10

[381]

This method takes in the GroupID. It then fetches the latest copy of that Group and
passes it into the DeleteOnSubmit method of the DataContext. Another way to do
the same thing is to pass the query into the DeleteOnSubmit method. Either way,
it works!

GroupToGroupTypeRepository
Keep in mind that this particular repository is supporting an overly simple table
structure—a lookup table so to speak. For this reason, the repository is fairly
lightweight too. There are currently three methods in this repository.

void SaveGroupToGroupType(GroupToGroupType groupToGroupType);

void DeleteGroupToGroupType(GroupToGroupType groupToGroupType);
void SaveGroupTypesForGroup(List<long> SelectedGroupTypeIDs,
int GroupID);

SaveGroupTypesForGroup
We will now discuss the last method, SaveGroupTypesForGroup. This method is of
interest in that it addresses a common problem that we have with lookup tables of
this nature. The initial saving of items to a lookup table is simple. There are no other
relationships defined, so we are doing a simple insert.

What happens when a user pulls up their UI again and attempts to save the same
relationships with an additional relationship and one removed relationship? The
easiest way to address this issue is to just toss away all the old relationships and then
create the new relationships that we have in hand at that moment. This might be ok
if we had no third column key (like we do to support LINQ to SQL). If we just had a
clustered key with our two foreign keys, we could consider this. But do keep in mind
that the "delete all" concept can thrash on your database a bit creating more traffic
than is necessary.

Another way to manage this issue is to just remove deleted relationships and
continue to throw new relationships into the system. This creates redundant data
(and possibly data corruption). This method also thrashes on the database with more
traffic than is necessary.

The third and the best way to handle this is to determine what is to be removed and
what is to be added before we hit the database. This can be performed regardless of
the additional columns that we have. And this method doesn't cause any extra data
or hits on the database.

public void SaveGroupTypesForGroup(List<long> SelectedGroupTypeIDs,
int GroupID)
{

•

•

•

Groups

[382]

 using (FisharooDataContext dc = conn.GetContext())
 {
 //get a list of current selections
 List<long> currentTypes =
 dc.GroupToGroupTypes.Where(gt => gt.GroupID ==
 GroupID).Select(gt => gt.GroupTypeID).ToList();
 //make a list of items to delete
 List<long> itemsToDelete = currentTypes.Where(ct =>
 !SelectedGroupTypeIDs.Contains(ct)).ToList();
 //make a list of items to insert
 List<long> itemsToInsert =
 SelectedGroupTypeIDs.Where(s =>
 !currentTypes.Contains(s)).ToList();
 //delete grouptogrouptypes
 dc.GroupToGroupTypes.DeleteAllOnSubmit(
 dc.GroupToGroupTypes.Where(g =>
 itemsToDelete.Contains(g.GroupTypeID)
 && g.GroupID == GroupID));
 //create the actual objects to insert
 List<GroupToGroupType> typesToInsert = new
 List<GroupToGroupType>();
 foreach (long l in itemsToInsert)
 {
 GroupToGroupType g = new GroupToGroupType() { GroupID =
 GroupID, GroupTypeID = l };
 typesToInsert.Add(g);
 }
 //do the insert
 if (typesToInsert.Count > 0)
 {
 dc.GroupToGroupTypes.InsertAllOnSubmit(typesToInsert);
 }
 dc.SubmitChanges();
 }
}

As you can see, we are pretty much only using standard LINQ statements to create
unique lists of items for each purpose. We first get a list of the current relationships.
We then make a list of the items to be deleted and then a list of items to be created.
Next, we actually perform the delete on the relationships that need to be removed.
And then we create the objects that represent the relationships. We then perform the
insert of those objects. There is some work here in the extent of code to be created.
But keep in mind that this results in minimal database thrashing and good
clean data!

Chapter 10

[383]

GroupForumRepository
The GroupForumRepository is even less interesting as compared to the
last repository we considered. This repository is also supporting a standard
many-to-many lookup table. It has the following methods.

void SaveGroupForum(GroupForum groupForum);

void DeleteGroupForum(GroupForum groupForum);

int GetGroupIdByForumID(int ForumID);

void DeleteGroupForum(int ForumID, int GroupID);

None of them is special as they all are implemented as we have seen before in the
other repository examples.

GroupMemberRepository
Argh! Another many-to-many lookup table. Here are its methods:

List<int> GetMemberAccountIDsByGroupID(Int32 GroupID);

void SaveGroupMember(GroupMember groupMember);

void DeleteGroupMember(GroupMember groupMember);

void DeleteGroupMembers(List<int> MembersToDelete,
int GroupID);

void ApproveGroupMembers(List<int> MembersToApprove,
int GroupID);

void PromoteGroupMembersToAdmin(List<int> MembersToPromote,
int GroupID);

void DemoteGroupMembersFromAdmin(List<int> MembersToDemote,
int GroupID);

bool IsAdministrator(Int32 AccountID, Int32 GroupID);

void DeleteAllGroupMembersForGroup(int GroupID);

bool IsMember(Int32 AccountID, Int32 GroupID);

Wow! How can a simple lookup table be so complex? This particular repository
provides many supporting type database lookups that allow us to do bulk
executions, simple tasks such as promoting and demoting members to and
from admin status, and tasks such as determining if a user is a member or
an administrator.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Groups

[384]

GetMemberAccountIDsByGroupID
This particular method is not complex by any means. But you will notice that it is
creating a list of members from two data sources. It first looks at all the members
defined by the GroupMembers table. It then takes into account that the owner of the
Group is not in that list, so it also extracts the owner to add to this list.

public List<int> GetMemberAccountIDsByGroupID(Int32 GroupID)
{
 List<int> result = new List<int>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 result = dc.GroupMembers.Where(gm => gm.IsApproved &&
 gm.GroupID == GroupID).
 Select(gm => gm.AccountID).ToList();
 result.Add(dc.Groups.Where(g => g.GroupID ==
 GroupID).Select(gm => gm.AccountID).FirstOrDefault());
 }
 return result;
}

DeleteGroupMembers
This is a method that is performing a bulk-style action. We are selecting a list of
members based on the IDs that were passed into the method. And we are then
passing that list of GroupMembers into the DeleteAllOnSubmit method allowing
us to perform a batch delete. This will support our multi-select page on the member
management pages later.

public void DeleteGroupMembers(List<int> MembersToDelete, int
 GroupID)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<GroupMember> members =
 dc.GroupMembers.Where(gm =>
 MembersToDelete.Contains(gm.AccountID)
 && gm.GroupID == GroupID);
 dc.GroupMembers.DeleteAllOnSubmit(members);
 dc.SubmitChanges();
 }
}

Chapter 10

[385]

GroupTypeRepository
The GroupTypeRepository has a handful of methods to perform the basic tasks.
None of them is out of the ordinary, and their names are indicative and self-
explanatory. Here is the list of methods:

GroupType GetGroupTypeByID(Int32 GroupTypeID);

List<GroupType> GetGroupTypesByGroupID(Int32 GroupID);

Int64 SaveGroupType(GroupType groupType);

void DeleteGroupType(GroupType groupType);

List<GroupType> GetAllGroupTypes();

AccountRepository
This particular repository is the one that has grown over several chapters. In
order to support Groups we had to add a couple of new methods to this
class—GetApprovedAccountsByGroupID and GetAccountsToApproveByGroupID.
These allow us to use our GroupMembers table to lookup an actual Account from
a membership point of view. We will get users who would like to be a part of our
group, and the members who are already a part of the group.

GetApprovedAccountsByGroupID
This method is of interest primarily for the reason that it supports server-side
paging, that is to say, it has the ability to show a subset of records within the larger
selection. This is accomplished using some standard LINQ expressions—Skip()
and Take().

"Why on earth do you need to write custom code to perform paging?
Don't you know that the various grid type objects that are already
provided to you in ASP.NET already perform this sort of logic out of the
box?" Yes, they do. Should you use them in a production environment?
Well, the answer is No. The way these controls work is they take your
query and return all of the data from the database to your web server.
The web server then caches this data on its end and sends a subset to
the client that requested the data. This alone doesn't make a whole lot
of sense in that the client may only care about the first page of data and
you've selected the data for 100 pages! Now compound this problem
further by putting this web server into the farm of web servers. If this
is a popular page you are now sending huge chunks of data from your
database to your web server for no reason! If you ever need to do paging,
roll your own. You have to do a bit more work, but you get a great deal of
performance and control out of it.

•

•

•

•

•

Groups

[386]

public List<Account> GetApprovedAccountsByGroupID(int GroupID, int
 PageNumber)
{
 List<Account> result = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<Account> accounts = (from a in dc.Accounts
 join m in dc.GroupMembers on
 a.AccountID equals m.AccountID
 where m.GroupID == GroupID
 && m.IsApproved
 select
a).Skip((_configuration.NumberOfRecordsInPage*(PageNumber-1)))
 .Take(_configuration.
NumberOfRecordsInPage);
 result = accounts.ToList();
 }
 return result;
}

In this method, we are accepting the GroupID and PageNumber. This tells us the
set and also the subset of data that we are interested in. The LINQ query is very
standard up to the point of call to the Skip() method. This call allows us to tell the
query which record we want to start at in the set of data. Directly after that we call
the Take() method, which tells the query how many records from the starting record
we want to include in our returned set of data.

The easiest way to perform the skip logic is to take the number of records we want
our page size to be (stored in a config file somewhere) and multiply it by the page
number we are currently on (minus one as this is technically a zero based way of
doing things). The Take() method just wants to know how many records you are
interested in to make up your page set of data.

GetAccountsToApproveByGroupID
This method isn't anything more than a simple query around GroupMembers
and Groups.

public List<Account> GetAccountsToApproveByGroupID(int GroupID)
{
 List<Account> result = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<Account> accounts = (from a in dc.Accounts
 join m in dc.GroupMembers on

Chapter 10

[387]

 a.AccountID equals m.AccountID
 where m.GroupID == GroupID
 && !m.IsApproved
 select a);
 result = accounts.ToList();
 }
 return result;
}

Implementing the services/application layer
Once all the repositories are built for single serving purposes we can begin to
create the services layer. Again, this layer is responsible for assembling aggregates
and performing complex actions with our entities. We will create and modify the
following services.

GroupService

AlertService

Redirector

WebContext

GroupService
The GroupService is really just an abstraction layer from the GroupRepository for
the most part. There are a couple of cases wherein we do something other than pass
calls through to the repository layer. For the most part, it is there to be expanded
later. This class has the following methods:

int SaveGroup(Group group);

bool IsOwnerOrAdministrator(Int32 AccountID, Int32 GroupID);

bool IsOwner(Int32 AccountID, Int32 GroupID);

bool IsAdministrator(Int32 AccountID, Int32 GroupID);

bool IsMember(Int32 AccountID, Int32 GroupID);

IsOwnerOrAdministrator
This method is taking two methods—IsOwner and IsAdministrator—aggregating
their result into one result.

public bool IsOwnerOrAdministrator(Int32 AccountID, Int32 GroupID)
{
 bool result = false;
 if (IsOwner(AccountID, GroupID) || IsAdministrator(AccountID,
 GroupID))

•

•

•

•

•

•

•

•

•

Groups

[388]

 result = true;
 return result;
}

SaveGroup
Other than the SaveGroup method, all other methods are pretty much pass-through
methods to a repository method. The SaveGroup method on the other hand does
some pretty heavy lifting for us. It takes care of creating all the other data items that
surround a group. It is currently creating a BoardForum and the GroupForum data
that links this group to the new forum as well as saving the Group as normal.

public int SaveGroup(Group group)
{
 int result = 0;
 if(group.GroupID > 0)
 {
 result = _groupRepository.SaveGroup(group);
 }
 else
 {
 result = _groupRepository.SaveGroup(group);
 BoardForum forum = new BoardForum();
 forum.CategoryID = 4; //group forums container
 forum.CreateDate = DateTime.Now;
 forum.LastPostByAccountID =
 _webContext.CurrentUser.AccountID;
 forum.LastPostByUsername = _webContext.CurrentUser.Username;
 forum.LastPostDate = DateTime.Now;
 forum.Name = group.Name;
 forum.PageName = group.PageName;
 forum.PostCount = 0;
 forum.Subject = group.Name;
 forum.ThreadCount = 0;
 forum.UpdateDate = DateTime.Now;
 int ForumID = _forumRepository.SaveForum(forum);
 //create relationship between the group and forum
 GroupForum gf = new GroupForum();
 gf.ForumID = ForumID;
 gf.GroupID = group.GroupID;
 gf.CreateDate = DateTime.Now;
 _groupForumRepository.SaveGroupForum(gf);
 }
 return result;
}

Chapter 10

[389]

AlertService
In case you have not yet read the previous chapters, the AlertService is woven
through all the other code in this site as it provides us with a way to let our
users know that something has happened in our site. With Groups this is no
different—with an exception that a user doesn't actually do much with our groups.
They do make posts in our group-owned forum though! The difference here though
is that rather than sending an alert to all their friends about a post in the forum, we
will send an alert to all the group owners.

To do this, we have three new methods added to the alert service.

void AddNewBoardThreadAlert(BoardCategory category, BoardForum forum,
 BoardPost post, Group group)
void AddNewBoardPostAlert(BoardCategory category, BoardForum forum,
 BoardPost post, BoardPost thread, Group group)
void SendAlertToGroup(Alert alert, Group group)

The first two methods are exactly identical to every other alert method with
the exception that they make a call to the SendAlertToGroup() rather than
SendAlertToFriends(). For this reason we will take a look at the third method.

private void SendAlertToGroup(Alert alert, Group group)
{
 List<int> groupMembers =
 _groupMemberRepository.
 GetMemberAccountIDsByGroupID(group.GroupID);
 foreach (int id in groupMembers)
 {
 alert.AlertID = 0;
 alert.AccountID = id;
 SaveAlert(alert);
 }
}

This method takes in the newly-created alert. It then gets a list of groupMembers for
the specified group. With these items in hand, it iterates through each groupMember
and adds their AccountID to the Alert and then sends the Alert.

This could potentially be a performance bottleneck. A better way to
possibly do this is to create all the alerts first and then create a new
SaveAlert() method that takes in a list of Alerts to do a bulk insert.

Groups

[390]

Redirector
While the Redirector class is not that complex, but it is very important as it
abstracts our redirection logic out of the pages and puts it higher up into the business
layer. This means that if things change in our page structure we have one place to go
and make changes. There are of course times when we can't fit redirection into the
Redirector class—just be sure that you don't put your redirection logic in a page
out of sheer convenience!

public void GoToGroupsManageGroup(int GroupID)
{
 Redirect("~/Groups/ManageGroup.aspx?GroupID=" +
 GroupID.ToString());
}

public void GoToGroupsMembers(int GroupID, int PageNumber)
{
 Redirect("~/Groups/Members.aspx?GroupID=" + GroupID.ToString() +
 "&PageNumber=" + PageNumber.ToString());
}

public void GoToGroupsViewGroup(int GroupID)
{
 Redirect("~/Groups/ViewGroup.aspx?GroupID=" +
 GroupID.ToString());
}

public void GoToGroupsMembers(int GroupID)
{
 Redirect("~/Groups/Members.aspx?GroupID=" + GroupID.ToString());
}

public void GoToGroupsViewGroup(string GroupPageName)
{
 Redirect("~/Groups/" + GroupPageName + ".aspx");
}

There is nothing complex happening in these methods. I just felt that it was
important that you saw where this was happening as we will use these methods
quite a bit when we start building the UI!

Chapter 10

[391]

WebContext
Similar to the Redirector, the WebContext class is not all that complex. Its purpose
is simple and the way it conforms to its purpose is equally simple. This class is
responsible for acting as a gateway to all requests to the HttpContext class. This
means that any time we are making a call to query string items, post form items,
or anything directly represented by the HttpContext class such as application
variables, we should be hitting this class rather than going to the source.

Similar to the Redirector purpose, if anything changes in our application as to
where we get or store our data, we can easily (again for the most part) make a change
in one place.

There are two additions made to this class—we now have a NewGroup property and a
GroupID property.

public bool NewGroup
{
 get
 {
 bool result = false;
 if(!string.IsNullOrEmpty(GetQueryStringValue("NewGroup")))
 {
 if(GetQueryStringValue("NewGroup") == "1")
 result = true;
 }
 return result;
 }
}

public Int32 GroupID
{
 get
 {
 Int32 result = 0;
 if(!string.IsNullOrEmpty(GetQueryStringValue("GroupID")))
 {
 result = Convert.ToInt32(GetQueryStringValue("GroupID"));
 }
 return result;
 }
}

Groups

[392]

Implementing the presentation layer
With all the backend out of the way, let's get to building the front end. It is always
difficult to decide where to begin when creating an application of this nature. Do
you populate the database with some sample test data and build the display page
first? Or do you start with the data creation pages first and then work on the display
pages? I think this time we will work with the data creation pages first, and then
work our way out to the display pages towards the end. With that in mind, let's
get started.

ManageGroup
While we could have created two pages to manage our group data—one for new
groups and the other to edit groups—I find it far easier to create one page and one
UI that allows us to both create and edit groups. This particular page has a couple
of interesting features in it that we are providing—a WYSIWYG editor as well as an
image upload feature. These two topics are the features that we will work with the
most in this discussion.

Before we get started, it is important to know that the page knows its different states
by the presence of two query string variables. The first variable is newgroup=1. This
obviously tells the page that we intend to create a new group. The second variable
is GroupID={number}, which allows us to populate the page with a specified which allows us to populate the page with a specified
group's data.

WYSIWYG
Our WYSIWYG editor of choice is Xinha (which we have covered before in the
previous chapters). To use this editor, all we have to do is drop a textbox with the
TextMode set to MultiLine. Then further down the page, we have to pass the full
control ID into the Xinha engine with the following code.

<script type="text/javascript">
 xinha_editors[xinha_editors.length] =
 'ctl00_Content_txtDescription';
 xinha_editors[xinha_editors.length] = 'ctl00_Content_txtBody';
</script>

This creates the full-featured WYSIWYG that you see here (you can configure more
or less options globally depending on what you need).

Chapter 10

[393]

Image upload
While we cover the topic of file uploads in the chapter that covers files, folders,
image galleries and the like I felt that we might want to recover some ground. In that
chapter, we had the FileUpload logic stored in a helper page called ReceiveFiles.
aspx. While this approach worked well when we had only one area of the site that
required uploads, it no longer works when we have two areas of the site that require
upload capabilities.

For that reason, we moved all the upload logic into a FileService. It is pretty
much 100% duplicated from that file (so I won't recover it here). Then in the
ReceiveFiles page, I removed all the old code and replaced it with a single call to
the FileService.UploadPhotos method. Once this refactoring was completed, I
was able to turn back to address the fact that I wanted the users to be able to upload
a photo as their group's logo.

Here is the SaveGroup method from the ManageGroupPresenter (the rest of the code
is standard plumbing code).

public void SaveGroup(Group group, HttpPostedFile file, List<long>
 selectedGroupTypeIDs)
{
 if (group.Description.Length > 2000)
 {
 _view.ShowMessage("Your description is " +
 group.Description.Length.ToString() +
 " characters long and can only be 2000
 characters!");
 }
 else

Groups

[394]

 {
 group.AccountID = _webContext.CurrentUser.AccountID;
 group.PageName = group.PageName.Replace(" ", "-");
 //if this is a new group then check to see if the page name
 is in use
 if (group.GroupID == 0 &&
 _groupRepository.CheckIfGroupPageNameExists(group.PageName))
 {
 _view.ShowMessage("The page name you specified is already
 in use!");
 }
 else
 {
 if (file.ContentLength > 0)
 {
 List<Int64> fileIDs = _fileService.UploadPhotos(1,
 _webContext.CurrentUser.AccountID,

 _webContext.Files, 1);
 //should only be one item uploaded!
 if (fileIDs.Count == 1)
 group.FileID = fileIDs[0];
 }
 group.GroupID = _groupService.SaveGroup(group);
 _groupToGroupTypeRepository.SaveGroupTypesForGroup(
 selectedGroupTypeIDs,group.GroupID);
 _redirector.GoToGroupsViewGroup(group.PageName);
 }
 }
}

As you can see in the immediately preceding code, we are primarily performing
some data validation and clean up tasks. If we have a new group we verify that the
page name that was specified is unique to the system. If the page name is unique,
then we are able to process the save request. Prior to processing the save, we check
to see if a file is being uploaded. If it is, then we make a call to the FileService.
UploadPhotos method and pass in the upload files. From there, we perform
standard save operations. The rest of this page is a standard MVP event and
data plumbing.

Chapter 10

[395]

Members
With a group successfully created, and with the ability to edit the group in place, we
can turn our attention to managing membership. In the membership management
page, we will be able to approve new membership requests. We can promote and
demote existing members to the status of the administrator (allowing them to
perform various tasks down the road). And we can delete members. This UI
will have a multi-select checkbox type interface but not with the standard
CheckBoxList control. In addition to that we will support pagination functionality
in a custom manner.

As we mentioned during the creation of our AccountRepository.
GetApprovedAccountsByGroupID() method—where we pass in the GroupID and
PageNumber—the PageNumber input specifies which subset of data we want to see in
our display. You will notice in the preceding image that we have a Back link (which
takes us back to the group page). Next to that if we were on any page other than the
first one, we would see Previous. Additionally, if we had approved members in the
UI, we would also have a Next link.

Data pagination
These next and previous concepts are handled in the MembersPresenter with the
following two methods:

public void Next()
{
 _redirector.GoToGroupsMembers(_webContext.GroupID,
 (_webContext.PageNumber + 1));

Groups

[396]

}

public void Previous()
{
 _redirector.GoToGroupsMembers(_webContext.GroupID,
 (_webContext.PageNumber - 1));
}

As you can see, with the pairing of the logic in the AccountRepository, we have a
very simple pagination solution that can be performed with any set of data.

CheckBoxLists without the CheckBoxList control
The other easy thing to implement without being forced to use standard controls
is the use of a Repeater and a CheckBox control to create a custom CheckBoxList,
which is more preferred. This pairing is quite simply a Repeater control and a
CheckBox. We can add any data that we need to capture for each selected checkbox
to the CheckBox control as an attribute in the Repeater's OnItemDataBound event.

public void repMembersToApprove_ItemDataBound(object sender,
 RepeaterItemEventArgs e)
{
 if(e.Item.ItemType == ListItemType.AlternatingItem ||
 e.Item.ItemType == ListItemType.Item)
 {
 ProfileDisplay p = e.Item.FindControl("Profile1") as
 ProfileDisplay;
 CheckBox chkProfile = e.Item.FindControl("chkProfile") as
 CheckBox;

 p.LoadDisplay(((Account)e.Item.DataItem));
 chkProfile.Attributes.Add("AccountID",
 ((Account)e.Item.DataItem).AccountID.ToString());

 }
}

We then have a method in the code behind to extract the selected values for use later.

private List<int> ExtractMemberIDs(Repeater repeater)
{
 List<int> result = new List<int>();
 foreach (RepeaterItem item in repeater.Items)
 {
 if(item.ItemType == ListItemType.AlternatingItem ||
 item.ItemType == ListItemType.Item)
 {

Chapter 10

[397]

 CheckBox chkProfile = item.FindControl("chkProfile") as
 CheckBox;
 if(chkProfile.Checked)
 result.Add(Convert.ToInt32(chkProfile.Attributes[
 "AccountID"]));
 }
 }
 return result;
}

As you can see in the code, we are looking for the AccountID attribute that we added
in the OnItemDataBound event. We do this by iterating through all the items in the
Repeater and finding and casting our checkbox controls from each item. We can
then work with the selected values no matter how many there are in the Repeater.

Default
The homepage of our Groups section, the default.aspx page, is responsible for
listing all the groups in the system when a user first enters this section of the site.
This page makes a call to the GroupRepository to get all the latest groups. It then
bounds that collection of data to a ListView and outputs each group. Be aware that
each of the group names has actual links to the custom group PageName.aspx (we
will cover more on this in a moment). Nothing more to this page though.

Groups

[398]

See the code for specific examples of how this works.

UrlRewrite
Before we dig too deep into data management, we find ourselves at a crossroads
where we need to dig into our UrlRewrite class again. As we have a PageName field
in our Groups we need to discuss how to handle Group PageNames. Once this is
complete, we can move on to pulling up and viewing a group.

else if
 (application.Request.PhysicalPath.ToLower().Contains("groups") &&
 _webContext.GroupID == 0)
{
 string[] arr =
 application.Request.PhysicalPath.ToLower().Split('\\');
 string groupPageName = arr[arr.Length - 1];
 groupPageName = groupPageName.Replace(".aspx", "");
 Group group = _groupRepository.GetGroupByPageName(groupPageName);
 context.RewritePath("/groups/viewgroup.aspx?GroupID=" +
 group.GroupID.ToString());
}

This code, similar to the other Rewrite code, looks for specific keys in the URL
to determine which section of the code it needs to work with. In this case, we are
looking for the "groups" identifier to let us know that we are in the Groups section.

As we are looking for specific works to simply exist in our URL, we are
prone to some errors. Keep in mind that someone could write a blog with
the page name what-fish-love-to-swim-in-groups.aspx. This
technically could kick off the group's rewrite code. Be forewarned!

Once we locate the appropriate keyword, we can load up an instance of our group by
the specified page name and do a rewrite to the ViewGroup.aspx page with a passed
in GroupID. This one isn't all that complex.

ViewGroup
Now that we have a groups listings page (the homepage) and we have our
UrlRewrite class up to speed and capable of handling fancy URLs for our Groups,class up to speed and capable of handling fancy URLs for our Groups,
we can discuss the ViewGroup.aspx page. This page is responsible for showing
everyone our group. It will have a private and public viewing feature (which is
managed when the group is created/edited). When we link into this page we have a
custom URL that corresponds to our actual page. Other than the security concerns of
this page and the custom URL, it is just a data display page. In addition to displaying

Chapter 10

[399]

data, it will act as our jumping off point for viewing and managing other sections
that are related to the group—such as the group-owned forum.

Private/Public
While determining whether a group is public or private is performed simply by
checking a bit flag set in the database. Determining who can actually see a private
group is a bit more complex.

//is this public or private data?
if (group.IsPublic)
{
 _view.ShowPrivate(true);

Groups

[400]

 _view.ShowPublic(true);
}
else if (ViewerIsMember())
{
 _view.ShowPrivate(true);
 _view.ShowPublic(true);
}
else
{
 _view.ShowPrivate(false);
 _view.ShowPublic(true);
}

Recall that we had created a few help functions to determine if a user was the
owner of the group, a member of the group, or an administrator of the group. In our
ViewGroupPresenter, we make a call to our ViewMembers method to determine
where the user stands.

public void ViewMembers()
{
 _redirector.GoToGroupsMembers(_webContext.GroupID);
}

This lets us know quickly and easily if we can display the private group. If not, then
the user is shown the appropriate message stating that the group is private (and they
are prompted to request membership).

Chapter 10

[401]

If you are part of the group or the owner of the group, you would see this instead:

MyGroups
The MyGroups page is a duplication of the homepage in that it streams a bunch of
groups. The immediate difference is that all the groups on this page belong to the
viewer of the page. In addition to the security check and changed data source, we
also offer a couple of additional features. From this page, we can delete the selected
group. We also have the ability to link to the ManageGroup.aspx page.

Groups

[402]

The security comes in the form that this page requires the viewing party to be logged
in. From the logged-in user's AccountID (stored in session), we then load the page
with a call to the GroupRepository.GetGroupsOwnedByAccount() method from
within the MyGroupsPresenter.

public void LoadData()
{
_view.LoadData(_groupRepository.GetGroupsOwnedByAccount(_webContext.
 CurrentUser.AccountID));
}

With each ItemDataBound event in the code behind, we pass in the GroupID to the
attributes collection of our edit and delete buttons. We also add a bit of client-side
JavaScript to confirm with the user that it is ok to actually perform the delete process
on the selected group.

protected void lvGroups_ItemDataBound(object sender,
 ListViewItemEventArgs e)
{
 if (e.Item.ItemType == ListViewItemType.DataItem)
 {
 Image imgGroupImage = e.Item.FindControl("imgGroupImage") as
 Image;
 Literal litImageID = e.Item.FindControl("litImageID") as
 Literal;
 Literal litPageName = e.Item.FindControl("litPageName") as
 Literal;
 LinkButton lbPageName = e.Item.FindControl("lbPageName") as
 LinkButton;
 ImageButton ibDelete = e.Item.FindControl("ibDelete") as
 ImageButton;
 Literal litGroupID = e.Item.FindControl("litGroupID") as
 Literal;
 ImageButton ibEdit = e.Item.FindControl("ibEdit") as
 ImageButton;
 ibDelete.Attributes.Add("GroupID", litGroupID.Text);
 ibEdit.Attributes.Add("GroupID", litGroupID.Text);
 ibDelete.Attributes.Add("onclick","return confirm('Are you
 sure you want to delete this group?');");
 lbPageName.Attributes.Add("PageName", litPageName.Text);
 imgGroupImage.ImageUrl = "/files/photos/" +
 _presenter.GetImageByID
 (Convert.ToInt64(litImageID.Text), File.Sizes.S);
 }
}

Chapter 10

[403]

Forum enhancements
We discussed earlier that we would have Group-owned-and-operated Forums. To
pull this off, we had to add a new category to the board system called specifically
group-forums. I then restricted that category from the board categories display
(the forum homepage). The forum homepage still looks like this:

No group category exists here! Also note that there isn't a sea-horses present
in the display whereas we can clearly link to the sea-horses forum from the
sea-horses group.

Recall that earlier we discussed that when a group is created by the GroupService,
we also create a new forum and attach it to the group-forums category (category 1).
With this in place, when we load up the ViewGroup page, we can also load in the
forum link for that group.

In addition to this, recall that we added a couple of methods to the AlertService.
These methods allowed us to send alerts to all the members of the group rather than
the friends of the poster. The only thing that we haven't covered up to this point to
pull off this integration is how the posting forum page knows if it is a group-owned
forum or not.

The only part of the forum system that was modified to create this addition is in the
PostPresenter.Save() method (covered last chapter). At the very bottom of this
method we added a bit of code to determine if we could load a group based on the
ForumID or not.

Groups

[404]

Recall that this logic is valid only if we specify that a group can own only
one forum (and vice versa). We currently do that by only creating the
link at the time that the group is created. However, if you provide other
tools for forum or group creation, you will need to keep in mind that
some form of validation will need to be put in place, or this group/forum
validation that we are currently discussing will need to be changed!

if(post.IsThread)
 thread = _postRepository.GetPostByID(post.PostID);
else
 thread = _postRepository.GetPostByID((long)post.ThreadID);

//is this forum part of a group?

Group group = _groupRepository.GetGroupByForumID(forum.ForumID);

//add an alert to the filter
if (post.IsThread)
{

 //is this a group forum?

 if (group != null)

 _alertService.AddNewBoardThreadAlert(category, forum, thread,
 group);

 else

 _alertService.AddNewBoardThreadAlert(category, forum,
 thread);

}

else
{

 //is this a group forum?

 if (group != null)

 _alertService.AddNewBoardPostAlert(category, forum, post,
 thread, group);

 else

 _alertService.AddNewBoardPostAlert(category, forum, post,
 thread);

}

_redirector.GoToForumsViewPost(forum.PageName,category.PageName,
| thread.PageName);

With this code in place, our forum is not only aware that it is part of a group but is
also able to send alerts to group members other than friends.

Chapter 10

[405]

Summary
With this core framework in place you can see how groups can be used to bring
many different systems together in a way that you start to create sub-communities.
Obviously, this section has many other features which could be added to it. From
the top of my mind I can think of integration in terms of the following features that
might make some interesting additions to the group section:

Messaging
You could create a "send to group" WYSIWYG section
that sends messages to all the group members, the group's
administrators, and/or the group owner.
Additionally, you could integrate all the groups that a user
is a member of into the messaging system so that the group
name could be used as a contact name to blast messages
directly from the mail section.
To expand on the last bullet, you could also show all the
group members as a separate section of their contacts area.

Friends
Group members can be integrated easily as friends.
Not only you can specify public, private, friends' areas in
your user profiles but also have a filter such as members of
groups I am part of.

You obviously don't have to think only about how you can bring groups out to
your other community features. You could also bring some of your features into the
group. Some examples of that are as follows:

Blogs
Any blog posts that a member of the group creates could be
flagged and shown on the groups homepage.
You could have a top N blog posts section on the
group's homepage.

•

°

°

°

•

°

°

•

°

°

Groups

[406]

Forum
Rather than force people to read into the forum, you could
also post the latest threads (or flaming threads) on the
homepage of the group.
You could have sticky threads (threads that never get pushed
off the board—think memos or news) in the group forums that
show up as bulletins on the group's homepage.

Group Filter

In the same way that a user profile has all the alerts posted on
the filter, the group homepage could have group alerts posted
on it.

Finally, the number of items that can be integrated into your group's homepage is
limited to the number of features offered by your site.

•

°

°

•

°

Comments, Tags,
and Ratings

Giving our users the ability to comment, tag, and rate the various content in our site,
provides them a level of interactivity that will make them want to come back again
and again. There are mainly two reasons for these features to arouse the curiosity
of users. First, it is human nature to want to provide their opinions about anything
available to them. Once a group of users has offered its opinion on everything, you
will find that a second group of users will rear their heads to look at and interact
with the highest rated, most heavily commented and tagged content.

In this chapter, we will delve into what it takes to create a flexible system that will
allow us to tag, rate, and comment any object in our system (at the database level).
We will apply all these three systems to our photo gallery section. Tagging and
commenting will be somewhat straightforward in that they will simply take raw user
input and tie it to the various content areas. The rating system on the other hand will
use the ASP.NET AJAX library to provide multiple attributes in a modal window
with the rating control, which when aggregated will provide us with an average
score for that item.

Comments, Tags, and Ratings

[408]

Problem
Let's take a look at the problems discussed in this chapter:

Chapter 11

[409]

Ratings
The rating system included in the package of the ASP.NET AJAX controls works
very well for a flat rating system. It has no issues with showing five stars horizontally
or vertically, providing simple mouse over capabilities, capturing click events, and
providing several properties to capture the selected input. What it doesn't do well
is provide you with a way to capture multiple subratings for a piece of content.
That is what we will build here! Clicking on the rate this link will throw up a
modal window.

In the modal window, the user will have several dynamically generated attributes to
apply individual ratings to. All these ratings are then aggregated to provide the final
rating for that item.

Comments, Tags, and Ratings

[410]

Once we have received the rating for an item, we will thank the user for his/her input.

With the next view of this item, we will display the average rating.

Tagging
Tagging is a feature that allows us to attach keywords to an object. Each keyword
has a score attached to it that allows us to build a tag cloud with the largest tags
sifted to the top showcasing the keywords that have the most use in the system. This
particular control will be created in a flexible manner that allows us to capture new
tags, display the tags that are attached to an object, display tags that are attached to a
section and those attached to the entire site.

Chapter 11

[411]

Here we add a tag to an image:

With the tags in place showing a subcloud for that item, we can click through to see
other content for the same tag words.

Comments, Tags, and Ratings

[412]

Selecting the large fish tag will then take us to a page that lists not only other related
images but also any other content in the site with the same tag. In this case, selecting
the big fish tag shows us three other resources with the same tag.

Also note that this page appears to be a resource in our site in the Tags directory.
This will help us feed the search engine spiders, which in turn should get more users
to our site!

Finally, we can go out to the homepage to see a site-wide tag cloud. This tag cloud
displays tags with a higher tag count, that is, the tags that are attached to more
items, and having a larger font. This quickly identifies the most popular tags to the
site's users.

Chapter 11

[413]

We will fully cover the algorithm used to determine the font size dynamically as well
as some of the flexibilities that are baked into this control.

Commenting
Commenting allows our users to give more specific input about a resource. This
can be integrated later into our search features to also help us get our content to
our users. In addition to this, it allows our users to comment back and forth about a
resource, generating curiosity from other users.

Comments, Tags, and Ratings

[414]

Design
Let's take a look at the design for this feature.

Ratings
The ASP.NET AJAX Control Toolkit provides you with a fair amount of flexibility
when it comes to creating the standard five-star ratings that you can see scattered
around on the Internet. You are able to create horizontal or vertically positioned
stars, stars that can be run from left to right, and right to left. You can even swap out
the stars for any other image such as happy faces, if you really want to.

More information regarding the toolkit can be found here: http://www.
codeplex.com/AjaxControlToolkit and http://www.asp.net/
ajax/ajaxcontroltoolkit/.

The one thing that the control in the toolkit does not do is allow you to show
multiple attributes to be rated for an item. It also does not allow you to aggregate
those ratings to be rolled up into one global rating. It is this more flexible control,
which we will discuss and build here.

Before we discuss rating attributes of an item, we need to discuss what an item is. In
our community site, we may want to rate just about anything that is awfully vague
and generally hard to work with. So we will say that our definition of "anything"
is any table in the database (you will see more use of this object concept when we
discuss comments and tags). In order to keep track of our objects, we will need to
create a container that we can use as a hard reference.

For this, we will create a SystemObjects table. This will hold the name and
SystemObjectID for each of the tables that we want to add ratings to. If we add
more tables to our system that could benefit from ratings, we can easily extend our
rating tool to work with the next object.

Now that we know what our objects are, we can discuss our attributes that will
actually get individual ratings. For this, we will need the ability to have a flexible
system that allows each unique object to have its own attribute definitions. We will
create a SystemObjectRatingOptions table to manage these attributes. Here you
will see the name of the attribute and its description. We will show the name in our
display and add the description to a tooltip. In addition to this, we will create the
relationship to our SystemObjects table. This will allow us to have custom attributes
for something like images—as many as we like.

Chapter 11

[415]

From there, we will need the ability to capture the actual end user feedback in the
form of a rating. Each rating will apply to each attribute of a given SystemObject (or
table). As individuals will be rating a unique item (an actual record) of the defined
type of SystemObject, we will also need to track the record ID of the rated item in
question. This will allow us to know that we are rating a specific record in the Files
or Photos table so that we can easily query the data that we need.

With each rating we will also capture a score (1-5 in our demo). This will allow
us to have an aggregate rating for each attribute. It will also allow us to have an
aggregated rating for the actual rated item. We will simply average all scores
collected for an item to provide us with a high-level, generic rating. With this system,
we will also have the data that we would need for more sophisticated reports and
displays as time permits.

Tags
Tagging allows the users of your community to provide keywords that categorize
your content. This in turn helps other users to locate the appropriate content in your
site. The more the number of people who apply for a specific keyword to the content
of your site, the larger the keywords displayed in the cloud.

This system will be built using the same SystemObjects concept. This will allow us
to apply tags to any object defined in our system. In addition to the SystemObjects
table, we will also have a Tags table. This will allow us to keep track of all of the
unique tags that we collect over time. And this is where we will maintain our
aggregated tag counts. While we could sum the count on the fly, it is easier and more
efficient to build the sum as we collect new tags.

In addition to collecting new tags and maintaining the definition of our
SystemObjects, we also need to maintain the relationship between our tags and the
SystemObjects. We will do this with our SystemObjectTags table. This table will
also keep track of who applied the tag and when.

Comments, Tags, and Ratings

[416]

With the tables defined, we should keep in mind that we want to build a flexible
control. In our case, we will build a control that will not only collect tags for an
object, but will also display the tags for a given item (a mini tag cloud if you will).
We will also be able to keep track of all the tags for a parent (in the case that we are
tagging images, we can have a tag cloud for our image gallery). And finally, we will
add functionality to our control that will allow us to build a high-level global tag
cloud that could be used on your site's homepage. This cloud will display the most
popular tags for all of the collected tags.

The final complexity is what completes the tag cloud. We will have the tables in
place to hold the data appropriately. We will have the control to capture and display
the data. But the real kicker to a tag cloud is how it is displayed. A tag cloud displays
each tag (a keyword or words) with a size relative to its own ranking in the overall
popularity of the cloud. This means that the more the tags used in your cloud, the
larger the tags will be in the cloud. On the other hand, the lesser the tags used, the
smaller the tags will be in the cloud. We will fully discuss the algorithm behind this
sorting when the time comes.

Comments
Compared to our fancy ratings and tagging controls, the commenting control is not
very cool. Though it is not cool, it still fits this chapter in that this is another method
for your users to provide very specific content about your content. The comments
will come in handy later when you integrate the gathered content into your site's
search results. Also, our friendly search engines will love to eat up your new
content-specific comments.

Chapter 11

[417]

This system, like the other two, will be built around the SystemObject table. In
addition to that table, we will have a Comments table. The Comments table will not
only gather all the normal data but also the body of the comment. That's it!

Solution
Let's take a look at our solution.

Implementing the database
Let's take a look at what is needed in the database.

SystemObjects
The SystemObjects table is at the center of this chapter's list of features. Having
said that, this table is the easiest part of this equation. It simply keeps track of all the
tables in the system. Specifically, it keeps track of the table names and maintains an
ID for each name.

Comments, Tags, and Ratings

[418]

Ratings
The Ratings table is responsible for holding all the end user ratings. As you can
see each rating ties back to the SystemObjects table and also directly to the record
within the specified table. In addition to that, we are also tracking the Option that
was rated. The most important part of this table though is the Score field. The Score
tracks the selected number of stars (in our case) that the end user has selected.

System object rating options
In addition to the ratings table we also have the SystemObjectRatingOptions table.
This table tracks all the options that are available for each of our system objects.

Here is the SQL:

CREATE TABLE [dbo].[SystemObjectRatingOptions](
 [SystemObjectRatingOptionID] [int] IDENTITY(1,1) NOT NULL,
 [Name] [varchar](250) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
 NULL,
 [Description] [varchar](1500) COLLATE SQL_Latin1_General_CP1_CI_AS
 NOT NULL,
 [Timestamp] [timestamp] NOT NULL,
 [SystemObjectID] [int] NOT NULL,
 CONSTRAINT [PK_SystemObjectRatingOptions] PRIMARY KEY CLUSTERED
(

Chapter 11

[419]

 [SystemObjectRatingOptionID] ASC
)WITH (PAD_INDEX = OFF, IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

Tags
The Tags table is responsible for holding all the textual tags that our users
attach to the various objects in our system. Knowing that we intend to collect a
number of the same tags for multiple objects in our system, it is important that
we maintain a unique list of tags with counts rather than a single entry for every
tag entered into the system and then having to sum up the tags to get a count.
Performance-wise, maintaining the aggregate value as we collect tags will easily
outperform determining the summed value each time we need the count.

System object tags
This then brings us to our SystemObjectTags table. It is responsible for maintaining
details of which tag is connected to which record of a certain type of object. This table
simply maintains various record IDs to keep track of the relationships.

Comments, Tags, and Ratings

[420]

Comments
This finally brings us to the Comments table. Of the three features, this is by far the
easiest to implement as this table keeps track of everything for us directly. Each
comment in this case is assumed to be unique and is therefore directly tied to an
object and a record within that object. We also keep track of the user who left the
comment (CommentByAccountID) and when (CreateDate) he/she did. The current
size of the comment can be up to 2,000 characters. But if your community requires
large comments, you can of course increase this number.

Creating the relationships
Once all the tables are created, we can create all the relationships.

For this set of tables, we have relationships between the following tables:

Ratings and Accounts
Ratings and SystemObjectRatingOptions
Ratings and SystemObjects
SystemRatingOptions and SystemObjects
SystemObjectTags and Accounts
SystemObjectTags and SystemObjects
SystemObjectTags and Tags
Comments and Accounts
Comment and SystemObjects

•

•

•

•

•

•

•

•

•

Chapter 11

[421]

Setting up the data access layer
To set up the data access layer, follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.
Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on the tables and clicking Refresh.
Then drag your new tables onto the design surface.
Hit Save and you should now have the domain objects to work with, as
shown in the following screenshot:

•
•
•
•

•
•

Comments, Tags, and Ratings

[422]

Keep in mind that we are not letting LINQ track our relationships. So go ahead and
delete them from the design surface. Your design surface should have the same items
that you see in the screenshot (though perhaps in a different arrangement!).

Building repositories
With the addition of new tables will come the addition of new repositories so that
we can get at the data stored in those tables. We will be creating the following
repositories to support our needs:

RatingRepository

SystemObjectRatingOptionRepository

TagRepository

SystemObjectTagRepository

CommentRepository

Each of our repositories will generally have a method for select by ID, select all by
parent ID, save, and delete. Once you have seen one repository you have pretty
much seen them all. Review previous chapters, the appendices, or the included code,
for example, of a standard repository. However, I will discuss anything that varies
from standard!

RatingRepository
Let's take a look at the RatingRepository.

HasRatedBefore()
The HasRatedBefore() method takes in a SystemObjectID,
SystemObjectRecordID, and AccountID to perform a check against the account to
determine if that account has already provided a rating for the specified object. If it
has, then the HasRatedBefore() method returns true, otherwise false.

public bool HasRatedBefore(int SystemObjectID, long
 SystemObjectRecordID, int AccountID)
{
 bool result = false;
 using(FisharooDataContext dc = conn.GetContext())
 {
 if (dc.Ratings.Where(r => r.SystemObjectID == SystemObjectID
 &&
 r.SystemObjectRecordID == SystemObjectRecordID &&
 r.CreatedByAccountID == AccountID).Count() > 0)
 result = true;
 }
 return result;
}

•
•
•
•
•

Chapter 11

[423]

In this method, we instantiate a result variable as Boolean and assign it a false
value. From there, we are performing a LINQ query against the collection of Ratings
in the DataContext object. In this query, we will locate the specific record with
three property checks against the SystemObjectID, SystemObjectRecordID, and
CreatedByAccountID. We will then perform a Count() on the result of our query.
If the count is greater than 0, then we know that we have already received a rating
from this user for this specific item. We will therefore set our result variable to true.
We will then return the result.

GetCurrentRating()
The GetCurrentRating() method is responsible for determining the average rating
across all the rated options for a specific object in the system.

public int GetCurrentRating(int SystemObjectID, long
 SystemObjectRecordID)
{
 double result;
 using(FisharooDataContext dc = conn.GetContext())
 {
 if (dc.Ratings.Where(r => r.SystemObjectID == SystemObjectID
 && r.SystemObjectRecordID ==
 SystemObjectRecordID).Count() > 0)
 result =
 dc.Ratings.Where(
 r => r.SystemObjectID == SystemObjectID &&
 r.SystemObjectRecordID == SystemObjectRecordID).
 Select(r => r.Score).Average();
 else
 result = 0;
 }
 return Convert.ToInt32(result);
}

This method instantiates the result as a double (the Average() method, which we
will call in a second, returns double). We then perform a check against the system
to see if we have any ratings for the specified object. If we do, then we perform a
query against our Ratings collection looking for our specified object. We are only
interested in returning the average score for our object, so that we can locate our
ratings and then call the Select() method. The Select() method fetches the Score
field from all the objects. From there, we can call Average() to get our average
across all the scores for all the ratings we have received. This value is then applied to
our result variable. If we did not have any ratings, then we set the result to 0. Finally,
we cast the result to an int and then return the result.

Comments, Tags, and Ratings

[424]

SaveRatings()
We are used to building a repository with a single object save method. This is fairly
straightforward. Here we are going to focus on building a method that can handle
more than one rating at a time.

public void SaveRatings(List<Rating> ratings)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 //get a list of items that have been rated before
 List<long> previouslyRatedSystemObjectRecordIDs =
 dc.Ratings.Where(r => r.CreatedByAccountID ==
 ratings[0].CreatedByAccountID).
 Select(r=>r.SystemObjectRecordID).ToList();
 foreach (Rating rating in ratings)
 {
 //be sure that this user has not already rated this
 particular system object before
 if
 (!previouslyRatedSystemObjectRecordIDs.
 Contains(rating.SystemObjectRecordID))
 dc.Ratings.InsertOnSubmit(rating);
 }
 dc.SubmitChanges();
 }
}

This method is not really that complex. It simply takes advantage of LINQ to SQL's
bulk insert capability. First, it takes in a generic list of Rating objects. Once it has
opened a connection and got the DataContext, we determine which ratings the user
has previously rated (as we don't want more than one rating per user, per object!).
We then iterate through all the passed in ratings. Once we have made sure that
the user has not already rated the option in question, we attach the rating to the
DataContext. With all the appropriate ratings attached, we submit our changes with
a bulk insert.

SystemObjectRatingOptionRepository
This particular repository has only three methods,
GetSystemObjectRatingOptionsBySystemObjectID() (now that is a mouth full),
SaveSystemObjectRatingOption(), and DeleteSystemObjectRatingOption().
These are all very standard methods that do just what they say. Looking at the code
for this repository is a good example of a standard repository!

Chapter 11

[425]

You will find code similar to this to select a record:

result = dc.SystemObjectRatingOptions.Where(soro =>
 soro.SystemObjectID ==
 SystemObjectID).ToList();

And code similar to this to save a record:

if(systemObjectRatingOption.SystemObjectRatingOptionID > 0)
{
 dc.SystemObjectRatingOptions.Attach(systemObjectRatingOption,
 true);
}
else
{
 dc.SystemObjectRatingOptions.InsertOnSubmit(systemObjectRatingOpt
ion);
}
dc.SubmitChanges();

And code similar to this to delete a record:

dc.SystemObjectRatingOptions.Attach(systemObjectRatingOption, true);
dc.SystemObjectRatingOptions.DeleteOnSubmit(systemObjectRatingOption);
dc.SubmitChanges();

TagRepository
This repository is used heavily in the building of our tag clouds. We have several
methods to look at here.

GetTagByName()
The GetTagByName() method is responsible for looking for a tag by its name.

public Tag GetTagByName(string Name)
{
 Tag result = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 result = dc.Tags.Where(t => t.Name == Name).FirstOrDefault();
 }
 return result;
}

Comments, Tags, and Ratings

[426]

GetTagByID()
The GetTagByID() method is the same as the GetTagByName() with the exception
that it looks for an item by its ID:

public Tag GetTagByID(int TagID)
{
 Tag result = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 result = dc.Tags.Where(t => t.TagID ==
 TagID).FirstOrDefault();
 }
 return result;
}

GetTagsGlobal()
The GetTagsGlobal() method is responsible for getting tags at the site level. It looks
at all the tags for all the defined objects and returns a specified number. It orders the
tags by their count in descending order and then uses the Take() method to specify
how many tags to return. This method is used to build the site-level tag cloud.

public List<Tag> GetTagsGlobal(int TagsToTake)
{
 List<Tag> results = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 results = (from t in dc.Tags
 select t).Distinct().OrderByDescending(t =>
 t.Count) Take(TagsToTake).ToList();
 }
 return results;
}

GetTagsBySystemObject()
This method is similar to the GetTagsGlobal() method in that it gets all the tags
for a cloud. This method is a little different in that it gets the tag only for a specified
object type. It only returns a specified number of tags by their count in descending
order. Note that we use a join to get the tags through the SystemObjectTags table:

public List<Tag> GetTagsBySystemObject(int SystemObjectID, int
 TagsToTake)
{
 List<Tag> results = null;
 using(FisharooDataContext dc = conn.GetContext())

Chapter 11

[427]

 {
 results = (from t in dc.Tags
 join sot in dc.SystemObjectTags on t.TagID equals
 sot.TagID
 where sot.SystemObjectID == SystemObjectID
 select t).Distinct().OrderByDescending
 (t=>t.Count).Take(TagsToTake).ToList();
 }
 return results;
}

GetTagsBySystemObjectAndRecordID()
Finally, we come to the method that gets all the tags for a specified object down to
the record level. This is for a specific item of a certain type of object. This method is
used to display all the tags next to the item that was tagged.

public List<Tag> GetTagsBySystemObjectAndRecordID(int SystemObjectID,
 long SystemObjectRecordID)
{
 List<Tag> results = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 results = (from t in dc.Tags
 join sot in dc.SystemObjectTags on t.TagID equals
 sot.TagID
 where sot.SystemObjectID == SystemObjectID &&
 sot.SystemObjectRecordID == SystemObjectRecordID
 select t).Distinct().OrderBy(t =>
 t.CreateDate).ToList();
 }
 return results;
}

SystemObjectTagRepository
There are three methods in this repository, GetSystemObjectByTagID(),
SaveSystemObjectTag(), and DeleteSystemObjectTag(). We will discuss the
GetSystemObjectByTagID() method here.

GetSystemObjectByTagID()
This is a rather large method. It is used to get all the objects that a tag is related to.
This method is used when we display the tag and its links by clicking on a tag link.

Comments, Tags, and Ratings

[428]

This method allows for only one tag to be loaded currently. But that
restriction is only on the method input side. All the internals of this
method will work with more than one tag though.

public List<SystemObjectTagWithObjects> GetSystemObjectsByTagID(int
 TagID)
{
 List<SystemObjectTagWithObjects> result = new
 List<SystemObjectTagWithObjects>();
 List<SystemObjectTag> tags = new List<SystemObjectTag>();
 List<Account> accounts = new List<Account>();
 List<Profile> profiles = new List<Profile>();
 List<Blog> blogs = new List<Blog>();
 List<BoardPost> posts = new List<BoardPost>();
 List<File> files = new List<File>();
 List<FileType> fileTypes = new List<FileType>();
 List<Folder> folders = new List<Folder>();
 List<Group> groups = new List<Group>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 tags =
 dc.SystemObjectTags.Where(sot => sot.TagID == TagID).
 OrderByDescending(sot => sot.CreateDate).ToList();
 accounts =
 dc.Accounts.Where(
 a =>
 tags.Where(t => t.SystemObjectID == 1).Select(t =>
 t.SystemObjectRecordID).Contains(a.AccountID))
 .Distinct().ToList();
 profiles =
 dc.Profiles.Where(
 p =>
 tags.Where(t => t.SystemObjectID == 2).Select(t =>
 t.SystemObjectRecordID).Contains(p.ProfileID))
 .Distinct().ToList();
 blogs =
 dc.Blogs.Where(
 b =>
 tags.Where(t => t.SystemObjectID == 3).Select(t =>
 t.SystemObjectRecordID).Contains(b.BlogID))
 .Distinct().ToList();
 posts =
 dc.BoardPosts.Where(
 bp =>

Chapter 11

[429]

 tags.Where(t => t.SystemObjectID == 4).Select(t =>
 t.SystemObjectRecordID).Contains(bp.PostID))
 .Distinct().ToList();
 files =
 dc.Files.Where(
 f =>
 tags.Where(t => t.SystemObjectID == 5).Select(t =>
 t.SystemObjectRecordID).Contains(f.FileID))
 .Distinct().ToList();
 fileTypes = dc.FileTypes.ToList();
 for (int i = 0; i < files.Count();i++)
 {
 files[i].Extension =
 fileTypes.Where(ft => ft.FileTypeID ==
 files[i].FileTypeID).Select(ft => ft.Name)
 .FirstOrDefault();
 }
 folders =
 dc.Folders.Where(folder => files.Select(f =>
 f.DefaultFolderID).
 Contains(folder.FolderID)).ToList();
 groups =
 dc.Groups.Where(
 g =>
 tags.Where(t => t.SystemObjectID == 6).Select(t =>
 t.SystemObjectRecordID).Contains(g.GroupID))
 .Distinct().ToList();
 }
 foreach (SystemObjectTag tag in tags)
 {
 switch(tag.SystemObjectID)
 {
 case 1:
 result.Add(new SystemObjectTagWithObjects()
 {SystemObjectTag = tag,Account = accounts.Where
 (a=>a.AccountID == tag.SystemObjectRecordID).
 FirstOrDefault()});
 break;
 case 2:
 result.Add(new
 SystemObjectTagWithObjects()
 {SystemObjectTag = tag, Profile = profiles
 .Where(p=>p.ProfileID ==
 tag.SystemObjectRecordID).FirstOrDefault()});
 break;
 case 3:

Comments, Tags, and Ratings

[430]

 result.Add(new SystemObjectTagWithObjects() {
 SystemObjectTag = tag, Blog = blogs.
 Where(b => b.BlogID == tag.SystemObjectRecordID)
 .FirstOrDefault() });
 break;
 case 4:
 result.Add(new SystemObjectTagWithObjects() {
 SystemObjectTag = tag, BoardPost = posts.
 Where(p => p.PostID == tag.SystemObjectRecordID).
 FirstOrDefault() });
 break;
 case 5:
 //need to get the file for use in getting the folder
 as well
 File file = files.Where(f => f.FileID ==
 tag.SystemObjectRecordID).FirstOrDefault();
 result.Add(new SystemObjectTagWithObjects() {
 SystemObjectTag = tag, File = file , Folder =
 folders.Where(f=>f.FolderID ==
 file.DefaultFolderID).FirstOrDefault()});
 break;
 case 6:
 result.Add(new SystemObjectTagWithObjects() {
 SystemObjectTag = tag, Group = groups.
 Where(g => g.GroupID == tag.SystemObjectRecordID).
 FirstOrDefault() });
 break;
 }
 }
 return result;
}

Though this method appears to be big and complex, it's not really. Initially, we get
a list of tags by the TagID that was passed in. We then get a list of all the objects that
the tag is attached to. Currently, in addition to Accounts, Profiles, Blogs, Posts, Files,
and Groups, we also get FileTypes and Folders.

Once we have all this information uploaded, we can iterate through each tag and
load the SystemObjectTagWithObjects object, which we have created especially for
this purpose. It carries the Tag and the objects that are related to it.

public class SystemObjectTagWithObjects
{
 public SystemObjectTag SystemObjectTag { get; set; }
 public Account Account { get; set; }
 public Profile Profile { get; set; }

Chapter 11

[431]

 public Blog Blog { get; set; }
 public BoardPost BoardPost { get; set; }
 public File File { get; set; }
 public Folder Folder { get; set; }
 public Group Group { get; set; }
}

We then return a list of SystemObjectTagWithObjects , which we can then bind to
a Repeater on the display side.

CommentRepository
This repository is pretty close to a standard repository. Other than the normal get
and delete method, we also have a GetCommentsBySystemObject() method.

GetCommentsBySystemObject()
This method gets a list of comments for the object they are attached to.

public List<Comment> GetCommentsBySystemObject(int SystemObjectID,
 long SystemObjectRecordID)
{
 List<Comment> results = null;
 using(FisharooDataContext dc = conn.GetContext())
 {
 results =
 dc.Comments.Where(
 c => c.SystemObjectID == SystemObjectID &&
 c.SystemObjectRecordID == SystemObjectRecordID).
 OrderByDescending(c => c.CreateDate).
 ToList();
 }
 return results;
}

Implementing the services/application layer
Once all the repositories are built for single-serving purposes, we can begin to
create the services layer. Again, this layer is responsible for assembling aggregates
and performing complex actions with our entities. We will create and modify the
following services:

TagService

Configuration

WebContext

Extensions

•

•

•

•

Comments, Tags, and Ratings

[432]

TagService
The TagService has a few things that are responsible for adding tags and calculating
font sizes.

AddTag()
We have the AddTag() method that takes care of adding Tags to our database. You
may ask why we can't just take care of that in our TagRepository. In this case, we
are doing more than just shoving a new record into the system. Here we need to see
if we already have the tag or not. If we don't, then we need to create a new tag. If we
do have the tag already, then we need to increment the count for that tag. Then we
can save the tag back into the system.

In addition to adding a tag into the system, we also need to create the relationship
for that tag and the object it is related to. This is a straightforward job. We simplyand the object it is related to. This is a straightforward job. We simplynd the object it is related to. This is a straightforward job. We simply
spin up a new SystemObjectTag with the appropriate TagID. Then we can toss that
into the database.

public void AddTag(string TagName, int SystemObjectID, long
 SystemObjectRecordID)
{
 Tag tag = _tagRepository.GetTagByName(TagName);
 if (tag == null)
 {
 tag = new Tag();
 tag.CreateDate = DateTime.Now;
 tag.Name = TagName;
 tag.Count = 1;
 }
 else
 {
 tag.Count += 1;
 }
 tag = _tagRepository.SaveTag(tag);
 SystemObjectTag sysObjTag = new SystemObjectTag();
 sysObjTag.CreateDate = DateTime.Now;
 sysObjTag.CreatedByAccountID = _webContext.CurrentUser.AccountID;
 sysObjTag.CreatedByUsername = _webContext.CurrentUser.Username;
 sysObjTag.SystemObjectID = SystemObjectID;
 sysObjTag.SystemObjectRecordID = SystemObjectRecordID;
 sysObjTag.TagID = tag.TagID;
 _systemObjectTagRepository.SaveSystemObjectTag(sysObjTag);
}

Chapter 11

[433]

CalculateFontSize()
The CalculateFontSize() method is responsible for taking a collection of Tags
and calculating the font size for each one. There is a bit to this calculation in that
some tags may have a count as large as 389,654,980 (perhaps in a very popular site!)
while other tags may only have been applied to a couple of items. If those were the
numbers we used to calculate the font size, we may end up with a tag that is larger
than the page or one that is so small that you can't read it. For this reason, we need
to get the numbers to fit between something more reasonable. This is the calculation
that we will discuss.

Before we look at the method in its entirety, let's discuss some of the variables that
we will be working with:

MinimumRange: This variable will hold the smallest count in our set of
tags. This will form the lower bound of our collection. It is global to
the calculation.
MaximumRange: This variable will hold the largest count in our set of
tags. This will form the upper bound of our collection. It is global to
the calculation.
Delta: This variable will hold the difference between our MinimumRangemRange and
our MaximumRangemRange. It is global to the calculation.
Tag.InitialValue: This will hold a copy of the Count for each tag.
Tag.MinimumOffset: This is the InitialValue– MinimumRangemRange.
Tag.Ranged: This value is the MinimumOffsett divided by the Delta.
Tag.PreCalculatedValue: This is the Ranged value multiplied by the
difference of the largest font size and the smallest font size subtracted by one
(largest-smallest-1).
Tag.FinalCalculatedValue: This is the PreCalculatedValuelatedValueatedValue plus one.
Tag.FontSize: This is the FinalCalculatedValuedValue plus the smallest
font size.

The result of all of these calculations is a set of tags that grow smoothly regardless
of the difference between your smallest tag count and your largest tag count and
regardless of the difference between your smallest font size and your largest
font size.

The next complexity to this method is how we want to sort the tags in our cloud.
Shall we sort them from small to tall, or from tall to small, or randomly? We will
leave this up to a configuration value. If we want to sort the tags small to tall, we can
use the OrderBy() method on the Tags collection. If we want to sort the tags tall to
small, we can use the OrderByDescending() method. What do we do if we want to

•

•

•

•

•

•

•

•

•

Comments, Tags, and Ratings

[434]

sort the tags randomly? We will add a new method to our Extensions class that will
extend a Generic List of type Tag called ShuffleList(), which will handle shufflingwhich will handle shuffling
the items in the collection. We will discuss that shortly.

public List<Tag> CalculateFontSize(List<Tag> Tags)
{
 decimal MinimumRange;
 decimal MaximumRange;
 decimal Delta;
 //get the smallest count in this list
 MinimumRange = (Tags.OrderBy(t => t.Count).Take(1).Select(t =>
 t.Count).FirstOrDefault()) * 100;
 //get the largest count in this list
 MaximumRange = (Tags.OrderByDescending(t =>
 t.Count).Take(1).Select(t => t.Count).
 FirstOrDefault()) * 100;
 //determine the difference between the minimum and the maximum
 Delta = MaximumRange - MinimumRange;
 if (Tags.Count > 1)
 {
 for (int i = 0; i < Tags.Count(); i++)
 {
 //set a working value
 Tags[i].InitialValue = Tags[i].Count*100;
 //calculate the minimum offset
 Tags[i].MinimumOffset = Tags[i].InitialValue -
 MinimumRange;
 //calculate the ranged value
 Tags[i].Ranged = Tags[i].MinimumOffset/Delta;
 //calculate the pre calculation
 Tags[i].PreCalculatedValue = Tags[i].Ranged*
 ((_configuration.TagCloudLargestFontSize -
 _configuration.AddToTagCloudFontSize) - 1);
 //calculate the final value
 Tags[i].FinalCalculatedValue = Tags[i].PreCalculatedValue
 + 1;
 //calculate the font size
 Tags[i].FontSize =
 Convert.ToInt32(Tags[i].FinalCalculatedValue +
 _configuration.AddToTagCloudFontSize);
 }
 }

Chapter 11

[435]

 //if a standard sort is not what you require, you can call
 Tags.Sort
 // The Tags.Sort() method (in the Domain/Tag.cs partial class)
 can be
 // modified to use different properties to sort by
 if (_sortOrder == CloudSortOrder.Ascending) //small to tall
 {
 Tags = Tags.OrderBy(t => t.FinalCalculatedValue).ToList();
 }
 else if (_sortOrder == CloudSortOrder.Descending) //tall to small
 {
 Tags = Tags.OrderByDescending(t =>
 t.FinalCalculatedValue).ToList();
 }
 else
 {
 Tags.ShuffleList(); //randomize!
 }
 return Tags;
}

Extensions
We will add one extension method to our Extensions class called ShuffleList(),
which is responsible for shuffling the items in our list of Tags. I found this snippet
on Experts-Exchange.com at http://www.experts-exchange.com/Programming/
Languages/C_Sharp/Q_22571864.html

ShuffleList()
public static List<Tag> ShuffleList(this List<Tag> listToShuffle)
{
 Random randomClass = new Random();
 for (int k = listToShuffle.Count-1; k > 1; --k)
 {
 int randIndx = randomClass.Next(k); //
 Tag temp = listToShuffle[k];
 listToShuffle[k] = listToShuffle[randIndx]; // move random
 num to end of list.
 listToShuffle[randIndx] = temp;
 }
 return listToShuffle;
}

Comments, Tags, and Ratings

[436]

WebContext
The WebContext class is responsible for handling anything that comes and goes
between the Session, the QueryString, and the Form collections and anything else
that we might want to deal with in the HttpContext.

SelectedRatings
The SelectedRatings property handles a Dictionary<int, int> collection
that is stored in the Session. This collection is responsible for handling ratings
that are collected for various options attached to an object. The first int is the
RatingOptionRecordID and the second int is the Rating (score) that was applied
to that SystemObjectRatingOptionID. This collection is built up prior to the user
saving their rating options. What I mean to say is that every time a user adds a
dictionary item to the SelectedRatings property, it adds the item to a collection
stored in the Session rather than resetting the value all together. We will see how this
plays out once we start to build our Ratings control.

If you are wondering about how this collection is handled—if it continues to
grow—you should know that there is another method (coming up next) that handles
the clearing of this collection.

public Dictionary<int, int> SelectedRatings
{
 get
 {
 Dictionary<int, int> result = new Dictionary<int, int>();
 if(GetFromSession("SelectedRatings") != null)
 {
 result = GetFromSession("SelectedRatings") as
 Dictionary<int, int>;
 }
 return result;
 }
 set
 {
 //make sure that we add to the existing rating store rather
 //than creating a new one
 Dictionary<int, int> result = new Dictionary<int, int>();
 if (GetFromSession("SelectedRatings") != null)
 {
 result = GetFromSession("SelectedRatings") as
 Dictionary<int, int>;
 foreach (KeyValuePair<int, int> pair in value)
 {

Chapter 11

[437]

 if (!result.ContainsKey(pair.Key))
 result.Add(pair.Key, pair.Value);
 }
 SetInSession("SelectedRatings", result);
 }
 else
 SetInSession("SelectedRatings", value);

 }
}

ClearSelectedRatings
ClearSelectedRatings()? That is a pretty clear statement. This method simply
clears out the Dictionary<int, int> collection that is stored in the session behind
the SelectedRatings.

public void ClearSelectedRatings()
{
 SetInSession("SelectedRatings", null);
}

TagID
TagID is a QueryString value that we pass in a UrlRewrite process when viewing
the Tags.aspx page.

public int TagID
{
 get
 {
 int result = 0;
 if (GetQueryStringValue("TagID") != null)
 {
 result = Convert.ToInt32((GetQueryStringValue("TagID")));
 }
 return result;
 }
}

Comments, Tags, and Ratings

[438]

Configuration
The Configuration class is responsible for reading the values in our config files. In
this last round of coding features we have added the following properties:

TagCloudLargestFontSize: This value sets the largest font size for display
in the tag cloud.
TagCloudSmallestFontSize: This value sets the smallest font size for
display in the tag cloud.
CloudSortOrder: This value sets the sort order of the tags in the cloud.
NumberOfTagsInCloud: This value sets the number of tags to be displayed in
the cloud.

 public int TagCloudLargestFontSizergestFontSize
 {
 get { return (int)getAppSetting(typeof(int),
 "TagCloudLargestFontSize"); }
 }

 public int TagCloudSmallestFontSize
 {
 get { return (int)getAppSetting(typeof(int),
 "TagCloudSmallestFontSize"); }
 }

 public string CloudSortOrder
 {
 get { return getAppSetting(typeof (string),
 "CloudSortOrder").ToString(); }
 }

 public int NumberOfTagsInCloud
 {
 get { return (int) getAppSetting(typeof (int),
 "NumberOfTagsInCloud"); }
 }

Implementing the presentation layer
This chapter is all about creating three controls—Comments, Ratings, and Tags. In
addition to the Tags control, we also have a Tags.aspx page that is responsible for
displaying all the linked items for a specified Tag.

•

•

•

•

Chapter 11

[439]

Comments Page
Let's get started by looking at the comments page.

Comments.ascx
The comment control is responsible for taking in a user's comment for an object
in the system. This control is relatively simple, if compared to the others that we
will be creating. It has a text box and a button to take in the comment. It also has a
PlaceHolder to contain all the comments that we collect over time.

<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:Panel runat="server" ID="pnlComment">
 <asp:TextBox ID="txtComment" runat="server"></asp:
 TextBox><asp:Button Text="Add Comment"
 ID="btnAddComment" runat="server"
 OnClick="btnAddComment_Click" />
 <asp:PlaceHolder ID="phComments"
 runat="server"></asp:PlaceHolder>
 </asp:Panel>
 </ContentTemplate>
</asp:UpdatePanel>

Comments.ascx.cs
First, note that we are initializing the control in the overriden OnInit() Method.
This allows us to get the control's output into the ViewState so that we can access
everything down the road.

There are two properties for this class—SystemObjectID, and
SystemObjectRecordID. They allow us to know what data to save and load.

When the page is initialized, we check the state of the current user to see if they are
logged in or not. We do not allow unauthorized users to post comments. If the user
is logged in, we show the comment text box and button. If they are not, we hide
those controls.

Next, we load the page. To load the page, we load the comments from the presenter.

Then we have the event handler for capturing the added comments.

We also have a method to toggle the visibility of the panel that shows the comments.

There is also a method for clearing the panel of comments.

Comments, Tags, and Ratings

[440]

The most complicated method in this whole class is the LoadComments() method.
This method is responsible for taking in a collection of comments, iterating through
them, and adding them to the panel for display.

public partial class Comments : System.Web.UI.UserControl, IComments
{
 private CommentsPresenter _presenter;
 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }

 protected override void OnInit(EventArgs e)
 {
 _presenter = new CommentsPresenter();
 _presenter.Init(this, IsPostBack);
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.LoadComments();
 }

 protected void btnAddComment_Click(object sender, EventArgs e)
 {
 _presenter.AddComment(txtComment.Text);
 txtComment.Text = "";
 }

 public void ShowCommentBox(bool IsVisible)
 {
 pnlComment.Visible = IsVisible;
 }

 public void ClearComments()
 {
 phComments.Controls.Clear();
 }

 public void LoadComments(List<Comment> comments)
 {
 if(comments.Count > 0)
 {
 phComments.Controls.Add(new LiteralControl("<table
 width=\"100%\">"));
 foreach (Comment comment in comments)
 {
 phComments.Controls.Add(new LiteralControl("<tr><td>"
 + comment.CommentByUsername + " (" +

Chapter 11

[441]

 comment.CreateDate.ToShortDateString() + "):
 " + comment.Body + "</td></tr>"));
 }
 phComments.Controls.Add(new LiteralControl("</table>"));
 }
 }
}

CommentsPresenter.cs
The CommentsPresenter is responsible for handling all the logic behind this control.
It determines whether or not to show the control based on whether or not the user
who is viewing the control is logged in or not. It also handles loading the comments
for the specified SystemObject and SystemObjectRecordID. Finally, there is a
method for adding a Comment.

public class CommentsPresenter
{
 private IComments _view;
 private ICommentRepository _commentRepository;
 private IWebContext _webContext;
 public CommentsPresenter()
 {
 _commentRepository =
 ObjectFactory.GetInstance<ICommentRepository>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 }
 public void Init(IComments view, bool IsPostBack)
 {
 _view = view;
 if(_webContext.CurrentUser != null)
 _view.ShowCommentBox(true);
 else
 _view.ShowCommentBox(false);
 }
 public void LoadComments()
 {
 _view.LoadComments(_commentRepository.
 GetCommentsBySystemObject(_view.SystemObjectID,_view.
 SystemObjectRecordID));
 }
 public void AddComment(string comment)
 {
 Comment c = new Comment();

Comments, Tags, and Ratings

[442]

 c.Body = comment;
 c.CommentByAccountID = _webContext.CurrentUser.AccountID;
 c.CommentByUsername = _webContext.CurrentUser.Username;
 c.CreateDate = DateTime.Now;
 c.SystemObjectID = _view.SystemObjectID;
 c.SystemObjectRecordID = _view.SystemObjectRecordID;
 _commentRepository.SaveComment(c);
 _view.ClearComments();
 LoadComments();
 }
}

Ratings Page
Now let's take a look at the ratings page.

Ratings.ascx
The Ratings control is responsible for displaying a modal pop up that contains
the various options that can be rated. It then captures those ratings and saves them
away to the database. In addition to handling the user interaction, it also displays the
overall rating average for that particular object.

In order to use the rating control or the modal pop up, we need to register the
AjaxControlToolkit. Once this is added, we can hook up the modal pop up to our
pnlModalPopup. This panel contains a repeater that will show all the ratings that are
available for this object. Outside of the modal pop up, we also have a rating control
that displays the average rating for the object.

<%@ Import Namespace="Fisharoo.FisharooCore.Core.Domain"%>
<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="Ratings.
ascx.cs" Inherits="Fisharoo.FisharooWeb.UserControls.Ratings" %>
<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolk
it" TagPrefix="cc1" %>
<asp:Panel ID="pnlRating" runat="server">
 <asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:LinkButton ID="lbRateThis" runat="server" Text="rate
 this!" OnClick="lbRateThis_Click"></asp:LinkButton>
 <asp:Label ID="lblThankYou" runat="server" Text="Thank
 you!" Visible="false"></asp:Label>
 <cc1:Rating ID="Rating1" Enabled="false" ReadOnly="true"
 runat="server"
 MaxRating="5"
 EmptyStarCssClass="ratingStarEmpty"
 FilledStarCssClass="ratingStarFilled"

Chapter 11

[443]

 StarCssClass="ratingStar"
 WaitingStarCssClass="ratingStarSaved">
 </cc1:Rating>

 <asp:Panel ID="pnlModalPopup" runat="server"
 BackColor="White" ScrollBars="Vertical">
 <asp:Literal ID="litSelectedRatings" Visible="true"
 runat="server"></asp:Literal>
 <asp:Repeater ID="repRatingOptions" runat="server">
 <HeaderTemplate>
 <table>
 <tr><td> </td><td> </td></tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td>
 <cc1:Rating id="Rating1"
 runat="server"
 MaxRating="5"
 EmptyStarCssClass="ratingStarEmpty"
 FilledStarCssClass="ratingStarFilled"
 StarCssClass="ratingStar"
 WaitingStarCssClass="ratingStarSaved"
 OnChanged="rating_Changed"
 Tag='<%# ((SystemObjectRatingO
ption)Container.DataItem).SystemObjectRatingOptionID.ToString() %>'>
 </cc1:Rating>
 </td>
 <td>
 <asp:Label ID="lblOptionName"
 ToolTip='<%# ((SystemObjectRat
ingOption)Container.DataItem).Description %>'
 Text='<%# ((SystemObjectRating
Option)Container.DataItem).Name %>'
 runat="server"></asp:Label>
 </td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>

Comments, Tags, and Ratings

[444]

 <asp:Button ID="btnSave" UseSubmitBehavior="false"
 OnClick="btnSave_Click"
 runat="server" Text="Save" />
 <asp:Button ID="btnCancel" runat="server"
 Text="Cancel" />
 </asp:Panel>

 <cc1:ModalPopupExtender ID="ModalPopupExtender1"
 runat="server"
 TargetControlID="lbRateThis"
 PopupControlID="pnlModalPopup"
 DropShadow="true"
 OkControlID="btnSave"
 CancelControlID="btnCancel"></cc1:ModalPopupExtender>
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Panel>

There are two things that are very important to notice in this UI. The first is the
line that assigns the SystemObjectRatingOptionID to the Tag of property of the
Rating control.

Tag='<%# ((SystemObjectRatingOption)Container.DataItem).
 SystemObjectRatingOptionID.ToString() %>'

When a Rating is selected, it fires an event that contains the Rating control
and the selected value (the star that was selected). We are passing the
SystemObjectRatingOptionID in the Tag property of the Rating.

The second important thing to notice is the property in our btnSave button. The
UseSubmitBehavior property turns off the submit behavior of the btnSave button. If
we don't disable this property, then the modal pop up will disappear when you click
the button and you will not be able to capture the btnSave_Click event. When you
do turn this behavior off, we are able to capture the event.

Ratings.ascx.cs
In this class, we have two properties—SystemObjectID, and
SystemObjectRecordID. These allow us to load and capture the data for the
appropriate object. Next, we initialize our presenter. In doing this, we load the
current options, set the display, and set the current rating.

Next, we have the event handler that captures when a user selects a rating in our
modal pop up. This is a straight through to the presenter.

Chapter 11

[445]

Then we have the btnSave_Click event handler. This method not only sends the
event upstream to the presenter but also sets the visibility of the pnlModalPopup to
false, thus effectively hiding the pop up. (If this is not done, the ModalPopup seems
to break and display itself in the page rather than above the page.) We also hide the
label that acts as the link to show the ModalPopup and the Rating control that shows
the average rating for the control. Finally, we thank the user for his/her input!

We then get to the lbRateThis_Click method, which shows the modal popup panel
pnlModalPopup.

Finally, we have a method that sets the lbRateThis (link to show modal popup)
and the pnlModalPopup visibility. This method is interacted with directly from
the presenter:

public partial class Ratings : System.Web.UI.UserControl, IRatings
{
 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }
 private RatingsPresenter _presenter;
 private IWebContext _webContext;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new RatingsPresenter();
 _presenter.Init(this, IsPostBack);
 }

 public void SetCurrentRating(int CurrentRating)
 {
 Rating1.CurrentRating = CurrentRating;
 }

 public void LoadOptions(List<SystemObjectRatingOption> Options)
 {
 repRatingOptions.DataSource = Options;
 repRatingOptions.DataBind();
 }

 protected void rating_Changed(object sender, RatingEventArgs
 args)
 {
 _presenter.rating_Changed(sender, args);
 }

 protected void btnSave_Click(object sender, EventArgs e)

Comments, Tags, and Ratings

[446]

 {
 _presenter.btnSave_Click(sender, e, SystemObjectID,
 SystemObjectRecordID);
 pnlModalPopup.Visible = false;
 lbRateThis.Visible = false;
 Rating1.Visible = false;
 lblThankYou.Visible = true;
 }

 protected void lbRateThis_Click(object sender, EventArgs e)
 {
 pnlModalPopup.Visible = true;
 }

 public void CanSetRating(bool Visible)
 {
 lbRateThis.Visible = Visible;
 pnlModalPopup.Visible = Visible;
 }
}

RatingsPresenter.cs
In the RatingsPresenter, we have started off with the Init() method. This method
loads all the options for our Ratings control. It then moves on to determine if the
user is logged in or not. If they aren't, then we disable the ability to set a rating. If
the user is logged in, we check to see if the user has provided a rating for this control
before or not. If they have, then we also disable the ability to set a rating. Otherwise,
we allow the user to provide the ratings. Finally, we set the current rating for
this control.

Next, we have our LoadOptions() method, which populates the display
with all the available options. It does this by getting the properties
from the view for SystemObject and the SystemObjectRecordID,
and passing them to the SystemObjectRatingOptionRepository.
GetSystemObjectRatingOptionsBySystemObjectID() method.

Then comes the rating_Changed() method, which captures the event from
the display. We create a new Dictionary<int, int> object and add the
SystemObjectRatingOptionID and the selected rating to it. We then add this to the
Session for that user via the WebContext.SelectedRatings property. (Recall that
this adds the rating to a collection stored in the session.)

Chapter 11

[447]

Finally, we get to the btnSave_Click() method, which captures the Save
button click passed up from the code behind. In this method, we load up the
Dictionary<int, int> collection of ratings stored in the session. We then create
a new list of Generic List of Ratings. If we have ratings in hand, we iterate through
the list of KeyValuePairs. With each iteration, we spin up a new Rating and add it
to the collection of Ratings. We then save all the ratings to the RatingRepository.
SaveRatings() method. Then we clear the session using the WebContext.
ClearSelectedRatings().

public class RatingsPresenter
{
 private IRatings _view;
 private IWebContext _webContext;
 private ISystemObjectRatingOptionRepository
 _systemObjectRatingOptionRepository;
 private IRatingRepository _ratingRepository;
 public RatingsPresenter()
 {
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _systemObjectRatingOptionRepository =
 ObjectFactory.GetInstance
 <ISystemObjectRatingOptionRepository>();
 _ratingRepository =
 ObjectFactory.GetInstance<IRatingRepository>();
 }
 public void Init(IRatings view, bool IsPostBack)
 {
 _view = view;
 LoadOptions(_view.SystemObjectID,
 _view.SystemObjectRecordID);
 //not logged in? Can't add ratings
 if(_webContext.CurrentUser == null)
 _view.CanSetRating(false);
 //already rated this? Can't add ratings
 else if
 (_ratingRepository.HasRatedBefore
 (_view.SystemObjectID, _view.SystemObjectRecordID,
 _webContext.CurrentUser.AccountID))
 _view.CanSetRating(false);
 //ok ok...go ahead and rate this
 else
 _view.CanSetRating(true);
 _view.SetCurrentRating(_ratingRepository.GetCurrentRating(
 _view.SystemObjectID, _view.SystemObjectRecordID));

Comments, Tags, and Ratings

[448]

 }
 public void LoadOptions(int SystemObjectID, long
 SystemObjectRecordID)
 {
 _view.LoadOptions(_systemObjectRatingOptionRepository.
 GetSystemObjectRatingOptionsBySystemObjectID(SystemObjectID));
 }
 public void rating_Changed(object sender, RatingEventArgs args)
 {
 AjaxControlToolkit.Rating rating = sender as
 AjaxControlToolkit.Rating;
 //add slected ratings to the session handler and make it a
 dictionary object instead or a custom structure
 Dictionary<int, int> newRating = new Dictionary<int, int>();
 newRating.Add(Convert.ToInt32(rating.Tag),
 Convert.ToInt32(args.Value));
 _webContext.SelectedRatings = newRating;
 }
 public void btnSave_Click(object sender, EventArgs e, int
 SystemObjectID, long SystemObjectRecordID)
 {
 Dictionary<int, int> selectedRatings =
 _webContext.SelectedRatings;
 List<FisharooCore.Core.Domain.Rating> ratings = new
 List<FisharooCore.Core.Domain.Rating>();
 if(selectedRatings != null)
 {
 foreach (KeyValuePair<int, int> pair in selectedRatings)
 {
 FisharooCore.Core.Domain.Rating rating = new
 FisharooCore.Core.Domain.Rating();
 rating.CreatedByAccountID =
 _webContext.CurrentUser.AccountID;
 rating.CreatedByUsername =
 _webContext.CurrentUser.Username;
 rating.CreateDate = DateTime.Now;
 rating.Score = pair.Value;
 rating.SystemObjectRatingOptionID = pair.Key;
 rating.SystemObjectID = SystemObjectID;
 rating.SystemObjectRecordID = SystemObjectRecordID;
 ratings.Add(rating);
 }
 _ratingRepository.SaveRatings(ratings);
 }
 _webContext.ClearSelectedRatings();
 }
}

Chapter 11

[449]

Tags Page
Now let's take a look at the tags page.

Tags.ascx
From the client side, the tags control that we are creating appears to be very simple.
This control has two panels—one to show the tags and the other to collect them.

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="Tags.ascx.cs" Inherits="Fisharoo.FisharooWeb.
UserControls.Tags" %>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
 <asp:Panel runat="server" ID="pnlTag" Visible="false">
 <asp:TextBox ID="txtTag" runat="server"></asp:TextBox>
 <asp:Button ID="btnTag" runat="server" Text="Tag It!"
 OnClick="btnTag_Click" />
 </asp:Panel>
 <asp:Panel runat="server" ID="pnlTagCloud" Visible="false">
 <asp:PlaceHolder ID="phTagCloud"
 runat="server"></asp:PlaceHolder>
 </asp:Panel>
</ContentTemplate>
</asp:UpdatePanel>

Tags.ascx.cs
In this file we have defined both a class and an enum. The enum of TagState is
defined to modify the various states of the tag control. We have the following
entries defined:

ShowCloud: This option shows only the cloud for the object that the control is
configured for.
ShowTagBox: This option shows the text box to collect tags. It does not show
any cloud.
ShowCloudAndTagBox: This option shows both the cloud and the text box.
ShowParentCloud: This option shows the cloud for a parent. This option can
be used to show all the tags for something like a photo album.
ShowGlobalCloud: This option shows all the tags from the site's point
of view.

•

•

•

•

•

Comments, Tags, and Ratings

[450]

The Tags class implements a Display property, which is of type TagState
(our previously mentioned enum). In the Page_Load() method, we initialize our
TagsPresenter and in doing so set the state of the control and load the tags that
were already collected.

Next, we have some methods which the presenter uses to interact with
the view—ClearTagCloud(), ShowTagCloud(), ShowTagBox(), and
AddTagsToTagCloud(). These are all fairly self-explanatory! You do want
to pay attention to the AddTagsToTagCloud() method though, because this is
where we actually create the tags. Each tag is created as a Hyperlink. In building
these tags, we set the size of the link by adding a style attribute to the control where
we set the font-size property. Also note that we are linking to the Tags/Tags.aspx
page (discussed shortly) where we display all the objects that have that particular
tag linked to it.

Finally, we have a method that captures the click event of the btnTag Button
btnTag_Click. This is a pass through to the presenter to save the new tag to the
database. Once it has saved the tag, it clears the UI to capture another tag.

public enum TagState
{
 ShowCloud,
 ShowTagBox,
 ShowCloudAndTagBox,
 ShowParentCloud,
 ShowGlobalCloud
}
public partial class Tags : System.Web.UI.UserControl, ITags
{
 public TagState Display { get; set; }
 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }
 private TagsPresenter _presenter;
 public Tags()
 {
 _presenter = new TagsPresenter();
 }
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Init(this, IsPostBack);
 }
 public void ClearTagCloud()
 {
 phTagCloud.Controls.Clear();
 }

Chapter 11

[451]

 public void ShowTagCloud(bool IsVisible)
 {
 pnlTagCloud.Visible = IsVisible;
 }

 public void ShowTagBox(bool IsVisible)
 {
 pnlTag.Visible = IsVisible;
 }

 public void AddTagsToTagCloud(Tag tag)
 {
 HyperLink hlTag = new HyperLink();
 hlTag.Text = tag.Name;
 hlTag.NavigateUrl = "~/Tags/" + tag.Name.Replace(" ", "-");
 hlTag.Attributes.Add("style", "font-size:" + tag.FontSize +
 "px;");
 phTagCloud.Controls.Add(hlTag);
 phTagCloud.Controls.Add(new LiteralControl(" "));
 }

 protected void btnTag_Click(object sender, EventArgs e)
 {
 _presenter.Init(this,IsPostBack);
 _presenter.btnTag_Click(txtTag.Text);
 txtTag.Text = "";
 }
}

TagsPresenter.cs
When the TagsPresenter is initialized, the DetermineClientState() method is
called. This method looks at the various states of the user and the Display property
to determine how to build the Tag control. It interacts with the view to show or hide
various aspects of the control, from the text box to the tag cloud.

After that we have a few methods for building the different types of tag clouds
based on the Display property. We can build the global tag cloud, a parent tag
cloud, or a single object tag cloud. This is done by calling into the various methods
of the TagRepository and getting the appropriate tags. The methods then iterate
through the returned collection of tags and add each tag to the view through its
AddTagsToTagCloud() method.

Comments, Tags, and Ratings

[452]

Finally, we have the btnTag_Click() method, which handles the passed
through click event and captures the TagName of a new tag entry. This TagName
is passed to the TagService.AddTag() method with the SystemObjectID and
SystemObjectRecordID. We then determine if we have a cloud as part of our
Display options. If we do, then we clear the cloud and rebuild it so that the new
tag can be shown.

public class TagsPresenter
{
 private ITags _view;
 private ITagService _tagService;
 private IWebContext _webContext;
 private ITagRepository _tagRepository;
 private IConfiguration _configuration;
 public TagsPresenter()
 {
 _tagService = ObjectFactory.GetInstance<ITagService>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _tagRepository = ObjectFactory.GetInstance<ITagRepository>();
 _configuration = ObjectFactory.GetInstance<IConfiguration>();
 }
 public void Init(ITags view, bool IsPostBack)
 {
 _view = view;
 DetermineClientState();
 }

 public void DetermineClientState()
 {
 if (_webContext.CurrentUser != null && _view.Display ==
 TagState.ShowCloud)
 {
 _view.ShowTagCloud(true);
 BuildTagCloud();
 }
 else if (_webContext.CurrentUser != null && _view.Display ==
 TagState.ShowCloudAndTagBox)
 {
 _view.ShowTagBox(true);
 _view.ShowTagCloud(true);
 BuildTagCloud();
 }
 else if (_webContext.CurrentUser == null && _view.Display ==
 TagState.ShowCloudAndTagBox)
 {

Chapter 11

[453]

 _view.ShowTagBox(false);
 _view.ShowTagCloud(true);
 BuildTagCloud();
 }
 else if (_view.Display == TagState.ShowCloud)
 {
 _view.ShowTagBox(true);
 }
 else if (_view.Display == TagState.ShowParentCloud)
 {
 _view.ShowTagCloud(true);
 _view.ShowTagBox(false);
 BuildParentTagCloud();
 }
 else if (_view.Display == TagState.ShowGlobalCloud)
 {
 _view.ShowTagCloud(true);
 _view.ShowTagBox(false);
 BuildGlobalTagCloud();
 }
 else
 {
 _view.ShowTagBox(false);
 _view.ShowTagCloud(false);
 }
 }

 public void BuildGlobalTagCloud()
 {
 List<Tag> tags = _tagRepository.GetTagsGlobal(
 _configuration.NumberOfTagsInCloud);
 tags = _tagService.CalculateFontSize(tags);
 foreach (Tag tag in tags)
 {
 _view.AddTagsToTagCloud(tag);
 }
 }

 public void BuildParentTagCloud()
 {
 List<Tag> tags =
 _tagRepository.GetTagsBySystemObject(_view.SystemObjectID,
 _configuration.NumberOfTagsInCloud);
 tags = _tagService.CalculateFontSize(tags);
 foreach (Tag tag in tags)

Comments, Tags, and Ratings

[454]

 {
 _view.AddTagsToTagCloud(tag);
 }
 }

 public void BuildTagCloud()
 {
 List<Tag> tags =
 _tagRepository.GetTagsBySystemObjectAndRecordID
 (_view.SystemObjectID, _view.SystemObjectRecordID);
 tags = _tagService.CalculateFontSize(tags);
 foreach (Tag tag in tags)
 {
 _view.AddTagsToTagCloud(tag);
 }
 }

 public void btnTag_Click(string TagName)
 {
 _tagService.AddTag(TagName, _view.SystemObjectID,
 _view.SystemObjectRecordID);
 if (_view.Display == TagState.ShowCloud || _view.Display ==
 TagState.ShowCloudAndTagBox)
 {
 _view.ClearTagCloud();
 BuildTagCloud();
 }
 }
}

Installing the new user controls
Now that we have our controls built and ready for use, let's plug them into one
of our existing pages. I am choosing the ViewAlbum.aspx page for this purpose.
This page displays uploaded photos, which is fairly good content to collect ratings,
comments and tags from our users.

To get started, we need to register our user controls to the page so that we have
access to them. We do that by adding Register declarations to the top of the page.

<%@ Page Language="C#" EnableEventValidation="false"
 MasterPageFile="~/SiteMaster.Master" AutoEventWireup="true"
 CodeBehind="ViewAlbum.aspx.cs"
 Inherits="Fisharoo.FisharooWeb.Photos.ViewAlbum" %>
<%@ Import Namespace="Fisharoo.FisharooCore.Core.Domain" %>

Chapter 11

[455]

<%@ Register Src="~/UserControls/Ratings.ascx" TagName="Ratings"

 TagPrefix="Fisharoo" %>

<%@ Register Src="~/UserControls/Tags.ascx" TagName="Tags"
 TagPrefix="Fisharoo" %>

<%@ Register Src="~/UserControls/Comments.ascx" TagName="Comments"
 TagPrefix="Fisharoo" %>

Once they are registered we are free to plug them in anywhere we like. I have chosen
to add them just beneath the display of each photo.

 <asp:Label style="font-weight:bold;" ID="lblFileName"
 Text='<%#((File)Container.DataItem).FileName %>'
runat="server"></asp:Label>
 <asp:HyperLink ID="linkImage"
 NavigateUrl='<%#((File)Container.DataItem)
 .CreateDate.Year.ToString() +
 ((File)Container.DataItem).CreateDate.Month.ToString() %>'
 runat="server"></asp:HyperLink>
 <asp:Literal Visible="false" ID="litImageName" runat="server"
 Text='<%#((File)Container.DataItem).
 FileSystemName.ToString() %>'></asp:Literal>
 <asp:Literal Visible="false" ID="litFileExtension" runat="server"
 Text='<%# ((File)Container.DataItem).Extension.ToString()
 %>'></asp:Literal>

 <asp:Label ID="lblDescription" runat="server"
 Text='<%#((File)Container.DataItem).Description
 %>'></asp:Label>
 <asp:Literal Visible="false" ID="litFileID"
 Text='<%#((File)Container.DataItem).FileID %>'
 runat="server"></asp:Literal>

 <Fisharoo:Ratings ID="Ratings1" runat="server" SystemObjectID="5"
 SystemObjectRecordID='<%#((File)Container.DataItem).FileID
 %>'></Fisharoo:Ratings>

 <Fisharoo:Tags ID="Tags1" runat="server" SystemObjectID="5"
 SystemObjectRecordID='<%#((File)Container.DataItem).FileID
 %>' Display="ShowCloudAndTagBox" ></Fisharoo:Tags>

 <Fisharoo:Comments ID="Comments1" runat="server"
 SystemObjectID="5"
 SystemObjectRecordID='<%#((File)Container.DataItem).
 FileID %>'></Fisharoo:Comments>

Comments, Tags, and Ratings

[456]

Once we have the controls physically plugged into the page, we would want to set
their SystemObjectID to 5, which is the File object (in my database).

We would also want to set the SystemObjectRecordID to the FileID of the current
iteration. Then for the Tags control we would want to set the Display property
ShowCloudAndTagBox, which will allow our users to see already assigned tags and
also add their own tags.

That's it! Your new user controls are officially ready for action.

UrlRewrite.cs
Before we can build the Tags page to display all the related objects for a tag, we need
to translate the URL that is passed from our tag clouds. We currently have links in
our tag clouds that look something like http://www.someurl.com/tags/tag-name.
This doesn't map to any specific resource and will fail as is. For this reason, we will
add another section to our UrlRewrite class that will handle this translation.

This code section shall be added to the UrlRewrite.Application_
OnAfterProcess() that we are already using for URL rewriting in other places
of the site. This particular snippet is looking for any URL that contains the word
"tags". If it finds it, then it attempts to get the tag name after the "tags" bit. If it locates
the tag name, it then attempts to load the tag by its name via the TagRepository.
GetTagByName() method. If we find a tag, then we are able to rewrite the path via
the HttpContext.RewritePath() method where we map our user to the tags.aspx
page with the addition of the TagID in the QueryString.

#region TAGS
else if (application.Request.PhysicalPath.ToLower().Contains("tags"))
{
 Tag tag = null;
 int tagsPosition = 0;
 string tagName;

Chapter 11

[457]

 string[] arr =
 application.Request.PhysicalPath.ToLowerInvariant().Split(‘\\');
 for(int i = 0;i<arr.Length;i++)
 {
 if(arr[i].ToLower() == "tags")
 {
 tagsPosition = i;
 }
 if(tagsPosition>0)
 {
 tagName = arr[i + 1];
 tag = _tagRepository.GetTagByName(tagName.Replace
 ("-"," "));
 break;
 }
 }
 if(tag != null)
 {
 context.RewritePath("/tags/tags.aspx?TagID=" + tag.TagID);
 }
}
#endregion

Tags page
Now that our user controls are built and plugged into our site, and we are able to
translate our friendly URLs to something we can work with, we have one final thing
to do. In our tag cloud, each Tag links to the tag name directly. In our UrlRewrite
class, we translate the tag name to the tag ID and redirect our users to the Tags.aspx
page so that we can see all the objects that share the same tag. This page is fairly
straightforward as most of the heavy lifting is done behind the scenes. Let's take
a look.

Tags.aspx
The display side of this page simply has a handful of repeaters—one repeater for
each type of object to which we allow the tags to be attached. When we load our UI,
the presenter sends the view a list of SystemObjectTagWithObjects objects. We
iterate through this collection and for each object, we bind the specific collection of
objects to its corresponding Repeater. In the case of Files, which is what we have which is what we have
plugged our controls into, we would take the Files collection and bind it to the
repFiles Repeater. As we add our new user controls to other sections of the site,
we can hook up to new sections in this page.

<asp:Repeater ID="repFiles" runat="server">
 <ItemTemplate>
 <tr>

Comments, Tags, and Ratings

[458]

 <td><%#((SystemObjectTagWithObjects)Container.DataItem).
File.FileName
 %></td>
 <td>
 <asp:HyperLink runat="server" Text='<%# "Click to
 view album: " + ((SystemObjectTa
gWithObjects)Container.DataItem).Folder.Name %>'
 NavigateUrl='<%# "~/photos/ViewAlbum.aspx?AlbumID=" +
 ((SystemObjectTagWithObjects)Container.DataItem).
 File.DefaultFolderID %>'></asp:HyperLink> or
 <asp:HyperLink runat="server" Text='<%# "Click to
 view photo: " +
 ((SystemObjectTagWithObjects)
 Container.DataItem).File.FileName %>
 ‘ NavigateUrl='<%# "~/files/photos/" +
((SystemObjectTagWithObjects)Container.DataItem).File.CreateDate.Year.
ToString() + ((SystemObjectTagWithObjects)Container.DataItem).File.
CreateDate.Month.ToString() + "/" + ((SystemObjectTagWithObjects)Conta
iner.DataItem).File.FileSystemName + "__O." + ((SystemObjectTagWithObj
ects)Container.DataItem).File.Extension %>'></asp:HyperLink>
 </td>
 </tr>
 </ItemTemplate>
</asp:Repeater>

Tags.aspx.cs
All that this file does on its own is hook up to its presenter. When the presenter's
Init() method is called, the presenter calls into the LoadUI() method of the view.

The LoadUI() method takes in a collection of SystemObjectTagWithObjects. It then
proceeds in setting the data source for each repeater with a subset of the collection of
SystemObjectTagWithObjects by specifying which SystemObjectID is to be used.
Once all the lists are built, the repeater's Items.Count property is interrogated to see
if we have any empty sections, and if we do, we add a "No tagged items" message.

The last method is the SetTitle() method, which allows the presenter to set the
page title that is viewed as a header in our page as well as in the title bar of the
browser (a property in the Master page).

public partial class Tags : System.Web.UI.Page, ITags
{
 private IWebContext _webContext;
 private TagsPresenter _tagsPresenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _tagsPresenter = new TagsPresenter();

Chapter 11

[459]

 _tagsPresenter.Init(this, IsPostBack);
 }
 public void LoadUI(List<SystemObjectTagWithObjects>
 tagWithObjects)
 {
 repAccounts.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 1);
 repAccounts.DataBind();
 repProfiles.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 2);
 repProfiles.DataBind();
 repBlogs.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 3);
 repBlogs.DataBind();
 repPosts.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 4);
 repPosts.DataBind();
 repFiles.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 5);
 repFiles.DataBind();
 repGroups.DataSource = tagWithObjects.Where(t =>
 t.SystemObjectTag.SystemObjectID == 6);
 repGroups.DataBind();
 if (repGroups.Items.Count == 0)
 repGroups.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 if (repFiles.Items.Count == 0)
 repFiles.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 if (repPosts.Items.Count == 0)
 repPosts.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 if (repBlogs.Items.Count == 0)
 repBlogs.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 if (repProfiles.Items.Count == 0)
 repProfiles.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 if(repAccounts.Items.Count == 0)
 repAccounts.Controls.Add(new LiteralControl("<tr><td
 colspan=\"2\">No tagged items</td></tr>"));
 }
 public void SetTitle(string TagName)
 {
 ((SiteMaster)Master).Title = TagName;
 }
}

Comments, Tags, and Ratings

[460]

TagsPresenter.cs
The presenter for this file has one method: Init(). The Init() method
sets the title by passing the Name property of the Tag that is loaded from the
TagRepository using the TagID that is captured by the WebContext.TagID
property. The presenter also calls the LoadUI() method of the view and sends it a
collection of SystemObjectTagWithObjects. This collection is retrieved from the
SystemObjectTagRepository.GetSystemObjectsByTagID() method, which is also
passed the TagID property of the WebContext.

public class TagsPresenter
{
 private ITags _view;
 private ISystemObjectTagRepository _systemObjectTagRepository;
 private ITagRepository _tagRepository;
 private IWebContext _webContext;
 public TagsPresenter()
 {
 _systemObjectTagRepository =
 ObjectFactory.GetInstance<ISystemObjectTagRepository>();
 _tagRepository = ObjectFactory.GetInstance<ITagRepository>();
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 }
 public void Init(ITags view, bool IsPostBack)
 {
 _view = view;
 _view.SetTitle(_tagRepository.GetTagByID(_webContext.TagID).
Name);
 _view.LoadUI(_systemObjectTagRepository.
GetSystemObjectsByTagID(_webContext.TagID));
 }
}

Chapter 11

[461]

Summary
In this chapter, we have successfully created three controls to allow our users to
express their opinions about various content areas of our site. We built a tagging
control that allows us to take in tag keywords as well as display all the tags for
various levels of our site from specific records all the way out to the entire site. We
built a rating control that allows us to configure many options per system object
for individual ratings which are then averaged across all ratings and displayed as
a general score. Finally, we created a commenting control so that our users could
express very specific opinions regarding any of our content items.

With these new user controls, we have created new avenues of interest for our users.
We now have the ability to allow users to touch just about anything in our system.
In addition to allowing users to provide input, we have also created another avenue
of interest for our users who enjoy reading and seeing other users' inputs. We have
come a long way in including our users in the community feel of our site.

Moderation
We are finally at a point where we have a community with pretty much every feature
that represents a great community. To that point, a lot of the features that we allow
our users to create are text-based or resource-based content such as images, movies,
and so on. This is wonderful! Now all we have to do is deploy our site, invite some
users, and watch our community grow. Prepare to rake in the money!

Not so fast! Allowing your user base to have complete freedom in filling your site
with content is not a good idea. It means that you don't have any control over the
destiny of your site. It also means that you will eventually have someone adding
inappropriate material. You might even have a tech-savvy user attempting to steal
some of your user's information for less than appropriate adventures. All these
issues might eventually drive out all the good users leaving you only with bad users.
Possibly, in the worst case, you might end up with legal issues on your hands due to
the actions of your uncontrolled users.

I don't mean to scare you. I only mean to inform you that with a community driven
by your user's content, you would need to take some responsibility and keep a tight
grip on the reigns. This tight grip that I'm talking about is what this chapter is
all about.

In this chapter, we will discuss various forms of moderation. With user-generated
content, we can take advantage of user-generated moderation. After all, why not
give the offended a method to report what offended them? We will also discuss
about gagging users who are habitual offenders. And we will create a filter that will
attack bad words, competitor's spams, and Cross-site scripting attacks (XSS).

Problem
The core problem in this chapter is that we do not want to give willy-nilly control
to our user base. We should maintain as much control over our site as possible
with regards to what goes into it and what is displayed on it. Let's discuss the
core features.

Moderation

[464]

Community moderation
The user moderation takes place with a simple AJAXed ImageButton that allows
them to report inappropriate content inline along with the content.

The content that is flagged by the community will show up in the administration
console under the Moderation section as shown in the following screenshot. Here
you can approve or deny the content.

Chapter 12

[465]

Gagging users
Once you have a list of moderated content, you will eventually start to notice some
repeat offenders. For that reason, we need a way to slap the hands of those offenders.
When viewing your flagged content, you will also see the owner of the content. If
you find that you are seeing repeat offenders, you can apply a Gag to the user. A
Gag will restrict the user from continuing to add content to the site as a form of
punishment for bad behavior. Part of the Gag is to specify the reason and the date
that the Gag order ends. It's shown in the following screenshot. If you don't want to
specify an end data, you can apply a 20 year ban!

Dynamic filter
The dynamic filter will address a few issues. You can use it to effectively remove
profanity from your site. You can also use it to intercept competitor postings or
advertisements on your site. And most importantly, you can use it to restrict the
types of scripting that you allow. This tool could block HTML, JavaScript, and just
about anything else that you don't want on your site, which will aide you in dealing
with Cross-site scripting issues.

Moderation

[466]

As an example, I am posting to the forum, and I chose to use the offensive California
term dude as shown in the following screenshot.

As shown in the following screenshot, I have added a filter entry to my
ContentFilter list that disallows the word dude in my site and instead replaces it
with [filtered].

Chapter 12

[467]

So consequently, my post has been filtered and now shows [filtered] instead of dude
in the following screenshot.

Cross-site scripting (XSS)
Cross-site scripting (XSS) is a form of hacking that is performed on a webpage by
injecting client-side code into the input of a webpage. This is done in an attempt to
gain access to an unsuspecting user's personal information such as that stored in the
cookies of most sites. With careful steps you can, for the most part, protect yourself
from this issue by validating your site's input, encoding your site's output, and not
trusting any data sources that are rendered on your site.

This book is by no means meant to be authoritative on the subject of XSS
issues or hacking webpages. Follow this link if you want to know more:
http://msdn.microsoft.com/en-us/library/ms998274.aspx.
Also search for ASP.NET XSS, SQL Injection, and web page hacking for
further reading.

There is a common misnomer that the ValidateRequest flag of a page will protect
you from this issue. That is not always the case. Also, in case you want to accept
some HTML or JavaScript, you have to turn off the ValidateRequest feature. This
leaves you pretty much unprotected. In our case, we have some pages that allow
some HTML and JavaScript. If we do not take steps to protect ourselves, who will?
We will use our filtering tool to address this concern.

Design
Let's take a look at the design for this feature.

Moderation

[468]

Moderation
For us to enable Moderation, we will take advantage of the same concepts that
we used in Chapter 11 for Rating, Tagging, and Commenting. This feature will be
implemented as another UserControl that we can plug in wherever we need it. As
it will tie into the SystemObjects table of objects, we are free to allow our users to
moderate any database-oriented content—be it textual, image based, or just about
anything else. As long as it has a record ID and a table associated to it, we can
moderate it.

In addition to letting our users flag content for approval, we will need to create a
page to manage what was flagged. We will implement a simple administration page
that will show everything that is listed. For each listed item we can approve or
deny the content. This page will also house our gagging capabilities, which we will
discuss later.

This structure is identical to our other users of the SystemObjects table. It has
a SystemObjectID and a SystemObjectRecordID, which allow us to add a
Moderation entry and see where it points to. When we build the administration
page, you will see how we can use this data to get all the objects, regardless of type,
for administration viewing purposes. In addition to the SystemObjects table, we are
also linking to the Accounts table with the AccountID of the account that published
the questionable content and the AccountID of the user that took action on the
questionable content.

Chapter 12

[469]

Gags
To gag a user—such as in a legal gag order—is to suppress them from being able to
make comments publicly. We will extend this concept to say that we will not allow
any user to publish content on our system if they have a gag order placed on them!

The most important thing to note in the Gags table is the GagUntilDate field as
shown in the preceding screenshot. The date in this field is the date that the user can
interact in the community again.

Filtering
The filtering system will provide us with the ability to map out content that we don't
want, and swap it with the content that we actually need. We will first address this
simple mapping issue with the concept that someone has used foul language on our
site. We will be able to add the potty word that we don't like to our content filter list
and insert a better word in its place so that our content is less offensive. In the case of
my "dude" scenario we swapped in "[Filtered]".

While our filter can and should be used in this simple way, it can also be used to
destroy a client-side script. To possibly destroy a script, you can add these text
strings to our filter list (two different entries) <script> and </script> along with
an empty string as the replacement value. This will effectively replace all <script>
and </script> entries with an empty string. This will leave the code/text between
the remaining script tags. That would effectively break the script—we think. It
would still leave the script code intact, which could possibly be an issue. I could
enter <script> and </script>, and it would not be caught!

Moderation

[470]

In order to just use this concept of filtering, we would have to have an extensive
database of possible entries to test for. Not only is this difficult, but would also be
tremendously inefficient! Even if we had the greatest dictionary in the world, there is
still a chance that we would miss something. And of course it would be fairly ugly as
you would have all the code that we didn't catch displayed in the page. But at least
they couldn't run the script at that point. It's a step in the right direction.

In order to address the issue of unaccounted for tags, and to bypass the need for a
tag library, we will use UrlEncode() on the string to be filtered prior to filtering it.
The first pass of UrlEncode() will convert the <script> and </script> tags into
<script> and </script>. It will also convert all the other special
characters in the entry and make them encoded as well. This effectively renders all
the HTML, CSS, and JavaScript code useless!

Now that we have killed all the possible markup and script in the text, what about
the stuff that we want to allow on my site? We can make exceptions in our filter list
by adding encoded words to be translated back to acceptable terms. In the case of a
bold tag the encode function would make it look like <b&rt;. We can simply
add the <b&rt; to our list of words to be filtered with a replacement value .
Now we can build back what we want to accept. An acceptance list is much easier to
manage than a database of possibilities for the content to be filtered.

Solution
Now let's take a look at the solution.

Chapter 12

[471]

Implementing the database
First let's take a look at what tables are needed:

Moderations
The moderation table shown in the following screenshot holds the SystemObjectID
and SystemObjectRecordID as well as the Account that created the content in
question. It also carries the Account that executed the resulting action as well as what
that action is.

In addition to tables, we are going to need a way to quickly and easily determine
if a bit of content has been flagged or not. I hate to say it boys and girls, but we are
going to dip into the actual SQL for this one. We will create a function that will take a
SystemObjectID and a SystemObjectRecordID and determine if that item is flagged
or not.

create function [dbo].[IsFlagged]
(
 @SystemObjectID int,
 @SystemObjectRecordID bigint
)
returns bit

as
begin
 declare @result bit
 if exists (
 select 1
 from moderations
 where systemobjectid = @SystemObjectID and

Moderation

[472]

 systemobjectrecordid = @SystemObjectRecordID and
 isdenied = ‘true')
 begin
 set @result = 1
 end
 else
 begin
 set @result = 0
 end

 return @result
end

With this in place, we can simply make a call in our queries to determine when an
item is flagged. We can then work with this information inside and outside of our
queries quickly and easily.

Gags
The Gags table, as shown in the following screenshot, is responsible for determining
if a user is on house arrest with regards to adding content to the community. It holds
the gagged user's AccountID, their AccountUsername, when the gag was applied,
why it was applied, who applied it, and when it is to be lifted.

ContentFilters
Though the content filter has a great deal of responsibility, it is a relatively simple
system. All it keeps track of is which pattern to filter, what to replace that pattern
with, who created the filter, and when. The strength of the system is more in the
implementation than in the storage!

Chapter 12

[473]

Creating the relationships
Once all the tables are created, we can create all the relationships.

For this set of tables we have relationships between the following tables:

Moderations and Accounts
Moderations and SystemObjects
Gags and Accounts
ContentFilters and Accounts

Setting up the data access layer
Follow the steps mentioned next:

Open the Fisharoo.dbml file.
Open up your Server Explorer window.
Expand your Fisharoo connection.
Expand your tables. If you don't see your new tables try hitting the Refresh
icon or right-clicking on tables and clicking Refresh.

•

•

•

•

•

•

•

•

Moderation

[474]

Then drag your new tables onto the design surface.
Hit Save and you should now have the following domain objects to
work with!

Keep in mind that we are not letting LINQ track our relationships. So go ahead
and delete them from the design surface. Your design surface should have the
same items that you saw in the preceding screenshot (though perhaps in a
different arrangement!).

Building repositories
With the addition of new tables will come the addition of new repositories so that we
can get at the data stored in those tables. We will create the following repositories to
support our needs.

ModerationRepository

GagRepository

ContentFilterRepository

•

•

•

•

•

Chapter 12

[475]

Each of our repositories will generally have a method— for select by ID, select all
by parent ID, save, and delete. Once you have seen one repository, you have pretty
much seen them all. Review previous chapters, the appendices, or the included code
for examples of a standard repository. However, I will discuss anything that varies
from the standard!

ModerationRepository
For this repository, we have a standard save method that will take in one
ModerationRepository at a time and deal with it appropriately. It essentially
creates entries as our user's flag content. This is great for one-at-a-time record creation
for our community users.

GetModerationsGlobal()
Once we have our Moderation records created, we need to be able to see the
issues so that we can accept some content and deny the others. To do this,
we have a method that gets all the moderations from a global point of view
GetModerationsGlobal().

public List<Moderation> GetModerationsGlobal()
{
 List<Moderation> result = new List<Moderation>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 var groups = (from m in dc.Moderations
 where m.IsDenied == null || m.IsApproved ==
 null
 group m by m.SystemObjectRecordID
 into g
 select new { g, NumberOfReports = g.Count()
 }).OrderByDescending
 (g1 => g1.NumberOfReports);
 foreach (var v in groups)
 {
 result.Add(v.g.ToList()[0]);
 }
 }
 return result;
}

Moderation

[476]

This method allows us to get all the moderations, grouped by the
SystemObjectRecordID as many people could report the same bit of content.
This reduced view is what we will see in our admin screens so that we can accept
and reject content in a more streamlined fashion. There is no need to view
every complaint!

In order to deal with this reduced view, initially we have to create a new struct that
will hold our selected SystemObjectID, SystemObjectRecordID, and whether the
item is approved or not.

public struct ModerationResult
{
 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }
 public bool IsApproved { get; set; }
}

Our admin screen will be built similar to a web-based email client so that you can
interact with several moderation records at a time. It will gather a collection of
moderation records and package them up into a collection of ModerationResults.
Once we have a collection of those items, we can pass them to our bulk save method
SaveModerationResults().

public void SaveModerationResults(List<ModerationResult> results, int
 ActionByAccountID,
 string ActionByUsername)
{
 using(FisharooDataContext dc = conn.GetContext())
 {
 foreach (ModerationResult result in results)
 {
 List<Moderation> moderations =
 dc.Moderations.Where(
 m =>
 m.SystemObjectID == result.SystemObjectID &&
 m.SystemObjectRecordID ==
 result.SystemObjectRecordID).ToList();
 for (int i = 0; i < moderations.Count(); i++)
 {
 if (result.IsApproved)
 {
 moderations[i].IsApproved = true;
 moderations[i].IsDenied = false;
 }
 else

Chapter 12

[477]

 {
 moderations[i].IsDenied = true;
 moderations[i].IsApproved = false;
 }
 moderations[i].ActionByAccountID = ActionByAccountID;
 moderations[i].ActionByUsername = ActionByUsername;
 }
 if(moderations.Count() > 0)
 dc.SubmitChanges();
 }
 }
}

This method is responsible for taking in a collection of ModerationResults, which
is possibly a grouped result set of individual moderations. For this reason, with each
iteration over the ModerationResults collection, we must first attempt to get a list
of applicable Moderation records. We then set all the values for each of these records
and save them back into the database.

We now have everything we need to get complaints from our users as well as
the ability to respond to the complaints. What we are still missing is the ability to
actually remove the content from our site based on the complaints. We can deal
with this issue in two ways. We can add or delete content functionality that
physically removes the offending content from the server entirely, or we can simply
hide flagged content so that the user can possibly fix it. I personally would be very
upset if a site administrator removed a ten page blog post just because I had one
accidental dirty word! So we will stick with the concept that the content will simply
be hidden from the site when it is flagged. This concept unfortunately doesn't have
a magic bullet fix in C# or LINQ—at least not the right one! This is where that
IsFlagged SQL function comes in. We will need to add our IsFlagged() call to
our existing repositories where appropriate. Here is the FileRepository with an
example highlighted:

public List<File> GetFilesByFolderID(Int64 FolderID)
{
 List<File> result = new List<File>();
 using (FisharooDataContext dc = conn.GetContext())
 {
 IEnumerable<File> files1 = (from f in dc.Files
 where f.DefaultFolderID ==
 FolderID &&

 dc.IsFlagged(5,f.FileID) !=
 true

 select f);

Moderation

[478]

 IEnumerable<File> files2 = (from f in dc.Files
 join ff in dc.FolderFiles on
 f.FileID equals ff.FileID
 where ff.FolderID == FolderID &&

 dc.IsFlagged(5,f.FileID) !=
 true

 select f);
 IEnumerable<File> files3 = files1.Union(files2);
 result = files3.ToList();
 foreach (File file in result)
 {
 var fileType = dc.FileTypes.Where(ft => ft.FileTypeID ==
 file.FileTypeID).FirstOrDefault();
 file.Extension = fileType.Name;
 }
 }
 return result;
}

This addition will effectively block the output of all the files that are flagged in our
moderation system.

GagRepository
There are two methods in this repository that we will discuss:

1. One of them will give us the ability to get a listing of all the Gags in the
system so that we can manage who is gagged, who is about to be ungagged,
and possibly a user who may need a Gag extension.

2. The other method will allow us to check to see if a user is currently gagged. It
will allow us to restrict a user from creating new content. We can also use it
to make changes to the display such as hiding the new post button.

Our first method, GetActiveGags(), will allow us to get a list of all Gags that are
still in effect.

public List<Gag> GetActiveGags()
{
 List<Gag> result = new List<Gag>();
 using(FisharooDataContext dc = conn.GetContext())
 {
 result = dc.Gags.Where(g => g.GagUntilDate >
 DateTime.Now).OrderBy(g => g.GagUntilDate).ToList();
 }
 return result;
}

Chapter 12

[479]

The next method, IsGagged(), allows us to verify that a user is not currently under a
gag restraint.

public bool IsGagged(Int32 AccountID)
{
 bool result = false;
 using(FisharooDataContext dc = conn.GetContext())
 {
 if(dc.Gags.Where(g=>g.AccountID == AccountID &&
 g.GagUntilDate > DateTime.Now).
 FirstOrDefault() != null)
 {
 result = true;
 }
 }
 return true;
}

ContentFilterRepository
The ContentFilterRepository currently only has one job. It returns a list of all the
filters in the system.

public List<ContentFilter> GetContentFilters()
{
 List<ContentFilter> filters = new List<ContentFilter>();
 using (FisharooDataContext dc = _conn.GetContext())
 {
 filters = dc.ContentFilters.ToList();
 }
 return filters;
}

Implementing the services/application layer
Once all the repositories are built for single-serving purposes, we can begin to
create the service layer. Again this layer is responsible for assembling aggregates
and performing complex actions with our entities. We will create and modify the
following services:

ContentFilterService

Extensions

•

•

Moderation

[480]

ContentFilterService
The ContentFilterService is responsible for applying our ContentFilters. This
method consolidates the call into the ContentFilterRepository, the HtmlEncode()
of the string, and the actual work of applying the filters to the string being filtered.

public static string Filter(string StringToFilter)
{
 IContentFilterRepository _contentFilterRepository =
 ObjectFactory.GetInstance<IContentFilterRepository>();
 List<ContentFilter> _contentFilters = _contentFilterRepository.
GetContentFilters();
 StringBuilder sb = new StringBuilder(StringToFilter);
 //encode the final output for further security
 sb = new StringBuilder(HttpUtility.HtmlEncode(sb.ToString()));
 //replace all the dirty words and forbidden tags
 foreach (ContentFilter cf in _contentFilters)
 {
 sb.Replace(cf.StringToFilter, cf.ReplaceWith);
 }
 return sb.ToString();
}

Our initial entry into this method provides us with the string that we will be working
with. Next, we get a list of ContentFilters to work with. In order to work with
our string in a more efficient manner we are going to create a new StringBuilder.
Our first pass of filtering our string will start with encoding our string using the
HttpUtility.HtmlEncode() method. Once we have our base string to work
with, we can begin iterating over our collection of ContentFilters. With each
ContentFilter, we perform a Replace() where we swap out our StringToFilter
for our ReplaceWith value. We then convert our StringBuilder back to a string
prior to returning the result of our filtering process.

Extensions
The Extensions class is a pre-existing class that holds all our extension methods. In
this case, we are going to add a new method to the string class. This will allow us to
work with a string directly and apply the Filter() call directly to our string. Shorter
syntax with the same results!

public static string Filter(this string s)
{
 return ContentFilterService.Filter(s);
}

Chapter 12

[481]

To create our extension method, we declare a static method with a return type
string. Next, we have the method name that we want to use. Here this references
the string that the method is being applied to, while the next string specifies the
type to apply the method to. In our method, s is our variable name to work with.

Implementing the presentation layer
The majority of our work in this chapter will be in the form of user controls and
function calls. The changes that are made are more about how the content disappears
rather than seeing new items.

Moderation
Now let's look at the feature of moderation.

The user control
Our moderation feature begins its life as a rather simple user control. This control
is made up of an AJAX.NET UpdatePanel, one Panel, and one ImageButton for
flagging our content. If the user is not logged in, we will hide the Panel. And once
the user clicks the ImageButton, we will add the Moderation content to our table.
Directly after the filter is captured, we will hide the button. From that point
onwards when the users load their content they will no longer see the option to
flag that content.

//UserControls/Moderations.ascx
<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:Panel ID="pnlFlagThis" runat="server" style="float:left;
padding-left:5px;padding-right:5px;">
 <asp:ImageButton ToolTip="Flag this content!"
ID="ibFlagThis" runat="server" ImageUrl="~/images/icon_flag.gif"
OnClick="ibFlagThis_Click" />
 </asp:Panel>
 </ContentTemplate>
</asp:UpdatePanel>

Note that we have a few properties. These are the same as our Tagging, Rating,
and Commenting controls. These properties allow us to track the item that we are
allowing our users to flag. Once we have the UI loaded for this control, we initialize
our presenter and make a call to initialize our control.

public partial class Moderations : System.Web.UI.UserControl,
 IModerations
{

Moderation

[482]

 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }
 public bool ShowFlagThis
 {
 set
 {
 pnlFlagThis.Visible = value;
 }
 }
 ModerationsPresenter _presenter = new ModerationsPresenter();
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter.Init(this, IsPostBack);
 }
 protected void ibFlagThis_Click(object sender, EventArgs e)
 {
 _presenter.SaveModeration(SystemObjectID,
 SystemObjectRecordID);
 }
}

Once the control is transferred to our presenter, we can set all the properties for our
control and determine if we should show the control or not.

public class ModerationsPresenter
{
 private IModerations _view;
 private IWebContext _webContext;
 private IModerationRepository _moderationRepository;
 public ModerationsPresenter()
 {
 _webContext = ObjectFactory.GetInstance<IWebContext>();
 _moderationRepository =
 ObjectFactory.GetInstance<IModerationRepository>();
 }
 public void Init(IModerations view, bool IsPostBack)
 {
 _view = view;
 if (_webContext.CurrentUser == null)
 _view.ShowFlagThis = false;
 else if (_moderationRepository.HasFlaggedThisAlready(_
webContext.CurrentUser.
 AccountID, _view.SystemObjectID,
 _view.SystemObjectRecordID))
 _view.ShowFlagThis = false;

Chapter 12

[483]

 else
 _view.ShowFlagThis = true;
 }

 public void SaveModeration(int SystemObjectID, long
 SystemObjectRecordID)
 {
 if (_webContext.CurrentUser != null)
 {
 Moderation moderation = new Moderation();
 moderation.AccountID = _webContext.CurrentUser.AccountID;
 moderation.AccountUsername =
 _webContext.CurrentUser.Username;
 moderation.CreateDate = DateTime.Now;
 moderation.SystemObjectID = _view.SystemObjectID;
 moderation.SystemObjectRecordID =
 _view.SystemObjectRecordID;
 _moderationRepository.SaveModeration(moderation);
 }
 _view.ShowFlagThis = false;
 }
}

The last thing to be aware of is the button click event that is transferred from the
code behind and into the presenter. From the presenter we create a new Moderation
and save it to our database.

Once the user control is complete, we are able to plug it for all to use. The first thing
that needs to be done is to register the new user control on the page where we intend
to use it.

<%@ Register Src="~/UserControls/Moderations.ascx"
 TagName="Moderations" TagPrefix="Fisharoo" %>

Then we can locate the control where we need it. Remember that this is simply a link
button that displays a small icon.

<ItemTemplate>

 <Fisharoo:Moderations ID="Moderations1"
 SystemObjectID="5"
 SystemObjectRecordID='<%#((File)
 Container.
 DataItem).FileID
 %>'
 runat="server">
 </Fisharoo:Moderations>

Moderation

[484]

 <asp:Label style="font-weight:bold;"
| ID="lblFileName"
 Text='<%#((File)Container.DataItem).FileName %>'
 runat="server">
 </asp:Label>

Note that we are loading the properties directly in the page. This may or may not
work depending on when you load the repeater. You may need to locate and load
the control in the OnItemDataBound event handler.

protected void lvAlbum_ItemDataBound(object sender,
 ListViewItemEventArgs e)
{
Fisharoo.FisharooWeb.UserControls.Tags Tags1 =
 e.Item.FindControl("Tags1") as
 Fisharoo.FisharooWeb.UserControls.Tags;
Fisharoo.FisharooWeb.UserControls.Moderations Moderations1 =
 e.Item.FindControl("Moderations1") as Fisharoo.FisharooWeb.
 UserControls.Moderations;
Moderations1.SystemObjectRecordID = Convert.ToInt64(litFileID.Text);
Tags1.SystemObjectRecordID = Convert.ToInt64(litFileID.Text);

Once this is complete, the community will be off and running to moderate content!

Moderating flagged content
Now that we have a working flagging system, it is time to stand up a page where we
can manage the newly collected data. To achieve this, I have added a new section
to our (sparse) administration area. This page has a quick repeater that shows some
checkboxes to capture whether the item is to be approved or denied.

There are also some Gagging tools here to capture the gagging of a user.
We will discuss more of this later.

<asp:UpdatePanel runat="server">
 <ContentTemplate>
 <table>
 <tr>
 <td>Approve</td>
 <td>Deny</td>
 <td>Content</td>
 <td>Reported User</td>
 <td>Gag Till</td>
 <td>Reason</td>
 </tr>

Chapter 12

[485]

 <asp:Repeater ID="repModeration" runat="server"
 OnItemDataBound="repModeration_ItemDataBound">
 <ItemTemplate>
 <tr>
 <td><asp:CheckBox ID="chkApprove" runat="server"
 /></td>
 <td><asp:CheckBox ID="chkDeny" runat="server" /></td>
 <td><asp:PlaceHolder ID="phContent"
 runat="server"></asp:PlaceHolder></td>
 <td>
 <asp:HyperLink runat="server" NavigateUrl='<%#
 _configuration.WebSiteURL +
((Moderation)Container.DataItem).AccountUsername %>'
 Text='<%#((Moderation)
 Container.DataItem).AccountUsername %>'></asp:HyperLink>
 <asp:Literal ID="litSystemObjectID"
 Visible="false" Text='<%#((Moderation)Cont
ainer.DataItem).SystemObjectID %>'
 runat="server"></asp:Literal>
 <asp:Literal ID="litSystemObjectRecordID"
 Visible="false" Text='<%#((Moderation)Cont
ainer.DataItem).SystemObjectRecordID %>'
 runat="server"></asp:Literal>
 <asp:Literal ID="litAccountID" Visible="false"
 Text='<%#((Moderation)
 Container.DataItem).AccountID %>'
 runat="server"></asp:Literal>
 <asp:Literal ID="litAccountUsername"
 Visible="false" Text='<%#((Moderation)Cont
ainer.DataItem).AccountUsername %>'
 runat="server"></asp:Literal>
 </td>
 <td><asp:TextBox ID="txtGagDate"
 runat="server"></asp:TextBox></td>
 <td><asp:TextBox ID="txtReason"
 runat="server"></asp:TextBox></td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 <asp:Button ID="btnSubmit" runat="server"
 OnClick="btnSubmit_Click" Text="Save" />
 </ContentTemplate>
</asp:UpdatePanel>

Moderation

[486]

This is a very simple but efficient interface. It will show us the content that was
flagged, who posted the content, and provide us with the opportunity to take the
appropriate action.

With the UI created, we can take a quick look at the code behind. For the most part,
the code in this page is a very normal loading and rendering of a Repeater control.
The one place that may be a bit new to you though is in the Save button's click
event. Here we will iterate through all the controls in the Repeater to extract the
data that we need to work with.

protected void btnSubmit_Click(object sender, EventArgs e)
{
 List<ModerationResult> results = new List<ModerationResult>();
 foreach (RepeaterItem item in repModeration.Controls)
 {
 if(item.ItemType == ListItemType.AlternatingItem ||
 item.ItemType == ListItemType.Item)
 {
 CheckBox chkApprove = item.FindControl("chkApprove") as
 CheckBox;
 CheckBox chkDeny = item.FindControl("chkDeny") as
 CheckBox;
 Literal litSystemObjectID =
 item.FindControl("litSystemObjectID") as Literal;
 Literal litSystemObjectRecordID =
 item.FindControl("litSystemObjectRecordID") as Literal;
 TextBox txtGagDate = item.FindControl("txtGagDate") as
 TextBox;
 TextBox txtReason = item.FindControl("txtReason") as
 TextBox;
 Literal litAccountID = item.FindControl("litAccountID")
 as Literal;
 Literal litAccountUsername =
 item.FindControl("litAccountUsername") as Literal;
 if(chkDeny.Checked || chkApprove.Checked)
 {
 ModerationResult mr = new ModerationResult();
 mr.SystemObjectID =
 Convert.ToInt32(litSystemObjectID.Text);
 mr.SystemObjectRecordID =
 Convert.ToInt64(litSystemObjectRecordID.Text);
 if (chkApprove.Checked)
 {
 mr.IsApproved = true;
 results.Add(mr);
 }

Chapter 12

[487]

 //deny wins
 if (chkDeny.Checked)
 {
 mr.IsApproved = false;
 results.Add(mr);
 }
 }
 if(!string.IsNullOrEmpty(txtGagDate.Text))
 {
 _presenter.GagUserUntil(Convert.ToInt32
 (litAccountID.Text),
 litAccountUsername.Text,
 DateTime.Parse(txtGagDate.Text),
 txtReason.Text);
 }
 }
 }
 if(results.Count() > 0)
 _presenter.SaveModerationResults(results);
}

There appears to be a lot going on here, but a fair amount of the code at the top of the
method is dedicated to locating and loading the controls from the UI. Once we have
the controls in hand, we can interrogate the state of each flagged item. When we find
something with a checkbox selected for approving or denying, we add the item to
our List of ModerationResults (recall that we created this earlier in the repository
in the previous section).

Also note that there is more gagging logic here!

Once we have worked our way through the data, we then send our list of alterations
through to the ModerationRepository where it is saved in bulk.

Gagging
In order to see how the Gagging feature works, you will need to have read the
Moderation section explained previously in this chapter.

Now that we are here in the moderation pages UI, you can notice that we have
two text box controls. We have one text box for capturing the reason why we have
decided to gag a user. And the other text box is for providing the data, which
indicates when the gag would ultimately be revoked for a user. You could accurately
label that box "Grounded until..."

Moderation

[488]

In the btnSubmit_Click() method (discussed previously), you will also see some
code that interrogates the state of those text boxes. If we find something in the
Repeaters control collection, then we call into the GagUserUntil() method of our
presenter and effectively gag the user. The presenter creates a new Gag object and
persists it out to our database.

public void GagUserUntil(int AccountID, string AccountUsername,
 DateTime GagTillDate, string Reason)
{
 Gag gag = new Gag();
 gag.AccountID = AccountID;
 gag.CreateDate = DateTime.Now;
 gag.AccountUsername = AccountUsername;
 gag.GagUntilDate = GagTillDate;
 gag.Reason = Reason;
 gag.GaggedByAccountID = _webContext.CurrentUser.AccountID;
 _gagRepository.SaveGag(gag);
}

Filtering
Finally, we come to the meat and potatoes of our chapter. The filtering process is
responsible for removing vulgar language, competitors' advertisments and bad
mouthing, and XSS attacks. It is the almighty feature of features. Are you ready
for it?

I have added this feature to our ViewPost.aspx page to demonstrate it. To get
started, we need to add a reference to our implementation code where all our
services live.

<%@ Import Namespace="Fisharoo.FisharooCore.Core.Impl" %>

Then we need to add a call to our Filter() extension method.

<tr style="background-color:#dddddd;">
 <td colspan="4"
 valign="top">
 <asp:Label ID="lblDescription"
 runat="server"

 Text='<%#((BoardPost)Container.DataItem).Post.Filter()

 %>'>
 </asp:Label>
 </td>
</tr>

Chapter 12

[489]

Done, finally! All the work for the implementation of this feature is in the
backend—crucial for the feature of this nature. The easier it is to use, the more
likely it will be used. Wherever possible we would actually be better off filtering
the text in the presenter or even further up the chain. The closer this task is done to
the actual data retrieval, the less likely it is to be forgotten! But as you can see, it is
flexible enough to be used whenever and wherever you need it.

Summary
In this chapter we discussed how and why to implement some form of moderation.
We looked at how our community provided content could be managed by the same
community using a very simple flagging tool that is flexible enough to be added
to any major entity on our site. We also looked at methods to deal with habitual
rule breakers in the form of gagging them or suspending their content by adding
privileges. Finally, we took a very high-level look at what Cross-site scripting is,
and some measures that can be taken to address it. We then implemented a filtering
system to automate the address of our XSS issues. This functionality has provided us
with a way to remove inappropriate content as well as security issues.

Please do make a point of researching XSS more. At the very least take a look at the
link provided by Microsoft regarding this topic!

Scaling Up
If you have made it this far then you must be the proud new owner of a community
site that is ready to start accepting new community members. I know from
experience that you did not go this far to start a community that will only ever have
100 users. You, like everyone else, would like very much to start building a social
network that gets 100,000 or more active users. Ten thousand users is considered a
success. One hundred thousand concurrent users and you might be able to sell your
community to someone else. Hit a million and you can scream WOO HOO!

To get that many users to your site will require several things. It means that you
will have to have a great new concept for your site. Something that really makes it
stand out as different. It will require excellent marketing skills either by way of viral
marketing or through a more traditional marketing campaign. It will also mean that
your site will need to stand up under a heavy daily load of users continuously until
you reach your goals. This last point is what this chapter is all about.

Problem
There are many aspects of a site with a large number of users that can bring the
site to its knees. Some of this can be slowness of the features while others can be
physically locking the system to a point that it is no longer responsive. In this
chapter, I will do my best to address some of the possible issues that might come up
with a community.

We will discuss issues at the database level in the form of indexing and partitioning
our data. We will dive into how we can address application slowness by throwing
more hardware at it and then load balancing that hardware. We will also discuss
how to cache data dips and complex object creation so that we don't have to perform
the queries or object manipulation every time. Next, we will speed up our search by
creating highly optimized, indexed data sets. And finally we will look at reducing
the number of systems our website speaks to directly so that our user experience is
not directly impacted by infrastructure.

Scaling Up

[492]

Design
Let's assume for this chapter that you have so many concurrent users on your site
that you are starting to notice that the site and your servers are no longer able to
keep up. What can we do? There are many approaches to this problem. You can
simply leave the code unchanged and put the same code on many servers. You
can address some performance in your code and stay on one server. You can even
address some optimizations at the database level. Eventually though you will have
to do all these to withstand the large loads of a successful community.

Database optimization
Up to this point we have not spent too much time discussing much at the database
level. I will try to maintain that theme here as well, this book being more about ASP.
NET and C# than it is about SQL! That being said, there are some things that we can
do at the database level that we just can't do elsewhere.

Flagged for delete
Flagging content to be deleted rather than actually deleting it is not only going to be
faster from the user's perspective but also from the database's perspective. When you
attempt to delete a record, the database must lock that table prior to performing the
delete. Also, with each deletion an entry must be made to the transaction log. And
when a record is finally deleted, the database maintains the log sequence number
and doesn't necessarily de-allocate the data pages for the deleted information. The
bottom line—a delete statement is one of the most expensive commands that can
be executed.

So, instead of deleting the record when the application says it needs an item deleted,
we could set the FlaggedForDelete column to true. Then when our queries fetch
data from this table, we could have a parameter in our WHERE clause checking that
the data that we are selecting is not flagged for delete. We could then have an
administrative process that runs however frequently is best for the current load that
selects all the active data out of our table into a temp table, drops the table with our
flagged for delete data, and then renames our temp table to the original name. When
the table is truncated, the data pages are re-allocated to the system for re-use.

Keep in mind that with this method comes no "undo" feature. If you need your data
to be persisted to the transaction logs for auditing purposes, this may not be the
best method for you. Also, if you have any foreign key references to the table that
you are truncating, you must drop those references prior to performing the truncate
command. When you are through with your process, you will then have to recreate
your keys.

Chapter 13

[493]

Indexing
Indexing is a way of optimizing your database in such a way that the data is
organized for fast searches. Without an index, various functions such as WHERE,
ORDER BY, GROUP BY, TOP, and DISTINCT will have to perform a table scan, which
will impact performance heavily. Without an index, when you are looking for a
user's profile where ProfileID = 89734, SQL Server will have to look at every row to
find the data that it is looking for. With an index in place, SQL Server will keep a list
of ProfileIDs in a specific order so that locating the one we are interested in will
be easy.

With an index in place, you will find that querying with a WHERE clause will be much
faster. The downside to an index is that each time data is deleted from the index,
the index must be recreated. The creation of an index can take time if the data set is
large. This is a known downside and generally accepted as having an index is better
than not having one.

Partitioning
Partitioning is the concept of splitting up a table's data into multiple tables. This
can be done both vertically and horizontally. Both types of partitioning can be
useful. I will explain both types, but we will go into further detail regarding
horizontal partitioning.

Vertical partitioning is the concept of placing columns from one table into their own
table. This data would remain in sync with the data from the other table. This process
is sometimes referred to as row splitting. This action also occurs when normalizing a
table. The performance gains from this type of partitioning is realized when you can
quickly find data or static data and put it on one physical device and it becomes time
consuming to find, or wider data, or more dynamic data, onto another device. Other
than normalization, this type of partitioning is not used as frequently.

Horizontal partitioning is where you would take a physical set of data—the whole
row—and store it in an identical table (schema wise). Each set is generally a ranged
set of data. So for an ordering system you might put one quarter worth of data in
table A, another quarter in table B, and so on. Generally, you would want to work
with dates or numbers as your range set. However, in our case, we would only
know the users by their usernames and passwords. So we might keep an indexed
table of Usernames and UserIDs. Once we have the User's ID, we could then go
to a partitioned table of user data partitioned on UserID in the range of 1-100,000,
100,001-200,000, and so on. Horizontal partitions speed up queries due to the fact
that we are working with smaller sets of data. Also we can easily and quickly work
with smaller sets of data in terms of adding to and deleting from those sets.

Scaling Up

[494]

Web farming
Web farming (or load balancing) is the concept of spreading out your site's traffic
over many servers. This addresses most of the performance problems whether in the
application or on the server, by expanding your infrastructure and sharing the load
across many servers. Generally, whoever is doing your load balancing will take a look
at all the servers in your farm and route the user to the server with the lowest load.
There are several ways to do this, and we will touch upon many of them lightly.

Caching
To cache in the terms of our application is to take some data or objects and store
them in memory for later use. Later, when we need the stored item, we can simply
retrieve it from memory. In terms of caching data from a database, we can take
queried results and store them in memory. This means that when we go to get it
again, we don't have to perform a server-to-server connection. We don't have to
wait for the query to be executed, and we don't have to wait for the results to get
sent back to us. We can just pluck the item from RAM. Take this one step further
up the chain and we can enjoy further optimizations. We can take the data from the
database, parse that data, build a list of fully hydrated objects, and then store that list
in the cache. This means that in addition to skipping the database stuff we can also
skip creation and hydration of our objects.

Caching, like indexing, comes with some downfalls. If we put data into our cache
and then delete that data from the database, we may find our site using stale data.
If we try to create blog entries with an account that no longer exists, we will get a
database error. So while implementing a caching layer we must be very vigilant in
making sure that our data is kept clean. Also, the problem can go the same way. If
we have data in the cache that is stale but valid, we could show data that is incorrect
to the user. It is important that we maintain this side of the clean data equation too!

Searching
Although a properly implemented set of indexes and caching layer can really add
some serious performance to your site, it is not a fix all for everything. There is no
reason to add search results to cache as a search is something that can literally be
different for every search that is performed across all users. This would quickly fill
our cache with bogus data. In addition to this shortcoming from cache, indexing
doesn't fix everything up either. While an index can add some new legs to our
search, it is not the best option for searching as people are generally interested in
searching fields of text (not something we would want to index). And while we
could implement FREETEXT search capabilities in SQL Server, there are better
solutions out there.

Chapter 13

[495]

In this section, we will discuss using Lucene.NET, which is a tool that allows you
to index and search data efficiently. There are many big sites out that currently use
Lucene for their search capabilities, and I will show you how to do it. While we
won't be able to create a Google search engine, we can create all the fast searching
features that any community site might need.

You can find Lucene here:
http://incubator.apache.org/lucene.net/

Email
How can sending email make the site slow? If you think about the normal emailing
process, you will find that the web server has to, at the very least, connect to an
SMTP server. This connection can take time. If you need to send hundreds of emails,
then you need to possibly make the same amount of connections to an SMTP server.

To reduce this slowness, we will build a system that allows us to stuff our emails
into a queue and send the email later from another system. This will greatly improve
our users' experience as they will not have to wait for the web server to make a
connection to SMTP and send an email. We will instead stuff the email into our
queue and assume that the email will be delivered from another system.

Solution
Let's take a look at our solution.

Database optimization
The FlaggedForDelete concept is not one I am going to spend too much time on.
You simply need to add FlaggedForDelete columns to each of your tables with
false as the default value. As we are using LINQ to SQL, you would then need to
update all the tables in your LINQ to SQL design surface. Then specify the default
value of the FlaggedForDelete field as false in all your INSERT statements (you
will need to set this value as objects come in to be inserted). With this in place,
you would next need to update all your SELECT statements to check against the
FlaggedForDelete field excluding items that are marked true. Don't forget that
when you are running joined queries to check the FlaggedForDelete field on the
linked tables as well. Last, you need to have a scheduled process that grabs all the
rows that are flagged for deletion and removes them.

Scaling Up

[496]

The process for removing rows that are flagged for delete is this:

From table A, select the rows that are not flagged for deletion into a
temp table
Drop table A
Rename the temp table as table A

Keep in mind that if there are foreign keys referencing the table that you want to run
this process on, you will have to remove the keys. Then when the process is complete
you will need to re-enable the keys.

Indexing
There are several types of indexes that can be created on a table—Unique, Clustered,
Non-Clustered, and so on. A Unique index is one where the key of the index is
unique across the entire table. Think of an auto-generated int value as a unique
index. A clustered index keeps the sort of the table's data the same as the sort of
the index. This makes for a very fast index. There can be only one clustered index
on a table, as the table can have only one physical sort order! And then there is the
non-clustered index. This index type keeps the indexed keys sorted logically, but
this does not impact the physical sort of the table's data. An index can be made up
of a single column such as the primary key of the int type. Or, you can create a
composite key which is made of up to sixteen columns.

By default, when you create a table, the ID field or the primary key is established as
the clustered index. If we wanted to create a new clustered index for the Accounts
table using the Username field, we would first have to drop all the references to this
primary key before we could remove the Clustered Index. We will focus on creating
a unique non-clustered index on the Accounts table out of the Username field as the
current Clustered Index will be used more often than the one we are going to create
(as we frequently query on AccountID). To create this index, follow the steps
given next.

Go into the Accounts table details
Select the Indexes folder
Then right-click in the empty space and select New Index…

•

•

•

•

•

•

Chapter 13

[497]

Then specify the Index name as nci_Accounts_Username (nci = non-clustered
index), select Unique as we know that the Username field should be unique in our
system, and then add the Username field to the columns that we want to build an
index for.

Scaling Up

[498]

Then click OK, and we should have a New Index in place. If you have large amounts
of data in the table that you created an index for, the index will be created right
away. But SQL Server may need some time to generate the index.

The use of an index is transparent to us. It is sort of like a phone book for SQL Server.
Hence when we specify that we want the data for a user with the username of
"asiemer", it knows how to find that data in a more efficient manner.

Partitioning
We will focus on how to build and utilize a partitioned table. Keep in mind that we
only need to do this once the database has gotten to a point where it is starting to feel
a bit sluggish (actually, you want to do this prior to feeling sluggish!). These are the
general steps for creating the horizontal partition.

1. Create filegroups if you want to put the data on multiple physical disks. This
is the best way to feel the most gain out of this particular performance hop
up. This way when you are querying across the partition, the work is split up
across multiple disks.

2. Create a partition function. This defines the range that we will be
working with.

3. Create a partition scheme. This allows us to specify which partition sits on
which filegroup.

4. With these steps out of the way, we can then start to create the
partition tables.

Chapter 13

[499]

FileGroups
To create a new filegroup, use this syntax.

Alter Database Fisharoo ADD FILEGROUP FG1

Once the filegroup is created, you can then add files to it.
ALTER DATABASE Fisharoo
ADD FILE
(
 NAME = FILE1,
 FILENAME = 'c:\Projects\Fisharoo\Trunk\DataBase\ FILE1.ndf',
 SIZE = 1MB,
 MAXSIZE = 10MB,
 FILEGROWTH = 1MB
)
TO FILEGROUP FG1;

You can add as many files to the file group as you think you will need. One file
per disk per partition is the best thing you could do! You can always add to and
modify this later.

Partition function
To create a partition function, use the following code:

CREATE PARTITION FUNCTION pfAccounts(int)
AS
RANGE LEFT FOR VALUES(10,000,20,000,30,000)

This partition function specifies that there will be three partitions. Each partition
will hold 10,000 account records (you would probably want to define larger ranges).
In the first partition, we will have accounts 1 through 10,000. The second partition
will have 10,001 through 20,000. The third partition, that is, the final one will have
accounts 20,001 through 30,000.

Partition scheme
To create a partition scheme use the following code (assuming that you made these
file groups):

CREATE PARTITION SCHEME psAccounts
AS
PARTITION pfAccounts TO (FG1,FG2,FG3,[PRIMARY])

If you only have one file group defined then you can use this code:

CREATE PARTITION SCHEME psAccounts
AS
PARTITION pfAccounts ALL TO (FG1)

Scaling Up

[500]

Partition tables
With these items in place we can then create the actual partition table.

CREATE TABLE Accounts
(
 AccountID INT,
 Username VARCHAR(20),
 ...
)
ON psAccounts(AccountID)

How does this affect our current system?
Unfortunately, this is not a behind-the-scenes fix all for your system like the indexes
are. Querying a partitioned table requires a bit more syntax as you need to tell the
SQL Server in which partition to look. This is not overly complex though. To get the
account of a user with an AccountID of 25,000, you would run this query:

SELECT *
FROM Accounts
WHERE $PARTITION.pfAccounts(AccountID) =
 (SELECT $PARTITION.pfAccounts(25,000))

The key here is the SELECT statement in the WHERE clause.

SELECT $PARTITION.pfAccounts(25,000)

This line returns the partition number to search for based on the range value that
we build our partition function around. In this case, it knows that you are interested
in the second partition. So it returns a 3 as partition 3 holds the account with
AccountID 25,000. Beyond this querying, data is unchanged.

Take a look at this resource for further information regarding partitioned tables:

http://www.dotnetspider.com/resources/1082-Partitioning-Tables-SQL-
SERVER.aspx

Gotchas
Do take note of the following points:

Table partitioning, as described in the previous section, is available only in
the Enterprise Edition (EE) of SQL Server. If you are working on something
lower than EE, take a look at this post as it describes how to do a partitioned
view instead of a partitioned table. This comes with some gotchas though
so read it carefully! http://sqldev.wordpress.com/2008/03/16/sql-
server-table-partitioning-without-enterprise-edition/

•

Chapter 13

[501]

LINQ to SQL and table partitions are not going to work as we would like
(hopefully only for a while!). This means that for data that we are working
with that is partitioned, we will have to work with it through stored
procedures or table-valued user-defined functions.

Web farming
I am going to assume that we are interested in learning how to create a web farm in a
windows environment.

For those who need a Linux solution though you might try Ha Proxy
(http://haproxy.1wt.eu/) or something similar.

Specifically, we are going to talk about setting up a web farm using Windows
using the Network Load Balancing (NLB). This allows you to host a handful of
servers behind one virtual IP address on your network as portrayed in the
following diagram:

Public
10.0.0.30

Central DB

Server 1
10.0.0.1

Server 2
10.0.0.2

Server 3
10.0.0.3

Server 4
10.0.0.4

For this to work, each server in the farm needs to be configured identically so that
any request that goes to any server will be handled in the same fashion. When
a request comes to the virtual IP address, the packet will be routed to the least
busy server. This configuration allows support of the concept of a reliable service.
Meaning that if one server goes down, the farm will simply rebalance itself and route
traffic to the servers that are still up.

•

Scaling Up

[502]

To set this up, you need at least two machines running the Windows Server. Each
machine will need to have one fixed IP address. While the machine can run on one
network card, two cards are preferred—one card having the fixed IP address and
the other using the virtual IP address. The IP addresses must be on the same
class C network.

Open the Network Load Balancing Manager from Administrative Tools. Right-click
on the Network Load Balancing Clusters and select New Cluster.

Chapter 13

[503]

In Cluster Parameters, enter your virtual IP and your subnet mask (same
subnet for all servers!). Then enter the domain name that points to this IP address
(www.fisharoo.com). If you have more than one network card choose Unicast, for a
single network card choose the Multicast option. Make sure that IGMP multicast is
checked. Leave the Allow remote control unchecked. Click Next.

Scaling Up

[504]

In the Cluster IP Addresses you can add additional virtual IP addresses. This allows
you to host multiple websites from different IP addresses. We don't need this in our
case. Click Next.

Chapter 13

[505]

In the Port Rules table, we can define which ports our cluster will operate on. By
default, the port that is configured handles traffic for all ports. This is a bit unsecure
from my point of view. So we will remove the default configuration and configure
port 443 for SSL and port 80 for web traffic. Select the default configuration and
select Remove. Then to configure a new port 80 rule, click Add…

Scaling Up

[506]

Make sure the All option is selected to make this rule apply to all IP addresses
in the cluster. Then set the port range From 80 To 80 (this effectively covers one
port). Be sure that the Both option of Protocols is open to allow both TCP and UDP
packets through this port. In the Filtering mode section, choose Multiple host and
an Affinity of None. The second port, port 443, is exactly the same as the one before
with the exception of a different port number. Click Ok. Then click Next.

Now enter an IP address of one of the servers in the cluster. I entered the local host
address for demo purposes. Then click Connect. You should then see the network
address and IP address of that host. Select the IP address of the host that is part of
the cluster and click Next.

Chapter 13

[507]

We will now configure the priority of each server in the cluster. Each server must
have its own unique priority. The smaller the priority number, the higher the priority
is for that server. 1 is the master server of the cluster. Once you hit Finish, you then
have a new node in your cluster. You need to add all the servers that you want
involved in your cluster.

Now you can configure your website's DNS to point to your network's virtual IP
address for your web servers and the load should be transferred evenly across all
the servers in the cluster. If one of the servers in your cluster goes down, your site
should stay up. Keep in mind that with a clustered web farm, you will be able to
service more requests. But don't forget to think about the other weak links in the
chain. All the clustered servers are now pointing to a single data source. You might
need to make that redundant as well if it is not already!

Scaling Up

[508]

For more great information about setting up a network load balanced web farm
in Windows Server, check out this great article from Rick Strahl at www.west-
wind.com (http://www.west-wind.com/presentations/loadbalancing/
networkloadbalancingwindows2003.asp).

Caching
Straight from www.danga.com/memcached you will see that:

memcached is a high-performance, distributed memory object caching system,
generic in nature, but intended for use in speeding up dynamic web applications by
alleviating database load.

Simply put, the MemCached software allows you to create a farm within your web
farm. This tool is used to create and manage a state farm. There aren't any limitations
as to how many servers you can have in this farm. There aren't any hardware
requirements for this tool either. This means that you can easily stand up some
very cheap Linux boxes with a load of RAM, and expand your state farm as your
application(s) require.

Did you say Linux? This is what I used to say too. No worries though. MemCached
has recently been ported to the Windows platform, and is now offered as
MemCached for Win32 (http://jehiah.cz/projects/memcached-win32/). The
same rules apply to this product from the hardware perspective. The only reason I
brought up the Linux option is that every instance of Windows that you stand up
will cost you an initial outlay of cash for both a new box and the OS. On the other
hand, the Linux boxes could be a farm of deactivated desktops and a free copy of
your favorite Linux distro!

The reason that I use this over what is shipped with .NET is that there are lesser
restrictions all around, and it seems to be better performing. Example: I can only
have one .NET State Server or SQL Server whereas I can have as many nodes in
my cache cluster as I want with MemCached. Moreover, the response time of
MemCached over the standard State Server and SQL Server is also considerably
better. I also don't have to worry about where my applications are physically
running from as MemCache runs in its own world either on the same server as your
application or on entirely different servers.

You still need to set the machineKey or disable the MAC check as
discussed to get your ASP.NET webpages to work. MemCached only
takes care of caching and session handling!

Chapter 13

[509]

This cache implementation can do for you exactly the same thing a State server
can. You can point your session wrapper (or Context in our case) to your
memcache implementation.

The server
Get the windows version of MemCached from the URL given in the Caching section.
You can download the binaries or the source code. If you downloaded the source
code, you need to build the solution. With the binaries in hand, you can unzip/put
them into a directory on your local drive. Once you have the binaries installed, you
can run these simple directions:

1. Unzip the binaries in your desired directory (eg. c:\memcached)
2. Install the service using the command:

 c:\memcached\memcached.exe -d install

3. Start the server from the Microsoft Management Console or by running the
following command:

 c:\memcached\memcached.exe -d start

4. Use the server, by default listening to port 11211

You can run several instances of this program on each server if you need to. Also,
you can change the port that you run the server(s) on. You could run a different
instance per application if you like.

That's it!

The client
Once you have the server installed and running you will need a client. There are
currently a few C# clients available.

https://sourceforge.net/projects/memcacheddotnet/

http://code.google.com/p/beitmemcached/

http://www.codeplex.com/EnyimMemcached

There is also a host of other clients for other languages too.

http://www.danga.com/memcached/apis.bml

•

•

•

•

Scaling Up

[510]

In our implementation, we will use the Enyim Memcached client. I have used this
client on several projects and have not seen it have any issues. This client comes in
the form of a solution that you can get from codeplex.com. It has a test client, the
actual code, and so on. I take the Enyim.Caching project from within the solution
and plug it into my current project solution.

Chapter 13

[511]

With this in place you can then add a reference to Enyim.Caching from your project.

Using the client
With our new client in place we can then create a new cache wrapper that inherits
from the same interface as our current cache wrapper.

public interface ICache
{
 object Get(string cache_key);
 List<string> GetCacheKeys();
 void Set(string cache_key, object cache_object);
 void Set(string cache_key, object cache_object, DateTime
 expiration);
 void Set(string cache_key, object cache_object, TimeSpan
 expiration);
 void Set(string cache_key, object cache_object, DateTime
 expiration, CacheItemPriority priority);

Scaling Up

[512]

 void Set(string cache_key, object cache_object, TimeSpan
 expiration, CacheItemPriority priority);
 void Delete(string cache_key);
 bool Exists(string cache_key);
 void Flush();
}

We will call the new cache wrapper MemcachedCache. The big difference here is that
we have a different Pluggable attribute of MemCached.

[Pluggable("MemCached")]
public class MemcachedCache : ICache
{
 private MemcachedClient cache;
 private TimeSpan _timeSpan = new TimeSpan(
 Settings.Default.DefaultCacheDuration_Days,
 Settings.Default.DefaultCacheDuration_Hours,
 Settings.Default.DefaultCacheDuration_Minutes, 0);
 public MemcachedCache()
 {
 cache = new MemcachedClient();
 List<string> keys = new List<string>();
 cache.Store(StoreMode.Add, "keys", keys);
 }

 public object Get(string cache_key)
 {
 return cache.Get(cache_key);
 }

 public List<string> GetCacheKeys()
 {
 return cache.Get("keys") as List<string>;
 }

 public void Set(string cache_key, object cache_object)
 {
 Set(cache_key, cache_object, _timeSpan);
 }

 public void Set(string cache_key, object cache_object, DateTime
 expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }

Chapter 13

[513]

 public void Set(string cache_key, object cache_object, TimeSpan
 expiration)
 {
 Set(cache_key, cache_object, expiration,
 CacheItemPriority.Normal);
 }

 public void Set(string cache_key, object cache_object, DateTime
 expiration, CacheItemPriority priority)
 {
 cache.Store(StoreMode.Set, cache_key, cache_object,
 expiration);
 UpdateKeys(cache_key);
 }

 public void Set(string cache_key, object cache_object, TimeSpan
 expiration, CacheItemPriority priority)
 {
 cache.Store(StoreMode.Set, cache_key, cache_object,
 expiration);
 UpdateKeys(cache_key);
 }

 private void UpdateKeys(string key)
 {
 List<string> keys = new List<string>();
 if (cache.Get("keys") != null)
 {
 keys = cache.Get("keys") as List<string>;
 }
 if (!keys.Contains(key.ToLower()))
 {
 keys.Add(key);
 cache.Store(StoreMode.Set, "keys", keys);
 }
 }

 public void Delete(string cache_key)
 {
 if (Exists(cache_key))
 cache.Remove(cache_key);
 }

 public bool Exists(string cache_key)
 {
 if (cache.Get(cache_key) != null)
 return true;

Scaling Up

[514]

 else
 return false;
 }

 public void Flush()
 {
 cache.FlushAll();
 }
}

Starting the cache layer
Now that we have a class built to interact with our MemCached client, we need to
plug it into our code base and use it. To do this, we will use our StructureMap tool to
swap in the MemCached client instead of the standard HttpContext.Current.Cache
in the System.Web.Caching namespace.

Open the structuremap.config file. Then enter the following code just after the
Assembly entries:

 <PluginFamily
 Assembly="Fisharoo.FisharooCore"
 Type="Fisharoo.FisharooCore.Core.ICache"
 DefaultKey="MemCached" />

This code tells StructureMap that although the cache object is wired as the default
entry, we want to use the MemCached client instead. With this configuration
complete, we can now wire our caching concepts into our existing data layer.
For example, I am going to add it to the FolderRepository. We will take the
GetFoldersByAccountID() specifically.

public List<Folder> GetFoldersByAccountID(Int32 AccountID)
{
 List<Folder> result = new List<Folder>();
 string cache_key = "GetFoldersByAccountID_" +
 AccountID.ToString();
 Stopwatch sw = new Stopwatch();
 if (_cache.Exists(cache_key))
 {
 sw.Reset();
 sw.Start();
 result = XMLService.Deserialize<List<Folder>>
 (_cache.Get(cache_key).ToString());

 sw.Stop(); //46ms from cache

 }
 else

Chapter 13

[515]

 {
 sw.Reset();
 sw.Start();
 using (FisharooDataContext dc = conn.GetContext())
 {
 var account = dc.Accounts.Where(a => a.AccountID ==
 AccountID).FirstOrDefault();
 IEnumerable<Folder> folders = (from f in dc.Folders
 where f.AccountID ==
 AccountID
 orderby f.CreateDate
 descending
 select f);
 foreach (Folder folder in folders)
 {
 var fullPath = (from f in dc.Files
 join ft in dc.FileTypes on
 f.FileTypeID equals ft.FileTypeID
 where f.DefaultFolderID ==
 folder.FolderID
 select new
 {
 FullPathToCoverImage =
 f.CreateDate.Year.ToString() +
 f.CreateDate.Month.ToString() +
 "/" + f.FileSystemName + "__S." +
 ft.Name}).FirstOrDefault();
 if (fullPath != null)
 folder.FullPathToCoverImage =
 fullPath.FullPathToCoverImage;
 else
 folder.FullPathToCoverImage = "default.jpg";
 if (account != null)
 folder.Username = account.Username;
 }
 result = folders.ToList();
 }

 sw.Stop(); //190ms from db

 _cache.Set(cache_key, XMLService.Serialize(result));
 }
 return result;
}

Scaling Up

[516]

You will notice that we first build a cache_key, which is unique to the specific
request. This can usually be done by using the method name and its input
parameters to create a dynamic but unique cache key. With the key in hand, we can
then do a lookup in our cache to determine if we have the item cached already or
not. If we don't have the item cached in, we can do the normal work to get the item
and then add it to the cache. This way, when we need this specific item again we can
get it from the cache instead of rebuilding it.

I wrapped each call with a StopWatch to capture how long each process takes (one
to the database and one to the cache). Note the time difference in this case between
going to the database and going to the cache.

One way to see the time for each process is to set a break point just after
each StopWatch.Stop() method and mouse over each Stopwatch
(sw) variable as the debugger completes each process.

Caching doesn't just take care of database calls. It is also worth wrapping complex
code that does long processing to return a result set that doesn't change with every
call. Places to consider wrapping with cache might be the database, file system
access, web service results, and so on.

While implementing a caching layer, be very cautious that you take into account
what happens when new data is added and more importantly when data is deleted.
If data that is added is not in the cache, it may or may not be important to update the
cached item. However, leaving deleted data in the cache is pretty much never a good
idea! For that reason, we want to add some code to our delete method that will
remove a deleted folder from cached entries.

public void DeleteFolder(Folder folder)
{

 string cache_key = "GetFoldersByAccountID_" + folder.AccountID;

 if(_cache.Exists(cache_key))

 _cache.Delete(cache_key);

 using(FisharooDataContext dc = conn.GetContext())
 {
 dc.Folders.Attach(folder, true);
 dc.Folders.DeleteOnSubmit(folder);
 dc.SubmitChanges();
 }
}

Now when a user deletes a folder we will remove it from the cache if it exists there.
Then when a user goes to get a list of folders that used to contain a deleted folder, we
will build the list again rather than find it in the cache.

Chapter 13

[517]

Where do I start?
The easiest way to know where to put caching is to analyze the performance of your
site and find the slowest parts. There are at times sections of code that may benefit
from a tweak to squeeze out better performance. But frequently, there are highly
optimized sections of code that just can't run any faster. These are the areas that
may benefit from a cache wrapper. To get major gains from your caching you don't
necessarily need to stow your items away in the cache for days on end. You can
see gains by caching something for only a few seconds. The key is how frequently
your data changes, and how frequently that data is accessed by your users. If the
data changes constantly and it is accessed constantly, huge gains can be made from
seconds of caching. If the data doesn't change much you can put it into cache and
remove it only when your data changes.

Searching
So far we have talked about database optimizations from the point of view of
creating indexes, streamlining our deletion process, and partitioning our data. It is
apparent that the deletion process won't help us here. Let's discuss why the other
two don't really help us either.

You might think that adding indexes to a table will help optimize our search process.
But if you think about it, we need to search within the data of a column. Rarely will
we have the full string that exactly matches the string that is found. In addition to
that, we need to be able to support something more than wild card searches. We also
want to support Boolean searches, multiphrase queries, and so on. For these reasons,
indexing doesn't help us with searching.

Partitioning helps us deal with large amounts of data. It doesn't help us with
searching that data though. Again, neither does this process help us make our search
faster, nor does it allow us to support additional feature-rich forms of searching.

We have also discussed caching to help speed up our site. Unfortunately, caching
search terms won't help us a whole lot either unless we cache the search terms for
very long periods of time. For short term caching, we won't reap benefits here.
And of course, there is the nagging issue that caching doesn't give us additional
search capabilities.

This is where Lucene.NET comes in handy. The thing to know about Lucene.NET
is that it works best searching already indexed data. So this is where we will start
creating indexes.

Scaling Up

[518]

Disclaimer: Lucene and Lucene.NET are huge tool sets. There is no way
that I can completely cover this tool in one small section of a small book!
Turn to Google if you have more questions after reading this!

Getting Lucene.NET
To get us started, we first need to download Lucene.NET. You can get that here:
http://incubator.apache.org/lucene.net/download/

All that you really need are the Lucene dll and config files. Toss those somewhere
on your hard drive and add a reference to your FisharooCore project. With this
completed we can start to build an index builder.

Building indexes
We will start building our index builder by first creating a LuceneSearchService
class. This class will contain everything from our index builders to our index
searcher. Let's add a method called BuildIndexes(). This method should be locked
so that it can be called only once (as building indexes could take a while with a lot
of data).

private object _indexBuildLocker = new object();

...
private void BuildIndexes()
{
 lock (_indexBuildLocker)
 {

 }
}

Note that we have an object declaration at the top of the class
called _indexBuildLocker. We can then place a lock on this object any
time we call into the BuildIndexes() method. If the object is locked when another
call is made to this method, the call will be blocked until the lock is released.

With this method in place as the gateway to our other methods that we will build
to build our indexes, we can get started. Let's start by creating a BuildBlogIndex()
method. This method will be responsible for building the index for our blog data.
Here is the whole method for building an index:

Chapter 13

[519]

private void BuildBlogIndex()
{
 int currentBlogPage = 1;
 bool moreRecords = true;
 //open up a new indexWriter
 IndexWriter indexWriter = new
 IndexWriter(getCacheDirectory("Blogs"),
 new StandardAnalyzer(), true);
 //keep track of how many records we have in the index
 int counter = 0;
 try
 {
 //as long as we have more records iterate through them
 while (moreRecords)
 {
 //get an updated list of profiles to add to the index
 List<Blog> blogs =
 _blogRepository.GetBlogsForIndexing
 (currentBlogPage);
 //get out of the loop once we run out of records
 if (blogs.Count() == 0)
 moreRecords = false;
 //with each profile we need to create a new record
 foreach (Blog blog in blogs)
 {
 Document doc = new Document();
 doc.Add(new Field("SystemObjectID", "3",
 Field.Store.YES, Field.Index.NO,
 Field.TermVector.NO));
 doc.Add(new Field("SystemObjectRecordID",
 blog.BlogID.ToString(), Field.Store.YES,
 Field.Index.NO,
 Field.TermVector.NO));
 doc.Add(new Field("DisplayText",
 blog.Title != "" ? blog.Title :
 blog.Subject,
 Field.Store.YES, Field.Index.NO,
 Field.TermVector.NO));
 doc.Add(new Field("Content", blog.Title + " " +
 blog.Subject + " " + blog.Post + " " + blog.PageName,
 Field.Store.YES, Field.Index.TOKENIZED,
 Field.TermVector.YES));
 doc.Add(new Field("URL",
 "~/Blogs/default.aspx?BlogID=" +
 blog.BlogID.ToString(),

Scaling Up

[520]

 Field.Store.YES, Field.Index.NO,
 Field.TermVector.NO));
 doc.Add(new Field("Order", counter.ToString(),
 Field.Store.YES, Field.Index.NO,
 Field.TermVector.NO));
 doc.Add(new Field("AccountID",
 blog.AccountID.ToString(), Field.Store.YES,
 Field.Index.NO,
 Field.TermVector.NO));
 indexWriter.AddDocument(doc);
 //RecordAdded!
 EventHandler handler = RecordAddedEvent;
 if (handler != null)
 {
 handler(this, new EventArgs());
 }
 //increment the counter
 counter++;
 }
 currentBlogPage++;
 }
 //make sure we optimize the index after building it
 indexWriter.Optimize();
 }
 catch (Exception e)
 {
 //oops
 Log.Error(this, e.Message);
 }
 finally
 {
 //we need to make sure that we close this!
 if (indexWriter != null)
 {
 //close the index
 indexWriter.Close();
 }
 }
}

The first major step to build an index is to open an IndexWriter. This is done
by passing in a Directory and a StandardAnalyzer. As we will have more
than one index builder, I pulled out the Directory logic and put it into the
getCacheDirectory() method to return the appropriate Directory.

Chapter 13

[521]

private Directory getCacheDirectory(string SubFolder)
{
 if (!System.IO.Directory.Exists(_indexPath + "\\" + SubFolder))
 {
 System.IO.Directory.CreateDirectory(_indexPath + "\\" +
 SubFolder);
 }
 _directory = FSDirectory.GetDirectory(_indexPath + "\\" +
 SubFolder, false);
 return _directory;
}

The StandardAnalyzer is used to clean out the busy words from the index that is
being created. This way, words like 'the', 'and', 'is', and so on, will be removed.

It is important that if you clean the words going into your index, you also
need to remove any busy words from your queries!

The next set of code allows us to work with smaller sets of data. We don't want to
get a million records to work with as we build our index. Instead, we will work in
smaller sets of data. So we are carefully watching to see if we have more records
using the while (moreRecords) statement. Once we get the remaining records from
our BlogRepository we will set the moreRecords variable to false.

//as long as we have more records iterate through them
while (moreRecords)
{
 //get an updated list of profiles to add to the index
 List<Blog> blogs =
 _blogRepository.GetBlogsForIndexing(currentBlogPage);
 //get out of the loop once we run out of records
 if (blogs.Count() == 0)
 moreRecords = false;

Once we manage to get all the records for building into our index, we need to iterate
through each record to actually add to the index. A Lucene.NET index is made up of
Documents. So with each new Blog record we want to create a new Document.

//with each profile we need to create a new record
foreach (Blog blog in blogs)
{
 Document doc = new Document();

Scaling Up

[522]

Then for each Document we will add new fields. The thing to know about building
an index is that you only need to put the data that is to be searched and the data
that you need to link the search results back to the actual data, in your database. For
this reason, we will track the SystemObjectID and the SystemObjectRecordID.
This effectively lets us index just about anything in our system. Then we need to
decide what we want to add to the Document to help us with our actual search. In
this case we will have the DisplayText to show in our search results. We will also
have a Content field to hold all the data that we want to search for each item. We
will have a URL to get us to the item from within our search results. There will also
be an Order field to contain any internal search orders. And finally, we will have
an AccountID field so that we know who the content belongs to (in case we need to
display a profile next to the results). With the Document created, we then need to add
it to the IndexWriter.

doc.Add(new Field("SystemObjectID", "3", Field.Store.YES,
 Field.Index.NO,
 Field.TermVector.NO));
doc.Add(new Field("SystemObjectRecordID", blog.BlogID.ToString(),
 Field.Store.YES,
 Field.Index.NO, Field.TermVector.NO));
doc.Add(new Field("DisplayText",
 blog.Title != "" ? blog.Title : blog.Subject,
 Field.Store.YES, Field.Index.NO, Field.TermVector.NO));
doc.Add(new Field("Content", blog.Title + " " + blog.Subject + " " +
 blog.Post + " " + blog.PageName, Field.Store.YES,
 Field.Index.TOKENIZED,
 Field.TermVector.YES));
doc.Add(new Field("URL", "~/Blogs/default.aspx?BlogID=" +
 blog.BlogID.ToString(),
 Field.Store.YES, Field.Index.NO,
 Field.TermVector.NO));
doc.Add(new Field("Order", counter.ToString(), Field.Store.YES,
 Field.Index.NO,
 Field.TermVector.NO));
doc.Add(new Field("AccountID", blog.AccountID.ToString(),
 Field.Store.YES,
 Field.Index.NO, Field.TermVector.NO));
indexWriter.AddDocument(doc);

There is some code in here that we don't need to worry about such
as the counter and firing events. This is more for UI stuff than for
building indexes!

Chapter 13

[523]

Once we have iterated through all the pages of data and finally all the records, we
then need to call the Optimize() method of the IndexWriter. This will make the
index more efficient to work with.

//make sure we optimize the index after building it
indexWriter.Optimize();

In case you didn't notice that we had a try statement started at the top of the class,
there was one! The reason I bring this up is that you are working with the file system.
Any time you are working with the file system, it is very important that you clean up
after yourself in the finally section. This is no exception.

finally
{
 //we need to make sure that we close this!
 if (indexWriter != null)
 {
 //close the index
 indexWriter.Close();
 }
}

Once the indexes are built, you should have some files similar to this:

This is the Lucene.NET Index.

Scaling Up

[524]

Building the search
Once we have an index built, we can then create a search process. The searching of
Lucene is relatively easy compared to determining what you want to be represented
in the index. Again, we want our process to be locked as this is a file-based process.
So it is important that we have a method as a gateway that can be called externally.

public List<SearchResult> Search(string InputText)
{
 List<SearchResult> results = new List<SearchResult>();
 if (string.IsNullOrEmpty(InputText))
 return null;
 lock (_searchLocker)
 {
 results = SearchIndexes(InputText.ToLower());
 }
 return results;
}

Once we have a method to initialize our search, we can safely start the search
process. In our case, we will be searching the Profiles and Blogs indexes (I created
an index for both). Note that in the beginning of the search we have an array of
indexes to search. Then we iterate through that list to perform searches on each index
in the collection.

We then open the appropriate index. Also note that we are initializing a Hits object,
which will hold the results of our search. In this implementation, I have created three
types of searches. One is a wild card search, which will allow our user to specifiy an
* as the wild card to search with. We then check to see if we have mutliple words in
our search phrase, which to us will represent a MultiPhraseQuery. And finally, we
have a simple PhraseQuery.

The wild card search will look for whatever you specify with anything else in place
of the wild card. If I specify "Andrew*" as my search phrase, it should easily pick up
"Andrew Siemer" or anything else that starts with Andrew. Be careful with this type
of search as you might return a slew of data no different from Select all from SQL.

A MultiPhraseQuery query allows you to search for the first word in the phrase
query, then search for the second word within the search results of the first word,
and so on. This can be used to whittle down the search results with a fair amount
of accuracy.

Finally, we have a simple PhraseQuery. This query takes in one word and searches
the index for instances of that word.

Chapter 13

[525]

With each search we are returned a collection of Hits. The Hits object holds all the
documents that were found via your search. Each hit has a relavancy as well as the
document so that you can use the record IDs of the found document and hence can
get back to the data you have stored in your SQL table.

From there, we then iterate through each of our hits creating a new SearchResult
(a custom structure that I made), which we can use to generically feed our UI.

private List<SearchResult> SearchIndexes(string InputText)
{
 List<SearchResult> result = new List<SearchResult>();
 string[] indexNames = {"Profiles", "Blogs"};
 foreach (string indexName in indexNames)
 {
 IndexReader reader =
 IndexReader.Open(getCacheDirectory(indexName));
 IndexSearcher searcher = new IndexSearcher(reader);
 Hits hits = null;
 //are there any wild cards in use?
 if (InputText.Contains("*"))
 {
 WildcardQuery query = new WildcardQuery(new
 Term("Content", InputText));
 hits = searcher.Search(query);
 }
 //is this a multi term query?
 else if (InputText.Contains(" "))
 {
 MultiPhraseQuery query = new MultiPhraseQuery();
 foreach (string s in InputText.Split(' '))
 {
 query.Add(new Term("Content", s));
 }
 hits = searcher.Search(query);
 }
 //single term query
 else
 {
 PhraseQuery query = new PhraseQuery();
 query.Add(new Term("Content", InputText));
 hits = searcher.Search(query);
 }
 for (int i = 0; i < hits.Length(); i++)
 {
 Document doc = hits.Doc(i);

Scaling Up

[526]

 SearchResult sr = new SearchResult();
 sr.AccountID =
 Convert.ToInt32(doc.GetField
 ("AccountID").StringValue());
 sr.DisplayText =
 doc.GetField("DisplayText").StringValue();
 sr.Content = doc.GetField("Content").StringValue();
 sr.Order =
 Convert.ToInt32(doc.GetField("Order").StringValue());
 sr.SystemObjectID =
 Convert.ToInt32(doc.GetField("SystemObjectID").StringValue());
 sr.SystemObjectRecordID =
 Convert.ToInt64(doc.GetField
 ("SystemObjectRecordID").StringValue());
 sr.URL = doc.GetField("URL").StringValue();
 result.Add(sr);
 }
 }
 return result;
}

Here is what a SearchResult looks like. We use this structure to populate a grid or a
repeater in our search result UI.

public struct SearchResult
{
 public int SystemObjectID { get; set; }
 public long SystemObjectRecordID { get; set; }
 public string DisplayText { get; set; }
 public string Content { get; set; }
 public string URL { get; set; }
 public int Order { get; set; }
 public int AccountID { get; set; }
}

I did not plug this directly into the site, instead I created a simple webpage for you
to see how it works. There is code to build the indexes from this page as well as to
perform a search.

Here is the aspx code:

<div>
 <asp:ScriptManager runat="server"></asp:ScriptManager>
 <asp:TextBox ID="txtSearch" runat="server"></asp:TextBox>
 <asp:Button ID="btnSearch" runat="server" Text="Search"
 OnClick="btnSearch_Click" />

Chapter 13

[527]

 <asp:Button ID="btnStart" runat="server" OnClick="btnStart_Click"
 Text="Build Lucene Search Indexes" />
 <asp:UpdatePanel runat="server">
 <ContentTemplate>
 <asp:PlaceHolder ID="phResults"
 runat="server"></asp:PlaceHolder>
 </ContentTemplate>
 </asp:UpdatePanel>
</div>

Here is the code behind (sorry no MVP here!).

public partial class LuceneSearch : System.Web.UI.Page
{
 private ILuceneSearchService _luceneSearchService;
 protected void Page_Load(object sender, EventArgs e)
 {
 _luceneSearchService =
 ObjectFactory.GetInstance<ILuceneSearchService>();
 _luceneSearchService.RecordAddedEvent += new
 EventHandler(_luceneSearchService_RecordAddedEvent);
 }
 void _luceneSearchService_RecordAddedEvent(object sender,
 EventArgs e)
 {
 phResults.Controls.Add(new LiteralControl("
Record
 added"));
 }
 protected void btnStart_Click(object sender, EventArgs e)
 {
 phResults.Controls.Clear();
 _luceneSearchService.BuildIndexesThread();
 }
 protected void btnSearch_Click(object sender, EventArgs e)
 {
 phResults.Controls.Clear();
 foreach(SearchResult result in
 _luceneSearchService.Search(txtSearch.Text))
 {
 phResults.Controls.Add(new LiteralControl("
" +
 result.DisplayText + " " + result.Content));
 }

 }
}

Scaling Up

[528]

As you can see, we take in the text from the UI and then perform a search on our
LuceneSearchService. This returns the results, which we then bind to our repeater.
There is also a button to click, to build the indexes.

Email
To this point we have discussed speeding up the site from a database point of view, a
hardware point of view, an indexing point of view, and a caching point of view. I am
sure that it didn't take you too much convincing that all these are wise places to look
for eking that last bit of performance out of your site. Now we are going to look at
speeding up the site from an infrastructure point of view. Specifically, we are going
to look at a way to handle our email processing in such a way that we will reduce the
number of network connections required to be made by the website directly.

The concept of queuing up system-to-system communications is not a
new one. This can be done with almost any communication that does not
need real-time feedback. Any asynchronous communication is a prime
candidate. And you don't necessarily need to employ a database as your
queue. You can use MSMQ, the file system, or any other responsive local
or semi-local resource. The concepts are mostly the same even though the
technologies are vastly different.

Specifically, any time your website needs to connect to an external server—say FTP,
HTTP, SMTP, TCP, and so on—the site takes a major hit in trying to establish a
connection, and once connected, to actually perform its work with the third-party
resource. Any time we can come up with a way to remove this connection, our users
will be much happier. From the users' point of view, they want to create a message,
click a button, and get feedback on whether their message was sent. We can simulate
that by allowing them to create a message, stuff it in a database, and then telling
the user that the message was sent. The connection to a database for a transaction is
much quicker than the connection to the SMTP server. So we will store our messages
in the database and have a third-party application process the outbound email at a
later time.

Creating services to send email
We currently have an Email class, which handles the creation of email, the actual
connectivity to the infrastructure, and finally the sending of the email. I think you
will agree that this particular class is way overtasked. For this reason, we will move
out the infrastructure and sending of email to an EmailService.

Chapter 13

[529]

This service will have one method—Send()—to begin with. This method will
be responsible for taking in a MailMessage, connecting to the mail server with a
SmtpClient, and finally sending the email.

public void Send(MailMessage Message)
{
 Message.Subject = _configuration.SiteName + " - " +
 Message.Subject;
 SmtpClient smtp = new SmtpClient();
 smtp.Send(Message);
}

We will then go into the Email class and remove its implementation of the Send()
method. We will then need to update all the calls to the Send() method with the new
call to the EmailService.Send() method.

public void SendEmail(string From, string Subject, string Message)
{
 MailMessage mm = new MailMessage(From,TO_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 _emailService.Send(mm);
}
public void SendEmail(string To, string CC, string BCC, string
 Subject, string Message)
{
 MailMessage mm = new MailMessage(FROM_EMAIL_ADDRESS,To);
 if(!string.IsNullOrEmpty(CC))
 mm.CC.Add(CC);
 if(!string.IsNullOrEmpty(BCC))
 mm.Bcc.Add(BCC);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 _emailService.Send(mm);
}

public void SendEmail(string[] To, string[] CC, string[] BCC, string
 Subject, string Message)
{
 MailMessage mm = new MailMessage();
 foreach (string to in To)
 {
 mm.To.Add(to);
 }
 foreach (string cc in CC)

Scaling Up

[530]

 {
 mm.CC.Add(cc);
 }
 foreach (string bcc in BCC)
 {
 mm.Bcc.Add(bcc);
 }
 mm.From = new MailAddress(FROM_EMAIL_ADDRESS);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 _emailService.Send(mm);
}

public void SendIndividualEmailsPerRecipient(string[] To, string
 Subject, string Message)
{
 foreach (string to in To)
 {
 MailMessage mm = new MailMessage(FROM_EMAIL_ADDRESS,to);
 mm.Subject = Subject;
 mm.Body = Message;
 mm.IsBodyHtml = true;
 _emailService.Send(mm);
 }
}

There are three overrides for the SendEmail() method, and one additional method
SendIndividualEmailsPerRecipient() that makes a call to the old Send()
method, which we updated with a call to the EmailService.Send() method instead.

Now that our infrastructure is separated out a bit, we can address the need for
storing the email in some form of a queue rather than sending the email directly. To
do this, we will start by first addressing our queue needs. We will use a queue in
the database.

We could just as easily use an MSMQ or the file system with some XML
files. Rather than add something new to the project I figured we would
build off our existing framework!

Chapter 13

[531]

The database
We need to build three tables. Each table will have exactly the same structure, but
a different purpose. We will have a receiving table that will take in new emails.
This table can't be interrupted. We want to be able to receive new emails while also
processing existing emails. To do this we will need to have a working table where we
will put all the emails that need to be processed. And finally, as we have a log of all
the communications that we have sent, we will also have a history table. This table
will hold all the emails that we have processed over time.

Our tables will hold serialized email. This means that we will actually have the
email, as sent, in its entirety. This means that we could easily re-serialize a batch of
emails to be resent if we ever needed to.

The only thing that is different about each of these tables is their names!

In order to process email that is received, we may have to go outside of what LINQ
was designed for. For this reason, we will create a couple of stored procedures to
help us out. We will have two procedures—one to essentially put the data from
receiving into the working table, and the other to put the working data into the
history table. This is just the idea, not the actual implementation!

Scaling Up

[532]

Here is how we create the first procedure:

create procedure [dbo].[pr_MailQueue_SwapReceivingAndWorking_
GetWorking]
as
begin tran
--rename working to temp
execute sp_rename
 @objname = 'MailQueue_Working',
 @newname = 'MailQueue_Temp'
--rename receiving to working
execute sp_rename
 @objname = 'MailQueue_Receiving',
 @newname = 'MailQueue_Working'
--rename temp to receiving
execute sp_rename
 @objname = 'MailQueue_Temp',
 @newname = 'MailQueue_Receiving'
select * from MailQueue_Working
commit tran

This procedure moves the data from one table to another in a manner that is more
efficient than actually moving the data. We start by renaming the working table
(an empty table at this point) to MailQueue_Temp. We then rename the receiving
table (a full table) to MailQueue_Working. And finally, we rename the temp table
to MailQueue_Receiving so that we can continue to collect new emails. With this
complete, we then return all the records in the working table. If this process is not
run frequently enough, you might find that there is more data in this table than
you can process in a single chunk. For that reason, you either need to process it
more often, or modify the selection to select pages of data. Our implementation
will assume that you process your queue frequently enough that the processor is
never overloaded.

The next procedure, pr_MailQueue_MoveWorkingToHistory, cleans up after us
when our email processor has completed its work.

create procedure [dbo].[pr_MailQueue_MoveWorkingToHistory]
as
begin tran
insert into MailQueue_History (SerializedMailMessage, CreateDate,
 SendDate)
(select SerializedMailMessage, CreateDate, GetDate() from
 MailQueue_Working)
truncate table MailQueue_Working
commit

Chapter 13

[533]

This procedure inserts all the data from the working table into the history table. It
then truncates the working table (which is why it was empty in the other procedure).

With the details worked out in the database, we can now drag these newly-created
objects into our LINQ design surface so that we can work with them in
our application.

You should have the three new tables and the two new procedures similar to the
ones shown in the screenshot. With these objects in place we can now create our
new EmailRepository. This repository will have three methods—one to save a new
email, the other to get all the email that needs to be processed, and the third one to
copy the working table to the history table.

public void Save(MailQueue_Receiving MailQueue)
{
 using (FisharooDataContext dc = conn.GetContext())
 {
 dc.MailQueue_Receivings.InsertOnSubmit(MailQueue);
 dc.SubmitChanges();
 }
}

public List<pr_MailQueue_SwapReceivingAndWorking_GetWorkingResult>
 GetMailQueueToProcess()
{
 List<pr_MailQueue_SwapReceivingAndWorking_GetWorkingResult>
 results = new List<pr_MailQueue_SwapReceivingAndWorking_
GetWorkingResult>();
 using (FisharooDataContext dc = conn.GetContext())

Scaling Up

[534]

 {
 results =
 dc.pr_MailQueue_SwapReceivingAndWorking_GetWorking().ToList();
 }
 return results;
}

public void MoveMailQueueWorkingToHistory()
{
 using (FisharooDataContext dc = conn.GetContext())
 {
 dc.pr_MailQueue_MoveWorkingToHistory();
 }
}

Services
With the repository and database out of the way, we need to create a new service.
We already have an EmailService that directly sends email through an SMTP
server. But what we need is a new service that can be swapped in place of the
EmailService—the DBMailService. This service will need to conform to our
IEmailService interface so that none of our application will need to know
anything about how the email is sent.

Recall that our EmailService only had one method—Send(). We will have a
Send() method that will deposit email into the new EmailRepository. But our
DBMailService will also need a way for our email processor to process emails. So
we need a second method of ProcessEmails().

public void Send(MailMessage Message)
{
 Message.Subject = _configuration.SiteName + " - " +
 Message.Subject;
 MailQueue_Receiving mq = new MailQueue_Receiving();
 mq.CreateDate = DateTime.Now;
 mq.SerializedMailMessage = Message.SerializeEncrypted();
 mq.SendDate = Convert.ToDateTime("1/1/2000");
 _emailRepository.Save(mq);
}

public void ProcessEmails()
{
 //make sure we are only processing this in one thread!
 //otherwise we might lose emails
 lock (this)
 {

Chapter 13

[535]

 try
 {
 List<pr_MailQueue_SwapReceivingAndWorking_
GetWorkingResult> results =
 new List<pr_MailQueue_SwapReceivingAndWorking_
GetWorkingResult>();
 results = _emailRepository.GetMailQueueToProcess();
 foreach (var result in results)
 {
 MailMessage mm =
 XMLService.Deserialize<MailMessage>
 (result.SerializedMailMessage);
 SmtpClient smtp = new SmtpClient();
 smtp.Send(mm);
 }
 _emailRepository.MoveMailQueueWorkingToHistory();
 catch(Exception e)
 {
 Log.Fatal(this, e.Message);
 return;
 }
 }
}

As you can see, the Send() method is fairly straightforward. We do need to Serialize
our MailMessage prior to sticking it into our queue, which we will go over shortly.
Otherwise, it is just an EmailRepository call.

The ProcessEmail() method on the other hand is a bit more involved. First and
most important is the fact that this method should only be run one at a time. We
don't want the method to be accessed by anything, so we need to lock it. Next, we
need to get a list of emails to process. We then iterate through each email. Note that
as we iterate over the email message, we are De-serializing each message (we will
cover this shortly). We then connect to our mail server and send our email.

Rather than connect to an IIS SMTP server or some other non-bulk
sending application, you could connect to something like PMTA or other
bulk email delivery system. These systems would make this process even
faster as they take in the email similar to the database and process the
mail after receiving it. IIS SMTP attempts to send it straightaway, which
can cause a delay in any application trying to send emails.

Scaling Up

[536]

As we added a new method to our DBMailService, we will also want to update
our IEmailService interface and the EmailService class (so that we can get our
DBMailService and EmailService through StructureMap in all the cases). To do
this, add a new method to your EmailService for the ProcessEmails() method.
This method will throw up an error as we don't plan to implement it.

public void ProcessEmails()
{
 throw (new Exception("ProcessEmails is not implemented by this
 class!"));
}

Serializing email
To start this section I have to rant a bit! We are trying to send a MailMessage
through a queue process. This means that we need to be able to serialize the
MailMessage. I think many people would need similar functionality either to stuff it
into the database, or into an MSMQ, or onto the file system. The MailMessage is not
serializable though!

There are two approaches to this issue. We can tap into the serialization of the
MailMessage and specify how each of the objects in the MailMessage is to be
serialized. Or we can fake the serialization. Hacking into and overriding the
serialization could be a chapter in itself. So we are going to fake it.

To fake this process, I created a class called MyMailMessage with a subclass
MailAddress. This encompasses all the features that I need to be represented in my
emails at this point. We are avoiding the headers, attachments, and so on. At this
point, we only care about the sender, the receivers, subject, body, and a few
other things.

[Serializable]
public class MyMailMessage
{
 public MailAddress[] Bcc { get; set; }
 public MailAddress[] Cc { get; set; }
 public MailAddress[] To { get; set; }
 public string Body { get; set; }
 public MailAddress From { get; set; }
 public bool IsBodyHtml { get; set; }
 public MailAddress ReplyTo { get; set; }
 public MailAddress Sender { get; set; }
 public string Subject { get; set; }
 [Serializable]
 public class MailAddress

Chapter 13

[537]

 {
 public string Address { get; set; }
 public string DisplayName { get; set; }
 }
}

Note that it is marked as Serializable!

With this in place, I was then able to create a few methods that effectively
shuffle data in and out of the MailMessage class into and out of my new
MyMailMessage object.

private static MailAddressCollection ConvertMyMailAddressesToMailAddre
sses(List<MyMailMessage.MailAddress>
 MyMailAddresses)
{
 MailAddressCollection mac = new MailAddressCollection();
 foreach(var a in MyMailAddresses)
 {
 mac.Add(ConvertMyMailAddressToMailAddress(a));
 }
 return mac;
}

private static MailAddress ConvertMyMailAddressToMailAddress(MyMailMes
sage.MailAddress
 MyMailAddress)
{
 MailAddress ma = null;
 if(MyMailAddress != null && MyMailAddress.Address != null &&
 MyMailAddress.DisplayName != null)
 ma = new MailAddress(MyMailAddress.Address,
 MyMailAddress.DisplayName);
 return ma;
}

private static MyMailMessage.MailAddress[] ConvertMailAddressToMyMailA
ddress(MailAddressCollection
 MailAddresses)
{
 List<MyMailMessage.MailAddress> result = new
 List<MyMailMessage.MailAddress>();
 foreach (var a in MailAddresses)
 {
 result.Add(ConvertMailAddressToMyMailAddress(a));
 }
 return result.ToArray();

Scaling Up

[538]

}
private static MyMailMessage.MailAddress
 ConvertMailAddressToMyMailAddress(MailAddress MailAddress)
{
 MyMailMessage.MailAddress ma = new MyMailMessage.MailAddress();
 if (MailAddress != null)
 {
 ma.Address = MailAddress.Address;
 ma.DisplayName = MailAddress.DisplayName;
 }
 return ma;
}

And finally, I was able to get to the meat and potatoes to build the Serialize() and
Deserialize() methods that operate on the MailMessage with the helper methods
just as seen in the code:

public static string Serialize(MailMessage MailMessage)
{
 string result = "";
 MyMailMessage mmm = new MyMailMessage();
 mmm.Bcc = ConvertMailAddressToMyMailAddress(MailMessage.Bcc);
 mmm.Body = MailMessage.Body;
 mmm.Cc = ConvertMailAddressToMyMailAddress(MailMessage.CC);
 mmm.From = ConvertMailAddressToMyMailAddress(MailMessage.From);
 mmm.IsBodyHtml = MailMessage.IsBodyHtml;
 mmm.ReplyTo =
 ConvertMailAddressToMyMailAddress(MailMessage.ReplyTo);
 mmm.Sender =
 ConvertMailAddressToMyMailAddress(MailMessage.Sender);
 mmm.Subject = MailMessage.Subject;
 mmm.To = ConvertMailAddressToMyMailAddress(MailMessage.To);
 result = XMLService.Serialize(mmm);
 return result;
}

public static MailMessage Deserialize(string SerializedMyMailMessage)
{
 MyMailMessage mmm =
 XMLService.Deserialize<MyMailMessage>
 (SerializedMyMailMessage);
 MailMessage mm = new MailMessage();
 foreach (var a in mmm.To)
 {
 mm.To.Add(ConvertMyMailAddressToMailAddress(a));
 }

Chapter 13

[539]

 foreach (var a in mmm.Cc)
 {
 mm.CC.Add(ConvertMyMailAddressToMailAddress(a));
 }
 foreach (var a in mmm.Bcc)
 {
 mm.Bcc.Add(ConvertMyMailAddressToMailAddress(a));
 }
 mm.Body = mmm.Body;
 mm.IsBodyHtml = mmm.IsBodyHtml;
 mm.ReplyTo = ConvertMyMailAddressToMailAddress(mmm.ReplyTo);
 mm.Sender = ConvertMyMailAddressToMailAddress(mmm.Sender);
 mm.Subject = mmm.Subject;
 mm.From = ConvertMyMailAddressToMailAddress(mmm.From);
 return mm;
}

As a great side effect of this class, I was also able to create the
SerializeEncrypted() and DeserializeEncrypted() methods that take
the returned string from the Serialize() method and wash them with our
Cryptography.Encrypt() and Cryptography.Decrypt() methods respectively.

 public static string SerializeEncrypted(MailMessage MailMessage)
{
 string result = Serialize(MailMessage);
 result = Cryptography.Encrypt(result, "SomeSaltAndPepper");
 return result;
}

public static MailMessage DeserializeEncrypted(string
 SerializedAndEncryptedMyMailMessage)
{
 string result =
 Cryptography.Decrypt(SerializedAndEncryptedMyMailMessage,
 "SomeSaltAndPepper");
 MailMessage mm = Deserialize(result);
 return mm;
}.

Scaling Up

[540]

Connecting the new DBMailQueueService
Now that we have this new service up and running and ready to be tested, how do
we hook it into our existing system without changing much of our existing code?
This is where the power of StructureMap comes in. We can open the StructureMap.
config file and make this quick and simple change. Add the following to your
StructureMap.config file:

<!--
 Use DefaultKey="Default" for sending the email
 in real time through the configured mail server
 or use DefaultKey="MailQueue" to send the mail
 in batches through another process
 -->
 <PluginFamily
 Assembly="Fisharoo.FisharooCore"
 Type="Fisharoo.FisharooCore.Core.IEmailService"
 DefaultKey="MailQueue" />

This will allow you to use the standard mail delivery system directly through
an SMTP server in real-time as per your web.config settings by adding a
DefaultKey="Default". Or if you want to use the MailQueue that we just created
you can add DefaultKey="MailQueue". That's it! Remember that the keys that are
specified here are in direct relationship to the [Pluggable("MyInstanceName")]
attribute that you add to the top of all your classes. In the [PluginFamily("MyInst
anceName")] that sits on top of your interfaces, you are specifying a default for that
interface. This config entry overrides the default entry.

The queue
Now we are actually able to collect email from our site to be deposited into our
MailQueue. As the implementation of this new feature is transparent to the site, all
areas that send email will now deposit them into our queue.

Keep in mind that you have the option of encrypting emails that are to be
stored in the queue. This might be a good idea considering that you have
emails that go out with users' passwords in them. Just something to
think about!

Chapter 13

[541]

Here is an example of an encrypted email sitting in our queue:

Here is an example of the same message in an un-encrypted format:

Scaling Up

[542]

Notice that the password is technically not secure in this format. It is very easy
to search all these entries for password and locate a list of users' passwords
with a direct association to the users' accounts through their (also provided)
email addresses!

Processing the queue
With a couple of emails in our queue, we can now focus on building a sample
processor. I will build a quick console application to demonstrate this. Technically,
you could take the console application and hook it up to your windows server as
a scheduled task. But for production work, I would suggest that you convert this
console application to a windows service, which is vastly more reliable (just not as
easy to show demos of!).

To get started, I added a new console application project called
FisharooMailQueueProcessor as shown in this screenshot:

I added an app.config file and the project's own copy of the StructureMap.config
file (not a reference to the solution version). The app.config file has a copy of all the
properties that our Configuration class would expect to see, as well as an entry for
the system.net/mailSettings, which points to our mail server.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.net>
 <mailSettings>
 <smtp>
 <network host="www.fisharoo.com" port="25"
 userName="admin@fisharoo.com" password="tm-es@as"/>
 </smtp>
 </mailSettings>
 </system.net>
 <appSettings>
 <add key="SiteName" value="Fisharoo"/>

Chapter 13

[543]

 <add key="NumberOfRecordsInPage" value="20"/>
 <add key="NumberOfTagsInCloud" value="30"/>
 <!--
 CloudSortOrder - Possible options include the following:
 Random: randomly sorts the cloud each time
 Ascending: sorts the final value of the tag cloud from small
 to tall
 Descending: sorts the final value of the tag cloud from tall
 to small
 -->
 <add key="CloudSortOrder" value="Random"/>
 <add key="TagCloudSmallestFontSize" value="10"/>
 <add key="TagCloudLargestFontSize" value="30"/>
 <add key="RootURL" value="http://localhost:64810/"/>
 <add key="WebSiteURL" value="http://localhost:64810/"/>
 <add key="AdminSiteURL" value="http://localhost:64948/"/>
 <add key="DefaultCacheDuration_Days" value="0"/>
 <add key="DefaultCacheDuration_Hours" value="0"/>
 <add key="DefaultCacheDuration_Minutes" value="15"/>
 <add key="ToEmailAddress" value="website@fisharoo.com"/>
 <add key="FromEmailAddress" value="website@fisharoo.com"/>
 </appSettings>
</configuration>

The StructureMap.config file specifies that the IEmailService should use the
MailQueue. I added its own copy of the config file so that we don't depend upon the
website's copy.

<?xml version="1.0" encoding="utf-8" ?>
<StructureMap>
 <Assembly Name="Fisharoo.FisharooCore" />
 <!--
 Use DefaultKey="Default" for standard cache
 or DefaultKey="MemCached" for memcached cache.
 -->
 <PluginFamily
 Assembly="Fisharoo.FisharooCore"
 Type="Fisharoo.FisharooCore.Core.ICache"
 DefaultKey="MemCached" />
 <!--
 Use DefaultKey="Default" for sending the email
 in real time through the configured mail server
 or use DefaultKey="MailQueue" to send the mail
 in batches through another process
 -->

Scaling Up

[544]

 <PluginFamily
 Assembly="Fisharoo.FisharooCore"
 Type="Fisharoo.FisharooCore.Core.IEmailService"
 DefaultKey="MailQueue" />
</StructureMap>

Finally, we have the actual guts of the program:

public class Program
{
 static void Main(string[] args)
 {
 //you can use the InjectStub to tell ObjectFactory
 //to return a different type of class
 //other than the default type
 ObjectFactory.InjectStub(typeof(IEmailService), new
 DBMailService());
 IEmailService _emailService =
 ObjectFactory.GetInstance<IEmailService>();
 _emailService.ProcessEmails();
 //but make sure you reset it to your defaults
 //when you are done - this could be a source
 //of a bug if you forget!
 ObjectFactory.ResetDefaults();
 }
}

As we did most of our work in the DBMailService, we have very little work left to
do to actually process our email queue. We inject a stub into StructureMap (this is
another way to specify which type of class you want from the factory). We then get
an instance of our IEmailService. Next, we call the ProcessEmails() method.
And finally, we reset our StructureMap environment. You don't have to do the two
StructureMap lines as this is technically handled in the config file. I just wanted
to show you that this could be done. This means that the whole application that
processes the email in our queue is two lines of code!

Chapter 13

[545]

Summary
In this chapter, we discussed various areas of the application that might experience
some growing pains over time. We addressed performance issues from a simple lack
of resources to how they can be addressed by creating a web farm. Then we looked
at possible inefficiencies in the database by discussing a better way to delete data,
partition and index it. Next, we looked at a way to speed up data and object access
on the site by implementing a caching layer using MemCached.NET. With these
items addressed, we moved on to making our search capabilities better
and faster. Finally, we looked at how network communications—emails in
particular—could be speeded up a bit by adding a layer of abstraction between
your website and the actual technology used to send emails.

The key to this chapter is looking at your site for possible pain points and addressing
them with approaches that may not be ASP.NET or C# related. Frequently, your
code may be optimized to a greater level, but may still appear to be slow. Poke
around a bit to determine for yourself all the aspects that are involved with a
problem, and learn to address it outside the box if that is best.

Index
A
ASP.NET 3.5

social network, building 7
social network, features 15
social network, Fisharoo sample 13, 14

avatar, user profiles
about 160
custom avatar 160
gravatar 160

B
blogs

data access layer, implementing 319
database, implementing 318, 319
design 318
issues 315-317
presentation layer, implementing 325, 326
services/application layer, implementing

323
solution 318

business/domain layer implementing,
user account 111-113

C
caching

design 494
solution 508

commenting
data access layer, setting up 421
database, implementing 420
design 416
issues 413
presentation layer, implementing 439
repositories, building 431

solution 417
cross-site scripting. See XSS

D
data access layer implementing, blogs

repositories, building 320-323
setting up 319

data access layer implementing,
commenting 421

data access layer implementing, rating 421
data access layer implementing, tagging 421
data access layer implementing,

user account
account, deleting 100
account, saving 98-100
account, selecting 97
DataContext wrapper 93, 94
LINQ, setting up 88-93
other repositories 101
permissions, adding to account 100, 101
permissions repository 101-104
repositories, building 94-97
terms repository 104-106

data access layer setting up, filtering
ContentFilterRepository 479
repositories, building 474

data access layer setting up, friends
AccountRepository 214
FriendInvitationRepository 212, 213
FriendRepository 210, 212
repositories, building 210
StatusUpdateRepository 213

data access layer setting up, gags
GagRepository 478, 479
repositories, building 474

[548]

data access layer setting up, groups
AccountRepository 385
AccountRepository,

GetApprovedAccountsByGroupID
385, 386

GetAccountsToApproveByGroupID 386
GroupForumRepository 383
GroupMemberRepository 383
GroupMemberRepository,

DeleteGroupMembers 384
GroupMemberRepository,

GetMemberAccountIDsByGroupID
384

GroupRepository 378
GroupRepository,

CheckIfGroupPageNameExists 380
GroupRepository, DeleteGroup 380
GroupRepository,

GetGroupByForumID 379
GroupRepository, IsOwner 379
GroupToGroupTypeRepository 381
GroupToGroupTypeRepository,

SaveGroupTypesForGroup 381, 382
GroupTypeRepository 385
repositories, building 378
steps 377, 378

data access layer setting up, media
FileRepository 289-292
FolderRepository 292-294
repositories, building 289

data access layer setting up, message board
BoardCategoryRepository 345
BoardForumRepository 345
BoardPostRepository 345-348
repositories, building 344
setting up 343, 344

data access layer setting up, messaging
system

MessageRecipientRepository 259, 260
MessageRepository 257-259
repositories, building 257
setting up 256, 257

data access layer setting up, moderation
ModerationRepository 475
ModerationRepository,

GetModerationsGlobal() 475-478
repositories, building 474

data access layer setting up, user profiles
about 167, 168
repositories, building 168

database implementing, blogs
blogs table 319
relationships, creating 319

database implementing, commenting 420
database implementing, filtering

about 472
relationships, creating 473

database implementing, friends
friend invitations 207, 208
FriendInvitations, constraints 209
friends, constraints 209
friends table 206
relationships, creating 209
status updates 208, 209
StatusUpdates, constraints 210

database implementing, gags 472
database implementing, groups

GroupForums 376
GroupMembers 375
groups, table structure 374, 375
GroupTypes 375
relationships, creating 376

database implementing, media
account files 287
account folders 286, 287
files 284, 285
file system folders 285
file types 285, 286
folder files 287
folders 286
folder types 286
relationships, creating 287

database implementing, message board
categories 340-342
forums 342
posts 342
relationships, creating 343

database implementing, messaging system
MessageRecipients 254
MessageRecipients, constraints 256
MessageRecipients, MessageFolders 255
MessageRecipients, MessageRecipientTypes

254

[549]

MessageRecipients, MessageStatusTypes
254

messages 253
MessageTypes 253
relationships, creating 255

database implementing, moderation
471, 472

database implementing, rating
system object rating options 418, 419

database implementing, tagging
about 419
system object tags 419, 420

database implementing, user account
AccountPermissions table 86
accounts table 85
permissions table 86
relationships, creating 87
terms table 87

database implementing, user profiles
alert, constraints 167
alerts table 166
attributes table 164
privacy table 165
profiles table 163, 164
relationships, creating 166

database optimization
design 492
issues 491
solution 495, 496

DDD
about 29
aggregates 31, 32
entity 29, 30
factories 33
module 31
repository 33
services 30, 31
ubiquitous language 29
value object 30

design, blogs 318
design, caching 494
design, commenting 416
design, database optimization

content, flagging 492
indexing 493
partitioning 493
partitioning, horizontal partitioning 493

partitioning, vertical partitioning 493
design, email 495
design, filtering 469, 470
design, friends

about 202, 203
friend, inviting 203
friend, searching for 203
friend alerts, adding to filter 205
friends, following 205
friends, importing from external sources

204
friends, managing 205
friends, viewing 205
invitation, sending 204
status updates, providing to friends 206

design, gags 469
design, groups

about 370, 371
GroupForums 372, 373
GroupMembers 371
GroupTypes 372
schema 373

design, media
data management screens 283
file, uploading process 282
files 281
file system, managing 283
folders 281, 282

design, message board
alerts 340
categories 338
forums 338
friendly URLs 339
posts 339
threads 339

design, messaging system
messages 251, 252
recipients 252

design, moderation 468, 469
design, rating 414, 415
design, searching 494, 495
design, tagging 415, 416
design, user account

about 79
logging in 84
registration 79
security 82

[550]

design, user profiles
about 158
avatar 160
news feed 162
privacy 161, 162
profile 158
public profile 160, 161

design, web farming 494
Domain-driven Design. See DDD

E
email

design 495
solution 528

error handling
about 62-64
logging 64-75

F
factory pattern, StructureMap used 36-38
filtering

data access layer, setting up 473, 474
database, implementing 472
design 469, 470
issues 465, 466
presentation layer, implementing 488, 489
services/application layer, implementing

479
solution 472

friends
data access layer, setting up 210
database, implementing 206
design 202
finding 203
interacting with 205
issues 198-202
presentation layer, implementing 220
services/application layer, implementing

214
solution 206

G
gags

data access layer, setting up 473, 474

database, implementing 472
design 469
issues 465
presentation layer, implementing 487
solution 472

gravatar, avatar
about 160, 189, 191

groups
about 370, 371
data access layer, setting up 377, 378
database, implementing 374
design 370
GroupForums 372, 373
GroupMembers 371
GroupTypes 372
issues 366-369
presentation layer, implementing 392
schema 373
services/application layer, implementing

387
solution 374

I
indexing

issues 491
Inversion of control. See IoC
IoC 35
issues, blogs 315-317
issues, commenting 413
issues, database optimization 491
issues, filtering

about 465, 466
cross-site scripting (XSS) 467

issues, friends 198-202
issues, gags 465
issues, groups 366-369
issues, indexing 491
issues, media 278-280
issues, message board 335-337
issues, messaging system 250, 251
issues, moderation 464
issues, rating 409, 410
issues, tagging 410-413
issues, user account 78, 79
issues, user profiles 155-158

[551]

L
layered architecture

versus non-layered architecture 27
layers

business logic layer 28
data access layer 28
presentation layer 28

logging 64-75
logging in, user account

about 84
account, managing 84
password reminder 84

M
media

data access layer, setting up 288, 289
database, implementing 284
data management screens 283
design 281
file, uploading process 282
files 281
file system, managing 283
folders 281, 282
issues 278, 279, 280
presentation layer, implementing 295
services/application layer, implementing

294
message board

alerts 340
categories 338
data access layer, setting up 343
database, implementing 340
design 338
forums 338
friendly URLs 339
issues 335, 336, 337
posts 339
presentation layer, implementing 351
services/application layer, implementing

349
solution 340
threads 339

messaging system
data access layer, setting up 256, 257
database, implementing 253
design 251

issues 250, 251
messages 251, 252
presentation layer, implementing 265
recipients 252
services/application layer, implementing

260
solution 252

micro blog, friends 208
model 34
Model View Presenter. See MVP
moderation

data access layer, setting up 473, 474
database, implementing 471, 472
design 468, 469
issues 464
presentation layer, implementing 481-484
solution 471, 472

MVP
about 34
working 35

N
non-layered architecture

versus layered architecture 27

P
presentation layer implementing, blogs

fancy URL support 328-330
implementing 325, 326
latest blog posts 326-328
my blog posts 328
post, creating 331-333
post, editing 331-333
post, viewing 331

presentation layer implementing,
commenting

about 438
comments.ascx 439
comments.ascx.cs 439, 440
CommentsPresenter.cs 441, 442

presentation layer implementing,
filtering 488, 489

presentation layer implementing, friends
friends, inviting 227-232
friends, on profile 243
friends, searching for 220

[552]

friends, viewing 241, 242
friendship, confirming 238-240
login presenter 240
Outlook CSV importer 232
Outlook CSV importer, contacts importing

233-235
Outlook CSV importer, contacts selecting

235-238
registration 241
search.aspx page 220-226
SiteMaster 220
status updates 244, 246

presentation layer implementing, gags 487
presentation layer implementing, groups

default page 397
forum enhancements 403-405
ManageGroup 392
ManageGroup, image uploading 393, 394
ManageGroup, WYSIWYG editor 392
members 395
members, CheckBoxLists 396
members, data pagination 395, 396
MyGroups page 401, 402
UrlRewrite class 398
ViewGroup 398
ViewGroup, private/public 399, 400

presentation layer implementing, media
file, uploading 295
files, receiving 295-301
file upload 295
multi-file, uploading 302-307
photo albums 307
photo albums, MyPhotos 307-310
photo albums, ViewAlbum 310, 311
receiver, testing 301, 302

presentation layer implementing, message
board

default.aspx 352-354
Post.aspx 361-363
redirector 355
UrlRewrite class 355-357
ViewForum.aspx 358, 359
ViewPost.aspx 359, 360

presentation layer implementing,
messaging system

default (inbox) 270-272
default (inbox), folders 273, 274

message, reading 274, 275
new message 265-268
new message, friends control 268, 269

presentation layer implementing,
moderation

flagged content, moderating 484-487
user control 481-484

presentation layer implementing, rating
about 438
ratings.ascx 442-444
ratings.ascx.cs 444, 446
ratings page 442
RatingsPresenter.cs 447, 448

presentation layer implementing, tagging
about 438
tags.ascx 449
tags.ascx.cs 450, 451
TagsPresenter.cs 451-454

presentation layer implementing,
user account

access, checking 149
account, editing 139-143
AllNodes() 148
email, verifying 132-135
model 119
Model View Presenter (MVP) 113, 114
navigation, implementing 150, 151
navigation, sections 148
password, recovering 135-139
presenter 118, 119
registration page 120-132
security 150
security, implementing 143, 150, 151
SiteMap file 143-145
SiteMap wrapper 145, 147
View 115, 116
view 118

presentation layer implementing,
user profiles

about 174
avatar, image manipulating 186-189
avatar, uploading 185, 186
gravatar 189-191
news feed 195
privacy, managing 175-181
profile, managing 181-185
public profile 191, 192

[553]

public profile, custom homepage 192-195
presenter 35
profiles, user profiles

managing 159
user data, collecting 158

public profile, user profiles
custom homepage 161

R
rating

data access layer, setting up 421, 422
database, implementing 418
design 414, 415
issues 409, 410
presentation layer, implementing 442
relationships, creating 420
repositories, building 422
services/application layer, implementing

436
solution 417
system object rating options 418, 419

registration, user account
accounts 79, 80
Completely Automated Public Turing test

to tell Computers and Humans Apart
(CAPTCHA) 81, 82

email, confirming 82
email, verifying 82
password strength 80
terms and conditions 81

repository pattern and LINQ 38-44

S
searching

design 494, 495
solution 517

security, user account
password, decrypting 84
password, encrypting 84
permissions, handling 83

Selenium 35
separation of concerns. See SoC
services/application layer implementing,

blogs
AlertService 323-325

services/application layer implementing,
commenting 431

services/application layer implementing,
filtering

ContentFilterService 480
extensions class 480

services/application layer implementing,
friends

AlertService 217-219
FriendService 215, 217
PrivacyService 219, 220

services/application layer implementing,
groups

AlertService 389
GroupService 387
GroupService, IsOwnerOrAdministrator

387
GroupService, SaveGroup 388
Redirector class 390
WebContext class 391

services/application layer implementing,
media

FolderService 294
implementing 294

services/application layer implementing,
message board

about 349
AlertService 350, 351
BoardService 349, 350

services/application layer implementing,
messaging system

AlertService 263, 264
email 263
FriendService 264
MessageService 260-262

services/application layer implementing,
rating 431

services/application layer implementing,
tagging 431

services/application layer implementing,
user account

about 106-110
extension methods 110, 111

services/application layer implementing,
user profiles

AccountService 170, 171
AlertService 173, 174

[554]

PrivacyService 171, 173
ProfileAttributeService 174
ProfileService 168-170

SoC 28
social networking

about 7
content moderation 12
customer service 12
features 15
Fisharoo sample 13, 14
large communities 7
niche communities 8

social networking, features
accounts 15, 16
blogging 21
commenting 23
framework 25
friends 17
groups 22
media gallery 19
message boards 22
messaging 18
profiles 16
rating 24
tagging 23, 24

social networking, Fisharoo sample 13, 14
social networking, large communities

Digg.com 7
Facebook.com 8
LinkedIn.com 8
Twitter.com 8

social networking, niche communities
AnimeDates.com 10
Ning.com 11
Rocker.com 8

solution, blogs
data access layer, setting up 319
database, implementing 318, 319
presentation layer, setting up 325, 326
relationships, creating 319
services/application layer, setting up 323

solution, caching
about 508
cache layer, starting 514-517
client 511
client, using 511-513
server 509

solution, commenting
CommentRepository,

GetCommentsBySystemObject() 431
comments.ascx 439
comments.ascx.cs 439, 441
CommentsPresenter.cs 441, 442
database, implementing 420
presentation layer, implementing 438
services/application layer,

implementing 431
solution, database optimization

about 495, 496
indexing 496-498
partition function, creating 499
partitioning 498
partitioning, FileGroups 499
partitioning, gotchas 500
partition scheme, creating 499
partition tables, creating 500

solution, email
about 528
database table, creating 531-534
DBMailQueueService, connecting 540
email, serializing 536-540
queue 540-542
queue, processing 542-545
services 534, 535
services, creating to send email 528-530

solution, filtering
data access layer, setting up 473, 474
database, implementing 472
presentation layer, implementing 488, 489
services/application layer, implementing

479
solution, friends

data access layer, setting up 210
database, implementing 206
presentation layer, implementing 220
services/application layer, implementing

214
solution, gags

data access layer, setting up 473, 474
database, implementing 472
presentation layer, implementing 487

solution, groups
data access layer, setting up 377, 378
database, implementing 374

[555]

presentation layer, implementing 392
services/application layer, implementing

387
solution, media

data access layer, setting up 288, 289
database, implementing 284
presentation layer, implementing 295
services/application layer, implementing

294
solution, message board

data access layer, setting up 343
database, implementing 340
presentation layer, implementing 351
services/application layer, implementing

349
solution, messaging system

data access layer, setting up 256, 257
database, implementing 253
presentation layer, implementing 265
services/application layer, implementing

260
solution, moderation

data access layer, setting up 473, 474
database, implementing 471, 472
presentation layer, implementing 481-484

solution, rating
configuration class 438
database, implementing 418
presentation layer, implementing 438
RatingRepository, GetCurrentRating() 424
RatingRepository, HasRatedBefore() 422
RatingRepository, SaveRatings() 424
ratings.ascx 442-444
ratings.ascx.cs 444, 446
RatingsPresenter.cs 446-448
relationships, creating 420
services/application layer, implementing

431
SystemObjectRatingOptionRepository 425
system object rating options 418, 419
WebContext 436
WebContext, ClearSelectedRatings 437
WebContext, SelectedRatings 436, 437
WebContext, TagID 437

solution, searching
about 517
indexes, building 518-524

Lucene.NET, downloading 518
search, building 524-527

solution, tagging
database, implementing 419
Extensions, ShuffleList() 435
new user controls, installing 454-456
presentation layer, implementing 438
services/application layer, implementing

431
SystemObjectTagRepository 427
SystemObjectTagRepository,

GetSystemObjectByTagID() 427-431
system object tags 419, 420
TagRepository, GetTagByID() 426
TagRepository, GetTagByName() 425
TagRepository, GetTagsBySystemObject()

426
TagRepository, GetTagsBySystemObjectAn-

dRecordID() 427
TagRepository, GetTagsGlobal() 426
tags.ascx 449
tags.ascx.cs 449-451
tags.aspx 457, 458
tags.aspx.cs 458, 459
TagService, AddTag() 432
TagService, CalculateFontSize() 433-435
tags page 457
TagsPresenter.cs 451-454, 460
UrlRewrite.cs 456, 457

solution, user account
about 85
application layer, implementing 106-110
business layer, implementing 111-113
data access layer, implementing 87
database, implementing 85
domain layer, implementing 111-113
presentation layer, implementing 113
services layer, implementing 106-110

solution, user profiles
data access layer, setting up 167, 168
database, implementing 163
presentation layer, implementing 174
services/application layer, implementing

168
solution, web farming 501-508
StructureMap 36-38
Supervising Controller. See MVP

[556]

T
tagging

about 419
data access layer, setting up 421
database, implementing 419
design 415, 416
issues 410-413
presentation layer, implementing 449, 457
repositories, building 425
services/application layer, implementing

432
solution 417
system object tags 419, 420

Test-Driven Development. See TDD

U
user account

business/domain layer, implementing
111-113

data access layer, implementing 87
database, implementing 85
design 79
issues 78, 79
logging in 84
presentation layer, implementing 113
registration 79
security 82
services/application layer, implementing

106-110
solution 85

user profiles
avatar 160

data access layer, setting up 167, 168
database, implementing 163
design 158
issues 155-158
news feed 162
presentation layer, implementing 174
privacy 161, 162
profile 158
public profile 160, 161
services/application layer, implementing

168
solution 162

V
view 34

W
web farming

design 494
solution 501-508

wrapper
about 44
cache wrapper 47-53
configuring 44-47
emails, sending 57-61
redirection 56, 57
session object 54-56

X
XSS 467

Thank you for buying
ASP.NET 3.5 Social Networking

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Websites with the
ASP.NET Community Starter Kit
ISBN: 1-904811-00-0 Paperback: 268 pages

A comprehensive guide to understanding,
implementing, and extending the powerful and freely
available application from Microsoft

1. Learn .NET architecture through building
real-world examples

2. Understand, implement, and extend the
Community Starter Kit

3. Learn to create and customize your
own website

4. For ASP.NET developers with a sound grasp
of C#

Building Websites with VB.NET
and DotNetNuke 4
ISBN: 1-904811-99-X Paperback: 250 pages

A practical guide to creating and maintaining your
own DotNetNuke website, and developing new
modules and skins

1. Specially revised and updated version of this
acclaimed DotNetNuke book

2. Create and manage your own website with
DotNetNuke

3. Customize and enhance your site with skins
and custom modules

4. Extensive coverage of the DAL and DAL+ for
custom module development

5. Complete coverage of setup, administration,
and development

Please check www.PacktPub.com for information on our titles

Elgg Social Networking
ISBN: 978-1-847192-80-6 Paperback: 179 pages

Create and manage your own social network site
using this free open-source tool

1. Create your own customized community site

2. Manage users, invite friends, start groups
and blogs

3. Host content: photos, videos, MP3s, podcasts

4. Manage your Elgg site, protect it from spam

5. Written on Elgg version 0.9

Drupal for Education
and E-Learning
ISBN: 978-1-847195-02-9 Paperback: 380 pages

Teaching and learning in the classroom using the
Drupal CMS

1. Use Drupal in the classroom to enhance
teaching and engage students with a range of
learning activities

2. Create blogs, online discussions, groups, and a
community website using Drupal

3. Clear step-by-step instructions throughout
the book

4. No need for code! A teacher-friendly,
comprehensive guide

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	What This Book Covers
	What You Need for This Book
	Who is This Book For
	Conventions
	Reader Feedback
	Customer Support
	Downloading the Example Code for the Book
	Errata
	Piracy
	Questions

	1. Social Networking
	What makes this topic so important
	Large communities
	Niche communities

	Once I have my own social network, then what?
	Customer service
	Content moderation
	Growing infrastructure requirements

	Our social network—Fisharoo
	This book's approach
	Problem
	Design
	Solution

	Features of our social network
	Accounts
	Profiles
	Friends
	Messaging
	Media galleries
	Blogging
	Message boards
	Groups
	Comments
	Tags
	Ratings
	Framework
	Scaling up

	Summary

	2. An Enterprise Approach to our Community Framework
	A layered architecture versus a non-layered architecture
	Layers

	Domain-driven Design
	Ubiquitous language
	Entities
	Value objects
	Services
	Modules
	Aggregates
	Factories
	Repositories

	Model View Presenter pattern
	Model
	View
	Presenter
	How it works

	Factory pattern using StructureMap
	Repository pattern and LINQ
	Wrappers for everything!
	Configuration
	Cache
	Session
	Redirection
	Email

	Error handling and logging
	Error handling
	Logging

	Summary

	3. User Accounts
	Problem
	Design
	Registration
	Accounts
	Password strength
	Terms and conditions
	CAPTCHA
	Email confirmation and verification

	Security
	Permissions
	Password encryption/decryption

	Logging in
	Password reminder
	Manage account

	Solution
	Implementing the database
	The Accounts table
	The Permissions table
	The AccountPermissions table
	The Terms table
	Creating the relationships

	Implementing the data access layer
	Setting up LINQ for the first time
	A DataContext wrapper
	Building repositories
	The other repositories

	Implementing the services/application layer
	Extension methods

	Implementing the business/domain layer
	Implementing the presentation layer
	Model view presenter
	Registration page
	Email verification
	Password recovery
	Edit account
	Implementing security

	Summary

	4. User Profiles
	Problem
	Design
	Profile
	Manage profile

	Avatar
	Custom avatars
	Gravatar

	Public profile
	Custom homepage

	Privacy
	News feed

	Solution
	Implementing the database
	The Profiles table
	Level of Experience
	The Attributes table
	The Privacy table
	The Alerts table
	Creating the relationships

	Setting up the data access layer
	Building repositories

	Implementing the services/application layer
	ProfileService
	Account service
	Privacy service
	Alert service
	Profile Attribute Service

	Implementing the presentation layer
	Privacy
	Manage profile
	Avatar
	Public profile
	News feed

	Summary

	5. Friends
	Problem
	Design
	Friends
	Finding Friends
	Searching for a Friend
	Inviting a Friend
	Importing Friends from External Sources
	Sending an Invitation
	Adding Friend Alerts to The Filter

	Interacting With Your Friends
	Viewing Your Friends
	Managing your friends
	Following Your Friends
	Providing Status Updates to Your Friends

	Solution
	Implementing the Database
	The Friends Table
	Friend Invitations
	Status Updates
	Creating the Relationships

	Setting Up the Data Access Layer
	Building Repositories

	Implementing the Services/Application Layer
	FriendService
	AlertService
	PrivacyService

	Implementing the Presentation Layer
	Searching for Friends
	Invite Your Friends
	Outlook CSV Importer
	Confirm Friendship
	Show Friends
	Friends on Profile
	Status Updates

	Summary

	6. Messaging
	Problem
	Design
	Messages
	Recipients

	Solution
	Implementing the database
	Messages
	MessageRecipients
	Creating the relationships

	Setting up the data access layer
	Building repositories

	Implementing the services/application layer
	MessageService
	Email
	AlertService
	FriendService

	Implementing the presentation layer
	New message
	Default (or Inbox)
	Read message

	Summary

	7. Media Galleries
	Problem
	Design
	Files
	Folders
	File upload
	File system management
	Data management screens

	Solution
	Implementing the database
	Files
	File system folders
	File types
	Folders
	Folder types
	Account folders
	Account files
	Folder files
	Creating the relationships

	Setting up the data access layer
	Building repositories

	Implementing the services/application layer
	FolderService

	Implementing the presentation layer
	File upload
	Photo albums

	Summary

	8. Blogs
	Problem
	Design
	Blogs

	Solution
	Implementing the database
	Blogs
	Creating the relationships

	Setting up the data access layer
	Building repositories

	Implementing the services/application layer
	AlertService

	Implementing the presentation layer
	Latest blog posts
	My blog posts
	Fancy URL support
	View post
	Create or edit post

	Summary

	9. Message Boards
	Problem
	Design
	Categories
	Forums
	Threads and Posts
	Friendly URLs
	Alerts

	Solution
	Implementing the Database
	Categories
	Forums
	Posts
	Creating the Relationships

	Setting Up the Data Access Layer
	Building Repositories

	Implementing the Services/Application layer
	BoardService
	AlertService

	Implementing the Presentation Layer
	Default.aspx
	Redirector
	UrlRewrite
	ViewForum.aspx
	ViewPost.aspx
	Post.aspx

	Summary

	10. Groups
	Problem
	Design
	Groups
	GroupMembers
	GroupTypes
	GroupForums
	Schema

	Solution
	Implementing the database
	Groups
	GroupMembers
	GroupTypes
	GroupForums
	Creating the relationships

	Setting up the data access layer
	Building repositories
	GroupRepository
	GroupToGroupTypeRepository
	GroupForumRepository
	GroupMemberRepository
	GroupTypeRepository
	AccountRepository
	GetAccountsToApproveByGroupID

	Implementing the services/application layer
	GroupService
	AlertService
	Redirector
	WebContext

	Implementing the presentation layer
	ManageGroup
	Members
	Default
	UrlRewrite
	ViewGroup
	MyGroups
	Forum enhancements

	Summary

	11. Comments, Tags, and Ratings
	Problem
	Ratings
	Tagging
	Commenting

	Design
	Ratings
	Tags
	Comments

	Solution
	Implementing the database
	SystemObjects
	Ratings
	System object rating options
	Tags
	System object tags
	Comments
	Creating the relationships

	Setting up the data access layer
	Building repositories
	RatingRepository
	SystemObjectRatingOptionRepository
	TagRepository
	SystemObjectTagRepository
	CommentRepository

	Implementing the services/application layer
	TagService
	Extensions
	WebContext
	Configuration

	Implementing the presentation layer
	Comments Page
	Ratings Page
	Tags Page
	Installing the new user controls
	UrlRewrite.cs
	Tags page

	Summary

	12. Moderation
	Problem
	Community moderation
	Gagging users
	Dynamic filter
	Cross-site scripting (XSS)

	Design
	Moderation
	Gags
	Filtering

	Solution
	Implementing the database
	Moderations
	Gags
	ContentFilters
	Creating the relationships

	Setting up the data access layer
	Building repositories

	Implementing the services/application layer
	ContentFilterService
	Extensions

	Implementing the presentation layer
	Moderation
	Gagging
	Filtering

	Summary

	13. Scaling Up
	Problem
	Design
	Database optimization
	Flagged for delete
	Indexing
	Partitioning

	Web farming
	Caching
	Searching
	Email

	Solution
	Database optimization
	Indexing
	Partitioning
	Gotchas

	Web farming
	Caching
	The server
	The client
	Using the client
	Starting the cache layer
	Where do I start?

	Searching
	Getting Lucene.NET
	Building indexes
	Building the search

	Email
	Creating services to send email
	The database
	Services
	Serializing email
	Connecting the new DBMailQueueService
	The queue
	Processing the queue

	Summary

	Index

